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C onsider the following situation: company A 
is a startup with a new product that it would 
like to market. Company B is a mailing-list 
provider and has a huge database of people’s 

names, addresses, and attributes.
Based on its research, company A is convinced 

that people who like dogs and are more than six feet 
tall will respond favorably to an advertisement for its 
product. Thus, A would like to purchase a list of po-
tential customers with these attributes from company 
B. However, A doesn’t want to reveal its marketing 
strategy—if competitors discover that A’s product is 
being targeted to tall dog-lovers, they might be able 
to scoop it. 

One solution would be for company A to buy the 
entire database from company B. This would certainly 
hide any specific attributes A is looking for. However, 
this could be prohibitively expensive—the actual data 
A is interested in is only a tiny fraction of the database. 
Moreover, A might already have a list of potential cus-
tomers compiled from other sources; A would prefer 
not to pay twice for data it already has. There might 
also be privacy or regulatory issues preventing B from 
selling too much of its information to one entity. 

A second possibility would be for both companies 
to use a trusted third party (TTP). Company A can 
disclose its secret strategy and the list of names it al-
ready knows to the TTP while company B discloses 
its entire database. In this case, the TTP could search 
the database for tall dog-lovers who aren’t on A’s “al-
ready known” list, send those to A, and reveal only 
the total sum company A must pay to company B in 
return for this information. 

Unfortunate-
ly, in practice, 
two companies often have trouble finding a third party 
that they both completely trust. Situations like these are 
where modern cryptography can truly shine. Using a 
cryptographic protocol, companies A and B can emu-
late a virtual trusted party that provides the same services a 
real one would, but without having to trust in anything 
but their own implementation of the protocol. 

We’ve constructed an efficient protocol that solves 
this problem, which we believe can be applied to 
many similar data-sharing problems.

Phishing Website Take Down
Our original motivation came from a seemingly un-
related real-life problem: an attempt to encourage data 
sharing between phishing take-down companies.

Phishing is the criminal activity of enticing people 
to visit websites that impersonate genuine bank web-
sites and dupe visitors into revealing passwords and 
other credentials. (Although a wide range of compa-
nies have been subject to phishing attacks, most are 
financial institutions; for simplicity, we use the term 
“banks” for firms being attacked.) One key counter-
measure to phishing is to promptly remove the imita-
tion websites. Banks can achieve removal by erasing 
the webpages from the hosting machine or contacting 
a registrar to suspend a domain name from the Do-
main Name System (DNS), so the fraudulent host can 
no longer be resolved.

Although some banks deal with phishing web-
site removal exclusively in-house, most hire specialist 
take-down companies to carry out the task. Such com-
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panies—typically, divisions of brand-protection firms 
or information security service providers—perform 
two key services. First, they’re good at getting phish-
ing websites removed quickly, having developed rela-
tionships with ISPs and registrars across the globe and 
deployed multilingual teams at 24/7 operation centers. 
Second, they collect a more timely and comprehensive 
listing of phishing URLs than banks normally gather. 

Most take-down companies view their URL feeds 
as a key competitive advantage over banks and oth-
er take-down providers. However, recent work has 
shown that the feeds such companies compile suffer 
from large gaps in coverage that significantly prolong 
the time needed to remove phishing websites. Tyler 
Moore and Richard Clayton examined six months of 
aggregated URL feeds from many sources, includ-
ing two major take-down companies.1 They found 
that up to 40 percent of phishing websites remained 
unknown to the company with the take-down con-
tract but were discovered by others. Another 29 per-
cent were discovered by the responsible take-down 
company only after others had identified them. By 
measuring these missed websites’ substantially lon-
ger lifetimes, Moore and Clayton estimated that 120 
banks served by these two companies collectively risk 
at least US$330 million per year by failing to share 
proprietary URL feeds (see Table 1).

Figure 1 gives the details for one take-down com-
pany, labeled tA. The left circle represents the phishing 
sites that appear in tA’s feed, and the right circle the 
sites that appear in its competitors’ feeds. The intersec-
tion contains the sites that appear in all feeds, the top 
half representing sites that tA found before other com-
panies, and the bottom those others found before tA.

