
NIST Special Database 19
Handprinted Forms and Characters Database

Patrick J Grother
Kayee K Hanaoka

Image Group
Information Access Division

National Institute of Standards and Technology

patrick.grother@nist.gov
kayee.hanaoka@nist.gov

September 13, 2016

1

Contents

1 Introduction 3

2 Source Materials 3

3 Special Database 19 Contents 4

4 Data Hierarchies 8

4.1 hsf page Full HSF Page Images . 8

4.2 by write – By Author . 8

4.3 by field – By Field Type . 9

4.4 by class – By Hexadecimal Class . 9

4.5 by merge – By Merged Classes . 10

5 Using Special Database 19 10

5.1 Standard Training and Testing Sets . 10

5.2 Caveats . 11

6 NIST Data Formats 11

6.1 Image files . 11

6.2 Character image files . 12

6.3 Character Class Files . 13

6.4 Character Origin Files . 13

7 Software 13

7.1 Utilities . 15

8 Appendix A 28

2

1 Introduction

The Special Database 19 2nd Edition(2016) (SD19 2nd(2016)) contains 4.95 millions Portable Network Graphics
(PNG) images.

The Special Database 19 (SD19 1st) contains the full page binary images of 3699 Handwriting Sample Forms
(HSFs) and 814255 segmented handprinted digit and alphabetic characters from those forms. This document
details the origin, publication history, organization, and use of the HSF derived images. The final database has
been mastered and replicated onto ISO-9660 formatted CD-ROM discs for permanent archiving and distribution
in 1995. The database can be download at https://www.nist.gov/srd/nist-special-database-19. Those segmented
characters each occupy a 128x128 pixel raster and are labelled by one of 62 classes corresponding to “0”-“9”, “A”-
“Z” and “a”-“z”. The classes of each segmentation have been manually checked such that the residual character
classification error is about 0.1%.

Section 2 shows that although some of the material has been published previously (about 60% of the forms and
50% of the characters) the Special Database 19 CD represents NIST’s most comprehensive and probably final
release of class referenced images for handprinted optical character recognition. It contains all the data of Special
Databases 3 and 7 which it supersedes. Further, SD19 almost replaces Special Database 1 which contains images
of just the isolated box fields from the HSF pages. Section 3 quantifies the breadth of this and previous CD
releases. The segmented character images are included in multiple organizations suited to different recognition
applications. The characters are given by writer, by class, by caseless class, and by field origin. These data
hierarchies are described in section 4, suggestions and tips for their use are given in section 5 and the various file
formats are defined in section 6.

2 Source Materials

This database contains eight series of HSF images, denoted by hsf {0,1,2,3,4,6,7,8}. The HSFs were scanned at
11.8 dots per millimeter (300 dots per inch) and contain 34 fields: name and date entries, a city/state field, 28
digit fields, one upper-case field, one lower-case field, and an unconstrained Constitution text paragraph. An
example of a completed HSF page is given in figure 1. Characters segmented from all field types are included in
this database. All images are binary and are stored in NIST’s IHEAD format.

Name Date Release Contents Notes
Special Database 1 May 1990 HWDB Release 1-1.1 Forms and fields
Special Database 3 February 1992 HWSC Release 4-1.1 Characters
Special Database 7 April 1992 TST1 Release 6-1.1 Characters aka Test Data 1.

Table 1: Previous NIST Handprint Databases.

Special Database 1 [1] contains the isolated field images of the 2100 HSF pages of the hsf {0,1,2,3} partitions,
but it omits the segmented characters which first appeared on Special Database 3 [2]. That database is composed
of the classed and checked segmentations of the digit, upper and lower case fields, but not the Constitution text.
Special Database 3 was released as the official training materials for the First Census OCR Systems Conference
(see section 5). The writers of the SD3 partitions were Census Bureau field personnel stationed throughout the
United States. Those segmented characters were followed by the unclassed characters of the hsf 4 partition which
were released as the testing materials for the conference as Special Database 7 [3] CD. Those images were obtained
from a further 500 HSF forms completed by high school students in Bethesda, Maryland. The handchecked classes
of those testing images were subsequently released on floppy disc.

This CD republishes the 2100 HSF images already released on Special Database 1 and the character images of
Special Databases 3 and 7. It releases, for the first time, the 500 parent HSF pages of the Special Database 7
characters, the HSF forms and the segmentations of a further 1069 writers, the Constitution box characters of

3

Figure 1: Example HSF Image. This is the file hsf page/hsf 0/f0002 01.pct. Notice that the first field on this
form, the name field, has been intentionally occluded, on some others it remains blank. All fields except those on
the first line have been segmented and recognized by NIST.

4

partition writers forms digits uppers lowers const writer origin
hsf 0 0000-0499 SD1 SD3 SD3 SD3 SD19 Census Field
hsf 1 0500-0999 SD1 SD3 SD3 SD3 SD19 Census Field
hsf 2 1000-1499 SD1 SD3 SD3 SD3 SD19 Census Field
hsf 3 1500-2099 SD1 SD3 SD3 SD3 † Census Field
hsf 4 2100-2599 SD19 SD7 SD7 SD7 ø High School
hsf 5 2600-3099 retained by NIST for future tests ø High School
hsf 6 3100-3599 SD19 SD19 SD19 SD19 ø Census MD
hsf 7 3600-4099 SD19 SD19 SD19 SD19 ø Census MD
hsf 8 4100-4169 SD19 † † † † Census MD

Table 2: First publications of the various partitions. SD3, SD7 are Special Databases 3 and 7 released as as the
training and testing materials for the First Census OCR Systems Conference. A † indicates that those fields were
completed but not processed at the time of the CD release. A ø indicates that the field was never filled out.

the first 1500 writers of the original Special Database 1, and the writer identities of of the Special Database 3
and 7 characters.

The publication statuses of the various writer partitions and field types are given in the table 2. The first 429
writers of hsf 5 were completed by the Bethesda high school students while the final 71 forms, and all those of
partitions hsf {6,7,8} were obtained from Census Bureau employees in Suitland, Maryland.

