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We address the design of architectures and protocols for providing mobile users with integrated Personal Information Services and
Applications (PISA), such as persondized news and financia information, and mobile database access. We present a system architecture
for delivery of PISA based on replicated distributed servers connected to users via a personal communications services (PCS) network.
The PISA architecture partitions the geographical coverage area into service areas, analogous to PCS registration areas, each of which
is served by a single local server. When a user moves from one service area to another, the service is provided by the new local server.
This is accomplished by a service handoff, analogous to a PCS call handoff, which entails some context information transfer from the
old to the new server. We focus on the mobile sales and inventory application as an example of a PISA with a well-defined market
segment. We design a database management protocol for supporting both mobile and stationary salespersons. Our design uses the
site-transaction escrow method, thus alowing faster responses to mobile clients, minimizing the amount of context information which
must be transferred during a service handoff, and alowing mobile clients to operate in disconnected mode by escrowing items on their
local disks. We develop a formal model for reasoning about site-transaction escrow, and develop a scheme for performing dynamic
resource reconfiguration which avoids the need for time-consuming and costly database synchronization operations (i.e., a two-phase
commit) when the mobile sales transaction completes. A further refinement to the scheme avoids an n-way two-phase commit during
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resource reconfiguration operations, replacing it with severa simpler two-phase commits.

1. Introduction

An important and challenging area of mobile informa-
tion systems is the design of architectures and protocols for
providing mobile users with Personal Information Services
and Applications (PISA). Examples of PISA include per-
sonalized financial and stock market information, electronic
magazines, news clipping services, traveler information, as
well as mobile shopping, banking, sales, inventory, and file
access. As a concrete running example in this paper, we
use mobile database access, and in particular, the mobile
sales and inventory application (see section 2).

We consider the situation in which PISA are primar-
ily provided by a commercial entity called the Information
Service and Applications Provider (ISAP). The ISAP main-
tains a set of serverswhich contain the appropriate informa-
tion and run applications, and which are connected to the
mobile user via a personal communications services (PCS)
network.

The mobile user’'s terminal runs application software
to interact with the ISAP. These interactions are divided
into logical, application-dependent segments called ses-
sions. For example, in the case of the mobile sales and
inventory application, a session may consist of the salesper-
son connecting to a remote server, downloading images and
text describing a product, and then logging out. Alterna
tively, a session may consist of a user running an inventory
transaction against the corporate database. Sessions may
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be initiated by the user or by the ISAP. It is desirable that
when a session is in progress, the user is not aware of any
disruption in service as the user moves. (Note that continu-
ity in sessions need only be maintained at the logical level
of session or application software: it is not necessary that
the physical wireless link or the mobile user’s terminal be
continuoudly in use throughout the session.)

In order to meet reliability, performance and cost objec-
tives when the number of usersis large and geographically
dispersed, a distributed server architecture will be neces-
sary. In section 3 we describe the system architecture for
mobile sales and inventory applications where the ISAP
is organized as a distributed database (possibly replicated
in parts) and uses the underlying PCS network for com-
municating with the user. As the user moves or network
load and availability changes, the server interacting with
the user may need to change. Thus, real mobility on the
part of the user may result in the virtual mobility of the
server. This is accomplished by means of a service hand-
off which is broadly analogous to a PCS call handoff. We
have previoudy designed a service handoff protocol [10,11]
and described the context information which must be trans-
ferred from the old to the new server for various classes of
applications, including mobile transactions.

In section 4 we describe how the semantics of the sales
application can be exploited to provide an appropriate data-
base design with escrow protocols. We assume that the
reader has some familiarity with the principles of data
base transactions and distributed databases [4,8], but in sec-
tions4.1.1 and 4.1.2 we provide some background informa-
tion on concurrency control for database transactions and
escrow techniques for managing replicated data. We argue
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that the site-transaction escrow technique is more suitable
than traditional database locking schemes for the mobile
sales and inventory application. The site-transaction escrow
technique increases transaction throughput at the server thus
allowing faster responses to mobile clients, minimizes the
amount of information which must be transferred during
a service handoff, and allows mobile clients to operate in
disconnected mode by escrowing items on their local disks.

In section 4.3 we present a formal model of site-
transaction escrow, focusing on the non-mobile case. In
section 5 we extend our model to include mobile transac-
tions using site-transaction escrow. We describe three pos-
sible implementations of the site-transaction escrow tech-
nigque to support mobile users, and discuss their trade-offs.
We show that, as desired, Scheme 1 makes service hand-
off simpler and reduces the amount of context information
that must be transferred, compared to a traditional lock-
ing technique. Scheme 1 however has a two-phase commit
operation at the end of the mobile sales transaction. We
thus develop Scheme 2, which avoids this final two-phase
commit operation by introducing two new resource recon-
figuration operations, Mobile Allocate Reconfigure (MAR)
and Mobile Deallocate Reconfigure (MDR). The mobile
reconfiguration operations might result in “lost” updates if
failures occur. To remove this possibility, Scheme 2A adds
in a pairwise two-phase commit (rather than an n-way two-
phase commit) with each mobile reconfiguration. We end
with some concluding remarks in section 6.

2. Application scenario: Mobile sales and inventory

We consider a scenario in which the user is a mo-
bile salesperson selling financial products (like insurance,
bonds, etc.), or consumable products (e.g., doctor’s office
supplies like gloves, syringes, etc.). The ISAP is either
the company the sal esperson works for, whose products are
being sold, or a third-party supplier of information. The
salesperson uses a personal digital assistant (PDA) as a mo-
bile database when discussing and completing sales. The
salesperson is also referred to as the user of the ISAP's ser-
vices. The PDA or other end equipment which the sales-
person uses is called the mobile or the client of the ISAP's
servers. The person to whom the sale is being made is
referred to as the customer.

