
 S

L

T

A

A

C

N

I

D

N

A

H

R

C

D

E
T

Technical Standard

System Interfaces and Headers
Issue 5

[This page intentionally left blank]

CAE Specification

System Interfaces and Headers, Issue 5:

Volume 1

The Open Group

 February 1997, The Open Group

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system,
or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording or
otherwise, without the prior permission of the copyright owners.

CAE Specification

System Interfaces and Headers, Issue 5: Volume 1

ISBN: 1-85912-181-0
Document Number: C606 (Volume 1)

Published in the U.K. by The Open Group, February 1997.

Any comments relating to the material contained in this document may be submitted to:

The Open Group
Apex Plaza
Forbury Road
Reading
Berkshire, RG1 1AX
United Kingdom

or by Electronic Mail to:

OGSpecs@opengroup.org

Portions of this document are derived from IEEE Std 1003.1-1996, copyright  1996
(incorporating ANSI/IEEE Stds 1003.1-1990, 1003.1b-1993, 1003.1c-1995 and 1003.1i-1995) by the
Institute of Electrical and Electronics Engineers, Inc. with the permission of the IEEE.

Portions of this document are derived from IEEE Std P1003.2-1992 and IEEE Std P1003.2a-1992,
copyright  1992 by the Institute of Electrical and Electronics Engineers, Inc. ISO/IEC
9945-2: 1993, Information Technology — Portable Operating System (POSIX) — Part 2: Shell and
Utilities is technically identical to the IEEE standards in these areas.

Portions of this document are derived from copyrighted material owned by Hewlett-Packard
Company, International Business Machines Corporation, Novell Inc., The Open Software
Foundation, and Sun Microsystems, Inc.

ii CAE Specification (1997)

Contents

Chapter 1 Introduction... 1
 1.1 Overview .. 1
 1.2 Conformance ... 1
 1.2.1 BASE Conformance ... 1
 1.3 Feature Groups.. 2
 1.3.1 Encryption... 2
 1.3.2 Realtime... 2
 1.3.3 Realtime Threads ... 4
 1.3.4 Legacy .. 4
 1.4 Changes from Issue 4... 6
 1.4.1 Changes from Issue 4 to Issue 4, Version 2... 6
 1.4.2 Changes from Issue 4, Version 2 to Issue 5... 6
 1.4.3 New Features .. 7
 1.5 Terminology... 10
 1.6 Relationship to Formal Standards... 11
 1.6.1 Relationship to Emerging Formal Standards..................................... 11
 1.7 Portability ... 12
 1.7.1 Codes.. 12
 1.8 Format of Entries... 14

Chapter 2 General Information .. 15
 2.1 Use and Implementation of Interfaces ... 15
 2.1.1 Use of File System Interfaces... 16
 2.2 The Compilation Environment.. 17
 2.2.1 The X/Open Name Space .. 17
 2.3 Error Numbers... 22
 2.3.1 Additional Error Numbers... 29
 2.4 Standard I/O Streams.. 30
 2.4.1 Interaction of File Descriptors and Standard I/O Streams............. 30
 2.4.2 Stream Orientation .. 32
 2.5 STREAMS... 34
 2.5.1 Accessing STREAMS... 35
 2.6 Interprocess Communication... 36
 2.6.1 IPC General Description... 36
 2.7 Realtime .. 38
 2.7.1 Signal Generation and Delivery.. 39
 2.7.2 Asynchronous I/O .. 40
 2.7.3 Memory Management .. 41
 2.7.4 Scheduling Policies .. 42
 2.7.5 Clocks and Timers ... 44
 2.8 Threads.. 46
 2.8.1 Supported Interfaces ... 46

System Interfaces and Headers, Issue 5: Volume 1 iii

Contents

 2.8.2 Thread-safety.. 48
 2.8.3 Thread Implementation Models... 48
 2.8.4 Thread Mutexes.. 49
 2.8.5 Thread Scheduling Attributes ... 49
 2.8.6 Thread Scheduling Contention Scope ... 50
 2.8.7 Scheduling Allocation Domain... 50
 2.8.8 Thread Cancellation .. 51
 2.8.8.1 Cancelability States .. 51
 2.8.8.2 Cancellation Points... 52
 2.8.8.3 Thread Cancellation Cleanup Handlers .. 54
 2.8.8.4 Async-Cancel Safety... 54
 2.8.9 Thread Read-Write Locks... 54
 2.9 Data Types.. 55

Chapter 3 System Interfaces ... 57

Chapter 4 Headers... 1063

 Index... 1219

iv CAE Specification (1997)

Preface

The Open Group

The Open Group is an international open systems organisation that is leading the way in
creating the infrastructure needed for the development of network-centric computing and the
information superhighway. Formed in 1996 by the merger of the X/Open Company and the
Open Software Foundation, The Open Group is supported by most of the world’s largest user
organisations, information systems vendors and software suppliers. By combining the strengths
of open systems specifications and a proven branding scheme with collaborative technology
development and advanced research, The Open Group is well positioned to assist user
organisations, vendors and suppliers in the development and implementation of products
supporting the adoption and proliferation of open systems.

With more than 300 member companies, The Open Group helps the IT industry to advance
technologically while managing the change caused by innovation. It does this by:

• consolidating, prioritising and communicating customer requirements to vendors

• conducting research and development with industry, academia and government agencies to
deliver innovation and economy through projects associated with its Research Institute

• managing cost-effective development efforts that accelerate consistent multi-vendor
deployment of technology in response to customer requirements

• adopting, integrating and publishing industry standard specifications that provide an
essential set of blueprints for building open information systems and integrating new
technology as it becomes available

• licensing and promoting the X/Open brand that designates vendor products which conform
to X/Open Product Standards

• promoting the benefits of open systems to customers, vendors and the public.

The Open Group operates in all phases of the open systems technology lifecycle including
innovation, market adoption, product development and proliferation. Presently, it focuses on
seven strategic areas: open systems application platform development, architecture, distributed
systems management, interoperability, distributed computing environment, security, and the
information superhighway. The Open Group is also responsible for the management of the
UNIX trade mark on behalf of the industry.

The X/Open Process

This description is used to cover the whole Process developed and evolved by X/Open. It
includes the identification of requirements for open systems, development of CAE and
Preliminary Specifications through an industry consensus review and adoption procedure (in
parallel with formal standards work), and the development of tests and conformance criteria.

This leads to the preparation of a Product Standard which is the name used for the
documentation that records the conformance requirements (and other information) to which a
vendor may register a product. There are currently two forms of Product Standard, namely the
Profile Definition and the Component Definition, although these will eventually be merged into
one.

System Interfaces and Headers, Issue 5: Volume 1 v

Preface

The X/Open brand logo is used by vendors to demonstrate that their products conform to the
relevant Product Standard. By use of the X/Open brand they guarantee, through the X/Open
Trade Mark Licence Agreement (TMLA), to maintain their products in conformance with the
Product Standard so that the product works, will continue to work, and that any problems will
be fixed by the vendor.

Open Group Publications

The Open Group publishes a wide range of technical literature, the main part of which is
focused on specification development and product documentation, but which also includes
Guides, Snapshots, Technical Studies, Branding and Testing documentation, industry surveys
and business titles.

There are several types of specification:

• CAE Specifications

CAE (Common Applications Environment) Specifications are the stable specifications that
form the basis for our product standards, which are used to develop X/Open branded
systems. These specifications are intended to be used widely within the industry for product
development and procurement purposes.

Anyone developing products that implement a CAE Specification can enjoy the benefits of a
single, widely supported industry standard. In addition, they can demonstrate product
compliance through the X/Open brand. CAE Specifications are published as soon as they
are developed, so enabling vendors to proceed with development of conformant products
without delay.

• Preliminary Specifications

Preliminary Specifications usually address an emerging area of technology and consequently
are not yet supported by multiple sources of stable conformant implementations. They are
published for the purpose of validation through implementation of products. A Preliminary
Specification is not a draft specification; rather, it is as stable as can be achieved, through
applying The Open Group’s rigorous development and review procedures.

Preliminary Specifications are analogous to the trial-use standards issued by formal standards
organisations, and developers are encouraged to develop products on the basis of them.
However, experience through implementation work may result in significant (possibly
upwardly incompatible) changes before its progression to becoming a CAE Specification.
While the intent is to progress Preliminary Specifications to corresponding CAE
Specifications, the ability to do so depends on consensus among Open Group members.

• Consortium and Technology Specifications

The Open Group publishes specifications on behalf of industry consortia. For example, it
publishes the NMF SPIRIT procurement specifications on behalf of the Network
Management Forum. It also publishes Technology Specifications relating to OSF/1, DCE,
OSF/Motif and CDE.

Technology Specifications (formerly AES Specifications) are often candidates for consensus
review, and may be adopted as CAE Specifications, in which case the relevant Technology
Specification is superseded by a CAE Specification.

vi CAE Specification (1997)

Preface

In addition, The Open Group publishes:

• Product Documentation

This includes product documentation — programmer’s guides, user manuals, and so on —
relating to the Pre-structured Technology Projects (PSTs), such as DCE and CDE. It also
includes the Single UNIX Documentation, designed for use as common product
documentation for the whole industry.

• Guides

These provide information that is useful in the evaluation, procurement, development or
management of open systems, particularly those that relate to the CAE Specifications. The
Open Group Guides are advisory, not normative, and should not be referenced for purposes
of specifying or claiming conformance to a Product Standard.

• Technical Studies

Technical Studies present results of analyses performed on subjects of interest in areas
relevant to The Open Group’s Technical Programme. They are intended to communicate the
findings to the outside world so as to stimulate discussion and activity in other bodies and
the industry in general.

• Snapshots

These provide a mechanism to disseminate information on its current direction and thinking,
in advance of possible development of a Specification, Guide or Technical Study. The
intention is to stimulate industry debate and prototyping, and solicit feedback. A Snapshot
represents the interim results of a technical activity.

Versions and Issues of Specifications

As with all live documents, CAE Specifications require revision to align with new developments
and associated international standards. To distinguish between revised specifications which are
fully backwards compatible and those which are not:

• A new Version indicates there is no change to the definitive information contained in the
previous publication of that title, but additions/extensions are included. As such, it replaces
the previous publication.

• A new Issue indicates there is substantive change to the definitive information contained in
the previous publication of that title, and there may also be additions/extensions. As such,
both previous and new documents are maintained as current publications.

Corrigenda

Readers should note that Corrigenda may apply to any publication. Corrigenda information is
published on the World-Wide Web at http://www.opengroup.org/public/pubs.

Ordering Information

Full catalogue and ordering information on all Open Group publications is available on the
World-Wide Web at http://www.opengroup.org/public/pubs.

System Interfaces and Headers, Issue 5: Volume 1 vii

Preface

This Specification

This specification is one of a set of CAE Specifications (see above) defining the X/Open System
Interface (XSI) Operating System requirements:

• System Interface Definitions, Issue 5 (the XBD specification)

• Commands and Utilities, Issue 5 (the XCU specification)

• System Interfaces and Headers, Issue 5 (this specification).

This specification describes the interfaces offered to application programs by XSI-conformant
systems. Readers are expected to be experienced C language programmers, and to be familiar
with the XBD specification.

This specification is divided into 2 volumes with consecutive page numbering. The overall
structure is as follows:

• Chapter 1 (Volume 1) explains the status of the specification and its relationship to formal
standards.

• Chapter 2 (Volume 1) contains important notes, terms and caveats relating to the rest of the
specification.

• Chapter 3 (Volumes 1 and 2) defines the functional interfaces to the XSI-conformant system.
Note that interfaces beginning A to Q are included in Volume 1, and interfaces beginning R to
Z are included in Volume 2.

• Chapter 4 (Volume 2) defines the contents of headers which declare constants, macros and
data structures that are needed by programs using the services provided by Chapter 3.

Comprehensive references are available in the index (Volume 2).

Typographical Conventions

The following typographical conventions are used throughout this document:

• Bold font is used in text for options to commands, filenames, keywords, type names, data
structures and their members.

• Italic strings are used for emphasis or to identify the first instance of a word requiring
definition. Italics in text also denote:

— command operands, command option-arguments or variable names, for example,
substitutable argument prototypes

— environment variables, which are also shown in capitals

— utility names

— external variables, such as errno

— functions; these are shown as follows: name(); names without parentheses are C external
variables, C function family names, utility names, command operands or command
option-arguments.

• Normal font is used for the names of constants and literals.

• The notation <file.h> indicates a header.

• Names surrounded by braces, for example, {ARG_MAX}, represent symbolic limits or
configuration values which may be declared in appropriate headers by means of the C
#define construct.

viii CAE Specification (1997)

Preface

• The notation [EABCD] is used to identify an error value EABCD.

• Syntax, code examples and user input in interactive examples are shown in fixed width
font. Brackets shown in this font, [] , are part of the syntax and do not indicate optional
items. In syntax the | symbol is used to separate alternatives, and ellipses (...) are used to
show that additional arguments are optional.

• Bold fixed width font is used to identify brackets that surround optional items in syntax,
[] , and to identify system output in interactive examples.

• Variables within syntax statements are shown in italic fixed width font .

• Ranges of values are indicated with parentheses or brackets as follows:

— (a,b) means the range of all values from a to b, including neither a nor b

— [a,b] means the range of all values from a to b, including a and b

— [a,b) means the range of all values from a to b, including a, but not b

— (a,b] means the range of all values from a to b, including b, but not a.

• Shading is used to identify extensions or warnings as detailed in Section 1.7.1 on page 12.

Notes:

1. Symbolic limits are used in this specification instead of fixed values for
portability. The values of most of these constants are defined in <limits.h> or
<unistd.h>.

2. The values of errors are defined in <errno.h>.

System Interfaces and Headers, Issue 5: Volume 1 ix

Preface

x CAE Specification (1997)

Trade Marks

AT&T is a registered trade mark of AT&T in the U.S.A. and other countries.

HP is a registered trade mark of Hewlett-Packard.

Motif, OSF/1 and UNIX are registered trade marks and the ‘‘X Device’’TM and The Open
GroupTM are trade marks of The Open Group.

/usr/group is a registered trade mark of UniForum, the International Network of UNIX
System Users.

System Interfaces and Headers, Issue 5: Volume 1 xi

Acknowledgements

The Open Group gratefully acknowledges:

• AT&T for permission to reproduce portions of its copyrighted System V Interface Definition
(SVID) and material from the UNIX System V Release 2.0 documentation.

• The Institution of Electrical and Electronics Engineers, Inc. for permission to reproduce
portions of its copyrighted material.

• The IEEE Computer Society’s Portable Applications Standards Committee (PASC), whose
Standards contributed to our work.

• The ANSI X3J11 Committees.

• The Large File Summit for their work in developing the set of changes to the X/Open Single
UNIX Specification to support large files.

• The following Base Working Group members for their valuable contribution to the
development of this specification:

Theodore P. Baker
Andre Bellotti
Mark Brown
Dave Butenhof
Dennis Chapman
Geoff Clare
Don Cragun
Jeff Denham
Rod Evans

John Farley
Eldad Ganin
Rob Gingell
Karen Gordon
J.M. Gwinn
Tim Heitz
Cathy Hughes (Editor)
Andrew Josey (Chair)
Dave Long

Scott Lurndal
Mick Meaden
Finnbarr P. Murphy
Scott Norton
Gert Presutti
Frank Prindle
Andrew Roach
Curtis Royster, Jr.
Wolfgang Sanow

Lee Schermerhorn
Thomas Shem
Andy Silverman
Dan Stein
Blue Tabor
Jim Zepeda

xii CAE Specification (1997)

Referenced Documents

The following documents are referenced in this specification:

AIX 3.2 Manual
AIX Version 3.2 For RISC System/6000, Technical Reference: Base Operating System And
Extensions,1990,1992 (Part No. SC23-2382-00).

ANSI C
American National Standard for Information Systems: Standard X3.159-1989, Programming
Language C.

ANSI/IEEE Std 754-1985
Standard for Binary Floating-Point Arithmetic.

ANSI/IEEE Std 854-1987
Standard for Radix-Independent Floating-Point Arithmetic.

Draft ANSI X3J11.1
IEEE Floating Point draft report of ANSI X3J11.1 (NCEG).

FIPS 151-2
Federal Information Procurement Standards (FIPS) 151-2.

HP-UX Manual
Hewlett-Packard HP-UX Release 9.0 Reference Manual, Third Edition, August 1992.

ISO 4217
ISO 4217: 1987, Codes for the Representation of Currencies and Funds.

ISO 6937
ISO 6937: 1983, Information Processing — Coded Character Sets for Text Communication.

ISO 8601
ISO 8601: 1988, Data Elements and Interchange Formats — Information Interchange —
Representation of Dates and Times.

ISO 8859-1
ISO 8859-1: 1987, Information Processing — 8-bit Single-byte Coded Graphic Character Sets
— Part 1: Latin Alphabet No. 1.

ISO/IEC 646
ISO/IEC 646: 1991, Information Processing — ISO 7-bit Coded Character Set for Information
Interchange.

ISO C
ISO/IEC 9899: 1990: Programming Languages — C, including:
Technical Corrigendum 1: 1994.
Amendment 1: 1994, Multibyte Support Extensions (MSE) for ISO C.

ISO POSIX-1
ISO/IEC 9945-1: 1996, Information Technology — Portable Operating System Interface
(POSIX) — Part 1: System Application Program Interface (API) [C Language] (identical to
ANSI/IEEE Std 1003.1-1996). Incorporating ANSI/IEEE Stds 1003.1-1990, 1003.1b-1993,
1003.1c-1995 and 1003.1i-1995.

ISO POSIX-2
ISO/IEC 9945-2: 1993, Information Technology — Portable Operating System Interface

System Interfaces and Headers, Issue 5: Volume 1 xiii

Referenced Documents

(POSIX) — Part 2: Shell and Utilities (identical to IEEE Std 1003.2-1992 as amended by IEEE
Std 1003.2a-1992).

MSE working draft
Working draft of ISO/IEC 9899: 1990/Add3: draft, Addendum 3 — Multibyte Support
Extensions (MSE) as documented in the ISO Working Paper SC22/WG14/N205 dated 31
March 1992.

OSF AES
Application Environment Specification (AES) Operating System Programming Interfaces
Volume, Revision A (ISBN: 0-13-043522-8).

OSF/1
OSF/1 Programmer’s Reference, Release 1.2 (ISBN: 0-13-020579-6).

POSIX.1
IEEE Std 1003.1-1988, Standard for Information Technology — Portable Operating System
Interface (POSIX) — Part 1: System Application Program Interface (API) [C Language].

SunOS 5.3
SunOS 5.3 STREAMS Programmer’s Guide (Part No. 801-5305-10).

SVID Issue 1
System V Interface Definition (Spring 1985 - Issue 1).

SVID Issue 2
System V Interface Definition (Spring 1986 - Issue 2).

SVID 3rd Edition
System Interface Definitions (1989 - 3rd Edition).

System V Release 2.0

— UNIX System V Release 2.0 Programmer’s Reference Manual (April 1984 - Issue 2).

— UNIX System V Release 2.0 Programming Guide (April 1984 - Issue 2).

System V Release 4.2
Operating System API Reference, UNIX SVR4.2 (1992) (ISBN: 0-13-017658-3).

The following Open Group documents are referenced in this specification.

Curses Interface, Issue 4, Version 2
CAE Specification, July 1996, X/Open Curses, Issue 4, Version 2 (ISBN: 1-85912-171-3,
C610).

Headers Interface
X/Open Specification, February 1992, Supplementary Definitions, Issue 3
(ISBN: 1-872630-38-3, C213), Chapter 19, Cpio and Tar Headers; this specification was
formerly X/Open Portability Guide Issue 3, Volume 3, January 1989, XSI Supplementary
Definitions (ISBN: 0-13-685850-3, XO/XPG/89/004).

Internationalisation Guide
Guide, July 1993, Internationalisation Guide, Version 2 (ISBN: 1-859120-02-4, G304).

Issue 1
X/Open Portability Guide, July 1985 (ISBN: 0-444-87839-4).

Issue 2
See XSH, Issue 2.

xiv CAE Specification (1997)

Referenced Documents

Issue 3
See XSH, Issue 3.

Issue 4
See XSH, Issue 4.

Issue 4, Version 2
See XSH, Issue 4, Version 2.

Issue 5
See XSH, Issue 5.

Migration Guide
Guide, December 1995, XPG3-XPG4 Base Migration Guide, Version 2 (ISBN: 1-85912-156-X,
G501).

XNS, Issue 5
CAE Specification, February 1997, Networking Services, Issue 5 (ISBN: 1-85912-165-9, C523).

XBD, Issue 4
CAE Specification, July 1992, System Interface Definitions, Issue 4 (ISBN: 1-872630-46-4,
C204).

XBD, Issue 4, Version 2
CAE Specification, August 1994, System Interface Definitions, Issue 4, Version 2
(ISBN: 1-85912-036-9, C434).

XBD, Issue 5
CAE Specification, January 1997, System Interface Definitions, Issue 5 (ISBN: 1-85912-186-1,
C605).

XCU, Issue 4
CAE Specification, July 1992, Commands and Utilities, Issue 4 (ISBN: 1-872630-48-0, C203).

XCU, Issue 4, Version 2
CAE Specification, August 1994, Commands and Utilities, Issue 4, Version 2
(ISBN: 1-85912-034-2, C436).

XCU, Issue 5
CAE Specification, January 1997, Commands and Utilities, Issue 5 (ISBN: 1-85912-191-8,
C604).

XNFS, Version 3
CAE Specification, August 1996, Protocols for X/Open Interworking: XNFS, Version 3
(ISBN: 1-85912-160-8, C525).

XPG4, Version 2
The X/Open Branding Programme, How to Brand — What to Buy, February 1995
(ISBN: 1-85912-084-9, X951).

XSH, Issue 2
X/Open Portability Guide, Volume 2, January 1987, XVS System Calls and Libraries
(ISBN: 0-444-70175-3).

XSH, Issue 3
X/Open Specification, February 1992, System Interfaces and Headers, Issue 3
(ISBN: 1-872630-37-5, C212); this specification was formerly X/Open Portability Guide,
Issue 3, Volume 2, January 1989, XSI System Interface and Headers (ISBN: 0-13-685843-0,
XO/XPG/89/003).

System Interfaces and Headers, Issue 5: Volume 1 xv

Referenced Documents

XSH, Issue 4
CAE Specification, July 1992, System Interfaces and Headers, Issue 4 (ISBN: 1-872630-47-2,
C202).

XSH, Issue 4, Version 2
CAE Specification, August 1994, System Interfaces and Headers, Issue 4, Version 2
(ISBN: 1-85912-037-7, C435).

XSH, Issue 5
CAE Specification, January 1997, System Interfaces and Headers, Issue 5
(ISBN: 1-85912-181-0, C606). (This document.)

xvi CAE Specification (1997)

Chapter 1

Introduction

1.1 Overview
This document describes the interfaces offered to application programs by the X/Open System
Interface (XSI). It defines these interfaces and their run-time behaviour without imposing any
particular restrictions on the way in which the interfaces are implemented.

The interfaces are defined in terms of the source code interfaces for the C programming
language, which is defined in the ISO C standard. It is possible that some implementations may
make the interfaces available to languages other than C, but this specification does not currently
define the source code interfaces for any other language.

This specification allows an application to be built using a set of services that are consistent
across all systems that conform to this specification (see Section 1.2). Such systems are termed
XSI-conformant systems. Applications written in C using only these interfaces and avoiding
implementation-dependent constructs are portable to all XSI-conformant systems.

This specification does not define networking interfaces; these are specified in the referenced
Networking Services, Issue 5 specification.

1.2 Conformance
An implementation conforming to this specification shall meet the requirements specified by
BASE conformance (see Section 1.2.1).

1.2.1 BASE Conformance

An implementation conforming to this specification shall meet the following criteria for BASE
conformance:

• The system shall support all the interfaces and headers defined within this specification that
are part of the BASE capability. The BASE capability includes everything not listed in one of
the Feature Groups defined in Section 1.3 on page 2.

• The system may provide one or more of the following Feature Groups:

— Encryption

— Realtime

— Realtime Threads

— Legacy.

• When an implementation claims that a feature is provided, all of its constituent parts shall be
provided and shall comply with this specification.

Note: Whether support for a particular Feature Group is optional or mandatory is defined
in the referenced XPG4, Version 2 document. Some interfaces in Feature Groups
define optional behaviour. To determine whether an implementation supports an
optional Feature Group or optional behaviour, refer to the implementation’s
Conformance Statement.

System Interfaces and Headers, Issue 5: Volume 1 1

Conformance Introduction

• The system may provide additional or enhanced interfaces, headers and facilities not
required by this specification, provided that such additions or enhancements do not affect the
behaviour of an application that requires only the facilities described in this specification.

1.3 Feature Groups
For all Feature Groups, interfaces to all elements of the Feature Group shall exist. On
implementations that do not support individual interfaces, each unsupported interface shall
indicate an error, with errno set to [ENOSYS] unless otherwise specified.

If individual interfaces are supported, but the whole Feature Group is not supported, the
interfaces will behave as defined in this specification.

1.3.1 Encryption

The Encryption Feature Group includes the following interfaces:

crypt()
encrypt()
setkey()

These are marked CRYPT.

Due to U.S. Government export restrictions on the decoding algorithm, implementations are
restricted in making these functions available. All the functions in the Encryption Feature Group
may therefore return [ENOSYS] or alternatively, encrypt() shall return [ENOSYS] for the
decryption operation.

An implementation that claims conformance to this Feature Group shall set _XOPEN_CRYPT to
a value other than −1. An implementation that does not claim conformance to this Feature
Group shall set _XOPEN_CRYPT to −1.

1.3.2 Realtime

This document includes all the interfaces defined in the POSIX Realtime Extension.

Where entire manual pages have been added, they are marked REALTIME. Where additional
semantics have been added to existing manual pages, the new material is identified by use of the
RT margin legend.

An implementation that claims conformance to this Feature Group shall set the macro
_XOPEN_REALTIME to a value other than −1. An implementation that does not claim
conformance shall set _XOPEN_REALTIME to −1.

The POSIX Realtime Extension defines the following symbolic constants and their meaning:

_POSIX_ASYNCHRONOUS_IO
Implementation supports the Asynchronous Input and Output option.

_POSIX_FSYNC
Implementation supports the File Synchronisation option. XSI-conformant systems always
support the functionality associated with this symbol.

_POSIX_MAPPED_FILES
Implementation supports the Memory Mapped Files option. XSI-conformant systems
always support the functionality associated with this symbol.

2 CAE Specification (1997)

Introduction Feature Groups

_POSIX_MEMLOCK
Implementation supports the Process Memory Locking option.

_POSIX_MEMLOCK_RANGE
Implementation supports the Range Memory Locking option.

_POSIX_MEMORY_PROTECTION
Implementation supports the Memory Protection option. XSI-conformant systems always
support the functionality associated with this symbol.

_POSIX_MESSAGE_PASSING
Implementation supports the Message Passing option.

_POSIX_PRIORITIZED_IO
Implementation supports the Prioritized Input and Output option.

_POSIX_PRIORITY_SCHEDULING
Implementation supports the Process Scheduling option.

_POSIX_REALTIME_SIGNALS
Implementation supports the Realtime Signals Extension option.

_POSIX_SEMAPHORES
Implementation supports the Semaphores option.

_POSIX_SHARED_MEMORY_OBJECTS
Implementation supports the Shared Memory Objects option.

_POSIX_SYNCHRONIZED_IO
Implementation supports the Synchronised Input and Output option.

_POSIX_TIMERS
Implementation supports the Timers option.

If the symbol _XOPEN_REALTIME is defined to have a value other than −1, then the following
symbolic constants will be defined to an unspecified value:

_POSIX_ASYNCHRONOUS_IO
_POSIX_MEMLOCK
_POSIX_MEMLOCK_RANGE
_POSIX_MESSAGE_PASSING
_POSIX_PRIORITY_SCHEDULING
_POSIX_REALTIME_SIGNALS
_POSIX_SEMAPHORES
_POSIX_SHARED_MEMORY_OBJECTS
_POSIX_SYNCHRONIZED_IO
_POSIX_TIMERS

Interfaces in the _XOPEN_REALTIME Feature Group are marked REALTIME.

The functionality associated with _POSIX_MAPPED_FILES, _POSIX_MEMORY_PROTECTION
and _POSIX_FSYNC is always present on XSI-conformant systems.

Support of _POSIX_PRIORITIZED_IO is optional. If this functionality is supported, then
_POSIX_PRIORITIZED_IO will be set to a value other than −1. Otherwise it will be undefined.

If _POSIX_PRIORITIZED_IO is supported, then asynchronous I/O operations performed by
aio_read (), aio_write () and lio_listio () will be submitted at a priority equal to the scheduling
priority of the process minus aiocbp->aio_reqprio. The implementation will also document for
which files I/O prioritization is supported.

System Interfaces and Headers, Issue 5: Volume 1 3

Feature Groups Introduction

1.3.3 Realtime Threads

The Realtime Threads Feature Group includes the interfaces covered by the POSIX Threads
compile-time symbolic constants _POSIX_THREAD_PRIO_INHERIT,
_POSIX_THREAD_PRIO_PROTECT and _POSIX_THREAD_PRIORITY_SCHEDULING as
defined in <unistd.h>. This includes the following interfaces:

pthread_attr_getinheritsched ()
pthread_attr_getschedpolicy ()
pthread_attr_getscope ()
pthread_attr_setinheritsched ()
pthread_attr_setschedpolicy ()
pthread_attr_setscope ()
pthread_getschedparam ()
pthread_mutex_getprioceiling ()
pthread_mutex_setprioceiling ()
pthread_mutexattr_getprioceiling ()
pthread_mutexattr_getprotocol ()
pthread_mutexattr_setprioceiling ()
pthread_mutexattr_setprotocol ()
pthread_setschedparam()

Where applicable, pages are marked REALTIME THREADS, together with the RTT margin
legend for the SYNOPSIS section.

An implementation that claims conformance to this Feature Group shall set
_XOPEN_REALTIME_THREADS to a value other than −1. An implementation that does not
claim conformance to this Feature Group shall set the value of _XOPEN_REALTIME_THREADS
to −1.

If the symbol _XOPEN_REALTIME_THREADS is defined to have a value other than −1, then the
symbols:

_POSIX_THREAD_PRIORITY_SCHEDULING
_POSIX_THREAD_PRIO_PROTECT
_POSIX_THREAD_PRIO_INHERIT

will also be defined; otherwise these symbols will be undefined.

1.3.4 Legacy

The Legacy Feature Group includes the interfaces and headers which were mandatory in
previous versions of this specification but are optional in this version of the specification.

These interfaces and headers are retained in this specification because of their widespread use.
Application writers should not rely on the existence of these interfaces or headers in new
applications, but should follow the migration path detailed in the APPLICATION USAGE
sections of the relevant pages.

Various factors may have contributed to the decision to mark an interface or header LEGACY.
In all cases, the specific reasons for the withdrawal of an interface or header are documented on
the relevant pages.

Once an interface or header is marked LEGACY, no modifications will be made to the
specifications of such interfaces or headers other than to the APPLICATION USAGE sections of
the relevant pages.

4 CAE Specification (1997)

Introduction Feature Groups

The interfaces and headers which form this Feature Group are as follows:

Legacy Interfaces, Headers and External Variables
advance()
brk()
chroot()
compile()
cuserid()

gamma()
getdtablesize()
getpagesize()
getpass()
getw()

putw()
re_comp()
re_exec()
regcmp()
regex()

sbrk()
sigstack()
step()
ttyslot()
valloc()

wait3()

<regexp.h> <varargs.h> <re_comp.h>
loc1 __loc1 loc2 locs

An implementation that claims conformance to this Feature Group shall set the macro
_XOPEN_LEGACY to a value other than −1. An implementation that does not claim
conformance shall set _XOPEN_LEGACY to −1.

System Interfaces and Headers, Issue 5: Volume 1 5

Changes from Issue 4 Introduction

1.4 Changes from Issue 4
The following sections describe changes made to this specification since Issue 4. The CHANGE
HISTORY section for each entry details the technical changes that have been made to that entry
since Issue 4. Changes made between Issue 2 and Issue 4 are not included.

1.4.1 Changes from Issue 4 to Issue 4, Version 2

The following list summarises the major changes that were made in this specification from Issue
4 to Issue 4, Version 2:

• The X/Open UNIX extension has been added. This specifies the common core APIs of 4.3
Berkeley Software Distribution (BSD 4.3), the OSF AES and SVID Issue 3.

• STREAMS have been added as part of the X/Open UNIX extension.

• Existing XPG4 interfaces have been clarified as a result of industry feedback.

1.4.2 Changes from Issue 4, Version 2 to Issue 5

The following list summarises the major changes that have been made in this specification since
Issue 4, version 2:

• Interfaces previously defined in the ISO POSIX-2 standard C-language Binding, Shared
Memory, Enhanced Internationalisation and X/Open UNIX Extension Feature Groups are
moved to the BASE in this issue.

• Threads are added to the BASE for alignment with the POSIX Threads Extension.

• The Realtime Threads Feature Group is added.

• The Realtime Feature Group is added for alignment with the POSIX Realtime Extension.

• Multibyte Support Extensions (MSE) are added to the BASE for alignment with ISO/IEC
9899:1990/Amendment 1:1994 (E).

• Large File Summit (LFS) Extensions are added to the BASE for support of 64-bit or larger files
and file-systems.

• X/Open-specific Threads extensions are added to the BASE.

• X/Open-specific dynamic linking interfaces are added to the BASE.

• A new category Legacy has been added; see Section 1.3.4 on page 4.

• The categories TO BE WITHDRAWN and WITHDRAWN have been removed.

6 CAE Specification (1997)

Introduction Changes from Issue 4

1.4.3 New Features

The interfaces and headers first introduced in Issue 5 are listed in the table below.

New Interfaces and Headers in Issue 5
aio_cancel()
aio_error()
aio_fsync()
aio_read()
aio_return()
aio_suspend()
aio_write()
asctime_r()
btowc()
clock_getres()
clock_gettime()
clock_settime()
ctime_r()
dlclose()
dlerror()
dlopen()
dlsym()
fdatasync()
flockfile()
fseeko()
ftello()
ftrylockfile()
funlockfile()
fwide()
fwprintf()
fwscanf()
getc_unlocked()
getchar_unlocked()
getgrgid_r()
getgrnam_r()
getlogin_r()
getpwnam_r()
getpwuid_r()
gmtime_r()
lio_listio()
localtime_r()
mbrlen()
mbrtowc()
mbsinit()
mbsrtowcs()
mlock()
mlockall()
mq_close()
mq_getattr()
mq_notify()
mq_open()

pthread_attr_getstackaddr()
pthread_attr_getstacksize()
pthread_attr_init()
pthread_attr_setdetachstate()
pthread_attr_setguardsize()
pthread_attr_setinheritsched()
pthread_attr_setschedparam()
pthread_attr_setschedpolicy()
pthread_attr_setscope()
pthread_attr_setstackaddr()
pthread_cancel()
pthread_cleanup_pop()
pthread_cleanup_push()
pthread_cond_broadcast()
pthread_cond_destroy()
pthread_cond_init()
pthread_cond_signal()
pthread_cond_timedwait()
pthread_cond_wait()
pthread_condattr_destroy()
pthread_condattr_getpshared()
pthread_condattr_init()
pthread_condattr_setpshared()
pthread_create()
pthread_detach()
pthread_equal()
pthread_exit()
pthread_getconcurrency()
pthread_getschedparam()
pthread_getspecific()
pthread_join()
pthread_key_create()
pthread_key_delete()
pthread_kill()
pthread_mutex_destroy()
pthread_mutex_getprioceiling()
pthread_mutex_init()
pthread_mutex_lock()
pthread_mutex_setprioceiling()
pthread_mutex_trylock()
pthread_mutex_unlock()
pthread_mutexattr_destroy()
pthread_mutexattr_getprioceiling()
pthread_mutexattr_getprotocol()
pthread_mutexattr_getpshared()
pthread_mutexattr_gettype()

pthread_self()
pthread_setcancelstate()
pthread_setcanceltype()
pthread_setconcurrency()
pthread_setschedparam()
pthread_setspecific()
pthread_sigmask()
pthread_testcancel()
putc_unlocked()
putchar_unlocked()
pwrite()
rand_r()
readdir_r()
sched_get_priority_max()
sched_get_priority_min()
sched_getparam()
sched_getscheduler()
sched_rr_get_interval()
sched_setparam()
sched_setscheduler()
sched_yield()
sem_close()
sem_destroy()
sem_getvalue()
sem_init()
sem_open()
sem_post()
sem_trywait()
sem_unlink()
sem_wait()
shm_open()
shm_unlink()
sigqueue()
sigtimedwait()
sigwait()
sigwaitinfo()
snprintf()
strtok_r()
swprintf()
swscanf()
timer_create()
timer_delete()
timer_getoverrun()
timer_gettime()
timer_settime()
towctrans()

System Interfaces and Headers, Issue 5: Volume 1 7

Changes from Issue 4 Introduction

New Interfaces and Headers in Issue 5
ttyname_r()
vfwprintf()
vsnprintf()
vswprintf()
vwprintf()
wcrtomb()
wcsrtombs()
wcsstr()
wctob()
wctrans()
wmemchr()
wmemcmp()
wmemcpy()
wmemmove()
wmemset()
wprintf()
wscanf()

pthread_mutexattr_init()
pthread_mutexattr_setprioceiling()
pthread_mutexattr_setprotocol()
pthread_mutexattr_setpshared()
pthread_mutexattr_settype()
pthread_once()
pthread_rwlock_destroy()
pthread_rwlock_init()
pthread_rwlock_rdlock()
pthread_rwlock_tryrdlock()
pthread_rwlock_trywrlock()
pthread_rwlock_unlock()
pthread_rwlock_wrlock()
pthread_rwlockattr_destroy()
pthread_rwlockattr_getpshared()
pthread_rwlockattr_init()
pthread_rwlockattr_setpshared()

mq_receive()
mq_send()
mq_setattr()
mq_unlink()
munlock()
munlockall()
nanosleep()
pread()
pthread_addr_setstacksize()
pthread_atfork()
pthread_attr_destroy()
pthread_attr_getdetachstate()
pthread_attr_getguardsize()
pthread_attr_getinheritsched()
pthread_attr_getschedparam()
pthread_attr_getschedpolicy()
pthread_attr_getscope()
<aio.h>
<dlfcn.h>
<inttypes.h>

<iso646.h>
<mqueue.h>
<pthread.h>

<sched.h>
<semaphore.h>
<wctype.h>

8 CAE Specification (1997)

Introduction Changes from Issue 4

The interfaces, headers and external variables first introduced in Issue 4, Version 2 are listed in
the table below.

New Interfaces, Headers and External Variables in Issue 4, Version 2
FD_CLR() endutxent() gettimeofday () ptsname() sigaltstack ()
FD_ISSET() expm1() getutxent() putmsg() sighold ()
FD_SET() fattach () getutxid() putpmsg() sigignore()
FD_ZERO() fchdir() getutxline() pututxline() siginterrupt()
_longjmp () fchmod() getwd() random() sigpause()
_setjmp() fchown() grantpt() re_comp() sigrelse()
a64l () fcvt() ilogb () re_exec() sigset()
acosh() fdetach () index() readlink () sigstack ()
asinh() ffs() initstate() readv() srandom()
atanh() fmtmsg() insque() realpath () statvfs()
basename() fstatvfs () ioctl () regcmp() strcasecmp()
bcmp() ftime() isastream() regex() strdup()
bcopy() ftok () killpg () remainder() strncasecmp()
brk() ftruncate() l64a () remque() swapcontext()
bsd_signal() gcvt() lchown() rindex() symlink()
bzero() getcontext() lockf () rint() sync()
cbrt() getdate() log1p () sbrk() syslog()
closelog () getdtablesize () logb() scalb() tcgetsid()
dbm_clearerr() getgrent() lstat() select() truncate()
dbm_close() gethostid () makecontext() setcontext() ttyslot ()
dbm_delete() getitimer() mknod() setgrent() ualarm()
dbm_error() getmsg() mkstemp() setitimer() unlockpt ()
dbm_fetch() getpagesize () mktemp() setlogmask () usleep()
dbm_firstkey() getpgid() mmap() setpgrp() utimes()
dbm_nextkey() getpmsg() mprotect() setpriority() valloc ()
dbm_open() getpriority () msync() setpwent() vfork ()
dbm_store() getpwent() munmap() setregid() wait3()
dirname() getrlimit() nextafter() setreuid() waitid ()
ecvt() getrusage() nftw() setrlimit() writev()
endgrent() getsid() openlog () setstate()
endpwent() getsubopt() poll () setutxent()
<fmtmsg.h> <re_comp.h> <sys/resource.h> <sys/uio.h> <utmpx.h>
<libgen.h> <strings.h> <sys/statvfs.h> <sys/un.h>
<ndbm.h> <stropts.h> <sys/time.h> <syslog.h>
<poll.h> <sys/mman.h> <sys/timeb.h> <ucontext.h>
getdate_err __loc1

System Interfaces and Headers, Issue 5: Volume 1 9

Terminology Introduction

1.5 Terminology
The following terms are used in this specification:

can
This describes a permissible optional feature or behaviour available to the user or application; all
systems support such features or behaviour as mandatory requirements.

implementation-dependent
The value or behaviour is not consistent across all implementations. The provider of an
implementation normally documents the requirements for correct program construction and
correct data in the use of that value or behaviour. When the value or behaviour in the
implementation is designed to be variable or customisable on each instantiation of the system,
the provider of the implementation normally documents the nature and permissible ranges of
this variation. Applications that are intended to be portable must not rely on implementation-
dependent values or behaviour.

legacy
Certain features are legacy , which means that they are being retained for compatibility with older
applications, but have limitations which make them inappropriate for developing portable
applications. New applications should use alternative means of obtaining equivalent
functionality. Legacy features are marked LEGACY.

may
With respect to implementations, the feature or behaviour is optional. Applications should not
rely on the existence of the feature. To avoid ambiguity, the reverse sense of may is expressed as
need not , instead of may not .

must
This describes a requirement on the application or user.

should
With respect to implementations, the feature is recommended, but it is not mandatory.
Applications should not rely on the existence of the feature.

With respect to users or applications, the word means recommended programming practice that
is necessary for maximum portability.

undefined
A value or behaviour is undefined if this document imposes no portability requirements on
applications for erroneous program constructs or erroneous data. Implementations may specify
the result of using that value or causing that behaviour, but such specifications are not
guaranteed to be consistent across all implementations. An application using such behaviour is
not fully portable to all systems.

unspecified
A value or behaviour is unspecified if this document imposes no portability requirements on
applications for correct program construct or correct data. Implementations may specify the
result of using that value or causing that behaviour, but such specifications are not guaranteed
to be consistent across all implementations. An application requiring a specific behaviour,
rather than tolerating any behaviour when using that functionality, is not fully portable to all
systems.

will
This means that the behaviour described is a requirement on the implementation and
applications can rely on its existence.

10 CAE Specification (1997)

Introduction Terminology

1.6 Relationship to Formal Standards
Great care has been taken to ensure that this specification is fully aligned with the following
formal standards:

• ISO/IEC 9945-1: 1996

• ISO/IEC 9945-2: 1993

• ISO/IEC 9899: 1990

• ISO/IEC 9899:1990/Amendment 1:1994 (E) (MSE)

• Federal Information Procurement Standards (FIPS) 151-2.

Any conflict between this specification and any of these standards is unintentional. This
document defers to the formal standards, which The Open Group recognises as superior. In
particular, from time to time, when ambiguities are found in the formal standards, the
responsible bodies will make interpretations of them, whose findings become binding on the
standard. Where, as the result of such an interpretation, or for any other reason, any of these
formal standards are found to conflict with this specification, XSI-conformant systems are
required to behave in the manner defined either by the formal standard or by this specification.
Application writers should clearly avoid depending exclusively on either behaviour in such
cases; the list of all conflicts found since publication of this specification is available on request.
(See page ii for how to contact The Open Group.)

This document also allows, but does not require, mathematics functions to support
IEEE Std 754-1985 and IEEE Std 854-1987.

1.6.1 Relationship to Emerging Formal Standards

This document also allows, but does not require, mathematics functions to behave as specified
by the IEEE Floating Point draft report of ANSI X3J11.1 (NCEG).

Where function specifications in the draft ANSI X3J11.1 require behaviour that is different from
this specification, but not in conflict with the ISO C standard, an XSI-conformant system may
behave either in the manner defined by the draft ANSI X3J11.1 or by this specification.

System Interfaces and Headers, Issue 5: Volume 1 11

Portability Introduction

1.7 Portability
This document describes a superset of the requirements of the ISO POSIX-1 standard and the
ISO C standard. It also contains parts of the ISO POSIX-2 standard Shell and Utilities which
The Open Group feels are better suited to inclusion in this specification, rather than in the XCU
specification. (The ISO POSIX-1 standard is identical to IEEE Std 1003.1-1996, which is often
referred to as the POSIX.1 standard. The ISO C standard is technically identical in normative
content to the ANSI C standard.)

Some of the utilities in CAE Specification, Commands and Utilities, Issue 5 and functions in this
document describe functionality that might not be fully portable to systems based on the ISO
POSIX-1 or ISO POSIX-2 standards. Where enhanced or reduced functionality is specified, the
text is shaded and a code in the margin identifies the nature of the extension or warning (see
Section 1.7.1). For maximum portability, an application should avoid such functionality.

1.7.1 Codes

The codes and their meanings are as follows:

EX Extension.
The functionality described is an extension to the standards referenced above. Application
writers may confidently make use of an extension as it will be supported on all XSI-conformant
systems. These extensions are designed not to conflict with the published standards.

If an entire SYNOPSIS section is shaded and marked with one EX, all the functionality described
in that entry is an extension.

Some behaviour which is allowed to be optional in the formal standards is mandated on XSI-
conformant systems. Such behaviours (for example, those dependent on the availability of job
control) might not be individually marked as extensions, but the mandatory nature of the feature
is marked as an extension where the option is described, typically in the header where the
corresponding symbolic constant is defined.

FIPS FIPS Requirements.
The Federal Information Processing Standards (FIPS) are a series of U.S. government
procurement standards managed and maintained on behalf of the U.S. Department of
Commerce by the National Institute of Standards and Technology (NIST). Where restrictions
have been made in order to align with the FIPS requirements, they have the special mark shown
here, and appear in the index under FIPS alignment (as well as under EX).

The following restrictions are required by FIPS 151-2:

• The implementation will support {_POSIX_CHOWN_RESTRICTED}.

• The limit {NGROUPS_MAX} will be greater than or equal to 8.

• The implementation will support the setting of the group ID of a file (when it is created) to
that of the parent directory.

• The implementation will support {_POSIX_SAVED_IDS}.

• The implementation will support {_POSIX_VDISABLE}.

• The implementation will support {_POSIX_JOB_CONTROL}.

• The implementation will support {_POSIX_NO_TRUNC}.

• The read() call returns the number of bytes read when interrupted by a signal and will not
return −1.

12 CAE Specification (1997)

Introduction Portability

• The write() call returns the number of bytes written when interrupted by a signal and will
not return −1.

• In the environment for the login shell, the environment variables LOGNAME and HOME will
be defined and have the properties described in Chapter 5 of CAE Specification, System
Interface Definitions, Issue 5.

• The value of {CHILD_MAX} will be greater than or equal to 25.

• The value of {OPEN_MAX} will be greater than or equal to 20.

• The implementation will support the functionality associated with the symbols CS7, CS8,
CSTOPB, PARODD and PARENB defined in <termios.h>.

OH Optional header.
In the SYNOPSIS section of some interfaces in this document an included header is marked as
in the following example:

OH #include <sys/types.h>
#include <grp.h>
struct group *getgrnam(const char *name);

This indicates that the marked header is not required on XSI-conformant systems. This is an
extension to certain formal standards where the full synopsis is required.

RT Realtime.
This identifies the interfaces and additional semantics in the Realtime Feature Group.

RTT Realtime Threads.
This identifies the interfaces and additional semantics in the Realtime Threads Feature Group.

System Interfaces and Headers, Issue 5: Volume 1 13

Format of Entries Introduction

1.8 Format of Entries
The entries in Chapter 3 and Chapter 4 are based on a common format.

NAME
This section gives the name or names of the entry and briefly states its purpose.

SYNOPSIS
This section summarises the use of the entry being described. If it is necessary to
include a header to use this interface, the names of such headers are shown, for
example:

#include <stdio.h>

DESCRIPTION
This section describes the functionality of the interface or header.

RETURN VALUE
This section indicates the possible return values, if any.

If the implementation can detect errors, ‘‘successful completion’’ means that no error
has been detected during execution of the function. If the implementation does detect
an error, the error will be indicated.

For functions where no errors are defined, ‘‘successful completion’’ means that if the
implementation checks for errors, no error has been detected. If the implementation
can detect errors, and an error is detected, the indicated return value will be returned
and errno may be set.

ERRORS
This section gives the symbolic names of the values returned in errno if an error occurs.

‘‘No errors are defined’’ means that values and usage of errno, if any, depend on the
implementation.

EXAMPLES
This section gives examples of usage, where appropriate. This section is non-
normative. In the event of conflict between an example and a normative part of the
specification, the normative material is to be taken as correct.

APPLICATION USAGE
This section gives warnings and advice to application writers about the entry. This
section is non-normative. In the event of conflict between warnings and advice and a
normative part of the specification, the normative material is to be taken as correct.

FUTURE DIRECTIONS
This section provides comments which should be used as a guide to current thinking;
there is not necessarily a commitment to adopt these future directions.

SEE ALSO
This section gives references to related information.

CHANGE HISTORY
This section shows the derivation of the entry and any significant changes that have
been made to it.

The only sections relating to conformance are the SYNOPSIS, DESCRIPTION, RETURN VALUE
and ERRORS sections.

14 CAE Specification (1997)

Chapter 2

General Information

This chapter covers information that is relevant to all the Interfaces specified in Chapter 3 and
Chapter 4:

• the use and implementation of interfaces (see Section 2.1)

• the compilation environment (see Section 2.2 on page 17)

• error numbers (see Section 2.3 on page 22)

• standard I/O streams (see Section 2.4 on page 30)

• STREAMS (see Section 2.5 on page 34)

• interprocess communication (IPC) (see Section 2.6 on page 36)

• realtime (see Section 2.7 on page 38)

• threads (see Section 2.8 on page 46)

• data types (see Section 2.9 on page 55).

2.1 Use and Implementation of Interfaces
Each of the following statements applies unless explicitly stated otherwise in the detailed
descriptions that follow. If an argument to a function has an invalid value (such as a value
outside the domain of the function, or a pointer outside the address space of the program, or a
null pointer), the behaviour is undefined. Any function declared in a header may also be
implemented as a macro defined in the header, so a library function should not be declared
explicitly if its header is included. Any macro definition of a function can be suppressed locally
by enclosing the name of the function in parentheses, because the name is then not followed by
the left parenthesis that indicates expansion of a macro function name. For the same syntactic
reason, it is permitted to take the address of a library function even if it is also defined as a
macro. The use of the C-language #undef construct to remove any such macro definition will
also ensure that an actual function is referred to. Any invocation of a library function that is
implemented as a macro will expand to code that evaluates each of its arguments exactly once,
fully protected by parentheses where necessary, so it is generally safe to use arbitrary
expressions as arguments. Likewise, those function-like macros described in the following
sections may be invoked in an expression anywhere a function with a compatible return type
could be called.

Provided that a library function can be declared without reference to any type defined in a
header, it is also permissible to declare the function, either explicitly or implicitly, and use it
without including its associated header. If a function that accepts a variable number of
arguments is not declared (explicitly or by including its associated header), the behaviour is
undefined.

As a result of changes in this issue of this specification, application writers are only required to
include the minimum number of headers. Implementations of XSI-conformant systems will
make all necessary symbols visible as described in the Headers section of this specification.

System Interfaces and Headers, Issue 5: Volume 1 15

Use and Implementation of Interfaces General Information

2.1.1 Use of File System Interfaces

The Interfaces in this volume that operate on files can behave differently if the file that is being
operated on has been made available by a network file system. If the network file system is an
XSI-conformant system conforming to the XNFS specification, the differences that can occur are
detailed in Appendices A and B of that document.

16 CAE Specification (1997)

General Information The Compilation Environment

2.2 The Compilation Environment
Applications should ensure that the feature test macro _XOPEN_SOURCE is defined with the
value 500 before inclusion of any header. This is needed to enable the functionality described in
this specification, and possibly to enable functionality defined elsewhere in the Common
Applications Environment.

Identifiers in this specification may only be undefined using the #undef directive as described in
Section 2.1 on page 15 or Section 2.2.1. These #undef directives must follow all #include
directives of any XSI headers.

Most strictly conforming POSIX and ISO C applications will compile on systems compliant to
this specification. However, an application which uses any of the items marked as an extension
to POSIX and ISO C, for any purpose other than that shown here, will not necessarily compile. In
such cases, it may be necessary to alter those applications to use alternative identifiers.

Since this specification is aligned with the ISO C standard, and since all functionality enabled by
_POSIX_C_SOURCE set greater than zero and less than or equal to 199506L should be enabled
by _XOPEN_SOURCE set equal to 500, there should be no need to define either
_POSIX_SOURCE or _POSIX_C_SOURCE if _XOPEN_SOURCE is so defined. Therefore if
_XOPEN_SOURCE is set equal to 500 and _POSIX_SOURCE is defined, or _POSIX_C_SOURCE
is set greater than zero and less than or equal to 199506L, the behaviour is the same as if only
_XOPEN_SOURCE is defined and set equal to 500. However, should _POSIX_C_SOURCE be set
to a value greater than 199506L, the behaviour is undefined.

2.2.1 The X/Open Name Space

All identifiers in this specification except environ are defined in at least one of the headers, as
shown in Chapter 4. When _XOPEN_SOURCE is defined, each header defines or declares some
identifiers, potentially conflicting with identifiers used by the application. The set of identifiers
visible to the application consists of precisely those identifiers from the header pages of the
included headers, as well as additional identifiers reserved for the implementation. In addition,
some headers may make visible identifiers from other headers as indicated on the relevant
header pages.

The identifiers reserved for use by the implementation are described below.

1. Each identifier with external linkage described in the header section is reserved for use as
an identifier with external linkage if the header is included.