3 Special Database 19 Contents

The universal descripton of a writer on this database is of the form fyyyy zz. For example the directory f3100 45
uniquely identifies writer 3100 and the second index, 45, identifies which of the 100 possible form templates was
used in the form image. The number, size, and location of the fields is the same across the variations, the only
change being a different random ordering of characters intended for the digit, upper and lower case fields. The
two digit index can be used to access the form’s corresponding reference file in the directory hsf pages/truerefs.
This file gives the text that the writer was instructed to print in each field. These files are useful in aligning
recognized characters with their putatively true classes. Such a process is used by the NIST Scoring Package
[4]. The reference file for the image in figure ?? is ref 01 and is shown in figure 3. Similarly the directory
hsf pages/template contains TeX and Postscript files of each unfilled HSF variation, again labelled by the two
digit index, that could be used for further data collection.

Field 0 was occluded or left incomplete on all HSF images. Fields 1 and 2 have never been processed by NIST,
fields 3 through 30 hold only digits, field 31 is the sole lower case character box, field 32 is likewise the only upper
case box, and field 33 contains the free format text of the U.S. Constitution preamble.

The fields of each form were segmented into isolated characters. Each resulting image was automatically assigned
a classification. All the referenced character images have been manually checked, with an image’s class being
changed upon detection of an error. This checking [5] process was performed twice, each time by a different
person. In order to retain examples close to class boundaries the philosophy employed in the checking process
was to not discard or correct anything that could plausibly have been the intended class even if, in hindsight, it
looked more like an example of another class. The resulting segmented images were then organized by writer then
by one of four field types: digits, upper and lower case alphabetics, and the restricted alphabetic set from the
Constitution text. Directories and files in the SD19 data hierarchies referring to those fields are denoted variously
with the names digit, upper, lower, const and the prefixes “d”, “u”, “l” and “c”. The HSF writer identification
scheme is carried over to these segmentations. Thus the resulting images are identified by one of seven hsf ?
partitions, the writer index and, for good measure, the template id.

5

fld 0
fld 1
fld 2
fld 3 0123456789
fld 4 0123456789
fld 5 0123456789
fld 6 87
fld 7 701
fld 8 3752
fld 9 80759
fld 10 960941
fld 11 158
fld 12 4586
fld 13 32123
fld 14 832656
fld 15 82
fld 16 7481
fld 17 80539
fld 18 419219
fld 19 67
fld 20 904
fld 21 61738
fld 22 729658
fld 23 75
fld 24 390
fld 25 5716
fld 26 109334
fld 27 40
fld 28 625
fld 29 4234
fld 30 46002
fld 31 gyxlakpdsbtzirumwfqjenhocv
fld 32 ZXSBNGECMYWQTKFLUOHPIRVDJA
fld 33

Figure 2: Reference file hsf page/truerefs/ref 01.txt.

6

digit lower upper constitution
upper lower

0 a A A a
1 b B B b
2 c C C
3 d D D d
4 e E E e
5 f F F
6 g G g
7 h H H h
8 i I I
9 j J J

k K
l L L l

m M M
n N N n
o O O
p P P
q Q q
r R R r
s S S
t T T t
u U U
v V V
w W W
x X
y Y Y
z Z

digit lower upper constitution
upper lower

40363 3210 3033 4436 8467
44704 3136 3026 1500 2876
40072 3286 3344 8489
41112 3111 3020 2321 8749
39154 3084 2892 2893 25639
36606 2961 3053 7569
39937 2966 2964 1310
41893 3253 2925 748 6964
39579 3152 4490 9504
39533 2213 2958 1430

2957 2850
4454 3375 2511 13399
3109 3077 7410
3150 3128 6460 10166
3215 3176 25963
2816 3127 6617
2648 3018 851
3113 3061 2821 13312
3136 3129 21143
3058 2981 8415 18169
3312 3143 11461
3378 3237 2196
3164 3122 2379
3292 3203
2746 2966 2575
3176 3165

Table 3: Classes present and their abundancies by field. Blank Constitution field entries indicate that the class is
not present in the segmentations of that text, either because it does not occur in the text, because no examples
survived segmentation and checking, or because its upper or lower case counterpart is equivalent. Note large
differences in the occurrence frequencies.

The intended numbers of each class in the digit, upper, and lower case fields are approximately equal, although the
final segmented and checked characters are less evenly distributed. Table 3 shows that the text of the Constitution
box does not contain any examples of certain classes, and indeed that the occurrence frequencies of the characters
that do appear are widely variant, though similar to the frequency distribution of English text.

7

Partition SD1 1990 SD3 (∗SD7) 1992 SD19 1995
Number writers with at least Number writers with at least
one character successfully one character successfully
segmented and checked segmented and checked

Forms Digit Upper Lower Const Forms Digit Upper Lower Const
hsf 0 500 500 488 490 † 500 500 488 490 500
hsf 1 500 498 486 483 † 500 498 486 483 499
hsf 2 500 497 493 495 † 500 497 493 495 500
hsf 3 600 586 577 572 † 600 586 577 572 †
hsf 4 500∗ 500∗ 500∗ ø 500 500 500 500 ø
hsf 5 500 500 500 500 ø
hsf 6 499 499 499 498 ø
hsf 7 500 500 500 499 ø
hsf 8 70 † † † ø

Table 4: Writer abundancies. Note that hsf 5 is not included, and has been held in reserve for future use. A †
indicates that those fields were completed but not processed at the time of the CD release. A ø indicates that
the field was never filled out.

digits uppers lowers const total
hsf 0 53449 10790 10968 99208 174415
hsf 1 53312 10662 10784 87965 162723
hsf 2 52467 10863 10883 61570 135783
hsf 3 63896 12636 12678 † 89210
hsf 4 58646 11941 12000 ø 82587
hsf 6 61094 12479 12205 ø 85778
hsf 7 60089 12092 11578 ø 83759

total 402953 81463 81096 248743 814255

hsf 5 59071 12399 12139 ø 83609
hsf 8 † † † ø †

Table 5: Group abundancies. Note that hsf 5 is not included, and has been held in reserve for future use. A †
indicates that those fields were completed but not processed at the time of the CD release. A ø indicates that
the field was never filled out.

