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CAPS overview

For more details, have a look into our Spark+Al Summit talk
https://databricks.com/session/matching-patterns-and-constructing-graphs-with-cypher-for-apache-spark



https://databricks.com/session/matching-patterns-and-constructing-graphs-with-cypher-for-apache-spark

Motivation ... What is Cypher for Apache Spark?

e Cypher implementation on top of Apache Spark
o Apache Spark is the leading platform for distributed computations
o Provides several APIs for relational querying (Spark SQL), machine learning (Spark ML) etc.
o Already connects to many data sources (e.g. Parquet, Orc, CSV, JDBC, Hive, ...)

e CAPS includes...

o A query engine to transform Cypher queries to relational operations over Spark SQL
o Data source implementations for Neo4j and relational databases
o Alanguage (Graph DDL) to describe mappings between SQL DBs and property graphs



Motivation ... What is CAPS good for?

Run Cypher queries in a distributed environment

Support for multiple graphs and graph construction via Cypher (unlike Neo4j)
Various data sources (File-based, JDBC, Neo4))

Support for merging graphs from CAPS into Neo4;j

Main use cases
o Integrate non-graphy data from multiple heterogeneous data sources into one or more
property graphs (i.e. ETL and graph transformations)
o (Federated) data querying for distributed batch-style analytics
o Integration with other Spark libraries (SQL, ML, ...)
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Query engine architecture

MATCH (n:Person)-[:CAPTAIN]->(s:Ship)
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Query engine architecture

MATCH (n:Person)-[:CAPTAIN]->(s:Ship)

WHERE n.name = ‘Morpheus’ E::::> E:::> E:::>

RETURN n.name, s.name

scan(Ship)

[ scan(Person) ] [ scan(CAPTAIN) ]

“Tables for Labels”

° In CAPS, property graphs are represented by

o Node tables

o Relationship tables

e  Tables require a fixed schema, which is why ...

° Graphs have a graph type, that defines ...

o Node types and relationship types that occur in the graph

o Node and relationship types define their properties (and their types)



Query engine architecture

openCypher Frontend

e  Property Graph API
okapi-api e  Type System

Intermediate Language e  Property Graph Data Source API

Intermediate Language, Typing

okapi-ir Expressions

Logical Planning
okapi-logical e  Logical Planning

Relational Planning : :
okapi-relational e Transformation into relational Operations on abstract table

e  Session implementation
Backend connector -> RelationalTable
e  Data Source implementations

Physical Execution

flink-cypher
mem-cypher




Cypher 10 - Multiple Graph Querying

e Combine data from multiple graphs in a single Cypher query
e Integrate data of different sources

FROM social-net

MATCH (p:Person)

FROM products

MATCH (c:Customer)
WHERE p.email = c.email
RETURN p, ¢



Cypher 10 - Graph Construction

e Cypher9
o Input: Graph
o  Output: Table

FROM social-net
MATCH (p:Person)
FROM products

e Cypher 10 MATCH (c:Customer)
o Input Graph WHERE p.email = c.email
o  Ouput: Graph or Table CONSTRUCT ON social-net, products
CREATE (c)

CREATE (p)-[:SAME_AS]->(c)
RETURN GRAPH

Cypher




Property Graph Catalog

e The Catalog manages Property Graph Data Sources (e.g. SQL, Neo4j, File-based)
e A Property Graph Data Source manages multiple Property Graphs
e Catalog functions (e.g. reading / writing a graph) can be executed via Cypher or Scala API

Cypher Session

|_ Property Graph Catalog

— Property Graph Data Source <namespace>

‘— Property Graph <name>



Property Graph Catalog

Cypher Session

|_ Property Graph Catalog

|— “social-net” (Neo4j PGDS)

|_ “US” (Property Graph)

FROM social-net.
MATCH (p:Person) RETURN p



Property Graph Catalog - Querying

Cypher Session
|_ Property Graph Catalog
— “social-net” (Neo4j PGDS)
— “US” (Property Graph)

— “EU” (Property Graph)

— “products” (SQL PGDS)
— “2018” (Property Graph)

— “2017” (Property Graph)

FROM social-net.

MATCH (p:Person)

FROM products.

