Multiple graphs and composable
gueries in Cypher for Apache Spark

Max Kieldling
openCypher Implementers Meeting V
Berlin, March 2019

@ neos]

Outline

e Cypher for Apache Spark (CAPS) overview
o Motivation
o Architecture
o Multiple Graphs

e SQL Property Graph Data Source and Graph DDL
o Overview
o SQLPGDS
o Graph DDL

e Demo using LDBC social network

CAPS overview

For more details, have a look into our Spark+Al Summit talk
https://databricks.com/session/matching-patterns-and-constructing-graphs-with-cypher-for-apache-spark

https://databricks.com/session/matching-patterns-and-constructing-graphs-with-cypher-for-apache-spark

Motivation ... What is Cypher for Apache Spark?

e Cypher implementation on top of Apache Spark
o Apache Spark is the leading platform for distributed computations
o Provides several APIs for relational querying (Spark SQL), machine learning (Spark ML) etc.
o Already connects to many data sources (e.g. Parquet, Orc, CSV, JDBC, Hive, ...)

e CAPS includes...

o A query engine to transform Cypher queries to relational operations over Spark SQL
o Data source implementations for Neo4j and relational databases
o Alanguage (Graph DDL) to describe mappings between SQL DBs and property graphs

Motivation ... What is CAPS good for?

Run Cypher queries in a distributed environment

Support for multiple graphs and graph construction via Cypher (unlike Neo4j)
Various data sources (File-based, JDBC, Neo4))

Support for merging graphs from CAPS into Neo4;j

Main use cases
o Integrate non-graphy data from multiple heterogeneous data sources into one or more
property graphs (i.e. ETL and graph transformations)
o (Federated) data querying for distributed batch-style analytics
o Integration with other Spark libraries (SQL, ML, ...)

(Very) High-Level Architecture

Scala API

Property Graph Catalog

saL g} JDBC £

Property Graph Data Sources Query Engine

Cypher for Apache Spark

-

Query engine architecture

MATCH (n:Person)-[:CAPTAIN]->(s:Ship)

WHERE n.name = ‘Morpheus’

RETURN n.name, s.name

openCypher
Frontend

Spark SQL

v Spark Core

Parsing, Rewriting, Normalization
Semantic Analysis (Scoping, Typing,
etc.)

Data Import and Export
Schema and Type handling
Query translation to Spark operations

Query optimization

Distributed execution

—_=

Intermediate
Language

Logical
Planning

Relational
Planning

Spark Backend

{IIII\

Backend Agnostic Query
Representation
Conversion and typing of
Frontend expressions

Translation into Logical
Operators
Basic Logical Optimization

Translation into Relational
Operations on abstract tables
Column layout computation
for intermediate results

Spark-specific table
implementation

Query engine architecture

MATCH (n:Person)-[:CAPTAIN]->(s:Ship)

WHERE n.name = ‘Morpheus’ E::::> E:::> E:::>

RETURN n.name, s.name

scan(Ship)

[scan(Person)] [scan(CAPTAIN)]

“Tables for Labels”

° In CAPS, property graphs are represented by

o Node tables

o Relationship tables

e Tables require a fixed schema, which is why ...

° Graphs have a graph type, that defines ...

o Node types and relationship types that occur in the graph

o Node and relationship types define their properties (and their types)

Query engine architecture

openCypher Frontend

e Property Graph API
okapi-api e Type System

Intermediate Language e Property Graph Data Source API

Intermediate Language, Typing

okapi-ir Expressions

Logical Planning
okapi-logical e Logical Planning

Relational Planning : :
okapi-relational e Transformation into relational Operations on abstract table

e Session implementation
Backend connector -> RelationalTable
e Data Source implementations

Physical Execution

flink-cypher
mem-cypher

Cypher 10 - Multiple Graph Querying

e Combine data from multiple graphs in a single Cypher query
e Integrate data of different sources

