
Multiple graphs and composable
queries in Cypher for Apache Spark

Max Kießling
openCypher Implementers Meeting V

Berlin, March 2019

Outline
● Cypher for Apache Spark (CAPS) overview

○ Motivation
○ Architecture
○ Multiple Graphs

● SQL Property Graph Data Source and Graph DDL
○ Overview
○ SQL PGDS
○ Graph DDL

● Demo using LDBC social network

CAPS overview
For more details, have a look into our Spark+AI Summit talk

https://databricks.com/session/matching-patterns-and-constructing-graphs-with-cypher-for-apache-spark

https://databricks.com/session/matching-patterns-and-constructing-graphs-with-cypher-for-apache-spark

Motivation … What is Cypher for Apache Spark?
● Cypher implementation on top of Apache Spark

○ Apache Spark is the leading platform for distributed computations
○ Provides several APIs for relational querying (Spark SQL), machine learning (Spark ML) etc.
○ Already connects to many data sources (e.g. Parquet, Orc, CSV, JDBC, Hive, …)

● CAPS includes ...
○ A query engine to transform Cypher queries to relational operations over Spark SQL
○ Data source implementations for Neo4j and relational databases
○ A language (Graph DDL) to describe mappings between SQL DBs and property graphs

Motivation … What is CAPS good for?
● Run Cypher queries in a distributed environment
● Support for multiple graphs and graph construction via Cypher (unlike Neo4j)
● Various data sources (File-based, JDBC, Neo4j)
● Support for merging graphs from CAPS into Neo4j
● Main use cases

○ Integrate non-graphy data from multiple heterogeneous data sources into one or more
property graphs (i.e. ETL and graph transformations)

○ (Federated) data querying for distributed batch-style analytics
○ Integration with other Spark libraries (SQL, ML, …)

(Very) High-Level Architecture

Cypher for Apache Spark

Query EngineProperty Graph Data Sources

Property Graph Catalog

Scala API

SQL JDBC

Query engine architecture

● Distributed executionSpark Core

Spark SQL ● Query optimization

MATCH (n:Person)-[:CAPTAIN]->(s:Ship)

WHERE n.name = ‘Morpheus’

RETURN n.name, s.name

7

openCypher
Frontend

● Parsing, Rewriting, Normalization
● Semantic Analysis (Scoping, Typing,

etc.)

CAPS
● Data Import and Export
● Schema and Type handling
● Query translation to Spark operations

Relational
Planning

Logical
Planning

Spark Backend

● Translation into Logical
Operators

● Basic Logical Optimization

● Backend Agnostic Query
Representation

● Conversion and typing of
Frontend expressions

● Translation into Relational
Operations on abstract tables

● Column layout computation
for intermediate results

Intermediate
Language

● Spark-specific table
implementation

Graph

“Tables for Labels”

● In CAPS, property graphs are represented by

○ Node tables

○ Relationship tables

● Tables require a fixed schema, which is why ...

● Graphs have a graph type, that defines ...

○ Node types and relationship types that occur in the graph

○ Node and relationship types define their properties (and their types)

Query engine architecture

Relational
Planning

scan(Person)

MATCH (n:Person)-[:CAPTAIN]->(s:Ship)

WHERE n.name = ‘Morpheus’

RETURN n.name, s.name

scan(CAPTAIN)

scan(Ship)...

Query engine architecture

9

Intermediate Language

Relational Planning

Logical Planning

openCypher Frontend

● Intermediate Language, Typing
● Expressionsokapi-ir

● Logical Planningokapi-logical

● Property Graph API
● Type System
● Property Graph Data Source API

okapi-api

okapi-relational ● Transformation into relational Operations on abstract table

sp
ar

k-
cy

ph
er

● Session implementation
● Backend connector -> RelationalTable
● Data Source implementations

Physical Execution

fli
nk

-c
yp

he
r

m
em

-c
yp

he
r

Cypher 10 - Multiple Graph Querying

FROM social-net
MATCH (p:Person)
FROM products
MATCH (c:Customer)
WHERE p.email = c.email
RETURN p, c

● Combine data from multiple graphs in a single Cypher query
● Integrate data of different sources

Cypher 10 - Graph Construction

FROM social-net
MATCH (p:Person)
FROM products
MATCH (c:Customer)
WHERE p.email = c.email
CONSTRUCT ON social-net, products
 CREATE (c)
 CREATE (p)-[:SAME_AS]->(c)
RETURN GRAPH