The Phish-Market Protocol
Named after its applicability to sharing phishing 
URLs, the Phish-Market protocol can efficiently solve 
data-sharing problems while overcoming the sharing 
entities’ competitive concerns. Contributors are com-
pensated, but sensitive details that might be inferred 
from a transaction are hidden from both parties, all 
without requiring access to a TTP. The protocol aims 
to let a buyer acquire new records, such as phishing 
URLs or customer details, from a seller. The buyer 
is interested only in a subset of data matching one 
or more tags, attributes describing the records. Tags 

can indicate which bank is the subject of the phishing 
URL or customer attributes in a database.

At a high level, the Phish-Market protocol does 
the following:

• shares only those records that match the tags the 
buyer requests;

• hides from the seller which records the buyer receives;
• hides from the seller which tags the buyer requests; and
• securely tallies the number of records the buyer re-

ceives without double-counting records from the 
seller that the buyer already has.

These requirements are essential for take-down com-
panies considering sharing phishing URL data. The 
first requirement ensures that only URLs pertaining 
to banks that the take-down company is interested in 
are exchanged. The second and third requirements 
protect the acquiring firm from revealing too much 
about its business posture, such as its client banks and 
its weaknesses in phishing-website-detection capabil-
ity. The fourth requirement assures both the buyer 
and seller that the exchange is fair. We anticipate that 
take-down companies would execute the protocol as 
both buyers and sellers, and that only the net con-
tributor would be compensated financially.

The requirements also match up nicely to the cus-
tomer database provider problem. In fact, we envi-
sion many data-sharing applications that could benefit 
from a sharing mechanism like the Phish-Market pro-
tocol. For instance, hospitals might be willing to share 
de-identified patient records with medical researchers. 
Instead of sharing entire databases, they might share 
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Figure 1. Missed phishing websites. We can see how substantial 

incompleteness in one take-down company’s URL feed slowed removal of 

phishing websites impersonating 54 banks.1

Table 1. Timed and financial exposure to phishing attacks caused by not sharing data.*

Exposure figures (six-month totals) tA’s client banks tB’s client banks
Actual values 1,005,000 hrs ($276 million) 78,000 hrs ($32.0 million)

Effect of not sharing 587,000 hrs ($163 million) 17,000 hrs ($3.5 million)

Expected exposure if sharing 418,000 hrs ($113 million) 61,000 hrs ($28.5 million)

*Numbers in red indicate the portion of phishing risk caused by slower take down.
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only those records matching a combination of diseases 
and other selected attributes. Oil companies might 
like to purchase geographical data on seabeds without 
revealing their exploration plans to competitors.

Other types of information security data lists, such 
as DNS and IP blacklists, could also be more effective 
if shared more widely among security firms. 

Protocol Overview
We now describe the Phish-Market protocol at a high 
level, keeping the cryptography details to a minimum. 
A detailed technical description will appear in a com-
panion paper.2 We use several cryptographic primi-
tives—commitments, zero-knowledge proofs, and oblivious 
transfer—which we describe briefly; readers can find 
formal definitions elsewhere.3,4

The entire protocol takes six steps to complete, as 
Figure 2 illustrates, with Bob acting as buyer and Sally 
as seller. 

Step 1: Buyer Commitment
Bob first commits to his current state of knowledge—
all the records in his database—and sends his commit-
ment to Sally. Cryptographic commitments bind Bob 
to his state of knowledge while keeping the informa-
tion hidden from Sally. This commitment will let Bob 
withhold payment for records he already knows.

Step 2: Seller Offer and Buyer Choice
Sally sends Bob an offer for each record she wishes to 
sell. Included in the offer is a tag, a commitment to the 
record, and a “proof key” (explained in steps 4 and 5). 
Bob can use the tag to decide whether he’s interested in 
the record Sally is offering. If Bob chooses not to learn 
the record, he will instead learn a second proof key that 
will let him withhold payment for this record later in 
the protocol (without revealing the fact to Sally).

To keep Bob’s choice secret from Sally, Bob and 
Sally execute an Oblivious Transfer (OT) protocol. 
We can think of this OT protocol as Sally placing the 
record and a proof key in two locked boxes. The box-
es are labeled and given to Bob, along with a key that 
can open either box (but that Bob can only use once). 
If Bob decides he’s interested in the record, he opens 
the box with the record; if not, he opens the other box 
to get the second proof key.