0 1 2 3 4 5 6 7 8 9
40363 44704 40072 41112 39154 36606 39937 41893 39579 39533

A B C D E F G H I J
7469 4526 11833 5341 5785 10622 2964 3673 13994 4388

K L M N O P Q R S T
2850 5886 10487 9588 29139 9744 3018 5882 24272 11396

U V W X Y Z
14604 5433 5501 3203 5541 3165

a b c d e f g h i j
11677 6012 3286 11860 28723 2961 4276 10217 3152 2213

k l m n o p q r s t
2957 17853 3109 13316 3215 2816 3499 16425 3136 21227

u v w x y z
3312 3378 3164 3292 2746 3176

Table 6: Class abundancies totalled over all partitions and all fields. Bold type indicates the classes with maximum
and minimum representation.

8

4 Data Hierarchies

There are five directories in the data subtree. The first hsf page contains the full page HSF images. The other
four directories, by *, each have alternative organizations of the segmented character images suited to different
recognition applications. The characters are given by writer, by class, by field origin, and finally by caseless class.

The file formats are discussed in detail in a section 6. For the purposes of this section the user need only know
that the following file extensions correspond to particular files, thus:

.mis – a file containing multiple isolated character images.

.pct – a file containing a full page HSF image.

.cls – a file containing the checked classes of the images held in the accompanying .mis file.

.mit – where appropriate, a file containing a pointer to the source misfile. It contains the writer identity and
exact location (pathname and index offset) to the original segmentations of that writer for the characters
held in the accompanying .mis file.

4.1 hsf page Full HSF Page Images

This tree contains the unprocessed images of the HSF forms in the hsf {0,1,2,3,4,6,7,8} directories. The truerefs
directory holds the text reference files for the 100 form types. These latter files are necessary for the automated
scoring of any package which recognizes HSF images (see section 7). A sample HSF form is given in figure ??
and its reference file is on page 5. All such images are in the hsf * subtrees have IHEAD format, are named with
the writer and template indices, and carry the .pct extension. The template directory contains postscript (.ps)
and LATEXfiles (.tex) for the unfilled HSF forms, which may be reproduced for further data collection. The file
hierarchy is given below.

hsf_page

|

|

hsf_0 ... hsf_8 truerefs template

| | |

| | |

f0000_14.pct ... f0499_10.pct ref_00.txt ... ref_99.txt ref_00.ps ... ref_99.ps

ref_00.tex ... ref_99.tex

4.2 by write – By Author

This tree contains the segmented characters organized by hsf ? partition then by writer. This organization is
generally not particularly useful for OCR studies since the image files contain multiple classes. The files are,
however, the primary output of the segmentation and checking process, and the other hierarchies that follow were
derived from it.

Each writer directory contains files for each field type; digit, upper, lower and, where present (see table 3),
constitution alphas. All images are in the .mis format and are accompanied by a .cls class reference file. No .mit
files are included as they would redundantly reference themselves.

by_write

9

|

|

hsf_0 ... hsf_7

|

|

f0000_14 f0001_41 ... f0499_10

|

|

d0000_14.mis u0000_14.mis l0000_14.mis c0000_14.mis

d0000_14.cls u0000_14.cls l0000_14.cls c0000_14.cls

4.3 by field – By Field Type

This hierarchy contains characters organized by hsf ? partition then by field, and finally by class. Writer
information is discarded though the files’ entries are included by concatenation of the writer characters from the
by write tree. The digit files contained here are identical to those contained in the by class tree since digits are
not found in other fields. This is not true for upper and lower case alphabetics, since they may generally be found
in the Constitution text as well.

by_field

|

|

hsf_0 ... hsf_7

|

|

digit upper lower const

|

|

30.mis ... 39.mis

30.cls ... 39.cls

30.mit ... 39.mit

4.4 by class – By Hexadecimal Class

The tree contains images organized by class, then by database. Both writer and field information are discarded:
there is no distinction between an “e” from the constitution box of writer 0000 and one from the lower case field of
writer 4044. This hierarchy contains relatively few and large files, and is of primary interest to class separability
and class recognition studies. Note that in the directory structures that follow the second layer directories have
labels which are the hexadecimal ASCII representations of the textual class labels. This nomenclature is described
in section 6.3.

by_class

|

|

30 ... 39 41 ... 5a 61 ... 7a

|

|

hsf_0.mis ... hsf_7.mis train_30.mis

hsf_0.cls ... hsf_7.cls train_30.cls

hsf_0.mit ... hsf_7.mit train_30.mit

10

The file train 30.mis contains the “0”s of all writers of partitions hsf {0,1,2,3,6,7}. For reasons given in section
5 the train ?? files comprise the suggested training set for OCR studies. The hsf 4 is likewise earmarked as a
standard testing results reporting set. Note that the class files are redundant in this tree, since they contain only
one unique hexadecimal class string, and the class has already been indicated in the parent directory name. The
files are included for completeness and for user programs that may need a .cls file for each .mis argument.

4.5 by merge – By Merged Classes

The class abundancies, given in table 3, show up to an order of magnitude disparity between classes. This
situation may be ameliorated for certain applications by folding the upper and lower case letters of some classes
into one another; for instance an upper case “W” is largely equivalent for recognition purposes to its lower case
analogue “w”. Indeed it could be argued that a classifier could equally be trained to recognize classes of different
appearance, “A” and “a” for example, on the basis that, although examples of the two classes may form separate
clusters in a representative feature space, some classifiers will still perform well. For this hierarchy the upper and
lower case examples of the following thirteen classes have been merged:

C I J K L M O P S U V W X Y Z

The resulting tree hierarchy contains exact replicas of the files of the unmerged classes from the by class tree, and
the merged classes labelled by the hexadecimal codes of the upper and lower case labels delimited by a period.
The final number of classes is 37. Note that, unlike in the by class hierarchy, the train ?? files have been omitted.
They may be generated using the concmis utility described in section 7.1.

by_merge

|

|

30 ... 39

41 42 44 45 46 47 48 4e 51 52 54 61 62 64 65 66 67 68 6e 71 72 74

43_63 49_69 4a_6a 4b_6b 4c_6c 4d_6d 4f_6f

50_70 53_73 55_75 56_76 57_77 58_78 59_79 5a_7a

|

|

hsf_0.mis ... hsf_7.mis

hsf_0.cls ... hsf_7.cls

hsf_0.mit ... hsf_7.mit

5 Using Special Database 19

5.1 Standard Training and Testing Sets

The First Census OCR Systems Conference discussed the performance of 45 OCR systems submitted by 26
academic and industrial organizations. NIST supplied the isolated images of the hsf 4 partition to the participants
and, after a two week processing period, scored the submitted hypotheses against the known classes. The results
were published as [6].