The user visits numerous customer offices during the
course of aday and discusses their requirements, showsim-
ages of products, initiates new orders or queries about the
status of previous orders, etc., using the PDA. The mobile
database contains customer records as well as information
regarding policies, prices and availability of the product
being sold. The time available to the salesperson for meet-
ing with the customer may be extremely limited [20]. In
order to ensure that this time is utilized most effectively,
the mobile database must have current information avail-
able about dynamically varying quantities such as inventory
levels, delivery dates, etc. Thus, the mobile database is pe-
riodically updated from the ISAP's database. The user has
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a service profile stored with the ISAP which ensures that
the mobile database is updated at appropriate times with
the appropriate information. Orders or queries placed by
the salesperson are transmitted to the ISAP database. Ob-
serve that this is not a far-fetched scenario. Mobile sales
applications are aready being tested and marketed [20,21].

3. System architecture

In general, mobile userswill access private and corporate
databases which, for reliability, performance and cost rea-
sons will necessitate a distributed server architecture when
the number of users and their geographic dispersion be-
comes large. In a distributed server architecture the in-
formation is (partially) replicated across multiple intercon-
nected servers that function as a single logical information
base.

We describe a possible system architecture using fig-
ure 1. The PCS system consists of the Public Switched
Telephone Network (PSTN) connected to the network of
some PCS service provider; these are indicated by the large
dashed boxes in the top and bottom half of figure 1, re-
spectively. Two | SAP servers are shown. There are several
ways to interconnect the servers, e.g., using a private ISAP
network or using the PCS network itself, but for smplicity
we omit the ISAP network from the figure.

We have shown only the relevant signaling network el-
ements of the PSTN and PCS Provider Network. In the
case of the PSTN, we have assumed a signaling network
architecture based on the Advanced Intelligent Network
(AIN) and Signaling System 7 (see [15] for a tutoria).
The PSTN signaling network consists of end-office tele-
phone exchange switches called Service Switching Points
(SSP) connected via signaling links to a hierarchy of sig-
naling packet switches called Local Signa Transfer Points
(LSTP) and Regional STPs (RSTP). A two-level hierarchy
of databases called the Home Location Register (HLR) and
Visitor Location Register (VLR) is used to locate and de-
liver cals to the user (see [12] for a tutorid); these are
connected to the RSTP and co-located with the SSPs, re-
spectively.

The PCS Provider Network consists of a Mobile Switch-
ing Center (MSC) connected to several Base Station Con-
trollers (BSC), each of which is connected to several radio
Base Stations (BS) which provide the actual wireless link
to the end client device. The geographical coverage area
for the information service is partitioned into service areas,
analogous to PCS registration areas. It is likely that a ser-
vice area will cover several PCS registration areas. Each
service areais served by a single information server, called
the local server, analogous to the PCS network’s Mobile
Switching Center (MSC) or VLR database. The connec-
tion between the ISAP and the mobile user can be set up
by either side dialing the other’s non-geographic telephone
number.

We assume that the PCS network ensures that the physi-
cal connection between the user and the ISAP is maintained
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Figure 1. An example system architecture model.

without interruption during a session as the user moves,
via appropriate mobility management and handoff proce-
dures [5,12,16]. We aso assume that appropriate protocols
are used for efficient and reliable wireless communication;
these could include a version of TCP/IP modified to deal
with the idiosyncrasies of the wireless link [2], and/or a
connection-oriented link-level protocol such as LAPR [19]
running on top of a PCS data protocol. An example of
the protocol stack running on the client is shown in fig-
ure 2. Note that severa other variations are possible, in-
cluding commercial packet radio services such as RAM and
ARDIS or CDPD service [17], instead of the PCS data pro-
tocol. The development of efficient and reliable protocol
stacks (TCP and below) for wireless data communication
is an area of active research, and outside the scope of this
paper; we focus on the higher-layer protocols for mobile
wireless database access.

As the user moves out of one service area into another,
it is desirable that the local server at the new service area
take over providing the service. This service handoff for
the virtual mobility of the server is broadly analogousto the
PCS call handoff procedure (except that it occurs between
ISAP servers rather than PCS base stations), and also has
the requirement that service appear to continue transpar-
ently without interruption. In [10,11], we have described

Application
Sockets
TCP
IP
PCS Data Protocol

Figure 2. An example communication protocol stack.

protocols and capabilities required in both the ISAP and
the PCS network to implement service handoffs. Briefly, a
service handoff consists of atransfer of context information
from the old server to the new server, followed by a phys-
ical connection transfer between the old and new servers.
The context information depends upon the application in
progress, but in general serves to inform the new server
of where to pick up the session after the old server left
off. For example, if the mobile user was simply reading
through a file, the context information would be the name
of the file and a pointer (e.g., line number or byte position)
from where the new server should start sending information
to the mobile.



238

4. Escrow-based replica control for partitionable data

We now describe the design of the ISAP' s database. The
design choices are motivated by the need to accommodate
both stationary and mobile users, while minimizing aspects
specific to mobile users.

4.1. Background

We first provide background on how transactions may
typically be handled in traditional distributed database en-
vironments, without considering mobility. (See [4,8] for
further background.)

4.1.1. Locking techniques for concurrency and replica
control

A transaction contains a series of operations (e.g., read
a datum, write a datum, etc.). In a transaction processing
environment, transactions can concurrently access shared
(possibly replicated) data. Therefore, their execution has
to be carefully controlled so that correctness is preserved.
The traditional notion of correctness is serializability [4],
i.e., the effect of the interleaved operations of concurrent
transactions is the same as that produced by a sequential
execution of the transactions. The algorithmsused to ensure
serializability are also referred to as concurrency control
protocols.