Step 3: Payment
Bob must now pay up for the new record learned 
from Sally. Of course, Bob should pay Sally only if he 
chooses to learn the record and doesn’t already know 
it. Hence, he can pay using a real or fake payment. A 
real payment is a cryptographic commitment to the 
number 1, whereas a fake payment is a commitment 
to the number 0. In this context, a commitment from 
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Figure 2. Overview of the Phish-Market protocol. Columns correspond to protocol steps, whereas rows correspond to the different 

situations that might occur during execution (note that to the seller, the different situations are indistinguishable).
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Bob is a public-key encryption of a value (0 or 1) using 
a key known only to Bob. Sally can’t infer the com-
mitment’s value without the key, but Bob can poten-
tially open the commitment later and thereby prove 
to Sally the true value committed. In fact, Bob will 
never open the payment commitment because this 
will reveal too much information to Sally. Instead, we 
use commitments with a special homomorphic property 
that will let Bob prove the total number of real pay-
ments made in the settlement phase (step 6) without 
opening any specific payment.

Step 4: Proof of Payment
After sending the committed payment to Sally, Bob 
must demonstrate that it is legitimate. Of course, the 
payment is only real if Bob committed to 1 and not 0. 
This is where the proof keys come in: using a proof 
key, Bob can fake a proof and convince Sally that a 
payment is real even if it isn’t. Technically, Bob uses 
a zero-knowledge proof to convince Sally that either 
the payment is real or he uses a proof key (a zero- 
knowledge proof lets the prover convince the verifier 
of a statement without revealing anything except for 
the statement’s validity). Figure 2 represents the proof 
with a balance scale; the difference between real and 
fake coins is reflected in their weight (a fake coin, for 
example, weighs nothing, whereas a real coin weighs 
1 gram). Bob places the envelope with his payment on 
one side of the balance and a real coin on the other. If 
Bob’s payment is real, Sally will see that the balance 
shows the two are equivalent. If Bob doesn’t actually 
pay up, he can use the proof key to “lock” the balance 
into place and make the different weights appear equal.

Step 5: Proof of Prior Knowledge
Bob must give Sally one more zero-knowledge proof, 
this time regarding whether he knew about the record 
before Sally gave it to him. If Bob chose not to learn 
the record in step 2, he can’t possibly prove that he 
already knew it. Alternatively, Bob might have iden-
tified a previously unseen record from Sally. In both 
cases, Bob uses a proof key to generate a fake proof 
claiming prior knowledge of the record. 

The protocol design restricts how many proof keys 
Bob has to ensure that he makes a real payment if he 
learns a new record. If Bob had chosen to learn the 
record in step 2, he’d be left with a single proof key. 
With this remaining key, he can either fake the proof 
of payment in step 4 or the proof of prior knowledge 
in step 5, but not both. If he chooses to use the proof 
key to prove prior knowledge of the record (as he’s 
forced to do if the record is new information), he must 
provide a real proof of payment in step 4.

Step 6: Settlement
After running steps 1 through 5 many times to ex-

change unknown records, Bob and Sally can finally 
settle up. The payment commitments’ homomorphic 
property lets anyone take two commitments and, 
without opening either one, compute a commitment 
to the sum of their values. Figure 2 represents this as 
weighing the piggy bank containing the payments: 
we don’t need to open it up to verify the total weight 
(and from the total weight, no one can tell which in-
dividual payments are real and which are fake).

Using homomorphic addition, Sally can tally up the 
sum of the many 1 and 0 payment commitments used 
in step 3, even though she can’t open them. Sally takes 
the payments from multiple executions and computes 
a commitment to the total payment, which represents 
the number of records actually “sold.” Bob can then 
open Sally’s aggregated commitment. Sally learns only 
the total number of real payments received (and not 
which individual payments were real). Bob and Sally 
can use this sum as the basis for a monetary transaction.