The participants were free to use whatever training images they had available. NIST supplied a large set of
training materials, the digit, upper and lower images of partitions hsf {0,1,2,3}, and typically entrants to the
conference used these as a supplement to in-house character databases. The general conclusion of the conference
was that the testing images of hsf 4 are more difficult, in a recognition sense, than the images of hsf {0,1,2,3}.
This was subsequently demonstrated in a cross validation study [7].

11

For that reason it is strongly suggested that hsf 4 be used only as standard OCR reporting set, so
that recognition results will then be meaningfully comparable to the performances made public in the Census
Conference report. The user’s attention is drawn to the NIST Special Software Scoring Package [8, 9, 10]. Given
that restriction, NIST suggests the by class/??/train ??.mis files for training, one for each of the 62 classes. They
are the concatentation of characters from all partitions except hsf 4. For example the 5420 class “E” images
in by class/45/hsf {0,1,2,3,6,7}.mis are all joined to make the file by class/45/train 45.mis, where “45” is the
hexadecimal ASCII representation of class “E”.

5.2 Caveats

1. The by * partitions contain different orderings of the same 814255 segmented images, and generally simul-
taneous use of two hierarchies will give redundant replication.

2. The by {class,merge,field} trees contain files made by concatentation of like entries from the primary
by write tree. If the leading M entries of such an N member file are used, then, when M � N , the
writer population is greatly restricted. This typically reduces diversity, and the probable classification
difficulty of the subset. The solutions to this problem in decreasing order of preference, are:

• To use the entire file, making reported results comparable.

• To shuffle the contents of the file, possibly randomly, to impart more writer homogeneity to the resulting
leading M entries. This can be achieved using the shuflmis utility described in section 7.1. Use of
subsets of randomly sorted datasets makes the comparison of reported results problematic.

3. Many operating systems and shells possess upper limits on the number of files that may be handled. Users
of the by write and hsf page trees may experience difficulties in the following regards:

• Wildcard expansions can be time-consuming. Many operating systems and shells have upper limits on
the number of arguments that may be supplied on the command line to installed programs.

• UNIX filesystems require an “inode” for each file. If the largest tree of this database is copied to a
filesystem then that disk must be configured to have enough inodes. Similar issues affect DOS-based
systems. See UNIX’s df -i.

• Special Database 19 holds in excess of 600Mb of data. The destination drive of any copying operations
must be large enough.

4. If a user possesses previous NIST OCR Special Databases and uses the supplied CCITT Group 4 compression
code then it should be updated with the SD 19 release. This modified code allows large .mis files to be
handled. Use of the old compression version on these files will result in the loss of all the data.

6 NIST Data Formats

6.1 Image files

NIST has developed the IHEAD image header and has incorporated it into all images of all the Special Databases.
Its design and functionality are described extensively in [11]. All members of the header are ASCII coded with
some fields being in ‘C’ string format and other fields being single ASCII characters. The actual structure
definition for an NIST header and a description of the use and purpose of each member is shown in Appendix
A. The header is of a fixed allocated length, currently 296 bytes, regardless of its content. The first eight bytes
of the header contain the length of the remainder, i.e. 288 bytes all of which can be read into structure memory
with a single “fread” system call. Also note the eight character ASCII header length record stored in front of the
actual header in an image file.

12

All the SD19 images have been compressed using an implementation of the CCITT Group 4 algorithm devel-
oped by the CALS Test Network and adapted by NIST for use with files which have compressed images and
uncompressed headers. The IHEAD header within each image (described in Appendix A) remains uncompressed
with the appropriate members set to reflect the fact that the following raster data has been compressed before
being saved to a file. The file src/lib/image/readrast.c contains the C routine ReadBinaryRaster that when given
an IHEAD image file will allocate, load, and return the header structure with the decompressed raster data.
Although an IHEAD file may contain uncompressed data, the reading routine will invoke, if necessary, routines
to decompress the image data. The files src/lib/image/grp4{comp,deco}.c contain modified source code for com-
pressing and decompressing binary rasters. If previous distributions of this code are used to compress large .mis
files data will be lost and the user will not automatically be notified of this.

The character files with the .mis extension are read using the readmisfile routine in src/lib/mis/readmis.c which
calls the underlying ReadBinaryRaster routine.

6.2 Character image files

All character images contained on this CD are held in the NIST developed Multiple Image Set (MIS) format. An
MIS file allows multiple homogeneous images to be stored together; one or more images are stacked vertically
as a contiguous raster, the last scanline of one image is followed by the first scanline of the another. Individual
characters are MIS entries and the contiguous raster collection is the MIS memory. The MIS memory contains
entries of equal width, height, and depth (precision) and is stored using the IHEAD header format. The IHEAD
structure’s width attribute holds the width of the MIS memory, and likewise the structure’s height entry gives
the height of the MIS memory. In this way, the MIS collection can be compressed, stored and manipulated just
like a single image. Given fixed dimensions for all entries, the IHEAD structure’s width attribute also specifies
the width of the entries, but the IHEAD definition lacks a facility to hold the height and number of entries. So
we let the interpretation of two of the IHEAD attribute fields, par x and par y, change when the IHEAD header
is being used to describe a MIS memory. The par x and par y fields are used to hold the width of and height of
the MIS entries, whence the number of entries can be calculated by dividing the entry height into the total MIS
memory height.

The MIS structure definition written in ‘C’ is given below. It contains an IHEAD structure, head, and the MIS
memory, data. In addition, there are 6 other attribute fields which hide the details of the IHEAD interpretation
from application programs that manipulate MIS memories.

typedef struct misstruct{
IHEAD *head;
unsigned char *data;
int misw;
int mish;
int misd;
int entw;
int enth;
int ent num;
int ent alloc;

} MIS;

The attributes misw and mish give the width and height of the MIS memory. They are also contained in the
IHEAD structure pointed to by head. The attributes entw and enth specify the width and height of the entries
and are the same as the par x and par y attributes of the IHEAD structure. The ent alloc attribute specifies how
many MIS entries of dimension entw and enth have been allocated to the MIS memory, data, and ent num gives
the number currently used out of the total allocated.