FROM social-net

MATCH (p:Person)

FROM products

MATCH (c:Customer)
WHERE p.email = c.email
RETURN p, ¢

Cypher 10 - Graph Construction

e Cypher9
o Input: Graph
o Output: Table

FROM social-net
MATCH (p:Person)
FROM products

e Cypher 10 MATCH (c:Customer)
o Input Graph WHERE p.email = c.email
o Ouput: Graph or Table CONSTRUCT ON social-net, products
CREATE (c)

CREATE (p)-[:SAME_AS]->(c)
RETURN GRAPH

Cypher

Property Graph Catalog

e The Catalog manages Property Graph Data Sources (e.g. SQL, Neo4j, File-based)
e A Property Graph Data Source manages multiple Property Graphs
e Catalog functions (e.g. reading / writing a graph) can be executed via Cypher or Scala API

Cypher Session

|_ Property Graph Catalog

— Property Graph Data Source <namespace>

‘— Property Graph <name>

Property Graph Catalog

Cypher Session

|_ Property Graph Catalog

|— “social-net” (Neo4j PGDS)

|_ “US” (Property Graph)

FROM social-net.
MATCH (p:Person) RETURN p

Property Graph Catalog - Querying

Cypher Session
|_ Property Graph Catalog
— “social-net” (Neo4j PGDS)
— “US” (Property Graph)

— “EU” (Property Graph)

— “products” (SQL PGDS)
— “2018” (Property Graph)

— “2017” (Property Graph)

FROM social-net.

MATCH (p:Person)

FROM products.

MATCH (c:Customer)
WHERE p.email = c.email
RETURN p, ¢

Property Graph Catalog - Construction

Cypher Session

|_ Property Graph Catalog

— “social-net” (Neo4j PGDS)

— “US” (Property Graph)

— “EU” (Property Graph)

— “products” (SQL PGDS)

— “2018” (Property Graph)

— “2017” (Property Graph)

CATALOG CREATE GRAPH social-net.

FROM social-net.
MATCH (p:Person)
FROM products.
MATCH (c:Customer)
WHERE p.email = c.email
CONSTRUCT ON social-net.
CREATE (c)
CREATE (p)-[:SAME_AS]->(c)
RETURN GRAPH

Property Graph Catalog - Views

Cypher Session
CATALOG CREATE VIEW youngPeople($sn) {

. Property Graph Catalog FROM $sn
MATCH (p:Person)-[r]->(n)
— “social-net” (Neo4j PGDS) WHERE p.age < 21
CONSTRUCT
— “US” (Property Graph) CREATE (p)-[COPY OF r]->(n)
RETURN GRAPH
— “EU” (Property Graph) }
— “products” (SQL PGDS)
— “2018” (Property Graph) FROM youngPeople(social-net.US)
MATCH (p:Person)
- “2017” (Property Graph) RETURN p

= Views

= “youngPeople”

Property graph schema definition and
table-to-graph mapping in CAPS

Martin Junghanns
openCypher Implementers Meeting V
Berlin, March 2019

@ neos]

Mapping SQL tables into a Property Graph

Hive Graph Instance
- Table mappings

Rel. Tables

SQL Tables Spark SQL ———t— SQL Property Graph _g, Property Graphs

Data Sources Data Source

JDBC Graph DDL Property Graph

Table/View oracie Graph Type Graph Type
- Element types
Table/View SQL Server - Node types
_ - Relationship types
Table/View Node Tables

Orc

Parquet

Graph Data Definition Language (DDL)

e A domain-specific language for expressing property graph types and mappings
between those types and relational databases

e (Independent) Scala module within the Cypher-for-Apache-Spark project
e Provides “instructions” for the SQL Property Graph Data Source

e GitHub https://github.com/opencypher/cypher-for-apache-spark/tree/master/qraph-dd|

e Maven: org.opencypher.graph-ddl:0.2.7

https://github.com/opencypher/cypher-for-apache-spark/tree/master/graph-ddl

Graph Data Definition Language (DDL)

e Part of current a standardization discussion

Property Graph Schema ANSI INCITS sql-pg-2018-0056r2
ANSI INCITS DM32.2-2018-0195r2
ISO/IEC JTC1/SC32 WG3:BNE-022