MATCH (c:Customer)
WHERE p.email = c.email
RETURN p, ¢



Property Graph Catalog - Construction

Cypher Session

|_ Property Graph Catalog

— “social-net” (Neo4j PGDS)

— “US” (Property Graph)

— “EU” (Property Graph)

— “products” (SQL PGDS)

— “2018” (Property Graph)

— “2017” (Property Graph)

CATALOG CREATE GRAPH social-net.

FROM social-net.
MATCH (p:Person)
FROM products.
MATCH (c:Customer)
WHERE p.email = c.email
CONSTRUCT ON social-net.
CREATE (c)
CREATE (p)-[:SAME_AS]->(c)
RETURN GRAPH



Property Graph Catalog - Views

Cypher Session
CATALOG CREATE VIEW youngPeople($sn) {

. Property Graph Catalog FROM $sn
MATCH (p:Person)-[r]->(n)
— “social-net” (Neo4j PGDS) WHERE p.age < 21
CONSTRUCT
— “US” (Property Graph) CREATE (p)-[COPY OF r]->(n)
RETURN GRAPH
— “EU” (Property Graph) }
— “products” (SQL PGDS)
— “2018” (Property Graph) FROM youngPeople(social-net.US)
MATCH (p:Person)
- “2017” (Property Graph) RETURN p

= Views

= “youngPeople”
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Mapping SQL tables into a Property Graph

Hive Graph Instance
- Table mappings

Rel. Tables
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Graph Data Definition Language (DDL)

e A domain-specific language for expressing property graph types and mappings
between those types and relational databases

e (Independent) Scala module within the Cypher-for-Apache-Spark project
e Provides “instructions” for the SQL Property Graph Data Source

e GitHub https://github.com/opencypher/cypher-for-apache-spark/tree/master/qraph-dd|

e Maven: org.opencypher.graph-ddl:0.2.7


https://github.com/opencypher/cypher-for-apache-spark/tree/master/graph-ddl

Graph Data Definition Language (DDL)

e Part of current a standardization discussion

Property Graph Schema ANSI INCITS sql-pg-2018-0056r2
ANSI INCITS DM32.2-2018-0195r2
ISO/IEC JTC1/SC32 WG3:BNE-022

Property Graph Schema

Title Property Graph Schema
Authors Individual Experts Contribution
Neo4j Query Languages Standards and Research Team?*
Status SQL/PGQ WD draft change proposal
Date Original 6 December 2018

Revisionrl 16 January 2019
Revisionr2 XX 2019

Copyright © 2018, Neo4j Inc. Please see the last page of this document for Apache 2.0 licence grant.


https://docs.google.com/document/d/1QE8_7VQsP5cawVHaRVsJchsXb-rGNtBoA00YizROpho/edit
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http://ldbcouncil.org/developer/snb

Graph DDL.: Property graph type

Graph DDL

Graph Type

- Element types
- Node types
- Relationship types

Graph Instance
- Table mappings



Graph DDL.:

Property graph type

Element
Base

Type

Element
Type

Element Label
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Property | '
Gragh Y § Property} Property grgph type
| Graph schema objects
: Type :
| e
Vertex Edge
Type Type
Vertex Tail Head Edge
Element Element Element Element
Type Type Type Type
Datatype Edge
Sl Optionality Key

ANSI| INCITS sql-pg-2018-0056r2



https://docs.google.com/document/d/118IpWhInBuwmjaDPO-IgQ1F2q23uX3vNR6Iq44eZHl4/edit#

Element types

e \We model the concepts / data types in our graph using element types
e Element types can have properties (i.e. name and data type pairs)
e They form the basis for node and relationship types

Name (i.e. label) Optional properties
{ : \ { : \
Person ( firstName STRING, lastName STRING, birthday DATE? ),
Place ( name STRING ),
KNOWS ( creationDate DATE ),

IS_LOCATED_IN,



Element types

Element type support inheritance

Similar to interface inheritance / mixin traits in programming languages

Element

Super Element type inheritance
Type and label sets .
/\ Place ( name String ),
Element  Element City EXTENDS Place ( districtCount INTEGER ),
Type Type
\/ Country EXTENDS Place ( language STRING ),

