
Traceroute for CCN

Susmit Shannigrahi

May 31, 2012

1 Introduction

Traceroute in IP network is a useful tool for finding network problems. For CCN, such an
application can be helpful for diagnosing network problem. However, while providing similar
functionalities, traceroute for CCN would considerably differ from traceroute for IP network.
In this article, we try to define what traceroute for CCN is, what should be the design for such
a system and discuss about one implementation. Here are some of the naming convention that
we are going to use:

• Trace interest: Interest packet for the purpose of tracing a path between two CCN nodes.

• Normal interest: Interest packet for the purpose of fetching a content.

• Identifier: An unique string for identifying CCN nodes.

• Consumer: A CCN entity which expresses normal interest or trace interest and expects
reply.

• Publisher: Actual host(s) authorized to announce a certain name prefix and publish
content under that name prefix.

• Node: An CCN entity which implements buffering and forwarding.

2 What is traceroute in ccn?

Traceroute in the context of CCN is not easy to define. Like IP traceroute which returns a
path between two given hosts, CCN traceroute would still return path(s) between CCN entities.
Obviously, at one end of traceroute would be the consumer. However, in CCN consumers does
not care where the content is coming from. Therefore, there can be several alternatives of what
should be at the other end of Traceroute.

In CCN, when a consumer requests a content by expressing an interest, normally it goes to
the nearest CCN entity that holds a copy of the content. This entity may be a node caching
a copy of the content or a host actually publishing that content. Also, a certain content may
be published by multiple publishers and content is cached at every intermediate CCN node it
traverses. Therefore, doing traceroute in a CCN network can take different meanings depending
upon the context.

Assuming we start our traceroute for a content from the consumer end, we have several
choices. These are as follows:

• Finding a path to the nearest host publishing that content(publisher).

1

• Finding all paths to nearest publisher for that content.

• Finding all paths to all reachable publishers.

• Finding all paths the nearest copy of that content. Depending on when and how we ask,
this might get forwarded to an intermediate node caching the content or to a publisher
publishing the content.

• Finding all paths to all copies of the content. Here, we want to find paths to all copies of
a given content, cached or otherwise.

Before deciding which one among these approaches should be considered ideal for CCN
traceroute, we are going to discuss each of these methods in details.

2.1 Finding one path to the nearest reachable publisher

This is the scenario similar to IP traceroute. The consumer sends one interest and gets back one
path to the nearest publisher. When we talk about the publisher, we are interested in tracing
path to the actual host publishing the content. To reach the nearest publisher, we bypass the
intermediate caches. At the intermediate nodes, the interest gets forwarded over all possible
outgoing faces for that name. When such an interest gets to the publisher, it replies to the
interest. In case the interest gets forwarded to multiple publishers, the first reply consumes
the PIT entry. Note that the “nearest” publisher can change depending on several parameters,
such as delay, strategy or even processing speed. “Nearest” in our context means the publisher
whose reply happened to be the first. In case there are multiple publishers reachable from a
consumer, the nearest publisher may change over time.

This is a bit problematic for diagnosing network problems. In case multiple publishers
receiving the interests, we don’t know for sure which one of these are replying first. In these
cases, the trace interest will fetch reply from one publisher while the normal interest can fetch
reply from another. If the publisher replying to the normal interest sends corrupt data, we will
have valid replies for our trace interests and still have problem fetching actual content.

Also, like IP traceroute, the trace interest and actual interest can take different routes
depending on the forwarding strategy in the network. If this happens, we might have similar
problem as described above.

Figure 1: problem of finding a path

2

2.2 Finding all paths to nearest reachable publisher

In this case, we enumerate all possible paths to the nearest publisher. One of these paths is
likely to be used for forwarding actual interests. Though this method certainly provides better
picture of the network than the previous one, the “nearest” publisher still might change and
we are not guaranteed to find paths to the actual publisher responding to normal interests.
Also, this might be expensive in terms of time and number of interests required.And though
this method will enumerate a large number of possible routes, this does not offer much benefit.

2.3 Finding all paths to all reachable publishers

Finding all paths to all publisher is a better alternate for our purpose. This way, we can find
out a network map for a certain piece of content. No matter which path the trace interest or the
normal interest takes, we will find an exhaustive list of problems, if any, related to fetching that
piece of data. For a large network, this is costly. However, assuming that the publishers would
be strategically placed in a large network, there should not be too many publishers reachable
from a given consumer. Also, we can limit our trace by not exploring the network beyond a
certain number of hops.