Security Discussion
Let’s now look at the security guarantees made sepa-
rately for the seller and buyer. For the buyer, we guar-
antee two properties: first, the seller doesn’t learn 
anything about the set of tags the buyer is interested 
in; second, the seller doesn’t learn anything about the 
set of previously known records. The only exception 
to these guarantees is what information the seller can 
deduce from the payment amount.

The seller’s primary interest is to ensure that she’s 
being justly compensated for each record that the 
buyer learns from her. We guarantee that the seller’s 
security in the distributed protocol is the same as for 
an “ideal” protocol involving a TTP, with two cave-
ats: first, the buyer will learn the tags of all the seller’s 
records (given that those are sent in the clear), rather 
than just those of the records he pays for (as would 
be the case using an ideal trusted party). Second, the 
buyer learns which records he already knows that are 
also in the seller’s database (an ideal third party would 
send the buyer only records he doesn’t already know). 
The reason for both relaxations is efficiency. In partic-
ular, letting the buyer learn records he already knows 
(albeit without paying for them) lets him perform the 
database lookup himself rather than engage in a large, 
joint secure computation with the seller. 

Note that some attacks would still be possible even if 
a TTP were available. For example, no guarantee exists 
that the records sold will be useful or correctly tagged. 
A malicious seller could send random strings instead of 
records, forcing the buyer to pay for garbage records 
(because they wouldn’t appear in the buyer’s database). 
A malicious seller could also attack the buyer’s privacy: 
if she uses the same tag for all the records in a certain 
period, she can tell whether the buyer is interested in 
the tag if he made a payment at the end of that period. 
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Fortunately, mitigating strategies are typically 
available to counter these threats when using the pro-
tocol in the real world. First, the buyer can evaluate 
the records he learns and set the price he’s willing to 
pay for each one based on the quality of records he 
received in the past. If he determines that the seller is 
providing low-quality records, the buyer can request 
a lower dollar price per record or refuse to do business 
with that seller in the future. This would mitigate the 
garbage record attack. Defending against the privacy 
breach attack is harder—the payment will always leak 
some information about which tags the buyer is in-
terested in. We can help the buyer detect such attacks 
by compromising a little on the seller’s privacy: if we 
give the buyer all the tags the seller uses (without the 
corresponding records), the buyer can verify that no 
set of tags is overly represented.

Finally, in a two-party protocol, unlike a protocol 
that uses a TTP, each side can decide to abort the pro-
tocol prematurely. This affects our protocol’s security 
if the buyer decides to abort after learning a record but 
before making the payment. However, the same prob-
lem exists in many remote transactions (when pur-
chasing physical goods over the phone, for instance, 
a seller can refuse to send the goods after receiving 
payment). Sellers can use the same legal frameworks 
to handle a refusal to pay in this case.

Protocol Efficiency
Powerful results from theoretical cryptography dem-
onstrate how we can convert any task using a TTP 
into one that doesn’t require third parties.5,6 Howev-
er, these techniques are usually inefficient. The most 
efficient implementations of general techniques (such 
as the Fairplay system7) are still orders of magnitude 
too slow for practical use on the scale required to share 
large numbers of records. Even relatively simple com-
putations, such as those needed to hold sugar beet auc-
tions in Denmark,8 require specialized protocols to 
overcome this problem. 

Fast operation is critical when it comes to distribut-
ing phishing URL feeds—the longer a phishing website 
remains online, the more customer credentials might be 
at risk. Fortunately, the Phish-Market protocol is much 
more efficient than generic secure computation.

We implemented an elliptic-curve- (EC-) based 
version of the protocol in Java, using the Qilin 
 Crypto SDK (software developer’s kit)9 for the high-
level cryptographic primitives and the Bouncy Castle 
Crypto API (www.bouncycastle.org) for low-level 
EC operations (full code for the implementation of 
our protocol is available elsewhere9).

We simulated both sides of the protocol on a single 
server with one dual-core 2.4-GHz Intel Xeon pro-
cessor and 2 Gbytes of memory. (The main bottleneck 
in the protocol is the CPU—one transaction requires 

less than 3 Kbytes of communication—so running 
both sides on one server would only cause us to over-
estimate the running time.)