One example of a concurrency control protocol is strict
two-phase locking. In this protocol, a transaction acquires a
read lock (write lock) on a data item before reading (writ-
ing) that item. Two locks on a data item are conflicting
if either is a write lock, and a transaction may acquire a
lock only if no other transaction holds a conflicting lock.
This ensures that there is only one writer, but there can be
multiple readers if there is no concurrent write. Further-
more, a transaction cannot acquire any more locks after it
releases a lock. This defines a two-phase execution for a
transaction with respect to the locks, where first there is a
growing phase when locks are acquired, and then thereisa
shrinking phase when all the locks are released. All locks
can be released only at when the transaction commits or
aborts, ensuring that the transactions are seriadizable in the
order in which they release locks.

The corresponding notion of correctness for replicated
data (where copies of the same data item are stored at sev-
eral servers) is one-copy seridizability: the effect of the
execution of a set of transactions on the replicated data is
equivalent to some serial execution of those transactions
on a single copy. The Quorum Consensus (Locking) Al-
gorithm [7,9,23] can be used to preserve this property — a
read operation on a data item locks the data item at a sub-
set of replicas, called aread quorum, and a write operation
locks the data item at awrite quorum of replicas. One-copy
serializability is guaranteed if the read and write quorums
intersect.

In a replicated system, a transaction executes at a sin-
glereplica; however locks might be obtained at severa sites
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and updates might have to be installed at several sites at the
end of the transaction. A co-ordination protocol is required
to ensure that the transaction either commits or aborts at all
sites. This co-ordination protocol is the two-phase commit
protocol: a co-ordinator sends a prepare message to par-
ticipating replicas, upon which each replica votes whether
it can commit or not. If al votes are affirmative, the co-
ordinator sends a commit message to the replicas, and an
abort message otherwise.

The two-phase commit protocol has some disadvantages:

(a) it reguires al the participants to be available at one
point of time and vote yes if the transaction has to
commit — any failure by any participant results in the
transaction being aborted;

(b) it is a blocking protocal, i.e., if the co-ordinator fails
during some window of time, the participants have to
wait for the co-ordinator to recover before a decision
to commit or abort can be made;

(c) it requires at least two rounds of messages between
the co-ordinator and the participants before commit or
abort of the transaction.

4.1.2. Escrow techniques for handling replicated data

Itis possibleto exploit the semantics of the sales applica-
tion in order to improve the system throughput, in particular
by the idea of placing instances of the item being sold in
escrow. This scheme alows data items to be locked for
small intervals of time and also avoids the two-phase com-
mit, thereby increasing throughput. In general, an escrow-
able resource item refers to a resource whose instances are
indistinguishable, so that the instances can be partitioned,
either among transactions or among sites in a replicated
database (as we see shortly).

Suppose the salesperson is selling items from inventory,
where each instance of the item is indistinguishable from
the others (e.g., the item is a medical supply item, and
each instance is, say, one box of the item). Let Total,,, be
a (replicated) datum in the database that indicates the total
number of instances of item m in stock. Assaesordersare
taken or canceled, salespersons launch transactions which
update the number of instances sold, Sales,,,. The problem
is to ensure that the constraint Sales,,, < Total,,, is satisfied
at al times. Updates to Sales,, will typically be made as
operational updates instead of value updates, i.e., instead of
reading and writing the actual value of the variable Sales,,,
transactions will issue operationsto increment or decrement
it.

As discussed previoudy, if two or more salespersons
launch long-running transactions which contain operational
update operations, a traditional concurrency control algo-
rithm would require that the variable Sales,,, be locked by
each transaction, so that one transaction cannot begin until
the other commits and releases the lock. In areplicated sys-
tem, this further entails using a distributed protocol such as
guorum locking [9] and then a two-phase commit protocol
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to ensure consistency. Escrow techniques attempt to avoid
locking the variable for the entire transaction and the two-
phase commit. We briefly describe several escrow schemes
that have been proposed.

Transaction escrow [18]. A transaction executes an es-
crow operation to try to place in reserve the resources that
it will (potentially) use. All successful escrow operations
are logged in an escrow log. Before executing an escrow
operation, each transaction accesses the log and sees the to-
tal escrow quantities of all uncommitted transactions. The
transaction then makes a worst-case decision to determine
whether it can proceed.

For instance, suppose Total,,, = 100, Sales,, = 20, and
there are currently two uncommitted transactions each re-
questing one item. Let transaction T wishing to reserve
ten items now be initiated. Since the log indicates that
Sdes,, < 22 < Tota,,, T can proceed irrespective of
whether the other two transactions commit or abort: the
congtraint is maintained in any case. Note that when trans-
action T executes an escrow operation, 7' obtains a short-
term lock on the escrow log to access and update the log
and releases the lock after the log has been updated. (The
lock release need not wait for the commit or abort of T
as in a traditional transaction execution.) Thus any other
transactions which access Sales,, are forced to wait only
for the duration of the log update operation, rather than
for the entire duration of 7" as would occur in a traditional
scheme, thus increasing system throughput.