13

6.3 Character Class Files

For each segmented character image in the database there is an associated character classification which has
been assigned and manually checked. Although no punctuation characters are presented on Special Database 19,
they have influenced the design of the class labelling. Because operating systems and shells treat punctuation
as special characters, we have developed a method to avoid such ambiguities. The classification of each image is
just the hexadecimal representation of the character’s ASCII value. Thus the digits are labelled “30”-“39”, the
upper case alphas as “41”-“5a” and the lowers as “61”-“7a”, such that a handprinted “2” has the class “32”, a
lower-case “z” is denoted by “7a”.

These classifications are stored in .cls files and have one-to-one correspondence to the entries in the associated
.mis file. The .cls file is an ASCII file with the first line containing the integer number of classes listed in the file,
one value per successive line. Each ASCII text line is terminated with the linefeed character, 0x0A. All .mis files
on Special Database 19 have an associated .cls file.

6.4 Character Origin Files

Each character image in the various by * hierarchies were obtained from one of the 4169 writers. The by write
tree contains the characters as they were originally segmented from their particular fields. The other trees contain
the same characters in different organizations and the .mit files indicate precisely where in the by write .mis files
such characters came from. Each .mit file contains as many entries as its accompanying .mis file and, like the .cls
counterpart, is an ASCII file with an integer head giving the number of lines that follow. Each entry is a pointer
consisting of a pathname to the “parental” .mis file and a zero-oriented index into that file. Figure 3 shows nine
.mis entries, and the associated .cls and .mit files.

7 Software

The full page HSF images in hsf page are the conventional input to NIST’s public domain Standard Reference
Optical Character Recognition System [12] released on CD ROM in 1994. Its functionality and availability are
given below. Further, Special Database SD19 contains several software utilities for the handling of the isolated
character files.

NIST FORM-BASED HANDPRINT RECOGNITION SYSTEM
Michael D. Garris (mdg@magi.ncsl.nist.gov)

James L. Blue, Gerald T. Candela, Darrin L. Dimmick, Jon Geist,
Patrick J. Grother, Stanley A. Janet, and Charles L. Wilson

National Institute of Standards and Technology,
Building 225, Room A216

Gaithersburg, Maryland 20899
Phone: 301 975 2928 FAX: 301 840 1357

The National Institute of Standards and Technology (NIST) has developed a standard reference form-based
handprint recognition system for evaluating optical character recognition (OCR). NIST is making this recognition
system freely available to the general public on an ISO-9660 format CD-ROM. The recognition system processes
the Handwriting Sample Forms distributed with NIST Special Database 1 and NIST Special Database 3. The
system reads handprinted fields containing digits, lower case letters, upper case letters, and reads a text paragraph
containing the Preamble to the U.S. Constitution.

14

9
30
38
35
31
33
35
39
36
34

9
f3804 08/d3804 08.mis 0
f3804 08/d3804 08.mis 8
f3804 08/d3804 08.mis 15
f3804 08/d3804 08.mis 21
f3804 08/d3804 08.mis 23
f3804 08/d3804 08.mis 30
f3804 08/d3804 08.mis 33
f3804 08/d3804 08.mis 48
f3804 08/d3804 08.mis 63

Figure 3: An example MIS image file. At right are its CLS class and MIT reference files.

15

This is a source code distribution written primarily in C and is organized into 11 libraries. There are approximately
19,000 lines of code supporting more than 550 subroutines. Source code is provided for form registration, form
removal, field isolation, field segmentation, character normalization, feature extraction, character classification,
and dictionary-based post-processing.

The NIST standard reference recognition system is designed to run on UNIX workstations and has been success-
fully compiled and tested on 1 a Digital Equipment Corporation (DEC) Alpha, Hewlett Packard (HP) Model
712/80, IBM RS6000, Silicon Graphics Incorporated (SGI) Indigo 2, SGI Onyx, SGI Challenge, Sun Microsys-
tems (Sun) IPC, Sun SPARCstation 2, Sun 4/470, and a Sun SPARCstation 10. Scripts for installation and
compilation on these architectures are provided with this distribution.

A distribution of this standard reference system can be obtained free of charge at https://nist.gov/srd/nist-
special-database-19. This system or any portion of this system may be used without restrictions. However,
redistribution of this standard reference recognition system is strongly discouraged as any subsequent corrections
or updates will be sent to registered recipients only. This software was produced by NIST, an agency of the U.S.
Government, and by statute is not subject to copyright in the United States. Recipients of this software assume
all responsibilities associated with its operation, modification, and maintenance.

The character images used in the preparation of the Karhunen Loève feature extractor and Probabilistic Neural
Network classifier of the standard reference system were obtained from the hsf {4,6} partitions. Four classifiers
were used for their respective fields; the digit classifier used just the .mis files of the by write/hsf 6/f* writers.
Similarly the upper and lower case recognizers respectively used the upper and lower case .mis files of both the
hsf 4 and hsf 6 writers. The Constitution text classifier used the characters of these two writer sets amalgamated
so that there was no differentiation between upper and lower case. The use of the hsf 4 partition for training
purposes is in contravention of the guidelines suggested in section 5.1.

7.1 Utilities

A number of C coded utilities have been included in this CD firstly to provide tools for handling the provided
image data, and secondly to give examples of how to handle the NIST IHEAD and MIS data structures. In
addition directories named bin and lib must be created. Given a copy of these trees in, for example, the directory
/usr/local/nist.cd, the executable binaries for various architectures can be produced in the bin directory by
invoking the UNIX commands thus:

mkdir /usr/local/nist.cd
cd /usr/local/nist.cd
cp -rp /cd/src /cd/include /cd/man /cd/makefile.mak .
mkdir bin lib
make -f makefile.mak instarch PROJDIR=/usr/local/nist.cd INSTARCH=sgi
make -f makefile.mak depend PROJDIR=/usr/local/nist.cd
make -f makefile.mak install PROJDIR=/usr/local/nist.cd

where the environment variable PROJDIR is the root path to the src directory, and INSTARCH, which indicates
the desired machine architecture, is one of sun, sgi, aix, hp, sol or osf. A brief description of the software utilities
is given below. The manual pages that follow offer a more complete description.

concmis This utility produces a single .mis file by concatenation of an arbitrary number of .mis files given on
the command line.

conccls This utility produces a single .cls or .mit file by concatenation of an arbitrary number of .cls or .mit
files given on the command line.