2. Each macro name described in the header section is reserved for any use if the header is
included.

3. Each identifier with file scope described in the header section is reserved for use as an
identifier with file scope in the same name space if the header is included.

If any header in the following table is included, identifiers with the prefixes, suffixes or complete
names shown are reserved for any use by the implementation.

System Interfaces and Headers, Issue 5: Volume 1 17

The Compilation Environment General Information

Complete
Header Prefix Suffix Name

RT <aio.h> aio_, lio_, AIO_, LIO_
<dirent.h> d_
<errno.h> E
<fcntl.h> l_
<glob.h> gl_
<grp.h> gr_
<limits.h> _MAX
<locale.h> LC_[A-Z]

RT <mqueue.h> mq_, MQ_
EX <ndbm.h> dbm_

<poll.h> pd_, ph_, ps_
<pthread.h> pthread_, PTHREAD_
<pwd.h> pw_
<regex.h> re_, rm_

RT <sched.h> sched_, SCHED_
RT <semaphore.h> sem_, SEM_

<signal.h> sa_, SIG[A-Z], SIG_[A-Z]
EX ss_, sv_
RT si_, SI_, sigev_, SIGEV_, sival_
EX <stropts.h> bi_, ic_, l_, sl_, str_
EX <sys/ipc.h> ipc_ key, pad, seq
RT <sys/mman.h> shm_, MAP_, MCL_, MS_, PROT_
EX <sys/msg.h> msg msg
EX <sys/resource.h> rlim_, ru_
EX <sys/sem.h> sem sem

<sys/shm.h> shm
<sys/stat.h> st_

EX <sys/statvfs.h> f_
<sys/time.h> fds_, it_, tv_, FD_
<sys/times.h> tms_

EX <sys/uio.h> iov_
<sys/utsname.h> uts_

EX <sys/wait.h> si_, W[A-Z], P_
<termios.h> c_
<time.h> tm_

RT clock_, timer_, it_, tv_,
CLOCK_, TIMER_

EX <ucontext.h> uc_
<ulimit.h> UL_
<utime.h> utim_

EX <utmpx.h> ut_ _LVL, _TIME, _PROCESS
<wordexp.h> we_
ANY header _t

Note: The notation [A-Z] indicates any upper-case letter in the portable character set. The
notation [a-z] indicates any lower-case letter in the portable character set. Commas and
spaces in the lists of prefixes and complete names in the above table are not part of any
prefix or complete name.

18 CAE Specification (1997)

General Information The Compilation Environment

If any header in the following table is included, macros with the prefixes shown may be defined.
After the last inclusion of a given header, an application may use identifiers with the
corresponding prefixes for its own purpose, provided their use is preceded by an #undef of the
corresponding macro.

Header Prefix
<fcntl.h> F_ O_ S_

EX <fmtmsg.h> MM_
<fnmatch.h> FNM_

EX <ftw.h> FTW
<glob.h> GLOB_

EX <ndbm.h> DBM_
EX <nl_types.h> NL_
EX <poll.h> POLL

<regex.h> REG_
<signal.h> SA_ SIG_[0-9a-z_]

EX BUS_ CLD_ FPE_ ILL_ POLL_
SEGV_ SI_ SS_ SV_ TRAP_

<stropts.h> FLUSH[A-Z] I_ M_ MUXID_R[A-Z]
S_ SND[A-Z] STR

<syslog.h> LOG_
EX <sys/ipc.h> IPC_
EX <sys/mman.h> PROT_ MAP_ MS_
EX <sys/msg.h> MSG[A-Z] MSG_[A-Z]
EX <sys/resource.h> PRIO_ RLIM_ RLIMIT_ RUSAGE_
EX <sys/sem.h> SEM_

<sys/shm.h> SHM[A-Z] SHM_[A-Z]
EX <sys/socket.h> AF_ MSG_ PF_ SO

<sys/stat.h> S_
EX <sys/statvfs.h> ST_

<sys/time.h> FD_ ITIMER_
<sys/uio.h> IOV_
<sys/wait.h> BUS_ CLD_ FPE_ ILL_ POLL_

SEGV_ SI_ TRAP_
<termios.h> V I O TC B[0-9]
<wordexp.h> WRDE_

Note: The notation [0-9] indicates any digit. The notation [A-Z] indicates any upper-case
letter in the portable character set. The notation [0-9a-z_] indicates any digit, any
lower-case letter in the portable character set or underscore.

System Interfaces and Headers, Issue 5: Volume 1 19

The Compilation Environment General Information

The following identifiers are reserved regardless of the inclusion of headers.

1. All identifiers that begin with an underscore and either an upper-case letter or another
underscore are always reserved for any use by the implementation.

2. All identifiers that begin with an underscore are always reserved for use as identifiers with
file scope in both the ordinary identifier and tag name spaces.

3. All identifiers in the table below are reserved for use as identifiers with external linkage.
Some of these identifiers do not appear in this specification, but are reserved for future use
by the ISO C standard.

abort
abs
acos
acosf
acosl
asctime
asin
asinf
asinl
atan
atan2
atan2f
atan2l
atanf
atanl
atexit
atof
atoi
atol
bsearch
calloc
ceil
ceilf
ceill
clearerr
clock
cos
cosf
cosh
coshf
coshl

cosl
ctime
difftime
div
errno
exit
exp
expf
expl
fabs
fabsf
fabsl
fclose
feof
ferror
fflush
fgetc
fgetpos
fgets
fgetwc
fgetws
floor
floorf
floorl
fmod
fmodf
fmodl
fopen
fprintf
fputc
fputs

fputwc
fputws
fread
free
freopen
frexp
frexpf
frexpl
fscanf
fseek
fsetpos
ftell
fwide
fwprintf
fwrite
fwscanf
getc
getchar
getenv
gets
getwc
getwchar
gmtime
is[a-z]*
labs
ldexp
ldexpf
ldexpl
ldiv
localeconv
localtime

log
log10
log10f
log10l
logf
logl
longjmp
malloc
mblen
mbrlen
mbrtowc
mbsinit
mbsrtowcs
mbstowcs
mbtowc
mem[a-z]*
mktime
modf
modff
modfl
perror
pow
powf
powl
printf
putc
putchar
puts
putwc
putwchar
qsort

raise
rand
realloc
remove
rename
rewind
scanf
setbuf
setjmp
setlocale
setvbuf
signal
sin
sinf
sinh
sinhf
sinhl
sinl
sprintf
sqrt
sqrtf
sqrtl
srand
sscanf
str[a-z]*
swprintf
swscanf
system
tan
tanf
tanh

tanhf
tanhl
tanl
time
tmpfile
tmpnam
to[a-z]*
ungetc
ungetwc
va_end
vfprintf
vfwprintf
vprintf
vsprintf
vswprintf
vwprintf
wcrtomb
wcs[a-z]*
wctob
wctomb
wctrans
wctype
wcwidth
wmem[a-z]*
wprintf
wscanf

Note: The notation [a-z] indicates any lower-case letter in the portable character set.
The notation * indicates any combination of digits, letters in the portable
character set, and underscore.

20 CAE Specification (1997)

General Information The Compilation Environment

EX 4. The following identifiers are also reserved for use as identifiers with external linkage:

_longjmp endgrent getmsg lockf realpath sigpause
_setjmp endpwent getpagesize log1p regcmp sigrelse
a64l endservent getpgid logb regex sigset
acosh endutxent getpmsg lstat remainder sigstack
asinh expm1 getpriority makecontext remque srandom
atanh fattach getpwent mknod rindex statvfs
basename fchdir getrlimit mkstemp rint strcasecmp
bcmp fchmod getrusage mktemp sbrk strdup
bcopy fchown getsid mmap scalb strncasecmp
brk fcvt getsubopt mprotect select swapcontext
bsd_signal fdetach gettimeofday msync setcontext symlink
bzero ffs getutxent munmap setgrent sync
cbrt fmtmsg getutxid nextafter setitimer syslog
closelog fstatvfs getutxline nftw setlogmask tcgetsid
dbm_clearerr ftime getwd openlog setpgrp truncate
dbm_close ftok grantpt poll setpriority ttyslot
dbm_delete ftruncate ilogb ptsname setpwent ualarm
dbm_error gcvt index putmsg setreuid unlockpt
dbm_fetch getcontext initstate putpmsg setrlimit usleep
dbm_firstkey getdate insque pututxline setstate utimes
dbm_nextkey getdtablesize ioctl random setutxent valloc
dbm_open getgrent isastream re_comp sigaltstack vfork
dbm_store getgrgid killpg re_exec sighold wait3
dirname gethostid l64a readlink sigignore waitid
ecvt getitimer lchown readv siginterrupt writev

All the identifiers defined in this specification that have external linkage are always reserved for
use as identifiers with external linkage.

No other identifiers are reserved.

Applications must not declare or define identifiers with the same name as an identifier reserved
in the same context. Since macro names are replaced whenever found, independent of scope and
name space, macro names matching any of the reserved identifier names must not be defined if
any associated header is included.

Except that the effect of each inclusion of <assert.h> depends on the definition of NDEBUG,
headers may be included in any order, and each may be included more than once in a given
scope, with no difference in effect from that of being included only once.

If used, a header must be included outside of any external declaration or definition, and it must
be first included before the first reference to any type or macro it defines, or to any function or
object it declares. However, if an identifier is declared or defined in more than one header, the
second and subsequent associated headers may be included after the initial reference to the
identifier. Prior to the inclusion of a header, the program must not define any macros with
names lexically identical to symbols defined by that header.

System Interfaces and Headers, Issue 5: Volume 1 21

Error Numbers General Information

2.3 Error Numbers
Most functions can provide an error number. The means by which each function provides its
error numbers is specified in its description.

Some functions provide the error number in a variable accessed through the symbol errno. The
symbol errno, defined by including the header <errno.h>, is a macro that expands to a modifiable
lvalue of type int.

The value of errno should only be examined when it is indicated to be valid by a function’s return
value. No function in this specification sets errno to zero to indicate an error. For each thread of
a process, the value of errno is not affected by function calls or assignments to errno by other
threads.

Some functions return an error number directly as the function value. These functions return a
value of zero to indicate success.

If more than one error occurs in processing a function call, any one of the possible errors may be
returned, as the order of detection is undefined.

Implementations may support additional errors not included in this list, may generate errors
included in this list under circumstances other than those described here, or may contain
extensions or limitations that prevent some errors from occurring. The ERRORS section on each
page specifies whether an error will be returned, or whether it may be returned.
Implementations will not generate a different error number from the ones described here for
error conditions described in this specification, but may generate additional errors unless
explicitly disallowed for a particular function.

The following symbolic names identify the possible error numbers, in the context of the
functions specifically defined in this specification; these general descriptions are more precisely
defined in the ERRORS sections of the functions that return them. Only these symbolic names
should be used in programs, since the actual value of the error number is unspecified. All values

EX listed in this section are unique except as noted below. The values for all these names can be
found in the header <errno.h>.

[E2BIG]
Argument list too long
The sum of the number of bytes used by the new process image’s argument list and
environment list is greater than the system-imposed limit of {ARG_MAX} bytes.

[EACCES]
Permission denied
An attempt was made to access a file in a way forbidden by its file access permissions.

EX [EADDRINUSE]
Address in use
The specified address is in use.

EX [EADDRNOTAVAIL]
Address not available
The specified address is not available from the local system.

EX [EAFNOSUPPORT]
Address family not supported
The implementation does not support the specified address family, or the specified address
is not a valid address for the address family of the specified socket.

[EAGAIN]
Resource temporarily unavailable

22 CAE Specification (1997)

General Information Error Numbers

This is a temporary condition and later calls to the same routine may complete normally.

EX [EALREADY]
Connection already in progress
A connection request is already in progress for the specified socket.

[EBADF]
Bad file descriptor
A file descriptor argument is out of range, refers to no open file, or a read (write) request is
made to a file that is only open for writing (reading).

EX [EBADMSG]
Bad message
During a read(), getmsg() or ioctl () I_RECVFD request to a STREAMS device, a message
arrived at the head of the STREAM that is inappropriate for the function receiving the
message.

• read() — message waiting to be read on a STREAM is not a data message.

• getmsg() — a file descriptor was received instead of a control message.

• ioctl () — control or data information was received instead of a file descriptor when
I_RECVFD was specified.

RT [EBADMSG]
Bad Message
The implementation has detected a corrupted message.

[EBUSY]
Resource busy
An attempt was made to make use of a system resource that is not currently available, as it
is being used by another process in a manner that would have conflicted with the request
being made by this process.

RT [ECANCELED]
Operation canceled
The associated asynchronous operation was canceled before completion.

[ECHILD]
No child process
A wait() or waitpid () function was executed by a process that had no existing or unwaited-
for child process.

EX [ECONNABORTED]
Connection aborted
The connection has been aborted.

EX [ECONNREFUSED]
Connection refused
An attempt to connect to a socket was refused because there was no process listening or
because the queue of connection requests was full and the underlying protocol does not
support retransmissions.

EX [ECONNRESET]
Connection reset
The connection was forcibly closed by the peer.

[EDEADLK]
Resource deadlock would occur

System Interfaces and Headers, Issue 5: Volume 1 23

Error Numbers General Information

An attempt was made to lock a system resource that would have resulted in a deadlock
situation.

EX [EDESTADDRREQ]
Destination address required
No bind address was established.

[EDOM]
Domain error
An input argument is outside the defined domain of the mathematical function. (Defined in
the ISO C standard.)

EX [EDQUOT]
Reserved

[EEXIST]
File exists
An existing file was mentioned in an inappropriate context, for instance, as a new link name
in the link () function.

[EFAULT]
Bad address
The system detected an invalid address in attempting to use an argument of a call. The
reliable detection of this error cannot be guaranteed, and when not detected may result in
the generation of a signal, indicating an address violation, which is sent to the process.

EX [EFBIG]
File too large
The size of a file would exceed the maximum file size of an implementation or offset
maximum established in the corresponding file description.

EX [EHOSTUNREACH]
Host is unreachable
The destination host cannot be reached (probably because the host is down or a remote
router cannot reach it).

EX [EIDRM]
Identifier removed
Returned during interprocess communication if an identifier has been removed from the
system.

RT [EINPROGRESS]
Operation in progress
This code is used to indicate that an asynchronous operation has not yet completed.

EX [EINPROGRESS]
O_NONBLOCK is set for the socket file descriptor and the connection cannot be
immediately established.

![EILSEQ]
Illegal byte sequence
A wide-character code has been detected that does not correspond to a valid character, or a
byte sequence does not form a valid wide-character code.

[EINTR]
Interrupted function call
An asynchronous signal was caught by the process during the execution of an interruptible
function. If the signal handler performs a normal return, the interrupted function call may

24 CAE Specification (1997)

General Information Error Numbers

return this condition. (See <signal.h>.)

[EINVAL]
Invalid argument
Some invalid argument was supplied; (for example, specifying an undefined signal in a
signal() function or a kill () function).

[EIO]
Input/output error
Some physical input or output error has occurred. This error may be reported on a
subsequent operation on the same file descriptor. Any other error-causing operation on the
same file descriptor may cause the [EIO] error indication to be lost.

EX [EISCONN]
Socket is connected
The specified socket is already connected.

[EISDIR]
Is a directory
An attempt was made to open a directory with write mode specified.

EX [ELOOP]
Too many levels of symbolic links
Too many symbolic links were encountered in resolving a pathname.

[EMFILE]
Too many open files
An attempt was made to open more than the maximum number of {OPEN_MAX} file
descriptors allowed in this process.

[EMLINK]
Too many links
An attempt was made to have the link count of a single file exceed {LINK_MAX}.

EX [EMSGSIZE]
Message too large
A message sent on a transport provider was larger than an internal message buffer or some
other network limit.

RT [EMSGSIZE]
Inappropriate message buffer length.

EX [EMULTIHOP]
Reserved

[ENAMETOOLONG]
Filename too long
The length of a pathname exceeds {PATH_MAX}, or a pathname component is longer than
{NAME_MAX} and {_POSIX_NO_TRUNC} was in effect for that file.

EX [ENETDOWN]
Network is down
The local interface used to reach the destination is down.

EX [ENETUNREACH]
Network unreachable
No route to the network is present.

System Interfaces and Headers, Issue 5: Volume 1 25

Error Numbers General Information

[ENFILE]
Too many files open in system
Too many files are currently open in the system. The system has reached its predefined limit
for simultaneously open files and temporarily cannot accept requests to open another one.

EX [ENOBUFS]
No buffer space available
Insufficient buffer resources were available in the system to perform the socket operation.

EX [ENODATA]
No message available
No message is available on the STREAM head read queue.

[ENODEV]
No such device
An attempt was made to apply an inappropriate function to a device; for example, trying to
read a write-only device such as a printer.

[ENOENT]
No such file or directory
A component of a specified pathname does not exist, or the pathname is an empty string.

[ENOEXEC]
Executable file format error
A request is made to execute a file that, although it has the appropriate permissions, is not
in the format required by the implementation for executable files.

[ENOLCK]
No locks available
A system-imposed limit on the number of simultaneous file and record locks has been
reached and no more are currently available.

EX [ENOLINK]
Reserved

[ENOMEM]
Not enough space
The new process image requires more memory than is allowed by the hardware or system-
imposed memory management constraints.

EX [ENOMSG]
No message of the desired type
The message queue does not contain a message of the required type during interprocess
communication.

EX [ENOPROTOOPT]
Protocol not available
The protocol option specified to setsockopt () is not supported by the implementation.

[ENOSPC]
No space left on a device
During the write() function on a regular file or when extending a directory, there is no free
space left on the device.

EX [ENOSR]
No STREAM resources
Insufficient STREAMS memory resources are available to perform a STREAMS related
function. This is a temporary condition; one may recover from it if other processes release

26 CAE Specification (1997)

General Information Error Numbers

resources.

EX [ENOSTR]
Not a STREAM
A STREAM function was attempted on a file descriptor that was not associated with a
STREAMS device.

[ENOSYS]
Function not implemented
An attempt was made to use a function that is not available in this implementation.

EX [ENOTCONN]
Socket not connected
The socket is not connected.

[ENOTDIR]
Not a directory
A component of the specified pathname exists, but it is not a directory, when a directory
was expected.

[ENOTEMPTY]
Directory not empty
A directory with entries other than dot and dot-dot was supplied when an empty directory
was expected.

EX [ENOTSOCK]
Not a socket
The file descriptor does not refer to a socket.

[ENOTSUP]
Not supported
The implementation does not support this feature of the Realtime Feature Group.

[ENOTTY]
Inappropriate I/O control operation
A control function has been attempted for a file or special file for which the operation is
inappropriate.

[ENXIO]
No such device or address
Input or output on a special file refers to a device that does not exist, or makes a request
beyond the capabilities of the device. It may also occur when, for example, a tape drive is
not on-line.

EX [EOPNOTSUPP]
Operation not supported on socket
The type of socket (address family or protocol) does not support the requested operation.

EX [EOVERFLOW]
Value too large to be stored in data type
The user ID or group ID of an IPC or file system object was too large to be stored into
appropriate member of the caller-provided structure. This error will only occur on
implementations that support a larger range of user ID or group ID values than the declared
structure member can support. This usually occurs because the IPC or file system object
resides on a remote machine with a larger value of the type uid_t, off_t or gid_t than the
local system.

System Interfaces and Headers, Issue 5: Volume 1 27

Error Numbers General Information

[EPERM]
Operation not permitted
An attempt was made to perform an operation limited to processes with appropriate
privileges or to the owner of a file or other resource.

[EPIPE]
Broken pipe

EX A write was attempted on a socket, pipe or FIFO for which there is no process to read the
data.

EX [EPROTO]
Protocol error
Some protocol error occurred. This error is device specific, but is generally not related to a
hardware failure.

EX [EPROTONOSUPPORT]
Protocol not supported
The protocol is not supported by the address family, or the protocol is not supported by the
implementation.

EX [EPROTOTYPE]
Socket type not supported
The socket type is not supported by the protocol.

[ERANGE]
Result too large or too small
The result of the function is too large (overflow) or too small (underflow) to be represented
in the available space. (Defined in the ISO C standard.)

[EROFS]
Read-only file system
An attempt was made to modify a file or directory on a file system that is read only.

[ESPIPE]
Invalid seek
An attempt was made to access the file offset associated with a pipe or FIFO.

[ESRCH]
No such process
No process can be found corresponding to that specified by the given process ID.

EX [ESTALE]
Reserved

EX [ETIME]
STREAM ioctl () timeout
The timer set for a STREAMS ioctl () call has expired. The cause of this error is device
specific and could indicate either a hardware or software failure, or a timeout value that is
too short for the specific operation. The status of the ioctl () operation is indeterminate.

EX [ETIMEDOUT]
Connection timed out
The connection to a remote machine has timed out. If the connection timed out during
execution of the function that reported this error (as opposed to timing out prior to the
function being called), it is unspecified whether the function has completed some or all of
the documented behaviour associated with a successful completion of the function.

28 CAE Specification (1997)

General Information Error Numbers

RT [ETIMEDOUT]
Operation timed out
The time limit associated with the operation was exceeded before the operation completed.

EX [ETXTBSY]
Text file busy
An attempt was made to execute a pure-procedure program that is currently open for
writing, or an attempt has been made to open for writing a pure-procedure program that is
being executed.

EX [EWOULDBLOCK]
Operation would block
An operation on a socket marked as non-blocking has encountered a situation such as no
data available that otherwise would have caused the function to suspend execution.

An XSI-conforming implementation may assign the same values for [EWOULDBLOCK]
and [EAGAIN].

[EXDEV]
Improper link
A link to a file on another file system was attempted.

2.3.1 Additional Error Numbers

Additional implementation-dependent error numbers may be defined in <errno.h>.

System Interfaces and Headers, Issue 5: Volume 1 29

Standard I/O Streams General Information

2.4 Standard I/O Streams
A stream is associated with an external file (which may be a physical device) by opening a file,
which may involve creating a new file. Creating an existing file causes its former contents to be
discarded if necessary. If a file can support positioning requests, (such as a disk file, as opposed
to a terminal), then a file position indicator associated with the stream is positioned at the start
(byte number 0) of the file, unless the file is opened with append mode, in which case it is
implementation-dependent whether the file position indicator is initially positioned at the
beginning or end of the file. The file position indicator is maintained by subsequent reads, writes
and positioning requests, to facilitate an orderly progression through the file. All input takes
place as if bytes were read by successive calls to fgetc(); all output takes place as if bytes were
written by successive calls to fputc().

When a stream is unbuffered, bytes are intended to appear from the source or at the destination as
soon as possible. Otherwise bytes may be accumulated and transmitted as a block. When a
stream is fully buffered, bytes are intended to be transmitted as a block when a buffer is filled.
When a stream is line buffered, bytes are intended to be transmitted as a block when a newline
byte is encountered. Furthermore, bytes are intended to be transmitted as a block when a buffer
is filled, when input is requested on an unbuffered stream, or when input is requested on a line-
buffered stream that requires the transmission of bytes. Support for these characteristics is
implementation-dependent, and may be affected via setbuf() and setvbuf().

A file may be disassociated from a controlling stream by closing the file. Output streams are
flushed (any unwritten buffer contents are transmitted) before the stream is disassociated from
the file. The value of a pointer to a FILE object is indeterminate after the associated file is closed
(including the standard streams).

A file may be subsequently reopened, by the same or another program execution, and its
contents reclaimed or modified (if it can be repositioned at its start). If the main() function
returns to its original caller, or if the exit() function is called, all open files are closed (hence all
output streams are flushed) before program termination. Other paths to program termination,
such as calling abort(), need not close all files properly.

The address of the FILE object used to control a stream may be significant; a copy of a FILE
object need not necessarily serve in place of the original.

At program startup, three streams are predefined and need not be opened explicitly: standard
input (for reading conventional input), standard output (for writing conventional output), and
standard error (for writing diagnostic output). When opened, the standard error stream is not
fully buffered; the standard input and standard output streams are fully buffered if and only if
the stream can be determined not to refer to an interactive device.

2.4.1 Interaction of File Descriptors and Standard I/O Streams

An open file description may be accessed through a file descriptor, which is created using
functions such as open() or pipe(), or through a stream, which is created using functions such as
fopen() or popen(). Either a file descriptor or a stream will be called a handle on the open file
description to which it refers; an open file description may have several handles.

Handles can be created or destroyed by explicit user action, without affecting the underlying
open file description. Some of the ways to create them include fcntl(), dup(), fdopen(), fileno()
and fork (). They can be destroyed by at least fclose(), close() and the exec functions.

A file descriptor that is never used in an operation that could affect the file offset (for example,
read(), write() or lseek()) is not considered a handle for this discussion, but could give rise to one
(for example, as a consequence of fdopen(), dup() or fork ()). This exception does not include the
file descriptor underlying a stream, whether created with fopen() or fdopen(), so long as it is not

30 CAE Specification (1997)

General Information Standard I/O Streams

used directly by the application to affect the file offset. The read() and write() functions
implicitly affect the file offset; lseek() explicitly affects it.

The result of function calls involving any one handle (the active handle) are defined elsewhere in
this specification, but if two or more handles are used, and any one of them is a stream, their
actions must be coordinated as described below. If this is not done, the result is undefined.

A handle which is a stream is considered to be closed when either an fclose() or freopen() is
executed on it (the result of freopen() is a new stream, which cannot be a handle on the same
open file description as its previous value), or when the process owning that stream terminates
with exit() or abort(). A file descriptor is closed by close(), _exit() or the exec functions when
FD_CLOEXEC is set on that file descriptor.

For a handle to become the active handle, the actions below must be performed between the last
use of the handle (the current active handle) and the first use of the second handle (the future
active handle). The second handle then becomes the active handle. All activity by the
application affecting the file offset on the first handle must be suspended until it again becomes
the active file handle. (If a stream function has as an underlying function one that affects the file
offset, the stream function will be considered to affect the file offset.)

The handles need not be in the same process for these rules to apply.

Note that after a fork (), two handles exist where one existed before. The application must assure
that, if both handles will ever be accessed, that they will both be in a state where the other could
become the active handle first. The application must prepare for a fork () exactly as if it were a
change of active handle. (If the only action performed by one of the processes is one of the exec
functions or _exit() (not exit()), the handle is never accessed in that process.)

For the first handle, the first applicable condition below applies. After the actions required
below are taken, if the handle is still open, the application can close it.

• If it is a file descriptor, no action is required.

• If the only further action to be performed on any handle to this open file descriptor is to close
it, no action need be taken.

• If it is a stream which is unbuffered, no action need be taken.

• If it is a stream which is line buffered, and the last byte written to the stream was a newline
(that is, as if a:

putc(’\n’)

was the most recent operation on that stream), no action need be taken.

• If it is a stream which is open for writing or appending (but not also open for reading), either
an fflush() must be done, or the stream must be closed.

• If the stream is open for reading and it is at the end of the file (feof () is true), no action need
be taken.

• If the stream is open with a mode that allows reading and the underlying open file
description refers to a device that is capable of seeking, either an fflush() must occur or the
stream must be closed.

Otherwise, the result is undefined.

System Interfaces and Headers, Issue 5: Volume 1 31

Standard I/O Streams General Information

For the second handle:

• If any previous active handle has been used by a function that explicitly changed the file
offset, except as required above for the first handle, the application must perform an lseek()
or fseek() (as appropriate to the type of handle) to an appropriate location.

If the active handle ceases to be accessible before the requirements on the first handle, above,
have been met, the state of the open file description becomes undefined. This might occur
during functions such as a fork () or _exit().

The exec functions make inaccessible all streams that are open at the time they are called,
independent of which streams or file descriptors may be available to the new process image.

When these rules are followed, regardless of the sequence of handles used, implementations will
ensure that an application, even one consisting of several processes, will yield correct results: no
data will be lost or duplicated when writing, and all data will be written in order, except as
requested by seeks. It is implementation-dependent whether, and under what conditions, all
input is seen exactly once.

If the rules above are not followed, the result is unspecified.

2.4.2 Stream Orientation

For conformance to the Multibyte Support Extension, the definition of a stream is adjusted to
include an orientation for both text and binary streams. After a stream is associated with an
external file, but before any operations are performed on it, the stream is without orientation.
Once a wide-character input/output function has been applied to a stream without orientation,
the stream becomes wide-orientated . Similarly, once a byte input/output function has been
applied to a stream without orientation, the stream becomes byte-orientated . Only a call to the
freopen() function or the fwide() function can otherwise alter the orientation of a stream.

A successful call to freopen() removes any orientation. The three predefined streams standard
input , standard output and standard error are unorientated at program startup.

Byte input/output functions cannot be applied to a wide-orientated stream, and wide-character
input/output functions cannot be applied to a byte-orientated stream. The remaining stream
operations do not affect and are not affected by a stream’s orientation, except for the following
additional restrictions:

• Binary wide-orientated streams have the file positioning restrictions ascribed to both text and
binary streams.

• For wide-orientated streams, after a successful call to a file-positioning function that leaves
the file position indicator prior to the end-of-file, a wide-character output function can
overwrite a partial character; any file contents beyond the byte(s) written are henceforth
undefined.

Each wide-orientated stream has an associated mbstate_t object that stores the current parse
state of the stream. A successful call to fgetpos() stores a representation of the value of this
mbstate_t object as part of the value of the fpos_t object. A later successful call to fsetpos() using
the same stored fpos_t value restores the value of the associated mbstate_t object as well as the
position within the controlled stream.

Although both text and binary wide-orientated streams are conceptually sequences of wide-
characters, the external file associated with a wide-orientated stream is a sequence of (possibly
multibyte) characters generalised as follows:

• Multibyte encodings within files may contain embedded null bytes (unlike multibyte
encodings valid for use internal to the program).

32 CAE Specification (1997)

General Information Standard I/O Streams

• A file need not begin nor end in the initial shift state.

Moreover, the encodings used for characters may differ among files. Both the nature and choice
of such encodings are implementation-dependent.

The wide-character input functions read characters from the stream and convert them to wide-
characters as if they were read by successive calls to the fgetwc() function. Each conversion
occurs as if by a call to the mbrtowc() function, with the conversion state described by the
stream’s own mbstate_t object.

The wide-character output functions convert wide-characters to (possibly multibyte) characters
and write them to the stream as if they were written by successive calls to the fputwc() function.
Each conversion occurs as if by a call to the wcrtomb() function, with the conversion state
described by the stream’s own mbstate_t object.

An encoding error occurs if the character sequence presented to the underlying mbrtowc()
function does not form a valid (generalised) character, or if the code value passed to the
underlying wcrtomb() function does not correspond to a valid (generalised) character. The
wide-character input/output functions and the byte input/output functions store the value of
the macro EILSEQ in errno if and only if an encoding error occurs.

System Interfaces and Headers, Issue 5: Volume 1 33

STREAMS General Information

2.5 STREAMS
EX STREAMS provides a uniform mechanism for implementing networking services and other

character-based I/O. The STREAMS interface provides direct access to protocol modules. A
STREAM is typically a full-duplex connection between a process and an open device or pseudo-
device. However, since pipes may be STREAMS-based, a STREAM can be a full-duplex
connection between two processes. The STREAM itself exists entirely within the
implementation and provides a general character I/O interface for processes. It optionally
includes one or more intermediate processing modules that are interposed between the process
end of the STREAM (STREAM head) and a device driver at the end of the STREAM (STREAM
end).

STREAMS I/O is based on messages. Messages flow in both directions in a STREAM. A given
module need not understand and process every message in the STREAM, but every module in
the STREAM handles every message. Each module accepts messages from one of its neighbour
modules in the STREAM, and passes them to the other neighbour. For example, a line discipline
module may transform the data. Data flow through the intermediate modules is bidirectional,
with all modules handling, and optionally processing, all messages. There are three types of
messages:

• data messages containing actual data for input or output

• control data containing instructions for the STREAMS modules and underlying
implementation

• other messages, which include file descriptors.

The interface between the STREAM and the rest of the implementation is provided by a set of
functions at the STREAM head. When a process calls write(), putmsg(), putpmsg() or ioctl (),
messages are sent down the STREAM, and read(), getmsg() or getpmsg() accepts data from the
STREAM and passes it to a process. Data intended for the device at the downstream end of the
STREAM is packaged into messages and sent downstream, while data and signals from the
device are composed into messages by the device driver and sent upstream to the STREAM
head.

When a STREAMS-based device is opened, a STREAM is created that contains two modules: the
STREAM head module and the STREAM end (driver) module. If pipes are STREAMS-based in
an implementation, when a pipe is created, two STREAMS are created, each containing a
STREAM head module. Other modules are added to the STREAM using ioctl (). New modules
are "pushed" onto the STREAM one at a time in last-in, first-out (LIFO) style, as though the
STREAM was a push-down stack.

Priority

Message types are classified according to their queueing priority and may be normal (non-
priority), priority, or high-priority messages. A message belongs to a particular priority band
that determines its ordering when placed on a queue. Normal messages have a priority band of
0 and are always placed at the end of the queue following all other messages in the queue.
High-priority messages are always placed at the head of a queue but after any other high-
priority messages already in the queue. Their priority band is ignored; they are high-priority by
virtue of their type. Priority messages have a priority band greater than 0. Priority messages are
always placed after any messages of the same or higher priority. High-priority and priority
messages are used to send control and data information outside the normal flow of control. By
convention, high-priority messages are not affected by flow control. Normal and priority
messages have separate flow controls.

34 CAE Specification (1997)

General Information STREAMS

Message Parts

A process may access STREAMS messages that contain a data part, control part, or both. The
data part is that information which is transmitted over the communication medium and the
control information is used by the local STREAMS modules. The other types of messages are
used between modules and are not accessible to processes. Messages containing only a data part
are accessible via putmsg(), putpmsg(), getmsg(), getpmsg(), read() or write(). Messages
containing a control part with or without a data part are accessible via calls to putmsg(),
putpmsg(), getmsg() or getpmsg().

2.5.1 Accessing STREAMS

A process accesses STREAMS-based files using the standard functions open(), close(), read(),
write(), ioctl (), pipe(), putmsg(), putpmsg(), getmsg(), getpmsg() or poll (). Refer to the applicable
function definitions for general properties and errors.

Calls to ioctl () are used to perform control functions with the STREAMS-based device associated
with the file descriptor fildes. The arguments command and arg are passed to the STREAMS file
designated by fildes and are interpreted by the STREAM head. Certain combinations of these
arguments may be passed to a module or driver in the STREAM.

Since these STREAMS requests are a subset of ioctl (), they are subject to the errors described
there.

STREAMS modules and drivers can detect errors, sending an error message to the STREAM
head, thus causing subsequent functions to fail and set errno to the value specified in the
message. In addition, STREAMS modules and drivers can elect to fail a particular ioctl () request
alone by sending a negative acknowledgement message to the STREAM head. This causes just
the pending ioctl () request to fail and set errno to the value specified in the message.

System Interfaces and Headers, Issue 5: Volume 1 35

Interprocess Communication General Information

2.6 Interprocess Communication
EX The following message passing, semaphore and shared memory services form an Interprocess

Communication facility. Certain aspects of their operation are common, and are described
below.

IPC Functions
msgctl() msgget() msgrcv()
msgsnd() semctl() semget()
semop() shmat() shmctl()
shmdt() shmget()

Another Interprocess Communication facility is provided by functions in the Realtime Feature
Group.

2.6.1 IPC General Description

Each individual shared memory segment, message queue and semaphore set is identified by a
unique positive integer, called respectively a shared memory identifier, shmid, a semaphore
identifier, semid, and a message queue identifier, msqid. The identifiers are returned by calls on
shmget(), semget() and msgget(), respectively.

Associated with each identifier is a data structure which contains data related to the operations
which may be or may have been performed. See <sys/shm.h>, <sys/sem.h> and <sys/msg.h>
for their descriptions.

Each of the data structures contains both ownership information and an ipc_perm structure, see
<sys/ipc.h>, which are used in conjunction to determine whether or not read/write (read/alter
for semaphores) permissions should be granted to processes using the IPC facilities. The mode
member of the ipc_perm structure acts as a bit field which determines the permissions.

The values of the bits are given below in octal notation.

Bit Meaning
0400 Read by user
0200 Write by user
0040 Read by group
0020 Write by group
0004 Read by others
0002 Write by others

The name of the ipc_perm structure is shm_perm, sem_perm or msg_perm, depending on which
service is being used. In each case, read and write/alter permissions are granted to a process if
one or more of the following are true (xxx is replaced by shm, sem or msg, as appropriate):

• The process has appropriate privileges.

• The effective user ID of the process matches xxx_perm.cuid or xxx_perm.uid in the data
structure associated with the IPC identifier and the appropriate bit of the user field in
xxx_perm.mode is set.

• The effective user ID of the process does not match xxx_perm.cuid or xxx_perm.uid but the
effective group ID of the process matches xxx_perm.cgid or xxx_perm.gid in the data structure
associated with the IPC identifier, and the appropriate bit of the group field in xxx_perm.mode
is set.

36 CAE Specification (1997)

General Information Interprocess Communication

• The effective user ID of the process does not match xxx_perm.cuid or xxx_perm.uid and the
effective group ID of the process does not match xxx_perm.cgid or xxx_perm.gid in the data
structure associated with the IPC identifier, but the appropriate bit of the other field in
xxx_perm.mode is set.

Otherwise, the permission is denied.

System Interfaces and Headers, Issue 5: Volume 1 37

Realtime General Information

2.7 Realtime
RT This section defines system interfaces to support the source portability of applications with

realtime requirements.

The definition of realtime used in defining the scope of XSI provisions is:

Realtime in operating systems: the ability of the operating system to provide a required level
of service in a bounded response time.

The key elements of defining the scope are:

1. defining a sufficient set of functionality to cover a significant part of the realtime
application program domain, and

2. defining sufficient performance constraints and performance-related functions to allow a
realtime application to achieve deterministic response from the system.

Specifically within the scope, it is required to define interfaces that do not preclude high-
performance implementations on traditional uniprocessor realtime systems.

Wherever possible, the requirements of other application environments are included in this
interface definition. It is beyond the scope of these interfaces to support networking or
multiprocessor functionality.

The specific functional areas included in this section and their scope include:

• Semaphores: A minimum synchronisation primitive to serve as a basis for more complex
synchronisation mechanisms to be defined by the application program.

• Process memory locking : A performance improvement facility to bind application programs
into the high-performance random access memory of a computer system. This avoids
potential latencies introduced by the operating system in storing parts of a program that
were not recently referenced on secondary memory devices.

RT • Memory mapped files and shared memory objects: A performance improvement facility to allow
for programs to access files as part of the address space and for separate application
programs to have portions of their address space commonly accessible.

RT • Priority scheduling : A performance and determinism improvement facility to allow
applications to determine the order in which threads that are ready to run are granted access
to processor resources.

• Realtime signal extension : A determinism improvement facility that augments the BASE
signals mechanism to enable asynchronous signal notifications to an application to be
queued without impacting compatibility with the existing signals interface.

• Timers: A functionality and determinism improvement facility to increase the resolution and
capabilities of the time-base interface.

• POSIX Interprocess communication : A functionality enhancement to add a high-performance,
deterministic interprocess communication facility for local communication. Network
transparency is beyond the scope of this interface.

• Synchronised input and output : A determinism and robustness improvement mechanism to
enhance the data input and output mechanisms, so that an application can insure that the
data being manipulated is physically present on secondary mass storage devices.

RT • Asynchronous input and output : A functionality enhancement to allow an application process
to queue data input and output commands with asynchronous notification of completion.
This facility includes in its scope the requirements of supercomputer applications.

38 CAE Specification (1997)

General Information Realtime

All the interfaces defined in the Realtime Feature Group will be portable, although some of the
numeric parameters used by an implementation may have hardware dependencies.

2.7.1 Signal Generation and Delivery

Some signal-generating functions, such as high-resolution timer expiration, asynchronous I/O
completion, interprocess message arrival, and the sigqueue() function, support the specification
of an application-defined value, either explicitly as a parameter to the function or in a sigevent
structure parameter. The sigevent structure is defined in <signal.h> and contains at least the
following members:

Member Type Member Name Description
int sigev_notify Notification type
int sigev_signo Signal number
union sigval sigev_value Signal value
void(*)(unsigned sigval) sigev_notify_function Notification
(pthread_attr_t*) sigev_notify_attributes Notification attributes

The sigev_notify member specifies the notification mechanism to use when an asynchronous
event occurs. This document defines the following values for the sigev_notify member:

SIGEV_NONE No asynchronous notification will be delivered when the event of interest
occurs.

SIGEV_SIGNAL A queued signal, with an application-defined value, will be generated
when the event of interest occurs.

SIGEV_THREAD A notification function will be called to perform notification.

An implementation may define additional notification mechanisms.

The sigev_signo member specifies the signal to be generated. The sigev_value member is the
application-defined value to be passed to the signal-catching function at the time of the signal
delivery as the si_value member of the siginfo_t structure.

The sigval union is defined in <signal.h> and contains at least the following members:

Member Type Member Name Description
int sival_int Integer signal value
void * sival_ptr Pointer signal value

The sival_int member is used when the application-defined value is of type int; the sival_ptr
member is used when the application-defined value is a pointer.

When a signal is generated by the sigqueue() function or any signal-generating function that
supports the specification of an application-defined value, the signal is marked pending and, if
the SA_SIGINFO flag is set for that signal, the signal is queued to the process along with the
application-specified signal value. Multiple occurrences of signals so generated are queued in
FIFO order. It is unspecified whether signals so generated are queued when the SA_SIGINFO
flag is not set for that signal.

Signals generated by the kill () function or other events that cause signals to occur, such as
detection of hardware faults, alarm() timer expiration, or terminal activity, and for which the
implementation does not support queuing, have no effect on signals already queued for the
same signal number.

System Interfaces and Headers, Issue 5: Volume 1 39

Realtime General Information

When multiple unblocked signals, all in the range SIGRTMIN to SIGRTMAX, are pending, the
behaviour is as if the implementation delivers the pending unblocked signal with the lowest
signal number within that range. No other ordering of signal delivery is specified.

If, when a pending signal is delivered, there are additional signals queued to that signal number,
the signal remains pending. Otherwise, the pending indication is reset.

2.7.2 Asynchronous I/O

An asynchronous I/O control block structure aiocb is used in many asynchronous I/O function
interfaces. It is defined in <aio.h> and has at least the following members:

Member Type Member Name Description
int aio_fildes File descriptor
off_t aio_offset File offset
volatile void* aio_buf Location of buffer
size_t aio_nbytes Length of transfer
int aio_reqprio Request priority offset
struct sigevent aio_sigevent Signal number and value
int aio_lio_opcode Operation to be performed

The aio_fildes element is the file descriptor on which the asynchronous operation is to be
performed.

If O_APPEND is not set for the file descriptor aio_fildes , and if aio_fildes is associated with a
device that is capable of seeking, then the requested operation takes place at the absolute
position in the file as given by aio_offset, as if lseek() were called immediately prior to the
operation with an offset argument equal to aio_offset and a whence argument equal to SEEK_SET .
If O_APPEND is set for the file descriptor, or if aio_fildes is associated with a device that is
incapable of seeking, write operations append to the file in the same order as the calls were
made, with the following exception. Under implementation-dependent circumstances, such as
operation on a multiprocessor or when requests of differing priorities are submitted at the same
time, the ordering restriction may be relaxed. After a successful call to enqueue an
asynchronous I/O operation, the value of the file offset for the file is unspecified. The aio_nbytes
and aio_buf elements are the same as the nbyte and buf arguments defined by read() and write()
respectively.

If _POSIX_PRIORITIZED_IO and _POSIX_PRIORITY_SCHEDULING are defined, then
asynchronous I/O is queued in priority order, with the priority of each asynchronous operation
based on the current scheduling priority of the calling process. The aio_reqprio member can be
used to lower (but not raise) the asynchronous I/O operation priority and will be within the
range zero through AIO_PRIO_DELTA_MAX, inclusive. The order of processing of requests
submitted by processes whose schedulers are not SCHED_FIFO or SCHED_RR is unspecified.
The priority of an asynchronous request is computed as (process scheduling priority) minus
aio_reqprio . The priority assigned to each asynchronous I/O request is an indication of the
desired order of execution of the request relative to other asynchronous I/O requests for this file.
If _POSIX_PRIORITIZED_IO is defined, requests issued with the same priority to a character
special file will be processed by the underlying device in FIFO order; the order of processing of
requests of the same priority issued to files that are not character special files is unspecified.
Numerically higher priority values indicate requests of higher priority. The value of aio_reqprio
has no effect on process scheduling priority. When prioritized asynchronous I/O requests to the
same file are blocked waiting for a resource required for that I/O operation, the higher-priority
I/O requests will be granted the resource before lower-priority I/O requests are granted the
resource. The relative priority of asynchronous I/O and synchronous I/O is implementation-

40 CAE Specification (1997)

General Information Realtime

dependent. If _POSIX_PRIORITIZED_IO is defined, the implementation defines for which files
I/O prioritization is supported.

The aio_sigevent determines how the calling process will be notified upon I/O completion as
specified in Signal Generation and Delivery on page 808. If aio_sigevent.sigev_notify is
SIGEV_NONE, then no signal will be posted upon I/O completion, but the error status for the
operation and the return status for the operation will be set appropriately.

The aio_lio_opcode field is used only by the lio_listio () call. The lio_listio () call allows multiple
asynchronous I/O operations to be submitted at a single time. The function takes as an
argument an array of pointers to aiocb structures. Each aiocb structure indicates the operation
to be performed (read or write) via the aio_lio_opcode field.

The address of the aiocb structure is used as a handle for retrieving the error status and return
status of the asynchronous operation while it is in progress.

The aiocb structure and the data buffers associated with the asynchronous I/O operation are
being used by the system for asynchronous I/O while, and only while, the error status of the
asynchronous operation is equal to EINPROGRESS. Applications must not modify the aiocb
structure while the structure is being used by the system for asynchronous I/O.

The return status of the asynchronous operation is the number of bytes transferred by the I/O
operation. If the error status is set to indicate an error completion, then the return status is set to
the return value that the corresponding read(), write(), or fsync() call would have returned.
When the error status is not equal to EINPROGRESS, the return status reflects the return status
of the corresponding synchronous operation.

2.7.3 Memory Management

Range memory locking and memory mapping operations are defined in terms of pages.
Implementations may restrict the size and alignment of range lockings and mappings to be on
page-size boundaries. The page size, in bytes, is the value of the configurable system variable
{PAGESIZE}. If an implementation has no restrictions on size or alignment, it may specify a 1
byte page size.

Memory locking guarantees the residence of portions of the address space. It is
implementation-dependent whether locking memory guarantees fixed translation between
virtual addresses (as seen by the process) and physical addresses. Per-process memory locks are
not inherited across a fork (), and all memory locks owned by a process are unlocked upon exec or
process termination. Unmapping of an address range removes any memory locks established on
that address range by this process.

Memory Mapped Files provide a mechanism that allows a process to access files by directly
incorporating file data into its address space. Once a file is mapped into a process address space,
the data can be manipulated as memory. If more than one process maps a file, its contents are
shared among them. If the mappings allow shared write access then data written into the
memory object through the address space of one process appears in the address spaces of all
processes that similarly map the same portion of the memory object.

RT Shared memory objects are named regions of storage that may be independent of the file system
and can be mapped into the address space of one or more processes to allow them to share the
associated memory.

RT An unlink() of a fileor shm_unlink() of a shared memory object, while causing the removal of the
name, does not unmap any mappings established for the object. Once the name has been
removed, the contents of the memory object are preserved as long as it is referenced. The
memory object remains referenced as long as a process has the memory object open or has some

System Interfaces and Headers, Issue 5: Volume 1 41

Realtime General Information

area of the memory object mapped.

Mapping may be restricted to disallow some types of access. References to whole pages within
the mapping but beyond the current length of an object result in a SIGBUS signal. SIGBUS is
used in this context to indicate an error using the object. The size of the object is unaffected by
access beyond the end of the object. Write attempts to memory that was mapped without write
access, or any access to memory mapped PROT_NONE, results in a SIGSEGV signal. SIGSEGV
is used in this context to indicate a mapping error. References to unmapped addresses result in
a SIGSEGV signal.

2.7.4 Scheduling Policies

RT The scheduling semantics described in this specification are defined in terms of a conceptual
model that contains a set of thread lists. No implementation structures are necessarily implied
by the use of this conceptual model. It is assumed that no time elapses during operations
described using this model, and therefore no simultaneous operations are possible. This model
discusses only processor scheduling for runnable threads, but it should be noted that greatly
enhanced predictability of realtime applications will result if the sequencing of other resources
takes processor scheduling policy into account.

There is, conceptually, one thread list for each priority. Any runnable thread may be on any
thread list. Multiple scheduling policies are provided. Each non-empty thread list is ordered,
contains a head as one end of its order, and a tail as the other. The purpose of a scheduling
policy is to define the allowable operations on this set of lists (for example, moving threads
between and within lists).

Each process is controlled by an associated scheduling policy and priority. These parameters
may be specified by explicit application execution of the sched_setscheduler() or sched_setparam()
functions.

Each thread is controlled by an associated scheduling policy and priority. These parameters
may be specified by explicit application execution of the pthread_setschedparam() function.

Associated with each policy is a priority range. Each policy definition specifies the minimum
priority range for that policy. The priority ranges for each policy may or may not overlap the
priority ranges of other policies.

A conforming implementation selects the thread that is defined as being at the head of the
highest priority non-empty thread list to become a running thread, regardless of its associated
policy. This thread is then removed from its thread list.

Three scheduling policies are specifically required. Other implementation-dependent
scheduling policies may be defined. The following symbols are defined in the header <sched.h>:

Symbol Description
SCHED_FIFO First in-first out (FIFO) scheduling policy.
SCHED_RR Round robin scheduling policy.
SCHED_OTHER Another scheduling policy.

The values of these symbols will be distinct.

42 CAE Specification (1997)

General Information Realtime

SCHED_FIFO

Conforming implementations include a scheduling policy called the FIFO scheduling policy.

Threads scheduled under this policy are chosen from a thread list that is ordered by the time its
threads have been on the list without being executed; generally, the head of the list is the thread
that has been on the list the longest time, and the tail is the thread that has been on the list the
shortest time.

Under the SCHED_FIFO policy, the modification of the definitional thread lists is as follows:

1. When a running thread becomes a preempted thread, it becomes the head of the thread list
for its priority.

2. When a blocked thread becomes a runnable thread, it becomes the tail of the thread list for
its priority.

3. When a running thread calls the sched_setscheduler() function, the process specified in the
function call is modified to the specified policy and the priority specified by the param
argument.

4. When a running thread calls the sched_setparam() function, the priority of the process
specified in the function call is modified to the priority specified by the param argument.

5. When a running thread calls the pthread_schedsetparam() function, the thread specified in
the function call is modified to the specified policy and the priority specified by the param
argument.

6. If a thread whose policy or priority has been modified is a running thread or is runnable, it
then becomes the tail of the thread list for its new priority.

7. When a running thread issues the sched_yield() function, the thread becomes the tail of the
thread list for its priority.

8. At no other time will the position of a thread with this scheduling policy within the thread
lists be affected.

For this policy, valid priorities shall be within the range returned by the function
sched_get_priority_max () and sched_get_priority_min () when SCHED_FIFO is provided as the
parameter. Conforming implementations provide a priority range of at least 32 priorities for this
policy.

SCHED_RR

Conforming implementations include a scheduling policy called the round robin scheduling
policy. This policy is identical to the SCHED_FIFO policy with the additional condition that
when the implementation detects that a running thread has been executing as a running thread
for a time period of the length returned by the function sched_rr_get_interval () or longer, the
thread becomes the tail of its thread list and the head of that thread list is removed and made a
running thread.

The effect of this policy is to ensure that if there are multiple SCHED_RR threads at the same
priority, one of them will not monopolise the processor. An application should not rely only on
the use of SCHED_RR to ensure application progress among multiple threads if the application
includes threads using the SCHED_FIFO policy at the same or higher priority levels or
SCHED_RR threads at a higher priority level.

A thread under this policy that is preempted and subsequently resumes execution as a running
thread completes the unexpired portion of its round-robin-interval time period.

System Interfaces and Headers, Issue 5: Volume 1 43

Realtime General Information

For this policy, valid priorities will be within the range returned by the functions
sched_get_priority_max () and sched_get_priority_min () when SCHED_RR is provided as the
parameter. Conforming implementations will provide a priority range of at least 32 priorities for
this policy.

SCHED_OTHER

Conforming implementations include one scheduling policy identified as SCHED_OTHER
(which may execute identically with either the FIFO or round robin scheduling policy). The
effect of scheduling threads with the SCHED_OTHER policy in a system in which other threads
are executing under SCHED_FIFO or SCHED_RR is implementation-dependent.

This policy is defined to allow conforming applications to be able to indicate that they no longer
need a realtime scheduling policy in a portable manner.

For threads executing under this policy, the implementation uses only priorities within the range
returned by the functions sched_get_priority_max () and sched_get_priority_min () when
SCHED_OTHER is provided as the parameter.

2.7.5 Clocks and Timers

The header file <time.h> defines the types and manifest constants used by the timing facility.

Time Value Specification Structures

Many of the timing facility functions accept or return time value specifications. A time value
structure timespec specifies a single time value and includes at least the following members:

Member Type Member Name Description
time_t tv_sec Seconds
long tv_nsec Nanoseconds

The tv_nsec member is only valid if greater than or equal to zero, and less than the number of
nanoseconds in a second (1000 million). The time interval described by this structure is (tv_sec *
109 + tv_nsec) nanoseconds.

A time value structure itimerspec specifies an initial timer value and a repetition interval for use
by the per-process timer functions. This structure includes at least the following members:

Member Type Member Name Description
struct timespec it_interval Timer period
struct timespec it_value Timer expiration

If the value described by it_value is non-zero, it indicates the time to or time of the next timer
expiration (for relative and absolute timer values, respectively). If the value described by
it_value is zero, the timer is disarmed.

If the value described by it_interval is non-zero, it specifies an interval to be used in reloading the
timer when it expires; that is, a periodic timer is specified. If the value described by it_interval is
zero, the timer will be disarmed after its next expiration; that is, a one-shot timer is specified.

44 CAE Specification (1997)

General Information Realtime

Timer Event Notification Control Block

Per-process timers may be created that notify the process of timer expirations by queuing a
realtime extended signal. The sigevent structure, defined in <signal.h>, is used in creating such
a timer. The sigevent structure contains the signal number and an application-specific data
value to be used when notifying the calling process of timer expiration events.