Note that depending on the strategy layer, we still have a situation where reachable publish-
ers differ between trace and normal interests. If that happens, we still have problem diagnosing
network problems. This is why we argue in the later section that traceroute should be a part
of the strategy layer.

Figure 2: All paths to all reachable publishers

2.4 Finding a path to nearest copy of the content

As each node in CCN caches the contents, we might want to trace to the nearest copy of the
content available. This can be a cache or in case it is not cached yet, an actual publisher.
This matches perfectly with CCN paradigm where the consumer does not care about where
the content is coming from. However, this does not help us troubleshooting network problems.
If the data is dynamically generated, it would mean that we will trace to the actual publisher.
This would bring back problems we discusses in section 2.1, where the meaning of nearest
changes depending on several parameters.

3

2.5 Finding path to all copies of the content

This is pretty similar to the scenario above. Finding all copies of the content is very expensive
and does not provide much additional benefit over finding all paths to all publishers. If we
choose to use this method, it is likely that it would enumerate all possible paths and nodes that
the data has ever traversed.

Given the advantages and disadvantages of each of these methods, we think that the method
discussed in section 2.3 would be ideal for our purpose. This is the model we implemented,
which we have discussed later.

3 Best Layer for Traceroute

Before we discuss the any further details for traceroute in CCN, we need to figure out which
layer it should reside in. We have two choices for placing this in the CCN stack. One obviously
is the application layer, the other one is strategy layer.

If we place it in application layer, it would work like this: An application server is placed at
each node which listens for a special interest namespace. Once ccnd forwards this interest to
the application server, the server handles the packet appropriately and tells the ccnd daemon
about the action it should take. Depending on the position of this node, this action might be
forwarding the interest packet or sending a reply back. This method, however, has a limitation.
In the current implementation, the ccnd daemon and the application layer is connected though
a socket. An application has little or no ability to influence the ccnd strategies. In case there are
multiple paths to a single content, it is on ccnd to decide the forwarding strategy. Applications
can parse the FIB and see the available routes, but it has no way to know which routes would
be used for forwarding. There can be hypothetical scenario where all the trace interests are
forwarded to all the FIB entries but actual interests are dropped. In this case, we will see that
there are available routes to a certain content/publisher but fetching the actual content would
be impossible.

We therefore argue that while implementing traceroute is possible at the application layer,
best possible choice would be to integrate it with the strategy layer where it will know about
the forwarding strategy decisions. Right now, this will not influence our implementation much
as the CCNX implementation does not have elaborate strategies in place.

4 Differentiating between Normal and Interest Packets

For archiving traceroute without fetching the actual content, we need to differentiate between
interests meant for tracing paths and interests for fetching actual content. We will call them
trace interests and normal interests, respectively. This distinction is necessary because when
an interest packet arrives, ccnd needs to know whether we are looking for paths, not the actual
content. CCNx does not provide any special field in the interest packet for doing this. So we
need to use a special name for the purpose. There are two ways we can create a special name.

First one is to create a special namespace. We can add /trace at the beginning of each trace
interest. For example, a trace interest for /csu/index.html would look like /trace/csu/index.html.
This method has both advantages and disadvantages. As for advantage, we can have an ap-
plication server which sets an interest filter with ccnd (ccn set interest filter) for /trace
namespace. Once an interest starting with /trace arrives, ccnd forwards it to the application
server for handling it appropriately. However, this method requires each of the nodes to run a
traceroute application server and have a forwarding rule for forwarding trace interests to this
server. Without such an application server and appropriate rules, ccnd would not know what
to do with the trace interest and discard all such trace interests.

4

We also can add the /trace at the end of interest name. This way, a trace interest for
/csu/index.html would look like /csu/index.html/trace. It would not take any special for-
warding rule for forwarding the trace interests. In case some nodes decide not to run traceroute
application server on them, the trace interest will still be forwarded as a normal interest. How-
ever, this makes it hard for the nodes running the application server. For figuring out if an
interest is a trace interest or a normal interest, they need to parse the name for each of the
incoming packets and figure out what the last component is. This will be expensive even for a
reasonable number of interests/second.

