
Sharing Sensitive Data

40	 COPUBLISHED	BY	THE	IEEE	COMPUTER	AND	RELIABILITY	SOCIETIES							■						1540-7993/10/$26.00	©	2010	IEEE							■						JULY/AUGUST	2010

C onsider the following situation: company A
is a startup with a new product that it would
like to market. Company B is a mailing-list
provider and has a huge database of people’s

names, addresses, and attributes.
Based on its research, company A is convinced

that people who like dogs and are more than six feet
tall will respond favorably to an advertisement for its
product. Thus, A would like to purchase a list of po-
tential customers with these attributes from company
B. However, A doesn’t want to reveal its marketing
strategy—if competitors discover that A’s product is
being targeted to tall dog-lovers, they might be able
to scoop it.

One solution would be for company A to buy the
entire database from company B. This would certainly
hide any specific attributes A is looking for. However,
this could be prohibitively expensive—the actual data
A is interested in is only a tiny fraction of the database.
Moreover, A might already have a list of potential cus-
tomers compiled from other sources; A would prefer
not to pay twice for data it already has. There might
also be privacy or regulatory issues preventing B from
selling too much of its information to one entity.

A second possibility would be for both companies
to use a trusted third party (TTP). Company A can
disclose its secret strategy and the list of names it al-
ready knows to the TTP while company B discloses
its entire database. In this case, the TTP could search
the database for tall dog-lovers who aren’t on A’s “al-
ready known” list, send those to A, and reveal only
the total sum company A must pay to company B in
return for this information.

Unfortunate-
ly, in practice,
two companies often have trouble finding a third party
that they both completely trust. Situations like these are
where modern cryptography can truly shine. Using a
cryptographic protocol, companies A and B can emu-
late a virtual trusted party that provides the same services a
real one would, but without having to trust in anything
but their own implementation of the protocol.

We’ve constructed an efficient protocol that solves
this problem, which we believe can be applied to
many similar data-sharing problems.

Phishing Website Take Down
Our original motivation came from a seemingly un-
related real-life problem: an attempt to encourage data
sharing between phishing take-down companies.

Phishing is the criminal activity of enticing people
to visit websites that impersonate genuine bank web-
sites and dupe visitors into revealing passwords and
other credentials. (Although a wide range of compa-
nies have been subject to phishing attacks, most are
financial institutions; for simplicity, we use the term
“banks” for firms being attacked.) One key counter-
measure to phishing is to promptly remove the imita-
tion websites. Banks can achieve removal by erasing
the webpages from the hosting machine or contacting
a registrar to suspend a domain name from the Do-
main Name System (DNS), so the fraudulent host can
no longer be resolved.

Although some banks deal with phishing web-
site removal exclusively in-house, most hire specialist
take-down companies to carry out the task. Such com-

The Phish-Market protocol encourages take-down

companies to share information about malicious websites

by compensating them for this data without revealing

sensitive information to their competitors. Cryptography

lets contributing firms verify payment amounts without

learning which offered website URLs were “purchased.”

Tal Moran
and Tyler
Moore

Harvard
University

The	Phish-Market	Protocol
Secure Sharing Between Competitors

Sharing Sensitive Data

	 www.computer.org/security	 41	

panies—typically, divisions of brand-protection firms
or information security service providers—perform
two key services. First, they’re good at getting phish-
ing websites removed quickly, having developed rela-
tionships with ISPs and registrars across the globe and
deployed multilingual teams at 24/7 operation centers.
Second, they collect a more timely and comprehensive
listing of phishing URLs than banks normally gather.

Most take-down companies view their URL feeds
as a key competitive advantage over banks and oth-
er take-down providers. However, recent work has
shown that the feeds such companies compile suffer
from large gaps in coverage that significantly prolong
the time needed to remove phishing websites. Tyler
Moore and Richard Clayton examined six months of
aggregated URL feeds from many sources, includ-
ing two major take-down companies.1 They found
that up to 40 percent of phishing websites remained
unknown to the company with the take-down con-
tract but were discovered by others. Another 29 per-
cent were discovered by the responsible take-down
company only after others had identified them. By
measuring these missed websites’ substantially lon-
ger lifetimes, Moore and Clayton estimated that 120
banks served by these two companies collectively risk
at least US$330 million per year by failing to share
proprietary URL feeds (see Table 1).