Property Graph Schema

Title Property Graph Schema
Authors Individual Experts Contribution
Neo4j Query Languages Standards and Research Team?*
Status SQL/PGQ WD draft change proposal
Date Original 6 December 2018

Revisionrl 16 January 2019
Revisionr2 XX 2019

Copyright © 2018, Neo4j Inc. Please see the last page of this document for Apache 2.0 licence grant.

https://docs.google.com/document/d/1QE8_7VQsP5cawVHaRVsJchsXb-rGNtBoA00YizROpho/edit

unning example: LDBC social network

likes
creationDate: DateTime

hasCreator
0.%
TagClass
name: String 0.*0.*
1A url: String
Message
isSubclassOf bl
1 1 ou*ThasType creationDate: DateTime
0.% 0..% 0..% 0.* | browserUsed: String 0..%
Person haslinterest Tag [«€—hasTag— locationlP: String
0.* content: Text[0..1]
creationDate: DateTime name: String length: 32-bit Integer
firstName: String url: String
lastName: String replyOf
gender: String 1 0.* 0..%
0..*A birthday: Date le— hasMember - hasTag -
email: String[1..%] joinDate: DateTime 0..% 0..%
knows speaks: String[1..¥]
| browserUsed: Strin 1 0.* 1 ; 1%
creationDate: 2 i 9 [€—hasModerator- Forum — containerOf —» Post | Comment |
DateTime | locationlP: String
title: String language: String[0..1]
0.*| 0.* 0..* creationDate: DateTime imageFile: String[0..1]

Place

name: String
url: String

B

isLocatedIn

1%
- City isPartof
A
1

e 1

isLocatedIn

Organisation

isLocatedIn v isLocatedIn
name: String

url: String
S

7classYea?§u3d2)iéitt IntegerT’I WA sy | | Com;any |
workA ¥ .
T workFrom: 32 it nteger ° http://Idbcouncil.org/developer/snb

0..*

http://ldbcouncil.org/developer/snb

Graph DDL.: Property graph type

Graph DDL

Graph Type

- Element types
- Node types
- Relationship types

Graph Instance
- Table mappings

Graph DDL.:

Property graph type

Element
Base

Type

Element
Type

Element Label
Key

Property | '
Gragh Y § Property} Property grgph type
| Graph schema objects
: Type :
| e
Vertex Edge
Type Type
Vertex Tail Head Edge
Element Element Element Element
Type Type Type Type
Datatype Edge
Sl Optionality Key

ANSI| INCITS sql-pg-2018-0056r2

https://docs.google.com/document/d/118IpWhInBuwmjaDPO-IgQ1F2q23uX3vNR6Iq44eZHl4/edit#

Element types

e \We model the concepts / data types in our graph using element types
e Element types can have properties (i.e. name and data type pairs)
e They form the basis for node and relationship types

Name (i.e. label) Optional properties
{ : \ { : \
Person (firstName STRING, lastName STRING, birthday DATE?),
Place (name STRING),
KNOWS (creationDate DATE),

IS_LOCATED_IN,

Element types

Element type support inheritance

Similar to interface inheritance / mixin traits in programming languages

Element

Super Element type inheritance
Type and label sets .
/\ Place (name String),
Element Element City EXTENDS Place (districtCount INTEGER),
Type Type
\/ Country EXTENDS Place (language STRING),

Element
Type

Label Set

ANSI INCITS sqal-pg-2018-0056r2

https://docs.google.com/document/d/118IpWhInBuwmjaDPO-IgQ1F2q23uX3vNR6Iq44eZHl4/edit#