To test the protocol’s performance under real-world 
conditions, we used the phishing URL feeds from two 
large take-down companies during the first two weeks 
of April 2009. We assigned one take-down company 
to be the seller and the other to be the buyer (we ran 
experiments with both companies playing both roles). 
For the two-week sample period, one company found 
8,582 unique URLs, whereas the other discovered 
17,721. The first company was interested in obtaining 
phishing URLs for 59 banks, and the second for 54 
banks, according to the client lists shared with us.

The primary metric we use to measure our imple-
mentation’s performance is the time required to pro-
cess and transmit each phishing URL from the seller 
to the buyer. The less time required, the closer the 
URL sharing is to instantaneous. On average, each 
URL faced a very acceptable delay of 5.13 seconds 
to complete the exchange (3.19-second median). Two 
main factors affect the total delay. First is the pro-
cessing time required to execute the protocol. This 
computational time was very consistent, taking an 
average of 2.37 seconds but never more than 4.02 sec-
onds. The other, less predictable, reason for delay hap-
pens whenever many phishing URLs are discovered 
around the same time. Whenever a clump of URLs 
were reported, some URLs had to wait for others to 
be processed, leading to a longer delay. Although a 
multithreaded implementation could minimize these 
queue delays (by utilizing more CPU cores), we chose 
to implement the protocol using a single thread to 
demonstrate its feasibility even with modest hard-
ware. Moreover, note that we optimized the protocol 
implementation for clarity and source code general-
ity rather than speed. The average queue delay due to 
waiting on other URLs to finish processing was 2.76 
seconds, and the longest delay was 34.6 seconds.

To give readers a better feel for how the processing 
time varies, Figure 3 plots the cumulative distribution 
functions for the time taken to process each URL, the 
time that URL spent waiting in the seller’s queue, and 
the total delay between the time the URL entered the 
seller’s queue and the time the buyer received it. The 
computer processed 48.4 percent of the URLs in less 
than 3 seconds, yet 9.7 percent took more than 10 sec-
onds. Despite the variation, no URL took more than 
37 seconds to process. Given that phishing website re-
moval requires human intervention, a 37-second delay 
is negligible, and certainly much better than the many 
days longer unknown sites currently take for removal!

In addition to the total delay (red dash-dot line), 
Figure 3 plots the delay’s two key components. The 
green dashed line appears nearly vertical around 2 sec-
onds, suggesting that the per-URL processing time is 
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very consistent. Meanwhile, the blue solid line plots 
the queue delay, which accounts for the overall delay’s 
stretched tail. Hence, if the queue delay were reduced 
via multiple processors or threads, the total delay might 
approach the consistently shorter processing time. 

In exchange for these very modest delays, take-
down companies can trade information on new 
phishing websites so that the overall lifetime of such 
sites is reduced as much as half,1 while crediting the 
contributing firm. 

B alancing the advantages of data sharing with the 
risks of helping competitors or experiencing pri-

vacy breaches is hard. Yet markets, both legitimate and 
illicit, are becoming increasingly data-driven. From 
identifying users for targeted advertising to blocking 
spam and shutting down phishing websites, sharing 
data is now essential because no single company has a 
complete view of the global environment.

We’ve designed and implemented a practical 
mechanism for competing, untrusting companies to 
selectively buy and sell the information that’s relevant 
to their needs without leaking too much additional 
data. Although our implementation is focused on the 
specific data-sharing problem that phishing take-
down companies encounter, we can directly apply it 
to several other problems (such as the mailing-list pro-
vider/targeted advertiser example in the introduction) 
and employ our techniques in many similar situations.

In fact, many data-sharing problems have more 
relaxed requirements than those the Phish-Market 
protocol must satisfy (for instance, an exploring oil 
company won’t buy data about locations for which it 
already has information, so the requirement that the 
company not pay for data already known isn’t need-
ed). In these cases, our protocol can be made simpler 
and even more efficient.

A key lesson from our experience is that modern 
cryptographic tools can be very helpful in resolving 
the tension between sharing and secrecy. The tech-
niques are now efficient enough to be practical and 
allow an unprecedented level of control over what 
companies can reveal and what they must not. In 
today’s data-driven economy, these tools should be 
found in every developer’s toolbox. 
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