Manifest Constants

The following constants are defined in <time.h>:

CLOCK_REALTIME The identifier for the systemwide realtime clock.

TIMER_ABSTIME Flag indicating time is absolute with respect to the clock associated with a
timer.

The maximum allowable resolution for the CLOCK_REALTIME clock and all timers based on
this clock, including the nanosleep() function, is represented by {_POSIX_CLOCKRES_MIN} and
is defined as 20 ms (1/50 of a second). Implementations may support smaller values of
resolution for the CLOCK_REALTIME clock to provide finer granularity time bases.

The minimum allowable maximum value for the CLOCK_REALTIME clock and absolute timers
based on it is the same as that defined by the ISO C standard for the time_t type.

System Interfaces and Headers, Issue 5: Volume 1 45

Threads General Information

2.8 Threads
This defines interfaces and functionality to support multiple flows of control, called threads ,
within a process.

Threads define system interfaces to support the source portability of applications. The key
elements defining the scope are:

a. defining a sufficient set of functionality to support multiple threads of control within a
process

RTT b. defining a sufficient set of functionality to support the realtime application domain

c. defining sufficient performance constraints and performance related functions to allow a
realtime application to achieve deterministic response from the system.

The definition of realtime used in defining the scope of this specification is:

The ability of the system to provide a required level of service in a bounded response time.

Wherever possible, the requirements of other application environments are included in the
interface definition. The Threads interfaces are specifically targeted at supporting tightly
coupled multitasking environments including multiprocessors and advanced language
constructs.

The specific functional areas covered by Threads and their scope includes:

• Thread management: the creation, control, and termination of multiple flows of control in the
same process under the assumption of a common shared address space.

• Synchronisation primitives optimised for tightly coupled operation of multiple control flows
in a common, shared address space.

• Harmonization of the threads interfaces with the existing BASE interfaces.

2.8.1 Supported Interfaces

On XSI-conformant systems, _POSIX_THREADS, _POSIX_THREAD_ATTR_STACKADDR,
_POSIX_THREAD_ATTR_STACKSIZE and _POSIX_THREAD_PROCESS_SHARED are always
defined. Therefore, the following threads interfaces are always supported:

POSIX Interfaces

pthread_atfork ()
pthread_attr_destroy ()
pthread_attr_getdetachstate ()
pthread_attr_getschedparam ()
pthread_attr_getstackaddr ()
pthread_attr_getstacksize ()
pthread_attr_init ()
pthread_attr_setdetachstate ()
pthread_attr_setschedparam ()
pthread_attr_setstackaddr ()
pthread_attr_setstacksize ()
pthread_cancel ()
pthread_cleanup_pop ()
pthread_cleanup_push ()

pthread_detach ()
pthread_equal()
pthread_exit ()
pthread_getspecific()
pthread_join ()
pthread_key_create ()
pthread_key_delete ()
pthread_kill ()
pthread_mutex_destroy()
pthread_mutex_init ()
pthread_mutex_lock ()
pthread_mutex_trylock ()
pthread_mutex_unlock ()
pthread_mutexattr_destroy ()

46 CAE Specification (1997)

General Information Threads

pthread_mutexattr_getpshared ()
pthread_mutexattr_init ()
pthread_mutexattr_setpshared ()
pthread_once()
pthread_self ()
pthread_setcancelstate ()
pthread_setcanceltype ()
pthread_setspecific()
pthread_sigmask ()
pthread_testcancel ()
sigwait ()

pthread_cond_broadcast ()
pthread_cond_destroy ()
pthread_cond_init ()
pthread_cond_signal ()
pthread_cond_timedwait ()
pthread_cond_wait ()
pthread_condattr_destroy ()
pthread_condattr_getpshared ()
pthread_condattr_init ()
pthread_condattr_setpshared ()
pthread_create()

X/Open Interfaces

EX pthread_attr_getguardsize ()
pthread_attr_setguardsize ()
pthread_getconcurrency()
pthread_mutexattr_gettype ()
pthread_mutexattr_settype()
pthread_rwlock_destroy ()
pthread_rwlock_init ()
pthread_rwlock_rdlock ()
pthread_rwlock_tryrdlock ()

pthread_rwlock_trywrlock ()
pthread_rwlock_unlock ()
pthread_rwlock_wrlock ()
pthread_rwlockattr_destroy ()
pthread_rwlockattr_getpshared ()
pthread_rwlockattr_init ()
pthread_rwlockattr_setpshared ()
pthread_setconcurrency()

On XSI-conformant systems, _POSIX_THREAD_SAFE_FUNCTIONS is always defined.
Therefore, the following interfaces are always supported:

asctime_r()
ctime_r()
flockfile()
ftrylockfile()
funlockfile()
getc_unlocked ()
getchar_unlocked ()
getgrgid_r()
getgrnam_r()

getpwnam_r()
getpwuid_r()
gmtime_r()
localtime_r ()
putc_unlocked ()
putchar_unlocked ()
rand_r()
readdir_r()
strtok_r()

The following threads interfaces are only supported on XSI-conformant systems if the Realtime
Threads Feature Group is supported (see Section 1.3.3 on page 4):

RTT pthread_attr_getinheritsched ()
pthread_attr_getschedpolicy ()
pthread_attr_getscope ()
pthread_attr_setinheritsched ()
pthread_attr_setschedpolicy ()
pthread_attr_setscope ()
pthread_getschedparam ()

pthread_mutex_getprioceiling ()
pthread_mutex_setprioceiling ()
pthread_mutexattr_getprioceiling ()
pthread_mutexattr_getprotocol ()
pthread_mutexattr_setprioceiling ()
pthread_mutexattr_setprotocol ()
pthread_setschedparam()

System Interfaces and Headers, Issue 5: Volume 1 47

Threads General Information

2.8.2 Thread-safety

All interfaces defined by this specification will be thread-safe, except that the following
interfaces need not be thread-safe:

POSIX Interfaces

asctime()
ctime()
getc_unlocked ()
getchar_unlocked ()

getgrgid()
getgrnam()
getlogin ()
getopt()

getpwnam()
getpwuid()
gmtime()
localtime ()

putc_unlocked ()
putchar_unlocked ()
rand()
readdir()

strtok()
ttyname()

X/Open Interfaces

EX basename()
catgets()
dbm_clearerr()
dbm_close()
dbm_delete()
dbm_error()
dbm_fetch()
dbm_firstkey()
dbm_nextkey()

dbm_open()
dbm_store()
dirname()
drand48()
ecvt()
encrypt()
endgrent()
endpwent()
endutxent()

fcvt()
gamma()
gcvt()
getdate()
getenv()
getgrent()
getpwent()
getutxent()
getutxid()

getutxline()
getw()
l64a ()
lgamma()
lrand48()
mrand48()
nl_langinfo ()
ptsname()
putenv()

pututxline()
setgrent()
setkey()
setpwent()
setutxent()
strerror()

The interfaces ctermid() and tmpnam() need not be thread-safe if passed a NULL argument.

EX The interfaces in the Legacy Feature Group need not be thread-safe.

Implementations will provide internal synchronisation as necessary in order to satisfy this
requirement.

2.8.3 Thread Implementation Models

EX There are various thread implementation models. At one end of the spectrum is the ‘‘library-
thread model’’. In such a model, the threads of a process are not visible to the operating system
kernel, and the threads are not kernel scheduled entities. The process is the only kernel
scheduled entity. The process is scheduled onto the processor by the kernel according to the
scheduling attributes of the process. The threads are scheduled onto the single kernel scheduled
entity (the process) by the run-time library according to the scheduling attributes of the threads.
A problem with this model is that it constrains concurrency. Since there is only one kernel
scheduled entity (namely, the process), only one thread per process can execute at a time. If the
thread that is executing blocks on I/O, then the whole process blocks.

At the other end of the spectrum is the ‘‘kernel-thread model’’. In this model, all threads are
visible to the operating system kernel. Thus, all threads are kernel scheduled entities, and all
threads can concurrently execute. The threads are scheduled onto processors by the kernel
according to the scheduling attributes of the threads. The drawback to this model is that the
creation and management of the threads entails operating system calls, as opposed to subroutine
calls, which makes kernel threads heavier weight than library threads.

Hybrids of these two models are common. A hybrid model offers the speed of library threads
and the concurrency of kernel threads. In hybrid models, a process has some (relatively small)
number of kernel scheduled entities associated with it. It also has a potentially much larger

48 CAE Specification (1997)

General Information Threads

number of library threads associated with it. Some library threads may be bound to kernel
scheduled entities, while the other library threads are multiplexed onto the remaining kernel
scheduled entities. There are two levels of thread scheduling:

• The run-time library manages the scheduling of (unbound) library threads onto kernel
scheduled entities.

• The kernel manages the scheduling of kernel scheduled entities onto processors.

For this reason, a hybrid model is referred to as a ‘‘two-level threads scheduling model’’. In this
model, the process can have multiple concurrently executing threads; specifically, it can have as
many concurrently executing threads as it has kernel scheduled entities.

2.8.4 Thread Mutexes

A thread that has blocked will not prevent any unblocked thread that is eligible to use the same
processing resources from eventually making forward progress in its execution. Eligibility for
processing resources is determined by the scheduling policy.

A thread becomes the owner of a mutex, m, when either:

1. it returns successfully from pthread_mutex_lock () with m as the mutex argument, or

2. it returns successfully from pthread_mutex_trylock () with m as the mutex argument, or

3. it returns (successfully or not) from pthread_cond_wait () with m as the mutex argument
(except as explicitly indicated otherwise for certain errors), or

4. it returns (successfully or not) from pthread_cond_timedwait () with m as the mutex
argument (except as explicitly indicated otherwise for certain errors).

The thread remains the owner of m until it either:

1. executes pthread_mutex_unlock () with m as the mutex argument, or

2. blocks in a call to pthread_cond_wait () with m as the mutex argument, or

3. blocks in a call to pthread_cond_timedwait () with m as the mutex argument.

The implementation behaves as if at all times there is at most one owner of any mutex.

A thread that becomes the owner of a mutex is said to have acquired the mutex and the mutex is
said to have become locked ; when a thread gives up ownership of a mutex it is said to have
released the mutex and the mutex is said to have become unlocked .

2.8.5 Thread Scheduling Attributes

RTT In support of the scheduling interface, threads have attributes which are accessed through the
pthread_attr_t thread creation attributes object.

The contentionscope attribute defines the scheduling contention scope of the thread to be either
PTHREAD_SCOPE_PROCESS or PTHREAD_SCOPE_SYSTEM .

The inheritsched attribute specifies whether a newly created thread is to inherit the scheduling
attributes of the creating thread or to have its scheduling values set according to the other
scheduling attributes in the pthread_attr_t object.

The schedpolicy attribute defines the scheduling policy for the thread. The schedparam attribute
defines the scheduling parameters for the thread. The interaction of threads having different
policies within a process is described as part of the definition of those policies.

System Interfaces and Headers, Issue 5: Volume 1 49

Threads General Information

If the _POSIX_THREAD_PRIORITY_SCHEDULING option is defined, and the schedpolicy
attribute specifies one of the priority-based policies defined under this option, the schedparam
attribute contains the scheduling priority of the thread. A conforming implementation ensures
that the priority value in schedparam is in the range associated with the scheduling policy when
the thread attributes object is used to create a thread, or when the scheduling attributes of a
thread are dynamically modified. The meaning of the priority value in schedparam is the same as
that of priority .

When a process is created, its single thread has a scheduling policy and associated attributes
equal to the process’s policy and attributes. The default scheduling contention scope value is
implementation-dependent. The default values of other scheduling attributes are
implementation-dependent.

2.8.6 Thread Scheduling Contention Scope

The scheduling contention scope of a thread defines the set of threads with which the thread
must compete for use of the processing resources. The scheduling operation will select at most
one thread to execute on each processor at any point in time and the thread’s scheduling
attributes (for example, priority), whether under process scheduling contention scope or system
scheduling contention scope, are the parameters used to determine the scheduling decision.

The scheduling contention scope, in the context of scheduling a mixed scope environment,
effects threads as follows:

• A thread created with PTHREAD_SCOPE_SYSTEM scheduling contention scope contends
for resources with all other threads in the same scheduling allocation domain relative to their
system scheduling attributes. The system scheduling attributes of a thread created with
PTHREAD_SCOPE_SYSTEM scheduling contention scope are the scheduling attributes with
which the thread was created. The system scheduling attributes of a thread created with
PTHREAD_SCOPE_PROCESS scheduling contention scope are the implementation-
dependent mapping into system attribute space of the scheduling attributes with which the
thread was created.

• Threads created with PTHREAD_SCOPE_PROCESS scheduling contention scope contend
directly with other threads within their process that were created with
PTHREAD_SCOPE_PROCESS scheduling contention scope. The contention is resolved
based on the threads’ scheduling attributes and policies. It is unspecified how such threads
are scheduled relative to threads in other processes or threads with
PTHREAD_SCOPE_SYSTEM scheduling contention scope.

• Conforming implementations support the PTHREAD_SCOPE_PROCESS scheduling
contention scope, the PTHREAD_SCOPE_SYSTEM scheduling contention scope, or both.

2.8.7 Scheduling Allocation Domain

Implementations support scheduling allocation domains containing one or more processors. It
should be noted that the presence of multiple processors does not automatically indicate a
scheduling allocation domain size greater than one. Conforming implementations on multi-
processors may map all or any subset of the CPUs to one or multiple scheduling allocation
domains, and could define these scheduling allocation domains on a per-thread, per-process, or
per-system basis, depending on the types of applications intended to be supported by the
implementation. The scheduling allocation domain is independent of scheduling contention
scope, as the scheduling contention scope merely defines the set of threads with which a thread
must contend for processor resources, while scheduling allocation domain defines the set of
processors for which it contends. The semantics of how this contention is resolved among
threads for processors is determined by the scheduling policies of the threads.

50 CAE Specification (1997)

General Information Threads

The choice of scheduling allocation domain size and the level of application control over
scheduling allocation domains is implementation-dependent. Conforming implementations
may change the size of scheduling allocation domains and the binding of threads to scheduling
allocation domains at any time.

For application threads with scheduling allocation domains of size equal to one, the scheduling
rules defined for SCHED_FIFO and SCHED_RR will be used. All threads with system
scheduling contention scope, regardless of the processes in which they reside, compete for the
processor according to their priorities. Threads with process scheduling contention scope
compete only with other threads with process scheduling contention scope within their process.

For application threads with scheduling allocation domains of size greater than one, the rules
defined for SCHED_FIFO and SCHED_RR are used in an implementation-dependent manner.
Each thread with system scheduling contention scope competes for the processors in its
scheduling allocation domain in an implementation-dependent manner according to its priority.
Threads with process scheduling contention scope are scheduled relative to other threads within
the same scheduling contention scope in the process.

2.8.8 Thread Cancellation

The thread cancellation mechanism allows a thread to terminate the execution of any other
thread in the process in a controlled manner. The target thread (that is, the one that is being
canceled) is allowed to hold cancellation requests pending in a number of ways and to perform
application-specific cleanup processing when the notice of cancellation is acted upon.

Cancellation is controlled by the cancellation control interfaces. Each thread maintains its own
cancelability state. Cancellation may only occur at cancellation points or when the thread is
asynchronously cancelable.

The thread cancellation mechanism described in this section depends upon programs having set
deferred cancelability state, which is specified as the default. Applications must also carefully
follow static lexical scoping rules in their execution behaviour. For instance, use of setjmp(),
return , goto , and so on, to leave user-defined cancellation scopes without doing the
necessary scope pop operation will result in undefined behaviour.

Use of asynchronous cancelability while holding resources which potentially need to be released
may result in resource loss. Similarly, cancellation scopes may only be safely manipulated
(pushed and popped) when the thread is in the deferred or disabled cancelability states.

2.8.8.1 Cancelability States

The cancelability state of a thread determines the action taken upon receipt of a cancellation
request. The thread may control cancellation in a number of ways.

Each thread maintains its own cancelability state, which may be encoded in two bits:

Cancelability Enable
When cancelability is PTHREAD_CANCEL_DISABLE, cancellation requests against the
target thread are held pending. By default, cancelability is set to
PTHREAD_CANCEL_ENABLE.

Cancelability Type
When cancelability is enabled and the cancelability type is
PTHREAD_CANCEL_ASYNCHRONOUS, new or pending cancellation requests may be
acted upon at any time. When cancelability is enabled and the cancelability type is
PTHREAD_CANCEL_DEFERRED, cancellation requests are held pending until a
cancellation point (see below) is reached. If cancelability is disabled, the setting of the

System Interfaces and Headers, Issue 5: Volume 1 51

Threads General Information

cancelability type has no immediate effect as all cancellation requests are held pending,
however, once cancelability is enabled again the new type will be in effect. The cancelability
type is PTHREAD_CANCEL_DEFERRED in all newly created threads including the thread
in which main() was first invoked.

2.8.8.2 Cancellation Points

Cancellation points occur when a thread is executing the following functions:

aio_suspend()
close()
creat()
fcntl()1

fsync()
getmsg()
getpmsg()
lockf ()
mq_receive()
mq_send()
msgrcv()
msgsnd()
msync()
nanosleep()
open()

pause()
poll ()
pread()
pthread_cond_timedwait ()
pthread_cond_wait ()
pthread_join ()
pthread_testcancel ()
putmsg()
putpmsg()
pwrite()
read()
readv()
select()
sem_wait()
sigpause()

sigsuspend()
sigtimedwait ()
sigwait ()
sigwaitinfo ()
sleep()
system()
tcdrain()
usleep()
wait()
wait3()
waitid ()
waitpid ()
write()
writev()

1. When the cmd argument is F_SETLKW.

52 CAE Specification (1997)

General Information Threads

A cancellation point may also occur when a thread is executing the following functions:

catclose ()
catgets()
catopen()
closedir()
closelog ()
ctermid()
dbm_close()
dbm_delete()
dbm_fetch()
dbm_nextkey()
dbm_open()
dbm_store()
dlclose()
dlopen()
endgrent()
endpwent()
endutxent()
fclose()
fcntl()2

fflush()
fgetc()
fgetpos()
fgets()
fgetwc()
fgetws()
fopen()
fprintf ()
fputc()
fputs()
fputwc()
fputws()
fread()
freopen()
fscanf()
fseek()
fseeko()
fsetpos()
ftell ()
ftello ()
ftw()

fwprintf()
fwrite()
fwscanf()
getc()
getc_unlocked ()
getchar()
getchar_unlocked ()
getcwd()
getdate()
getgrent()
getgrgid()
getgrgid_r()
getgrnam()
getgrnam_r()
getlogin ()
getlogin_r ()
getpwent()
getpwnam()
getpwnam_r()
getpwuid()
getpwuid_r()
gets()
getutxent()
getutxid()
getutxline()
getw()
getwc()
getwchar()
getwd()
glob()
iconv_close ()
iconv_open ()
ioctl ()
lseek()
mkstemp()
nftw()
opendir()
openlog ()
pclose()
perror()

popen()
printf()
putc()
putc_unlocked ()
putchar()
putchar_unlocked ()
puts()
pututxline()
putw()
putwc()
putwchar()
readdir()
readdir_r()
remove()
rename()
rewind()
rewinddir()
scanf()
seekdir()
semop()
setgrent()
setpwent()
setutxent()
strerror()
syslog()
tmpfile()
tmpnam()
ttyname()
ttyname_r()
ungetc()
ungetwc()
unlink()
vfprintf ()
vfwprintf ()
vprintf()
vwprintf()
wprintf()
wscanf()

An implementation will not introduce cancellation points into any other functions specified in
this specification.

The side effects of acting upon a cancellation request while suspended during a call of a function
is the same as the side effects that may be seen in a single-threaded program when a call to a

2. For any value of the cmd argument.

System Interfaces and Headers, Issue 5: Volume 1 53

Threads General Information

function is interrupted by a signal and the given function returns [EINTR]. Any such side effects
occur before any cancellation cleanup handlers are called.

Whenever a thread has cancelability enabled and a cancellation request has been made with that
thread as the target and the thread calls pthread_testcancel (), then the cancellation request is
acted upon before pthread_testcancel () returns. If a thread has cancelability enabled and the
thread has an asynchronous cancellation request pending and the thread is suspended at a
cancellation point waiting for an event to occur, then the cancellation request will be acted upon.
However, if the thread is suspended at a cancellation point and the event that it is waiting for
occurs before the cancellation request is acted upon, it is unspecified whether the cancellation
request is acted upon or whether the request remains pending and the thread resumes normal
execution.

2.8.8.3 Thread Cancellation Cleanup Handlers

Each thread maintains a list of cancellation cleanup handlers. The programmer uses the
functions pthread_cleanup_push () and pthread_cleanup_pop () to place routines on and remove
routines from this list.

When a cancellation request is acted upon, the routines in the list are invoked one by one in
LIFO sequence; that is, the last routine pushed onto the list (Last In) is the first to be invoked
(First Out). The thread invokes the cancellation cleanup handler with cancellation disabled until
the last cancellation cleanup handler returns. When the cancellation cleanup handler for a scope
is invoked, the storage for that scope remains valid. If the last cancellation cleanup handler
returns, thread execution is terminated and a status of PTHREAD_CANCELED is made
available to any threads joining with the target. The symbolic constant PTHREAD_CANCELED
expands to a constant expression of type (void*) whose value matches no pointer to an object in
memory nor the value NULL.

The cancellation cleanup handlers are also invoked when the thread calls pthread_exit ().

A side effect of acting upon a cancellation request while in a condition variable wait is that the
mutex is reacquired before calling the first cancellation cleanup handler. In addition, the thread
is no longer considered to be waiting for the condition and the thread will not have consumed
any pending condition signals on the condition.

A cancellation cleanup handler cannot exit via longjmp() or siglongjmp ().

2.8.8.4 Async-Cancel Safety

The pthread_cancel (), pthread_setcancelstate () and pthread_setcanceltype () functions are defined to
be async-cancel safe.

No other functions in this specification are required to be async-cancel safe.

2.8.9 Thread Read-Write Locks

EX Multiple readers, single writer (read-write) locks allow many threads to have simultaneous
read-only access to data while allowing only one thread to have write access at any given time.
They are typically used to protect data that is read-only more frequently than it is changed.

Read-write locks can be used to synchronise threads in the current process and other processes if
they are allocated in memory that is writable and shared among the cooperating processes and
have been initialised for this behaviour.

54 CAE Specification (1997)

General Information Data Types

2.9 Data Types
All of the data types used by various system interfaces are defined by the implementation. The
following table describes some of these types. Other types referenced in the description of an
interface, not mentioned here, can be found in the appropriate header for that interface.

Defined Type Description
cc_t Type used for terminal special characters.
clock_t Arithmetic type used for processor times.

RT clockid_t Used for clock ID type in some timer functions.
dev_t Arithmetic type used for device numbers.
DIR Type representing a directory stream.
div_t Structure type returned by div () function.
FILE A structure containing information about a file.
glob_t Structure type used in pathname pattern matching.

Type containing all information needed to specify uniquely every
position within a file.

fpos_t

gid_t Arithmetic type used for group IDs.
iconv_t Type used for conversion descriptors.

EX id_t Arithmetic type used as a general identifier; can be used to contain
at least the largest of a pid_t, uid_t or a gid_t.

ino_t Arithmetic type used for file serial numbers.
key_t Arithmetic type used for interprocess communication.
ldiv_t Structure type returned by ldiv () function.
mode_t Arithmetic type used for file attributes.

RT mqd_t Used for message queue descriptors.
EX nfds_t Integral type used for the number of file descriptors.

nlink_t Arithmetic type used for link counts.
off_t Signed Arithmetic type used for file sizes.
pid_t Signed Arithmetic type used for process and process group IDs.
pthread_attr_t Used to identify a thread attribute object.
pthread_cond_t Used for condition variables.
pthread_condattr_t Used to identify a condition attribute object.
pthread_key_t Used for thread-specific data keys.
pthread_mutex_t Used for mutexes.
pthread_mutexattr_t Used to identify a mutex attribute object.
pthread_once_t Used for dynamic package initialisation.

EX pthread_rwlock_t Used for read-write locks.
pthread_rwlockattr_t Used for read-write lock attributes.
pthread_t Used to identify a thread.
ptrdiff_t Signed integral type of the result of subtracting two pointers.
regex_t Structure type used in regular expression matching.
regmatch_t Structure type used in regular expression matching.

EX rlim_t Unsigned arithmetic type used for limit values, to which objects of
type int and off_t can be cast without loss of value.

RT sem_t Type used in performing semaphore operations.
EX sig_atomic_t Integral type of an object that can be accessed as an atomic entity,

even in the presence of asynchronous interrupts.

System Interfaces and Headers, Issue 5: Volume 1 55

Data Types General Information

Defined Type Description
sigset_t Integral or structure type of an object used to represent sets of signals.
size_t Unsigned integral type used for size of objects.
speed_t Type used for terminal baud rates.
ssize_t Arithmetic type used for a count of bytes or an error indication.

EX suseconds_t A signed arithmetic type used for time in microseconds.
tcflag_t Type used for terminal modes.
time_t Arithmetic type used for time in seconds.

RT timer_t Used for timer ID returned by timer_create().
uid_t Arithmetic type used for user IDs.

EX useconds_t Integral type used for time in microseconds.
va_list Type used for traversing variable argument lists.

Integral type whose range of values can represent distinct codes for
all members of the largest extended character set specified by the
supported locales.

wchar_t

wctype_t Scalar type which represents a character class descriptor.
An integral type capable of storing any valid value of wchar_t, or
WEOF.

wint_t

wordexp_t Structure type used in word expansion.

56 CAE Specification (1997)

Chapter 3

System Interfaces

This chapter describes the XSI functions, macros and external variables to support application
portability at the C-language source level.

System Interfaces and Headers, Issue 5: Volume 1 57

a64l() System Interfaces

NAME
a64l, l64a — convert between a 32-bit integer and a radix-64 ASCII string

SYNOPSIS
EX #include <stdlib.h>

long a64l(const char * s);
char *l64a(long value);

DESCRIPTION
These functions are used to maintain numbers stored in radix-64 ASCII characters. This is a
notation by which 32-bit integers can be represented by up to six characters; each character
represents a digit in radix-64 notation. If the type long contains more than 32 bits, only the low-
order 32 bits are used for these operations.

The characters used to represent ‘digits’ are ’.’ for 0, ’/’ for 1, ’0’ through ’9’ for 2−11,
’A’ through ’Z’ for 12-37, and ’a’ through ’z’ for 38-63.

The a64l () function takes a pointer to a radix-64 representation, in which the first digit is the
least significant, and returns a corresponding long value. If the string pointed to by s contains
more than six characters, a64l () uses the first six. If the first six characters of the string contain a
null terminator, a64l () uses only characters preceding the null terminator. The a64l () function
scans the character string from left to right with the least significant digit on the left, decoding
each character as a 6-bit radix-64 number. If the type long contains more than 32 bits, the
resulting value is sign-extended. The behaviour of a64l () is unspecified if s is a null pointer or
the string pointed to by s was not generated by a previous call to l64a ().

The l64a () function takes a long argument and returns a pointer to the corresponding radix-64
representation. The behaviour of l64a () is unspecified if value is negative.

The value returned by l64a () may be a pointer into a static buffer. Subsequent calls to l64a ()
may overwrite the buffer.

The l64a () interface need not be reentrant. An interface that is not required to be reentrant is not
required to be thread-safe.

RETURN VALUE
On successful completion, a64l () returns the long value resulting from conversion of the input
string. If a string pointed to by s is an empty string, a64l () returns 0L.

The l64a () function returns a pointer to the radix-64 representation. If value is 0L, l64a () returns
a pointer to an empty string.

ERRORS
No errors are defined.

EXAMPLES
None.

APPLICATION USAGE
If the type long contains more than 32 bits, the result of a64l(l64a(x)) is x in the low-order 32 bits.

FUTURE DIRECTIONS
None.

SEE ALSO
strtoul(), <stdlib.h>.

58 CAE Specification (1997)

System Interfaces a64l()

CHANGE HISTORY
First released in Issue 4, Version 2.

Issue 5
Moved from X/OPEN UNIX extension to BASE.

Normative text previously in the APPLICATION USAGE section is moved to the
DESCRIPTION.

A note indicating that these interfaces need not be reentrant is added to the DESCRIPTION.

System Interfaces and Headers, Issue 5: Volume 1 59

abort() System Interfaces

NAME
abort — generate an abnormal process abort

SYNOPSIS
#include <stdlib.h>

void abort(void);

DESCRIPTION
The abort() function causes abnormal process termination to occur, unless the signal SIGABRT is
being caught and the signal handler does not return. The abnormal termination processing
includes at least the effect of fclose() on all open streams, and message catalogue descriptors, and
the default actions defined for SIGABRT. The SIGABRT signal is sent to the calling process as if
by means of raise() with the argument SIGABRT.

The status made available to wait() or waitpid () by abort() will be that of a process terminated by
the SIGABRT signal. The abort() function will override blocking or ignoring the SIGABRT
signal.

RETURN VALUE
The abort() function does not return.

ERRORS
No errors are defined.

EXAMPLES
None.

APPLICATION USAGE
Catching the signal is intended to provide the application writer with a portable means to abort
processing, free from possible interference from any implementation-provided library functions.
If SIGABRT is neither caught nor ignored, and the current directory is writable, a core dump
may be produced.

FUTURE DIRECTIONS
None.

SEE ALSO
exit(), kill (), raise(), signal(),

CHANGE HISTORY
First released in Issue 1.

Derived from Issue 1 of the SVID.

Issue 4
The following changes are incorporated in this issue for alignment with the ISO C standard and
the ISO POSIX-1 standard:

• The argument list is explicitly defined as void.

• The DESCRIPTION is revised to identify the correct order in which operations occur. It also
identifies:

— how the calling process is signalled

— how status information is made available to the host environment

— that abort() will override blocking or ignoring of the SIGABRT signal.

60 CAE Specification (1997)

System Interfaces abort()

Another change is incorporated as follows:

• The APPLICATION USAGE section is replaced.

System Interfaces and Headers, Issue 5: Volume 1 61

abs() System Interfaces

NAME
abs — return an integer absolute value

SYNOPSIS
#include <stdlib.h>

int abs(int i);

DESCRIPTION
The abs() function computes the absolute value of its integer operand, i. If the result cannot be
represented, the behaviour is undefined.

RETURN VALUE
The abs() function returns the absolute value of its integer operand.

ERRORS
No errors are defined.

EXAMPLES
None.

APPLICATION USAGE
In two’s-complement representation, the absolute value of the negative integer with largest
magnitude {INT_MIN} might not be representable.

FUTURE DIRECTIONS
None.

SEE ALSO
fabs(), labs(), <stdlib.h>.

CHANGE HISTORY
First released in Issue 1.

Derived from Issue 1 of the SVID.

Issue 4
The following change is incorporated in this issue:

• In the APPLICATION USAGE section, the phrase ‘‘{INT_MIN} is undefined’’ is replaced
with ‘‘{INT_MIN} might not be representable’’.

62 CAE Specification (1997)

System Interfaces access()

NAME
access — determine accessibility of a file

SYNOPSIS
#include <unistd.h>

int access(const char * path , int amode);

DESCRIPTION
The access() function checks the file named by the pathname pointed to by the path argument for
accessibility according to the bit pattern contained in amode , using the real user ID in place of the
effective user ID and the real group ID in place of the effective group ID.

The value of amode is either the bitwise inclusive OR of the access permissions to be checked
(R_OK, W_OK, X_OK) or the existence test, F_OK.

If any access permissions are to be checked, each will be checked individually, as described in
the XBD specification, Chapter 2, Definitions. If the process has appropriate privileges, an
implementation may indicate success for X_OK even if none of the execute file permission bits
are set.

RETURN VALUE
If the requested access is permitted, access() succeeds and returns 0. Otherwise, −1 is returned
and errno is set to indicate the error.

ERRORS
The access() function will fail if:

[EACCES] Permission bits of the file mode do not permit the requested access, or search
permission is denied on a component of the path prefix.

EX [ELOOP] Too many symbolic links were encountered in resolving path.

FIPS [ENAMETOOLONG]
The length of the path argument exceeds {PATH_MAX} or a pathname
component is longer than {NAME_MAX}.

[ENOENT] A component of path does not name an existing file or path is an empty string.

[ENOTDIR] A component of the path prefix is not a directory.

[EROFS] Write access is requested for a file on a read-only file system.

The access() function may fail if:

[EINVAL] The value of the amode argument is invalid.

EX [ENAMETOOLONG]
Pathname resolution of a symbolic link produced an intermediate result
whose length exceeds {PATH_MAX}.

EX [ETXTBSY] Write access is requested for a pure procedure (shared text) file that is being
executed.

EXAMPLES
None.

APPLICATION USAGE
Additional values of amode other than the set defined in the description may be valid, for
example, if a system has extended access controls.

System Interfaces and Headers, Issue 5: Volume 1 63

access() System Interfaces

FUTURE DIRECTIONS
None.

SEE ALSO
chmod(), stat(), <unistd.h>.

CHANGE HISTORY
First released in Issue 1.

Derived from Issue 1 of the SVID.

Issue 4
The following change is incorporated for alignment with the ISO POSIX-1 standard:

• The type of argument path is changed from char * to const char *.

The following change is incorporated for alignment with the FIPS requirements:

• In the ERRORS section, the condition whereby [ENAMETOOLONG] will be returned if a
pathname component is larger that {NAME_MAX} is now defined as mandatory and marked
as an extension.

Issue 4, Version 2
The ERRORS section is updated for X/OPEN UNIX conformance as follows:

• It states that [ELOOP] will be returned if too many symbolic links are encountered during
pathname resolution.

• A second [ENAMETOOLONG] condition is defined that may report excessive length of an
intermediate result of pathname resolution of a symbolic link.

64 CAE Specification (1997)

System Interfaces acos()

NAME
acos — arc cosine function

SYNOPSIS
#include <math.h>

double acos(double x);

DESCRIPTION
The acos() function computes the principal value of the arc cosine of x. The value of x should be
in the range [−1,1].

An application wishing to check for error situations should set errno to 0 before calling acos(). If
errno is non-zero on return, or the value NaN is returned, an error has occurred.

RETURN VALUE
Upon successful completion, acos() returns the arc cosine of x, in the range [0, π] radians. If the

EX value of x is not in the range [−1,1], and is not ±Inf or NaN, either 0.0 or NaN is returned and
errno is set to [EDOM].

EX If x is NaN, NaN is returned and errno may be set to [EDOM]. If x is ±Inf, either 0.0 is returned
and errno is set to [EDOM], or NaN is returned and errno may be set to [EDOM].

ERRORS
The acos() function will fail if:

EX [EDOM] The value x is not ±Inf or NaN andis not in the range [−1,1].

The acos() function may fail if:

EX [EDOM] The value x is ±Inf or NaN.

EX No other errors will occur.

EXAMPLES
None.

APPLICATION USAGE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
cos(), isnan(), <math.h>.

CHANGE HISTORY
First released in Issue 1.

Derived from Issue 1 of the SVID.

Issue 4
The following changes are incorporated in this issue:

• Removed references to matherr().

• The RETURN VALUE and ERRORS sections are substantially rewritten for alignment with
the ISO C standard and to rationalise error handling in the mathematics functions.

• The return value specified for [EDOM] is marked as an extension.

System Interfaces and Headers, Issue 5: Volume 1 65

acos() System Interfaces

Issue 5
The DESCRIPTION is updated to indicate how an application should check for an error. This
text was previously published in the APPLICATION USAGE section.

66 CAE Specification (1997)

System Interfaces acosh()

NAME
acosh, asinh, atanh — inverse hyperbolic functions

SYNOPSIS
EX #include <math.h>

double acosh(double x);
double asinh(double x);
double atanh(double x);

DESCRIPTION
The acosh(), asinh() and atanh() functions compute the inverse hyperbolic cosine, sine, and
tangent of their argument, respectively.

RETURN VALUE
The acosh(), asinh() and atanh() functions return the inverse hyperbolic cosine, sine, and tangent
of their argument, respectively.

The acosh() function returns an implementation-dependent value (NaN or equivalent if
available) and sets errno to [EDOM] when its argument is less than 1.0.

The atanh() function returns an implementation-dependent value (NaN or equivalent if
available) and sets errno to [EDOM] when its argument has absolute value greater than 1.0.

If x is NaN, the asinh(), acosh() and atanh() functions return NaN and may set errno to [EDOM].

ERRORS
The acosh() function will fail if:

[EDOM] The x argument is less than 1.0.

The atanh() function will fail if:

[EDOM] The x argument has an absolute value greater than 1.0.

The atanh() function will fail if:

[ERANGE] The x argument has an absolute value equal to 1.0

The asinh(), acosh() and atanh() functions may fail if:

[EDOM] The value of x is NaN.

EXAMPLES
None.

APPLICATION USAGE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
cosh(), sinh(), tanh(), <math.h>.

CHANGE HISTORY
First released in Issue 4, Version 2.

Issue 5
Moved from X/OPEN UNIX extension to BASE.

System Interfaces and Headers, Issue 5: Volume 1 67

advance() System Interfaces

NAME
advance — pattern match given a compiled regular expression (LEGACY)

SYNOPSIS
EX #include <regexp.h>

int advance(const char * string , const char * expbuf);

DESCRIPTION
Refer to regexp().

CHANGE HISTORY
First released in Issue 2.

Derived from Issue 2 of the SVID.

Issue 4
The following changes are incorporated in this issue:

• The <regexp.h> header is added to the SYNOPSIS section.

• The type of arguments string and expbuf are changed from char * to const char *.

• The interface is marked TO BE WITHDRAWN, because improved functionality is now
provided by interfaces introduced for alignment with the ISO POSIX-2 standard.

Issue 5
Marked LEGACY.

68 CAE Specification (1997)

System Interfaces aio_cancel()

NAME
aio_cancel — cancel an asynchronous I/O request (REALTIME)

SYNOPSIS
RT #include <aio.h>

int aio_cancel(int fildes , struct aiocb * aiocbp);

DESCRIPTION
The aio_cancel () function attempts to cancel one or more asynchronous I/O requests currently
outstanding against file descriptor fildes . The aiocbp argument points to the asynchronous I/O
control block for a particular request to be canceled. If aiocbp is NULL, then all outstanding
cancelable asynchronous I/O requests against fildes are canceled.

Normal asynchronous notification occurs for asynchronous I/O operations that are successfully
canceled. If there are requests that cannot be canceled, then the normal asynchronous
completion process takes place for those requests when they are completed.

For requested operations that are successfully canceled, the associated error status is set to
[ECANCELED] and the return status is −1. For requested operations that are not successfully
canceled, the aiocbp is not modified by aio_cancel ().

If aiocbp is not NULL, then if fildes does not have the same value as the file descriptor with which
the asynchronous operation was initiated, unspecified results occur.

Which operations are cancelable is implementation-dependent.

RETURN VALUE
The aio_cancel () function returns the value AIO_CANCELED to the calling process if the
requested operation(s) were canceled. The value AIO_NOTCANCELED is returned if at least
one of the requested operation(s) cannot be canceled because it is in progress. In this case, the
state of the other operations, if any, referenced in the call to aio_cancel () is not indicated by the
return value of aio_cancel (). The application may determine the state of affairs for these
operations by using aio_error (). The value AIO_ALLDONE is returned if all of the operations
have already completed. Otherwise, the function returns −1 and sets errno to indicate the error.

ERRORS
The aio_cancel () function will fail if:

[EBADF] The fildes argument is not a valid file descriptor.

[ENOSYS] The aio_cancel () function is not supported by this implementation.

EXAMPLES
None.

APPLICATION USAGE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
aio_read (), aio_write ().

CHANGE HISTORY
First released in Issue 5.

Included for alignment with the POSIX Realtime Extension.

System Interfaces and Headers, Issue 5: Volume 1 69

aio_error() System Interfaces

NAME
aio_error — retrieve errors status for an asynchronous I/O operation (REALTIME)

SYNOPSIS
RT #include <aio.h>

int aio_error(const struct aiocb * aiocbp);

DESCRIPTION
The aio_error () function returns the error status associated with the aiocb structure referenced
by the aiocbp argument. The error status for an asynchronous I/O operation is the errno value
that would be set by the corresponding read(), write(), or fsync() operation. If the operation has
not yet completed, then the error status will be equal to EINPROGRESS.

RETURN VALUE
If the asynchronous I/O operation has completed successfully, then 0 is returned. If the
asynchronous operation has completed unsuccessfully, then the error status, as described for
read(), write(), and fsync(), is returned. If the asynchronous I/O operation has not yet
completed, then EINPROGRESS is returned.

ERRORS
The aio_error () function will fail if:

[ENOSYS] The aio_error () function is not supported by this implementation.

The aio_error () function may fail if:

[EINVAL] The aiocbp argument does not refer to an asynchronous operation whose
return status has not yet been retrieved.

EXAMPLES
None.

APPLICATION USAGE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
aio_read (), aio_write (), aio_fsync (), lio_listio (), aio_return(), aio_cancel (), read(), lseek(), close(),
_exit(), exec, fork ().

CHANGE HISTORY
First released in Issue 5.

Included for alignment with the POSIX Realtime Extension.

70 CAE Specification (1997)

System Interfaces aio_fsync()

NAME
aio_fsync — asynchronous file synchronisation (REALTIME)

SYNOPSIS
RT #include <aio.h>

int aio_fsync(int op, struct aiocb * aiocbp);

DESCRIPTION
The aio_fsync () function asynchronously forces all I/O operations associated with the file
indicated by the file descriptor aio_fildes member of the aiocb structure referenced by the aiocbp
argument and queued at the time of the call to aio_fsync () to the synchronised I/O completion
state. The function call returns when the synchronisation request has been initiated or queued to
the file or device (even when the data cannot be synchronised immediately).

If op is O_DSYNC, all currently queued I/O operations are completed as if by a call to
fdatasync (); that is, as defined for synchronised I/O data integrity completion. If op is O_SYNC,
all currently queued I/O operations are completed as if by a call to fsync(); that is, as defined for
synchronised I/O file integrity completion. If the aio_fsync () function fails, or if the operation
queued by aio_fsync () fails, then, as for fsync() and fdatasync (), outstanding I/O operations are
not guaranteed to have been completed.

If aio_fsync () succeeds, then it is only the I/O that was queued at the time of the call to
aio_fsync () that is guaranteed to be forced to the relevant completion state. The completion of
subsequent I/O on the file descriptor is not guaranteed to be completed in a synchronised
fashion.

The aiocbp argument refers to an asynchronous I/O control block. The aiocbp value may be used
as an argument to aio_error () and aio_return() in order to determine the error status and return
status, respectively, of the asynchronous operation while it is proceeding. When the request is
queued, the error status for the operation is EINPROGRESS. When all data has been
successfully transferred, the error status will be reset to reflect the success or failure of the
operation. If the operation does not complete successfully, the error status for the operation will
be set to indicate the error. The aio_sigevent member determines the asynchronous notification
to occur as specified in Signal Generation and Delivery on page 808 when all operations have
achieved synchronised I/O completion. All other members of the structure referenced by aiocbp
are ignored. If the control block referenced by aiocbp becomes an illegal address prior to
asynchronous I/O completion, then the behaviour is undefined.

If the aio_fsync () function fails or the aiocbp indicates an error condition, data is not guaranteed
to have been successfully transferred.

If aiocbp is NULL, then no status is returned in aiocbp , and no signal is generated upon
completion of the operation.

RETURN VALUE
The aio_fsync () function returns the value 0 to the calling process if the I/O operation is
successfully queued; otherwise, the function returns the value −1 and sets errno to indicate the
error.

ERRORS
The aio_fsync () function will fail if:

[EAGAIN] The requested asynchronous operation was not queued due to temporary
resource limitations.

System Interfaces and Headers, Issue 5: Volume 1 71

aio_fsync() System Interfaces

[EBADF] The aio_fildes member of the aiocb structure referenced by the aiocbp argument
is not a valid file descriptor open for writing.

[EINVAL] This implementation does not support synchronised I/O for this file.

[EINVAL] A value of op other than O_DSYNC or O_SYNC was specified.

[ENOSYS] The aio_fsync () function is not supported by this implementation.

In the event that any of the queued I/O operations fail, aio_fsync () returns the error condition
defined for read() and write(). The error will be returned in the error status for the asynchronous
fsync() operation, which can be retrieved using aio_error ().

EXAMPLES
None.

APPLICATION USAGE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
fcntl(), fdatasync (), fsync(), open(), read(), write().

CHANGE HISTORY
First released in Issue 5.

Included for alignment with the POSIX Realtime Extension.

72 CAE Specification (1997)

System Interfaces aio_read()

NAME
aio_read — asynchronous read from a file (REALTIME)

SYNOPSIS
RT #include <aio.h>

int aio_read(struct aiocb * aiocbp);

DESCRIPTION
The aio_read () function allows the calling process to read aiocbp->aio_nbytes from the file
associated with aiocbp->aio_fildes into the buffer pointed to by aiocbp->aio_buf . The function call
returns when the read request has been initiated or queued to the file or device (even when the
data cannot be delivered immediately). If _POSIX_PRIORITIZED_IO is defined and prioritized
I/O is supported for this file, then the asynchronous operation is submitted at a priority equal to
the scheduling priority of the process minus aiocbp->aio_reqprio . The aiocbp value may be used as
an argument to aio_error () and aio_return() in order to determine the error status and return
status, respectively, of the asynchronous operation while it is proceeding. If an error condition is
encountered during queuing, the function call returns without having initiated or queued the
request. The requested operation takes place at the absolute position in the file as given by
aio_offset, as if lseek() were called immediately prior to the operation with an offset equal to
aio_offset and a whence equal to SEEK_SET . After a successful call to enqueue an asynchronous
I/O operation, the value of the file offset for the file is unspecified.

The aiocbp->aio_lio_opcode field is ignored by aio_read ().

The aiocbp argument points to an aiocb structure. If the buffer pointed to by aiocbp->aio_buf or
the control block pointed to by aiocbp becomes an illegal address prior to asynchronous I/O
completion, then the behaviour is undefined.

Simultaneous asynchronous operations using the same aiocbp produce undefined results.

If _POSIX_SYNCHRONIZED_IO is defined and synchronised I/O is enabled on the file
associated with aiocbp->aio_fildes , the behaviour of this function is according to the definitions of
synchronised I/O data integrity completion and synchronised I/O file integrity completion.

For any system action that changes the process memory space while an asynchronous I/O is
outstanding to the address range being changed, the result of that action is undefined.

EX For regular files, no data transfer will occur past the offset maximum established in the open file
description associated with aiocbp->aio_fildes .

RETURN VALUE
The aio_read () function returns the value zero to the calling process if the I/O operation is
successfully queued; otherwise, the function returns the value −1 and sets errno to indicate the
error.

ERRORS
The aio_read () function will fail if:

[EAGAIN] The requested asynchronous I/O operation was not queued due to system
resource limitations.

[ENOSYS] The aio_read () function is not supported by this implementation.

Each of the following conditions may be detected synchronously at the time of the call to
aio_read (), or asynchronously. If any of the conditions below are detected synchronously, the
aio_read () function returns −1 and sets errno to the corresponding value. If any of the conditions
below are detected asynchronously, the return status of the asynchronous operation is set to −1,

System Interfaces and Headers, Issue 5: Volume 1 73

aio_read() System Interfaces

and the error status of the asynchronous operation will be set to the corresponding value.

[EBADF] The aiocbp->aio_fildes argument is not a valid file descriptor open for reading.

[EINVAL] The file offset value implied by aiocbp->aio_offset would be invalid, aiocbp-
>aio_reqprio is not a valid value, or aiocbp->aio_nbytes is an invalid value.

In the case that the aio_read () successfully queues the I/O operation but the operation is
subsequently canceled or encounters an error, the return status of the asynchronous operation is
one of the values normally returned by the read() function call. In addition, the error status of
the asynchronous operation will be set to one of the error statuses normally set by the read()
function call, or one of the following values:

[EBADF] The aiocbp->aio_fildes argument is not a valid file descriptor open for reading.

[ECANCELED] The requested I/O was canceled before the I/O completed due to an explicit
aio_cancel () request.

[EINVAL] The file offset value implied by aiocbp->aio_offset would be invalid.

EX The following condition may be detected synchronously or asynchronously:

[EOVERFLOW] The file is a regular file, aiobcp->aio_nbytes is greater than 0 and the starting
offset in aiobcp->aio_offset is before the end-of-file and is at or beyond the offset
maximum in the open file description associated with aiocbp->aio_fildes .

EXAMPLES
None.

APPLICATION USAGE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
aio_cancel (), aio_error (), lio_listio (), aio_return(), aio_write (), close(), _exit(), exec, fork (), lseek(),
read().

CHANGE HISTORY
First released in Issue 5.

Included for alignment with the POSIX Realtime Extension. Large File Summit extensions
added.

74 CAE Specification (1997)

System Interfaces aio_return()

NAME
aio_return — retrieve return status of an asynchronous I/O operation (REALTIME)

SYNOPSIS
RT #include <aio.h>

ssize_t aio_return(struct aiocb * aiocbp);

DESCRIPTION
The aio_return() function returns the return status associated with the aiocb structure referenced
by the aiocbp argument. The return status for an asynchronous I/O operation is the value that
would be returned by the corresponding read(), write(), or fsync() function call. If the error
status for the operation is equal to EINPROGRESS, then the return status for the operation is
undefined. The aio_return() function may be called exactly once to retrieve the return status of a
given asynchronous operation; thereafter, if the same aiocb structure is used in a call to
aio_return() or aio_error (), an error may be returned. When the aiocb structure referred to by
aiocbp is used to submit another asynchronous operation, then aio_return() may be successfully
used to retrieve the return status of that operation.

RETURN VALUE
If the asynchronous I/O operation has completed, then the return status, as described for read(),
write(), and fsync(), is returned. If the asynchronous I/O operation has not yet completed, the
results of aio_return() are undefined.

ERRORS
The aio_return() function will fail if:

[EINVAL] The aiocbp argument does not refer to an asynchronous operation whose
return status has not yet been retrieved.

[ENOSYS] The aio_return() function is not supported by this implementation.

EXAMPLES
None.

APPLICATION USAGE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
aio_cancel (), aio_error (), aio_fsync (), aio_read (), aio_write (), close(), _exit(), exec, fork (), lio_listio (),
lseek(), read().

CHANGE HISTORY
First released in Issue 5.

Included for alignment with the POSIX Realtime Extension.

System Interfaces and Headers, Issue 5: Volume 1 75

aio_suspend() System Interfaces

NAME
aio_suspend — wait for an asynchronous I/O request (REALTIME)

SYNOPSIS
RT #include <aio.h>

int aio_suspend(const struct aiocb * const list [], int nent ,
const struct timespec * timeout);

DESCRIPTION
The aio_suspend() function suspends the calling thread until at least one of the asynchronous
I/O operations referenced by the list argument has completed, until a signal interrupts the
function, or, if timeout is not NULL, until the time interval specified by timeout has passed. If any
of the aiocb structures in the list correspond to completed asynchronous I/O operations (that is,
the error status for the operation is not equal to EINPROGRESS) at the time of the call, the
function returns without suspending the calling thread The list argument is an array of pointers
to asynchronous I/O control blocks. The nent argument indicates the number of elements in the
array. Each aiocb structure pointed to will have been used in initiating an asynchronous I/O
request via aio_read (), aio_write (), or lio_listio (). This array may contain NULL pointers, which
are ignored. If this array contains pointers that refer to aiocb structures that have not been used
in submitting asynchronous I/O, the effect is undefined.

If the time interval indicated in the timespec structure pointed to by timeout passes before any of
the I/O operations referenced by list are completed, then aio_suspend() returns with an error.

RETURN VALUE
If the aio_suspend() function returns after one or more asynchronous I/O operations have
completed, the function returns zero. Otherwise, the function returns a value of −1 and sets
errno to indicate the error.

The application may determine which asynchronous I/O completed by scanning the associated
error and return status using aio_error () and aio_return(), respectively.

ERRORS
The aio_suspend() function will fail if:

[EAGAIN] No asynchronous I/O indicated in the list referenced by list completed in the
time interval indicated by timeout .

[EINTR] A signal interrupted the aio_suspend() function. Note that, since each
asynchronous I/O operation may possibly provoke a signal when it
completes, this error return may be caused by the completion of one (or more)
of the very I/O operations being awaited.

[ENOSYS] The aio_suspend() function is not supported by this implementation.

EXAMPLES
None.

APPLICATION USAGE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
aio_read (), aio_write (), lio_listio ().

76 CAE Specification (1997)

System Interfaces aio_suspend()

CHANGE HISTORY
First released in Issue 5.

Included for alignment with the POSIX Realtime Extension.

System Interfaces and Headers, Issue 5: Volume 1 77

aio_write() System Interfaces

NAME
aio_write — asynchronous write to a file (REALTIME)

SYNOPSIS
RT #include <aio.h>

int aio_write(struct aiocb * aiocbp);

DESCRIPTION
The aio_write () function allows the calling process to write aiocbp->aio_nbytes to the file
associated with aiocbp->aio_fildes from the buffer pointed to by aiocbp->aio_buf . The function call
returns when the write request has been initiated or, at a minimum, queued to the file or device.
If _POSIX_PRIORITIZED_IO is defined and prioritized I/O is supported for this file, then the
asynchronous operation is submitted at a priority equal to the scheduling priority of the process
minus aiocbp->aio_reqprio . The aiocbp may be used as an argument to aio_error () and aio_return()
in order to determine the error status and return status, respectively, of the asynchronous
operation while it is proceeding.

The aiocbp argument points to an aiocb structure. If the buffer pointed to by aiocbp->aio_buf or
the control block pointed to by aiocbp becomes an illegal address prior to asynchronous I/O
completion, then the behaviour is undefined.

If O_APPEND is not set for the file descriptor aio_fildes , then the requested operation takes place
at the absolute position in the file as given by aio_offset, as if lseek() were called immediately
prior to the operation with an offset equal to aio_offset and a whence equal to SEEK_SET. If
O_APPEND is set for the file descriptor, write operations append to the file in the same order as
the calls were made. After a successful call to enqueue an asynchronous I/O operation, the
value of the file offset for the file is unspecified.

The aiocbp->aio_lio_opcode field is ignored by aio_write ().

Simultaneous asynchronous operations using the same aiocbp produce undefined results.