● Cypher 9
○ Input: Graph
○ Output: Table

● Cypher 10
○ Input Graph
○ Ouput: Graph or Table

Cypher

Property Graph Catalog

Cypher Session

Property Graph Catalog

Property Graph Data Source <namespace>

Property Graph <name>

● The Catalog manages Property Graph Data Sources (e.g. SQL, Neo4j, File-based)
● A Property Graph Data Source manages multiple Property Graphs
● Catalog functions (e.g. reading / writing a graph) can be executed via Cypher or Scala API

Property Graph Catalog

Cypher Session

Property Graph Catalog

“social-net” (Neo4j PGDS)

“US” (Property Graph)

FROM social-net.US
MATCH (p:Person) RETURN p

Property Graph Catalog - Querying

Cypher Session

Property Graph Catalog

“social-net” (Neo4j PGDS)

“US” (Property Graph)

“EU” (Property Graph)

“products” (SQL PGDS)

“2018” (Property Graph)

“2017” (Property Graph)

FROM social-net.US
MATCH (p:Person)
FROM products.2018
MATCH (c:Customer)
WHERE p.email = c.email
RETURN p, c

Property Graph Catalog - Construction

Cypher Session

Property Graph Catalog

“social-net” (Neo4j PGDS)

“US” (Property Graph)

“EU” (Property Graph)

“products” (SQL PGDS)

“2018” (Property Graph)

“2017” (Property Graph)

CATALOG CREATE GRAPH social-net.US_new {
 FROM social-net.US
 MATCH (p:Person)
 FROM products.2018
 MATCH (c:Customer)
 WHERE p.email = c.email
 CONSTRUCT ON social-net.US
 CREATE (c)
 CREATE (p)-[:SAME_AS]->(c)
 RETURN GRAPH
}

Property Graph Catalog - Views

Cypher Session

Property Graph Catalog

“social-net” (Neo4j PGDS)

“US” (Property Graph)

“EU” (Property Graph)

“products” (SQL PGDS)

“2018” (Property Graph)

“2017” (Property Graph)

CATALOG CREATE VIEW youngPeople($sn) {
 FROM $sn
 MATCH (p:Person)-[r]->(n)
 WHERE p.age < 21
 CONSTRUCT
 CREATE (p)-[COPY OF r]->(n)
 RETURN GRAPH
}

FROM youngPeople(social-net.US)
MATCH (p:Person)
RETURN p

“youngPeople”

Views

Property graph schema definition and
table-to-graph mapping in CAPS

Martin Junghanns
openCypher Implementers Meeting V

Berlin, March 2019

JDBC

Hive

Mapping SQL tables into a Property Graph

Oracle

SQL Server

Orc

Parquet

Table/View

Table/View

Table/View

...

...

Graph DDL

Graph Instance
- Table mappings

SQL Tables Property Graphs

Property Graph

Node Tables

Rel. Tables

Graph Type

SQL Property Graph
Data Source

Spark SQL
Data Sources

Graph Type
- Element types
- Node types
- Relationship types

Graph Data Definition Language (DDL)
● A domain-specific language for expressing property graph types and mappings

between those types and relational databases

● (Independent) Scala module within the Cypher-for-Apache-Spark project

● Provides “instructions” for the SQL Property Graph Data Source

● GitHub https://github.com/opencypher/cypher-for-apache-spark/tree/master/graph-ddl

● Maven: org.opencypher:graph-ddl:0.2.7

https://github.com/opencypher/cypher-for-apache-spark/tree/master/graph-ddl

Graph Data Definition Language (DDL)
● Part of current a standardization discussion

https://docs.google.com/document/d/1QE8_7VQsP5cawVHaRVsJchsXb-rGNtBoA00YizROpho/edit

Running example: LDBC social network

http://ldbcouncil.org/developer/snb

http://ldbcouncil.org/developer/snb

Graph DDL: Property graph type

Graph DDL

Graph Instance
- Table mappings

Graph Type
- Element types
- Node types
- Relationship types

Graph DDL: Property graph type

ANSI INCITS sql-pg-2018-0056r2

https://docs.google.com/document/d/118IpWhInBuwmjaDPO-IgQ1F2q23uX3vNR6Iq44eZHl4/edit#

Element types
● We model the concepts / data types in our graph using element types
● Element types can have properties (i.e. name and data type pairs)
● They form the basis for node and relationship types

Person (firstName STRING, lastName STRING, birthday DATE?),

Place (name STRING),

KNOWS (creationDate DATE),

IS_LOCATED_IN,

...