5 Caching of Data vs Caching of Trace Responses

Caching of data in a node is reasonable and does not interfere with our design of traceroute.
However, caching of trace responses are not useful. Every time we issue a trace response, we
want to bypass the cache and get a fresh response. For example, imagine two nodes trying
to trace to the same content via same intermediate node. One node is receiving the content
without trouble but the other one’s packet is being dropped by the strategy layer. In this
scenario, we don’t want a cached trace response saying that the path to content is fine. We
want the trace packet to go up to the trace application server and find out that is spite of being
connected to the content publisher, there is no route to the content because of the strategy.

we use a random number at the end of the trace interest name. So a trace interest for
/csu/index.html would look like /trace/csu/index.html/12678664. We do this for two reasons.
One of the reasons being what we discussed above, to avoid caching of trace responses. In CCN
interest forwarding, the cache is consulted first. Without having a way to bypass the cache, it
is not possible for trace interest to reach the trace daemon/handler. We can bypass the cache
by setting AnswerOriginKing flag to 0X0. However, in present CCN, an interest has 1:1
mapping to content. That means, one interest would fetch exactly one piece of content. In case
we want to enumerate all possible paths to a publisher or content, the intermediate nodes have
to send multiple distinct interests if multiple paths are available. Also, the trace server needs
to keep track of interests it already processed, otherwise it might forward the same interests
again and create a loop.

6 Iterative vs Non-iterative Traceroute

We need to decide whether we want the make our trace iterative or non-iterative. In the iterative
mode, the consumer sends one interest packet to the immediate neighbours. The neighbours
reply with forwarding information, if any. On receiving this information, the consumer again
sends another interest, with instruction to exclude the neighbour from the path. The neighbour
forwards this trace interest and gets back reply from another node. This goes on until the whole
path is explored.

In the non-iterative mode, the consumer sends one interest. The intermediate nodes forward
the interest and wait for reply or replies. Once the replies arrive, it consolidates them and send
back a new reply upstream.

In iterative mode, consumers control the whole process. It sends an interest, gets a reply
back with possible forwarding paths. It then can choose which path to explore. Also, as
the client gets intermediate responses, it has much finer control over the whole process. For
example, it can set the timers about how long it should wait for getting a reply. However,
depending on whether we are trying to explore all possible paths for a given content or not,
this might be costly in terms of number of interest packets exchanged. Also, another problem
with iterative traceroute is lack of expressiveness of interest packets. Once we get back a reply

5

from an intermediate node, the consumer need to indicate that this node should not reply
further. We have two possible choices. One is to use “scope” of interest. Scope is not hop
count, but can indicate whether the interest is local or was originated by a neighbouring node.
However, probing via scope is limited to the neighbouring nodes. Currently, there is no way to
probe arbitrary hops using scope. Another option might be the exclude filter. However, there is
no direct way to exclude the already visited nodes. As a work around, we can append the node
identifier to the interest name. When an intermediate node finds out that it’s identifier is in
the interest name, it forwards the packet. However, exclude filter is meant to match qualifying
content objects against an interest, not sending data with interest. We can hack it for our
purpose, but it will be just a temporary solution.

In the non-iterative mode, number of interests needed are less than iterative mode. However,
returning the reply messages gets complicated. We want to keep the content objects unchanged
for verification at the client. Suppose we have n paths for a content from an intermediate node.
In case we want to enumerate all paths, we will embed n content messages in our reply. If
the previous node has multiple paths as well, we will have a content object which have several
embedded messages, each of these messages having several messages inside them. Also, using
this method complicates setting the timeout value at consumer. How long does the consumer
wait before timing out? The delay between sending and receiving reply would depend on length
of the path and also on several other factors such as delay or processing speed at intermediate
nodes.

7 Architecture & Design

In our implementation, we choose to enumerate all paths to all reachable publishers of a certain
content. In a reasonable size testbed, we can find out all possible routes to a certain content
and effectively finding the topology map for a certain content. This will help us finding possible
faults in the network. Also, we implemented the non-iterative version as we discussed above,
where the consumer sends one interest and waits for reply.

7.1 Interest packets

The trace interest packets are very similar to the normal interests. We append a /trace at
the beginning of the interest name for identifying it as trace interest packet. We also append
a random number at the end the interest name for identifying duplicate interests at the trace
server. As already discussed earlier, an interest for /csu/index.html would look like, e.g.,
/trace/csu/index.html/1234556.

7.2 Data Packets

The data packet is a normal content object containing the path information. The packet format
for actual data is depicted in Fig 3.

7.3 Parsing FIB table

As we discussed earlier, our application is at application layer which does not have direct access
to ccnd data structures and values. However, ccnd publishes the FIB table as a html page. We
parsed this page to figure out the FIB. However, this is just the forwarding table, we don’t have
access to the strategy layer. For our implementation, we assume that there are no strategies in
place and the interest packets are forwarded as per the routes found in the FIB.