1Specific hardware and software products identified were used in order to adequately support the development of this technology.
In no case does such identification imply recommendation or endorsement by the National Institute of Standards and Technology,
nor does it imply that the equipment identified is necessarily the best available for the purpose.

16

dumpihdr This utility dumps the textual information of the header of a NIST ihead file (both .mis files and
.pct files fall in this category) to standard output.

misfrmit This utility builds .mis files. The entries in an output file are named in an input .mit file, which
specifies arbitrary .mis files that will contribute and identifies which elements in those files.

mistopng This utility converts and parses .mis files into png image files. The entries in each .mis file are parsed
into individual graphic file format - PNG. The output images are typically sized 128 width and 128 height.

normmis This utility performs size and orientation normalization of the images in .mis files. The input images
are typically held as 128x128 .mis entries. The output images are held in 32x32 .mis entries. Each image is
processed independently. A full description of the algorithms in use is given in [12].

numcls Given a number of .cls and .mit files, this utility dumps the number of entries in each to standard
output.

nummis Given a number of .mis files, this utility dumps the number of entries in each to standard output.

showmis Produces a text representation of the binary images held in a .mis file using the “#” and “.” characters
to represent dark ink and white space pixels respectively. The utility is best used on size normalized .mis
files (typically 32x32 entries obtained using, for example, normmis) instead of the raw 128x128 entries which
are textually too wide for many output devices.

shuflmis Shuffles the entries in .mis files. Optionally the utility will reorder the .cls counterparts.

References

[1] C. L. Wilson and M. D. Garris. Handprinted character database. Technical Report Special Database 1,
HWDB, National Institute of Standards and Technology, April 1990.

[2] M. D. Garris and R. A. Wilkinson. Handwritten segmented characters database. Technical Report Special
Database 3, HWSC, National Institute of Standards and Technology, February 1992.

[3] R. A. Wilkinson. Handprinted Segmented Characters Database. Technical Report Test Database 1, TST1,
National Institute of Standards and Technology, April 1992.

[4] Michael D. Garris and Stanley A. Janet. NIST Scoring Package User’s Guide Release 1.0. Technical Report
NISTIR 4950, National Institute of Standards and Technology, October 1992.

[5] R. Allen Wilkinson, Michael D. Garris, and Jon Geist. Machine-Assisted Human Classification of Segmented
Characters for OCR Testing and Training. In D. P. D’Amato, editor, , volume 1906. SPIE, San Jose, 1993.

[6] R. A. Wilkinson, J. Geist, S. Janet, P. J. Grother, C. J. C. Burges, R. Creecy, B. Hammond, J. J. Hull,
N. J. Larsen, T. P. Vogl, and C. L. Wilson. The First Optical Character Recognition Systems Conference.
Technical Report NISTIR 4912, National Institute of Standards and Technology, August 1992.

[7] Patrick J. Grother. Cross Validation Comparison of NIST OCR Databases. In D. P. D’Amato, editor, ,
volume 1906. SPIE, San Jose, 1993.

[8] M. D. Garris. NIST Scoring Package Cross-Reference for use with NIST Internal Reports 4950 and 5129.
Technical Report NISTIR 5249, National Institute of Standards and Technology, August 1993.

[9] M. D. Garris and S. A. Janet. NIST Scoring Package User’s Guide Release 1.0. NIST Special Software 1,
NIST Internal Report 4950 and CDROM, October 1992.

[10] M. D. Garris. Methods for Evaluating the Performance of Systems Intended to Recognize Characters from
Image Data Scanned from Forms. Technical Report NISTIR 5129, National Institute of Standards and
Technology, February 1993.

17

[11] Michael D. Garris. Design, Collection, and Analysis of Handwriting Sample Image Databases. The Encyclo-
pedia of Computer Science and Technology, 1994. to be published in 1994.

[12] Michael D. Garris, James L. Blue, Gerald T. Candela, Darrin L. Dimmick, Jon Geist, Patrick J. Grother,
Stanley A. Janet, and Charles L. Wilson. NIST Form-Based Handprint Recognition System. Technical
Report NISTIR 5469, National Institute of Standards and Technology, July 1994.

18

CONCCLS USER COMMANDS CONCCLS

NAME
conccls - produces a cls file which is the concatenation of cls files or a mit file which is the concatenation
of mit files.

SYNOPSIS
conccls output.cls input1.cls [input2.cls ...] conccls output.mit input1.mit [input2.mit ...]

DESCRIPTION
conccls is a utility that combines cls or mit files. It produces one output file which is the concatenation
of the entries of the files in the order they were supplied on the command line.

OPTIONS
None.

EXAMPLES
Given the SD19 data hierarchy, the class files associated with the digits of the hsf 0 writers may be gathered
into one file using:

conccls d hsf 0.cls by write/hsf 0/f*/d*.cls

FILES
ocr.cd/src/include/mfs.h

SEE ALSO
concmis

DIAGNOSTICS
If the first line of any of the input files is not an integer then conccls fails with an appropriate message
and a -1 exit status.

BUGS
Many environments provide a maximum number of arguments that may be supplied or pattern matched
when a command is invoked.

19

CONCMIS USER COMMANDS CONCMIS

NAME
concmis - produces a mis file which is the concatenation of mis files.

SYNOPSIS
concmis output.mis input1.mis [input2.mis ...]

DESCRIPTION
concmis is a utility that combines multiple character mis files. It produces one output mis file which is
the concatenation of the characters of the files in the order they were supplied on the command line.

OPTIONS
None.

EXAMPLES
Given the SD19 data hierarchy, the digits of the hsf 0 writers may be gathered into one file using:

concmis d hsf 0.mis by write/hsf 0/f*/d*.mis

FILES
ocr.cd/src/include/ihead.h
ocr.cd/src/include/mis.h

SEE ALSO
conccls

DIAGNOSTICS
The input mis files must all be congruent: that is entry precision (bits per pixel), width, and height must
be the same for each file.

BUGS
Many environments provide a maximum number of arguments that may be supplied or pattern matched
when a command is invoked.

20

DUMPIHDR USER COMMANDS DUMPIHDR

NAME
dumpihdr - prints an image file’s header information.