Name (i.e. label) Optional properties

Element types
● Element type support inheritance
● Similar to interface inheritance / mixin traits in programming languages

Place (name String),

City EXTENDS Place (districtCount INTEGER),

Country EXTENDS Place (language STRING),

...

ANSI INCITS sql-pg-2018-0056r2

https://docs.google.com/document/d/118IpWhInBuwmjaDPO-IgQ1F2q23uX3vNR6Iq44eZHl4/edit#

Node and relationship types
● We use element types to define a node type
(Person), -- resolves to label set (Person)

(City), -- resolves to label set (City, Place)

● We use two node types and one element type to define a relationship type

(Person)-[KNOWS]->(Person),

(Person)-[IS_LOCATED_IN]->(City),

● Node / relationship types inherit all properties defined by the element types

Graph types
● All the preceding definitions are contained within a graph type
● A graph type is always named (e.g. social_network)

CREATE GRAPH TYPE social_network (
Person (firstName STRING, lastName String, birthday DATE?),
Place (name STRING),
City EXTENDS Place (districtCount INTEGER),
Country EXTENDS Place (language STRING),
KNOWS (creationDate DATE),
IS_LOCATED_IN,

(Person),
(City),
(Country),

(Person)-[KNOWS]->(Person),
(Person)-[IS_LOCATED_IN]->(City),
(City)-[IS_LOCATED_IN]->(Country)

)

Graph DDL: Property Graph Instances

Graph DDL

Graph Instance
- Table mappings

Graph Type
- Element types
- Node types
- Relationship types

Property Graph Instances
● Graphs are instances of a graph type
● May define additional element types
● Define node and edge type views
● Graphs are always named

CREATE GRAPH social_network_US OF social_network (

-- Additional element types

-- Node type views / mappings

-- Relationship type views / mappings

)

ANSI INCITS sql-pg-2018-0056r2

https://docs.google.com/document/d/118IpWhInBuwmjaDPO-IgQ1F2q23uX3vNR6Iq44eZHl4/edit#

CREATE GRAPH social_network_US OF social_network (
-- Node types views / mappings

(Person) FROM persons (f_name AS firstName, l_name AS lastName),
(City) FROM cities_east

FROM cities_west,

-- Relationship type views / mappings

(Person)-[KNOWS]->(Person) FROM person_knows_person edge
START NODES (Person) FROM persons node JOIN node.id = edge.person1_id
END NODES (Person) FROM persons node JOIN edge.person2_id = node.id,

(Person)-[IS_LOCATED_IN]->(City) FROM person_islocatedin_city edge
START NODES (Person) FROM persons node JOIN node.id = edge.person_id
END NODES (City) FROM cities node JOIN edge.city_id = node.id

)

CREATE GRAPH social_network_EU OF social_network (...)

Node source table Optional column-property-mapping

Relationship source table

Head source table Tail source table

Configuring SQL data sources
datasources.json

{

 "LDBC_H2" : {

 "type" : "jdbc",

 "url" : "jdbc:h2:mem:NORTH_AMERICA.db;INIT=CREATE SCHEMA IF NOT EXISTS NORTH_AMERICA;DB_CLOSE_DELAY=30;",

 "driver" : "org.h2.Driver",

 "options" : {

 "user" : "h2-user",

 "password" : "h2-password",

 }

 },

 "OTHER_DATASOURCE" : { ... }

}

LDBC.ddl

CREATE GRAPH TYPE social_network (...)

SET SCHEMA LDBC_H2.NORTH_AMERICA

CREATE GRAPH social_network_US OF social_network (… persons … cities … tableFoo …)

...

Configuring SQL data sources
datasources.json

{

 "LDBC_H2" : { ... },

 "LDBC_HIVE" : { ... }

}

LDBC.ddl

CREATE GRAPH TYPE social_network (...)

SET SCHEMA LDBC_H2.NORTH_AMERICA

CREATE GRAPH social_network_US OF social_network (… persons … cities … tableFoo …)

SET SCHEMA LDBC_HIVE.EUROPE

CREATE GRAPH social_network_EU OF social_network (… persons … cities … tableFoo …)

...

Demo time!
https://github.com/tobias-johansson/graphddl-example-ldbc

https://github.com/tobias-johansson/graphddl-example-ldbc