Ste escrow. In site escrow algorithms [1,14,22], the total
number Total,, of available instances of item m is parti-
tioned across the number of sites (servers) in the system.
This can be thought of as each site (as against a transaction)
holding a number of instances in escrow. A transaction
launched by a user runs at only one site, and can success-
fully complete at a site only if the number of instances it
requires does not exceed the number of instances available
in escrow at that site. Each operation of the transaction
acquires a lock at the site when accessing the item, just as
for a traditional locking scheme. However, this lock is dif-
ferent in two important respects. Firstly, the lock is local
in the sense it applies only to the site where the operation
is executing, and is designed to protect the operation from
other transactions executing at that site. (This contrasts
with traditional replica control schemes, such as quorum
locking, which would require each site to lock a subset of
the other sites before proceeding with the operation, and
would also require a distributed two-phase commit at the
end of the transaction.) Secondly, the lock can be released
on successful completion of the operation, in contrast to tra-
ditional strict two-phase locking where the lock is released
only at commit time of the entire transaction. By allow-
ing each site to deplete its own escrowed instances without
consulting other sites, avoiding the distributed two-phase
commit, and shrinking the interval during which items are
locked, the site escrow model results in higher autonomy
to sites and greater throughput.
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The number of instances held in escrow at each site
is adjusted to reflect the consumption of instances by the
transaction only if it commits; otherwise the escrow is re-
stored to its origina state. When one site requires more
instances, a redistribution or reconfiguration protocol such
as the point-to-point demarcation protocol [3] or a dynamic
guorum-based protocol [13] is executed, so that the site can
get a portion of some other sites' unassigned instances.

Ste-transaction escrow. The two escrow schemes de-
scribed above can aso be combined [13]. Thus the total
number Total,, of available instances of item m is parti-
tioned across sites, and in addition, each transaction at a
site uses a transaction escrow scheme to alocate and deal -
locate resources at that site. Once again, a reconfiguration
protocol is used to transfer resource instances between sites
as necessary.

4.2. Ste-transaction escrow for mobile data access

The site-transaction escrow scheme provides an elegant
and efficient replica control mechanism for partitionable
resources, and allows sites to make allocation decisions
locally as far as possible. Thistechniqueis desirable in the
mobile environment due to the following reasons:

1. A mobileisusually powered by alimited power source.
Suppose a mobile has established a session with a
server and is trying to allocate resources. If that server
could possibly allocate the resourceslocally, thiswould
enable quick response to the mobile and hence less
power is consumed while idling.

2. When performing service handoffs (as seen in sec-
tion 5), the site escrow model permits less context
information to be transferred than when a traditional
concurrency/replica control protocol is used. This re-
sults in quicker service handoffs and savings in cost.

3. The wireless bandwidth between the mobile and the
ISAP server is limited. Thus instead of remaining in
contact with a server at all times, it might be desirable
for the mobile to itself escrow some instances and allo-
cate them locally. The site-transaction escrow scheme
permits this alternative naturaly.

4.3. A formal model of site-transaction escrow

We now develop a simple formal model for site-
transaction escrow. This is based upon the model devel-
oped by Alonso and El Abbadi [1], who described varia-
tions on site escrow and applied it to non-mobile environ-
ments. In this section we extend their approach to formalize
site-transaction escrow model for the non-mobile environ-
ment. In the next section we will extend the model further
to accommodate mobility; we will see that relatively few
enhancements are needed for this.
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4.3.1. The basic model

Let S denote the set of serversin the replicated system,
t,, denote the total number of instances of a particular item
m in the system, and let m be the number of instances at
stes, foral s € S. Thent,, = _sms. Let Capacity,,
denote the maximum number of instances of type m that
can be in the system. Such constraints are common in
many applications; e.g., Capacity,,, reflects the maximum
inventory space in the warehouse. Similarly, there may be
a lower bound, e.g., the inventory is not allowed to fall
below MinStock,, in order to satisfy emergency requests.
F is apredicate over m, (for al s € S), Capacity,,, and
MinStock,,; it is used to specify the correctness (safety)
condition for item m, i.e., the escrow scheme must en-
sure that F,,, is true at al times. F,, is restricted to be
a conjunction of terms of the form a op b where op is an
arithmetic operator (e.g., =, <, #, €tc.) and a and b are
permitted to be natural numbers or ¢,,.

For example, suppose there are three sites which escrow
instances of m, i.e., S = {j, k,{}. Then at any given time,
tm = m; +my +my. Let Capacity,, be 100, and suppose
MinStock,, = 5. The correctness condition F,,, is given
by

Fm =5 <t At < 100. (1)

(For ease of exposition, we will henceforth assume there is
only one dataitem and drop the m subscript when possible.)

For each s € S, define the configuration set C; as a
predicate denoting the range of values that can be taken by
ms, €0, C; = 0 < m; < 2. A system configuration is
denoted by C = A, s Cs. A system configuration is said
to be valid if it satisfies the correctness condition F, i.e.,
if C=F.

For example, suppose there are Total = 90 resource
instances initially. These instances could initialy be (site-)
escrowed as 28 instances to site j, 25 to site k£ and 37 to
site [. Suppose further that the system-wide constraint on
the system is F as above. An initial valid configuration
with respect to F in equation (1) could be

C'=B<m; <30)A(0< my <30)A(2< my < 40).

An example of an invalid configuration with respect to F
in equation (1) is

C" = (1< my <30)A(2< my, < 30) A (L< my < 40),

sinceit is possible that ¢t = m; +m +m; = 4. Informally,
the configuration sets in a valid configuration indicate a
set of local predicates such that together they preserve the
validity of the global predicate . This model thereby
represents two levels of partitioning: (a) the total number
of resource instances being partitioned (escrowed) among
the various sites, and (b) the partitioning of the minimum
stock and capacity constraints (the upper and lower bounds
on the total number of resources).
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4.3.2. The site-transaction escrow model

We now extend the above model to include the notion of
transaction escrow [18] and thus formalize site-transaction
escrow. Two cases arise: when local resources suffice for
a given transaction, and when they do not.