Figure 1 gives the details for one take-down com-
pany, labeled tA. The left circle represents the phishing
sites that appear in tA’s feed, and the right circle the
sites that appear in its competitors’ feeds. The intersec-
tion contains the sites that appear in all feeds, the top
half representing sites that tA found before other com-
panies, and the bottom those others found before tA.

The Phish-Market Protocol
Named after its applicability to sharing phishing
URLs, the Phish-Market protocol can efficiently solve
data-sharing problems while overcoming the sharing
entities’ competitive concerns. Contributors are com-
pensated, but sensitive details that might be inferred
from a transaction are hidden from both parties, all
without requiring access to a TTP. The protocol aims
to let a buyer acquire new records, such as phishing
URLs or customer details, from a seller. The buyer
is interested only in a subset of data matching one
or more tags, attributes describing the records. Tags

can indicate which bank is the subject of the phishing
URL or customer attributes in a database.

At a high level, the Phish-Market protocol does
the following:

• shares only those records that match the tags the
buyer requests;

• hides from the seller which records the buyer receives;
• hides from the seller which tags the buyer requests; and
• securely tallies the number of records the buyer re-

ceives without double-counting records from the
seller that the buyer already has.

These requirements are essential for take-down com-
panies considering sharing phishing URL data. The
first requirement ensures that only URLs pertaining
to banks that the take-down company is interested in
are exchanged. The second and third requirements
protect the acquiring firm from revealing too much
about its business posture, such as its client banks and
its weaknesses in phishing-website-detection capabil-
ity. The fourth requirement assures both the buyer
and seller that the exchange is fair. We anticipate that
take-down companies would execute the protocol as
both buyers and sellers, and that only the net con-
tributor would be compensated financially.

The requirements also match up nicely to the cus-
tomer database provider problem. In fact, we envi-
sion many data-sharing applications that could benefit
from a sharing mechanism like the Phish-Market pro-
tocol. For instance, hospitals might be willing to share
de-identified patient records with medical researchers.
Instead of sharing entire databases, they might share

τA τAτA τA

Others 1st

1st 1st

577

Ordinary phishing sites

Others

Others 1st

44
17

Mean lifetime (hours)

Others

4,118

56

112

4,313

5,962

Figure 1. Missed phishing websites. We can see how substantial

incompleteness in one take-down company’s URL feed slowed removal of

phishing websites impersonating 54 banks.1

Table 1. Timed and financial exposure to phishing attacks caused by not sharing data.*

Exposure figures (six-month totals) tA’s client banks tB’s client banks
Actual values 1,005,000 hrs ($276 million) 78,000 hrs ($32.0 million)

Effect of not sharing 587,000 hrs ($163 million) 17,000 hrs ($3.5 million)

Expected exposure if sharing 418,000 hrs ($113 million) 61,000 hrs ($28.5 million)

*Numbers in red indicate the portion of phishing risk caused by slower take down.

Sharing Sensitive Data

42	 IEEE	SECURITY	&	PRIVACY

only those records matching a combination of diseases
and other selected attributes. Oil companies might
like to purchase geographical data on seabeds without
revealing their exploration plans to competitors.

Other types of information security data lists, such
as DNS and IP blacklists, could also be more effective
if shared more widely among security firms.

Protocol Overview
We now describe the Phish-Market protocol at a high
level, keeping the cryptography details to a minimum.
A detailed technical description will appear in a com-
panion paper.2 We use several cryptographic primi-
tives—commitments, zero-knowledge proofs, and oblivious
transfer—which we describe briefly; readers can find
formal definitions elsewhere.3,4

The entire protocol takes six steps to complete, as
Figure 2 illustrates, with Bob acting as buyer and Sally
as seller.