If _POSIX_SYNCHRONIZED_IO is defined and synchronised I/O is enabled on the file
associated with aiocbp->aio_fildes , the behaviour of this function shall be according to the
definitions of synchronised I/O data integrity completion and synchronised I/O file integrity
completion.

For any system action that changes the process memory space while an asynchronous I/O is
outstanding to the address range being changed, the result of that action is undefined.

EX For regular files, no data transfer will occur past the offset maximum established in the open file
description associated with aiocbp->aio_fildes .

RETURN VALUE
The aio_write () function returns the value zero to the calling process if the I/O operation is
successfully queued; otherwise, the function returns the value −1 and sets errno to indicate the
error.

ERRORS
The aio_write () function will fail if:

[EAGAIN] The requested asynchronous I/O operation was not queued due to system
resource limitations.

[ENOSYS] The aio_write () function is not supported by this implementation.

Each of the following conditions may be detected synchronously at the time of the call to
aio_write (), or asynchronously. If any of the conditions below are detected synchronously, the

78 CAE Specification (1997)

System Interfaces aio_write()

aio_write () function returns −1 and sets errno to the corresponding value. If any of the conditions
below are detected asynchronously, the return status of the asynchronous operation is set to −1,
and the error status of the asynchronous operation will be set to the corresponding value.

[EBADF] The aiocbp->aio_fildes argument is not a valid file descriptor open for writing.

[EINVAL] The file offset value implied by aiocbp->aio_offset would be invalid, aiocbp-
>aio_reqprio is not a valid value, or aiocbp->aio_nbytes is an invalid value.

In the case that the aio_write () successfully queues the I/O operation, the return status of the
asynchronous operation will be one of the values normally returned by the write() function call.
If the operation is successfully queued but is subsequently canceled or encounters an error, the
error status for the asynchronous operation contains one of the values normally set by the
write() function call, or one of the following:

[EBADF] The aiocbp->aio_fildes argument is not a valid file descriptor open for writing.

[EINVAL] The file offset value implied by aiocbp->aio_offset would be invalid.

[ECANCELED] The requested I/O was canceled before the I/O completed due to an explicit
aio_cancel () request.

EX The following condition may be detected synchronously or asynchronously:

[EFBIG] The file is a regular file, aiobcp->aio_nbytes is greater than 0 and the starting
offset in aiobcp->aio_offset is at or beyond the offset maximum in the open file
description associated with aiocbp->aio_fildes .

EXAMPLES
None.

APPLICATION USAGE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
aio_cancel (), aio_error (), aio_read (), aio_return(), lio_listio (), close(), _exit(), exec, fork (), lseek(),
write().

CHANGE HISTORY
First released in Issue 5.

Included for alignment with the POSIX Realtime Extension. Large File Summit extensions
added.

System Interfaces and Headers, Issue 5: Volume 1 79

alarm() System Interfaces

NAME
alarm — schedule an alarm signal

SYNOPSIS
#include <unistd.h>

unsigned int alarm(unsigned int seconds);

DESCRIPTION
The alarm() function causes the system to generate a SIGALRM signal for the process after the
number of real-time seconds specified by seconds have elapsed. Processor scheduling delays
may prevent the process from handling the signal as soon as it is generated.

If seconds is 0, a pending alarm request, if any, is cancelled.

Alarm requests are not stacked; only one SIGALRM generation can be scheduled in this manner;
if the SIGALRM signal has not yet been generated, the call will result in rescheduling the time at
which the SIGALRM signal will be generated.

EX Interactions between alarm() and any of setitimer(), ualarm() or usleep() are unspecified.

RETURN VALUE
If there is a previous alarm() request with time remaining, alarm() returns a non-zero value that
is the number of seconds until the previous request would have generated a SIGALRM signal.
Otherwise, alarm() returns 0.

ERRORS
The alarm() function is always successful, and no return value is reserved to indicate an error.

EXAMPLES
None.

APPLICATION USAGE
The fork () function clears pending alarms in the child process. A new process image created by
one of the exec functions inherits the time left to an alarm signal in the old process’ image.

FUTURE DIRECTIONS
None.

SEE ALSO
exec, fork (), getitimer(), pause(), sigaction (), ualarm(), usleep(), <signal.h>, <unistd.h>.

CHANGE HISTORY
First released in Issue 1.

Derived from Issue 1 of the SVID.

Issue 4
The following change is incorporated in this issue:

• The header <unistd.h> is included in the SYNOPSIS section.

Issue 4, Version 2
The DESCRIPTION is updated to indicate that interactions with the setitimer(), ualarm() and
usleep() functions are unspecified.

80 CAE Specification (1997)

System Interfaces asctime()

NAME
asctime, asctime_r — convert date and time to a string

SYNOPSIS
#include <time.h>

char *asctime(const struct tm * timeptr);
char *asctime_r(const struct tm * tm, char * buf);

DESCRIPTION
The asctime() function converts the broken-down time in the structure pointed to by timeptr into
a string in the form:

Sun Sep 16 01:03:52 1973\n\0

using the equivalent of the following algorithm:

char *asctime(const struct tm *timeptr)
{

static char wday_name[7][3] = {
"Sun", "Mon", "Tue", "Wed", "Thu", "Fri", "Sat"

};
static char mon_name[12][3] = {

"Jan", "Feb", "Mar", "Apr", "May", "Jun",
"Jul", "Aug", "Sep", "Oct", "Nov", "Dec"

};
static char result[26];

sprintf(result, "%.3s %.3s%3d %.2d:%.2d:%.2d %d\n",
wday_name[timeptr->tm_wday],
mon_name[timeptr->tm_mon],
timeptr->tm_mday, timeptr->tm_hour,
timeptr->tm_min, timeptr->tm_sec,
1900 + timeptr->tm_year);

return result;
}

The tm structure is defined in the <time.h> header.

The asctime(), ctime(), gmtime() and localtime () functions return values in one of two static
objects: a broken-down time structure and an array of type char. Execution of any of the
functions may overwrite the information returned in either of these objects by any of the other
functions.

The asctime() interface need not be reentrant.

The asctime_r() function converts the broken-down time in the structure pointed to by tm into a
string that is placed in the user-supplied buffer pointed to by buf (which contains at least 26
bytes) and then returns buf.

RETURN VALUE
Upon successful completion, asctime() returns a pointer to the string.

Upon successful completion, asctime_r() returns a pointer to a character string containing the
date and time. This string is pointed to by the argument buf. If the function is unsuccessful, it
returns NULL.

ERRORS
No errors are defined.

System Interfaces and Headers, Issue 5: Volume 1 81

asctime() System Interfaces

EXAMPLES
None.

APPLICATION USAGE
Values for the broken-down time structure can be obtained by calling gmtime() or localtime ().
This interface is included for compatibility with older implementations, and does not support
localised date and time formats. Applications should use strftime() to achieve maximum
portability.

FUTURE DIRECTIONS
None.

SEE ALSO
clock (), ctime(), difftime(), gmtime(), localtime (), mktime(), strftime(), strptime(), time(), utime(),
<time.h>.

CHANGE HISTORY
First released in Issue 1.

Derived from Issue 1 of the SVID.

Issue 4
The following change is incorporated for alignment with the ISO C standard:

• The type of argument timeptr is changed from struct tm* to const struct tm*.

Other changes are incorporated as follows:

• The location of the tm structure is now defined.

• The APPLICATION USAGE section is expanded to describe the time-handling functions
generally and to refer users to strftime(), which is a locale-dependent time-handling function.

Issue 5
Normative text previously in the APPLICATION USAGE section is moved to the
DESCRIPTION.

The asctime_r() function is included for alignment with the POSIX Threads Extension.

A note indicating that the asctime() interface need not be reentrant is added to the
DESCRIPTION.

82 CAE Specification (1997)

System Interfaces asin()

NAME
asin — arc sine function

SYNOPSIS
#include <math.h>

double asin(double x);

DESCRIPTION
The asin() function computes the principal value of the arc sine of x. The value of x should be in
the range [−1,1].

An application wishing to check for error situations should set errno to 0, then call asin(). If errno
is non-zero on return, or the return value is NaN, an error has occurred.

RETURN VALUE
Upon successful completion, asin() returns the arc sine of x , in the range [-π/2, π/2] radians. If

EX the value of x is not in the range [−1,1], and is not ±Inf or NaN, either 0.0 or NaN is returned and
errno is set to [EDOM].

EX If x is NaN, NaN is returned and errno may be set to [EDOM].

EX If x is ±Inf, either 0.0 is returned and errno is set to [EDOM] or NaN is returned and errno may be
set to [EDOM].

If the result underflows, 0.0 is returned and errno may be set to [ERANGE].

ERRORS
The asin() function will fail if:

EX [EDOM] The value x is not ±Inf or NaN and is not in the range [−1,1].

The asin() function may fail if:

EX [EDOM] The value of x is ±Inf or NaN.

[ERANGE] The result underflows.

EX No other errors will occur.

EXAMPLES
None.

APPLICATION USAGE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
isnan(), sin(), <math.h>.

CHANGE HISTORY
First released in Issue 1.

Derived from Issue 1 of the SVID.

System Interfaces and Headers, Issue 5: Volume 1 83

asin() System Interfaces

Issue 4
The following changes are incorporated in this issue:

• Removed references to matherr().

• The RETURN VALUE and ERRORS sections are substantially rewritten for alignment with
the ISO C standard and to rationalise error handling in the mathematics functions.

• The return value specified for [EDOM] is marked as an extension.

Issue 5
The DESCRIPTION is updated to indicate how an application should check for an error. This
text was previously published in the APPLICATION USAGE section.

84 CAE Specification (1997)

System Interfaces asinh()

NAME
asinh — hyperbolic arc sine

SYNOPSIS
EX #include <math.h>

double asinh(double x);

DESCRIPTION
Refer to acosh().

CHANGE HISTORY
First released in Issue 4, Version 2.

Issue 5
Moved from X/OPEN UNIX extension to BASE.

System Interfaces and Headers, Issue 5: Volume 1 85

assert() System Interfaces

NAME
assert — insert program diagnostics

SYNOPSIS
#include <assert.h>

void assert(int expression);

DESCRIPTION
The assert() macro inserts diagnostics into programs. When it is executed, if expression is false
(that is, compares equal to 0), assert() writes information about the particular call that failed
(including the text of the argument, the name of the source file and the source file line number —
the latter are respectively the values of the preprocessing macros _ _FILE_ _ and _ _LINE_ _) on
stderr and calls abort().

Forcing a definition of the name NDEBUG, either from the compiler command line or with the
preprocessor control statement #define NDEBUG ahead of the #include <assert.h> statement,
will stop assertions from being compiled into the program.

RETURN VALUE
The assert() macro returns no value.

ERRORS
No errors are defined.

EXAMPLES
None.

APPLICATION USAGE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
abort(), stderr(), <assert.h>.

CHANGE HISTORY
First released in Issue 1.

Derived from Issue 1 of the SVID.

Issue 4
The following change is incorporated in this issue:

• The APPLICATION USAGE section is merged into the DESCRIPTION.

86 CAE Specification (1997)

System Interfaces atan()

NAME
atan — arc tangent function

SYNOPSIS
#include <math.h>

double atan(double x);

DESCRIPTION
The atan() function computes the principal value of the arc tangent of x .

An application wishing to check for error situations should set errno to 0 before calling atan(). If
errno is non-zero on return, or the return value is NaN, an error has occurred.

RETURN VALUE
Upon successful completion, atan() returns the arc tangent of x in the range [-π/2, π/2] radians.

EX If x is NaN, NaN is returned and errno may be set to [EDOM].

If the result underflows, 0.0 is returned and errno may be set to [ERANGE].

ERRORS
The atan() function may fail if:

EX [EDOM] The value of x is NaN.

[ERANGE] The result underflows.

EX No other errors will occur.

EXAMPLES
None.

APPLICATION USAGE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
atan2(), isnan(), tan(), <math.h>.

CHANGE HISTORY
First released in Issue 1.

Derived from Issue 1 of the SVID.

Issue 4
The following changes are incorporated in this issue:

• Removed references to matherr().

• The RETURN VALUE and ERRORS sections are substantially rewritten for alignment with
the ISO C standard and to rationalise error handling in the mathematics functions.

• The return value specified for [EDOM] is marked as an extension.

Issue 5
The DESCRIPTION is updated to indicate how an application should check for an error. This
text was previously published in the APPLICATION USAGE section.

System Interfaces and Headers, Issue 5: Volume 1 87

atan2() System Interfaces

NAME
atan2 — arc tangent function

SYNOPSIS
#include <math.h>

double atan2(double y, double x);

DESCRIPTION
The atan2() function computes the principal value of the arc tangent of y/x , using the signs of
both arguments to determine the quadrant of the return value.

An application wishing to check for error situations should set errno to 0 before calling atan2().
If errno is non-zero on return, or the return value is NaN, an error has occurred.

RETURN VALUE
Upon successful completion, atan2() returns the arc tangent of y/x in the range [-π, π] radians. If
both arguments are 0.0, an implementation-dependent value is returned and errno may be set to
[EDOM].

EX If x or y is NaN, NaN is returned and errno may be set to [EDOM].

If the result underflows, 0.0 is returned and errno may be set to [ERANGE].

ERRORS
The atan2() function may fail if:

EX [EDOM] Both arguments are 0.0 or one or more of the arguments is NaN.

[ERANGE] The result underflows.

EX No other errors will occur.

EXAMPLES
None.

APPLICATION USAGE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
atan(), isnan(), tan(), <math.h>.

CHANGE HISTORY
First released in Issue 1.

Derived from Issue 1 of the SVID.

Issue 4
The following changes are incorporated in this issue:

• Removed references to matherr().

• The RETURN VALUE and ERRORS sections are substantially rewritten for alignment with
the ISO C standard and to rationalise error handling in the mathematics functions.

• The return value specified for [EDOM] is marked as an extension.

88 CAE Specification (1997)

System Interfaces atan2()

Issue 5
The DESCRIPTION is updated to indicate how an application should check for an error. This
text was previously published in the APPLICATION USAGE section.

System Interfaces and Headers, Issue 5: Volume 1 89

atanh() System Interfaces

NAME
atanh — hyperbolic arc tangent

SYNOPSIS
EX #include <math.h>

double atanh(double x);

DESCRIPTION
Refer to acosh().

CHANGE HISTORY
First released in Issue 4, Version 2.

Issue 5
Moved from X/OPEN UNIX extension to BASE.

90 CAE Specification (1997)

System Interfaces atexit()

NAME
atexit — register a function to run at process termination

SYNOPSIS
#include <stdlib.h>

int atexit(void (* func)(void));

DESCRIPTION
The atexit() function registers the function pointed to by func to be called without arguments. At
normal process termination, functions registered by atexit() are called in the reverse order to that
in which they were registered. Normal termination occurs either by a call to exit() or a return
from main().

At least 32 functions can be registered with atexit().

After a successful call to any of the exec functions, any functions previously registered by atexit()
are no longer registered.

RETURN VALUE
Upon successful completion, atexit() returns 0. Otherwise, it returns a non-zero value.

ERRORS
No errors are defined.

EXAMPLES
None.

APPLICATION USAGE
The functions registered by a call to atexit() must return to ensure that all registered functions
are called.

The application should call sysconf() to obtain the value of {ATEXIT_MAX}, the number of
functions that can be registered. There is no way for an application to tell how many functions
have already been registered with atexit().

FUTURE DIRECTIONS
None.

SEE ALSO
exit(), sysconf(), <stdlib.h>.

CHANGE HISTORY
First released in Issue 4.

Derived from the ANSI C standard.

Issue 4, Version 2
The APPLICATION USAGE section is updated to indicate how an application can determine the
setting of {ATEXIT_MAX}, which is a constant added for X/OPEN UNIX conformance.

System Interfaces and Headers, Issue 5: Volume 1 91

atof() System Interfaces

NAME
atof — convert a string to double-precision number

SYNOPSIS
#include <stdlib.h>

double atof(const char * str);

DESCRIPTION
The call atof (str) is equivalent to:

strtod(str ,(char **)NULL),

except that the handling of errors may differ. If the value cannot be represented, the behaviour
is undefined.

RETURN VALUE
The atof () function returns the converted value if the value can be represented.

ERRORS
No errors are defined.

EXAMPLES
None.

APPLICATION USAGE
The atof () function is subsumed by strtod() but is retained because it is used extensively in
existing code. If the number is not known to be in range, strtod() should be used because atof () is
not required to perform any error checking.

FUTURE DIRECTIONS
None.

SEE ALSO
strtod(), <stdlib.h>.

CHANGE HISTORY
First released in Issue 1.

Derived from Issue 1 of the SVID.

Issue 4
The following change is incorporated for alignment with the ISO C standard:

• The type of argument str is changed from char * to const char *.

Other changes are incorporated as follows:

• Reference to how str is converted is removed from the DESCRIPTION.

• The APPLICATION USAGE section is added.

92 CAE Specification (1997)

System Interfaces atoi()

NAME
atoi — convert a string to integer

SYNOPSIS
#include <stdlib.h>

int atoi(const char * str);

DESCRIPTION
The call atoi (str) is equivalent to:

(int) strtol(str, (char **)NULL, 10)

except that the handling of errors may differ. If the value cannot be represented, the behaviour
is undefined.

RETURN VALUE
The atoi () function returns the converted value if the value can be represented.

ERRORS
No errors are defined.

EXAMPLES
None.

APPLICATION USAGE
The atoi () function is subsumed by strtol() but is retained because it is used extensively in
existing code. If the number is not known to be in range, strtol() should be used because atoi () is
not required to perform any error checking.

FUTURE DIRECTIONS
None.

SEE ALSO
strtol(), <stdlib.h>.

CHANGE HISTORY
First released in Issue 1.

Derived from Issue 1 of the SVID.

Issue 4
The following change is incorporated for alignment with the ISO C standard:

• The type of argument str is changed from char * to const char *.

Other changes are incorporated as follows:

• Reference to how str is converted is removed from the DESCRIPTION.

• The APPLICATION USAGE section is added.

System Interfaces and Headers, Issue 5: Volume 1 93

atol() System Interfaces

NAME
atol — convert a string to long integer

SYNOPSIS
#include <stdlib.h>

long int atol(const char * str);

DESCRIPTION
The call atol (str) is equivalent to:

strtol(str, (char **)NULL, 10)

except that the handling of errors may differ. If the value cannot be represented, the behaviour
is undefined.

RETURN VALUE
The atol () function returns the converted value if the value can be represented.

ERRORS
No errors are defined.

EXAMPLES
None.

APPLICATION USAGE
The atol () function is subsumed by strtol() but is retained because it is used extensively in
existing code. If the number is not known to be in range, strtol() should be used because atol () is
not required to perform any error checking.

FUTURE DIRECTIONS
None.

SEE ALSO
strtol(), <stdlib.h>.

CHANGE HISTORY
First released in Issue 1.

Derived from Issue 1 of the SVID.

Issue 4
The following changes are incorporated for alignment with the ISO C standard:

• The type of argument str is changed from char * to const char *.

• The return type of the function is expanded to long int.

Other changes are incorporated as follows:

• Reference to how str is converted is removed from the DESCRIPTION.

• The APPLICATION USAGE section is added.

94 CAE Specification (1997)

System Interfaces basename()

NAME
basename — return the last component of a pathname

SYNOPSIS
EX #include <libgen.h>

char *basename(char * path);

DESCRIPTION
The basename() function takes the pathname pointed to by path and returns a pointer to the final
component of the pathname, deleting any trailing ’/’ characters.

If the string consists entirely of the ’/’ character, basename() returns a pointer to the string "/" .

If path is a null pointer or points to an empty string, basename() returns a pointer to the string "." .

The basename() function may modify the string pointed to by path, and may return a pointer to
static storage that may then be overwritten by a subsequent call to basename().

This interface need not be reentrant.

RETURN VALUE
The basename() function returns a pointer to the final component of path .

ERRORS
No errors are defined.

EXAMPLES

Input String Output String
"/usr/lib" "lib"
"/usr/" "usr"
"/" "/"

APPLICATION USAGE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
dirname(), <libgen.h>.

CHANGE HISTORY
First released in Issue 4, Version 2.

Issue 5
Moved from X/OPEN UNIX extension to BASE.

Normative text previously in the APPLICATION USAGE section is moved to the
DESCRIPTION.

A note indicating that this interface need not be reentrant is added to the DESCRIPTION.

System Interfaces and Headers, Issue 5: Volume 1 95

bcmp() System Interfaces

NAME
bcmp — memory operations

SYNOPSIS
EX #include <strings.h>

int bcmp(const void * s1 , const void * s2 , size_t n);

DESCRIPTION
The bcmp() function compares the first n bytes of the area pointed to by s1 with the area pointed
to by s2.

RETURN VALUE
The bcmp() function returns 0 if s1 and s2 are identical, non-zero otherwise. Both areas are
assumed to be n bytes long. If the value of n is 0, bcmp() returns 0.

ERRORS
No errors are defined.

EXAMPLES
None.

APPLICATION USAGE
For portability to implementations conforming to earlier versions of this specification, memcmp()
is preferred over this function.

FUTURE DIRECTIONS
None.

SEE ALSO
memcmp(), <strings.h>.

CHANGE HISTORY
First released in Issue 4, Version 2.

Issue 5
Moved from X/OPEN UNIX extension to BASE.

96 CAE Specification (1997)

System Interfaces bcopy()

NAME
bcopy — memory operations

SYNOPSIS
EX #include <strings.h>

void bcopy(const void * s1 , void * s2 , size_t n);

DESCRIPTION
The bcopy() function copies n bytes from the area pointed to by s1 to the area pointed to by s2.

The bytes are copied correctly even if the area pointed to by s1 overlaps the area pointed to by
s2.

RETURN VALUE
The bcopy() function returns no value.

ERRORS
No errors are defined.

EXAMPLES
None.

APPLICATION USAGE
For portability to implementations conforming to earlier versions of this specification,
memmove() is preferred over this function.

The following are approximately equivalent (note the order of the arguments):

bcopy(s1,s2,n) ˜= memmove(s2,s1,n)

FUTURE DIRECTIONS
None.

SEE ALSO
memmove(), <strings.h>.

CHANGE HISTORY
First released in Issue 4, Version 2.

Issue 5
Moved from X/OPEN UNIX extension to BASE.

System Interfaces and Headers, Issue 5: Volume 1 97

brk() System Interfaces

NAME
brk, sbrk — change space allocation (LEGACY)

SYNOPSIS
EX #include <unistd.h>

int brk(void * addr);
void *sbrk(intptr_t incr);

DESCRIPTION
The brk() and sbrk() functions are used to change the amount of space allocated for the calling
process. The change is made by resetting the process’ break value and allocating the appropriate
amount of space. The amount of allocated space increases as the break value increases. The
newly-allocated space is set to 0. However, if the application first decrements and then
increments the break value, the contents of the reallocated space are unspecified.

The brk() function sets the break value to addr and changes the allocated space accordingly.

The sbrk() function adds incr bytes to the break value and changes the allocated space
accordingly. If incr is negative, the amount of allocated space is decreased by incr bytes. The
current value of the program break is returned by sbrk(0).

The behaviour of brk() and sbrk() is unspecified if an application also uses any other memory
functions (such as malloc (), mmap(), free()). Other functions may use these other memory
functions silently.

It is unspecified whether the pointer returned by sbrk() is aligned suitably for any purpose.

These interfaces need not be reentrant.

RETURN VALUE
Upon successful completion, brk() returns 0. Otherwise, it returns −1 and sets errno to indicate
the error.

Upon successful completion, sbrk() returns the prior break value. Otherwise, it returns
(void *)−1 and sets errno to indicate the error.

ERRORS
The brk() and sbrk() functions will fail if:

[ENOMEM] The requested change would allocate more space than allowed.

The brk() and sbrk() functions may fail if:

[EAGAIN] The total amount of system memory available for allocation to this process is
temporarily insufficient. This may occur even though the space requested was
less than the maximum data segment size.

[ENOMEM] The requested change would be impossible as there is insufficient swap space
available, or would cause a memory allocation conflict.

EXAMPLES
None.

APPLICATION USAGE
The brk() and sbrk() functions have been used in specialised cases where no other memory
allocation function provided the same capability. The use of malloc () is now preferred because it
can be used portably with all other memory allocation functions and with any function that uses
other allocation functions.

98 CAE Specification (1997)

System Interfaces brk()

FUTURE DIRECTIONS
None.

SEE ALSO
exec, malloc (), mmap(), <unistd.h>.

CHANGE HISTORY
First released in Issue 4, Version 2.

Issue 5
Moved from X/OPEN UNIX extension to BASE.

Normative text previously in the APPLICATION USAGE section is moved to the
DESCRIPTION.

Marked LEGACY.

The type of the argument to sbrk() is changed from int to intptr_t.

A note indicating that these interfaces need not be reentrant is added to the DESCRIPTION.

System Interfaces and Headers, Issue 5: Volume 1 99

bsd_signal() System Interfaces

NAME
bsd_signal — simplified signal facilities

SYNOPSIS
EX #include <signal.h>

void (*bsd_signal(int sig , void (* func)(int)))(int);

DESCRIPTION
The bsd_signal() function provides a partially compatible interface for programs written to
historical system interfaces (see APPLICATION USAGE below).

The function call bsd_signal(sig, func) has an effect as if implemented as:

void (*bsd_signal(int sig, void (*func)(int)))(int)
{

struct sigaction act, oact;

act.sa_handler = func ;
act.sa_flags = SA_RESTART;
sigemptyset(&act.sa_mask);
sigaddset(&act.sa_mask, sig);
if (sigaction(sig , &act, &oact) == -1)

return(SIG_ERR);
return(oact.sa_handler);

}

The handler function should be declared:

void handler(int sig);

where sig is the signal number. The behaviour is undefined if func is a function that takes more
than one argument, or an argument of a different type.

RETURN VALUE
Upon successful completion, bsd_signal() returns the previous action for sig. Otherwise,
SIG_ERR is returned and errno is set to indicate the error.

ERRORS
Refer to sigaction ().

EXAMPLES
None.

APPLICATION USAGE
This function is a direct replacement for the BSD signal() function for simple applications that
are installing a single-argument signal handler function. If a BSD signal handler function is
being installed that expects more than one argument, the application has to be modified to use
sigaction (). The bsd_signal() function differs from signal() in that the SA_RESTART flag is set
and the SA_RESETHAND will be clear when bsd_signal() is used. The state of these flags is not
specified for signal().

FUTURE DIRECTIONS
None.

SEE ALSO
sigaction (), sigaddset(), sigemptyset(), signal(), <signal.h>.

100 CAE Specification (1997)

System Interfaces bsd_signal()

CHANGE HISTORY
First released in Issue 4, Version 2.

Issue 5
Moved from X/OPEN UNIX extension to BASE.

System Interfaces and Headers, Issue 5: Volume 1 101

bsearch() System Interfaces

NAME
bsearch — binary search a sorted table

SYNOPSIS
#include <stdlib.h>

void *bsearch(const void * key , const void * base , size_t nel ,
size_t width , int (* compar)(const void *, const void *));

DESCRIPTION
The bsearch() function searches an array of nel objects, the initial element of which is pointed to
by base, for an element that matches the object pointed to by key . The size of each element in the
array is specified by width .

The comparison function pointed to by compar is called with two arguments that point to the key
object and to an array element, in that order.

The function must return an integer less than, equal to, or greater than 0 if the key object is
considered, respectively, to be less than, to match, or to be greater than the array element. The
array must consist of: all the elements that compare less than, all the elements that compare
equal to, and all the elements that compare greater than the key object, in that order.

RETURN VALUE
The bsearch() function returns a pointer to a matching member of the array, or a null pointer if
no match is found. If two or more members compare equal, which member is returned is
unspecified.

ERRORS
No errors are defined.

EXAMPLES
The example below searches a table containing pointers to nodes consisting of a string and its
length. The table is ordered alphabetically on the string in the node pointed to by each entry.

The code fragment below reads in strings and either finds the corresponding node and prints out
the string and its length, or prints an error message.

#include <stdio.h>
#include <stdlib.h>
#include <string.h>

#define TABSIZE 1000

struct node { /* these are stored in the table */
char *string;
int length;

};
struct node table[TABSIZE]; /* table to be searched */

.

.

.
{

struct node *node_ptr, node;
/* routine to compare 2 nodes */
int node_compare(const void *, const void *);
char str_space[20]; /* space to read string into */
.

102 CAE Specification (1997)

System Interfaces bsearch()

.

.
node.string = str_space;
while (scanf("%s", node.string) != EOF) {

node_ptr = (struct node *)bsearch((void *)(&node),
(void *)table, TABSIZE,
sizeof(struct node), node_compare);

if (node_ptr != NULL) {
(void)printf("string = %20s, length = %d\n",

node_ptr −>string, node_ptr −>length);
} else {

(void)printf("not found: %s\n", node.string);
}

}
}
/*

This routine compares two nodes based on an
alphabetical ordering of the string field.

*/
int
node_compare(const void *node1, const void *node2)
{

return strcoll(((const struct node *)node1) −>string,
((const struct node *)node2) −>string);

}

APPLICATION USAGE
The pointers to the key and the element at the base of the table should be of type pointer-to-
element.

The comparison function need not compare every byte, so arbitrary data may be contained in
the elements in addition to the values being compared.

In practice, the array is usually sorted according to the comparison function.

FUTURE DIRECTIONS
None.

SEE ALSO
hsearch(), lsearch(), qsort(), tsearch(), <stdlib.h>.

CHANGE HISTORY
First released in Issue 1.

Derived from Issue 1 of the SVID.

Issue 4
The following changes are incorporated for alignment with the ISO C standard:

• The type of arguments key and base, and the type of arguments to compar(), are changed from
void* to const void*.

• The requirement that the table be sorted according to compar() is removed from the
DESCRIPTION.

System Interfaces and Headers, Issue 5: Volume 1 103

bsearch() System Interfaces

Other changes are incorporated as follows:

• Text indicating the need for various casts is removed from the APPLICATION USAGE
section.

• The code in the EXAMPLES section is changed to use strcoll() instead of strcmp() in
node_compare().

• The return value and the contents of the array are now requirements on the application.

• The DESCRIPTION is changed to specify the order of arguments.

104 CAE Specification (1997)

System Interfaces btowc()

NAME
btowc — single-byte to wide-character conversion

SYNOPSIS
#include <stdio.h>
#include <wchar.h>

wint_t btowc(int c);

DESCRIPTION
The btowc() function determines whether c constitutes a valid (one-byte) character in the initial
shift state.

The behaviour of this function is affected by the LC_CTYPE category of the current locale.

RETURN VALUE
The btowc() function returns WEOF if c has the value EOF or if (unsigned char) c does not
constitute a valid (one-byte) character in the initial shift state. Otherwise, it returns the wide-
character representation of that character.

ERRORS
No errors are defined.

EXAMPLES
None.

APPLICATION USAGE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
wctob(), <wchar.h>.

CHANGE HISTORY
First released in Issue 5.

Included for alignment with the ISO/IEC 9899:1990/Amendment 1:1994 (E).

System Interfaces and Headers, Issue 5: Volume 1 105

bzero() System Interfaces

NAME
bzero — memory operations

SYNOPSIS
EX #include <strings.h>

void bzero(void * s, size_t n);

DESCRIPTION
The bzero() function places n zero-valued bytes in the area pointed to by s.

RETURN VALUE
The bzero() function returns no value.

ERRORS
No errors are defined.

EXAMPLES
None.

APPLICATION USAGE
For portability to implementations conforming to earlier versions of this specification, memset()
is preferred over this function.

FUTURE DIRECTIONS
None.

SEE ALSO
memset(), <strings.h>.

CHANGE HISTORY
First released in Issue 4, Version 2.

Issue 5
Moved from X/OPEN UNIX extension to BASE.

106 CAE Specification (1997)

System Interfaces calloc()

NAME
calloc — a memory allocator

SYNOPSIS
#include <stdlib.h>

void *calloc(size_t nelem , size_t elsize);

DESCRIPTION
The calloc () function allocates unused space for an array of nelem elements each of whose size in
bytes is elsize . The space is initialised to all bits 0.

The order and contiguity of storage allocated by successive calls to calloc () is unspecified. The
pointer returned if the allocation succeeds is suitably aligned so that it may be assigned to a
pointer to any type of object and then used to access such an object or an array of such objects in
the space allocated (until the space is explicitly freed or reallocated). Each such allocation will
yield a pointer to an object disjoint from any other object. The pointer returned points to the
start (lowest byte address) of the allocated space. If the space cannot be allocated, a null pointer
is returned. If the size of the space requested is 0, the behaviour is implementation-dependent;
the value returned will be either a null pointer or a unique pointer.

RETURN VALUE
Upon successful completion with both nelem and elsize non-zero, calloc () returns a pointer to the
allocated space. If either nelem or elsize is 0, then either a null pointer or a unique pointer value

EX that can be successfully passed to free() is returned. Otherwise, it returns a null pointer and sets
errno to indicate the error.

ERRORS
The calloc () function will fail if:

EX [ENOMEM] Insufficient memory is available.

EXAMPLES
None.

APPLICATION USAGE
There is now no requirement for the implementation to support the inclusion of <malloc.h>.

FUTURE DIRECTIONS
None.

SEE ALSO
free(), malloc (), realloc (), <stdlib.h>.

CHANGE HISTORY
First released in Issue 1.

Derived from Issue 1 of the SVID.

Issue 4
The following changes are incorporated in this issue for alignment with the ISO C standard:

• The DESCRIPTION is updated to indicate (a) that the order and contiguity of storage
allocated by successive calls to this function is unspecified, (b) that each allocation yields a
pointer to an object disjoint from any other object, (c) that the returned pointer points to the
lowest byte address of the allocation, and (d) the behaviour if space is requested of zero size.

• The RETURN VALUE section is updated to indicate what will be returned if either nelem or
elsize is 0.

System Interfaces and Headers, Issue 5: Volume 1 107

calloc() System Interfaces

Other changes are incorporated as follows:

• The setting of errno and the [ENOMEM] error are marked as extensions.

• The APPLICATION USAGE section is changed to record that <malloc.h> need no longer be
supported on XSI-conformant systems.

108 CAE Specification (1997)

System Interfaces catclose()

NAME
catclose — close a message catalogue descriptor

SYNOPSIS
EX #include <nl_types.h>

int catclose(nl_catd catd);

DESCRIPTION
The catclose () function closes the message catalogue identified by catd . If a file descriptor is used
to implement the type nl_catd, that file descriptor will be closed.

RETURN VALUE
Upon successful completion, catclose () returns 0. Otherwise −1 is returned, and errno is set to
indicate the error.

ERRORS
The catclose () function may fail if:

[EBADF] The catalogue descriptor is not valid.

[EINTR] The catclose () function was interrupted by a signal.

EXAMPLES
None.

APPLICATION USAGE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
catgets(), catopen(), <nl_types.h>.

CHANGE HISTORY
First released in Issue 2.

Issue 4
The following change is incorporated in this issue:

• The [EBADF] and [EINTR] errors are added to the ERRORS section.

System Interfaces and Headers, Issue 5: Volume 1 109

catgets() System Interfaces

NAME
catgets — read a program message

SYNOPSIS
EX #include <nl_types.h>

char *catgets(nl_catd catd , int s et_id , int msg_id , const char * s);

DESCRIPTION
The catgets() function attempts to read message msg_id , in set set_id , from the message catalogue
identified by catd . The catd argument is a message catalogue descriptor returned from an earlier
call to catopen(). The s argument points to a default message string which will be returned by
catgets() if it cannot retrieve the identified message.

This interface need not be reentrant.

RETURN VALUE
If the identified message is retrieved successfully, catgets() returns a pointer to an internal buffer
area containing the null-terminated message string. If the call is unsuccessful for any reason, s is
returned and errno may be set to indicate the error.

ERRORS
The catgets() function may fail if:

[EBADF] The catd argument is not a valid message catalogue descriptor open for
reading.

[EINTR] The read operation was terminated due to the receipt of a signal, and no data
was transferred.

[EINVAL] The message catalog identified by catd is corrupted.

[ENOMSG] The message identified by set_id and msg_id is not in the message catalog.

EXAMPLES
None.

APPLICATION USAGE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
catclose (), catopen(), <nl_types.h>.

CHANGE HISTORY
First released in Issue 2.

Issue 4
The following changes are incorporated in this issue:

• The type of argument s is changed from char * to const char *.

• The [EBADF] and [EINTR] errors are added to the ERRORS section.

Issue 4, Version 2
The following changes are incorporated for X/OPEN UNIX conformance:

• The RETURN VALUE section notes that errno may be set to indicate an error.

110 CAE Specification (1997)

System Interfaces catgets()

• In the ERRORS section, [EINVAL] and [ENOMSG] are added as optional errors.

Issue 5
A note indicating that this interface need not be reentrant is added to the DESCRIPTION.

System Interfaces and Headers, Issue 5: Volume 1 111

catopen() System Interfaces

NAME
catopen — open a message catalogue

SYNOPSIS
EX #include <nl_types.h>

nl_catd catopen(const char * name, int oflag);

DESCRIPTION
The catopen() function opens a message catalogue and returns a message catalogue descriptor.
The name argument specifies the name of the message catalogue to be opened. If name contains a
"/", then name specifies a complete name for the message catalogue. Otherwise, the environment
variable NLSPATH is used with name substituted for %N (see the XBD specification, Chapter 6,
Environment Variables). If NLSPATH does not exist in the environment, or if a message
catalogue cannot be found in any of the components specified by NLSPATH, then an
implementation-dependent default path is used. This default may be affected by the setting of
LC_MESSAGES if the value of oflag is NL_CAT_LOCALE, or the LANG environment variable if
oflag is 0.

A message catalogue descriptor remains valid in a process until that process closes it, or a
successful call to one of the exec functions. A change in the setting of the LC_MESSAGES
category may invalidate existing open catalogues.

If a file descriptor is used to implement message catalogue descriptors, the FD_CLOEXEC flag
will be set; see <fcntl.h>.

If the value of the oflag argument is 0, the LANG environment variable is used to locate the
catalogue without regard to the LC_MESSAGES category. If the oflag argument is
NL_CAT_LOCALE, the LC_MESSAGES category is used to locate the message catalogue (see
the XBD specification, Section 6.2, Internationalisation Variables).

RETURN VALUE
Upon successful completion, catopen() returns a message catalogue descriptor for use on
subsequent calls to catgets() and catclose (). Otherwise catopen() returns (nl_catd) −1 and sets
errno to indicate the error.

ERRORS
The catopen() function may fail if:

[EACCES] Search permission is denied for the component of the path prefix of the
message catalogue or read permission is denied for the message catalogue.

[EMFILE] {OPEN_MAX} file descriptors are currently open in the calling process.

[ENAMETOOLONG]
The length of the pathname of the message catalogue exceeds {PATH_MAX},
or a pathname component is longer than {NAME_MAX}.

[ENAMETOOLONG]
Pathname resolution of a symbolic link produced an intermediate result
whose length exceeds {PATH_MAX}.

[ENFILE] Too many files are currently open in the system.

[ENOENT] The message catalogue does not exist or the name argument points to an
empty string.

[ENOMEM] Insufficient storage space is available.

112 CAE Specification (1997)

System Interfaces catopen()

[ENOTDIR] A component of the path prefix of the message catalogue is not a directory.

EXAMPLES
None.

APPLICATION USAGE
Some implementations of catopen() use malloc () to allocate space for internal buffer areas. The
catopen() function may fail if there is insufficient storage space available to accommodate these
buffers.

Portable applications must assume that message catalogue descriptors are not valid after a call
to one of the exec functions.

Application writers should be aware that guidelines for the location of message catalogues have
not yet been developed. Therefore they should take care to avoid conflicting with catalogues
used by other applications and the standard utilities.

FUTURE DIRECTIONS
None.

SEE ALSO
catclose (), catgets(), <fcntl.h>, <nl_types.h>, the XCU specification, gencat .

CHANGE HISTORY
First released in Issue 2.

Issue 4
The following changes are incorporated in this issue:

• The type of argument name is changed from char * to const char *.

• The DESCRIPTION is updated (a) to indicate the longevity of message catalogue descriptors,
and (b) to specify values for the oflag argument and the effect of LC_MESSAGES and
NLSPATH.

• The [EACCES], [EMFILE], [ENAMETOOLONG], [ENFILE], [ENOENT] and [ENOTDIR]
errors are added to the ERRORS section.

• The APPLICATION USAGE section is updated to indicate that (a) portable applications
should not assume the continued validity of message catalogue descriptors after a call to one
of the exec functions, and (b) message catalogues must be located with care.

Issue 4, Version 2
The following change is incorporated for X/OPEN UNIX conformance:

• In the ERRORS section, an [ENAMETOOLONG] condition is defined that may report
excessive length of an intermediate result of pathname resolution of a symbolic link.

System Interfaces and Headers, Issue 5: Volume 1 113

cbrt() System Interfaces

NAME
cbrt — cube root function

SYNOPSIS
EX #include <math.h>

double cbrt(double x);

DESCRIPTION
The cbrt() function computes the cube root of x.

RETURN VALUE
On successful completion, cbrt() returns the cube root of x. If x is NaN, cbrt() returns NaN and
errno may be set to [EDOM].

ERRORS
The cbrt() function may fail if:

[EDOM] The value of x is NaN.

EXAMPLES
None.

APPLICATION USAGE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
<math.h>.

CHANGE HISTORY
First released in Issue 4, Version 2.

Issue 5
Moved from X/OPEN UNIX extension to BASE.

114 CAE Specification (1997)

System Interfaces ceil()

NAME
ceil — ceiling value function

SYNOPSIS
#include <math.h>

double ceil(double x);

DESCRIPTION
The ceil() function computes the smallest integral value not less than x .

An application wishing to check for error situations should set errno to 0 before calling ceil(). If
errno is non-zero on return, or the return value is NaN, an error has occurred.

RETURN VALUE
Upon successful completion, ceil() returns the smallest integral value not less than x , expressed
as a type double.

EX If x is NaN, NaN is returned and errno may be set to [EDOM].

EX If the correct value would cause overflow, HUGE_VAL is returned and errno is set to [ERANGE].
If x is ±Inf or ±0, the value of x is returned.

ERRORS
The ceil() function will fail if:

[ERANGE] The result overflows.

The ceil() function may fail if:

EX [EDOM] The value of x is NaN.

EX No other errors will occur.

EXAMPLES
None.

APPLICATION USAGE
The integral value returned by ceil() as a double need not be expressible as an int or long int.
The return value should be tested before assigning it to an integer type to avoid the undefined
results of an integer overflow.

The ceil() function can only overflow when the floating point representation has
DBL_MANT_DIG > DBL_MAX_EXP.

FUTURE DIRECTIONS
None.

SEE ALSO
floor(), isnan(), <math.h>.

CHANGE HISTORY
First released in Issue 1.

Derived from Issue 1 of the SVID.

System Interfaces and Headers, Issue 5: Volume 1 115

ceil() System Interfaces

Issue 4
The following changes are incorporated in this issue:

• Removed references to matherr().

• The RETURN VALUE and ERRORS sections are substantially rewritten for alignment with
the ISO C standard and to rationalise error handling in the mathematics functions.

• The return value specified for [EDOM] is marked as an extension.

• Support for x being ±Inf or ±0 is added to the RETURN VALUE section and marked as an
extension.

Issue 5
The DESCRIPTION is updated to indicate how an application should check for an error. This
text was previously published in the APPLICATION USAGE section.

116 CAE Specification (1997)

System Interfaces cfgetispeed()

NAME
cfgetispeed — get input baud rate

SYNOPSIS
#include <termios.h>

speed_t cfgetispeed(const struct termios * termios_p);

DESCRIPTION
The cfgetispeed() function extracts the input baud rate from the termios structure to which the
termios_p argument points.

This function returns exactly the value in the termios data structure, without interpretation.

RETURN VALUE
Upon successful completion, cfgetispeed() returns a value of type speed_t representing the input
baud rate.

ERRORS
No errors are defined.

EXAMPLES
None.

APPLICATION USAGE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
cfgetospeed(), cfsetispeed(), cfsetospeed(), tcgetattr(), <termios.h>, the XBD specification, Chapter
9, General Terminal Interface.

CHANGE HISTORY
First released in Issue 3.

Entry included for alignment with the POSIX.1-1988 standard.

Issue 4
The following changes are incorporated for alignment with the ISO POSIX-1 standard:

• The type of the argument termios_p is changed from struct termios* to const struct termios*.

• The DESCRIPTION is changed to indicate that the function simply returns the value from
termios_p, irrespective of how that structure was obtained. Issue 3 states that if termios_p was
not obtained by a successful call to tcgetattr(), the behaviour is undefined.

System Interfaces and Headers, Issue 5: Volume 1 117

cfgetospeed() System Interfaces

NAME
cfgetospeed — get output baud rate

SYNOPSIS
#include <termios.h>

speed_t cfgetospeed(const struct termios * termios_p);

DESCRIPTION
The cfgetospeed() function extracts the output baud rate from the termios structure to which the
termios_p argument points.

This function returns exactly the value in the termios data structure, without interpretation.

RETURN VALUE
Upon successful completion, cfgetospeed() returns a value of type speed_t representing the
output baud rate.

ERRORS
No errors are defined.

EXAMPLES
None.

APPLICATION USAGE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
cfgetispeed(), cfsetispeed(), cfsetospeed(), tcgetattr(), <termios.h>, the XBD specification, Chapter
9, General Terminal Interface.

CHANGE HISTORY
First released in Issue 3.

Entry included for alignment with the POSIX.1-1988 standard.

Issue 4
The following changes are incorporated for alignment with the ISO POSIX-1 standard:

• The type of the argument termios_p is changed from struct termios* to const struct termios*.

• The DESCRIPTION is changed to indicate that the function simply returns the value from
termios_p, irrespective of how that structure was obtained. Issue 3 states that if termios_p was
not obtained by a successful call to tcgetattr(), the behaviour is undefined.

118 CAE Specification (1997)

System Interfaces cfsetispeed()

NAME
cfsetispeed — set input baud rate

SYNOPSIS
#include <termios.h>

int cfsetispeed(struct termios * termios_p , speed_t speed);

DESCRIPTION
The cfsetispeed() function sets the input baud rate stored in the structure pointed to by termios_p
to speed.

There is no effect on the baud rates set in the hardware until a subsequent successful call to
tcsetattr() on the same termios structure.

RETURN VALUE
EX Upon successful completion, cfsetispeed() returns 0. Otherwise −1 is returned, and errno may be

set to indicate the error.

ERRORS
The cfsetispeed() function may fail if:

EX [EINVAL] The speed value is not a valid baud rate.

EX [EINVAL] The value of speed is outside the range of possible speed values as specified in
<termios.h>.

EXAMPLES
None.

APPLICATION USAGE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
cfgetispeed(), cfgetospeed(), cfsetospeed(), tcsetattr(), <termios.h>, the XBD specification, Chapter
9, General Terminal Interface.

CHANGE HISTORY
First released in Issue 3.

Entry included for alignment with the POSIX.1-1988 standard.

Issue 4
The following change is incorporated in this issue:

• The first description of the [EINVAL] error is added and is marked as an extension.

Issue 4, Version 2
The ERRORS section is changed to indicate that [EINVAL] may be returned if the specified
speed is outside the range of possible speed values given in <termios.h>.

System Interfaces and Headers, Issue 5: Volume 1 119

cfsetospeed() System Interfaces

NAME
cfsetospeed — set output baud rate

SYNOPSIS
#include <termios.h>

int cfsetospeed(struct termios * termios_p , speed_t speed);

DESCRIPTION
The cfsetospeed() function sets the output baud rate stored in the structure pointed to by
termios_p to speed.

There is no effect on the baud rates set in the hardware until a subsequent successful call to
tcsetattr() on the same termios structure.

RETURN VALUE
EX Upon successful completion, cfsetospeed() returns 0. Otherwise it returns −1and errno may be set

to indicate the error.

ERRORS
The cfsetospeed() function may fail if:

EX [EINVAL] The speed value is not a valid baud rate.

EX [EINVAL] The value of speed is outside the range of possible speed values as specified in
<termios.h>.

EXAMPLES
None.

APPLICATION USAGE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
cfgetispeed(), cfgetospeed(), cfsetispeed(), tcsetattr(), <termios.h>, the XBD specification, Chapter
9, General Terminal Interface.

CHANGE HISTORY
First released in Issue 3.

Entry included for alignment with the POSIX.1-1988 standard.

Issue 4
The following change is incorporated in this issue:

• The first description of the [EINVAL] error is added and is marked as an extension.

Issue 4, Version 2
The ERRORS section is changed to indicate that [EINVAL] may be returned if the specified
speed is outside the range of possible speed values given in < termios.h>.

120 CAE Specification (1997)

System Interfaces chdir()

NAME
chdir — change working directory

SYNOPSIS
#include <unistd.h>

int chdir(const char * path);

DESCRIPTION
The chdir() function causes the directory named by the pathname pointed to by the path
argument to become the current working directory; that is, the starting point for path searches
for pathnames not beginning with /.

RETURN VALUE
Upon successful completion, 0 is returned. Otherwise, −1 is returned, the current working
directory remains unchanged and errno is set to indicate the error.

ERRORS
The chdir() function will fail if:

[EACCES] Search permission is denied for any component of the pathname.

EX [ELOOP] Too many symbolic links were encountered in resolving path.

FIPS [ENAMETOOLONG]
The path argument exceeds {PATH_MAX} in length or a pathname component
is longer than {NAME_MAX}.

[ENOENT] A component of path does not name an existing directory or path is an empty
string.

[ENOTDIR] A component of the pathname is not a directory.

The chdir() function may fail if:

EX [ENAMETOOLONG]
Pathname resolution of a symbolic link produced an intermediate result
whose length exceeds {PATH_MAX}.

EXAMPLES
None.

APPLICATION USAGE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
getcwd(), <unistd.h>.

CHANGE HISTORY
First released in Issue 1.

Derived from Issue 1 of the SVID.

Issue 4
The following change is incorporated for alignment with the ISO POSIX-1 standard:

• The type of argument path is changed from char * to const char *.

The following change is incorporated for alignment with the FIPS requirements:

System Interfaces and Headers, Issue 5: Volume 1 121

chdir() System Interfaces

• In the ERRORS section, the condition whereby [ENAMETOOLONG] will be returned if a
pathname component is larger that {NAME_MAX} is now defined as mandatory and marked
as an extension.

Another change is incorporated as follows:

• The <unistd.h> header is added to the SYNOPSIS section.

Issue 4, Version 2
The ERRORS section is updated for X/OPEN UNIX conformance as follows:

• It states that [ELOOP] will be returned if too many symbolic links are encountered during
pathname resolution.

• A second [ENAMETOOLONG] condition is defined that may report excessive length of an
intermediate result of pathname resolution of a symbolic link.

122 CAE Specification (1997)

System Interfaces chmod()

NAME
chmod — change mode of a file

SYNOPSIS
OH #include <sys/types.h>

#include <sys/stat.h>

int chmod(const char * path , mode_t mode);

DESCRIPTION
EX The chmod() function changes S_ISUID, S_ISGID, S_ISVTX and the file permission bits of the file

named by the pathname pointed to by the path argument to the corresponding bits in the mode
argument. The effective user ID of the process must match the owner of the file or the process
must have appropriate privileges in order to do this.

S_ISUID, S_ISGID and the file permission bits are described in <sys/stat.h>.

EX If a directory is writable and the mode bit S_ISVTX is set on the directory, a process may remove
or rename files within that directory only if one or more of the following is true:

• The effective user ID of the process is the same as that of the owner ID of the file.

• The effective user ID of the process is the same as that of the owner ID of the directory.

• The process has appropriate privileges.

If the S_ISVTX bit is set on a non-directory file, the behaviour is unspecified.

If the calling process does not have appropriate privileges, and if the group ID of the file does
not match the effective group ID or one of the supplementary group IDs and if the file is a
regular file, bit S_ISGID (set-group-ID on execution) in the file’s mode will be cleared upon
successful return from chmod().

Additional implementation-dependent restrictions may cause the S_ISUID and S_ISGID bits in
mode to be ignored.

The effect on file descriptors for files open at the time of a call to chmod() is implementation-
dependent.

Upon successful completion, chmod() will mark for update the st_ctime field of the file.

RETURN VALUE
Upon successful completion, 0 is returned. Otherwise, −1 is returned and errno is set to indicate
the error. If −1 is returned, no change to the file mode will occur.

ERRORS
The chmod() function will fail if:

[EACCES] Search permission is denied on a component of the path prefix.

EX [ELOOP] Too many symbolic links were encountered in resolving path.

FIPS [ENAMETOOLONG]
The length of the path argument exceeds {PATH_MAX} or a pathname
component is longer than {NAME_MAX}.

[ENOTDIR] A component of the path prefix is not a directory.

[ENOENT] A component of path does not name an existing file or path is an empty string.

[EPERM] The effective user ID does not match the owner of the file and the process does
not have appropriate privileges.

System Interfaces and Headers, Issue 5: Volume 1 123

chmod() System Interfaces

[EROFS] The named file resides on a read-only file system.

The chmod() function may fail if:

EX [EINTR] A signal was caught during execution of the function.

EX [EINVAL] The value of the mode argument is invalid.

EX [ENAMETOOLONG]
Pathname resolution of a symbolic link produced an intermediate result
whose length exceeds {PATH_MAX}.

EXAMPLES
None.

APPLICATION USAGE
In order to ensure that the S_ISUID and S_ISGID bits are set, an application requiring this should
use stat() after a successful chmod() to verify this.

Any file descriptors currently open by any process on the file may become invalid if the mode of
the file is changed to a value which would deny access to that process. One situation where this
could occur is on a stateless file system.

FUTURE DIRECTIONS
None.

SEE ALSO
chown(), mkdir(), mkfifo(), open(), stat(), statvfs(), <sys/stat.h>, <sys/types.h>.

CHANGE HISTORY
First released in Issue 1.

Derived from Issue 1 of the SVID.

Issue 4
The following change is incorporated for alignment with the ISO POSIX-1 standard:

• The type of argument path is changed from char * to const char *.

The following change is incorporated for alignment with the FIPS requirements:

• In the ERRORS section, the condition whereby [ENAMETOOLONG] will be returned if a
pathname component is larger that {NAME_MAX} is now defined as mandatory and marked
as an extension.

Other changes are incorporated as follows:

• The <sys/types.h> header is now marked as optional (OH); this header need not be included
on XSI-conformant systems.