Local resources suffice. Define the escrow value set E
as a predicate denoting the upper and lower bounds on
the actual value of mg as it is being accessed by escrow
operations. Initidly, E; = (x < m; < z), where z is the
number of resource instances assigned to server j, and at
some point in time E; = (u < m; < v). E; can change
as follows:

1. If y resourceinstances are escrowed for allocation by a
transaction 7T at server j, E; becomes (u —y) < m; <
v. If T commits, E; becomes (u—y) < m; < (v—y).
If T aborts, then E; becomesu < m; < v.

2. Suppose y resource instances are escrowed for de-
alocation by T" at server j. E; becomes u < m; <
(v+y). If T commits, then E; becomes (u + y) <
m; < (v+y). If T aborts, E; becomes u < m; < v.

The configuration set differsfrom the escrow value set. The
former defines the possible range of values for m; ét all
points of time and is a correctness condition. The escrow
value set asserts the range of values within which m; lies
at a given point of time.

Given a valid configuration, C, with configuration set
C, for each mg, an operation o, executed at server s is
defined to be safe [3] if for the resultant escrow value set
E, E, = C,. For example, suppose E1 is3 < m1 <5
and C7 is 0 < m1 < 30. Then o(m,) that allocates 4
instances of m is an unsafe operation, whereas o’(m1) that
allocates 2 instances of m is safe.

Observation 1. For avalid configuration C,

N (B = C) = F.
sES

Resource reconfiguration required. Observation 1 states
that as long as operations executed at each server are safe,
F is preserved. However, one might not be able to run
safe operations all the time, since for instance, server s
might want to allocate or de-allocate more resources than
it is alowed to. Suppose at some point of time in a valid
configuration, Cs isz < my <y and E, isz’ <ms <v'.
Suppose a transaction 7" wishes to execute allocate(z), i.e.,
allocate z resources at s, and suppose alocate(z) is not
safe. Thus (27 — 2) < ms < y) # (¢ < my < ).

It is possible that allocate(z) can be made safe at s by
doing an allocate reconfiguration operation, AR(z), which
modifies C as follows.

Definition of AR(z). Suppose there exists 2z’ such that

(@' —2)<ms <Y') = ((2—2') <ms <y).
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Furthermore, suppose that for some server ¢,
@ Crisu<my <o,

(b) E; = C4,

© (u+2') < v, and

(d) for E; at t, By = ((u+ 2') < ms < 0).

Thus (u+2z’) < ms < v isapossible configuration set at ¢.
Therefore, if C, is modified to be ((z — 2') < m,s < y) and
C; is modified to be ((u + 2’) < ms < v), then alocate(z)
is safe at s.

Operationally, the reconfiguration operation AR results
in z’ more resource instances being made available for allo-
cation at server s by atering the lower bound on allocations
a s.

Example 1. Suppose 7 is (3 < mi1 < 10) and E; is
(6 < m1 < 6) (i.e, thevalue of m isexactly 6). Let C, be
(4 < mp < 11) and E; be (9 < my < 10). The operation,
alocate(4), if initiated at server 1, is an unsafe operation.
It is possible to do an AR operation such that the new C;
becomes (2 < m1 < 10) and the new C, (5 < m2 < 9).
This alows the safe alocation of 4 resource instances at
server 1.

Now suppose a transaction 7' wishes to execute de-
dlocate(z) at s, i.e., de-allocate z resources at s, and sup-
pose de-allocate(z) is not safe. Thus

(' <ms < (Y +2)) & (< ms <y).

A similar de-allocate reconfiguration operation can be pro-
vided, as follows.
Definition of DR(z). Modify C,: Suppose there exists 2’
such that

(' <ms <Y +2) = (x<my < (y+2)).
Furthermore, suppose that for some server ¢,
@ Cyisu<<my <o,
(b) Ex = Ci,
© u<(w-2"),ad
(d) for By att, Bt = (u <ms < (v—2).

Therefore, if C; is modified to be (z < ms < (y + 2'))
and C; is modified to be (u < ms < (v — 2')), then de-
alocate(z) is safe at s.

Several policies [3] can be used to determine the para-
meters of a reconfiguration operation, namely the number
of resource instances logically transferred, or which servers
participate in a reconfiguration, etc. Furthermore, it is as-
sumed that the changesto Cs and E; (and likewise C; and
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E;) are made atomically at s (likewise, ¢) during the re-
configuration. Note again that a two-phase commit is not
required to accomplish the reconfiguration.

We now motivate the need for a new kind of reconfigura-
tion operation apart from the two discussed above. We have
so far dealt only with a global constraint being partitioned
aslocal configuration sets. Suppose there are also local site
constraints (on these configuration sets), such as the lower
bound on m; should not drop below 2. The following ex-
ampleillustrates how AR and DR are not sufficient to allow
desirable reconfigurations.

Example 2. Suppose C1 is (3 < my < 10) and E; is
(7 <mi1 <7). Let C2 be (4 < mp < 11) and E; be
(9 < mz < 10). Suppose we require that the lower bound
of C; should be at least 2. Let allocate(7) be initiated at
server 1. This operation is not safe at server 1. It can aso
be seen that no AR or DR operation can make the operation
safe at server 1.

An dternative is to use the operation XFER described
below, which accomplishes allocate(z) by (logically) trans-
ferring some 2’ instances from ¢ to s.

Definition of XFER(z). Modify E,: Suppose there exists
z' such that

(@' +2' =2) <ms <Y +2) = (& <ms < y).
Furthermore, suppose for some server t,
(@ E;is(u <my <), and
(b) (' —2)<m < =2") = C,.

Therefore, if E is modified to be ((z' + 2) < ms < (¥ +
z')) and E; is modified to be ((v' — 2') < ms < (v — 2')),
then allocate(z) is safe at s.

In example 2, one can do a XFER operation such that F;
becomes (10 < m; < 10) and E> becomes (6 < m2 < 9).