Node and relationship types

e \We use element types to define a node type

(Person), -- resolves to label set (Person)

(City), -- resolves to label set (City, Place)

e \We use two node types and one element type to define a relationship type

(Person)-[KNOWS]->(Person),

(Person)-[IS _LOCATED IN]->(City),

e Node / relationship types inherit all properties defined by the element types

Graph types

e All the preceding definitions are contained within a graph type
e A graph type is always named (e.g. social _network)

CREATE GRAPH TYPE social_network (
Person firstName STRING, lastName String, birthday DATE?),
Place name STRING),
City EXTENDS Place districtCount INTEGER),
Country EXTENDS Place language STRING),
KNOWS creationDate DATE),
IS_LOCATED_IN,

ANINAN AN A

(Person),

(City),
(Country),

(Person)-[KNOWS]->(Person),
(Person)-[IS_LOCATED_IN]->(City),
(City)-[IS_LOCATED IN]->(Country)

Graph DDL.: Property Graph Instances

Graph DDL

Graph Type

- Element types
- Node types
- Relationship types

Graph Instance
- Table mappings

Property Graph Instances

Graphs are instances of a graph type
May define additional element types
Define node and edge type views .
Graphs are always named L

CREATE GRAPH social_network_US OF social_network (
-- Additional element types
-- Node type views / mappings

-- Relationship type views / mappings

Property
Graph

Vertex
Type

Vertex
Table
Mapping

Vertex
Source
Table

Property graph
schema objects

Edge
Type

Edge
Tables
Mapping

ANSI INCITS sqal-pg-2018-0056r2

https://docs.google.com/document/d/118IpWhInBuwmjaDPO-IgQ1F2q23uX3vNR6Iq44eZHl4/edit#

CREATE GRAPH social_network_US OF social_network (
-- Node types views / mappings

Node source table Optional column-property-mapping
A A
[| [. \
(Person) FROM (f_ name AS firstName, 1 name AS lastName),
(City) FROM
FROM ,

-- Relationship type views / mappings

Relationship source table
I

(Person)-[KNOWS]->(Person) FROM ' Iedge
START NODES (Person) FROM node JOIN node.id = edge.personl_id
END NODES (Person) FROM node JOIN edge.person2_id = node.id,
(Person)-[IS_LOCATED IN]->(City) FROM edge
START NODES (Person) FROM node JOIN node.id = edge.person_id
END NODES (City) FR node JOIN edge.city_id = node.id
) Head source table Tail source table

CREATE GRAPH social network EU OF social network (...)

Configuring SQL data sources

datasources.json

{
"LDBC_H2" : {
"type" : "jdbc",
"url" : "jdbc:h2:mem:NORTH_AMERICA.db; INIT=CREATE SCHEMA IF NOT EXISTS NORTH_AMERICA;DB_CLOSE DELAY=30;",
"driver" : "org.h2.Driver",
"options" : {
"user" : "h2-user",
"password" : "h2-password",
}
¥
"OTHER_DATASOURCE" : { ... }
}
LDBC.ddl
CREATE GRAPH TYPE social_network (...)
SET SCHEMA LDBC_H2.NORTH_AMERICA

CREATE GRAPH social network US OF social network (... .. . e)

Configuring SQL data sources

datasources.json

{
"LDBC_H2" : { ... },
"LDBC_HIVE" : { ... }
}
LDBC.ddl
CREATE GRAPH TYPE social_network (...)
SET SCHEMA LDBC_H2 .NORTH_AMERICA
CREATE GRAPH social_network_ US OF social network (
SET SCHEMA LDBC_HIVE.EUROPE

CREATE GRAPH social_network_EU OF social_network (

Demo time!

https://github.com/tobias-johansson/qgraphddl-example-ldbc

https://github.com/tobias-johansson/graphddl-example-ldbc