• The [EINVAL] error is marked as an extension.

Issue 4, Version 2
The following changes are incorporated for X/OPEN UNIX conformance:

• The DESCRIPTION is updated to describe X/OPEN UNIX functionality relating to
permission checks applied when removing or renaming files in a directory having the
S_ISVTX bit set.

• In the ERRORS section, the condition whereby [ELOOP] will be returned if too many
symbolic links are encountered during pathname resolution is defined as mandatory, and
[EINTR] is added as an optional error.

124 CAE Specification (1997)

System Interfaces chmod()

• In the ERRORS section, a second [ENAMETOOLONG] condition is defined that may report
excessive length of an intermediate result of pathname resolution of a symbolic link.

System Interfaces and Headers, Issue 5: Volume 1 125

chown() System Interfaces

NAME
chown — change owner and group of a file

SYNOPSIS
OH #include <sys/types.h>

#include <unistd.h>

int chown(const char * path , uid_t owner , gid_t group);

DESCRIPTION
The path argument points to a pathname naming a file. The user ID and group ID of the named
file are set to the numeric values contained in owner and group respectively.

FIPS On XSI-conformant systems {_POSIX_CHOWN_RESTRICTED} is always defined, therefore:

• Changing the user ID is restricted to processes with appropriate privileges.

• Changing the group ID is permitted to a process with an effective user ID equal to the user
ID of the file, but without appropriate privileges, if and only if owner is equal to the file’s user

EX IDor (uid_t)−1and group is equal either to the calling process’ effective group ID or to one of
its supplementary group IDs.

If the path argument refers to a regular file, the set-user-ID (S_ISUID) and set-group-ID
(S_ISGID) bits of the file mode are cleared upon successful return from chown(), unless the call is
made by a process with appropriate privileges, in which case it is implementation-dependent
whether these bits are altered. If chown() is successfully invoked on a file that is not a regular
file, these bits may be cleared. These bits are defined in <sys/stat.h>.

EX If owner or group is specified as (uid_t)−1 or (gid_t)−1 respectively, the corresponding ID of the
file is unchanged.

Upon successful completion, chown() will mark for update the st_ctime field of the file.

RETURN VALUE
Upon successful completion, 0 is returned. Otherwise, −1 is returned and errno is set to indicate
the error. If −1 is returned, no changes are made in the user ID and group ID of the file.

ERRORS
The chown() function will fail if:

[EACCES] Search permission is denied on a component of the path prefix.

EX [ELOOP] Too many symbolic links were encountered in resolving path.

FIPS [ENAMETOOLONG]
The length of the path argument exceeds {PATH_MAX} or a pathname
component is longer than {NAME_MAX}.

[ENOTDIR] A component of the path prefix is not a directory.

[ENOENT] A component of path does not name an existing file or path is an empty string.

FIPS [EPERM] The effective user ID does not match the owner of the file, or the calling
process does not have appropriate privileges.

[EROFS] The named file resides on a read-only file system.

The chown() function may fail if:

EX [EIO] An I/O error occurred while reading or writing to the file system.

[EINTR] The chown() function was interrupted by a signal which was caught.

126 CAE Specification (1997)

System Interfaces chown()

[EINVAL] The owner or group ID supplied is not a value supported by the
implementation.

EX [ENAMETOOLONG]
Pathname resolution of a symbolic link produced an intermediate result
whose length exceeds {PATH_MAX}.

EXAMPLES
None.

APPLICATION USAGE
Because {_POSIX_CHOWN_RESTRICTED} is always defined with a value other than −1 on
XSI-conformant systems, the error [EPERM] is always returned if the effective user ID does not
match the owner of the file, or the calling process does not have appropriate privileges.

FUTURE DIRECTIONS
None.

SEE ALSO
chmod(), <sys/types.h>, <unistd.h>.

CHANGE HISTORY
First released in Issue 1.

Derived from Issue 1 of the SVID.

Issue 4
The following change is incorporated for alignment with the ISO POSIX-1 standard:

• The type of argument path is changed from char * to const char *.

The following changes are incorporated for alignment with the FIPS requirements:

• In the ERRORS section, the condition whereby [ENAMETOOLONG] will be returned if a
pathname component is larger that {NAME_MAX} is now defined as mandatory and marked
as an extension.

• In the ERRORS section, the condition whereby [EPERM] will be returned when an attempt is
made to change the user ID of a file and the caller does not have appropriate privileges is
now defined as mandatory and marked as an extension.

Other changes are incorporated as follows:

• The <sys/types.h> header is now marked as optional (OH); this header need not be included
on XSI-conformant systems.

• The value for owner of (uid_t)−1 is added to the DESCRIPTION to allow the use of −1 by the
owner of a file to change the group ID only.

• The APPLICATION USAGE section is added.

Issue 4, Version 2
The ERRORS section is updated for X/OPEN UNIX conformance as follows:

• It states that [ELOOP] will be returned if too many symbolic links are encountered during
pathname resolution.

• The [EIO] and [EINTR] optional conditions are added.

• A second [ENAMETOOLONG] condition is defined that may report excessive length of an
intermediate result of pathname resolution of a symbolic link.

System Interfaces and Headers, Issue 5: Volume 1 127

chroot() System Interfaces

NAME
chroot — change root directory (LEGACY)

SYNOPSIS
EX #include <unistd.h>

int chroot(const char * path);

DESCRIPTION
The path argument points to a pathname naming a directory. The chroot() function causes the
named directory to become the root directory; that is, the starting point for path searches for
pathnames beginning with /. The process’ working directory is unaffected by chroot().

The process must have appropriate privileges to change the root directory.

The dot-dot entry in the root directory is interpreted to mean the root directory itself. Thus,
dot-dot cannot be used to access files outside the subtree rooted at the root directory.

This interface need not be reentrant.

RETURN VALUE
Upon successful completion, 0 is returned. Otherwise, −1 is returned and errno is set to indicate
the error. If −1 is returned, no change is made in the root directory.

ERRORS
The chroot() function will fail if:

[EACCES] Search permission is denied for a component of path .

[ELOOP] Too many symbolic links were encountered in resolving path.

[ENAMETOOLONG]
The length of the path argument exceeds {PATH_MAX} or a pathname
component is longer than {NAME_MAX}.

[ENOENT] A component of path does not name an existing directory or path is an empty
string.

[ENOTDIR] A component of the path name is not a directory.

[EPERM] The effective user ID does not have appropriate privileges.

The chroot() function may fail if:

[ENAMETOOLONG]
Pathname resolution of a symbolic link produced an intermediate result
whose length exceeds {PATH_MAX}.

EXAMPLES
None.

APPLICATION USAGE
There is no portable use that an application could make of this interface.

FUTURE DIRECTIONS
None.

SEE ALSO
chdir(), <unistd.h>.

128 CAE Specification (1997)

System Interfaces chroot()

CHANGE HISTORY
First released in Issue 1.

Derived from Issue 1 of the SVID.

Issue 4
Changes are incorporated as follows:

• The interface is marked TO BE WITHDRAWN, as there is no portable use that an application
could make of this interface.

• The <unistd.h> header is added to the SYNOPSIS section.

• The type of argument path is changed from char * to const char *.

• The APPLICATION USAGE section is added.

• The DESCRIPTION now refers to the process’ working directory instead of the user’s
working directory.

Issue 4, Version 2
The ERRORS section is updated for X/OPEN UNIX conformance as follows:

• It states that [ELOOP] will be returned if too many symbolic links are encountered during
pathname resolution.

• A second [ENAMETOOLONG] condition is defined that may report excessive length of an
intermediate result of pathname resolution of a symbolic link.

Issue 5
Marked LEGACY.

A note indicating that this interface need not be reentrant is added to the DESCRIPTION.

System Interfaces and Headers, Issue 5: Volume 1 129

clearerr() System Interfaces

NAME
clearerr — clear indicators on a stream

SYNOPSIS
#include <stdio.h>

void clearerr(FILE * stream);

DESCRIPTION
The clearerr() function clears the end-of-file and error indicators for the stream to which stream
points.

RETURN VALUE
The clearerr() function returns no value.

ERRORS
No errors are defined.

EXAMPLES
None.

APPLICATION USAGE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
<stdio.h>.

CHANGE HISTORY
First released in Issue 1.

Derived from Issue 1 of the SVID.

130 CAE Specification (1997)

System Interfaces clock()

NAME
clock — report CPU time used

SYNOPSIS
#include <time.h>

clock_t clock(void);

DESCRIPTION
The clock () function returns the implementation’s best approximation to the processor time used
by the process since the beginning of an implementation-dependent time related only to the
process invocation.

RETURN VALUE
To determine the time in seconds, the value returned by clock () should be divided by the value

EX of the macro CLOCKS_PER_SEC. CLOCKS_PER_SEC is defined to be one million in <time.h>. If
the processor time used is not available or its value cannot be represented, the function returns
the value (clock_t)−1.

ERRORS
No errors are defined.

EXAMPLES
None.

APPLICATION USAGE
In order to measure the time spent in a program, clock () should be called at the start of the
program and its return value subtracted from the value returned by subsequent calls. The value
returned by clock () is defined for compatibility across systems that have clocks with different
resolutions. The resolution on any particular system need not be to microsecond accuracy.

The value returned by clock () may wrap around on some systems. For example, on a machine
with 32-bit values for clock_t, it will wrap after 2147 seconds or 36 minutes.

FUTURE DIRECTIONS
None.

SEE ALSO
asctime(), ctime(), difftime(), gmtime(), localtime (), mktime(), strftime(), strptime(), time(), utime(),
<time.h>.

CHANGE HISTORY
First released in Issue 1.

Derived from Issue 1 of the SVID.

Issue 4
The following changes are incorporated for alignment with the ISO C standard:

• The <time.h> header is added to the SYNOPSIS section.

• The DESCRIPTION and RETURN VALUE sections, though functionally equivalent to Issue
3, are rewritten for clarity and consistency with the ISO C standard. This issue also defines
under what circumstances (clock_t)−1 can be returned by the function.

• The function is no longer marked as an extension.

System Interfaces and Headers, Issue 5: Volume 1 131

clock() System Interfaces

Other changes are incorporated as follows:

• Reference to the resolution of CLOCKS_PER_SEC is marked as an extension.

• The ERRORS section is added.

• Advice on how to calculate the time spent in a program is added to the APPLICATION
USAGE section.

132 CAE Specification (1997)

System Interfaces clock_settime()

NAME
clock_settime, clock_gettime, clock_getres — clock and timer functions (REALTIME)

SYNOPSIS
RT #include <time.h>

int clock_settime(clockid_t clock_id , const struct timespec * tp);
int clock_gettime(clockid_t clock_id , struct timespec * tp);
int clock_getres(clockid_t clock_id , struct timespec * res);

DESCRIPTION
The clock_settime () function sets the specified clock, clock_id , to the value specified by tp . Time
values that are between two consecutive non-negative integer multiples of the resolution of the
specified clock are truncated down to the smaller multiple of the resolution.

The clock_gettime () function returns the current value tp for the specified clock, clock_id .

The resolution of any clock can be obtained by calling clock_getres(). Clock resolutions are
implementation-dependent and cannot be set by a process. If the argument res is not NULL, the
resolution of the specified clock is stored in the location pointed to by res. If res is NULL, the
clock resolution is not returned. If the time argument of clock_settime () is not a multiple of res,
then the value is truncated to a multiple of res.

A clock may be systemwide (that is, visible to all processes) or per-process (measuring time that
is meaningful only within a process). All implementations support a clock_id of
CLOCK_REALTIME defined in <time.h>. This clock represents the realtime clock for the
system. For this clock, the values returned by clock_gettime () and specified by clock_settime ()
represent the amount of time (in seconds and nanoseconds) since the Epoch. An
implementation may also support additional clocks. The interpretation of time values for these
clocks is unspecified.

The effect of setting a clock via clock_settime () on armed per-process timers associated with that
clock is implementation-dependent.

The appropriate privilege to set a particular clock is implementation-dependent.

RETURN VALUE
A return value of 0 indicates that the call succeeded. A return value of −1 indicates that an error
occurred, and errno is set to indicate the error.

ERRORS
The clock_settime (), clock_gettime () and clock_getres() functions will fail if:

[EINVAL] The clock_id argument does not specify a known clock.

[ENOSYS] The functions clock_settime (), clock_gettime (), and clock_getres() are not
supported by this implementation.

The clock_settime () function will fail if:

[EINVAL] The tp argument to clock_settime () is outside the range for the given clock id.

[EINVAL] The tp argument specified a nanosecond value less than zero or greater than
or equal to 1000 million.

The clock_settime () function may fail if:

[EPERM] The requesting process does not have the appropriate privilege to set the
specified clock.

System Interfaces and Headers, Issue 5: Volume 1 133

clock_settime() System Interfaces

EXAMPLES
None.

APPLICATION USAGE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
timer_gettime(), time(), ctime(), <time.h>.

CHANGE HISTORY
First released in Issue 5.

Included for alignment with the POSIX Realtime Extension.

134 CAE Specification (1997)

System Interfaces close()

NAME
close — close a file descriptor

SYNOPSIS
#include <unistd.h>

int close(int fildes);

DESCRIPTION
The close() function will deallocate the file descriptor indicated by fildes . To deallocate means to
make the file descriptor available for return by subsequent calls to open() or other functions that
allocate file descriptors. All outstanding record locks owned by the process on the file
associated with the file descriptor will be removed (that is, unlocked).

If close() is interrupted by a signal that is to be caught, it will return −1 with errno set to [EINTR]
and the state of fildes is unspecified.

When all file descriptors associated with a pipe or FIFO special file are closed, any data
remaining in the pipe or FIFO will be discarded.

When all file descriptors associated with an open file description have been closed the open file
description will be freed.

If the link count of the file is 0, when all file descriptors associated with the file are closed, the
space occupied by the file will be freed and the file will no longer be accessible.

EX If a STREAMS-based fildes is closed and the calling process was previously registered to receive
a SIGPOLL signal for events associated with that STREAM, the calling process will be
unregistered for events associated with the STREAM. The last close() for a STREAM causes the
STREAM associated with fildes to be dismantled. If O_NONBLOCK is not set and there have
been no signals posted for the STREAM, and if there is data on the module’s write queue, close()
waits for an unspecified time (for each module and driver) for any output to drain before
dismantling the STREAM. The time delay can be changed via an I_SETCLTIME ioctl () request.
If the O_NONBLOCK flag is set, or if there are any pending signals, close() does not wait for
output to drain, and dismantles the STREAM immediately.

If the implementation supports STREAMS-based pipes, and fildes is associated with one end of a
pipe, the last close() causes a hangup to occur on the other end of the pipe. In addition, if the
other end of the pipe has been named by fattach (), then the last close() forces the named end to
be detached by fdetach (). If the named end has no open file descriptors associated with it and
gets detached, the STREAM associated with that end is also dismantled.

If fildes refers to the master side of a pseudo-terminal, and this is the last close, a SIGHUP signal
is sent to the process group, if any, for which the slave side of the pseudo-terminal is the
controlling terminal. It is unspecified whether closing the master side of the pseudo-terminal
flushes all queued input and output.

If fildes refers to the slave side of a STREAMS-based pseudo-terminal, a zero-length message
may be sent to the master.

RT If the Asynchronous Input and Output option is supported:

System Interfaces and Headers, Issue 5: Volume 1 135

close() System Interfaces

When there is an outstanding cancelable asynchronous I/O operation against fildes when
close() is called, that I/O operation may be canceled. An I/O operation that is not canceled
completes as if the close() operation had not yet occurred. All operations that are not
canceled complete as if the close() blocked until the operations completed. The close()
operation itself need not block awaiting such I/O completion. Whether any I/O operation is
cancelled, and which I/O operation may be cancelled upon close(), is implementation-
dependent.

If the Mapped Files or Shared Memory Objects option is supported:

If a memory object remains referenced at the last close (that is, a process has it mapped), then
the entire contents of the memory object persist until the memory object becomes
unreferenced. If this is the last close of a memory object and the close results in the memory
object becoming unreferenced, and the memory object has been unlinked, then the memory
object will be removed.

RETURN VALUE
Upon successful completion, 0 is returned. Otherwise, −1 is returned and errno is set to indicate
the error.

ERRORS
The close() function will fail if:

[EBADF] The fildes argument is not a valid file descriptor.

[EINTR] The close() function was interrupted by a signal.

EX The close() function may fail if:

[EIO] An I/O error occurred while reading from or writing to the file system.

EXAMPLES
None.

APPLICATION USAGE
An application that had used the stdio routine fopen() to open a file should use the
corresponding fclose() routine rather than close().

FUTURE DIRECTIONS
None.

SEE ALSO
fattach (), fclose(), fdetach (), fopen(), ioctl (), open(), <unistd.h>, Section 2.5 on page 34.

CHANGE HISTORY
First released in Issue 1.

Derived from Issue 1 of the SVID.

Issue 4
The following change is incorporated in this issue:

• The <unistd.h> header is added to the SYNOPSIS section.

Issue 4, Version 2
The following changes are incorporated for X/OPEN UNIX conformance:

• The DESCRIPTION is updated to describe the actions of closing a file descriptor referring to
a STREAMS-based file or either side of a pseudo-terminal.

136 CAE Specification (1997)

System Interfaces close()

• The ERRORS section describes a condition under which the [EIO] error may be returned.

Issue 5
The DESCRIPTION is updated for alignment with the POSIX Realtime Extension.

System Interfaces and Headers, Issue 5: Volume 1 137

closedir() System Interfaces

NAME
closedir — close a directory stream

SYNOPSIS
OH #include <sys/types.h>

#include <dirent.h>

int closedir(DIR * dirp);

DESCRIPTION
The closedir() function closes the directory stream referred to by the argument dirp. Upon
return, the value of dirp may no longer point to an accessible object of the type DIR. If a file
descriptor is used to implement type DIR, that file descriptor will be closed.

RETURN VALUE
Upon successful completion, closedir() returns 0. Otherwise, −1 is returned and errno is set to
indicate the error.

ERRORS
The closedir() function may fail if:

[EBADF] The dirp argument does not refer to an open directory stream.

EX [EINTR] The closedir() function was interrupted by a signal.

EXAMPLES
None.

APPLICATION USAGE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
opendir(), <dirent.h>, <sys/types.h>.

CHANGE HISTORY
First released in Issue 2.

Issue 4
The following changes are incorporated in this issue:

• The <sys/types.h> header is now marked as optional (OH); this header need not be included
on XSI-conformant systems.

• The [EINTR] error is marked as an extension.

138 CAE Specification (1997)

System Interfaces closelog()

NAME
closelog, openlog, setlogmask, syslog — control system log

SYNOPSIS
EX #include <syslog.h>

void closelog(void);
void openlog(const char * ident , int logopt , int facility);
int setlogmask(int maskpri);
void syslog(int priority , const char * message , ... /* arguments */);

DESCRIPTION
The syslog() function sends a message to an implementation-dependent logging facility, which
may log it in an implementation-dependent system log, write it to the system console, forward it
to a list of users, or forward it to the logging facility on another host over the network. The
logged message includes a message header and a message body. The message header contains
at least a timestamp and a tag string.

The message body is generated from the message and following arguments in the same manner
as if these were arguments to printf(), except that occurrences of %m in the format string
pointed to by the message argument are replaced by the error message string associated with the
current value of errno. A trailing newline character is added if needed.

Values of the priority argument are formed by ORing together a severity level value and an
optional facility value. If no facility value is specified, the current default facility value is used.

Possible values of severity level include:

LOG_EMERG A panic condition.

LOG_ALERT A condition that should be corrected immediately, such as a corrupted system
database.

LOG_CRIT Critical conditions, such as hard device errors.

LOG_ERR Errors.

LOG_WARNING
Warning messages.

LOG_NOTICE Conditions that are not error conditions, but that may require special
handling.

LOG_INFO Informational messages.

LOG_DEBUG Messages that contain information normally of use only when debugging a
program.

The facility indicates the application or system component generating the message. Possible
facility values include:

LOG_USER Messages generated by random processes. This is the default facility identifier
if none is specified.

LOG_LOCAL0 Reserved for local use.

LOG_LOCAL1 Reserved for local use.

LOG_LOCAL2 Reserved for local use.

System Interfaces and Headers, Issue 5: Volume 1 139

closelog() System Interfaces

LOG_LOCAL3 Reserved for local use.

LOG_LOCAL4 Reserved for local use.

LOG_LOCAL5 Reserved for local use.

LOG_LOCAL6 Reserved for local use.

LOG_LOCAL7 Reserved for local use.

The openlog () function sets process attributes that affect subsequent calls to syslog(). The ident
argument is a string that is prepended to every message. The logopt argument indicates logging
options. Values for logopt are constructed by a bitwise-inclusive OR of zero or more of the
following:

LOG_PID Log the process ID with each message. This is useful for identifying specific
processes.

LOG_CONS Write messages to the system console if they cannot be sent to the logging
facility. The syslog() function ensures that the process does not acquire the
console as a controlling terminal in the process of writing the message.

LOG_NDELAY Open the connection to the logging facility immediately. Normally the open
is delayed until the first message is logged. This is useful for programs that
need to manage the order in which file descriptors are allocated.

LOG_ODELAY Delay open until syslog() is called.

LOG_NOWAIT Do not wait for child processes that may have been created during the course
of logging the message. This option should be used by processes that enable
notification of child termination using SIGCHLD, since syslog() may
otherwise block waiting for a child whose exit status has already been
collected.

The facility argument encodes a default facility to be assigned to all messages that do not have
an explicit facility already encoded. The initial default facility is LOG_USER.

The openlog () and syslog() functions may allocate a file descriptor. It is not necessary to call
openlog () prior to calling syslog().

The closelog () function closes any open file descriptors allocated by previous calls to openlog () or
syslog().

The setlogmask () function sets the log priority mask for the current process to maskpri and
returns the previous mask. If the maskpri argument is 0, the current log mask is not modified.
Calls by the current process to syslog() with a priority not set in maskpri are rejected. The default
log mask allows all priorities to be logged. A call to openlog is not required prior to calling
setlogmask ().

Symbolic constants for use as values of the logopt, facility, priority, and maskpri arguments are
defined in the <syslog.h> header.

RETURN VALUE
The setlogmask () function returns the previous log priority mask. The closelog (), openlog () and
syslog() functions return no value.

ERRORS
No errors are defined.

EXAMPLES
None.

140 CAE Specification (1997)

System Interfaces closelog()

APPLICATION USAGE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
printf(), <syslog.h>.

CHANGE HISTORY
First released in Issue 4, Version 2.

Issue 5
Moved from X/OPEN UNIX extension to BASE.

System Interfaces and Headers, Issue 5: Volume 1 141

compile() System Interfaces

NAME
compile — produce a compiled regular expression (LEGACY)

SYNOPSIS
EX #include <regexp.h>

char *compile(char * instring , char * expbuf ,
const char * endbuf , int eof);

DESCRIPTION
Refer to regexp().

CHANGE HISTORY
First released in Issue 2.

Derived from Issue 2 of the SVID.

Issue 4
The following changes are incorporated in this issue:

• The <regexp.h> header is added to the SYNOPSIS section.

• The type of argument endbuf is changed from char * to const char *.

• The interface is marked TO BE WITHDRAWN, because improved functionality is now
provided by interfaces introduced for alignment with the ISO POSIX-2 standard.

Issue 5
Marked LEGACY.

142 CAE Specification (1997)

System Interfaces confstr()

NAME
confstr — get configurable variables

SYNOPSIS
#include <unistd.h>

size_t confstr(int name, char * buf , size_t len);

DESCRIPTION
The confstr() function provides a method for applications to get configuration-defined string
values. Its use and purpose are similar to sysconf(), but it is used where string values rather than
numeric values are returned.

The name argument represents the system variable to be queried. The implementation supports
the following name values, defined in <unistd.h>. It may support others:

_CS_PATH
EX _CS_XBS5_ILP32_OFF32_CFLAGS

_CS_XBS5_ILP32_OFF32_LDFLAGS
_CS_XBS5_ILP32_OFF32_LIBS
_CS_XBS5_ILP32_OFF32_LINTFLAGS
_CS_XBS5_ILP32_OFFBIG_CFLAGS
_CS_XBS5_ILP32_OFFBIG_LDFLAGS
_CS_XBS5_ILP32_OFFBIG_LIBS
_CS_XBS5_ILP32_OFFBIG_LINTFLAGS
_CS_XBS5_LP64_OFF64_CFLAGS
_CS_XBS5_LP64_OFF64_LDFLAGS
_CS_XBS5_LP64_OFF64_LIBS
_CS_XBS5_LP64_OFF64_LINTFLAGS
_CS_XBS5_LPBIG_OFFBIG_CFLAGS
_CS_XBS5_LPBIG_OFFBIG_LDFLAGS
_CS_XBS5_LPBIG_OFFBIG_LIBS
_CS_XBS5_LPBIG_OFFBIG_LINTFLAGS

If len is not 0, and if name has a configuration-defined value, confstr() copies that value into the
len-byte buffer pointed to by buf. If the string to be returned is longer than len bytes, including
the terminating null, then confstr() truncates the string to len−1 bytes and null-terminates the
result. The application can detect that the string was truncated by comparing the value returned
by confstr() with len.

If len is 0 and buf is a null pointer, then confstr() still returns the integer value as defined below,
but does not return a string. If len is 0 but buf is not a null pointer, the result is unspecified.

RETURN VALUE
If name has a configuration-defined value, confstr() returns the size of buffer that would be
needed to hold the entire configuration-defined value. If this return value is greater than len, the
string returned in buf is truncated.

If name is invalid, confstr() returns 0 and sets errno to indicate the error.

If name does not have a configuration-defined value, confstr() returns 0 and leaves errno
unchanged.

System Interfaces and Headers, Issue 5: Volume 1 143

confstr() System Interfaces

ERRORS
The confstr() function will fail if:

[EINVAL] The value of the name argument is invalid.

EXAMPLES
None.

APPLICATION USAGE
An application can distinguish between an invalid name parameter value and one that
corresponds to a configurable variable that has no configuration-defined value by checking if
errno is modified. This mirrors the behaviour of sysconf().

The original need for this function was to provide a way of finding the configuration-defined
default value for the environment variable PATH. Since PATH can be modified by the user to
include directories that could contain utilities replacing XCU specification standard utilities,
applications need a way to determine the system-supplied PATH environment variable value
that contains the correct search path for the standard utilities.

An application could use:

confstr(name, (char *)NULL, (size_t)0)

to find out how big a buffer is needed for the string value; use malloc () to allocate a buffer to
hold the string; and call confstr() again to get the string. Alternately, it could allocate a fixed,
static buffer that is big enough to hold most answers (perhaps 512 or 1024 bytes), but then use
malloc () to allocate a larger buffer if it finds that this is too small.

FUTURE DIRECTIONS
None.

SEE ALSO
pathconf (), sysconf(), <unistd.h>, the XCU specification of getconf.

CHANGE HISTORY
First released in Issue 4.

Derived from the ISO POSIX-2 standard.

Issue 5
A table indicating the permissible values of name are added to the DESCRIPTION. All those
marked EX are new in this issue.

144 CAE Specification (1997)

System Interfaces cos()

NAME
cos — cosine function

SYNOPSIS
#include <math.h>

double cos(double x);

DESCRIPTION
The cos() function computes the cosine of x , measured in radians.

An application wishing to check for error situations should set errno to 0 before calling cos(). If
errno is non-zero on return, or the returned value is NaN, an error has occurred.

RETURN VALUE
Upon successful completion, cos() returns the cosine of x .

EX If x is NaN, NaN is returned and errno may be set to [EDOM].

EX If x is ±Inf, either 0 is returned and errno is set to [EDOM], or NaN is returned and errno may be
set to [EDOM].

If the result underflows, 0 is returned and errno may be set to [ERANGE].

ERRORS
The cos() function may fail if:

EX [EDOM] The value of x is NaN or x is ±Inf.

[ERANGE] The result underflows.

EX No other errors will occur.

EXAMPLES
None.

APPLICATION USAGE
The cos() function may lose accuracy when its argument is far from 0.

FUTURE DIRECTIONS
None.

SEE ALSO
acos(), isnan(), sin(), tan(), <math.h>.

CHANGE HISTORY
First released in Issue 1.

Derived from Issue 1 of the SVID.

Issue 4
The following changes are incorporated in this issue:

• Removed references to matherr().

• The RETURN VALUE and ERRORS sections are substantially rewritten for alignment with
the ISO C standard and to rationalise error handling in the mathematics functions.

• The return value specified for [EDOM] is marked as an extension.

Issue 5
The DESCRIPTION is updated to indicate how an application should check for an error. This
text was previously published in the APPLICATION USAGE section.

System Interfaces and Headers, Issue 5: Volume 1 145

cosh() System Interfaces

NAME
cosh — hyperbolic cosine function

SYNOPSIS
#include <math.h>

double cosh(double x);

DESCRIPTION
The cosh() function computes the hyperbolic cosine of x .

An application wishing to check for error situations should set errno to 0 before calling cosh(). If
errno is non-zero on return, or the returned value is NaN, an error has occurred.

RETURN VALUE
Upon successful completion, cosh() returns the hyperbolic cosine of x .

If the result would cause an overflow, HUGE_VAL is returned and errno is set to [ERANGE].

EX If x is NaN, NaN is returned and errno may be set to [EDOM].

ERRORS
The cosh() function will fail if:

[ERANGE] The result would cause an overflow.

The cosh() function may fail if:

EX [EDOM] The value of x is NaN.

EX No other errors will occur.

EXAMPLES
None.

APPLICATION USAGE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
acosh(), isnan(), sinh(), tanh(), <math.h>.

CHANGE HISTORY
First released in Issue 1.

Derived from Issue 1 of the SVID.

Issue 4
The following changes are incorporated in this issue:

• Removed references to matherr().

• The RETURN VALUE and ERRORS sections are substantially rewritten for alignment with
the ISO C standard and to rationalise error handling in the mathematics functions.

• The return value specified for [EDOM] is marked as an extension.

Issue 5
The DESCRIPTION is updated to indicate how an application should check for an error. This
text was previously published in the APPLICATION USAGE section.

146 CAE Specification (1997)

System Interfaces creat()

NAME
creat — create a new file or rewrite an existing one

SYNOPSIS
OH #include <sys/types.h>

#include <sys/stat.h>
#include <fcntl.h>

int creat(const char * path , mode_t mode);

DESCRIPTION
The function call:

creat(path, mode)

is equivalent to:

open(path, O_WRONLY|O_CREAT|O_TRUNC, mode)

RETURN VALUE
Refer to open().

ERRORS
Refer to open().

EXAMPLES
None.

APPLICATION USAGE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
open(), <fcntl.h>, <sys/stat.h>, <sys/types.h>.

CHANGE HISTORY
First released in Issue 1.

Derived from Issue 1 of the SVID.

Issue 4
The following change is incorporated for alignment with the ISO POSIX-1 standard:

• The type of argument path is changed from char * to const char *.

Other changes are incorporated as follows:

• The <sys/types.h> and <sys/stat.h> headers are now marked as optional (OH); these headers
need not be included on XSI-conformant systems.

System Interfaces and Headers, Issue 5: Volume 1 147

crypt() System Interfaces

NAME
crypt — string encoding function (CRYPT)

SYNOPSIS
EX #include <unistd.h>

char *crypt (const char * key , const char * salt);

DESCRIPTION
The crypt() function is a string encoding function. The algorithm is implementation-dependent.

The key argument points to a string to be encoded. The salt argument is a string chosen from the
set:

a b c d e f g h i j k l m n o p q r s t u v w x y z
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
0 1 2 3 4 5 6 7 8 9 . /

The first two characters of this string may be used to perturb the encoding algorithm.

The return value of crypt() points to static data that is overwritten by each call.

This need not be a reentrant function.

RETURN VALUE
Upon successful completion, crypt() returns a pointer to the encoded string. The first two
characters of the returned value are those of the salt argument.

Otherwise it returns a null pointer and sets errno to indicate the error.

ERRORS
The crypt() function will fail if:

[ENOSYS] The functionality is not supported on this implementation.

EXAMPLES
None.

APPLICATION USAGE
The values returned by this function need not be portable among XSI-conformant systems.

FUTURE DIRECTIONS
None.

SEE ALSO
encrypt(), setkey(), <unistd.h>.

CHANGE HISTORY
First released in Issue 1.

Derived from Issue 1 of the SVID.

Issue 4
The following changes are incorporated in this issue:

• The <unistd.h> header is added to the SYNOPSIS section.

• The type of arguments key and salt are changed from char * to const char *.

• The DESCRIPTION now explicitly defines the characters that can appear in the salt
argument.

148 CAE Specification (1997)

System Interfaces crypt()

Issue 5
Normative text previously in the APPLICATION USAGE section is moved to the
DESCRIPTION.

System Interfaces and Headers, Issue 5: Volume 1 149

ctermid() System Interfaces

NAME
ctermid — generate a pathname for controlling terminal

SYNOPSIS
#include <stdio.h>

char *ctermid(char * s);

DESCRIPTION
The ctermid() function generates a string that, when used as a pathname, refers to the current
controlling terminal for the current process. If ctermid() returns a pathname, access to the file is
not guaranteed.

If the application uses any of the _POSIX_THREAD_SAFE_FUNCTIONS or _POSIX_THREADS
interfaces, the ctermid() function must be called with a non-NULL parameter.

RETURN VALUE
If s is a null pointer, the string is generated in an area that may be static (and therefore may be
overwritten by each call), the address of which is returned. Otherwise s is assumed to point to a
character array of at least {L_ctermid} bytes; the string is placed in this array and the value of s is
returned. The symbolic constant {L_ctermid} is defined in <stdio.h>, and will have a value
greater than 0.

The ctermid() function will return an empty string if the pathname that would refer to the
controlling terminal cannot be determined, or if the function is unsuccessful.

ERRORS
No errors are defined.

EXAMPLES
None.

APPLICATION USAGE
The difference between ctermid() and ttyname() is that ttyname() must be handed a file
descriptor and returns a path of the terminal associated with that file descriptor, while ctermid()
returns a string (such as /dev/tty) that will refer to the current controlling terminal if used as a
pathname.

FUTURE DIRECTIONS
None.

SEE ALSO
ttyname(), <stdio.h>.

CHANGE HISTORY
First released in Issue 1.

Derived from Issue 1 of the SVID.

Issue 4
The following change is incorporated for alignment with the ISO POSIX-1 standard:

• The DESCRIPTION and RETURN VALUE sections, though functionally identical to Issue 3,
are rewritten.

Issue 5
The DESCRIPTION is updated for alignment with the POSIX Threads Extension.

150 CAE Specification (1997)

System Interfaces ctime()

NAME
ctime, ctime_r — convert a time value to date and time string

SYNOPSIS
#include <time.h>

char *ctime(const time_t * clock);
char *ctime_r(const time_t * clock , char * buf);

DESCRIPTION
The ctime() function converts the time pointed to by clock , representing time in seconds since the
Epoch, to local time in the form of a string. It is equivalent to:

asctime(localtime(clock))

The asctime(), ctime(), gmtime() and localtime () functions return values in one of two static
objects: a broken-down time structure and an array of char. Execution of any of the functions
may overwrite the information returned in either of these objects by any of the other functions.

The ctime() interface need not be reentrant.

The ctime_r() function converts the calendar time pointed to by clock to local time in exactly the
same form as ctime() and puts the string into the array pointed to by buf (which contains at least
26 bytes) and returns buf.

Unlike ctime(), the thread-safe version ctime_r() is not required to set tzname .

RETURN VALUE
The ctime() function returns the pointer returned by asctime() with that broken-down time as an
argument.

On successful completion, ctime_r() returns a pointer to the string pointed to by buf. When an
error is encountered, a NULL pointer is returned.

ERRORS
No errors are defined.

EXAMPLES
None.

APPLICATION USAGE
Values for the broken-down time structure can be obtained by calling gmtime() or localtime ().
This interface is included for compatibility with older implementations, and does not support
localised date and time formats. Applications should use the strftime() interface to achieve
maximum portability.

FUTURE DIRECTIONS
None.

SEE ALSO
asctime(), clock (), difftime(), gmtime(), localtime (), mktime(), strftime(), strptime(), time(), utime(),
<time.h>.

CHANGE HISTORY
First released in Issue 1.

Derived from Issue 1 of the SVID.

System Interfaces and Headers, Issue 5: Volume 1 151

ctime() System Interfaces

Issue 4
The following change is incorporated for alignment with the ISO C standard:

• The type of argument clock is changed from time_t* to const time_t*.

Another change is incorporated as follows:

• The APPLICATION USAGE section is expanded to describe the time-handling functions
generally and to refer users to strftime(), which is a locale-dependent time-handling function.

Issue 5
Normative text previously in the APPLICATION USAGE section is moved to the
DESCRIPTION.

The ctime_r() function is included for alignment with the POSIX Threads Extension.

A note indicating that the ctime() interface need not be reentrant is added to the DESCRIPTION.

152 CAE Specification (1997)

System Interfaces cuserid()

NAME
cuserid — character login name of the user (LEGACY)

SYNOPSIS
EX #include <stdio.h>

char *cuserid(char * s);

DESCRIPTION
The cuserid() function generates a character representation of the name associated with the real
or effective user ID of the process.

If s is a null pointer, this representation is generated in an area that may be static (and thus
overwritten by subsequent calls to cuserid()), the address of which is returned. If s is not a null
pointer, s is assumed to point to an array of at least {L_cuserid} bytes; the representation is
deposited in this array. The symbolic constant {L_cuserid} is defined in <stdio.h> and has a
value greater than 0.

If the application uses any of the _POSIX_THREAD_SAFE_FUNCTIONS or _POSIX_THREADS
interfaces, the cuserid() function must be called with a non-NULL parameter.

RETURN VALUE
If s is not a null pointer, s is returned. If s is not a null pointer and the login name cannot be
found, the null byte ‘\0’ will be placed at *s. If s is a null pointer and the login name cannot be
found, cuserid() returns a null pointer. If s is a null pointer and the login name can be found, the
address of a buffer (possibly static) containing the login name is returned.

ERRORS
No errors are defined.

EXAMPLES
None.

APPLICATION USAGE
The functionality of cuserid() defined in the POSIX.1-1988 standard (and Issue 3 of this
specification) differs from that of historical implementations (and Issue 2 of this specification).
In the ISO POSIX-1 standard, cuserid() is removed completely. In this specification, therefore,
both functionalities are allowed.

The Issue 2 functionality can be obtained by using:

getpwuid(getuid())

The Issue 3 functionality can be obtained by using:

getpwuid(geteuid())

FUTURE DIRECTIONS
None.

SEE ALSO
getlogin (), getpwnam(), getpwuid(), getuid(), geteuid(), <stdio.h>.

CHANGE HISTORY
First released in Issue 1.

Derived from System V Release 2.0.

System Interfaces and Headers, Issue 5: Volume 1 153

cuserid() System Interfaces

Issue 4
The following changes are incorporated in this issue:

• The interface is marked TO BE WITHDRAWN, because of differences between the historical
definition of this interface and the definition published in the POSIX.1-1988 standard (and
hence Issue 3). The interface has also been removed from the ISO POSIX-1 standard.

• The interface is now marked as an extension.

• The DESCRIPTION is changed to indicate that an implementation can determine the name
returned by the function from the real or effective user ID of the process.

• The APPLICATION USAGE section is rewritten to describe the historical development of
this interface, and to indicate transition between this and previous issues.

• The RETURN VALUE section has been expanded.

Issue 5
Marked LEGACY.

A note indicating that this interface need not be reentrant is added to the DESCRIPTION.

154 CAE Specification (1997)

System Interfaces daylight

NAME
daylight — daylight savings time flag

SYNOPSIS
EX #include <time.h>

extern int daylight;

DESCRIPTION
Refer to tzset().

CHANGE HISTORY
First released in Issue 1.

Derived from Issue 1 of the SVID.

System Interfaces and Headers, Issue 5: Volume 1 155

dbm_clearerr() System Interfaces

NAME
dbm_clearerr, dbm_close, dbm_delete, dbm_error, dbm_fetch, dbm_firstkey, dbm_nextkey,
dbm_open, dbm_store — database functions

SYNOPSIS
EX #include <ndbm.h>

int dbm_clearerr(DBM * db);
void dbm_close(DBM * db);
int dbm_delete(DBM * db, datum key);
int dbm_error(DBM * db);
datum dbm_fetch(DBM * db, datum key);
datum dbm_firstkey(DBM * db);
datum dbm_nextkey(DBM * db);
DBM *dbm_open(const char * file , int open_flags , mode_t file_mode);
int dbm_store(DBM * db, datum key , datum content , int store_mode);

DESCRIPTION
These functions create, access and modify a database.

A datum consists of at least two members, dptr and dsize. The dptr member points to an object
that is dsize bytes in length. Arbitrary binary data, as well as character strings, may be stored in
the object pointed to by dptr.

The database is stored in two files. One file is a directory containing a bit map of keys and has
.dir as its suffix. The second file contains all data and has .pag as its suffix.

The dbm_open() function opens a database. The file argument to the function is the pathname of
the database. The function opens two files named file .dir and file .pag. The open_flags argument
has the same meaning as the flags argument of open() except that a database opened for write-
only access opens the files for read and write access and the behaviour of the O_APPEND flag is
unspecified. The file_mode argument has the same meaning as the third argument of open().

The dbm_close() function closes a database. The argument db must be a pointer to a dbm
structure that has been returned from a call to dbm_open().

The dbm_fetch() function reads a record from a database. The argument db is a pointer to a
database structure that has been returned from a call to dbm_open(). The argument key is a
datum that has been initialised by the application program to the value of the key that matches
the key of the record the program is fetching.

The dbm_store() function writes a record to a database. The argument db is a pointer to a
database structure that has been returned from a call to dbm_open(). The argument key is a
datum that has been initialised by the application program to the value of the key that identifies
(for subsequent reading, writing or deleting) the record the program is writing. The argument
content is a datum that has been initialised by the application program to the value of the record
the program is writing. The argument store_mode controls whether dbm_store() replaces any
pre-existing record that has the same key that is specified by the key argument. The application
program must set store_mode to either DBM_INSERT or DBM_REPLACE. If the database
contains a record that matches the key argument and store_mode is DBM_REPLACE, the existing
record is replaced with the new record. If the database contains a record that matches the key
argument and store_mode is DBM_INSERT, the existing record is not replaced with the new
record. If the database does not contain a record that matches the key argument and store_mode
is either DBM_INSERT or DBM_REPLACE, the new record is inserted in the database.

156 CAE Specification (1997)

System Interfaces dbm_clearerr()

The sum of the sizes of a key/content pair must not exceed the internal block size. Moreover, all
key/content pairs that hash together must fit on a single block. The dbm_store() function returns
an error in the event that a disk block fills with inseparable data.

The dbm_delete() function deletes a record and its key from the database. The argument db is a
pointer to a database structure that has been returned from a call to dbm_open(). The argument
key is a datum that has been initialised by the application program to the value of the key that
identifies the record the program is deleting.

The dbm_firstkey() function returns the first key in the database. The argument db is a pointer to
a database structure that has been returned from a call to dbm_open().

The dbm_nextkey() function returns the next key in the database. The argument db is a pointer to
a database structure that has been returned from a call to dbm_open(). The dbm_firstkey()
function must be called before calling dbm_nextkey(). Subsequent calls to dbm_nextkey() return
the next key until all of the keys in the database have been returned.

The dbm_error() function returns the error condition of the database. The argument db is a
pointer to a database structure that has been returned from a call to dbm_open().

The dbm_clearerr() function clears the error condition of the database. The argument db is a
pointer to a database structure that has been returned from a call to dbm_open().

These database functions support key/content pairs of at least 1023 bytes.

The dptr pointers returned by these functions may point into static storage that may be changed
by subsequent calls.

These interfaces need not be reentrant.

RETURN VALUE
The dbm_store() and dbm_delete() functions return 0 when they succeed and a negative value
when they fail.

The dbm_store() function returns 1 if it is called with a flags value of DBM_INSERT and the
function finds an existing record with the same key.

The dbm_error() function returns 0 if the error condition is not set and returns a non-zero value if
the error condition is set.

The return value of dbm_clearerr() is unspecified .

The dbm_firstkey() and dbm_nextkey() functions return a key datum. When the end of the
database is reached, the dptr member of the key is a null pointer. If an error is detected, the dptr
member of the key is a null pointer and the error condition of the database is set.

The dbm_fetch() function returns a content datum. If no record in the database matches the key
or if an error condition has been detected in the database, the dptr member of the content is a
null pointer.

The dbm_open() function returns a pointer to a database structure. If an error is detected during
the operation, dbm_open() returns a (DBM *)0.

ERRORS
No errors are defined.

EXAMPLES
None.

System Interfaces and Headers, Issue 5: Volume 1 157

dbm_clearerr() System Interfaces

APPLICATION USAGE
The following code can be used to traverse the database:

for(key = dbm_firstkey(db); key.dptr != NULL; key = dbm_nextkey(db))

The dbm_ functions provided in this library should not be confused in any way with those of a
general-purpose database management system. These functions do not provide for multiple
search keys per entry, they do not protect against multi-user access (in other words they do not
lock records or files), and they do not provide the many other useful database functions that are
found in more robust database management systems. Creating and updating databases by use
of these functions is relatively slow because of data copies that occur upon hash collisions.
These functions are useful for applications requiring fast lookup of relatively static information
that is to be indexed by a single key.

The dbm_delete() function need not physically reclaim file space, although it does make it
available for reuse by the database.

After calling dbm_store() or dbm_delete() during a pass through the keys by dbm_firstkey() and
dbm_nextkey(), the application should reset the database by calling dbm_firstkey() before again
calling dbm_nextkey(). The contents of these files are unspecified and may not be portable.

FUTURE DIRECTIONS
None.

SEE ALSO
open(), <ndbm.h>.

CHANGE HISTORY
First released in Issue 4, Version 2.

Issue 5
Moved from X/OPEN UNIX extension to BASE.

Normative text previously in the APPLICATION USAGE section is moved to the
DESCRIPTION.

A note indicating that these interfaces need not be reentrant is added to the DESCRIPTION.

158 CAE Specification (1997)

System Interfaces difftime()

NAME
difftime — compute the difference between two calendar time values

SYNOPSIS
#include <time.h>

double difftime(time_t time1 , time_t time0);

DESCRIPTION
The difftime() function computes the difference between two calendar times (as returned by
time()): time1 − time0.

RETURN VALUE
The difftime() function returns the difference expressed in seconds as a type double.

ERRORS
No errors are defined.

EXAMPLES
None.

APPLICATION USAGE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
asctime(), clock (), ctime(), gmtime(), localtime (), mktime(), strftime(), strptime(), time(), utime(),
<time.h>.

CHANGE HISTORY
First released in Issue 4.

Derived from the ISO C standard.

System Interfaces and Headers, Issue 5: Volume 1 159

dirname() System Interfaces

NAME
dirname — report the parent directory name of a file pathname

SYNOPSIS
EX #include <libgen.h>

char *dirname(char * path);

DESCRIPTION
The dirname() function takes a pointer to a character string that contains a pathname, and
returns a pointer to a string that is a pathname of the parent directory of that file. Trailing ’/’
characters in the path are not counted as part of the path.

If path does not contain a ’/’, then dirname() returns a pointer to the string "." . If path is a null
pointer or points to an empty string, dirname() returns a pointer to the string "." .

This interface need not be reentrant.

RETURN VALUE
The dirname() function returns a pointer to a string that is the parent directory of path . If path is
a null pointer or points to an empty string, a pointer to a string "." is returned.

The dirname() function may modify the string pointed to by path, and may return a pointer to
static storage that may then be overwritten by subsequent calls to dirname().

ERRORS
No errors are defined.

EXAMPLES

Input String Output String
"/usr/lib" "/usr"
"/usr/" "/"
"usr" "."
"/" "/"
"." "."
".." "."

The following code fragment reads a pathname, changes the current working directory to the
parent directory, and opens the file.

char path[MAXPATHLEN], *pathcopy;
int fd;
fgets(path, MAXPATHLEN, stdin);
pathcopy = strdup(path);
chdir(dirname(pathcopy));
fd = open(basename(path), O_RDONLY);

APPLICATION USAGE
The dirname() and basename() functions together yield a complete pathname. The expression
dirname(path) obtains the pathname of the directory where basename(path) is found.

FUTURE DIRECTIONS
None.

SEE ALSO
basename(), <libgen.h>.

160 CAE Specification (1997)

System Interfaces dirname()

CHANGE HISTORY
First released in Issue 4, Version 2.

Issue 5
Moved from X/OPEN UNIX extension to BASE.

Normative text previously in the APPLICATION USAGE section is moved to the
DESCRIPTION.

A note indicating that this interface need not be reentrant is added to the DESCRIPTION.

System Interfaces and Headers, Issue 5: Volume 1 161

div() System Interfaces

NAME
div — compute the quotient and remainder of an integer division

SYNOPSIS
#include <stdlib.h>

div_t div(int numer , int denom);

DESCRIPTION
The div() function computes the quotient and remainder of the division of the numerator numer
by the denominator denom. If the division is inexact, the resulting quotient is the integer of lesser
magnitude that is the nearest to the algebraic quotient. If the result cannot be represented, the
behaviour is undefined; otherwise, quot * denom + rem will equal numer.

RETURN VALUE
The div() function returns a structure of type div_t, comprising both the quotient and the
remainder. The structure includes the following members, in any order:

int quot; /* quotient */
int rem; /* remainder */

ERRORS
No errors are defined.

EXAMPLES
None.

APPLICATION USAGE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
ldiv (), <stdlib.h>.

CHANGE HISTORY
First released in Issue 4.

Derived from the ISO C standard.

162 CAE Specification (1997)

System Interfaces dlclose()

NAME
dlclose — close a dlopen() object

SYNOPSIS
EX #include <dlfcn.h>

int dlclose(void *handle);

DESCRIPTION
dlclose() is used to inform the system that the object referenced by a handle returned from a
previous dlopen() invocation is no longer needed by the application.

The use of dlclose() reflects a statement of intent on the part of the process, but does not create
any requirement upon the implementation, such as removal of the code or symbols referenced
by handle. Once an object has been closed using dlclose() an application should assume that its
symbols are no longer available to dlsym(). All objects loaded automatically as a result of
invoking dlopen() on the referenced object are also closed.

Although a dlclose() operation is not required to remove structures from an address space,
neither is an implementation prohibited from doing so. The only restriction on such a removal is
that no object will be removed to which references have been relocated, until or unless all such
references are removed. For instance, an object that had been loaded with a dlopen() operation
specifying the RTLD_GLOBAL flag might provide a target for dynamic relocations performed in
the processing of other objects − in such environments, an application may assume that no
relocation, once made, will be undone or remade unless the object requiring the relocation has
itself been removed.

RETURN VALUE
If the referenced object was successfully closed, dlclose() returns 0. If the object could not be
closed, or if handle does not refer to an open object, dlclose() returns a non-zero value. More
detailed diagnostic information will be available through dlerror().

ERRORS
No errors are defined.

EXAMPLES
None.

APPLICATION USAGE
A portable application will employ a handle returned from a dlopen() invocation only within a
given scope bracketed by the dlopen() and dlclose() operations. Implementations are free to use
reference counting or other techniques such that multiple calls to dlopen() referencing the same
object may return the same object for handle. Implementations are also free to re-use a handle.
For these reasons, the value of a handle must be treated as an opaque object by the application,
used only in calls to dlsym() and dlclose().

FUTURE DIRECTIONS
None.

SEE ALSO
dlerror(), dlopen(), dlsym().

CHANGE HISTORY
First released in Issue 5.

System Interfaces and Headers, Issue 5: Volume 1 163

dlerror() System Interfaces

NAME
dlerror — get diagnostic information

SYNOPSIS
EX #include <dlfcn.h>

char *dlerror(void);

DESCRIPTION
dlerror() returns a null-terminated character string (with no trailing newline) that describes the
last error that occurred during dynamic linking processing. If no dynamic linking errors have
occurred since the last invocation of dlerror(), dlerror() returns NULL. Thus, invoking dlerror() a
second time, immediately following a prior invocation, will result in NULL being returned.

RETURN VALUE
If successful, dlerror() returns a null-terminated character string. Otherwise, NULL is returned.

ERRORS
No errors are defined.

EXAMPLES
None.

APPLICATION USAGE
The messages returned by dlerror() may reside in a static buffer that is overwritten on each call
to dlerror(). Application code should not write to this buffer. Programs wishing to preserve an
error message should make their own copies of that message. Depending on the application
environment with respect to asynchronous execution events, such as signals or other
asynchronous computation sharing the address space, portable applications should use a critical
section to retrieve the error pointer and buffer.

FUTURE DIRECTIONS
None.

SEE ALSO
dlclose(), dlopen(), dlsym().

CHANGE HISTORY
First released in Issue 5.

164 CAE Specification (1997)

System Interfaces dlopen()

NAME
dlopen — gain access to an executable object file

SYNOPSIS
EX #include <dlfcn.h>

void *dlopen(const char * file , int mode);

DESCRIPTION
dlopen() makes an executable object file specified by file available to the calling program. The
class of files eligible for this operation and the manner of their construction are specified by the
implementation, though typically such files are executable objects such as shared libraries,
relocatable files or programs. Note that some implementations permit the construction of
dependencies between such objects that are embedded within files. In such cases, a dlopen()
operation will load such dependencies in addition to the object referenced by file.
Implementations may also impose specific constraints on the construction of programs that can
employ dlopen() and its related services.

A successful dlopen() returns a handle which the caller may use on subsequent calls to dlsym()
and dlclose(). The value of this handle should not be interpreted in any way by the caller.

file is used to construct a pathname to the object file. If file contains a slash character, the file
argument is used as the pathname for the file. Otherwise, file is used in an implementation-
dependent manner to yield a pathname.

If the value of file is 0, dlopen() provides a handle on a global symbol object. This object provides
access to the symbols from an ordered set of objects consisting of the original program image
file, together with any objects loaded at program startup as specified by that process image file
(for example, shared libraries), and the set of objects loaded using a dlopen() operation together
with the RTLD_GLOBAL flag. As the latter set of objects can change during execution, the set
identified by handle can also change dynamically.

Only a single copy of an object file is brought into the address space, even if dlopen() is invoked
multiple times in reference to the file, and even if different pathnames are used to reference the
file.