Step 1: Buyer Commitment
Bob first commits to his current state of knowledge—
all the records in his database—and sends his commit-
ment to Sally. Cryptographic commitments bind Bob
to his state of knowledge while keeping the informa-
tion hidden from Sally. This commitment will let Bob
withhold payment for records he already knows.

Step 2: Seller Offer and Buyer Choice
Sally sends Bob an offer for each record she wishes to
sell. Included in the offer is a tag, a commitment to the
record, and a “proof key” (explained in steps 4 and 5).
Bob can use the tag to decide whether he’s interested in
the record Sally is offering. If Bob chooses not to learn
the record, he will instead learn a second proof key that
will let him withhold payment for this record later in
the protocol (without revealing the fact to Sally).

To keep Bob’s choice secret from Sally, Bob and
Sally execute an Oblivious Transfer (OT) protocol.
We can think of this OT protocol as Sally placing the
record and a proof key in two locked boxes. The box-
es are labeled and given to Bob, along with a key that
can open either box (but that Bob can only use once).
If Bob decides he’s interested in the record, he opens
the box with the record; if not, he opens the other box
to get the second proof key.

Step 3: Payment
Bob must now pay up for the new record learned
from Sally. Of course, Bob should pay Sally only if he
chooses to learn the record and doesn’t already know
it. Hence, he can pay using a real or fake payment. A
real payment is a cryptographic commitment to the
number 1, whereas a fake payment is a commitment
to the number 0. In this context, a commitment from

P

P

P

P

$0

$1

P

1 2a 2b 3 4 5Committment

6 Settlement

Offer Choice
Case 1: Bob is not
interested

... many transactions later

Case 2: Bob is interested Case 2a: knows info

Case 2b: Info is new

Payment Proof of
payment

$1

P

$1

Proof of
preknowledge

P

C P

$0

$1

A B

B

C

C

D

D 1

1

2 2

2

1

1

2

A

1 B

1 A

1 B

P

CC

Figure 2. Overview of the Phish-Market protocol. Columns correspond to protocol steps, whereas rows correspond to the different

situations that might occur during execution (note that to the seller, the different situations are indistinguishable).

Sharing Sensitive Data

	 www.computer.org/security	 43	

Bob is a public-key encryption of a value (0 or 1) using
a key known only to Bob. Sally can’t infer the com-
mitment’s value without the key, but Bob can poten-
tially open the commitment later and thereby prove
to Sally the true value committed. In fact, Bob will
never open the payment commitment because this
will reveal too much information to Sally. Instead, we
use commitments with a special homomorphic property
that will let Bob prove the total number of real pay-
ments made in the settlement phase (step 6) without
opening any specific payment.

Step 4: Proof of Payment
After sending the committed payment to Sally, Bob
must demonstrate that it is legitimate. Of course, the
payment is only real if Bob committed to 1 and not 0.
This is where the proof keys come in: using a proof
key, Bob can fake a proof and convince Sally that a
payment is real even if it isn’t. Technically, Bob uses
a zero-knowledge proof to convince Sally that either
the payment is real or he uses a proof key (a zero-
knowledge proof lets the prover convince the verifier
of a statement without revealing anything except for
the statement’s validity). Figure 2 represents the proof
with a balance scale; the difference between real and
fake coins is reflected in their weight (a fake coin, for
example, weighs nothing, whereas a real coin weighs
1 gram). Bob places the envelope with his payment on
one side of the balance and a real coin on the other. If
Bob’s payment is real, Sally will see that the balance
shows the two are equivalent. If Bob doesn’t actually
pay up, he can use the proof key to “lock” the balance
into place and make the different weights appear equal.

Step 5: Proof of Prior Knowledge
Bob must give Sally one more zero-knowledge proof,
this time regarding whether he knew about the record
before Sally gave it to him. If Bob chose not to learn
the record in step 2, he can’t possibly prove that he
already knew it. Alternatively, Bob might have iden-
tified a previously unseen record from Sally. In both
cases, Bob uses a proof key to generate a fake proof
claiming prior knowledge of the record.

