
ProxySQL at Shopify

Who we are

Jordan Wheeler

Senior Production Engineer @ Shopify

René Cannaò

Founder @ ProxySQL

ProxySQL Architecture Overview

Data gateway
Clients connect to ProxySQL
Requests are evaluated
Actions are performed

Some of the most interesting features:
● on-the-fly rewrite of queries
● caching reads outside the database server
● connection pooling and multiplexing
● complex query routing and read/write split
● load balancing
● real time statistics
● monitoring
● data masking
● multiple instances on same ports

Some of the most interesting features:
● high availability and scalability
● seamless failover
● firewall
● query throttling
● query timeout
● query mirroring
● runtime reconfiguration
● scheduler
● support for Galera/PXC and Group Replication

Some of the most interesting features:
● support for millions of users
● support for tens of thousands of database servers
● native ProxySQL Clustering Solution
● support for ClickHouse as a backend
● support for Aurora
● SSL support for frontend
● SSLv1.2
● native Support for Galera
● causal reads using GTID

Multiplexing:
Reduce the number of connections against mysqld (configurable)
Many clients connections (tens of thousands) can use few backend connections
(few hundreds)
Tracks connection status (transactions, user variables, temporary tables, etc)
Order by waiting time

600K Active Merchants
80K RPS Peak

$26B GMV 2017
1000 Developers
40 Deploys/Day

Shard 1

Shard 3

Shard 2

Shop

Shop

Shop

Shop Shop

 M
aster Catalog

Zookeeper

Pod 1

Pod 3

Pod 2

MySQL

Shared

Redis Cache Cron

MySQL Redis Cache Cron

MySQL Redis Cache Cron

Web

Search

RW RO RO

RO RO RO

Active Location

Passive Location

No ProxySQL:

ProxySQL:

No ProxySQL: ProxySQL:

No ProxySQL: ProxySQL:

No ProxySQL: ProxySQL:

No ProxySQL: ProxySQL:

ProxySQL:No ProxySQL:

ProxySQL:No ProxySQL:

ProxySQL
ProxySQL

ProxySQL

Cost of MySQL’s one-thread-per-connection

Too many software threads per hardware thread
CPU registries save/restore and context switching

Mutexes/locks contentions
CPU cache almost useless

High cost for access to memory
Avoid having a central bottleneck

Thread pool in MySQL

Thread pool in MySQL

Threads in ProxySQL are known as "MySQL Threads"
Fixed number of worker threads (configurable)
All threads listen on the same port(s)
Client connections are not shared between threads
All threads perform their own network I/O
Uses "poll()"... (does it scale?)

Threads never share client connections

Pros:
Thread contention is reduced
No need for synchronization
Each thread calls "poll()"

Cons:
Possibly imbalanced load

Thread 1

Thread 2

Thread 3

poll() vs. epoll()

"poll()" is O(N)
"epoll()" is O(1)
"epoll()" scales better than "poll()"

Why does ProxySQL use "poll()"?
It is faster than "epoll()" for fewer connections (~1000)
Performance degrades when there are a lot of connections

ProxySQL Auxiliary Threads

Each worker thread has an auxiliary thread
Worker thread uses "poll()"
Auxiliary thread uses "epoll()"
Worker thread passes idle connections to auxiliary thread
When a connections becomes active auxiliary thread passes
connection to the worker thread

Solution scales to 1 million connections

Thread 1

Aux 1

Thread 2

Aux 2

Thread 3

Aux 3

MySQL Thread Overview

MySQL Session

MySQL Session

MySQL Session

MySQL Session

MySQL Thread

MySQL Session

MySQL Session

All other Modules:
• Query Processor
• Query Cache
• Hostgroups Manager
• Authentication
• Others

For low contention, threads independently:
Track internal metrics
Store values for mysql-XXX variables
Store a copy of the defined query rules

Contention on MyHGM

MyHGM is a shared resource so it can cause contention when accessed by MySQL Threads

MySQL_ThreadMySQL_Thread

MyHGM

Thread Connection Cache

Each MySQL Thread has a connection cache that is reset before calling poll()

MySQL_ThreadMySQL_Thread

MyHGMConnections
Cache

Connections
Cache

Kubernetes Service

Kubernetes Service

Kubernetes Service

RW RO RO

W
RITER

READER

RW RO ROWRITER

READER

Hostgroup 0

Hostgroup 1

Proxysql

https://docs.google.com/file/d/1Ke2XS8muRruZWnickTixSQ2X94NSmHcc/preview

RW RO RO RW RO RO RW RO RO RW RO RO

RW RO RO RW RO RO RW RO RO RW RO RO RW RO RO

RW RO RO

RW RO RO

RO RO RO

Active

Passive

Activefailover

NGINX

FlipperRedis

Mem-
cached

Zookeeper

RO RO RO

RW RO RO

Passive

Active

Activefailover

NGINX

FlipperRedis

Mem-
cached

Zookeeper

Taiji Service Discovery

Kubernetes Service

Watcher Watcher Watcher

Zookeeper

Hostgroup 0 Hostgroup 1

shard123-db1

Writer Instances

shard123-db1

shard123-db1

Taiji

Hostgroup 0 Hostgroup 1Writer Instances

shard123-db1

Taiji

Hostgroup 0 Hostgroup 1

shard123-db1

Writer Instances

shard123-db1

shard123-db1

Taiji

Hostgroup 0 Hostgroup 1

shard123-db1

Writer Instances

shard123-db1

Taiji

Writer Instances

shard123-db1

Taiji

Hostgroup 0 Hostgroup 1

shard123-db1

Writer Instances

shard123-db1

Taiji

Hostgroup 0 Hostgroup 1

shard123-db1

Writer Instances

shard123-db1

Taiji

Hostgroup 0 Hostgroup 1

RW RO

Writer Instances

shard123-db1 shard123-db1

shard123-db2

Hostgroup 0 Hostgroup 1

shard123-db1 shard123-db2

RO RW

Writer Instances

shard123-db2 shard123-db2

Hostgroup 0 Hostgroup 1

shard123-db2 shard123-db2

Questions?