The mode parameter describes how dlopen() will operate upon file with respect to the processing
of relocations and the scope of visibility of the symbols provided within file. When an object is
brought into the address space of a process, it may contain references to symbols whose
addresses are not known until the object is loaded. These references must be relocated before the
symbols can be accessed. The mode parameter governs when these relocations take place and
may have the following values:

RTLD_LAZY Relocations are performed at an implementation-dependent time, ranging
from the time of the dlopen() call until the first reference to a given
symbol occurs. Specifying RTLD_LAZY should improve performance on
implementations supporting dynamic symbol binding as a process may
not reference all of the functions in any given object. And, for systems
supporting dynamic symbol resolution for normal process execution, this
behaviour mimics the normal handling of process execution.

RTLD_NOW All necessary relocations are performed when the object is first loaded.
This may waste some processing if relocations are performed for
functions that are never referenced. This behaviour may be useful for
applications that need to know as soon as an object is loaded that all
symbols referenced during execution will be available.

System Interfaces and Headers, Issue 5: Volume 1 165

dlopen() System Interfaces

Any object loaded by dlopen() that requires relocations against global symbols can reference the
symbols in the original process image file, any objects loaded at program startup, from the object
itself as well as any other object included in the same dlopen() invocation, and any objects that
were loaded in any dlopen() invocation and which specified the RTLD_GLOBAL flag. To
determine the scope of visibility for the symbols loaded with a dlopen() invocation, the mode
parameter should be bitwise or’ed with one of the following values:

RTLD_GLOBAL The object’s symbols are made available for the relocation processing of
any other object. In addition, symbol lookup using dlopen(0, mode) and an
associated dlsym() allows objects loaded with this mode to be searched.

RTLD_LOCAL The object’s symbols are not made available for the relocation processing
of any other object.

If neither RTLD_GLOBAL nor RTLD_LOCAL are specified, then an implementation-specified
default behaviour will be applied.

If a file is specified in multiple dlopen() invocations, mode is interpreted at each invocation. Note,
however, that once RTLD_NOW has been specified all relocations will have been completed
rendering further RTLD_NOW operations redundant and any further RTLD_LAZY operations
irrelevant. Similarly note that once RTLD_GLOBAL has been specified the object will maintain
the RTLD_GLOBAL status regardless of any previous or future specification of RTLD_LOCAL,
so long as the object remains in the address space (see dlclose()).

Symbols introduced into a program through calls to dlopen() may be used in relocation
activities. Symbols so introduced may duplicate symbols already defined by the program or
previous dlopen() operations. To resolve the ambiguities such a situation might present, the
resolution of a symbol reference to symbol definition is based on a symbol resolution order.
Two such resolution orders are defined: load or dependency ordering. Load order establishes an
ordering among symbol definitions, such that the definition first loaded (including definitions
from the image file and any dependent objects loaded with it) has priority over objects added
later (via dlopen()). Load ordering is used in relocation processing. Dependency ordering uses a
breadth-first order starting with a given object, then all of its dependencies, then any dependents
of those, iterating until all dependencies are satisfied. With the exception of the global symbol
object obtained via a dlopen() operation on a file of 0, dependency ordering is used by the dlsym()
function. Load ordering is used in dlsym() operations upon the global symbol object.

When an object is first made accessible via dlopen() it and its dependent objects are added in
dependency order. Once all the objects are added, relocations are performed using load order.
Note that if an object or its dependencies had been previously loaded, the load and dependency
orders may yield different resolutions.

The symbols introduced by dlopen() operations, and available through dlsym() are at a
minimum those which are exported as symbols of global scope by the object. Typically such
symbols will be those that were specified in (for example) C source code as having extern
linkage. The precise manner in which an implementation constructs the set of exported symbols
for a dlopen() object is specified by that implementation.

RETURN VALUE
If file cannot be found, cannot be opened for reading, is not of an appropriate object format for
processing by dlopen(), or if an error occurs during the process of loading file or relocating its
symbolic references, dlopen() will return NULL. More detailed diagnostic information will be
available through dlerror().

ERRORS
No errors are defined.

166 CAE Specification (1997)

System Interfaces dlopen()

EXAMPLES
None.

APPLICATION USAGE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
dlclose(), dlerror(), dlsym().

CHANGE HISTORY
First released in Issue 5.

System Interfaces and Headers, Issue 5: Volume 1 167

dlsym() System Interfaces

NAME
dlsym — obtain the address of a symbol from a dlopen() object

SYNOPSIS
EX #include <dlfcn.h>

void *dlsym(void * handle , const char * name);

DESCRIPTION
dlsym() allows a process to obtain the address of a symbol defined within an object made
accessible through a dlopen() call. handle is the value returned from a call to dlopen() (and which
has not since been released via a call to dlclose()), name is the symbol’s name as a character
string.

dlsym() will search for the named symbol in all objects loaded automatically as a result of
loading the object referenced by handle (see dlopen()). Load ordering is used in dlsym()
operations upon the global symbol object. The symbol resolution algorithm used will be
dependency order as described in dlopen().

RETURN VALUE
If handle does not refer to a valid object opened by dlopen(), or if the named symbol cannot be
found within any of the objects associated with handle, dlsym() will return NULL. More detailed
diagnostic information will be available through dlerror().

ERRORS
No errors are defined.

EXAMPLES
The following example shows how one can use dlopen() and dlsym() to access either function or
data objects. For simplicity, error checking has been omitted.

void *handle;
int *iptr, (*fptr)(int);

/* open the needed object */
handle = dlopen("/usr/home/me/libfoo.so.1", RTLD_LAZY);

/* find the address of function and data objects */
fptr = (int (*)(int))dlsym(handle, "my_function");
iptr = (int *)dlsym(handle, "my_object");

/* invoke function, passing value of integer as a parameter */
(*fptr)(*iptr);

APPLICATION USAGE
Special purpose values for handle are reserved for future use. These values and their meanings
are:

RTLD_NEXT Specifies the next object after this one that defines name. This one refers to
the object containing the invocation of dlsym(). The next object is the one
found upon the application of a load order symbol resolution algorithm
(see dlopen()). The next object is either one of global scope (because it
was introduced as part of the original process image or because it was
added with a dlopen() operation including the RTLD_GLOBAL flag), or is
an object that was included in the same dlopen() operation that loaded
this one.

168 CAE Specification (1997)

System Interfaces dlsym()

The RTLD_NEXT flag is useful to navigate an intentionally created
hierarchy of multiply defined symbols created through interposition. For
example, if a program wished to create an implementation of malloc ()
that embedded some statistics gathering about memory allocations, such
an implementation could use the real malloc () definition to perform the
memory allocation − and itself only embed the necessary logic to
implement the statistics gathering function.

FUTURE DIRECTIONS
None.

SEE ALSO
dlclose(), dlerror(), dlopen().

CHANGE HISTORY
First released in Issue 5.

System Interfaces and Headers, Issue 5: Volume 1 169

drand48() System Interfaces

NAME
drand48, erand48, jrand48, lcong48, lrand48, mrand48, nrand48, seed48, srand48 — generate
uniformly distributed pseudo-random numbers

SYNOPSIS
EX #include <stdlib.h>

double drand48(void);
double erand48(unsigned short int xsubi [3]);
long int jrand48(unsigned short int xsubi [3]);
void lcong48(unsigned short int param [7]);
long int lrand48(void);
long int mrand48(void);
long int nrand48(unsigned short int xsubi [3]);
unsigned short int *seed48(unsigned short int seed16v [3]);
void srand48(long int seedval);

DESCRIPTION
This family of functions generates pseudo-random numbers using a linear congruential
algorithm and 48-bit integer arithmetic.

The drand48() and erand48() functions return non-negative, double-precision, floating-point
values, uniformly distributed over the interval [0.0,1.0).

The lrand48() and nrand48() functions return non-negative, long integers, uniformly distributed
over the interval [0,231).

The mrand48() and jrand48() functions return signed long integers uniformly distributed over
the interval [−231,231).

The srand48(), seed48() and lcong48 () are initialisation entry points, one of which should be
invoked before either drand48(), lrand48() or mrand48() is called. (Although it is not
recommended practice, constant default initialiser values will be supplied automatically if
drand48(), lrand48() or mrand48() is called without a prior call to an initialisation entry point.)
The erand48(), nrand48() and jrand48() functions do not require an initialisation entry point to
be called first.

All the routines work by generating a sequence of 48-bit integer values, Xi, according to the
linear congruential formula:

Xn +1 = (aXn + c)mod m n ≥ 0

The parameter m = 248 ; hence 48-bit integer arithmetic is performed. Unless lcong48 () is
invoked, the multiplier value a and the addend value c are given by:

a = 5DEECE66D 16 = 273673163155 8

c = B 16 = 13 8

The value returned by any of the drand48(), erand48(), jrand48(), lrand48(), mrand48() or
nrand48() functions is computed by first generating the next 48-bit Xi in the sequence. Then the
appropriate number of bits, according to the type of data item to be returned, are copied from
the high-order (leftmost) bits of Xi and transformed into the returned value.

170 CAE Specification (1997)

System Interfaces drand48()

The drand48(), lrand48() and mrand48() functions store the last 48-bit Xi generated in an internal
buffer; that is why they must be initialised prior to being invoked. The erand48(), nrand48() and
jrand48() functions require the calling program to provide storage for the successive Xi values in
the array specified as an argument when the functions are invoked. That is why these routines
do not have to be initialised; the calling program merely has to place the desired initial value of
Xi into the array and pass it as an argument. By using different arguments, erand48(), nrand48()
and jrand48() allow separate modules of a large program to generate several independent streams
of pseudo-random numbers, that is the sequence of numbers in each stream will not depend
upon how many times the routines are called to generate numbers for the other streams.

The initialiser function srand48() sets the high-order 32 bits of Xi to the low-order 32 bits
contained in its argument. The low-order 16 bits of Xi are set to the arbitrary value 330E16 .

The initialiser function seed48() sets the value of Xi to the 48-bit value specified in the argument
array. The low-order 16 bits of Xi are set to the low-order 16 bits of seed16v[0]. The mid-order 16
bits of Xi are set to the low-order 16 bits of seed16v[1]. The high-order 16 bits of Xi are set to the
low-order 16 bits of seed16v[2]. In addition, the previous value of Xi is copied into a 48-bit
internal buffer, used only by seed48(), and a pointer to this buffer is the value returned by
seed48(). This returned pointer, which can just be ignored if not needed, is useful if a program is
to be restarted from a given point at some future time — use the pointer to get at and store the
last Xi value, and then use this value to re-initialise via seed48() when the program is restarted.

The initialiser function lcong48 () allows the user to specify the initial Xi, the multiplier value a,
and the addend value c. Argument array elements param[0-2] specify Xi, param[3-5] specify the
multiplier a, and param[6] specifies the 16-bit addend c. After lcong48 () is called, a subsequent
call to either srand48() or seed48() will restore the standard multiplier and addend values, a and
c, specified above.

The drand48(), lrand48() and mrand48() interfaces need not be reentrant.

RETURN VALUE
As described in the DESCRIPTION above.

ERRORS
No errors are defined.

EXAMPLES
None.

APPLICATION USAGE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
rand(), <stdlib.h>.

CHANGE HISTORY
First released in Issue 1.

Derived from Issue 1 of the SVID.

Issue 4
The following changes are incorporated in this issue:

• The type long is replaced by long int and the type unsigned short is replaced by unsigned
short int in the SYNOPSIS section.

System Interfaces and Headers, Issue 5: Volume 1 171

drand48() System Interfaces

• In the DESCRIPTION, the description of srand48() is amended to fix a limitation in Issue 3,
which indicates that the high-order 32 bits of Xi are set to the {LONG_BIT} bits in the
argument. Though unintentional, the implication of this statement is that {LONG_BIT}
would be 32 on all systems compliant with Issue 3, when in fact Issue 3 imposes no such
restriction.

• The header <stdlib.h> is added to the SYNOPSIS section.

Issue 5
A note indicating that these interfaces need not be reentrant is added to the DESCRIPTION.

172 CAE Specification (1997)

System Interfaces dup()

NAME
dup, dup2 — duplicate an open file descriptor

SYNOPSIS
#include <unistd.h>

int dup(int fildes);
int dup2(int fildes , int fildes2);

DESCRIPTION
The dup() and dup2() functions provide an alternative interface to the service provided by
fcntl() using the F_DUPFD command. The call:

fid = dup(fildes);

is equivalent to:

fid = fcntl(fildes , F_DUPFD, 0);

The call:

fid = dup2(fildes , fildes2);

is equivalent to:

close(fildes2);
fid = fcntl(fildes , F_DUPFD, fildes2);

except for the following:

• If fildes2 is less than 0 or greater than or equal to {OPEN_MAX}, dup2() returns −1 with errno
set to [EBADF].

• If fildes is a valid file descriptor and is equal to fildes2 , dup2() returns fildes2 without closing it.

• If fildes is not a valid file descriptor, dup2() returns −1 and does not close fildes2 .

• The value returned is equal to the value of fildes2 upon successful completion, or is −1 upon
failure.

RETURN VALUE
Upon successful completion a non-negative integer, namely the file descriptor, is returned.
Otherwise, −1 is returned and errno is set to indicate the error.

ERRORS
The dup() function will fail if:

[EBADF] The fildes argument is not a valid open file descriptor.

[EMFILE] The number of file descriptors in use by this process would exceed
{OPEN_MAX}.

The dup2() function will fail if:

[EBADF] The fildes argument is not a valid open file descriptor or the argument fildes2 is
negative or greater than or equal to {OPEN_MAX} .

[EINTR] The dup2() function was interrupted by a signal.

EXAMPLES
None.

APPLICATION USAGE
None.

System Interfaces and Headers, Issue 5: Volume 1 173

dup() System Interfaces

FUTURE DIRECTIONS
None.

SEE ALSO
close(), fcntl(), open(), <unistd.h>.

CHANGE HISTORY
First released in Issue 1.

Derived from Issue 1 of the SVID.

Issue 4
The following changes are incorporated for alignment with the ISO POSIX-1 standard:

• In the DESCRIPTION, the fourth bullet item describing differences between dup() and
dup2() is added.

• In the ERRORS section, error values returned by dup() and dup2() are now described
separately.

Other changes are incorporated as follows:

• The header <unistd.h> is added to the SYNOPSIS section.

• [EINTR] is no longer required for dup() because fcntl() does not return [EINTR] for
F_DUPFD.

174 CAE Specification (1997)

System Interfaces ecvt()

NAME
ecvt, fcvt, gcvt — convert a floating-point number to a string

SYNOPSIS
EX #include <stdlib.h>

char *ecvt(double value , int ndigit , int * decpt , int * sign);
char *fcvt(double value , int ndigit , int * decpt , int * sign);
char *gcvt(double value , int ndigit , char * buf);

DESCRIPTION
The ecvt(), fcvt() and gcvt() functions convert floating-point numbers to null-terminated strings.

ecvt() Converts value to a null-terminated string of ndigit digits (where ndigit is reduced to an
unspecified limit determined by the precision of a double) and returns a pointer to the
string. The high-order digit is non-zero, unless the value is 0. The low-order digit is
rounded. The position of the radix character relative to the beginning of the string is
stored in the integer pointed to by decpt (negative means to the left of the returned
digits). If value is zero, it is unspecified whether the integer pointed to by decpt would
be 0 or 1. The radix character is not included in the returned string. If the sign of the
result is negative, the integer pointed to by sign is non-zero, otherwise it is 0.

If the converted value is out of range or is not representable, the contents of the
returned string are unspecified.

fcvt() Identical to ecvt() except that ndigit specifies the number of digits desired after the
radix point. The total number of digits in the result string is restricted to an unspecified
limit as determined by the precision of a double.

gcvt() Converts value to a null-terminated string (similar to that of the %g format of printf())
in the array pointed to by buf and returns buf. It produces ndigit significant digits
(limited to an unspecified value determined by the precision of a double) in %f if
possible, or %e (scientific notation) otherwise. A minus sign is included in the returned
string if value is less than 0. A radix character is included in the returned string if value
is not a whole number. Trailing zeros are suppressed where value is not a whole
number. The radix character is determined by the current locale. If setlocale () has not
been called successfully, the default locale, "POSIX", is used. The default locale
specifies a period (.) as the radix character. The LC_NUMERIC category determines
the value of the radix character within the current locale.

These interfaces need not be reentrant.

RETURN VALUE
The ecvt() and fcvt() functions return a pointer to a null-terminated string of digits.

The gcvt() function returns buf.

The return values from ecvt() and fcvt() may point to static data which may be overwritten by
subsequent calls to these functions.

ERRORS
No errors are defined.

EXAMPLES
None.

APPLICATION USAGE
For portability to implementations conforming to earlier versions of this specification, sprintf() is

System Interfaces and Headers, Issue 5: Volume 1 175

ecvt() System Interfaces

preferred over this function.

FUTURE DIRECTIONS
None.

SEE ALSO
printf(), setlocale (), <stdlib.h>.

CHANGE HISTORY
First released in Issue 4, Version 2.

Issue 5
Moved from X/OPEN UNIX extension to BASE.

Normative text previously in the APPLICATION USAGE section is moved to the
DESCRIPTION.

A note indicating that these interfaces need not be reentrant is added to the DESCRIPTION.

176 CAE Specification (1997)

System Interfaces encrypt()

NAME
encrypt — encoding function (CRYPT)

SYNOPSIS
EX #include <unistd.h>

void encrypt(char block [64], int edflag);

DESCRIPTION
The encrypt() function provides (rather primitive) access to an implementation-dependent
encoding algorithm. The key generated by setkey() is used to encrypt the string block with
encrypt().

The block argument to encrypt() is an array of length 64 bytes containing only the bytes with
numerical value of 0 and 1. The array is modified in place to a similar array using the key set by
setkey(). If edflag is 0, the argument is encoded. If edflag is 1, the argument may be decoded (see
the APPLICATION USAGE section below); if the argument is not decoded, errno will be set to
[ENOSYS].

The encrypt() function will not change the setting of errno if successful.

This interface need not be reentrant.

RETURN VALUE
The encrypt() function returns no value.

ERRORS
The encrypt()function will fail if:

[ENOSYS] The functionality is not supported on this implementation.

EXAMPLES
None.

APPLICATION USAGE
In some environments, decoding might not be implemented. This is related to U.S. Government
restrictions on encryption and decryption routines: the DES decryption algorithm cannot be
exported outside the U.S.A. Historical practice has been to ship a different version of the
encryption library without the decryption feature in the routines supplied. Thus the exported
version of encrypt() does encoding but not decoding.

FUTURE DIRECTIONS
None.

SEE ALSO
crypt(), setkey(), <unistd.h>.

CHANGE HISTORY
First released in Issue 1.

Derived from Issue 1 of the SVID.

Issue 4
The following changes are incorporated in this issue:

• The header <unistd.h> is added to the SYNOPSIS section.

• The DESCRIPTION is amended (a) to specify the encoding algorithm as implementation-
dependent (b) to change entry to function and (c) to make decoding optional.

System Interfaces and Headers, Issue 5: Volume 1 177

encrypt() System Interfaces

• The APPLICATION USAGE section is expanded to explain the restrictions on the availability
of the DES decryption algorithm.

Issue 5
A note indicating that this interface need not be reentrant is added to the DESCRIPTION.

178 CAE Specification (1997)

System Interfaces endgrent()

NAME
endgrent, getgrent, setgrent — group database entry functions

SYNOPSIS
EX #include <grp.h>

void endgrent(void);
struct group *getgrent(void);
void setgrent(void);

DESCRIPTION
The getgrent() function returns a pointer to a structure containing the broken-out fields of an
entry in the group database. When first called, getgrent() returns a pointer to a group structure
containing the first entry in the group database. Thereafter, it returns a pointer to a group
structure containing the next group structure in the group database, so successive calls may be
used to search the entire database.

The setgrent() function effectively rewinds the group database to allow repeated searches.

The endgrent() function may be called to close the group database when processing is complete.

These interfaces need not be reentrant.

RETURN VALUE
When first called, getgrent() will return a pointer to the first group structure in the group
database. Upon subsequent calls it returns the next group structure in the group database. The
getgrent() function returns a null pointer on end-of-file or an error and errno may be set to
indicate the error.

The return value may point to a static area which is overwritten by a subsequent call to
getgrgid(), getgrnam() or getgrent().

ERRORS
The getgrent() function may fail if:

[EINTR] A signal was caught during the operation.

[EIO] An I/O error has occurred.

[EMFILE] {OPEN_MAX} file descriptors are currently open in the calling process.

[ENFILE] The maximum allowable number of files is currently open in the system.

EXAMPLES
None.

APPLICATION USAGE
These functions are provided due to their historical usage. Applications should avoid
dependencies on fields in the group database, whether the database is a single file, or where in
the filesystem namespace the database resides. Applications should use getgrnam() and
getgrgid() whenever possible both because it avoids these dependencies and for greater
portability with systems that conform to earlier versions of this specification.

FUTURE DIRECTIONS
None.

SEE ALSO
getgrgid(), getgrnam(), getlogin (), getpwent(), <grp.h>.

System Interfaces and Headers, Issue 5: Volume 1 179

endgrent() System Interfaces

CHANGE HISTORY
First released in Issue 4, Version 2.

Issue 5
Moved from X/OPEN UNIX extension to BASE.

Normative text previously in the APPLICATION USAGE section is moved to the RETURN
VALUE section.

A note indicating that these interfaces need not be reentrant is added to the DESCRIPTION.

180 CAE Specification (1997)

System Interfaces endpwent()

NAME
endpwent, getpwent, setpwent — user database functions

SYNOPSIS
EX #include <pwd.h>

void endpwent(void);
struct passwd *getpwent(void);
void setpwent(void);

DESCRIPTION
The getpwent() function returns a pointer to a structure containing the broken-out fields of an
entry in the user database. Each entry in the user database contains a passwd structure. When
first called, getpwent() returns a pointer to a passwd structure containing the first entry in the
user database. Thereafter, it returns a pointer to a passwd structure containing the next entry in
the user database. Successive calls can be used to search the entire user database.

If an end-of-file or an error is encountered on reading, getpwent() returns a null pointer.

The setpwent() function effectively rewinds the user database to allow repeated searches.

The endpwent() function may be called to close the user database when processing is complete.

These interfaces need not be reentrant.

RETURN VALUE
The getpwent() function returns a null pointer on end-of-file or error.

ERRORS
The getpwent(), setpwent() and endpwent() functions may fail if:

[EIO] An I/O error has occurred.

In addition, getpwent() and setpwent() may fail if:

[EMFILE] {OPEN_MAX} file descriptors are currently open in the calling process.

[ENFILE] The maximum allowable number of files is currently open in the system.

The return value may point to a static area which is overwritten by a subsequent call to
getpwuid(), getpwnam() or getpwent().

EXAMPLES
None.

APPLICATION USAGE
These functions are provided due to their historical usage. Applications should avoid
dependencies on fields in the password database, whether the database is a single file, or where
in the filesystem namespace the database resides. Applications should use getpwuid() whenever
possible both because it avoids these dependencies and for greater portability with systems that
conform to earlier versions of this specification.

FUTURE DIRECTIONS
None.

SEE ALSO
endgrent(), getlogin (), getpwnam(), getpwuid(), <pwd.h>.

CHANGE HISTORY
First released in Issue 4, Version 2.

System Interfaces and Headers, Issue 5: Volume 1 181

endpwent() System Interfaces

Issue 5
Moved from X/OPEN UNIX extension to BASE.

Normative text previously in the APPLICATION USAGE section is moved to the RETURN
VALUE section.

A note indicating that these interfaces need not be reentrant is added to the DESCRIPTION.

182 CAE Specification (1997)

System Interfaces endutxent()

NAME
endutxent, getutxent, getutxid, getutxline, pututxline, setutxent — user accounting database
functions

SYNOPSIS
EX #include <utmpx.h>

void endutxent(void);
struct utmpx *getutxent(void);
struct utmpx *getutxid(const struct utmpx * id);
struct utmpx *getutxline(const struct utmpx * line);
struct utmpx *pututxline(const struct utmpx * utmpx);
void setutxent(void);

DESCRIPTION
These functions provide access to the user accounting database.

The getutxent() function reads in the next entry from the user accounting database. If the
database is not already open, it opens it. If it reaches the end of the database, it fails.

The getutxid() function searches forward from the current point in the database. If the ut_type
value of the utmpx structure pointed to by id is BOOT_TIME, OLD_TIME or NEW_TIME, then it
stops when it finds an entry with a matching ut_type value. If the ut_type value is
INIT_PROCESS, LOGIN_PROCESS, USER_PROCESS, or DEAD_PROCESS, then it stops when
it finds an entry whose type is one of these four and whose ut_id member matches the ut_id
member of the utmpx structure pointed to by id. If the end of the database is reached without a
match, getutxid() fails.

The getutxid() or getutxline() may cache data. For this reason, to use getutxline() to search for
multiple occurrences, it is necessary to zero out the static data after each success, or getutxline()
could just return a pointer to the same utmpx structure over and over again.

There is one exception to the rule about removing the structure before further reads are done.
The implicit read done by pututxline() (if it finds that it is not already at the correct place in the
user accounting database) will not modify the static structure returned by getutxent(), getutxid()
or getutxline(), if the application has just modified this structure and passed the pointer back to
pututxline().

For all entries that match a request, the ut_type member indicates the type of the entry. Other
members of the entry will contain meaningful data based on the value of the ut_type member as
follows:

ut_type Member Other Members with Meaningful Data
EMPTY No others
BOOT_TIME ut_tv
OLD_TIME ut_tv
NEW_TIME ut_tv
USER_PROCESS ut_id, ut_user (login name of the user), ut_line, ut_pid, ut_tv
INIT_PROCESS ut_id, ut_pid, ut_tv

ut_id, ut_user (implementation-dependent name of the login
process), ut_pid, ut_tv

LOGIN_PROCESS

DEAD_PROCESS ut_id, ut_pid, ut_tv

The getutxline() function searches forward from the current point in the database until it finds an
entry of the type LOGIN_PROCESS or USER_PROCESS which also has a ut_line value
matching that in the utmpx structure pointed to by line. If the end of the database is reached

System Interfaces and Headers, Issue 5: Volume 1 183

endutxent() System Interfaces

without a match, getutxline() fails.

If the process has appropriate privileges, the pututxline() function writes out the structure into
the user accounting database. It uses getutxid() to search for a record that satisfies the request.
If this search succeeds, then the entry is replaced. Otherwise, a new entry is made at the end of
the user accounting database.

The setutxent() function resets the input to the beginning of the database. This should be done
before each search for a new entry if it is desired that the entire database be examined.

The endutxent() function closes the user accounting database.

These interfaces need not be reentrant.

RETURN VALUE
Upon successful completion, getutxent(), getutxid() and getutxline() return a pointer to a utmpx
structure containing a copy of the requested entry in the user accounting database. Otherwise a
null pointer is returned.

The return value may point to a static area which is overwritten by a subsequent call to
getutxid() or getutxline().

Upon successful completion, pututxline() returns a pointer to a utmpx structure containing a
copy of the entry added to the user accounting database. Otherwise a null pointer is returned.

The endutxent() and setutxent() functions return no value.

ERRORS
No errors are defined for the endutxent(), getutxent(), getutxid(), getutxline() and setutxent()
functions.

The pututxline() function may fail if:

[EPERM] The process does not have appropriate privileges.

EXAMPLES
None.

APPLICATION USAGE
The sizes of the arrays in the structure can be found using the sizeof operator.

FUTURE DIRECTIONS
None.

SEE ALSO
<utmpx.h>.

CHANGE HISTORY
First released in Issue 4, Version 2.

Issue 5
Moved from X/OPEN UNIX extension to BASE.

Normative text previously in the APPLICATION USAGE section is moved to the
DESCRIPTION.

A note indicating that these interfaces need not be reentrant is added to the DESCRIPTION.

184 CAE Specification (1997)

System Interfaces environ

NAME
environ — array of character pointers to the environment strings

SYNOPSIS
extern char **environ;

DESCRIPTION
Refer to the XBD specification, Chapter 6, Environment Variables and exec.

CHANGE HISTORY
First released in Issue 1.

Derived from Issue 1 of the SVID.

System Interfaces and Headers, Issue 5: Volume 1 185

erand48() System Interfaces

NAME
erand48 — generate uniformly distributed pseudo-random numbers

SYNOPSIS
EX #include <stdlib.h>

double erand48(unsigned short int xsubi [3]);

DESCRIPTION
Refer to drand48().

CHANGE HISTORY
First released in Issue 1.

Derived from Issue 1 of the SVID.

Issue 4
The following change is incorporated in this issue:

• The <stdlib.h> header is added to the SYNOPSIS section.

186 CAE Specification (1997)

System Interfaces erf()

NAME
erf, erfc — error and complementary error functions

SYNOPSIS
EX #include <math.h>

double erf(double x);
double erfc(double x);

DESCRIPTION
The erf() function computes the error function of x , defined as:

√MMπ
2____

0
∫
x

e−t2

dt

The erfc() function computes 1.0 − erf(x).

An application wishing to check for error situations should set errno to 0 before calling erf(). If
errno is non-zero on return, or the return value is NaN, an error has occurred.

RETURN VALUE
Upon successful completion, erf() and erfc() return the value of the error function and
complementary error function, respectively.

If x is NaN, NaN is returned and errno may be set to [EDOM].

If the correct value would cause underflow, 0 is returned and errno may be set to [ERANGE].

ERRORS
The erf() and erfc() functions may fail if:

[EDOM] The value of x is NaN.

[ERANGE] The result underflows.

No other errors will occur.

EXAMPLES
None.

APPLICATION USAGE
The erfc() function is provided because of the extreme loss of relative accuracy if erf(x) is called
for large x and the result subtracted from 1.0.

FUTURE DIRECTIONS
None.

SEE ALSO
isnan(), <math.h>.

CHANGE HISTORY
First released in Issue 1.

Derived from Issue 1 of the SVID.

System Interfaces and Headers, Issue 5: Volume 1 187

erf() System Interfaces

Issue 4
The following changes are incorporated in this issue:

• Removed references to matherr().

• The RETURN VALUE and ERRORS sections are substantially rewritten to rationalise error
handling in the mathematics functions.

Issue 5
The DESCRIPTION is updated to indicate how an application should check for an error. This
text was previously published in the APPLICATION USAGE section.

188 CAE Specification (1997)

System Interfaces errno

NAME
errno — XSI error return value

SYNOPSIS
#include <errno.h>

DESCRIPTION

errno is used by many XSI functions to return error values.

Many functions provide an error number in errno which has type int and is defined in <errno.h>.
The value of errno will be defined only after a call to a function for which it is explicitly stated to
be set and until it is changed by the next function call. The value of errno should only be
examined when it is indicated to be valid by a function’s return value. Programs should obtain
the definition of errno by the inclusion of <errno.h>. The practice of defining errno in a program
as extern int errno is obsolescent. No function in this specification sets errno to 0 to indicate an
error.

It is unspecified whether errno is a macro or an identifier declared with external linkage. If a
macro definition is suppressed in order to access an actual object, or a program defines an
identifier with the name errno, the behaviour is undefined.

The symbolic values stored in errno are documented in the ERRORS sections on all relevant
pages.

RETURN VALUE
None.

ERRORS
None.

EXAMPLES
None.

APPLICATION USAGE
Previously both POSIX and X/Open documents were more restrictive than the ISO C standard
in that they required errno to be defined as an external variable, whereas the ISO C standard
required only that errno be defined as a modifiable lvalue with type int.

A program that uses errno for error checking should set it to 0 before a function call, then inspect
it before a subsequent function call.

FUTURE DIRECTIONS
None.

SEE ALSO
<errno.h>, Section 2.3 on page 22.

CHANGE HISTORY
First released in Issue 1.

Derived from Issue 1 of the SVID.

Issue 4
The following changes are incorporated for alignment with the ISO C standard:

• The DESCRIPTION now guarantees that errno is set to 0 at program startup, and that it is
never reset to 0 by any XSI function.

• The APPLICATION USAGE section is added. This revision is aligned with the ISO C
standard, which permits errno to be a macro.

System Interfaces and Headers, Issue 5: Volume 1 189

errno System Interfaces

Another change is incorporated as follows:

• The FUTURE DIRECTIONS section is deleted.

Issue 5
The following sentence is deleted from the DESCRIPTION: "The value of errno is 0 at program
startup, but is never set to 0 by any XSI function". The DESCRIPTION also no longer states that
conforming implementations may support the declaration:

extern int errno;

Both these historical behaviours are obsolete and may not be supported by some
implementations.

190 CAE Specification (1997)

System Interfaces exec

NAME
environ, execl, execv, execle, execve, execlp, execvp — execute a file

SYNOPSIS
#include <unistd.h>

extern char **environ;
int execl(const char * path , const char * arg0 , ... /*, (char *)0 */);
int execv(const char * path , char *const argv []);
int execle(const char * path ,

const char * arg0 , ... /*, (char *)0, char *const envp []*/);
int execve(const char * path , char *const argv [], char *const envp []);
int execlp(const char * file , const char * arg0 , ... /*, (char *)0 */);
int execvp(const char * file , char *const argv []);

DESCRIPTION
The exec functions replace the current process image with a new process image. The new image
is constructed from a regular, executable file called the new process image file . There is no return
from a successful exec, because the calling process image is overlaid by the new process image.

When a C-language program is executed as a result of this call, it is entered as a C-language
function call as follows:

int main (int argc, char *argv []);

where argc is the argument count and argv is an array of character pointers to the arguments
themselves. In addition, the following variable:

extern char **environ;

is initialised as a pointer to an array of character pointers to the environment strings. The argv
and environ arrays are each terminated by a null pointer. The null pointer terminating the argv
array is not counted in argc .

Conforming multi-threaded applications will not use the environ variable to access or modify
any environment variable while any other thread is concurrently modifying any environment
variable. A call to any function dependent on any environment variable is considered a use of
the environ variable to access that environment variable.

The arguments specified by a program with one of the exec functions are passed on to the new
process image in the corresponding main() arguments.

The argument path points to a pathname that identifies the new process image file.

The argument file is used to construct a pathname that identifies the new process image file. If
the file argument contains a slash character, the file argument is used as the pathname for this
file. Otherwise, the path prefix for this file is obtained by a search of the directories passed as the
environment variable PATH (see XBD specification, Chapter 6, Environment Variables). If this
environment variable is not present, the results of the search are implementation-dependent.

EX If the process image file is not a valid executable object, execlp() and execvp() use the contents of
that file as standard input to a command interpreter conforming to system(). In this case, the
command interpreter becomes the new process image.

The arguments represented by arg0, . . . are pointers to null-terminated character strings. These
strings constitute the argument list available to the new process image. The list is terminated by
a null pointer. The argument arg0 should point to a filename that is associated with the process
being started by one of the exec functions.

System Interfaces and Headers, Issue 5: Volume 1 191

exec System Interfaces

The argument argv is an array of character pointers to null-terminated strings. The last member
of this array must be a null pointer. These strings constitute the argument list available to the
new process image. The value in argv[0] should point to a filename that is associated with the
process being started by one of the exec functions.

The argument envp is an array of character pointers to null-terminated strings. These strings
constitute the environment for the new process image. The envp array is terminated by a null
pointer.

For those forms not containing an envp pointer (execl(), execv(), execlp() and execvp()), the
environment for the new process image is taken from the external variable environ in the calling
process.

The number of bytes available for the new process’ combined argument and environment lists is
{ARG_MAX}. It is implementation-dependent whether null terminators, pointers, and/or any
alignment bytes are included in this total.

File descriptors open in the calling process image remain open in the new process image, except
for those whose close-on-exec flag FD_CLOEXEC is set. For those file descriptors that remain
open, all attributes of the open file description, including file locks remain unchanged.

Directory streams open in the calling process image are closed in the new process image.

EX The state of conversion descriptors and message catalogue descriptors in the new process image
is undefined. For the new process, the equivalent of:

setlocale(LC_ALL, "C")

is executed at startup.

Signals set to the default action (SIG_DFL) in the calling process image are set to the default
action in the new process image. Signals set to be ignored (SIG_IGN) by the calling process
image are set to be ignored by the new process image. Signals set to be caught by the calling

EX process image are set to the default action in the new process image (see <signal.h>). After a
successful call to any of the exec functions, alternate signal stacks are not preserved and the
SA_ONSTACK flag is cleared for all signals.

After a successful call to any of the exec functions, any functions previously registered by atexit()
are no longer registered.

EX If the ST_NOSUID bit is set for the file system containing the new process image file, then the
effective user ID, effective group ID, saved set-user-ID and saved set-group-ID are unchanged in
the new process image. Otherwise, if the set-user-ID mode bit of the new process image file is
set, the effective user ID of the new process image is set to the user ID of the new process image
file. Similarly, if the set-group-ID mode bit of the new process image file is set, the effective
group ID of the new process image is set to the group ID of the new process image file. The real
user ID, real group ID, and supplementary group IDs of the new process image remain the same

FIPS as those of the calling process image. The effective user ID and effective group ID of the new
process image are saved (as the saved set-user-ID and the saved set-group-ID for use by setuid().

EX Any shared memory segments attached to the calling process image will not be attached to the
new process image.

EX Any mappings established through mmap() are not preserved across an exec.

RT If _XOPEN_REALTIME is defined and has a value other than −1, any named semaphores open
in the calling process are closed as if by appropriate calls to sem_close().

192 CAE Specification (1997)

System Interfaces exec

If the Process Memory Locking option is supported, memory locks established by the calling
process via calls to mlockall () or mlock() are removed. If locked pages in the address space of the
calling process are also mapped into the address spaces of other processes and are locked by
those processes, the locks established by the other processes will be unaffected by the call by this
process to the exec function. If the exec function fails, the effect on memory locks is unspecified.

Memory mappings created in the process are unmapped before the address space is rebuilt for
the new process image.

RT If the Process Scheduling option is supported, for the SCHED_FIFO and SCHED_RR scheduling
policies, the policy and priority settings are not changed by a call to an exec function. For other
scheduling policies, the policy and priority settings on exec are implementation-dependent.

If the Timers option is supported, per-process timers created by the calling process are deleted
before replacing the current process image with the new process image.

If the Message Passing option is supported, all open message queue descriptors in the calling
process are closed, as described in mq_close().

If the Asynchronous Input and Output option is supported, any outstanding asynchronous I/O
operations may be canceled. Those asynchronous I/O operations that are not canceled will
complete as if the exec function had not yet occurred, but any associated signal notifications are
suppressed. It is unspecified whether the exec function itself blocks awaiting such I/O
completion. In no event, however, will the new process image created by the exec function be
affected by the presence of outstanding asynchronous I/O operations at the time the exec
function is called. Whether any I/O is cancelled, and which I/O may be cancelled upon exec, is
implementation-dependent.

The new process also inherits at least the following attributes from the calling process image:

EX nice value (see nice())
EX semadj values (see semop())

process ID
parent process ID
process group ID
session membership
real user ID
real group ID
supplementary group IDs
time left until an alarm clock signal (see alarm())
current working directory
root directory
file mode creation mask (see umask())

EX file size limit (see ulimit())
process signal mask (see sigprocmask ())
pending signal (see sigpending())
tms_utime, tms_stime, tms_cutime, and tms_cstime (see times())

EX resource limits
EX controlling terminal
EX interval timers

All other process attributes defined in this document will be the same in the new and old process
images. The inheritance of process attributes not defined by this specification is
implementation-dependent.

A call to any exec function from a process with more than one thread results in all threads being
terminated and the new executable image being loaded and executed. No destructor functions

System Interfaces and Headers, Issue 5: Volume 1 193

exec System Interfaces

will be called.

Upon successful completion, the exec functions mark for update the st_atime field of the file. If an
exec function failed but was able to locate the process image file , whether the st_atime field is
marked for update is unspecified. Should the exec function succeed, the process image file is
considered to have been opened with open(). The corresponding close() is considered to occur at
a time after this open, but before process termination or successful completion of a subsequent
call to one of the exec functions. The argv[] and envp[] arrays of pointers and the strings to
which those arrays point will not be modified by a call to one of the exec functions, except as a
consequence of replacing the process image.

EX The saved resource limits in the new process image are set to be a copy of the process’s
corresponding hard and soft limits.

RETURN VALUE
If one of the exec functions returns to the calling process image, an error has occurred; the return
value is −1, and errno is set to indicate the error.

ERRORS
The exec functions will fail if:

[E2BIG] The number of bytes used by the new process image’s argument list and
environment list is greater than the system-imposed limit of {ARG_MAX}
bytes.

[EACCES] Search permission is denied for a directory listed in the new process image
file’s path prefix, or the new process image file denies execution permission, or
the new process image file is not a regular file and the implementation does
not support execution of files of its type.

EX [ELOOP] Too many symbolic links were encountered in resolving path.

FIPS [ENAMETOOLONG]
The length of the path or file arguments, or an element of the environment
variable PATH prefixed to a file, exceeds {PATH_MAX}, or a pathname
component is longer than {NAME_MAX}.

[ENOENT] A component of path or file does not name an existing file or path or file is an
empty string.

[ENOTDIR] A component of the new process image file’s path prefix is not a directory.

The exec functions, except for execlp() and execvp(), will fail if:

[ENOEXEC] The new process image file has the appropriate access permission but is not in
the proper format.

The exec functions may fail if:

EX [ENAMETOOLONG]
Pathname resolution of a symbolic link produced an intermediate result
whose length exceeds {PATH_MAX}.

[ENOMEM] The new process image requires more memory than is allowed by the
hardware or system-imposed memory management constraints.

EX [ETXTBSY] The new process image file is a pure procedure (shared text) file that is
currently open for writing by some process.

194 CAE Specification (1997)

System Interfaces exec

EXAMPLES
None.

APPLICATION USAGE
As the state of conversion descriptors and message catalogue descriptors in the new process
image is undefined, portable applications should not rely on their use and should close them
prior to calling one of the exec functions.

Applications that require other than the default POSIX locale should call setlocale () with the
appropriate parameters to establish the locale of the new process.

The environ array should not be accessed directly by the application.

FUTURE DIRECTIONS
None.

SEE ALSO
alarm(), atexit(), chmod(), exit(), fcntl(), fork (), fstatvfs (), getenv(), getitimer(), getrlimit(), mmap(),
nice(), putenv(), semop(), setlocale (), shmat(), sigaction (), sigaltstack (), sigpending(), sigprocmask (),
system(), times(), ulimit(), umask(), <unistd.h>, XBD specification, Chapter 9, General Terminal
Interface.

CHANGE HISTORY
First released in Issue 1.

Derived from Issue 1 of the SVID.

Issue 4
The following change is incorporated for alignment with the ISO POSIX-1 standard:

• In the ERRORS section, (a) the description of the [ENOEXEC] error is changed to indicate
that this error does not apply to execlp() and execvp(), and (b) the [ENOMEM] error is added.

The following change is incorporated for alignment with the FIPS requirements:

• In the ERRORS section, the condition whereby [ENAMETOOLONG] will be returned if a
pathname component is larger that {NAME_MAX} is now defined as mandatory and marked
as an extension.

Other changes are incorporated as follows:

• The header <unistd.h> is added to the SYNOPSIS section.

• The const keyword is added to identifiers of constant type (for example, path, file).

• In the DESCRIPTION, (a) an indication of the disposition of conversion descriptors after a
call to one of the exec functions is added, (b) a statement about the interaction between exec
and atexit() is added, (c) usually in the descriptions of argument pointers is removed, (d)
owner ID is changed to user ID, (e) shared memory is no longer optional and (f) the
penultimate paragraph is changed to correct an error in Issue 3: it now refers to ‘‘All other
process attributes...’’ instead of ‘‘All the process attributes....’’

• A note about the initialisation of locales is added to the APPLICATION USAGE section.

Issue 4, Version 2
The following changes are incorporated for X/OPEN UNIX conformance:

• The DESCRIPTION is changed to indicate the disposition of alternate signal stacks, the
SA_ONSTACK flag and mappings established through mmap() after a successful call to one
of the exec functions. The effects of ST_NOSUID being set for a file system are defined. A
statement is added that mappings established through mmap() are not preserved across an

System Interfaces and Headers, Issue 5: Volume 1 195

exec System Interfaces

exec. The list of inherited process attributes is extended to include resource limits, the
controlling terminal and interval timers.

• In the ERRORS section, the condition whereby [ELOOP] will be returned if too many
symbolic links are encountered during pathname resolution is defined as mandatory.

• In the ERRORS section, a second [ENAMETOOLONG] condition is defined that may report
excessive length of an intermediate result of pathname resolution of a symbolic link.

Issue 5
The DESCRIPTION is updated for alignment with the POSIX Realtime Extension and the POSIX
Threads Extension.

Large File Summit extensions added.

196 CAE Specification (1997)

System Interfaces exit()

NAME
exit, _exit — terminate a process

SYNOPSIS
#include <stdlib.h>

void exit(int status);

#include <unistd.h>

void _exit(int status);

DESCRIPTION
The exit() function first calls all functions registered by atexit(), in the reverse order of their
registration. Each function is called as many times as it was registered.

If a function registered by a call to atexit() fails to return, the remaining registered functions are
not called and the rest of the exit() processing is not completed. If exit() is called more than once,
the effects are undefined.

The exit() function then flushes all output streams, closes all open streams, and removes all files
created by tmpfile(). Finally, control is returned to the host environment as described below.
The values of status can be EXIT_SUCCESS or EXIT_FAILURE, as described in <stdlib.h>, or any
implementation-dependent value, although note that only the range 0 through 255 will be
available to a waiting parent process.

The _exit() and exit() functions terminate the calling process with the following consequences:

EX • All of the file descriptors, directory streams, conversion descriptors and message catalogue
descriptorsopen in the calling process are closed.

EXEX • If the parent process of the calling process is executing a wait(),wait3(), waitid () or waitpid (),
and has neither set its SA_NOCLDWAIT flag nor set SIGCHLD to SIG_IGN, it is notified of
the calling process’ termination and the low-order eight bits (that is, bits 0377) of status are
made available to it. If the parent is not waiting, the child’s status will be made available to it

EX when the parent subsequently executes wait(),wait3(), waitid ()or waitpid ().

EX • If the parent process of the calling process is not executing a wait(), wait3(), waitid () or
EX waitpid (), and has not set its SA_NOCLDWAIT flag, or set SIGCHLD to SIG_IGN, the calling

process is transformed into a zombie process. A zombie process is an inactive process and it will
EX be deleted at some later time when its parent process executes wait(), wait3(), waitid () or

waitpid ().

• Termination of a process does not directly terminate its children. The sending of a SIGHUP
signal as described below indirectly terminates children in some circumstances.

• If the implementation supports the SIGCHLD signal, a SIGCHLD will be sent to the parent
process.

EX • If the parent process has set its SA_NOCLDWAIT flag, or set SIGCHLD to SIG_IGN, the
status will be discarded, and the lifetime of the calling process will end immediately. If
SA_NOCLDWAIT is set, it is implementation-dependent whether a SIGCHLD signal will be
sent to the parent process.

• The parent process ID of all of the calling process’ existing child processes and zombie
processes is set to the process ID of an implementation-dependent system process. That is,
these processes are inherited by a special system process.

EX • Each attached shared-memory segment is detached and the value of shm_nattch (see
shmget()) in the data structure associated with its shared memory ID is decremented by 1.

System Interfaces and Headers, Issue 5: Volume 1 197

exit() System Interfaces

EX • For each semaphore for which the calling process has set a semadj value, see semop(), that
value is added to the semval of the specified semaphore.

• If the process is a controlling process, the SIGHUP signal will be sent to each process in the
foreground process group of the controlling terminal belonging to the calling process.

• If the process is a controlling process, the controlling terminal associated with the session is
disassociated from the session, allowing it to be acquired by a new controlling process.

• If the exit of the process causes a process group to become orphaned, and if any member of
the newly-orphaned process group is stopped, then a SIGHUP signal followed by a
SIGCONT signal will be sent to each process in the newly-orphaned process group.

RT • If the Semaphores option is supported, all open named semaphores in the calling process are
closed as if by appropriate calls to sem_close().

• If the Process Memory Locking option is supported, any memory locks established by the
process via calls to mlockall () or mlock() are removed. If locked pages in the address space of
the calling process are also mapped into the address spaces of other processes and are locked
by those processes, the locks established by the other processes will be unaffected by the call
by this process to _exit().

• Memory mappings created in the process are unmapped before the process is destroyed.

RT • If the Message Passing option is supported, all open message queue descriptors in the calling
process are closed as if by appropriate calls to mq_close().

• If the Asynchronous Input and Output option is supported any outstanding cancelable
asynchronous I/O operations may be canceled. Those asynchronous I/O operations that are
not canceled will complete as if the _exit() operation had not yet occurred, but any associated
signal notifications will be suppressed. The _exit() operation itself may block awaiting such
I/O completion. Whether any I/O is cancelled, and which I/O may be cancelled upon
_exit(), is implementation-dependent.

• Threads terminated by a call to _exit() will not invoke their cancellation cleanup handlers or
per-thread data destructors.

RETURN VALUE
These functions do not return.

ERRORS
No errors are defined.

EXAMPLES
None.

APPLICATION USAGE
Normally applications should use exit() rather than _exit().

FUTURE DIRECTIONS
None.

SEE ALSO
atexit(), close(), fclose(), semop(), shmget(), sigaction (), wait(), wait3(), waitid (), waitpid (),
<stdlib.h>, <unistd.h>.

CHANGE HISTORY
First released in Issue 1.

Derived from Issue 1 of the SVID.

198 CAE Specification (1997)

System Interfaces exit()

Issue 4
The following change is incorporated for alignment with the ISO C standard:

• In the DESCRIPTION, (a) interactions between exit() and atexit() are defined, and (b) it is
now stated explicitly that all files created by tmpfile() are removed.

Other changes are incorporated as follows:

• The header <unistd.h> is added to the SYNOPSIS for _exit().

• In the DESCRIPTION, text describing (a) the behaviour when a function registered by
atexit() fails to return, and (b) consequences of calling exit() more than once, are added.

• The phrase ‘‘If the implementation supports job control’’ is removed from the last bullet in
the DESCRIPTION. This is because job control is now defined as mandatory for all
conforming implementations.

Issue 4, Version 2
The following changes to the DESCRIPTION are incorporated for X/OPEN UNIX conformance:

• References to the functions wait3() and waitid () are added in appropriate places throughout
the text.

• Interactions with the SA_NOCLDWAIT flag and SIGCHLD signal are defined.

• It is specified that each mapped memory object is unmapped.

Issue 5
The DESCRIPTION is updated for alignment with the POSIX Realtime Extension and the POSIX
Threads Extension.

Interactions with the SA_NOCLDWAIT flag and SIGCHLD signal are further clarified.

The values of status from exit() are better described.

System Interfaces and Headers, Issue 5: Volume 1 199

exp() System Interfaces

NAME
exp — exponential function

SYNOPSIS
#include <math.h>

double exp(double x);

DESCRIPTION
The exp() function computes the exponent of x, defined as ex .

An application wishing to check for error situations should set errno to 0 before calling exp(). If
errno is non-zero on return, or the return value is NaN, an error has occurred.

RETURN VALUE
Upon successful completion, exp() returns the exponential value of x .

If the correct value would cause overflow, exp() returns HUGE_VAL and sets errno to
[ERANGE].

If the correct value would cause underflow, exp() returns 0 and may set errno to [ERANGE].

EX If x is NaN, NaN is returned and errno may be set to [EDOM].

ERRORS
The exp() function will fail if:

[ERANGE] The result overflows.

The exp() function may fail if:

EX [EDOM] The value of x is NaN.

[ERANGE] The result underflows.

EX No other errors will occur.

EXAMPLES
None.

APPLICATION USAGE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
isnan(), log(), <math.h>.

CHANGE HISTORY
First released in Issue 1.

Derived from Issue 1 of the SVID.

Issue 4
The following changes are incorporated in this issue:

• Removed references to matherr().

• The RETURN VALUE and ERRORS sections are substantially rewritten for alignment with
the ISO C standard and to rationalise error handling in the mathematics functions.

• The return value specified for [EDOM] is marked as an extension.

200 CAE Specification (1997)

System Interfaces exp()

Issue 5
The DESCRIPTION is updated to indicate how an application should check for an error. This
text was previously published in the APPLICATION USAGE section.

System Interfaces and Headers, Issue 5: Volume 1 201

expm1() System Interfaces

NAME
expm1 — compute exponential functions

SYNOPSIS
EX #include <math.h>

double expm1 (double x);

DESCRIPTION
The expm1() function computes ex−1.0.

RETURN VALUE

If x is NaN, then the function returns NaN and errno may be set to EDOM.

If x is positive infinity, expm1() returns positive infinity.

If x is negative infinity, expm1() returns −1.0.

If the value overflows, expm1() returns HUGE_VAL and may set errno to ERANGE.

ERRORS
The expm1() function may fail if:

[EDOM] The value of x is NaN.

[ERANGE] The result overflows.

EXAMPLES
None.

APPLICATION USAGE
The value of expm1(x) may be more accurate than exp(x)−1.0 for small values of x .

The expm1() and log1p () functions are useful for financial calculations of ((1+x)n−1)/x, namely:

expm1(n * log1p(x))/x

when x is very small (for example, when calculating small daily interest rates). These functions
also simplify writing accurate inverse hyperbolic functions.

FUTURE DIRECTIONS
None.

SEE ALSO
exp(), ilogb (), log1p (), <math.h>.

CHANGE HISTORY
First released in Issue 4, Version 2.

Issue 5
Moved from X/OPEN UNIX extension to BASE.

202 CAE Specification (1997)

System Interfaces fabs()

NAME
fabs — absolute value function

SYNOPSIS
#include <math.h>

double fabs(double x);

DESCRIPTION
The fabs() function computes the absolute value of x , |x|.

An application wishing to check for error situations should set errno to 0 before calling fabs(). If
errno is non-zero on return, or the return value is NaN, an error has occurred.

RETURN VALUE
Upon successful completion, fabs() returns the absolute value of x .

EX If x is NaN, NaN is returned and errno may be set to [EDOM].

If the result underflows, 0 is returned and errno may be set to [ERANGE].

ERRORS
The fabs() function may fail if:

EX [EDOM] The value of x is NaN.

[ERANGE] The result underflows.

EX No other errors will occur.

EXAMPLES
None.

APPLICATION USAGE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
isnan(), <math.h>.

CHANGE HISTORY
First released in Issue 1.

Derived from Issue 1 of the SVID.