The protocol design restricts how many proof keys
Bob has to ensure that he makes a real payment if he
learns a new record. If Bob had chosen to learn the
record in step 2, he’d be left with a single proof key.
With this remaining key, he can either fake the proof
of payment in step 4 or the proof of prior knowledge
in step 5, but not both. If he chooses to use the proof
key to prove prior knowledge of the record (as he’s
forced to do if the record is new information), he must
provide a real proof of payment in step 4.

Step 6: Settlement
After running steps 1 through 5 many times to ex-

change unknown records, Bob and Sally can finally
settle up. The payment commitments’ homomorphic
property lets anyone take two commitments and,
without opening either one, compute a commitment
to the sum of their values. Figure 2 represents this as
weighing the piggy bank containing the payments:
we don’t need to open it up to verify the total weight
(and from the total weight, no one can tell which in-
dividual payments are real and which are fake).

Using homomorphic addition, Sally can tally up the
sum of the many 1 and 0 payment commitments used
in step 3, even though she can’t open them. Sally takes
the payments from multiple executions and computes
a commitment to the total payment, which represents
the number of records actually “sold.” Bob can then
open Sally’s aggregated commitment. Sally learns only
the total number of real payments received (and not
which individual payments were real). Bob and Sally
can use this sum as the basis for a monetary transaction.

Security Discussion
Let’s now look at the security guarantees made sepa-
rately for the seller and buyer. For the buyer, we guar-
antee two properties: first, the seller doesn’t learn
anything about the set of tags the buyer is interested
in; second, the seller doesn’t learn anything about the
set of previously known records. The only exception
to these guarantees is what information the seller can
deduce from the payment amount.

The seller’s primary interest is to ensure that she’s
being justly compensated for each record that the
buyer learns from her. We guarantee that the seller’s
security in the distributed protocol is the same as for
an “ideal” protocol involving a TTP, with two cave-
ats: first, the buyer will learn the tags of all the seller’s
records (given that those are sent in the clear), rather
than just those of the records he pays for (as would
be the case using an ideal trusted party). Second, the
buyer learns which records he already knows that are
also in the seller’s database (an ideal third party would
send the buyer only records he doesn’t already know).
The reason for both relaxations is efficiency. In partic-
ular, letting the buyer learn records he already knows
(albeit without paying for them) lets him perform the
database lookup himself rather than engage in a large,
joint secure computation with the seller.

Note that some attacks would still be possible even if
a TTP were available. For example, no guarantee exists
that the records sold will be useful or correctly tagged.
A malicious seller could send random strings instead of
records, forcing the buyer to pay for garbage records
(because they wouldn’t appear in the buyer’s database).
A malicious seller could also attack the buyer’s privacy:
if she uses the same tag for all the records in a certain
period, she can tell whether the buyer is interested in
the tag if he made a payment at the end of that period.

Sharing Sensitive Data

44	 IEEE	SECURITY	&	PRIVACY

Fortunately, mitigating strategies are typically
available to counter these threats when using the pro-
tocol in the real world. First, the buyer can evaluate
the records he learns and set the price he’s willing to
pay for each one based on the quality of records he
received in the past. If he determines that the seller is
providing low-quality records, the buyer can request
a lower dollar price per record or refuse to do business
with that seller in the future. This would mitigate the
garbage record attack. Defending against the privacy
breach attack is harder—the payment will always leak
some information about which tags the buyer is in-
terested in. We can help the buyer detect such attacks
by compromising a little on the seller’s privacy: if we
give the buyer all the tags the seller uses (without the
corresponding records), the buyer can verify that no
set of tags is overly represented.

Finally, in a two-party protocol, unlike a protocol
that uses a TTP, each side can decide to abort the pro-
tocol prematurely. This affects our protocol’s security
if the buyer decides to abort after learning a record but
before making the payment. However, the same prob-
lem exists in many remote transactions (when pur-
chasing physical goods over the phone, for instance,
a seller can refuse to send the goods after receiving
payment). Sellers can use the same legal frameworks
to handle a refusal to pay in this case.