SYNOPSIS
dumpihdr [input1.mis | input2.pct] ...

DESCRIPTION
dumpihdr is a utility that dumps image header information to standard output for multiple NIST IHEAD
format image files.

OPTIONS

EXAMPLES
Given the SD19 data hierarchy, the IHEAD structures of the first writer’s completed HSF and digit seg-
mentations are written to standard output using:

dumpihdr hsf page/hsf 0/f0000 14.pct by write/hsf 0/f0000 14/d0000 14.mis

FILES
ocr.cd/src/include/ihead.h
ocr.cd/src/include/mis.h

SEE ALSO
showmis

BUGS
Many environments provide a maximum number of arguments that may be supplied or pattern matched
when a command is invoked.

21

MISFRMIT USER COMMANDS MISFRMIT

NAME
misfrmit - prepares a misfile by extracting mis entries from other misfiles.

SYNOPSIS
misfrmit [-p pathname] mitfiles...

DESCRIPTION
misfrmit this utility makes a misfile by gathering mis entries from arbitrary misfiles. The specific entries
are named in a “mitfile”, the entries of which point to a source misfile. A mit entry is just the name of
the misfile to be scavenged and a zero-oriented index into that file. Each of the input mitfiles, with the
standard “.mit” extension, yields one output misfile with the “.mis” extension.

OPTIONS
-p pathto. If the entries in the mitfile do not point directly to the required misfile, and require a pathname
to be prepended then this option is followed by the required path. The same effect can be obtained by moving
to and then running misfrmit in the appropriate parent directory.

EXAMPLES
Given the SD19 data hierarchy, the first and last digits of the last writer (0499) of the hsf 0 partition may
be placed in a single mis file thus: cd sd19.cd/data

echo 2 > toy.mit
echo by write/hsf 0/f0499 10/d0499 10.mis 0 >> toy.mit
echo by write/hsf 0/f0499 10/d0499 10.mis 109 >> toy.mit
misfrmit toy.mit
showmis toy.mis

Alternatively, to be more parsimonious with the use of long pathnames, we can equivalently use the -p
option thus:

cd sd19.cd/data
echo 2 > toy.mit
echo d0499 10.mis 0 >> toy.mit
echo d0499 10.mis 109 >> toy.mit
misfrmit -p by write/hsf 0/f0499 10 toy.mit
showmis toy.mis

FILES
ocr.cd/src/include/ihead.h
ocr.cd/src/include/mis.h
ocr.cd/src/include/mit.h
ocr.cd/src/include/mfs.h

DIAGNOSTICS
The mit named mis entries must all be congruent: that is entry precision (bits per pixel), width, and height
must be the same for each mis entry collected.

BUGS
The utility does not attempt to gather the class entries corresponding to the mis entries which may be
useful or necessary.

22

MISTOPNG USER COMMANDS MISTOPNG

NAME
mistopng - generate individual png file held in mis file

SYNOPSIS
mistopng input.mis

DESCRIPTION
mistopng is a utility that converts pixels of binary mis entries to graphics file format - PNG.

OPTIONS

EXAMPLES
Given the SD19 data hierarchy, the uppers of the first hsf 0 writer may be displayed using:

mistopng by write/hsf 0/f0000 14/u0000 14.mis

FILES
ocr.cd/src/include/ihead.h
ocr.cd/src/include/mis.h

SEE ALSO
showmis may be used to produce a text representation of the images in mis file.
(nummis) gives the total number of entries to be generate from a ”.mis” file.

BUGS
Many environments provide a maximum number of arguments that may be supplied or pattern
matched when a command is invoked.

23

NORMMIS USER COMMANDS NORMMIS

NAME
normmis - normalizes 128x128 mis file entries to 32x32.

SYNOPSIS
normmis [-v] input.lis

DESCRIPTION
normmis this utility applies the size and orientation normalization algorithms of the NIST Public Domain
Recognition System to isolated characters. The program takes a text file containing an integer followed
by that number of mis filenames. For each “.mis” file supplied in this file a corresponding “.nrm” file is
produced.

OPTIONS
-v The verbose flag enables notification after completion of each mis entry.

EXAMPLES
Given the SD19 data hierarchy, the digit misfiles of the first 10 writers of the hsf 0 partition may be
normalized thus:

echo 10 > mislist
ls -1 by write/hsf 0/f000? ??/d*.mis >> mislist
normmis mislist
showmis by write/hsf 0/f0000 14/d*.nrm

FILES
ocr.cd/src/include/ihead.h
ocr.cd/src/include/mis.h

SEE ALSO
showmis. normmis is useful in providing a compact representation of raw mis images displayable with the
showmis utility.

DIAGNOSTICS
The input mis files must all be congruent: that is entry precision (bits per pixel), width, and height must
be the same for each file.

BUGS

24

NUMCLS USER COMMANDS NUMCLS

NAME
numcls - gives the number of entries in a cls or mit file

SYNOPSIS
numcls input1.cls [input2.cls ...] numcls input1.mit [input2.mit ...]

DESCRIPTION
numcls is a simple utility that dumps the integer head of multiple cls and mit files to standard output.

OPTIONS

EXAMPLES
Given the SD19 data hierarchy, the number of digits corresponding to the first 10 writers of the hsf 0
partitions may be displayed thus:

numcls by write/hsf 0/f000? ??/d*.cls

FILES
ocr.cd/src/include/mfs.h

SEE ALSO
nummis. The output of the above example is identical to that of:

nummis by write/hsf 0/f000? ??/d*.mis

BUGS
Many environments provide a maximum number of arguments that may be supplied or pattern matched
when a command is invoked.

25

NUMMIS USER COMMANDS NUMMIS

NAME
nummis - gives the number of entries in a “.mis” file

SYNOPSIS
nummis input1.mis [input2.mis ...]

DESCRIPTION
nummis is a utility that dumps the integer number of entries in mis files to standard output. For multiple
files the order in which results are printed depends on the order in which the shell expands wildcard pattern
matches.

OPTIONS

EXAMPLES
Given the SD19 data hierarchy, the number of digits corresponding to the first 10 writers of the hsf 0
partitions may be displayed thus:

nummis by write/hsf 0/f000? ??/d*.mis

FILES
ocr.cd/src/include/ihead.h
ocr.cd/src/include/mis.h

SEE ALSO
numcls. The output of the above example is identical to that of:

numcls by write/hsf 0/f000? ??/d*.cls

DIAGNOSTICS

BUGS
Many environments provide a maximum number of arguments that may be supplied or pattern matched
when a command is invoked.