Element
Type

Label Set

ANSI INCITS sqal-pg-2018-0056r2



https://docs.google.com/document/d/118IpWhInBuwmjaDPO-IgQ1F2q23uX3vNR6Iq44eZHl4/edit#

Node and relationship types

e \We use element types to define a node type

(Person), -- resolves to label set (Person)

(City), -- resolves to label set (City, Place)

e \We use two node types and one element type to define a relationship type

(Person)-[KNOWS]->(Person),

(Person)-[IS _LOCATED IN]->(City),

e Node / relationship types inherit all properties defined by the element types



Graph types

e All the preceding definitions are contained within a graph type
e A graph type is always named (e.g. social _network)

CREATE GRAPH TYPE social_network (
Person firstName STRING, lastName String, birthday DATE? ),
Place name STRING ),
City EXTENDS Place districtCount INTEGER ),
Country EXTENDS Place language STRING ),
KNOWS creationDate DATE ),
IS_LOCATED_IN,

ANINAN AN A

(Person),

(City),
(Country),

(Person)-[KNOWS]->(Person),
(Person)-[IS_LOCATED_IN]->(City),
(City)-[IS_LOCATED IN]->(Country)



Graph DDL.: Property Graph Instances

Graph DDL

Graph Type

- Element types
- Node types
- Relationship types

Graph Instance
- Table mappings



Property Graph Instances

Graphs are instances of a graph type
May define additional element types
Define node and edge type views .
Graphs are always named L

CREATE GRAPH social_network_US OF social_network (
-- Additional element types
-- Node type views / mappings

-- Relationship type views / mappings

Property
Graph

Vertex
Type

Vertex
Table
Mapping

Vertex
Source
Table

Property graph
schema objects

Edge
Type

Edge
Tables
Mapping

ANSI INCITS sqal-pg-2018-0056r2



https://docs.google.com/document/d/118IpWhInBuwmjaDPO-IgQ1F2q23uX3vNR6Iq44eZHl4/edit#

CREATE GRAPH social_network_US OF social_network (
-- Node types views / mappings

Node source table Optional column-property-mapping
A A
[ | [ . \
(Person) FROM ( f_ name AS firstName, 1 name AS lastName ),
(City) FROM
FROM ,

-- Relationship type views / mappings

Relationship source table
I

(Person)-[KNOWS]->(Person) FROM ' Iedge
START NODES (Person) FROM node JOIN node.id = edge.personl_id
END  NODES (Person) FROM node JOIN edge.person2_id = node.id,
(Person)-[IS_LOCATED IN]->(City) FROM edge
START NODES (Person) FROM node JOIN node.id = edge.person_id
END  NODES (City) FR node JOIN edge.city_id = node.id
) Head source table Tail source table

CREATE GRAPH social network EU OF social network ( ... )



Configuring SQL data sources

# datasources.json

{
"LDBC_H2" : {
"type" : "jdbc",
"url" : "jdbc:h2:mem:NORTH_AMERICA.db; INIT=CREATE SCHEMA IF NOT EXISTS NORTH_AMERICA;DB_CLOSE DELAY=30;",
"driver" : "org.h2.Driver",
"options" : {
"user" : "h2-user",
"password" : "h2-password",
}
¥
"OTHER_DATASOURCE" : { ... }
}
# LDBC.ddl
CREATE GRAPH TYPE social_network ( ... )
SET SCHEMA LDBC_H2.NORTH_AMERICA

CREATE GRAPH social network US OF social network ( ... .. . e )



Configuring SQL data sources

# datasources.json

{
"LDBC_H2" : { ... },
"LDBC_HIVE" : { ... }
}
# LDBC.ddl
CREATE GRAPH TYPE social_network ( ... )
SET SCHEMA LDBC_H2 .NORTH_AMERICA
CREATE GRAPH social_network_ US OF social network (
SET SCHEMA LDBC_HIVE.EUROPE

CREATE GRAPH social_network_EU OF social_network (



Demo time!

https://github.com/tobias-johansson/qgraphddl-example-ldbc



https://github.com/tobias-johansson/graphddl-example-ldbc