An operation o(x) at server ¢ is said to be unsafe but
solvable if the resultant escrow value set is E;,, and
E;, # Chn,, but there exists a sequence of reconfiguration
operations (with possibly severa sites) leading to another
valid configuration C’ in which o(z) is safe. Thus, if an
operation is submitted at a server and determined to be
unsafe, the server can try to execute some reconfiguration
operations with one or more servers such that the opera-
tion would be safe in the new configuration. An operation
that is neither safe, nor unsafe and solvable is said to be
unsolvably unsafe. Unsolvably unsafe operations cannot be
successfully executed.

Observation 2. A reconfiguration operation preserves F,,.
Observation 3. Given a set of operations, O, such that

each operation is either safe or unsafe but solvable, F,,, is
preserved by the execution of these operations.
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In summary, given a non-mabile environment as above,
we note that there are five operations of interest in the
site-transaction escrow protocol, namely (a) safe alocate
operations, (b) safe de-allocate operations, (c) alocate re-
configuration operations, AR (d) de-allocate reconfiguration
operations DR, and (e) transfer reconfiguration operations,
XFER, that allow unsafe but solvable operationsto proceed
safely.

5. Mobile sales transactions

We now see how sales transactions run from a maobile
at a server can be handled. In section 5.1 we consider the
impact of different types of mobility on the database proto-
cols discussed above. In section 5.2 we discuss the impact
of supporting continuously mobile users with a traditional
locking scheme, and in section 5.3 we discuss three possible
implementations of our site-transaction escrow technique.

5.1. Types of mobility

Discrete mobility. Suppose a user makes some sales at
one service area, completes all transactions, closes the ses-
sion, disconnects from the PCS network and moves to an-
other service area. The user can now start another session
with the local server of the new service area and make fur-
ther sales. The sales transactions at the new service area
can simply operate on the escrow values stored at the new
server. The decision as to whether any operation performed
by the transaction is safe or unsafe can most likely be made
by the local server (and if unsafe and solvable, the server
can do areconfiguration operation to permit the operation).
No change is required to accommodate mobility.

Local and disconnected mobility. Suppose the salesper-
son has an estimate of the number of resource instances
of each kind he or she expects to sell. He or she could
then dynamically make his mobile unit a (mobile) server,
and run a reconfiguration operation with the fixed server
to logically transfer some resource instances on to the mo-
bile. Thus the mobile can itself function as a local server
from this point on, and allow local transactions which the
salesperson initiates. This would result in faster response
times for the salesperson and the salesperson can continue
selling items even while being (voluntarily or involuntar-
ily) disconnected from the ISAP. At a later point in time,
the salesperson could run another redistribution operation
so that remaining resource instances on the mobile are log-
ically transferred back to the local ISAP server. The parti-
tioning concept of site escrow thereby permits a seamless
incorporation of disconnection.

Notice that, while being disconnected, only safe oper-
ations can be run on the mobile. One drawback of the
scheme above is that a fixed server that requires instances
would be unable to run a reconfiguration operation with that
mobile unless the mobile unit can accept incoming calls and
reconfiguration operations from the ISAP.
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Continuous mobility. Suppose salespersonsrun long trans-
actions involving the allocation of multipleinventory items,
and while moving between service areas.! In our model,
we assume that a service handoff [10,11] occurs, so that
the mobile starts communicating with the local server of
the new service area. However, before the physical con-
nection transfer can actually be carried out, the context re-
lated to the interactions of the user with the ISAP needs to
be transferred from the old to the new server. Thus when
the user moves to the new service area, the current opera-
tion in progress at the old server is completed, and then the
context of the transaction is transferred to the new server.
(Observe here that the mobile can continue interacting with
the old server while the context is being transferred.) We
will now consider the actual context information transfer
required for locking schemes as well as our proposed site-
transaction escrow schemes.

5.2. Context transfer for a traditional locking scheme

If atraditional locking scheme had been used for con-
currency control, the context information to be transferred
would include (&) the transaction id, TID, (b) the list of
locks held by the transaction, L, (c) the next operation
to be performed by the new server (assuming the entire
transaction has been submitted by the mobile), N, and
(d) additional information relating to replica control, de-
noted R. Thus the context information to be transferred is
{TID,L,N,R}.

To make the context information field R more concrete,
suppose a pessimistic quorum consensus protocol [9] with
operational updates is used. In this protocol, server, i, be-
fore initiating an operation o of a transaction 7', locks the
data items accessed by o at a set of quorum servers. The
guorum servers send the committed (timestamped) updates
that they know of along with the lock grant response to .
Server i merges the responses in timestamp order with the
set of committed updates which it knows about itself (i.e.,
locally). If the quorum is a majority of serversin the sys-
tem, server ¢ is guaranteed [9] to be up to date with all
the committed updates in the system and also guaranteed
that since the lock for o was acquired, there is no other
conflicting operation executing in the system. Server i ap-
pends the update operation ur to an intentions list of un-
committed updates for the transaction T'. When T is ready
to commit, a two-phase commit is executed across all the
guorum servers involved in its operations. If the decision
isto commit, the intentions list is added to the list of com-
mitted updates at 7 and the quorum servers, otherwise the
list is discarded.