26

SHOWMIS USER COMMANDS SHOWMIS

NAME
showmis - produces a text representation of the images in mis file.

SYNOPSIS
showmis input.mis

DESCRIPTION
showmis is a utility that uses the text characters “.” and “#” to represent the white false background
and true dark ink pixels of binary mis entries. It provides a quick method of visualization of mis entries.

OPTIONS

EXAMPLES
Given the SD19 data hierarchy, the uppers of the first hsf 0 writer may be displayed using:

showmis by write/hsf 0/f0000 14/u0000 14.mis

FILES
ocr.cd/src/include/ihead.h
ocr.cd/src/include/mis.h

SEE ALSO
normmis may be used to give a more useful display. The mis files of SD19 contain 128x128 square entries
which are typically too wide for useful display on most terminals.

DIAGNOSTICS

BUGS
Many environments provide a maximum number of arguments that may be supplied or pattern matched
when a command is invoked.

27

SHUFLMIS USER COMMANDS SHUFLMIS

NAME
shuflmis - reorder the entries in .mis files, and optionally their .cls counterparts.

SYNOPSIS
shuflmis [-cmu -s seed] input.mis...

DESCRIPTION
shuflmis randomly reorders the images in .mis files. This has utility in producing homogenous writer
distributions in writer ordered .mis files produced by concatenation. The output overwrites the input .mis
file. Optionally shuflmis will reorder the .cls partners of the .mis arguments, will produce the .mit file
that effects the shuffle (from .mis to .shf), will take a seed other than the default, and will produce a .bak
file that when used with misfrmit will undo the .mis shuffle (from .shf to .mis)

OPTIONS
-c shuffle the corresponding class file, which must the same name as the .mis argument save for a .cls
extension.
-m produce the .mit file that effects the shuffle. This is useful if the integer shuffling key is desired.
-u produce the mit file, with extension .bak, that will undo the .mis shuffle, when supplied as an argument
to misfrmit.
-s seed Use a different integer seed to random number generator than the default which is 1234.

EXAMPLES
Given a copy of SD19 data hierarchy, the uppers of the first hsf 0 writer may be shuffled using:

shuflmis -c -u by write/hsf 0/f0000 14/u0000 14.mis Note that the .cls file is also reordered.

FILES
ocr.cd/src/include/ihead.h
ocr.cd/src/include/mis.h ocr.cd/src/include/mfs.h ocr.cd/src/include/mit.h

SEE ALSO
misfrmit can be used to recover the original .mis file, but only if the .bak mitfile, created with the -u flag
to shuflmis , exists.

DIAGNOSTICS

BUGS
The random number generator is re-initialized for each .mis argument. Files with equal numbers of entries
will be reordered in an identical manner.

If the -c option was applied to reorder the .cls file then the -u flag provides a mechanism for unshuffling the
.mis file, !!! but not the .cls files. !!!

Many environments provide a maximum number of arguments that may be supplied or pattern matched
when a command is invoked.

28

8 Appendix A

/* Defines used by the ihead structure */

#define IHDR_SIZE 288 /* len of hdr record (always even bytes) */

#define SHORT_CHARS 8 /* # of ASCII chars to represent a short */

#define BUFSIZE 80 /* default buffer size */

#define DATELEN 26 /* character length of date string */

typedef struct ihead{

char id[BUFSIZE]; /* identification/comment field */

char created[DATELEN]; /* date created */

char width[SHORT_CHARS]; /* pixel width of image */

char height[SHORT_CHARS]; /* pixel height of image */

char depth[SHORT_CHARS]; /* bits per pixel */

char density[SHORT_CHARS]; /* pixels per inch */

char compress[SHORT_CHARS]; /* compression code */

char complen[SHORT_CHARS]; /* compressed data length */

char align[SHORT_CHARS]; /* scanline multiple: 8|16|32 */

char unitsize[SHORT_CHARS]; /* bit size of image memory units */

char sigbit; /* 0->sigbit first | 1->sigbit last */

char byte_order; /* 0->highlow | 1->lowhigh*/

char pix_offset[SHORT_CHARS]; /* pixel column offset */

char whitepix[SHORT_CHARS]; /* intensity of white pixel */

char issigned; /* 0->unsigned data | 1->signed data */

char rm_cm; /* 0->row maj | 1->column maj */

char tb_bt; /* 0->top2bottom | 1->bottom2top */

char lr_rl; /* 0->left2right | 1->right2left */

char parent[BUFSIZE]; /* parent image file */

char par_x[SHORT_CHARS]; /* from x pixel in parent */

char par_y[SHORT_CHARS]; /* from y pixel in parent */

}IHEAD;

1. id - General identification field used to contain the

image file name and any other information useful for

image distinction.

2. created - Date when the image was created.

3. width - Pixel width of the image.

4. height - Number of scanlines in the image.

5. depth - Number of bits representing a single pixel.

6. density - Pixels per inch resolution of the image.

7. compress - ASCII code used to represent the compression

algorithm used on the image.

8. complen - Length of compressed image in bytes.

9. align - Even multiple in bits to which each scanline is padded.

10. unitsize - Size in bits of fundamental data units in the image.

11. sigbit - Order of most significant to least significant bits

within fundamental data units in the image.

12. byte_order - Order of high and low bytes used if fundamental

data units are 2 bytes long in the image.

13. pix_offset - Pixel offset into the data where the

image of interest actually begins.

29

14. whitepix - Intensity value of white pixels in the image.

15. issigned - Flag which signifies whether fundamental data units

include a sign bit or are unsigned.

16. rm_cm - Flag which signifies whether the raster data is

stored row-major or column-major.

17. tb_bt - Flag which signifies whether the raster data is

stored top-to-bottom or bottom-to-top.

18. lr_rl - Flag which signifies whether the raster data is

stored left-to-right or right-to-left.

19. parent - File name of the parent image if the image is

a subimage.

20. par_x - X coordinate pixel value in the parent image where the

subimage was cut.

21. par_y - Y coordinate pixel value in the parent image where the

subimage was cut.

30