Protocol Efficiency
Powerful results from theoretical cryptography dem-
onstrate how we can convert any task using a TTP
into one that doesn’t require third parties.5,6 Howev-
er, these techniques are usually inefficient. The most
efficient implementations of general techniques (such
as the Fairplay system7) are still orders of magnitude
too slow for practical use on the scale required to share
large numbers of records. Even relatively simple com-
putations, such as those needed to hold sugar beet auc-
tions in Denmark,8 require specialized protocols to
overcome this problem.

Fast operation is critical when it comes to distribut-
ing phishing URL feeds—the longer a phishing website
remains online, the more customer credentials might be
at risk. Fortunately, the Phish-Market protocol is much
more efficient than generic secure computation.

We implemented an elliptic-curve- (EC-) based
version of the protocol in Java, using the Qilin
 Crypto SDK (software developer’s kit)9 for the high-
level cryptographic primitives and the Bouncy Castle
Crypto API (www.bouncycastle.org) for low-level
EC operations (full code for the implementation of
our protocol is available elsewhere9).

We simulated both sides of the protocol on a single
server with one dual-core 2.4-GHz Intel Xeon pro-
cessor and 2 Gbytes of memory. (The main bottleneck
in the protocol is the CPU—one transaction requires

less than 3 Kbytes of communication—so running
both sides on one server would only cause us to over-
estimate the running time.)

To test the protocol’s performance under real-world
conditions, we used the phishing URL feeds from two
large take-down companies during the first two weeks
of April 2009. We assigned one take-down company
to be the seller and the other to be the buyer (we ran
experiments with both companies playing both roles).
For the two-week sample period, one company found
8,582 unique URLs, whereas the other discovered
17,721. The first company was interested in obtaining
phishing URLs for 59 banks, and the second for 54
banks, according to the client lists shared with us.

The primary metric we use to measure our imple-
mentation’s performance is the time required to pro-
cess and transmit each phishing URL from the seller
to the buyer. The less time required, the closer the
URL sharing is to instantaneous. On average, each
URL faced a very acceptable delay of 5.13 seconds
to complete the exchange (3.19-second median). Two
main factors affect the total delay. First is the pro-
cessing time required to execute the protocol. This
computational time was very consistent, taking an
average of 2.37 seconds but never more than 4.02 sec-
onds. The other, less predictable, reason for delay hap-
pens whenever many phishing URLs are discovered
around the same time. Whenever a clump of URLs
were reported, some URLs had to wait for others to
be processed, leading to a longer delay. Although a
multithreaded implementation could minimize these
queue delays (by utilizing more CPU cores), we chose
to implement the protocol using a single thread to
demonstrate its feasibility even with modest hard-
ware. Moreover, note that we optimized the protocol
implementation for clarity and source code general-
ity rather than speed. The average queue delay due to
waiting on other URLs to finish processing was 2.76
seconds, and the longest delay was 34.6 seconds.

To give readers a better feel for how the processing
time varies, Figure 3 plots the cumulative distribution
functions for the time taken to process each URL, the
time that URL spent waiting in the seller’s queue, and
the total delay between the time the URL entered the
seller’s queue and the time the buyer received it. The
computer processed 48.4 percent of the URLs in less
than 3 seconds, yet 9.7 percent took more than 10 sec-
onds. Despite the variation, no URL took more than
37 seconds to process. Given that phishing website re-
moval requires human intervention, a 37-second delay
is negligible, and certainly much better than the many
days longer unknown sites currently take for removal!

In addition to the total delay (red dash-dot line),
Figure 3 plots the delay’s two key components. The
green dashed line appears nearly vertical around 2 sec-
onds, suggesting that the per-URL processing time is

Sharing Sensitive Data

	 www.computer.org/security	 45	

very consistent. Meanwhile, the blue solid line plots
the queue delay, which accounts for the overall delay’s
stretched tail. Hence, if the queue delay were reduced
via multiple processors or threads, the total delay might
approach the consistently shorter processing time.

In exchange for these very modest delays, take-
down companies can trade information on new
phishing websites so that the overall lifetime of such
sites is reduced as much as half,1 while crediting the
contributing firm.