L1t is important to note that the long-running transactions only imply
that a connection is continuously maintained between the mobile and the
server at the session or gpplication level. In particular, it isnot necessary
that the wireless link be continuously in use, since the client and server
can exchange occasional packets as necessary. Similarly, long-running
transactions need not imply that the client machine is turned on at full
power al the time; amost al modern mobile client devices dip into
doze mode, yielding very substantial decreases in power consumption.
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Thus, if the pessimistic quorum consensus protocol is
used, the replica context information, R, transferred from
the old server to the new server would be (a) the list U
of updates seen at the old server before the most recent
operation in T" was executed, (b) the intentions list I for T,
and (c) the list @ of quorum servers for each operation in
T executed so far. The entire context to be transferred is
{TID, L, N, R} where R ={U, I,Q}. The new server will
have to first incorporate the list U into its state, set up I as
an intentionslist for 7', update the lock table using list L to
remember the locks that T' has already acquired, and store
the list of quorum servers Q (so that they can participate
in a two-phase commit when 7' is ready to commit).

5.3. Context transfer with site-transaction escrow

Using site escrow methods makes context transfer and
set-up much easier than the traditional locking scheme. We
will first describe a simple scheme enabled by using site-
transaction escrow, and then a dlightly more complicated
scheme which can provide improved concurrency and avail-
ahility, if desired.

5.3.1. Scheme 1

If site-transaction escrow is used, decisions to allocate
(escrow) resources are made locally (as far as possible) so
that the quorum information list () described above does not
have to be maintained or transferred as context. Further-
more, since sites use transaction escrow locally, locks are
released after the completion of each operation (as against
each transaction). So the lock information list L does not
need to be transferred to the new server. In addition, sup-
pose the operations in the sales transaction deal only with
escrowable resource types. The new server does not need
information about the operations already performed at the
old server, since the old server made its decisions based on
its locally escrowed resources. Thus the update list U and
the intentions list I is not required. Therefore the context
transferred is only {TID, N}.

However, when the transaction commits, a two-phase
commit would aso be required between the old server and
the new server since part of the transaction has been run at
the old server and the rest at the new server. (Note that the
two-phase commit might be between several servers, i.e.,
be an n-way two-phase commit, if the user moves between
severa service areas during the duration of the transaction;
we will return to this point later.) The benefit of the site-
transaction escrow idea in the case of a salesperson who
does not moveisthat most of the time, a two-phase commit
would not be required at the end of the transaction since
requests for resources would be satisfied locally. However,
if the salesperson moves around alot between service areas,
then a two-phase commit is amost always required at the
end of the transaction, and this is undesirable. To address
this problem, we introduce a modified scheme.
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5.3.2. Scheme 2

We incorporate a pair of new operations into the pro-
tocol, called mobile reconfiguration operations, that are
associated with each service handoff. We discuss these
operations in the context of no failures (neither site nor
communication failures).

Let s and ¢t be the old and new servers, respectively.
Suppose transaction T has resulted in the alocation of z
resources of typem at s, sothat E; isof theform ((z'—z) <
ms < y'). Suppose E; is of the form (v’ < my < V).
Then the Mobile Allocate Reconfigure (MAR) operation
first results in s sending a message to ¢ asking it to modify
E; to

(W +2z—2)<me < (V' +2)) = (' <me < + 2)).

This is as if the number of instances at ¢ was increased
by z and the transaction T" resumed at ¢, i.e., these newly
acquired instances are entered as having been escrowed by
T at t (hence the “—2" term above). After ¢ replies to
s about having done the modification, s modifies ;s to
((z' — 2) < ms < (¥ — 2)). Thisisasif T committed at
site s. It might be that the new E; is such that £, # C4,
since (v'+z) might be larger than the upper bound indicated
by C;. Thus, in addition, if Cs was (r < ms < y) and
Cy was (u < my < v), then they become respectively
(x <ms < (y—2)) and (u < my < (v+ 2)).

Note that MAR is similar to AR in that both logically
transfer escrowed instances from one server to another.
However, while AR affects both bounds in £, and E},
MAR affects only one bound at each server. Observe that
if T" does not allocate or deallocate items of type m fur-
ther and if T commits at ¢, F; becomes (u < my < v).
The result is as if T had run at s entirely. However, if
T aborts, FE; becomes ((u + z) < my < (v + 2)). The
mobile reconfiguration operation thereby optimistically as-
sumesthat transactions are likely to commit, hence commits
a s the portions of 7" which have already been done at s.
If T" aborts however, ¢ finds that the number of its resource
instances have increased due to the execution of 7. (If
required by the application, one can run a reconfiguration
operation AR from ¢ to s to restore the old situation.)

Similarly, suppose the transaction has resulted in the de-
alocation of z resources of type m at s, so that E is of
the form (' < ms < (v’ + 2)). Suppose E; is of the form
(v < my < v'). Then the Mobile Deallocate Reconfigure
(MDR) operation resultsin E, becoming ((z' +2) < ms <
(y' + z)). Furthermore, E; becomes

(W —2) <my <V — 2+ 2)).

If this creates a situation where E; # Cy, then the fol-
lowing must be done to the configuration sets at s and ¢
respectively: Cs will become ((x + z) < ms < y) and C;
become ((u — z) < m; < v).

Example 3. An example of a mobile sales transaction is
shown in figure 3. There are two types of resource items,



244

Server 1

Cl for type m 0<=ml<=40
C1l’ for type m: 0<=ml’ <=50
E1 for type m 30<=nmil<=30
E1’ for type ml: 20<=ml’<=20

© ALLOC 10 TYPE m | TEMS
Cl for type 1: 0<=ml<=40
Cl’ for type m: 0<=nl’<=50
tine El for type m 20<=nil<=30
E1’ for type m: 20<=nl’<=20

L4
\'

@ After nobile reconfiguration

Cl for type m 0<=ml<=40
C1’ for type m: 0<=nml’<=50
E1 for type m 20<=nl<=20
E1’ for type m: 20<=ml’ <=20