6

Figure 3: Data packet format

7.4 Identifiers

For finding out the actual path that the trace interests are going to take, we need to use an
unique identifier for each nodes. This unique identifier can be anything, for our purpose we will
use IP addresses at each node. Note that we don’t use IP addresses for any other purpose but
identification of nodes. Right now, IP address allows us to identify the faulty nodes. We expect
that in actual CCN network, there would be some kind of unique identifier for this function.

7.5 Timeout Values

CCN uses a 4 second default timeout value. For our purpose, when forwarding the trace
interests, we use this default value for timeout. However, the amount of timeout required at
the client depends on several factors such as length of the path and delay at intermediate nodes.
Therefore, this is flexible and dependent on the user. By default, after a timeout, the client
re-expresses the interest two more times before giving up.

7.6 Remote vs Local Content

For figuring out if an incoming trace interest is for something that is local, we parse the FIB
for the given content name. All content that is being published will have an entry in the FIB.
Moreover, remote entries will have a “remote” flag in the FIB entry. If such a flag exists, we
know that the content is remote. Otherwise, the content is local.

7.7 Handling Duplicate Trace Packets

ccnd does loop avoidance by default. However, as we handle the trace packets at the application
layer and forward these by adding and deleting multiple routes, we might create loops. For
avoiding this, we keep track of all the trace interests that pass thorough each node and drop
the duplicates. The random number at the end of trace interests is particularly helpful for this
purpose. As this is unique, we just keep track of this number for discarding duplicates.

7.8 Forwarding

The trace server is the actual engine of the whole process. Upon start up, it registers a interest
filter with ccnd for namespace trace. As a result of this, ccnd forwards all trace packets to the
server. The server does a duplicate checking and discards if the incoming packet is a duplicate.
It then extracts the actual content name by removing the first and the last component of the
name. It looks in the FIB for finding out if there is any entry for this name. If there is no such
entry, it sends back a message saying that there is no path for the content. If there is such a
entry, it looks if a “remote” flag is associated with the entry. If not, this is a local content. The
server sends back a message saying that it is local content. In case there is a remote entry in

7

the FIB, the server looks up where this entry points to. This results in a list of one or more
outgoing faces. The server duplicates these entries by adding new routes, but for the trace
interest name. For example, if an intermediate node has remote entries for /csu/index.html
via face 34 pointing to 10.0.0.1 and face 35 pointing to 10.0.0.2, the server creates two interest
packets, say, /trace/csu/index.html/123456 and /trace/csu/index.html/567892. It then adds
two routes to ccnd using
ccndc add /trace/csu/index.html/123456 tcp 10.0.0.1 and
ccndc add /trace/csu/index.html/567892 tcp 10.0.0.2
It then expresses interest for the two interest packets. Once it receives the replies, it parses
them, add its own identifier to the path and sends back the replies. If any of the paths times
out, it indicates that on the reply message. Finally, it deletes up the routes it added to ccnd.

8 Implementation

In our implementation, we have two programs, one is a trace client another is a trace server.

8.1 Trace Client

The trace client is a simple program which asks for a name and a timeout value. Here is the
pseudo-code for the client. This is the pseudo code for the client:

read (name) (timeout)

prepend "/trace" to (name)

append <random number> to (name)

construct interest packet from name

express interest using the interest packet

listen for reply until timeout

while(timeout count) < 3:

reexpress interest

timeout_count++

8.2 Trace Server

Note node identifier (IP address)

use ccn_set_interest_filter with name /trace

while(TRUE):

listen for incoming trace interests

if incoming trace interest is not duplicate_entries:

content_interest_name = interest name without first & last component

if content_interest_name in FIB:

path_exists = Yes;

if path is local:

reply = identifier + "LOCAL"

replies = replies + reply

note name in duplicate_entries

else if path is remote:

find how many remote paths are in FIB:

8

for each path:

prepend /trace and append <random number> to name

find remote IP for this path

add a route to FIB for this name

express interest and wait for reply

if received reply:

paths = parse reply

for each path in paths:

reply = identifier + "FWD" + path

replies = replies + reply

else if timed out:

reply = identifier + "NO REPLY"

replies = replies + reply

delete added route from FIB

else:

path_exists = No;

reply = identifier + "NO ROUTE"

note name in duplicate_entries

replies = replies + reply

send replies

9