B alancing the advantages of data sharing with the
risks of helping competitors or experiencing pri-

vacy breaches is hard. Yet markets, both legitimate and
illicit, are becoming increasingly data-driven. From
identifying users for targeted advertising to blocking
spam and shutting down phishing websites, sharing
data is now essential because no single company has a
complete view of the global environment.

We’ve designed and implemented a practical
mechanism for competing, untrusting companies to
selectively buy and sell the information that’s relevant
to their needs without leaking too much additional
data. Although our implementation is focused on the
specific data-sharing problem that phishing take-
down companies encounter, we can directly apply it
to several other problems (such as the mailing-list pro-
vider/targeted advertiser example in the introduction)
and employ our techniques in many similar situations.

In fact, many data-sharing problems have more
relaxed requirements than those the Phish-Market
protocol must satisfy (for instance, an exploring oil
company won’t buy data about locations for which it
already has information, so the requirement that the
company not pay for data already known isn’t need-
ed). In these cases, our protocol can be made simpler
and even more efficient.

A key lesson from our experience is that modern
cryptographic tools can be very helpful in resolving
the tension between sharing and secrecy. The tech-
niques are now efficient enough to be practical and
allow an unprecedented level of control over what
companies can reveal and what they must not. In
today’s data-driven economy, these tools should be
found in every developer’s toolbox.

Acknowledgments
We thank Allan Friedman for suggesting the mailing-list
problem described in the introduction.

References
1. T. Moore and R. Clayton, “The Consequence of

Noncooperation in the Fight against Phishing,” Proc.
Anti-Phishing Working Group eCrime Researchers Summit
(APWG eCrime 08), IEEE Press, 2008, pp. 1–14.

2. T. Moran and T. Moore, “The Phish-Market Protocol:
Securely Sharing Attack Data between Competitors,”
Financial Cryptography and Data Security, LNCS 6052, R.
Sion, ed., Springer, 2010, pp. 222–237.

3. O. Goldreich, Foundations of Cryptography: Basic Tools,
vol. 1, Cambridge Univ. Press, 2001.

4. O. Goldreich, Foundations of Cryptography: Basic Applica-
tions, vol. 2, Cambridge Univ. Press, 2004.

5. O. Goldreich, S Micali, and A. Wigderson, “How to
Play Any Mental Game or a Completeness Theorem for
Protocols with Honest Majority,” Proc. 19th Ann. ACM
Symp. Theory of Computing (STOC 87), ACM Press,
1987, pp. 218–229.

6. M. Ben-Or, S. Goldwasser, and A. Wigderson, “Com-
pleteness Theorems for Non-Cryptographic Fault-Tol-
erant Distributed Computation,” Proc. 20th Ann. ACM
Symp. Theory of Computing (STOC 88), ACM Press,
1988, pp. 1–10 (extended abstract).

7. D. Malkhi et al., “Fairplay—A Secure Two-Party
Computation System,” Usenix Security Symp., Usenix
Assoc., 2004, pp. 287–302.

8. P. Bogetoft et al., “Secure Multiparty Computation
Goes Live,” Financial Cryptography and Data Security,
LNCS 5628, R. Dingledine and P. Golle, eds., Spring-
er, 2009, pp. 325–343.

9. T. Moran, “The Qilin Project: A Java SDK for Rapid
Prototyping of Cryptographic Protocols,” 2009, http://
qilin.seas.harvard.edu.

Tal Moran is a postdoctoral fellow at the Center for Research

on Computation and Society at Harvard University. Contact

him at talm@seas.harvard.edu.

Tyler Moore is a postdoctoral fellow at the Center for Research

on Computation and Society at Harvard University. Contact

him at tmoore@seas.harvard.edu.

%

1 4 7 10 13 16 19 22 25 28 31 34
Time (seconds)

0

20

40

60

80

100

Per-transaction processing time
Queue delay
Total delay

Figure 3. Observed cumulative distribution function of the time required to

share each phishing URL. The measured delay is between the time the seller

first learned the URL and the time it becomes known to the buyer. The red

dash-dot line denotes the total real-time delay, and the others denote sub-

components of the delay.