Servi ce
handof f
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Server 2

C2 for type m 0<=n2<=50
C2' for type ni: 0<=ng’ <=50
E2 for type m 10<=n2<=10

E2' for type m: 20<=n2’ <=20

After nobile reconfiguration
® o for type m 0<=n2<=50
C2' for type nm: 0<=n2’ <=50
E2 for type m 10<=n2<=20
E2' for type m: 20<=n2’ <=20

® 1 AlLCCS5 TYPEm I TEMS
C2 for type m 0<=nm2<=50
C2' for type m: 0<=n2’ <=50
E2 for type m 10<=n2<=20
E2’ for type mi: 15<=n2’ <=20

® 1 comit

C2 for type m 0<=n2<=50

C2' for type m: 0<=n2’ <=50
E2 for type m 10<=n2<=10
E2' for type m: 15<=ng’ <=15

Figure 3. A mobile saes transaction example.

m and m/. Initialy, as can be seen from E1 and E1’, there
are 20 and 30 resource instances of m and m/’, respectively,
a site 1, and likewise, 10 and 20 instances at site 2. The
mobile executes a transaction 7 that allocates 10 instances
of type m at server 1, and then the mobile moves from
server 1 to server 2. The mobile reconfiguration operation
MAR updates £1 and E2 at the two sites, but does not
affect C1 or C2 since £E2 = (C2. The mobile submits
another operation to allocate 5 instances of type m/ as part
of the same transaction T" (this would typically be run in
parallel with the reconfiguration), and then commits.

Observation 4. Given a set of operations, O, such that
each operation is either safe, or unsafe but solvable, and
such that some of these operations are run from a mobile,
Fm is preserved by the execution of these operations using
the mobile reconfiguration operations.

The mabile reconfiguration operation can be performed
independently of the context information transfer — the
only requirement is that the reconfiguration complete be-
fore the transaction commits. By introducing Scheme 2
and the mobile reconfiguration operation we have increased
the amount of context information which needs to be
transferred in the site-transaction escrow scheme, from
{TID, N} to {TID, N, I}, in exchange for eliminating the
two-phase commit which would be required at the end of
the transaction.

5.3.3. Scheme 2A

An issue that arises with Scheme 2 is that suppose
the mobile reconfiguration operation fails during a service
handoff. This might be due to the loss of the message
from server ¢ to server s indicating that the modification
of F; is complete, or it might be because server s itself
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fails; in either case, s might not make the corresponding
change to F;. (Note that this does not violate the integrity
congtraints, F, of the system.) The failure of the reconfig-
uration simply means that service handoff will not be done
immediately. The mobile will continue to interact with s.
In the meantime, after a timeout period, server s can send
messages to some other closer server to handoff to, and so
on. However, it does mean that some resources have been
made unavailable at ¢ and not made available at s.

To avoid this problem of “lost resources’, a two-phase
commit (or similar derivatives) is required during the mo-
bile reconfigurations; otherwiseit is not feasible to have the
two corresponding operations at the two sites both commit
or both abort. Thus we propose a “pair-wise two-phase
commit” as part of each reconfiguration in Scheme 2, and
we label this Scheme 2A. This two-phase commit is re-
stricted to the pair of servers involved in the reconfigura-
tion.

We stress that this differs from the two-phase commit
reguired in Scheme 1 as follows. The pair-wise two-phase
commit in Scheme 2A need not wait until the end of the
transaction, but can be overlapped with the rest of the trans-
action, thus improving concurrency and performance. Fur-
ther, if a mobile crosses several service areas during the
course of the transaction, Scheme 1 would require an n-
way two-phase commit to be carried out among all the
servers at the end of the transaction, while Scheme 2A
would require severa pair-wise two-phase commits while
the transaction is in process. Scheme 2A thus has some
potential advantages:

1. An n-way two-phase commit requires that all servers
be available at the end of the transaction, T'. Even if
a server that has performed a service handoff to some
other server and is no longer processing 7' crashes,
transaction 7' has to abort. In Scheme 2A, only one
pair of servers needs to be available at each two-phase
commit. This loosens the availability requirements of
the servers.

2. An n-way two-phase commit is at least as dow as
the dowest server involved, and is a form of barrier
synchronization. In Scheme 2A a slow server would
not hold up the commit.

3. Pairwise two-phase commits allow each old server to
completely hand off service for the transaction, releas-
ing CPU and other resources, e.g., space in interna
tables.

There are clearly tradeoffs involved in the schemes we
have introduced, and their evaluation depends upon the
specifics of the application and architecture used. However,
using the ideas of escrow, service handoffs and reconfigu-
ration of resources, we have provided a clean transaction
framework for performing maobile sales transactions.
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6. Conclusions

We have presented a database system design based on
the site-transaction escrow method, that is suitable for sales
and inventory applications supporting both stationary and
mobile users. We provided a formal model for reasoning
about site-transaction escrow, and discussed several recon-
figuration operations in the non-mobile environment. We
dealt with several scenarios in a mobile environment and
discussed how the site-transaction escrow protocol is a nat-
ura fit for these scenarios. Furthermore, we identified a
mobile reconfiguration operation to prevent having to do a
two-phase commit at the end of a transaction, which was
executed as a mobile was handed off between servers. We
thereby outlined how the site-transaction escrow protocol
provides a simple mechanism for performing service hand-
offs when a mobile user moves from one service area to
another.

We are currently investigating some of the issues dis-
cussed in this paper further. We have previously discussed
[10,11] how mobile transactions which access distinguish-
able instances, for which site escrow methods are typically
not appropriate, can be supported. We are considering
the feasibility of light-weight protocols for combining such
transactions with those accessing indistinguishable resource
instances [1]. Furthermore, the treatment in this paper has
been restricted to partitionable data items and constraints
that are numeric in nature. Data structures such as queues
and stacks are also partitionable, and escrow techniques are
applicable in such cases too [6].
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