Issue 4
The following changes are incorporated in this issue:

• Removed references to matherr().

• The RETURN VALUE and ERRORS sections are substantially rewritten for alignment with
the ISO C standard and to rationalise error handling in the mathematics functions.

• The return value specified for [EDOM] is marked as an extension.

Issue 5
The DESCRIPTION is updated to indicate how an application should check for an error. This
text was previously published in the APPLICATION USAGE section.

System Interfaces and Headers, Issue 5: Volume 1 203

fattach() System Interfaces

NAME
fattach — attach a STREAMS-based file descriptor to a file in the file system name space

SYNOPSIS
EX #include <stropts.h>

int fattach(int fildes , const char * path);

DESCRIPTION
The fattach () function attaches a STREAMS-based file descriptor to a file, effectively associating
a pathname with fildes. The fildes argument must be a valid open file descriptor associated with
a STREAMS file. The path argument points to a pathname of an existing file. The process must
have appropriate privileges, or must be the owner of the file named by path and have write
permission. A successful call to fattach () causes all pathnames that name the file named by path
to name the STREAMS file associated with fildes , until the STREAMS file is detached from the
file. A STREAMS file can be attached to more than one file and can have several pathnames
associated with it.

The attributes of the named STREAMS file are initialised as follows: the permissions, user ID,
group ID, and times are set to those of the file named by path, the number of links is set to 1, and
the size and device identifier are set to those of the STREAMS file associated with fildes. If any
attributes of the named STREAMS file are subsequently changed (for example, by chmod()),
neither the attributes of the underlying file nor the attributes of the STREAMS file to which fildes
refers are affected.

File descriptors referring to the underlying file, opened prior to an fattach () call, continue to refer
to the underlying file.

RETURN VALUE
Upon successful completion, fattach () returns 0. Otherwise, −1 is returned and errno is set to
indicate the error.

ERRORS
The fattach () function will fail if:

[EACCES] Search permission is denied for a component of the path prefix, or the process
is the owner of path but does not have write permissions on the file named by
path.

[EBADF] The fildes argument is not a valid open file descriptor.

[ENOENT] A component of path does not name an existing file or path is an empty string.

[ENOTDIR] A component of the path prefix is not a directory.

[EPERM] The effective user ID of the process is not the owner of the file named by path
and the process does not have appropriate privilege.

[EBUSY] The file named by path is currently a mount point or has a STREAMS file
attached to it.

[ENAMETOOLONG]
The size of path exceeds {PATH_MAX}, or a component of path is longer than
{NAME_MAX}.

[ELOOP] Too many symbolic links were encountered in resolving path.

204 CAE Specification (1997)

System Interfaces fattach()

The fattach () function may fail if:

[EINVAL] The fildes argument does not refer to a STREAMS file.

[ENAMETOOLONG]
Pathname resolution of a symbolic link produced an intermediate result
whose length exceeds {PATH_MAX}.

[EXDEV] A link to a file on another file system was attempted.

EXAMPLES
None.

APPLICATION USAGE
The fattach () function behaves similarly to the traditional mount() function in the way a file is
temporarily replaced by the root directory of the mounted file system. In the case of fattach (),
the replaced file need not be a directory and the replacing file is a STREAMS file.

FUTURE DIRECTIONS
None.

SEE ALSO
fdetach (), isastream(), <stropts.h>.

CHANGE HISTORY
First released in Issue 4, Version 2.

Issue 5
Moved from X/OPEN UNIX extension to BASE. The [EXDEV] error is added to the list of
optional errors in the ERRORS section.

System Interfaces and Headers, Issue 5: Volume 1 205

fchdir() System Interfaces

NAME
fchdir — change working directory

SYNOPSIS
EX #include <unistd.h>

int fchdir(int fildes);

DESCRIPTION
The fchdir() function has the same effect as chdir() except that the directory that is to be the new
current working directory is specified by the file descriptor fildes .

RETURN VALUE
Upon successful completion, fchdir() returns 0. Otherwise, it returns −1 and sets errno to
indicate the error. On failure the current working directory remains unchanged.

ERRORS
The fchdir() function will fail if:

[EACCES] Search permission is denied for the directory referenced by fildes.

[EBADF] The fildes argument is not an open file descriptor.

[ENOTDIR] The open file descriptor fildes does not refer to a directory.

The fchdir() may fail if:

[EINTR] A signal was caught during the execution of fchdir().

[EIO] An I/O error occurred while reading from or writing to the file system.

EXAMPLES
None.

APPLICATION USAGE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
chdir(), <unistd.h>.

CHANGE HISTORY
First released in Issue 4, Version 2.

Issue 5
Moved from X/OPEN UNIX extension to BASE.

206 CAE Specification (1997)

System Interfaces fchmod()

NAME
fchmod — change mode of a file

SYNOPSIS
#include <sys/stat.h>

int fchmod(int fildes , mode_t mode);

DESCRIPTION
The fchmod() function has the same effect as chmod() except that the file whose permissions are
to be changed is specified by the file descriptor fildes .

RT If the Shared Memory Objects option is supported, and fildes references a shared memory object,
the fchmod() function need only affect the S_IRUSR, S_IWUSR, S_IRGRP, S_IWGRP, S_IROTH,
and S_IWOTH file permission bits.

RETURN VALUE
Upon successful completion, fchmod() returns 0. Otherwise, it returns −1 and sets errno to
indicate the error.

ERRORS
The fchmod() function will fail if:

[EBADF] The fildes argument is not an open file descriptor.

[EPERM] The effective user ID does not match the owner of the file and the process does
not have appropriate privilege.

[EROFS] The file referred to by fildes resides on a read-only file system.

The fchmod() function may fail if:

[EINTR] The fchmod() function was interrupted by a signal.

[EINVAL] The value of the mode argument is invalid.

[EINVAL] The fildes argument refers to a pipe and the implementation disallows
execution of fchmod() on a pipe.

EXAMPLES
None.

APPLICATION USAGE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
chmod(), chown(), creat(), fcntl(), fstatvfs (), mknod(), open(), read(), stat(), write(), <sys/stat.h>.

CHANGE HISTORY
First released in Issue 4, Version 2.

Issue 5
Moved from X/OPEN UNIX extension to BASE and aligned with fchmod() in the POSIX
Realtime Extension. Specifically, the second paragraph of the DESCRIPTION is added and a
second instance of [EINVAL] is defined in the list of optional errors.

System Interfaces and Headers, Issue 5: Volume 1 207

fchown() System Interfaces

NAME
fchown — change owner and group of a file

SYNOPSIS
EX #include <unistd.h>

int fchown(int fildes , uid_t owner , gid_t group);

DESCRIPTION
The fchown() function has the same effect as chown() except that the file whose owner and group
are to be changed is specified by the file descriptor fildes .

RETURN VALUE
Upon successful completion, fchown() returns 0. Otherwise, it returns −1 and sets errno to
indicate the error.

ERRORS
The fchown() function will fail if:

[EBADF] The fildes argument is not an open file descriptor.

[EPERM] The effective user ID does not match the owner of the file or the process does
not have appropriate privilege.

[EROFS] The file referred to by fildes resides on a read-only file system.

The fchown() function may fail if:

[EINVAL] The owner or group ID is not a value supported by the implementation.

[EIO] A physical I/O error has occurred.

[EINTR] The fchown() function was interrupted by a signal which was caught.

EXAMPLES
None.

APPLICATION USAGE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
chown(), <unistd.h>.

CHANGE HISTORY
First released in Issue 4, Version 2.

Issue 5
Moved from X/OPEN UNIX extension to BASE.

208 CAE Specification (1997)

System Interfaces fclose()

NAME
fclose — close a stream

SYNOPSIS
#include <stdio.h>

int fclose(FILE * stream);

DESCRIPTION
The fclose() function causes the stream pointed to by stream to be flushed and the associated file
to be closed. Any unwritten buffered data for the stream is written to the file; any unread
buffered data is discarded. The stream is disassociated from the file. If the associated buffer was
automatically allocated, it is deallocated. It marks for update the st_ctime and st_mtime fields of
the underlying file, if the stream was writable, and if buffered data had not been written to the
file yet. The fclose() function will perform a close() on the file descriptor that is associated with
the stream pointed to by stream.

After the call to fclose(), any use of stream causes undefined behaviour.

RETURN VALUE
Upon successful completion, fclose() returns 0. Otherwise, it returns EOF and sets errno to
indicate the error.

ERRORS
The fclose() function will fail if:

[EAGAIN] The O_NONBLOCK flag is set for the file descriptor underlying stream and the
process would be delayed in the write operation.

[EBADF] The file descriptor underlying stream is not valid.

EX [EFBIG] An attempt was made to write a file that exceeds the maximum file size or the
process’ file size limit.

EX [EFBIG] The file is a regular file and an attempt was made to write at or beyond the
offset maximum associated with the corresponding stream.

[EINTR] The fclose() function was interrupted by a signal.

[EIO] The process is a member of a background process group attempting to write
to its controlling terminal, TOSTOP is set, the process is neither ignoring nor
blocking SIGTTOU and the process group of the process is orphaned. This
error may also be returned under implementation-dependent conditions.

[ENOSPC] There was no free space remaining on the device containing the file.

[EPIPE] An attempt is made to write to a pipe or FIFO that is not open for reading by
any process. A SIGPIPE signal will also be sent to the thread.

The fclose() function may fail if:

EX [ENXIO] A request was made of a non-existent device, or the request was outside the
capabilities of the device.

EXAMPLES
None.

APPLICATION USAGE
None.

System Interfaces and Headers, Issue 5: Volume 1 209

fclose() System Interfaces

FUTURE DIRECTIONS
None.

SEE ALSO
close(), fopen(), getrlimit(), ulimit(), <stdio.h>.

CHANGE HISTORY
First released in Issue 1.

Derived from Issue 1 of the SVID.

Issue 4
The following changes are incorporated in this issue:

• The last sentence of the first paragraph in the DESCRIPTION is changed to say close()
instead of fclose(). This was an error in Issue 3.

• The following paragraph is withdrawn from the DESCRIPTION (by POSIX as well as
X/Open) because of the possibility of causing applications to malfunction, and the
impossibility of implementing these mechanisms for pipes:

If the file is not already at EOF, and the file is one capable of seeking, the file offset of the
underlying open file description will be adjusted so that the next operation on the open
file description deals with the byte after the last one read from or written to the stream
being closed.

It is replaced with a statement that any subsequent use of stream is undefined.

• The [EFBIG] error is marked to indicate the extensions.

Issue 4, Version 2
A cross-reference to getrlimit() is added.

Issue 5
Large File Summit extensions added.

210 CAE Specification (1997)

System Interfaces fcntl()

NAME
fcntl — file control

SYNOPSIS
OH #include <sys/types.h>

#include <unistd.h>
#include <fcntl.h>

int fcntl(int fildes , int cmd, . . .);

DESCRIPTION
The fcntl() function provides for control over open files. The fildes argument is a file descriptor.

The available values for cmd are defined in the header <fcntl.h>, which include:

F_DUPFD Return a new file descriptor which is the lowest numbered available (that is,
not already open) file descriptor greater than or equal to the third argument,
arg , taken as an integer of type int. The new file descriptor refers to the same
open file description as the original file descriptor, and shares any locks. The
FD_CLOEXEC flag associated with the new file descriptor is cleared to keep
the file open across calls to one of the exec functions.

F_GETFD Get the file descriptor flags defined in <fcntl.h> that are associated with the
file descriptor fildes . File descriptor flags are associated with a single file
descriptor and do not affect other file descriptors that refer to the same file.

F_SETFD Set the file descriptor flags defined in <fcntl.h>, that are associated with fildes ,
to the third argument, arg , taken as type int. If the FD_CLOEXEC flag in the
third argument is 0, the file will remain open across the exec functions;
otherwise the file will be closed upon successful execution of one of the exec
functions.

F_GETFL Get the file status flags and file access modes, defined in <fcntl.h>, for the file
description associated with fildes . The file access modes can be extracted from
the return value using the mask O_ACCMODE, which is defined in <fcntl.h>.
File status flags and file access modes are associated with the file description
and do not affect other file descriptors that refer to the same file with different
open file descriptions.

F_SETFL Set the file status flags, defined in <fcntl.h>, for the file description associated
with fildes from the corresponding bits in the third argument, arg , taken as
type int. Bits corresponding to the file access mode and the oflag values that
are set in arg are ignored. If any bits in arg other than those mentioned here are
changed by the application, the result is unspecified.

The following values for cmd are available for advisory record locking. Record locking is
supported for regular files, and may be supported for other files.

F_GETLK Get the first lock which blocks the lock description pointed to by the third
argument, arg , taken as a pointer to type struct flock, defined in <fcntl.h>.
The information retrieved overwrites the information passed to fcntl() in the
structure flock. If no lock is found that would prevent this lock from being
created, then the structure will be left unchanged except for the lock type
which will be set to F_UNLCK.

System Interfaces and Headers, Issue 5: Volume 1 211

fcntl() System Interfaces

F_SETLK Set or clear a file segment lock according to the lock description pointed to by
the third argument, arg , taken as a pointer to type struct flock, defined in
<fcntl.h>. F_SETLK is used to establish shared (or read) locks (F_RDLCK) or
exclusive (or write) locks (F_WRLCK), as well as to remove either type of lock
(F_UNLCK). F_RDLCK, F_WRLCK and F_UNLCK are defined in <fcntl.h>.
If a shared or exclusive lock cannot be set, fcntl() will return immediately with
a return value of −1.

F_SETLKW This command is the same as F_SETLK except that if a shared or exclusive
lock is blocked by other locks, the thread will wait until the request can be
satisfied. If a signal that is to be caught is received while fcntl() is waiting for
a region, fcntl() will be interrupted. Upon return from the signal handler,
fcntl() will return −1 with errno set to [EINTR], and the lock operation will not
be done.

Additional implementation-dependent values for cmd may be defined in <fcntl.h>. Their names
will start with F_.

When a shared lock is set on a segment of a file, other processes will be able to set shared locks
on that segment or a portion of it. A shared lock prevents any other process from setting an
exclusive lock on any portion of the protected area. A request for a shared lock will fail if the file
descriptor was not opened with read access.

An exclusive lock will prevent any other process from setting a shared lock or an exclusive lock
on any portion of the protected area. A request for an exclusive lock will fail if the file descriptor
was not opened with write access.

The structure flock describes the type (l_type), starting offset (l_whence), relative offset (l_start),
size (l_len) and process ID (l_pid) of the segment of the file to be affected.

The value of l_whence is SEEK_SET, SEEK_CUR or SEEK_END, to indicate that the relative
offset l_start bytes will be measured from the start of the file, current position or end of the file,

EX respectively. The value of l_len is the number of consecutive bytes to be locked. The value of
l_len may be negative (where the definition of off_t permits negative values of l_len). The l_pid
field is only used with F_GETLK to return the process ID of the process holding a blocking lock.
After a successful F_GETLK request, that is, one in which a lock was found, the value of
l_whence will be SEEK_SET.

EX If l_len is positive, the area affected starts at l_start and ends at l_start + l_len−1. If l_len is
negative, the area affected starts at l_start + l_len and ends at l_start−1. Locks may start and
extend beyond the current end of a file, but must not be negative relative to the beginning of the
file. A lock will be set to extend to the largest possible value of the file offset for that file by
setting l_len to 0. If such a lock also has l_start set to 0 and l_whence is set to SEEK_SET, the
whole file will be locked.

There will be at most one type of lock set for each byte in the file. Before a successful return
from an F_SETLK or an F_SETLKW request when the calling process has previously existing
locks on bytes in the region specified by the request, the previous lock type for each byte in the
specified region will be replaced by the new lock type. As specified above under the
descriptions of shared locks and exclusive locks, an F_SETLK or an F_SETLKW request will
(respectively) fail or block when another process has existing locks on bytes in the specified
region and the type of any of those locks conflicts with the type specified in the request.

All locks associated with a file for a given process are removed when a file descriptor for that file
is closed by that process or the process holding that file descriptor terminates. Locks are not
inherited by a child process created using fork ().

212 CAE Specification (1997)

System Interfaces fcntl()

A potential for deadlock occurs if a process controlling a locked region is put to sleep by
attempting to lock another process’ locked region. If the system detects that sleeping until a
locked region is unlocked would cause a deadlock, fcntl() will fail with an [EDEADLK] error.

RT If _XOPEN_REALTIME is defined and has a value other than −1:

When the file descriptor fildes refers to a shared memory object, the behaviour of fcntl() is the
same as for a regular file except the effect of the following values for the argument cmd are
unspecified: F_SETFL, F_GETLK, F_SETLK, and F_SETLKW.

EX An unlock (F_UNLCK) request in which l_len is non-zero and the offset of the last byte of the
requested segment is the maximum value for an object of type off_t, when the process has an
existing lock in which l_len is 0 and which includes the last byte of the requested segment, will
be treated as a request to unlock from the start of the requested segment with an l_len equal to 0.
Otherwise an unlock (F_UNLCK) request will attempt to unlock only the requested segment.

RETURN VALUE
Upon successful completion, the value returned depends on cmd as follows:

F_DUPFD A new file descriptor.

F_GETFD Value of flags defined in <fcntl.h>. The return value will not be negative.

F_SETFD Value other than −1.

F_GETFL Value of file status flags and access modes. The return value will not be
negative.

F_SETFL Value other than −1.

F_GETLK Value other than −1.

F_SETLK Value other than −1.

F_SETLKW Value other than −1.

Otherwise, −1 is returned and errno is set to indicate the error.

ERRORS
The fcntl() function will fail if:

[EACCES] or [EAGAIN]
The cmd argument is F_SETLK; the type of lock (l_type) is a shared
(F_RDLCK) or exclusive (F_WRLCK) lock and the segment of a file to be
locked is already exclusive-locked by another process, or the type is an
exclusive lock and some portion of the segment of a file to be locked is already
shared-locked or exclusive-locked by another process.

[EBADF] The fildes argument is not a valid open file descriptor, or the argument cmd is
F_SETLK or F_SETLKW, the type of lock, l_type, is a shared lock (F_RDLCK),
and fildes is not a valid file descriptor open for reading, or the type of lock
l_type, is an exclusive lock (F_WRLCK), and fildes is not a valid file descriptor
open for writing.

[EINTR] The cmd argument is F_SETLKW and the function was interrupted by a signal.

EX [EINVAL] The cmd argument is invalid, or the cmd argument is F_DUPFD and arg is
negative or greater than or equal to {OPEN_MAX}, or the cmd argument is
F_GETLK, F_SETLK or F_SETLKW and the data pointed to by arg is not valid,
or fildes refers to a file that does not support locking.

System Interfaces and Headers, Issue 5: Volume 1 213

fcntl() System Interfaces

[EMFILE] The argument cmd is F_DUPFD and {OPEN_MAX} file descriptors are
currently open in the calling process, or no file descriptors greater than or
equal to arg are available.

[ENOLCK] The argument cmd is F_SETLK or F_SETLKW and satisfying the lock or unlock
request would result in the number of locked regions in the system exceeding
a system-imposed limit.

EX [EOVERFLOW] One of the values to be returned cannot be represented correctly.

EX [EOVERFLOW] The cmd argument is F_GETLK, F_SETLK or F_SETLKW and the smallest or, if
l_len is non-zero, the largest offset of any byte in the requested segment cannot
be represented correctly in an object of type off_t.

The fcntl() function may fail if:

[EDEADLK] The cmd argument is F_SETLKW, the lock is blocked by some lock from
another process and putting the calling process to sleep, waiting for that lock
to become free would cause a deadlock.

EXAMPLES
None.

APPLICATION USAGE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
close(), exec, open(), sigaction (), <fcntl.h>, <signal.h>, <sys/types.h>, <unistd.h>.

CHANGE HISTORY
First released in Issue 1.

Derived from Issue 1 of the SVID.

Issue 4
The following change is incorporated for alignment with the ISO POSIX-1 standard:

• In the DESCRIPTION, the meaning of a successful F_SETLK or F_SETLKW request is
clarified, after a POSIX Request for Interpretation.

Other changes are incorporated as follows:

• The <sys/types.h> and <unistd.h> headers are now marked as optional (OH); these headers
do not need to be included on XSI-conformant systems.

• In the DESCRIPTION (a) sentences describing behaviour when l_len is negative are marked
as an extension and (b) the description of locks is corrected to make it a requirement on the
application.

Issue 5
The DESCRIPTION is updated for alignment with the POSIX Realtime Extension and the POSIX
Threads Extension.

Large File Summit extensions added.

214 CAE Specification (1997)

System Interfaces fcvt()

NAME
fcvt — convert a floating-point number to a string

SYNOPSIS
EX #include <stdlib.h>

char *fcvt(double value , int ndigit , int * decpt , int * sign);

DESCRIPTION
Refer to ecvt().

CHANGE HISTORY
First released in Issue 4, Version 2.

Issue 5
Moved from X/OPEN UNIX extension to BASE.

System Interfaces and Headers, Issue 5: Volume 1 215

FD_CLR() System Interfaces

NAME
FD_CLR — macros for synchronous I/O multiplexing

SYNOPSIS
EX #include <sys/time.h>

FD_CLR(int fd , fd_set * fdset);
FD_ISSET(int fd , fd_set * fdset);
FD_SET(int fd , fd_set * fdset);
FD_ZERO(fd_set * fdset);

DESCRIPTION
Refer to select().

SEE ALSO
<sys/time.h>.

CHANGE HISTORY
First released in Issue 4, Version 2.

Issue 5
Moved from X/OPEN UNIX extension to BASE.

216 CAE Specification (1997)

System Interfaces fdatasync()

NAME
fdatasync — synchronise the data of a file (REALTIME)

SYNOPSIS
RT #include <unistd.h>

int fdatasync(int fildes);

DESCRIPTION
The fdatasync () function forces all currently queued I/O operations associated with the file
indicated by file descriptor fildes to the synchronised I/O completion state.

The functionality is as described for fsync() (with the symbol _XOPEN_REALTIME defined),
with the exception that all I/O operations are completed as defined for synchronised I/O data
integrity completion.

RETURN VALUE
If successful, the fdatasync () function returns the value 0. Otherwise, the function returns the
value −1 and sets errno to indicate the error. If the fdatasync () function fails, outstanding I/O
operations are not guaranteed to have been completed.

ERRORS
The fdatasync () function will fail if:

[EBADF] The fildes argument is not a valid file descriptor open for writing.

[EINVAL] This implementation does not support synchronised I/O for this file.

[ENOSYS] The function fdatasync () is not supported by this implementation.

In the event that any of the queued I/O operations fail, fdatasync () returns the error conditions
defined for read() and write().

EXAMPLES
None.

APPLICATION USAGE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
aio_fsync (), fcntl(), fsync(), open(), read(), write().

CHANGE HISTORY
First released in Issue 5.

Included for alignment with the POSIX Realtime Extension.

System Interfaces and Headers, Issue 5: Volume 1 217

fdetach() System Interfaces

NAME
fdetach — detach a name from a STREAMS-based file descriptor

SYNOPSIS
EX #include <stropts.h>

int fdetach(const char * path);

DESCRIPTION
The fdetach () function detaches a STREAMS-based file from the file to which it was attached by a
previous call to fattach (). The path argument points to the pathname of the attached STREAMS
file. The process must have appropriate privileges or be the owner of the file. A successful call
to fdetach () causes all pathnames that named the attached STREAMS file to again name the file
to which the STREAMS file was attached. All subsequent operations on path will operate on the
underlying file and not on the STREAMS file.

All open file descriptions established while the STREAMS file was attached to the file referenced
by path, will still refer to the STREAMS file after the fdetach () has taken effect.

If there are no open file descriptors or other references to the STREAMS file, then a successful
call to fdetach () has the same effect as performing the last close() on the attached file.

RETURN VALUE
Upon successful completion, fdetach () returns 0. Otherwise, it returns −1 and sets errno to
indicate the error.

ERRORS
The fdetach () function will fail if:

[EACCES] Search permission is denied on a component of the path prefix.

[EPERM] The effective user ID is not the owner of path and the process does not have
appropriate privileges.

[ENOTDIR] A component of the path prefix is not a directory.

[ENOENT] A component of path does not name an existing file or path is an empty string.

[EINVAL] The path argument names a file that is not currently attached.

[ENAMETOOLONG]
The size of a pathname exceeds {PATH_MAX}, or a pathname component is
longer than {NAME_MAX}.

[ELOOP] Too many symbolic links were encountered in resolving path.

The fdetach () function may fail if:

[ENAMETOOLONG]
Pathname resolution of a symbolic link produced an intermediate result
whose length exceeds {PATH_MAX}.

EXAMPLES
None.

APPLICATION USAGE
None.

FUTURE DIRECTIONS
None.

218 CAE Specification (1997)

System Interfaces fdetach()

SEE ALSO
fattach (), <stropts.h>.

CHANGE HISTORY
First released in Issue 4, Version 2.

Issue 5
Moved from X/OPEN UNIX extension to BASE.

System Interfaces and Headers, Issue 5: Volume 1 219

fdopen() System Interfaces

NAME
fdopen — associate a stream with a file descriptor

SYNOPSIS
#include <stdio.h>

FILE *fdopen(int fildes , const char * mode);

DESCRIPTION
The fdopen() function associates a stream with a file descriptor.

The mode argument is a character string having one of the following values:

EX ror rb !Open a file for reading.

EX wor wb !Open a file for writing.

EX aor ab !Open a file for writing at end of file.

EX r+or rb+ or r+b !Open a file for update (reading and writing).

EX w+or wb+ or w+b !Open a file for update (reading and writing).

EX a+or ab+ or a+b !Open a file for update (reading and writing) at end of file.

The meaning of these flags is exactly as specified in fopen(), except that modes beginning with w
do not cause truncation of the file.

Additional values for the mode argument may be supported by an implementation.

The mode of the stream must be allowed by the file access mode of the open file. The file
position indicator associated with the new stream is set to the position indicated by the file offset
associated with the file descriptor.

EX The error and end-of-file indicators for the stream are cleared. The fdopen() function may cause
the st_atime field of the underlying file to be marked for update.

RT If fildes refers to a shared memory object, the result of the fdopen() function is unspecified.

EX The fdopen() function will preserve the offset maximum previously set for the open file
description corresponding to fildes .

RETURN VALUE
Upon successful completion, fdopen() returns a pointer to a stream. Otherwise, a null pointer is
returned and errno is set to indicate the error.

ERRORS
The fdopen() function may fail if:

EX [EBADF] The fildes argument is not a valid file descriptor.

[EINVAL] The mode argument is not a valid mode.

[EMFILE] {FOPEN_MAX} streams are currently open in the calling process.

[EMFILE] {STREAM_MAX} streams are currently open in the calling process.

[ENOMEM] Insufficient space to allocate a buffer.

EXAMPLES
None.

APPLICATION USAGE
File descriptors are obtained from calls like open(), dup(), creat() or pipe(), which open files but
do not return streams.

220 CAE Specification (1997)

System Interfaces fdopen()

FUTURE DIRECTIONS
None.

SEE ALSO
fclose(), fopen(), open(), <stdio.h>, Section 2.4.1 on page 30.

CHANGE HISTORY
First released in Issue 1.

Derived from Issue 1 of the SVID.

Issue 4
The following change is incorporated for alignment with the ISO POSIX-1 standard:

• The type of argument mode is changed from char * to const char *.

Other changes are incorporated as follows:

• In the DESCRIPTION, the use and settings of the mode argument are changed to include
binary streams and are marked as extensions.

• All errors identified in the ERRORS section are marked as extensions, and the [EMFILE] error
is added.

• The APPLICATION USAGE section is added.

Issue 5
The DESCRIPTION is updated for alignment with the POSIX Realtime Extension.

Large File Summit extensions added.

System Interfaces and Headers, Issue 5: Volume 1 221

feof() System Interfaces

NAME
feof — test end-of-file indicator on a stream

SYNOPSIS
#include <stdio.h>

int feof(FILE * stream);

DESCRIPTION
The feof() function tests the end-of-file indicator for the stream pointed to by stream.

RETURN VALUE
The feof() function returns non-zero if and only if the end-of-file indicator is set for stream.

ERRORS
No errors are defined.

EXAMPLES
None.

APPLICATION USAGE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
clearerr(), ferror(), fopen(), <stdio.h>.

CHANGE HISTORY
First released in Issue 1.

Derived from Issue 1 of the SVID.

Issue 4
The following change is incorporated in this issue:

• The ERRORS section is rewritten, such that no error return values are now defined for this
interface.

222 CAE Specification (1997)

System Interfaces ferror()

NAME
ferror — test error indicator on a stream

SYNOPSIS
#include <stdio.h>

int ferror(FILE * stream);

DESCRIPTION
The ferror() function tests the error indicator for the stream pointed to by stream.

RETURN VALUE
The ferror() function returns non-zero if and only if the error indicator is set for stream.

ERRORS
No errors are defined.

EXAMPLES
None.

APPLICATION USAGE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
clearerr(), feof(), fopen(), <stdio.h>.

CHANGE HISTORY
First released in Issue 1.

Derived from Issue 1 of the SVID.

Issue 4
The following change is incorporated in this issue:

• The ERRORS section is rewritten, such that no error return values are now defined for this
interface.

System Interfaces and Headers, Issue 5: Volume 1 223

fflush() System Interfaces

NAME
fflush — flush a stream

SYNOPSIS
#include <stdio.h>

int fflush(FILE * stream);

DESCRIPTION
If stream points to an output stream or an update stream in which the most recent operation was
not input, fflush() causes any unwritten data for that stream to be written to the file, and the
st_ctime and st_mtime fields of the underlying file are marked for update.

If stream is a null pointer, fflush() performs this flushing action on all streams for which the
behaviour is defined above.

RETURN VALUE
Upon successful completion, fflush() returns 0. Otherwise, it returns EOF and sets errno to
indicate the error.

ERRORS
The fflush() function will fail if:

[EAGAIN] The O_NONBLOCK flag is set for the file descriptor underlying stream and the
process would be delayed in the write operation.

[EBADF] The file descriptor underlying stream is not valid.

EX [EFBIG] An attempt was made to write a file that exceeds the maximum file size or the
process’ file size limit.

EX [EFBIG] The file is a regular file and an attempt was made to write at or beyond the
offset maximum associated with the corresponding stream.

[EINTR] The fflush() function was interrupted by a signal.

[EIO] The process is a member of a background process group attempting to write
to its controlling terminal, TOSTOP is set, the process is neither ignoring nor
blocking SIGTTOU and the process group of the process is orphaned. This
error may also be returned under implementation-dependent conditions.

[ENOSPC] There was no free space remaining on the device containing the file.

[EPIPE] An attempt is made to write to a pipe or FIFO that is not open for reading by
any process. A SIGPIPE signal will also be sent to the thread.

The fflush() function may fail if:

EX [ENXIO] A request was made of a non-existent device, or the request was outside the
capabilities of the device.

EXAMPLES
None.

APPLICATION USAGE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
getrlimit(), ulimit(), <stdio.h>.

224 CAE Specification (1997)

System Interfaces fflush()

CHANGE HISTORY
First released in Issue 1.

Derived from Issue 1 of the SVID.

Issue 4
The following change is incorporated for alignment with the ISO C standard:

• The DESCRIPTION is changed to describe the behaviour of fflush() if stream is a null pointer.

The following changes are incorporated for alignment with the ISO POSIX-1 standard:

• The following two paragraphs are withdrawn from the DESCRIPTION (by POSIX as well as
X/Open) because of the possibility of causing applications to malfunction, and the
impossibility of implementing these mechanisms for pipes:

If the stream is open for reading, any unread data buffered in the stream is discarded.

For a stream open for reading, if the file is not already at EOF, and the file is one capable
of seeking, the file offset of the underlying open file description is adjusted so that the
next operation on the open file description deals with the byte after the last one read
from, or written to, the stream being flushed.

• The [EFBIG] error is marked to indicate the extensions.

Issue 5
Large File Summit extensions added.

System Interfaces and Headers, Issue 5: Volume 1 225

ffs() System Interfaces

NAME
ffs — find first set bit

SYNOPSIS
EX #include <strings.h>

int ffs(int i);

DESCRIPTION
The ffs() function finds the first bit set (beginning with the least significant bit) and returns the
index of that bit. Bits are numbered starting at one (the least significant bit).

RETURN VALUE
The ffs() function returns the index of the first bit set. If i is 0, then ffs() returns 0.

ERRORS
No errors are defined.

EXAMPLES
None.

APPLICATION USAGE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
<strings.h>.

CHANGE HISTORY
First released in Issue 4, Version 2.

Issue 5
Moved from X/OPEN UNIX extension to BASE.

226 CAE Specification (1997)

System Interfaces fgetc()

NAME
fgetc — get a byte from a stream

SYNOPSIS
#include <stdio.h>

int fgetc(FILE * stream);

DESCRIPTION
The fgetc() function obtains the next byte (if present) as an unsigned char converted to an int,
from the input stream pointed to by stream, and advances the associated file position indicator
for the stream (if defined).

The fgetc() function may mark the st_atime field of the file associated with stream for update. The
st_atime field will be marked for update by the first successful execution of fgetc(), fgets(),
fgetwc(), fgetws(), fread(), fscanf(), getc(), getchar(), gets() or scanf() using stream that returns
data not supplied by a prior call to ungetc() or ungetwc().

RETURN VALUE
Upon successful completion, fgetc() returns the next byte from the input stream pointed to by
stream. If the stream is at end-of-file, the end-of-file indicator for the stream is set and fgetc()
returns EOF. If a read error occurs, the error indicator for the stream is set, fgetc() returns EOF
and sets errno to indicate the error.

ERRORS
The fgetc() function will fail if data needs to be read and:

[EAGAIN] The O_NONBLOCK flag is set for the file descriptor underlying stream and the
process would be delayed in the fgetc() operation.

[EBADF] The file descriptor underlying stream is not a valid file descriptor open for
reading.

[EINTR] The read operation was terminated due to the receipt of a signal, and no data
was transferred.

EX [EIO] A physical I/O error has occurred, or the process is in a background process
group attempting to read from its controlling terminal, and either the process
is ignoring or blocking the SIGTTIN signal or the process group is orphaned.
This error may also be generated for implementation-dependent reasons.

EX [EOVERFLOW] The file is a regular file and an attempt was made to read at or beyond the
offset maximum associated with the corresponding stream.

The fgetc() function may fail if:

EX [ENOMEM] Insufficient storage space is available.

EX [ENXIO] A request was made of a non-existent device, or the request was outside the
capabilities of the device.

EXAMPLES
None.

APPLICATION USAGE
If the integer value returned by fgetc() is stored into a variable of type char and then compared
against the integer constant EOF, the comparison may never succeed, because sign-extension of
a variable of type char on widening to integer is implementation-dependent.

The ferror() or feof() functions must be used to distinguish between an error condition and an
end-of-file condition.

System Interfaces and Headers, Issue 5: Volume 1 227

fgetc() System Interfaces

FUTURE DIRECTIONS
None.

SEE ALSO
feof(), ferror(), fopen(), getchar(), getc(), <stdio.h>.

CHANGE HISTORY
First released in Issue 1.

Derived from Issue 1 of the SVID.

Issue 4
The following changes are incorporated in this issue:

• In the DESCRIPTION:

— The text is changed to make it clear that the function returns a byte value.

— The list of functions that may cause the st_atime field to be updated is revised.

• In the ERRORS section, text is added to indicate that error returns will only be generated
when data needs to be read into the stream buffer.

• Also in the ERRORS section, in previous issues generation of the [EIO] error depended on
whether or not an implementation supported Job Control. This functionality is now defined
as mandatory.

• The [ENXIO] and [ENOMEM] errors are marked as extensions.

• In the APPLICATION USAGE section, text is added to indicate how an application can
distinguish between an error condition and an end-of-file condition.

• The description of [EINTR] is amended.

Issue 4, Version 2
In the ERRORS section, the description of [EIO] is updated to include the case where a physical
I/O error occurs.

Issue 5
Large File Summit extensions added.

228 CAE Specification (1997)

System Interfaces fgetpos()

NAME
fgetpos — get current file position information

SYNOPSIS
#include <stdio.h>

int fgetpos(FILE * stream , fpos_t * pos);

DESCRIPTION
The fgetpos() function stores the current value of the file position indicator for the stream
pointed to by stream in the object pointed to by pos . The value stored contains unspecified
information usable by fsetpos() for repositioning the stream to its position at the time of the call
to fgetpos().

RETURN VALUE
Upon successful completion, fgetpos() returns 0. Otherwise, it returns a non-zero value and sets
errno to indicate the error.

ERRORS
EX The fgetpos() function will fail if:

[EOVERFLOW] The current value of the file position cannot be represented correctly in an
object of type fpos_t.

The fgetpos() function may fail if:

EX [EBADF] The file descriptor underlying stream is not valid.

[ESPIPE] The file descriptor underlying stream is associated with a pipe or FIFO.

EXAMPLES
None.

APPLICATION USAGE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
fopen(), ftell (), rewind(), ungetc(), <stdio.h>.

CHANGE HISTORY
First released in Issue 4.

Derived from the ISO C standard.

Issue 5
Large File Summit extensions added.

System Interfaces and Headers, Issue 5: Volume 1 229

fgets() System Interfaces

NAME
fgets — get a string from a stream

SYNOPSIS
#include <stdio.h>

char *fgets(char * s, int n, FILE * stream);

DESCRIPTION
The fgets() function reads bytes from stream into the array pointed to by s, until n−1 bytes are
read, or a newline character is read and transferred to s, or an end-of-file condition is
encountered. The string is then terminated with a null byte.

The fgets() function may mark the st_atime field of the file associated with stream for update. The
st_atime field will be marked for update by the first successful execution of fgetc(), fgets(),
fgetwc(), fgetws(), fread(), fscanf(), getc(), getchar(), gets() or scanf() using stream that returns
data not supplied by a prior call to ungetc() or ungetwc().

RETURN VALUE
Upon successful completion, fgets() returns s. If the stream is at end-of-file, the end-of-file
indicator for the stream is set and fgets() returns a null pointer. If a read error occurs, the error
indicator for the stream is set, fgets() returns a null pointer and sets errno to indicate the error.

ERRORS
Refer to fgetc().

EXAMPLES
None.

APPLICATION USAGE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
fopen(), fread(), gets(), <stdio.h>.

CHANGE HISTORY
First released in Issue 1.

Derived from Issue 1 of the SVID.

Issue 4
The following change is incorporated in this issue:

• In the DESCRIPTION (a) the text is changed to make it clear that the function reads bytes
rather than (possibly multi-byte) characters, and (b) the list of functions that may cause the
st_atime field to be updated is revised.

230 CAE Specification (1997)

System Interfaces fgetwc()

NAME
fgetwc — get a wide-character code from a stream

SYNOPSIS
#include <stdio.h>
#include <wchar.h>

wint_t fgetwc(FILE * stream);

DESCRIPTION
The fgetwc() function obtains the next character (if present) from the input stream pointed to by
stream, converts that to the corresponding wide-character code and advances the associated file
position indicator for the stream (if defined).

If an error occurs, the resulting value of the file position indicator for the stream is
indeterminate.

The fgetwc() function may mark the st_atime field of the file associated with stream for update.
The st_atime field will be marked for update by the first successful execution of fgetc(), fgets(),
fgetwc(), fgetws(), fread(), fscanf(), getc(), getchar(), gets() or scanf() using stream that returns
data not supplied by a prior call to ungetc() or ungetwc().

RETURN VALUE
Upon successful completion the fgetwc() function returns the wide-character code of the
character read from the input stream pointed to by stream converted to a type wint_t. If the
stream is at end-of-file, the end-of-file indicator for the stream is set and fgetwc() returns WEOF.
If a read error occurs, the error indicator for the stream is set, fgetwc() returns WEOF and sets
errno to indicate the error.

ERRORS
The fgetwc() function will fail if data needs to be read and:

[EAGAIN] The O_NONBLOCK flag is set for the file descriptor underlying stream and the
process would be delayed in the fgetwc() operation.

[EBADF] The file descriptor underlying stream is not a valid file descriptor open for
reading.

[EINTR] The read operation was terminated due to the receipt of a signal, and no data
was transferred.

EX [EIO] A physical I/O error has occurred, or the process is in a background process
group attempting to read from its controlling terminal, and either the process
is ignoring or blocking the SIGTTIN signal or the process group is orphaned.
This error may also be generated for implementation-dependent reasons.

EX [EOVERFLOW] The file is a regular file and an attempt was made to read at or beyond the
offset maximum associated with the corresponding stream.

The fgetwc() function may fail if:

[ENOMEM] Insufficient storage space is available.

[ENXIO] A request was made of a non-existent device, or the request was outside the
capabilities of the device.

[EILSEQ] The data obtained from the input stream does not form a valid character.

EXAMPLES
None.

System Interfaces and Headers, Issue 5: Volume 1 231

fgetwc() System Interfaces

APPLICATION USAGE
The ferror() or feof() functions must be used to distinguish between an error condition and an
end-of-file condition.

FUTURE DIRECTIONS
None.

SEE ALSO
feof(), ferror(), fopen(), <stdio.h>, <wchar.h>.

CHANGE HISTORY
First released in Issue 4.

Derived from the MSE working draft.

Issue 4, Version 2
In the ERRORS section, the description of [EIO] is updated to include the case where a physical
I/O error occurs.

Issue 5
The Optional Header (OH) marking is removed from <stdio.h>.

Large File Summit extensions added.

232 CAE Specification (1997)

System Interfaces fgetws()

NAME
fgetws — get a wide-character string from a stream

SYNOPSIS
#include <stdio.h>
#include <wchar.h>

wchar_t *fgetws(wchar_t * ws, int n, FILE * stream);

DESCRIPTION
The fgetws() function reads characters from the stream, converts these to the corresponding
wide-character codes, places them in the wchar_t array pointed to by ws, until n−1 characters are
read, or a newline character is read, converted and transferred to ws, or an end-of-file condition
is encountered. The wide-character string, ws, is then terminated with a null wide-character
code.

If an error occurs, the resulting value of the file position indicator for the stream is
indeterminate.

The fgetws() function may mark the st_atime field of the file associated with stream for update.
The st_atime field will be marked for update by the first successful execution of fgetc(), fgets(),
fgetwc(), fgetws(), fread(), fscanf(), getc(), getchar(), gets() or scanf() using stream that returns
data not supplied by a prior call to ungetc() or ungetwc().

RETURN VALUE
Upon successful completion, fgetws() returns ws. If the stream is at end-of-file, the end-of-file
indicator for the stream is set and fgetws() returns a null pointer. If a read error occurs, the error
indicator for the stream is set, fgetws() returns a null pointer and sets errno to indicate the error.

ERRORS
Refer to fgetwc().

EXAMPLES
None.

APPLICATION USAGE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
fopen(), fread(), <stdio.h>, <wchar.h>.

CHANGE HISTORY
First released in Issue 4.

Derived from the MSE working draft.

Issue 5
The Optional Header (OH) marking is removed from <stdio.h>.

System Interfaces and Headers, Issue 5: Volume 1 233

fileno() System Interfaces

NAME
fileno — map a stream pointer to a file descriptor

SYNOPSIS
#include <stdio.h>

int fileno(FILE * stream);

DESCRIPTION
The fileno() function returns the integer file descriptor associated with the stream pointed to by
stream.

RETURN VALUE
Upon successful completion, fileno() returns the integer value of the file descriptor associated
with stream. Otherwise, the value −1 is returned and errno is set to indicate the error.

ERRORS
The fileno() function may fail if:

EX [EBADF] The stream argument is not a valid stream.

EXAMPLES
None.

APPLICATION USAGE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
fdopen(), fopen(), stdin , <stdio.h>, Section 2.4.1 on page 30.

CHANGE HISTORY
First released in Issue 1.

Derived from Issue 1 of the SVID.

Issue 4
The following change is incorporated in this issue:

• The [EBADF] error is marked as an extension.

234 CAE Specification (1997)

System Interfaces flockfile()

NAME
flockfile, ftrylockfile, funlockfile — stdio locking functions

SYNOPSIS
#include <stdio.h>

void flockfile(FILE * file);
int ftrylockfile(FILE * file);
void funlockfile(FILE * file);

DESCRIPTION
The flockfile(), ftrylockfile() and funlockfile() functions provide for explicit application-level
locking of stdio (FILE*) objects. These functions can be used by a thread to delineate a sequence
of I/O statements that are to be executed as a unit.

The flockfile() function is used by a thread to acquire ownership of a (FILE*) object.

The ftrylockfile() function is used by a thread to acquire ownership of a (FILE*) object if the
object is available; ftrylockfile() is a non-blocking version of flockfile().

The funlockfile() function is used to relinquish the ownership granted to the thread. The
behaviour is undefined if a thread other than the current owner calls the funlockfile() function.

Logically, there is a lock count associated with each (FILE*) object. This count is implicitly
initialised to zero when the (FILE*) object is created. The (FILE*) object is unlocked when the
count is zero. When the count is positive, a single thread owns the (FILE*) object. When the
flockfile() function is called, if the count is zero or if the count is positive and the caller owns the
(FILE*) object, the count is incremented. Otherwise, the calling thread is suspended, waiting for
the count to return to zero. Each call to funlockfile() decrements the count. This allows matching
calls to flockfile() (or successful calls to ftrylockfile()) and funlockfile() to be nested.

All functions that reference (FILE*) objects behave as if they use flockfile() and funlockfile()
internally to obtain ownership of these (FILE*) objects.

RETURN VALUE
None for flockfile() and funlockfile(). The function ftrylock () returns zero for success and non-
zero to indicate that the lock cannot be acquired.

ERRORS
No errors are defined.

EXAMPLES
None.

APPLICATION USAGE
Realtime applications may encounter priority inversion when using FILE locks. The problem
occurs when a high priority thread ‘‘locks’’ a FILE that is about to be ‘‘unlocked’’ by a low
priority thread, but the low priority thread is preempted by a medium priority thread. This
scenario leads to priority inversion; a high priority thread is blocked by lower priority threads
for an unlimited period of time. During system design, realtime programmers must take into
account the possibility of this kind of priority inversion. They can deal with it in a number of
ways, such as by having critical sections that are guarded by FILE locks execute at a high
priority, so that a thread cannot be preempted while executing in its critical section.

FUTURE DIRECTIONS
None.

SEE ALSO
getc_unlocked (), getchar_unlocked (), putc_unlocked (), putchar_unlocked (), <stdio.h>.

System Interfaces and Headers, Issue 5: Volume 1 235

flockfile() System Interfaces

CHANGE HISTORY
First released in Issue 5.

Included for alignment with the POSIX Threads Extension.

236 CAE Specification (1997)

System Interfaces floor()

NAME
floor — floor function

SYNOPSIS
#include <math.h>

double floor(double x);

DESCRIPTION
The floor() function computes the largest integral value not greater than x .

An application wishing to check for error situations should set errno to 0 before calling floor(). If
errno is non-zero on return, or the return value is NaN, an error has occurred.

RETURN VALUE
Upon successful completion, floor() returns the largest integral value not greater than x ,
expressed as a double.

EX If x is NaN, NaN is returned and errno may be set to [EDOM].

If the correct value would cause overflow, −HUGE_VAL is returned and errno is set to
[ERANGE].

EX If x is ±Inf or ±0, the value of x is returned.

ERRORS
The floor() function will fail if:

[ERANGE] The result would cause an overflow.

The floor() function may fail if:

EX [EDOM] The value of x is NaN.

EX No other errors will occur.

EXAMPLES
None.

APPLICATION USAGE
The integral value returned by floor() as a double might not be expressible as an int or long int.
The return value should be tested before assigning it to an integer type to avoid the undefined
results of an integer overflow.

The floor() function can only overflow when the floating point representation has
DBL_MANT_DIG > DBL_MAX_EXP.

FUTURE DIRECTIONS
None.

SEE ALSO
ceil(), isnan(), <math.h>.

CHANGE HISTORY
First released in Issue 1.

Derived from Issue 1 of the SVID.

Issue 4
The following changes are incorporated in this issue:

• Removed references to matherr().

System Interfaces and Headers, Issue 5: Volume 1 237

floor() System Interfaces

• The RETURN VALUE and ERRORS sections are substantially rewritten for alignment with
the ISO C standard and to rationalise handling in the mathematics functions.

• The word long has been replaced with the words long int in the APPLICATION USAGE
section.

• The return value specified for [EDOM] is marked as an extension.

Issue 5
The DESCRIPTION is updated to indicate how an application should check for an error. This
text was previously published in the APPLICATION USAGE section.

238 CAE Specification (1997)

System Interfaces fmod()

NAME
fmod — floating-point remainder value function

SYNOPSIS
#include <math.h>

double fmod(double x, double y);

DESCRIPTION
The fmod() function returns the floating-point remainder of the division of x by y .

An application wishing to check for error situations should set errno to 0 before calling fmod(). If
errno is non-zero on return, or the return value is NaN, an error has occurred.

RETURN VALUE
The fmod() function returns the value x — i * y , for some integer i such that, if y is non-zero, the
result has the same sign as x and magnitude less than the magnitude of y .

EX If x or y is NaN, NaN is returned and errno may be set to [EDOM].

EX If y is 0, NaN is returned and errno is set to [EDOM], or 0 is returned and errno may be set to
[EDOM].

EX If x is ±Inf, either 0 is returned and errno is set to [EDOM], or NaN is returned and errno may be
set to [EDOM].

If y is non-zero, fmod(±0,y) returns the value of x . If x is not ±Inf, fmod(x,±Inf) returns the value
of x .

If the result underflows, 0 is returned and errno may be set to [ERANGE].

ERRORS
The fmod() function may fail if:

EX [EDOM] One or both of the arguments is NaN, or y is 0, or x is ±Inf.

[ERANGE] The result underflows.

EX No other errors will occur.

EXAMPLES
None.

APPLICATION USAGE
Portable applications should not call fmod() with y equal to 0, because the result is
implementation-dependent. The application should verify y is non-zero before calling fmod().

FUTURE DIRECTIONS
None.

SEE ALSO
isnan(), <math.h>.

CHANGE HISTORY
First released in Issue 1.

Derived from Issue 1 of the SVID.

Issue 4
The following changes are incorporated in this issue:

• References to matherr() are removed.

System Interfaces and Headers, Issue 5: Volume 1 239

fmod() System Interfaces

• The RETURN VALUE and ERRORS sections are substantially rewritten for alignment with
the ISO C standard and to rationalise error handling in the mathematics functions.

• The return value specified for [EDOM] is marked as an extension.

Issue 5
The DESCRIPTION is updated to indicate how an application should check for an error. This
text was previously published in the APPLICATION USAGE section.

240 CAE Specification (1997)

System Interfaces fmtmsg()

NAME
fmtmsg — display a message in the specified format on standard error and/or a system console

SYNOPSIS
EX #include <fmtmsg.h>

int fmtmsg(long classification , const char * label , int severity ,
const char * text , const char * action , const char * tag);

DESCRIPTION
The fmtmsg() function can be used to display messages in a specified format instead of the
traditional printf() function.

Based on a message’s classification component, fmtmsg() writes a formatted message either to
standard error, to the console, or to both.

A formatted message consists of up to five components as defined below. The component
classification is not part of a message displayed to the user, but defines the source of the message
and directs the display of the formatted message.

classification Contains identifiers from the following groups of major classifications and
subclassifications. Any one identifier from a subclass may be used in
combination with a single identifier from a different subclass. Two or more
identifiers from the same subclass should not be used together, with the
exception of identifiers from the display subclass. (Both display subclass
identifiers may be used so that messages can be displayed to both standard
error and the system console).

Major Classifications
Identifies the source of the condition. Identifiers are: MM_HARD
(hardware), MM_SOFT (software), and MM_FIRM (firmware).

Message Source Subclassifications
Identifies the type of software in which the problem is detected.
Identifiers are: MM_APPL (application), MM_UTIL (utility), and
MM_OPSYS (operating system).

Display Subclassifications
Indicates where the message is to be displayed. Identifiers are:
MM_PRINT to display the message on the standard error stream,
MM_CONSOLE to display the message on the system console. One or
both identifiers may be used.

Status Subclassifications
Indicates whether the application will recover from the condition.
Identifiers are: MM_RECOVER (recoverable) and MM_NRECOV (non-
recoverable).

An additional identifier, MM_NULLMC, indicates that no classification
component is supplied for the message.

label Identifies the source of the message. The format is two fields separated by a
colon. The first field is up to 10 bytes, the second is up to 14 bytes.

severity Indicates the seriousness of the condition. Identifiers for the levels of severity
are:

System Interfaces and Headers, Issue 5: Volume 1 241

fmtmsg() System Interfaces

MM_HALT Indicates that the application has encountered a severe fault
and is halting. Produces the string "HALT".

MM_ERROR Indicates that the application has detected a fault. Produces
the string "ERROR".

MM_WARNING Indicates a condition that is out of the ordinary, that might
be a problem, and should be watched. Produces the string
"WARNING".

MM_INFO Provides information about a condition that is not in error.
Produces the string "INFO".

MM_NOSEV Indicates that no severity level is supplied for the message.

text Describes the error condition that produced the message. The character string
is not limited to a specific size. If the character string is empty, then the text
produced is unspecified.

action Describes the first step to be taken in the error-recovery process. The fmtmsg()
function precedes the action string with the prefix: "TO FIX:". The action string
is not limited to a specific size.

tag An identifier that references on-line documentation for the message.
Suggested usage is that tag includes the label and a unique identifying number.
A sample tag is "XSI:cat:146".

The MSGVERB environment variable (for message verbosity) tells fmtmsg() which message
components it is to select when writing messages to standard error. The value of MSGVERB is a
colon-separated list of optional keywords. Valid keywords are: label , severity , text ,
action , and tag . If MSGVERB contains a keyword for a component and the component’s
value is not the component’s null value, fmtmsg() includes that component in the message when
writing the message to standard error. If MSGVERB does not include a keyword for a message
component, that component is not included in the display of the message. The keywords may
appear in any order. If MSGVERB is not defined, if its value is the null string, if its value is not of
the correct format, or if it contains keywords other than the valid ones listed above, fmtmsg()
selects all components.

MSGVERB affects only which components are selected for display to standard error. All
message components are included in console messages.

RETURN VALUE
The fmtmsg() function returns one of the following values:

MM_OK The function succeeded.

MM_NOTOK The function failed completely.

MM_NOMSG The function was unable to generate a message on standard error, but
otherwise succeeded.

MM_NOCON The function was unable to generate a console message, but otherwise
succeeded.

ERRORS
None.

242 CAE Specification (1997)

System Interfaces fmtmsg()

EXAMPLES
Example 1:

The following example of fmtmsg():

fmtmsg(MM_PRINT, "XSI:cat", MM_ERROR, "illegal option",
"refer to cat in user’s reference manual", "XSI:cat:001")

produces a complete message in the specified message format:

XSI:cat: ERROR: illegal option
TO FIX: refer to cat in user’s reference manual XSI:cat:001

Example 2:

When the environment variable MSGVERB is set as follows:

MSGVERB=severity:text:action

and the Example 1 is used, fmtmsg() produces:

ERROR: illegal option
TO FIX: refer to cat in user’s reference manual

APPLICATION USAGE
One or more message components may be systematically omitted from messages generated by
an application by using the null value of the argument for that component.

FUTURE DIRECTIONS
None.

SEE ALSO
printf(), <fmtmsg.h>.

CHANGE HISTORY
First released in Issue 4, Version 2.

Issue 5
Moved from X/OPEN UNIX extension to BASE.

System Interfaces and Headers, Issue 5: Volume 1 243

fnmatch() System Interfaces

NAME
fnmatch — match a filename or a pathname

SYNOPSIS
#include <fnmatch.h>

int fnmatch(const char * pattern , const char * string , int flags);

DESCRIPTION
The fnmatch() function matches patterns as described in the XCU specification, Section 2.13.1,
Patterns Matching a Single Character, and Section 2.13.2, Patterns Matching Multiple
Characters. It checks the string specified by the string argument to see if it matches the pattern
specified by the pattern argument.

The flags argument modifies the interpretation of pattern and string. It is the bitwise inclusive OR
of zero or more of the flags defined in the header <fnmatch.h>. If the FNM_PATHNAME flag is
set in flags, then a slash character in string will be explicitly matched by a slash in pattern; it will
not be matched by either the asterisk or question-mark special characters, nor by a bracket
expression. If the FNM_PATHNAME flag is not set, the slash character is treated as an ordinary
character.

If FNM_NOESCAPE is not set in flags, a backslash character (\) in pattern followed by any other
character will match that second character in string. In particular, \\ will match a backslash in
string. If FNM_NOESCAPE is set, a backslash character will be treated as an ordinary character.

If FNM_PERIOD is set in flags, then a leading period in string will match a period in pattern; as
described by rule 2 in the XCU specification, Section 2.13.3, Patterns Used for Filename
Expansion where the location of ‘‘leading’’ is indicated by the value of FNM_PATHNAME:

• If FNM_PATHNAME is set, a period is ‘‘leading’’ if it is the first character in string or if it
immediately follows a slash.

• If FNM_PATHNAME is not set, a period is ‘‘leading’’ only if it is the first character of string.

If FNM_PERIOD is not set, then no special restrictions are placed on matching a period.

RETURN VALUE
If string matches the pattern specified by pattern, then fnmatch() returns 0. If there is no match,
fnmatch() returns FNM_NOMATCH, which is defined in the header <fnmatch.h>. If an error
occurs, fnmatch() returns another non-zero value.

ERRORS
No errors are defined.

EXAMPLES
None.

APPLICATION USAGE
The fnmatch() function has two major uses. It could be used by an application or utility that
needs to read a directory and apply a pattern against each entry. The find utility is an example of
this. It can also be used by the pax utility to process its pattern operands, or by applications that
need to match strings in a similar manner.

The name fnmatch() is intended to imply filename match, rather than pathname match. The
default action of this function is to match filenames, rather than pathnames, since it gives no
special significance to the slash character. With the FNM_PATHNAME flag, fnmatch() does
match pathnames, but without tilde expansion, parameter expansion, or special treatment for
period at the beginning of a filename.

244 CAE Specification (1997)

System Interfaces fnmatch()

FUTURE DIRECTIONS
None.

SEE ALSO
glob(), wordexp(), <fnmatch.h>, the XCU specification.

CHANGE HISTORY
First released in Issue 4.

Derived from the ISO POSIX-2 standard.

Issue 5
Moved from POSIX2 C-language Binding to BASE.

System Interfaces and Headers, Issue 5: Volume 1 245

fopen() System Interfaces

NAME
fopen — open a stream

SYNOPSIS
#include <stdio.h>

FILE *fopen(const char * filename , const char * mode);

DESCRIPTION
The fopen() function opens the file whose pathname is the string pointed to by filename, and
associates a stream with it.

The argument mode points to a string beginning with one of the following sequences:

r or rb Open file for reading.

w or wb Truncate to zero length or create file for writing.

a or ab Append; open or create file for writing at end-of-file.

r+ or rb+ or r+b Open file for update (reading and writing).

w+ or wb+ or w+b Truncate to zero length or create file for update.

a+ or ab+ or a+b Append; open or create file for update, writing at end-of-file.

The character b has no effect, but is allowed for ISO C standard conformance. Opening a file
with read mode (r as the first character in the mode argument) fails if the file does not exist or
cannot be read.

Opening a file with append mode (a as the first character in the mode argument) causes all
subsequent writes to the file to be forced to the then current end-of-file, regardless of intervening
calls to fseek().

When a file is opened with update mode (+ as the second or third character in the mode
argument), both input and output may be performed on the associated stream. However,
output must not be directly followed by input without an intervening call to fflush() or to a file
positioning function (fseek(), fsetpos() or rewind()), and input must not be directly followed by
output without an intervening call to a file positioning function, unless the input operation
encounters end-of-file.

When opened, a stream is fully buffered if and only if it can be determined not to refer to an
interactive device. The error and end-of-file indicators for the stream are cleared.

If mode is w, a, w+ or a+ and the file did not previously exist, upon successful completion,
fopen() function will mark for update the st_atime , st_ctime and st_mtime fields of the file and the
st_ctime and st_mtime fields of the parent directory.

If mode is w or w+ and the file did previously exist, upon successful completion, fopen() will
mark for update the st_ctime and st_mtime fields of the file. The fopen() function will allocate a
file descriptor as open() does.

EX The largest value that can be represented correctly in an object of type off_t will be established
as the offset maximum in the open file description.

RETURN VALUE
Upon successful completion, fopen() returns a pointer to the object controlling the stream.
Otherwise, a null pointer is returned, and errno is set to indicate the error.

246 CAE Specification (1997)

System Interfaces fopen()

ERRORS
The fopen() function will fail if:

[EACCES] Search permission is denied on a component of the path prefix, or the file
exists and the permissions specified by mode are denied, or the file does not
exist and write permission is denied for the parent directory of the file to be
created.

[EINTR] A signal was caught during fopen().

[EISDIR] The named file is a directory and mode requires write access.

EX [ELOOP] Too many symbolic links were encountered in resolving path.

[EMFILE] {OPEN_MAX} file descriptors are currently open in the calling process.

FIPS [ENAMETOOLONG]
The length of the filename exceeds {PATH_MAX} or a pathname component is
longer than {NAME_MAX}.

[ENFILE] The maximum allowable number of files is currently open in the system.

[ENOENT] A component of filename does not name an existing file or filename is an empty
string.

[ENOSPC] The directory or file system that would contain the new file cannot be
expanded, the file does not exist, and it was to be created.

[ENOTDIR] A component of the path prefix is not a directory.

[ENXIO] The named file is a character special or block special file, and the device
associated with this special file does not exist.

EX [EOVERFLOW] The named file is a regular file and the size of the file cannot be represented
correctly in an object of type off_t.

[EROFS] The named file resides on a read-only file system and mode requires write
access.

The fopen() function may fail if:

EX [EINVAL] The value of the mode argument is not valid.

EX [EMFILE] {FOPEN_MAX} streams are currently open in the calling process.

EX [EMFILE] {STREAM_MAX} streams are currently open in the calling process.

EX [ENAMETOOLONG]
Pathname resolution of a symbolic link produced an intermediate result
whose length exceeds {PATH_MAX}.

[ENOMEM] Insufficient storage space is available.

[ETXTBSY] The file is a pure procedure (shared text) file that is being executed and mode
requires write access.

EXAMPLES
None.

APPLICATION USAGE
None.

System Interfaces and Headers, Issue 5: Volume 1 247

fopen() System Interfaces

FUTURE DIRECTIONS
None.

SEE ALSO
fclose(), fdopen(), freopen(), <stdio.h>.

CHANGE HISTORY
First released in Issue 1.

Derived from Issue 1 of the SVID.

Issue 4
The following changes are incorporated for alignment with the ISO C standard:

• The type of arguments filename and mode are changed from char * to const char *.

• In the DESCRIPTION, (a) the use and settings of the mode argument are changed to support
binary streams and (b) setpos() is added to the list of file positioning functions.

The following change is incorporated for alignment with the FIPS requirements:

• In the ERRORS section, the condition whereby [ENAMETOOLONG] will be returned if a
pathname component is larger that {NAME_MAX} is now defined as mandatory and marked
as an extension.

Other changes are incorporated as follows:

• In the DESCRIPTION the descriptions of input and output operations on update streams are
changed to be requirements on the application.

• The [EMFILE] error is added to the ERRORS section, and all the optional errors are marked
as extensions.

Issue 4, Version 2
The ERRORS section is updated for X/OPEN UNIX conformance as follows:

• It states that [ELOOP] will be returned if too many symbolic links are encountered during
pathname resolution.

• A second [ENAMETOOLONG] condition is defined that may report excessive length of an
intermediate result of pathname resolution of a symbolic link.

Issue 5
Large File Summit extensions added.

248 CAE Specification (1997)

System Interfaces fork()

NAME
fork — create a new process

SYNOPSIS
OH #include <sys/types.h>

#include <unistd.h>

pid_t fork(void);

DESCRIPTION
The fork () function creates a new process. The new process (child process) is an exact copy of
the calling process (parent process) except as detailed below.

• The child process has a unique process ID.

• The child process ID also does not match any active process group ID.

• The child process has a different parent process ID (that is, the process ID of the parent
process).

• The child process has its own copy of the parent’s file descriptors. Each of the child’s file
descriptors refers to the same open file description with the corresponding file descriptor of
the parent.

• The child process has its own copy of the parent’s open directory streams. Each open
directory stream in the child process may share directory stream positioning with the
corresponding directory stream of the parent.

EX • The child process may have its own copy of the parent’s message catalogue descriptors.

• The child process’ values of tms_utime, tms_stime, tms_cutime and tms_cstime are set to 0.

• The time left until an alarm clock signal is reset to 0.

EX • All semadj values are cleared.

• File locks set by the parent process are not inherited by the child process.

• The set of signals pending for the child process is initialised to the empty set.

EX • Interval timers are reset in the child process.

RT • If the Semaphores option is supported, any semaphores that are open in the parent process
will also be open in the child process.

• If the Process Memory Locking option is supported, the child process does not inherit any
address space memory locks established by the parent process via calls to mlockall () or
mlock().

• Memory mappings created in the parent are retained in the child process. MAP_PRIVATE
mappings inherited from the parent will also be MAP_PRIVATE mappings in the child, and
any modifications to the data in these mappings made by the parent prior to calling fork ()
will be visible to the child. Any modifications to the data in MAP_PRIVATE mappings made
by the parent after fork () returns will be visible only to the parent. Modifications to the data
in MAP_PRIVATE mappings made by the child will be visible only to the child.

RT • If the Process Scheduling option is supported, for the SCHED_FIFO and SCHED_RR
scheduling policies, the child process inherits the policy and priority settings of the parent
process during a fork () function. For other scheduling policies, the policy and priority
settings on fork () are implementation-dependent.

System Interfaces and Headers, Issue 5: Volume 1 249

fork() System Interfaces

• If the Timers option is supported, per-process timers created by the parent are not inherited
by the child process.

• If the Message Passing option is supported, the child process has its own copy of the message
queue descriptors of the parent. Each of the message descriptors of the child refers to the
same open message queue description as the corresponding message descriptor of the
parent.

• If the Asynchronous Input and Output option is supported, no asynchronous input or
asynchronous output operations are inherited by the child process.

The inheritance of process characteristics not defined by this document is implementation-
dependent. After fork (), both the parent and the child processes are capable of executing
independently before either one terminates.

A process is created with a single thread. If a multi-threaded process calls fork (), the new
process contains a replica of the calling thread and its entire address space, possibly including
the states of mutexes and other resources. Consequently, to avoid errors, the child process may
only execute async-signal safe operations until such time as one of the exec functions is called.
Fork handlers may be established by means of the pthread_atfork () function in order to maintain
application invariants across fork () calls.

RETURN VALUE
Upon successful completion, fork () returns 0 to the child process and returns the process ID of
the child process to the parent process. Otherwise, −1 is returned to the parent process, no child
process is created, and errno is set to indicate the error.

ERRORS
The fork () function will fail if:

[EAGAIN] The system lacked the necessary resources to create another process, or the
system-imposed limit on the total number of processes under execution
system-wide or by a single user {CHILD_MAX} would be exceeded.

The fork () function may fail if:

[ENOMEM] Insufficient storage space is available.

EXAMPLES
None.

APPLICATION USAGE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
alarm(), exec, fcntl(), semop(), signal(), times(), <sys/types.h>, <unistd.h>.

CHANGE HISTORY
First released in Issue 1.

Derived from Issue 1 of the SVID.

Issue 4
The following changes are incorporated for alignment with the ISO POSIX-1 standard:

• The argument list is explicitly defined as void.

250 CAE Specification (1997)

System Interfaces fork()

• Though functionally identical to Issue 3, the DESCRIPTION has been reorganised to improve
clarity and to align more closely with the ISO POSIX-1 standard.

• The description of the [EAGAIN] error is updated to indicate that this error can also be
returned if a system lacks the resources to create another process.

Another change is incorporated as follows:

• The <sys/types.h> header is now marked as optional (OH); this header need not be included
on XSI-conformant systems.

Issue 4, Version 2
The DESCRIPTION is changed for X/OPEN UNIX conformance to identify that interval timers
are reset in the child process.

Issue 5
The DESCRIPTION is changed for alignment with the POSIX Realtime Extension and the POSIX
Threads Extension.

System Interfaces and Headers, Issue 5: Volume 1 251

fpathconf() System Interfaces

NAME
fpathconf, pathconf — get configurable pathname variables

SYNOPSIS
#include <unistd.h>

long int fpathconf(int fildes , int name);
long int pathconf(const char * path , int name);

DESCRIPTION
The fpathconf () and pathconf () functions provide a method for the application to determine the
current value of a configurable limit or option (variable) that is associated with a file or directory.

For pathconf (), the path argument points to the pathname of a file or directory.

For fpathconf (), the fildes argument is an open file descriptor.

The name argument represents the variable to be queried relative to that file or directory.
Implementations will support all of the variables listed in the following table and may support
others. The variables in the following table come from <limits.h> or <unistd.h> and the
symbolic constants, defined in <unistd.h>, are the corresponding values used for name:

Variable Value of name Notes
EX FILESIZEBITS _PC_FILESIZEBITS 3, 4

LINK_MAX _PC_LINK_MAX 1
MAX_CANON _PC_MAX_CANON 2
MAX_INPUT _PC_MAX_INPUT 2
NAME_MAX _PC_NAME_MAX 3, 4
PATH_MAX _PC_PATH_MAX 4, 5
PIPE_BUF _PC_PIPE_BUF 6
_POSIX_CHOWN_RESTRICTED _PC_CHOWN_RESTRICTED 7
_POSIX_NO_TRUNC _PC_NO_TRUNC 3, 4
_POSIX_VDISABLE _PC_VDISABLE 2
_POSIX_ASYNC_IO _PC_ASYNC_IO 8
_POSIX_PRIO_IO _PC_PRIO_IO 8
_POSIX_SYNC_IO _PC_SYNC_IO 8

Notes:

1. If path or fildes refers to a directory, the value returned applies to the directory
itself.

2. If path or fildes does not refer to a terminal file, it is unspecified whether an
implementation supports an association of the variable name with the specified
file.

3. If path or fildes refers to a directory, the value returned applies to filenames within
the directory.

4. If path or fildes does not refer to a directory, it is unspecified whether an
implementation supports an association of the variable name with the specified
file.

5. If path or fildes refers to a directory, the value returned is the maximum length of a
relative pathname when the specified directory is the working directory.

6. If path refers to a FIFO, or fildes refers to a pipe or FIFO, the value returned applies
to the referenced object. If path or fildes refers to a directory, the value returned

252 CAE Specification (1997)

System Interfaces fpathconf()

applies to any FIFO that exists or can be created within the directory. If path or
fildes refers to any other type of file, it is unspecified whether an implementation
supports an association of the variable name with the specified file.

7. If path or fildes refers to a directory, the value returned applies to any files, other
than directories, that exist or can be created within the directory.

8. If path or fildes refers to a directory, it is unspecified whether an implementation
supports an association of the variable name with the specified file.

RETURN VALUE
If name is an invalid value, both pathconf () and fpathconf () return −1 and errno is set to indicate
the error.

If the variable corresponding to name has no limit for the path or file descriptor, both pathconf ()
and fpathconf () return −1 without changing errno. If the implementation needs to use path to
determine the value of name and the implementation does not support the association of name
with the file specified by path , or if the process did not have appropriate privileges to query the
file specified by path , or path does not exist, pathconf () returns −1 and errno is set to indicate the
error.

If the implementation needs to use fildes to determine the value of name and the implementation
does not support the association of name with the file specified by fildes , or if fildes is an invalid
file descriptor, fpathconf () will return −1 and errno is set to indicate the error.

Otherwise pathconf () or fpathconf () returns the current variable value for the file or directory
without changing errno. The value returned will not be more restrictive than the corresponding
value available to the application when it was compiled with the implementation’s <limits.h> or
<unistd.h>.

ERRORS
The pathconf () function will fail if:

[EINVAL] The value of name is not valid.

EX [ELOOP] Too many symbolic links were encountered in resolving path.

The pathconf () function may fail if:

[EACCES] Search permission is denied for a component of the path prefix.

[EINVAL] The implementation does not support an association of the variable name with
the specified file.

[ENAMETOOLONG]
FIPS The length of the path argument exceeds {PATH_MAX} or a pathname

component is longer than {NAME_MAX}.

[ENAMETOOLONG]
EX Pathname resolution of a symbolic link produced an intermediate result

whose length exceeds {PATH_MAX}.

[ENOENT] A component of path does not name an existing file or path is an empty string.

[ENOTDIR] A component of the path prefix is not a directory.

System Interfaces and Headers, Issue 5: Volume 1 253

fpathconf() System Interfaces

The fpathconf () function will fail if:

[EINVAL] The value of name is not valid.

The fpathconf () function may fail if:

[EBADF] The fildes argument is not a valid file descriptor.

[EINVAL] The implementation does not support an association of the variable name with
the specified file.

EXAMPLES
None.

APPLICATION USAGE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
confstr(), sysconf(), <limits.h>, <unistd.h>, the XCU specification of getconf.

CHANGE HISTORY
First released in Issue 3.

Entry included for alignment with the POSIX.1-1988 standard.

Issue 4
The fpathconf () function now has the full long int return type in the SYNOPSIS section.

The following changes gave been made for alignment with the ISO POSIX-1 standard:

• The type of argument path is changed from char * to const char *. Also the return value of
both functions is changed from long to long int.

• In the DESCRIPTION, the words ‘‘The behaviour is undefined if’’ have been replaced by ‘‘it
is unspecified whether an implementation supports an association of the variable name with
the specified file’’ in notes 2, 4 and 6.

• In the RETURN VALUE section, errors associated with the use of path and fildes, when an
implementation does not support the requested association, are now specified separately.

• The requirement that errno be set to indicate the error is added.

The following change is incorporated for alignment with the FIPS requirements:

• In the ERRORS section, the condition whereby [ENAMETOOLONG] will be returned if a
pathname component is larger that {NAME_MAX} is now defined as mandatory and marked
as an extension.

Issue 4, Version 2
The ERRORS section is updated for X/OPEN UNIX conformance as follows:

• It states that [ELOOP] will be returned if too many symbolic links are encountered during
pathname resolution.

• A second [ENAMETOOLONG] condition is defined that may report excessive length of an
intermediate result of pathname resolution of a symbolic link.

254 CAE Specification (1997)

System Interfaces fpathconf()

Issue 5
The DESCRIPTION is updated for alignment with the POSIX Realtime Extension.

Large File Summit extensions added.

System Interfaces and Headers, Issue 5: Volume 1 255

fprintf() System Interfaces

NAME
fprintf, printf, snprintf, sprintf — print formatted output

SYNOPSIS
#include <stdio.h>

int fprintf(FILE * stream , const char * format , . . .);
int printf(const char * format , . . .);

EX int snprintf(char *s, size_t n, const char * format , . . .);
int sprintf(char *s, const char * format , . . .);

DESCRIPTION
The fprintf () function places output on the named output stream. The printf() function places
output on the standard output stream stdout . The sprintf() function places output followed by
the null byte, ’\0’, in consecutive bytes starting at *s; it is the user’s responsibility to ensure that
enough space is available.

EX snprintf() is identical to sprintf() with the addition of the n argument, which states the size of the
buffer referred to by s.

Each of these functions converts, formats and prints its arguments under control of the format .
The format is a character string, beginning and ending in its initial shift state, if any. The format is
composed of zero or more directives: ordinary characters , which are simply copied to the output
stream and conversion specifications , each of which results in the fetching of zero or more
arguments. The results are undefined if there are insufficient arguments for the format . If the
format is exhausted while arguments remain, the excess arguments are evaluated but are
otherwise ignored.

EX Conversions can be applied to the nth argument after the format in the argument list, rather than
to the next unused argument. In this case, the conversion character % (see below) is replaced by
the sequence %n$, where n is a decimal integer in the range [1, {NL_ARGMAX}], giving the
position of the argument in the argument list. This feature provides for the definition of format
strings that select arguments in an order appropriate to specific languages (see the EXAMPLES
section).

In format strings containing the %n$ form of conversion specifications, numbered arguments in
the argument list can be referenced from the format string as many times as required.

In format strings containing the % form of conversion specifications, each argument in the
argument list is used exactly once.

All forms of the fprintf () functions allow for the insertion of a language-dependent radix
character in the output string. The radix character is defined in the program’s locale (category
LC_NUMERIC). In the POSIX locale, or in a locale where the radix character is not defined, the
radix character defaults to a period (.).

EX Each conversion specification is introduced by the % character or by the character sequence %n$,
after which the following appear in sequence:

• Zero or more flags (in any order), which modify the meaning of the conversion specification.

• An optional minimum field width . If the converted value has fewer bytes than the field
width, it will be padded with spaces by default on the left; it will be padded on the right, if
the left-adjustment flag (−), described below, is given to the field width. The field width
takes the form of an asterisk (*), described below, or a decimal integer.

• An optional precision that gives the minimum number of digits to appear for the d, i, o, u, x
and X conversions; the number of digits to appear after the radix character for the e, E and f
conversions; the maximum number of significant digits for the g and G conversions; or the

256 CAE Specification (1997)

System Interfaces fprintf()

EX maximum number of bytes to be printed from a string in s and S conversions. The precision
takes the form of a period (.) followed either by an asterisk (*), described below, or an
optional decimal digit string, where a null digit string is treated as 0. If a precision appears
with any other conversion character, the behaviour is undefined.

• An optional h specifying that a following d, i, o, u, x or X conversion character applies to a
type short int or type unsigned short int argument (the argument will have been promoted
according to the integral promotions, and its value will be converted to type short int or
unsigned short int before printing); an optional h specifying that a following n conversion
character applies to a pointer to a type short int argument; an optional l (ell) specifying that a
following d, i, o, u, x or X conversion character applies to a type long int or unsigned long
int argument; an optional l (ell) specifying that a following n conversion character applies to
a pointer to a type long int argument; or an optional L specifying that a following e, E, f, g or
G conversion character applies to a type long double argument. If an h, l or L appears with
any other conversion character, the behaviour is undefined.

• An optional l specifying that a following c conversion character applies to a wint_t
argument; an optional l specifying that a following s conversion character applies to a
pointer to a wchar_t argument.

• A conversion character that indicates the type of conversion to be applied.

A field width, or precision, or both, may be indicated by an asterisk (*). In this case an argument
of type int supplies the field width or precision. Arguments specifying field width, or precision,
or both must appear in that order before the argument, if any, to be converted. A negative field
width is taken as a − flag followed by a positive field width. A negative precision is taken as if

EX the precision were omitted. In format strings containing the %n$ form of a conversion
specification, a field width or precision may be indicated by the sequence *m$, where m is a
decimal integer in the range [1, {NL_ARGMAX}] giving the position in the argument list (after
the format argument) of an integer argument containing the field width or precision, for
example:

printf("%1$d:%2$.*3$d:%4$.*3$d\n", hour, min, precision, sec);

The format can contain either numbered argument specifications (that is, %n$ and *m$), or
unnumbered argument specifications (that is, % and *), but normally not both. The only
exception to this is that %% can be mixed with the %n$ form. The results of mixing numbered
and unnumbered argument specifications in a format string are undefined. When numbered
argument specifications are used, specifying the Nth argument requires that all the leading
arguments, from the first to the (N−1)th, are specified in the format string.

The flag characters and their meanings are:

EX ’ The integer portion of the result of a decimal conversion (%i, %d, %u, %f, %g or %G)
will be formatted with thousands’ grouping characters. For other conversions the
behaviour is undefined. The non-monetary grouping character is used.

− The result of the conversion will be left-justified within the field. The conversion will
be right-justified if this flag is not specified.

+ The result of a signed conversion will always begin with a sign (+ or −). The conversion
will begin with a sign only when a negative value is converted if this flag is not
specified.

System Interfaces and Headers, Issue 5: Volume 1 257

fprintf() System Interfaces

space If the first character of a signed conversion is not a sign or if a signed conversion results
in no characters, a space will be prefixed to the result. This means that if the space and
+ flags both appear, the space flag will be ignored.

This flag specifies that the value is to be converted to an alternative form. For o
conversion, it increases the precision (if necessary) to force the first digit of the result to
be 0. For x or X conversions, a non-zero result will have 0x (or 0X) prefixed to it. For e,
E, f, g or G conversions, the result will always contain a radix character, even if no
digits follow the radix character. Without this flag, a radix character appears in the
result of these conversions only if a digit follows it. For g and G conversions, trailing
zeros will not be removed from the result as they normally are. For other conversions,
the behaviour is undefined.

0 For d, i, o, u, x, X, e, E, f, g and G conversions, leading zeros (following any indication of
sign or base) are used to pad to the field width; no space padding is performed. If the 0
and − flags both appear, the 0 flag will be ignored. For d, i, o, u, x and X conversions, if
a precision is specified, the 0 flag will be ignored. If the 0 and ’ flags both appear, the
grouping characters are inserted before zero padding. For other conversions, the
behaviour is undefined.

The conversion characters and their meanings are:

d, i The int argument is converted to a signed decimal in the style [−]dddd. The precision
specifies the minimum number of digits to appear; if the value being converted can be
represented in fewer digits, it will be expanded with leading zeros. The default
precision is 1. The result of converting 0 with an explicit precision of 0 is no characters.

o The unsigned int argument is converted to unsigned octal format in the style dddd. The
precision specifies the minimum number of digits to appear; if the value being
converted can be represented in fewer digits, it will be expanded with leading zeros.
The default precision is 1. The result of converting 0 with an explicit precision of 0 is no
characters.

u The unsigned int argument is converted to unsigned decimal format in the style dddd .
The precision specifies the minimum number of digits to appear; if the value being
converted can be represented in fewer digits, it will be expanded with leading zeros.
The default precision is 1. The result of converting 0 with an explicit precision of 0 is no
characters.

x The unsigned int argument is converted to unsigned hexadecimal format in the style
dddd ; the letters abcdef are used. The precision specifies the minimum number of digits
to appear; if the value being converted can be represented in fewer digits, it will be
expanded with leading zeros. The default precision is 1. The result of converting 0 with
an explicit precision of 0 is no characters.

X Behaves the same as the x conversion character except that letters ABCDEF are used
instead of abcdef.

f The double argument is converted to decimal notation in the style [−]ddd.ddd, where
the number of digits after the radix character is equal to the precision specification. If
the precision is missing, it is taken as 6; if the precision is explicitly 0 and no # flag is
present, no radix character appears. If a radix character appears, at least one digit
appears before it. The value is rounded to the appropriate number of digits.

EX The fprintf () family of functions may make available character string representations
for infinity and NaN.

258 CAE Specification (1997)

System Interfaces fprintf()

e, E The double argument is converted in the style [−]d.ddde ± dd, where there is one digit
before the radix character (which is non-zero if the argument is non-zero) and the
number of digits after it is equal to the precision; if the precision is missing, it is taken
as 6; if the precision is 0 and no # flag is present, no radix character appears. The value
is rounded to the appropriate number of digits. The E conversion character will
produce a number with E instead of e introducing the exponent. The exponent always
contains at least two digits. If the value is 0, the exponent is 0.

EX The fprintf () family of functions may make available character string representations
for infinity and NaN.

g, G The double argument is converted in the style f or e (or in the style E in the case of a G
conversion character), with the precision specifying the number of significant digits. If
an explicit precision is 0, it is taken as 1. The style used depends on the value
converted; style e (or E) will be used only if the exponent resulting from such a
conversion is less than −4 or greater than or equal to the precision. Trailing zeros are
removed from the fractional portion of the result; a radix character appears only if it is
followed by a digit.

EX The fprintf () family of functions may make available character string representations
for infinity and NaN.

c The int argument is converted to an unsigned char, and the resulting byte is written.

If an l (ell) qualifier is present, the wint_t argument is converted as if by an ls
conversion specification with no precision and an argument that points to a two-
element array of type wchar_t, the first element of which contains the wint_t argument
to the ls conversion specification and the second element contains a null wide-
character.

s The argument must be a pointer to an array of char. Bytes from the array are written
up to (but not including) any terminating null byte. If the precision is specified, no
more than that many bytes are written. If the precision is not specified or is greater
than the size of the array, the array must contain a null byte.

If an l (ell) qualifier is present, the argument must be a pointer to an array of type
wchar_t. Wide-characters from the array are converted to characters (each as if by a
call to the wcrtomb() function, with the conversion state described by an mbstate_t
object initialised to zero before the first wide-character is converted) up to and
including a terminating null wide-character. The resulting characters are written up to
(but not including) the terminating null character (byte). If no precision is specified, the
array must contain a null wide-character. If a precision is specified, no more than that
many characters (bytes) are written (including shift sequences, if any), and the array
must contain a null wide-character if, to equal the character sequence length given by
the precision, the function would need to access a wide-character one past the end of
the array. In no case is a partial character written.

p The argument must be a pointer to void. The value of the pointer is converted to a
sequence of printable characters, in an implementation-dependent manner.

n The argument must be a pointer to an integer into which is written the number of bytes
written to the output so far by this call to one of the fprintf () functions. No argument is
converted.

System Interfaces and Headers, Issue 5: Volume 1 259

fprintf() System Interfaces

EX C Same as lc.

EX S Same as ls.

% Print a %; no argument is converted. The entire conversion specification must be %%.

If a conversion specification does not match one of the above forms, the behaviour is undefined.

In no case does a non-existent or small field width cause truncation of a field; if the result of a
conversion is wider than the field width, the field is simply expanded to contain the conversion
result. Characters generated by fprintf () and printf() are printed as if fputc() had been called.

The st_ctime and st_mtime fields of the file will be marked for update between the call to a
successful execution of fprintf () or printf() and the next successful completion of a call to fflush()
or fclose() on the same stream or a call to exit() or abort().

RETURN VALUE
Upon successful completion, these functions return the number of bytes transmitted excluding
the terminating null in the case of sprintf() or snprintf() or a negative value if an output error
was encountered.

If the value of n is zero on a call to snprintf(), an unspecified value less than 1 is returned.

ERRORS
For the conditions under which fprintf () and printf() will fail and may fail, refer to fputc() or
fputwc().

In addition, all forms of fprintf () may fail if:

EX [EILSEQ] A wide-character code that does not correspond to a valid character has been
detected.

EX [EINVAL] There are insufficient arguments.

EX In addition, printf() and fprintf () may fail if:

[ENOMEM] Insufficient storage space is available.

EXAMPLES
To print the language-independent date and time format, the following statement could be used:

printf (format, weekday, month, day, hour, min);

For American usage, format could be a pointer to the string:

"%s, %s %d, %d:%.2d\n"

producing the message:

Sunday, July 3, 10:02

whereas for German usage, format could be a pointer to the string:

"%1$s, %3$d. %2$s, %4$d:%5$.2d\n"

producing the message:

Sonntag, 3. Juli, 10:02

APPLICATION USAGE
If the application calling fprintf () has any objects of type wint_t or wchar_t, it must also include
the header <wchar.h> to have these objects defined.

260 CAE Specification (1997)

System Interfaces fprintf()

FUTURE DIRECTIONS
None.

SEE ALSO
fputc(), fscanf(), setlocale (), wcrtomb(), <stdio.h>, <wchar.h>, the XBD specification, Chapter 5,
Locale.

CHANGE HISTORY
First released in Issue 1.

Derived from Issue 1 of the SVID.

Issue 4
The following changes are incorporated for alignment with the ISO C standard:

• The type of the format arguments is changed from char * to const char *.

• The DESCRIPTION is reworded or presented differently in a number of places for alignment
with the ISO C standard, and also for clarity. There are no functional changes, except as
noted elsewhere in this CHANGE HISTORY section.

The following changes are incorporated for alignment with the MSE working draft:

• The C and S conversion characters are added, indicating respectively a wide-character of
type wchar_t and pointer to a wide-character string of type wchar_t* in the argument list.

Other changes are incorporated as follows:

• In the DESCRIPTION, references to langinfo data are marked as extensions. The reference to
langinfo data is removed from the description of the radix character.

• The ’ (single-quote) flag is added to the list of flag characters and marked as an extension.
This flag directs that numeric conversion will be formatted with the decimal grouping
character.

• The detailed description of this function is provided here instead of under printf().

• The information in the APPLICATION USAGE section is moved to the DESCRIPTION. A
new APPLICATION USAGE section is added.

• The [EILSEQ] error is added to the ERRORS section and all errors are marked as extensions.

Issue 4, Version 2
The [ENOMEM] error is added to the ERRORS section as an optional error.

Issue 5
Aligned with the ISO/IEC 9899:1990/Amendment 1:1994 (E). Specifically, the l (ell) qualifier can
now be used with c and s conversion characters.

System Interfaces and Headers, Issue 5: Volume 1 261

fputc() System Interfaces

NAME
fputc — put a byte on a stream

SYNOPSIS
#include <stdio.h>

int fputc(int c, FILE * stream);

DESCRIPTION
The fputc() function writes the byte specified by c (converted to an unsigned char) to the output
stream pointed to by stream, at the position indicated by the associated file-position indicator for
the stream (if defined), and advances the indicator appropriately. If the file cannot support
positioning requests, or if the stream was opened with append mode, the byte is appended to
the output stream.

The st_ctime and st_mtime fields of the file will be marked for update between the successful
execution of fputc() and the next successful completion of a call to fflush() or fclose() on the same
stream or a call to exit() or abort().

RETURN VALUE
Upon successful completion, fputc() returns the value it has written. Otherwise, it returns EOF,
the error indicator for the stream is set, and errno is set to indicate the error.

ERRORS
The fputc() function will fail if either the stream is unbuffered or the stream’s buffer needs to be
flushed, and:

[EAGAIN] The O_NONBLOCK flag is set for the file descriptor underlying stream and the
process would be delayed in the write operation.

[EBADF] The file descriptor underlying stream is not a valid file descriptor open for
writing.

EX [EFBIG] An attempt was made to write to a file that exceeds the maximum file size or
the process’ file size limit.

EX [EFBIG] The file is a regular file and an attempt was made to write at or beyond the
offset maximum.

[EINTR] The write operation was terminated due to the receipt of a signal, and no data
was transferred.

EX [EIO] A physical I/O error has occurred, or the process is a member of a
background process group attempting to write to its controlling terminal,
TOSTOP is set, the process is neither ignoring nor blocking SIGTTOU and the
process group of the process is orphaned. This error may also be returned
under implementation-dependent conditions.

[ENOSPC] There was no free space remaining on the device containing the file.

[EPIPE] An attempt is made to write to a pipe or FIFO that is not open for reading by
any process. A SIGPIPE signal will also be sent to the thread.

The fputc() function may fail if:

EX [ENOMEM] Insufficient storage space is available.

[ENXIO] A request was made of a non-existent device, or the request was outside the
capabilities of the device.

262 CAE Specification (1997)

System Interfaces fputc()

EXAMPLES
None.

APPLICATION USAGE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
ferror(), fopen(), getrlimit(), putc(), puts(), setbuf(), ulimit(), <stdio.h>.

CHANGE HISTORY
First released in Issue 1.

Derived from Issue 1 of the SVID.

Issue 4
The following changes are incorporated in this issue:

• In the DESCRIPTION, the text is changed to make it clear that the function writes byte
values, rather than (possibly multi-byte) character values.

• In the ERRORS section, text is added to indicate that error returns will only be generated
when either the stream is unbuffered, or if the stream buffer needs to be flushed.

• Also in the ERRORS section, in previous issues generation of the [EIO] error depended on
whether or not an implementation supported Job Control. This functionality is now defined
as mandatory.

• The [ENXIO] error is moved to the list of optional errors, and all the optional errors are
marked as extensions.

• The description of [EINTR] is amended.

• The [EFBIG] error is marked to show extensions.

Issue 4, Version 2
In the ERRORS section, the description of [EIO] is updated to include the case where a physical
I/O error occurs.

Issue 5
Large File Summit extensions added.

System Interfaces and Headers, Issue 5: Volume 1 263

fputs() System Interfaces

NAME
fputs — put a string on a stream

SYNOPSIS
#include <stdio.h>

int fputs(const char * s, FILE * stream);

DESCRIPTION
The fputs() function writes the null-terminated string pointed to by s to the stream pointed to by
stream. The terminating null byte is not written.

The st_ctime and st_mtime fields of the file will be marked for update between the successful
execution of fputs() and the next successful completion of a call to fflush() or fclose() on the same
stream or a call to exit() or abort().

RETURN VALUE
Upon successful completion, fputs() returns a non-negative number. Otherwise it returns EOF,
sets an error indicator for the stream and errno is set to indicate the error.

ERRORS
Refer to fputc().

EXAMPLES
None.

APPLICATION USAGE
The puts() function appends a newline character while fputs() does not.

FUTURE DIRECTIONS
None.

SEE ALSO
fopen(), putc(), puts(), <stdio.h>.

CHANGE HISTORY
First released in Issue 1.

Derived from Issue 1 of the SVID.

Issue 4
The following change is incorporated for alignment with the ISO C standard:

• The type of argument s is changed from char * to const char *.

Another change is incorporated as follows:

• In the DESCRIPTION, the words ‘‘null character’’ are replaced by ‘‘null byte’’, to make it
clear that this interface deals solely in byte values.

264 CAE Specification (1997)

System Interfaces fputwc()

NAME
fputwc — put a wide-character code on a stream

SYNOPSIS
#include <stdio.h>
#include <wchar.h>

wint_t fputwc(wchar_t wc, FILE * stream);

DESCRIPTION
The fputwc() function writes the character corresponding to the wide-character code wc to the
output stream pointed to by stream, at the position indicated by the associated file-position
indicator for the stream (if defined), and advances the indicator appropriately. If the file cannot
support positioning requests, or if the stream was opened with append mode, the character is
appended to the output stream. If an error occurs whilst writing the character, the shift state of
the output file is left in an undefined state.

The st_ctime and st_mtime fields of the file will be marked for update between the successful
execution of fputwc() and the next successful completion of a call to fflush() or fclose() on the
same stream or a call to exit() or abort().

RETURN VALUE
Upon successful completion, fputwc() returns wc. Otherwise, it returns WEOF, the error
indicator for the stream is set, and errno is set to indicate the error.

ERRORS
The fputwc() function will fail if either the stream is unbuffered or data in the stream’s buffer
needs to be written, and:

[EAGAIN] The O_NONBLOCK flag is set for the file descriptor underlying stream and the
process would be delayed in the write operation.

[EBADF] The file descriptor underlying stream is not a valid file descriptor open for
writing.

[EFBIG] An attempt was made to write to a file that exceeds the maximum file size or
the process’ file size limit.

EX [EFBIG] The file is a regular file and an attempt was made to write at or beyond the
offset maximum associated with the corresponding stream.

[EINTR] The write operation was terminated due to the receipt of a signal, and no data
was transferred.

EX [EIO] A physical I/O error has occurred, orthe process is a member of a background
process group attempting to write to its controlling terminal, TOSTOP is set,
the process is neither ignoring nor blocking SIGTTOU and the process group
of the process is orphaned. This error may also be returned under
implementation-dependent conditions.

[ENOSPC] There was no free space remaining on the device containing the file.

[EPIPE] An attempt is made to write to a pipe or FIFO that is not open for reading by
any process. A SIGPIPE signal will also be sent to the thread.

System Interfaces and Headers, Issue 5: Volume 1 265

fputwc() System Interfaces

The fputwc() function may fail if:

[ENOMEM] Insufficient storage space is available.

[ENXIO] A request was made of a non-existent device, or the request was outside the
capabilities of the device.

[EILSEQ] The wide-character code wc does not correspond to a valid character.

EXAMPLES
None.

APPLICATION USAGE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
ferror(), fopen(), setbuf(), ulimit(), <stdio.h>, <wchar.h>.

CHANGE HISTORY
First released in Issue 4.

Derived from the MSE working draft.

Issue 4, Version 2
In the ERRORS section, the description of [EIO] is updated to include the case where a physical
I/O error occurs.

Issue 5
Aligned with ISO/IEC 9899:1990/Amendment 1:1994 (E). Specifically, the type of argument wc
is changed from wint_t to wchar_t.

The Optional Header (OH) marking is removed from <stdio.h>.

Large File Summit extensions added.

266 CAE Specification (1997)

System Interfaces fputws()

NAME
fputws — put a wide-character string on a stream

SYNOPSIS
#include <stdio.h>
#include <wchar.h>

int fputws(const wchar_t * ws, FILE * stream);

DESCRIPTION
The fputws() function writes a character string corresponding to the (null-terminated) wide-
character string pointed to by ws to the stream pointed to by stream. No character corresponding
to the terminating null wide-character code is written.

The st_ctime and st_mtime fields of the file will be marked for update between the successful
execution of fputws() and the next successful completion of a call to fflush() or fclose() on the
same stream or a call to exit() or abort().

RETURN VALUE
Upon successful completion, fputws() returns a non-negative number. Otherwise it returns −1,
sets an error indicator for the stream and errno is set to indicate the error.

ERRORS
Refer to fputwc().

EXAMPLES
None.

APPLICATION USAGE
The fputws() function does not append a newline character.

FUTURE DIRECTIONS
None.

SEE ALSO
fopen(), <stdio.h>, <wchar.h>.

CHANGE HISTORY
First released in Issue 4.

Derived from the MSE working draft.

Issue 5
The Optional Header (OH) marking is removed from <stdio.h>.

System Interfaces and Headers, Issue 5: Volume 1 267

fread() System Interfaces

NAME
fread — binary input

SYNOPSIS
#include <stdio.h>

size_t fread(void * ptr , size_t size , size_t nitems , FILE * stream);

DESCRIPTION
The fread() function reads, into the array pointed to by ptr, up to nitems members whose size is
specified by size in bytes, from the stream pointed to by stream. The file position indicator for the
stream (if defined) is advanced by the number of bytes successfully read. If an error occurs, the
resulting value of the file position indicator for the stream is indeterminate. If a partial member
is read, its value is indeterminate.

The fread() function may mark the st_atime field of the file associated with stream for update.
The st_atime field will be marked for update by the first successful execution of fgetc(), fgets(),
fgetwc(), fgetws(), fread(), fscanf(), getc(), getchar(), gets() or scanf() using stream that returns
data not supplied by a prior call to ungetc() or ungetwc().

RETURN VALUE
Upon successful completion, fread() returns the number of members successfully read which is
less than nitems only if a read error or end-of-file is encountered. If size or nitems is 0, fread()
returns 0 and the contents of the array and the state of the stream remain unchanged.
Otherwise, if a read error occurs, the error indicator for the stream is set and errno is set to
indicate the error.

ERRORS
Refer to fgetc().

EXAMPLES
None.

APPLICATION USAGE
The ferror() or feof() functions must be used to distinguish between an error condition and an
end-of-file condition.

Because of possible differences in member length and byte ordering, files written using fwrite()
are application-dependent, and possibly cannot be read using fread() by a different application
or by the same application on a different processor.

FUTURE DIRECTIONS
None.

SEE ALSO
feof(), ferror(), fopen(), getc(), gets(), scanf(), <stdio.h>.

CHANGE HISTORY
First released in Issue 1.

Derived from Issue 1 of the SVID.

Issue 4
The following change is incorporated for alignment with the ISO C standard:

• In the RETURN VALUE section, the behaviour if size or nitems is 0 is defined.

Another change is incorporated as follows:

• The list of functions that may cause the st_atime field to be updated is revised.

268 CAE Specification (1997)

System Interfaces free()

NAME
free — free allocated memory

SYNOPSIS
#include <stdlib.h>

void free(void * ptr);

DESCRIPTION
The free() function causes the space pointed to by ptr to be deallocated; that is, made available
for further allocation. If ptr is a null pointer, no action occurs. Otherwise, if the argument does
not match a pointer earlier returned by the calloc (), malloc (), realloc () or valloc () function, or if
the space is deallocated by a call to free() or realloc (), the behaviour is undefined.

Any use of a pointer that refers to freed space causes undefined behaviour.

RETURN VALUE
The free() function returns no value.

ERRORS
No errors are defined.

EXAMPLES
None.

APPLICATION USAGE
There is now no requirement for the implementation to support the inclusion of <malloc.h>.

FUTURE DIRECTIONS
None.

SEE ALSO
calloc (), malloc (), realloc (), <stdlib.h>.

CHANGE HISTORY
First released in Issue 1.

Derived from Issue 1 of the SVID.

Issue 4
The following change is incorporated for alignment with the ISO C standard:

• The DESCRIPTION now states that the behaviour is undefined if any use is made of a
pointer that refers to freed space. This was implied but not stated explicitly in Issue 3.

Another change is incorporated as follows:

• The APPLICATION USAGE section is changed to record that <malloc.h> need no longer be
supported on XSI-conformant systems.

Issue 4, Version 2
The DESCRIPTION is updated for X/OPEN UNIX conformance to indicate that the free()
function can also be used to free memory allocated by valloc ().

System Interfaces and Headers, Issue 5: Volume 1 269

freopen() System Interfaces

NAME
freopen — open a stream

SYNOPSIS
#include <stdio.h>

FILE *freopen(const char * filename , const char * mode, FILE * stream);

DESCRIPTION
The freopen() function first attempts to flush the stream and close any file descriptor associated
with stream. Failure to flush or close the file successfully is ignored. The error and end-of-file
indicators for the stream are cleared.

The freopen() function opens the file whose pathname is the string pointed to by filename and
associates the stream pointed to by stream with it. The mode argument is used just as in fopen().

The original stream is closed regardless of whether the subsequent open succeeds.

After a successful call to the freopen() function, the orientation of the stream is cleared and the
associated mbstate_t object is set to describe an initial conversion state.

EX The largest value that can be represented correctly in an object of type off_t will be established
as the offset maximum in the open file description.

RETURN VALUE
Upon successful completion, freopen() returns the value of stream. Otherwise a null pointer is
returned and errno is set to indicate the error.

ERRORS
The freopen() function will fail if:

[EACCES] Search permission is denied on a component of the path prefix, or the file
exists and the permissions specified by mode are denied, or the file does not
exist and write permission is denied for the parent directory of the file to be
created.

[EINTR] A signal was caught during freopen().

[EISDIR] The named file is a directory and mode requires write access.

EX [ELOOP] Too many symbolic links were encountered in resolving path.

[EMFILE] {OPEN_MAX} file descriptors are currently open in the calling process.

FIPS [ENAMETOOLONG]
The length of the filename exceeds {PATH_MAX} or a pathname component is
longer than {NAME_MAX}.

[ENFILE] The maximum allowable number of files is currently open in the system.

[ENOENT] A component of filename does not name an existing file or filename is an empty
string.

[ENOSPC] The directory or file system that would contain the new file cannot be
expanded, the file does not exist, and it was to be created.

[ENOTDIR] A component of the path prefix is not a directory.

[ENXIO] The named file is a character special or block special file, and the device
associated with this special file does not exist.

270 CAE Specification (1997)

System Interfaces freopen()

EX [EOVERFLOW] The named file is a regular file and the size of the file cannot be represented
correctly in an object of type off_t.

[EROFS] The named file resides on a read-only file system and mode requires write
access.

The freopen() function may fail if:

EX [EINVAL] The value of the mode argument is not valid.

EX [ENAMETOOLONG]
Pathname resolution of a symbolic link produced an intermediate result
whose length exceeds {PATH_MAX}.

[ENOMEM] Insufficient storage space is available.

[ENXIO] A request was made of a non-existent device, or the request was outside the
capabilities of the device.

[ETXTBSY] The file is a pure procedure (shared text) file that is being executed and mode
requires write access.

EXAMPLES
None.

APPLICATION USAGE
The freopen() function is typically used to attach the preopened streams associated with stdin ,
stdout and stderr to other files.

FUTURE DIRECTIONS
None.

SEE ALSO
fclose(), fopen(), fdopen(), mbsinit(), <stdio.h>.

CHANGE HISTORY
First released in Issue 1.

Derived from Issue 1 of the SVID.

Issue 4
The following change is incorporated for alignment with the ISO C standard:

• The type of arguments filename and mode are changed from char * to const char *.

The following change is incorporated for alignment with the FIPS requirements:

• In the ERRORS section, the condition whereby [ENAMETOOLONG] will be returned if a
pathname component is larger that {NAME_MAX} is now defined as mandatory and marked
as an extension.

Other changes are incorporated as follows:

• In the DESCRIPTION, the word ‘‘name’’ is replaced by ‘‘pathname’’, to make it clear that the
interface is not limited to accepting filenames only.

• In the ERRORS section, (a) the description of the [EMFILE] error has been changed to refer to
{OPEN_MAX} file descriptors rather than {FOPEN_MAX} file descriptors, directories and
message catalogues, (b) the errors [EINVAL], [ENOMEM] and [ETXTBSY] are marked as
extensions, and (c) the [ENXIO] error is added in the ‘‘may fail’’ section and marked as an
extension.

System Interfaces and Headers, Issue 5: Volume 1 271

freopen() System Interfaces

Issue 4, Version 2
The ERRORS section is updated for X/OPEN UNIX conformance as follows:

• It states that [ELOOP] will be returned if too many symbolic links are encountered during
pathname resolution.

• A second [ENAMETOOLONG] condition is defined that may report excessive length of an
intermediate result of pathname resolution of a symbolic link.

Issue 5
The DESCRIPTION is updated to indicate that the orientation of the stream is cleared and the
conversion state of the stream is set to an initial conversion state by a successful call to the
freopen() function.

Large File Summit extensions added.

272 CAE Specification (1997)

System Interfaces frexp()

NAME
frexp — extract mantissa and exponent from a double precision number

SYNOPSIS
#include <math.h>

double frexp(double num, int * exp);

DESCRIPTION
The frexp() function breaks a floating-point number into a normalised fraction and an integral
power of 2. It stores the integer exponent in the int object pointed to by exp.

An application wishing to check for error situations should set errno to 0 before calling frexp(). If
errno is non-zero on return, or the return value is NaN, an error has occurred.

RETURN VALUE
The frexp() function returns the value x , such that x is a double with magnitude in the interval
[⁄1

2, 1) or 0, and num equals x times 2 raised to the power *exp.

If num is 0, both parts of the result are 0.

EX If num is NaN, NaN is returned, errno may be set to [EDOM] and the value of *exp is unspecified.

If num is ±Inf, num is returned, errno may be set to [EDOM] and the value of *exp is unspecified.

ERRORS
The frexp() function may fail if:

EX [EDOM] The value of num is NaN or ±Inf.

EX No other errors will occur.

EXAMPLES
None.

APPLICATION USAGE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
isnan(), ldexp(), modf(), <math.h>.

CHANGE HISTORY
First released in Issue 1.

Derived from Issue 1 of the SVID.

Issue 4
The following changes are incorporated in this issue:

• Removed references to matherr().

• The name of the first argument is changed from value to num.

• The RETURN VALUE and ERRORS sections are substantially rewritten for alignment with
the ISO C standard and to rationalise error handling in the mathematics functions.

• The return value specified for [EDOM] is marked as an extension.

System Interfaces and Headers, Issue 5: Volume 1 273

frexp() System Interfaces

Issue 5
The DESCRIPTION is updated to indicate how an application should check for an error. This
text was previously published in the APPLICATION USAGE section.

274 CAE Specification (1997)

System Interfaces fscanf()

NAME
fscanf, scanf, sscanf — convert formatted input

SYNOPSIS
#include <stdio.h>

int fscanf(FILE * stream , const char * format , ...);
int scanf(const char * format , ...);
int sscanf(const char * s, const char * format , ...);

DESCRIPTION
The fscanf() function reads from the named input stream. The scanf() function reads from the
standard input stream stdin . The sscanf() function reads from the string s. Each function reads
bytes, interprets them according to a format, and stores the results in its arguments. Each
expects, as arguments, a control string format described below, and a set of pointer arguments
indicating where the converted input should be stored. The result is undefined if there are
insufficient arguments for the format. If the format is exhausted while arguments remain, the
excess arguments are evaluated but are otherwise ignored.

EX Conversions can be applied to the nth argument after the format in the argument list, rather than
to the next unused argument. In this case, the conversion character % (see below) is replaced by
the sequence %n$, where n is a decimal integer in the range [1, {NL_ARGMAX}]. This feature
provides for the definition of format strings that select arguments in an order appropriate to
specific languages. In format strings containing the %n$ form of conversion specifications, it is
unspecified whether numbered arguments in the argument list can be referenced from the
format string more than once.

The format can contain either form of a conversion specification, that is, % or %n$, but the two
forms cannot normally be mixed within a single format string. The only exception to this is that
%% or %* can be mixed with the %n$ form.

The fscanf() function in all its forms allows for detection of a language-dependent radix
character in the input string. The radix character is defined in the program’s locale (category
LC_NUMERIC). In the POSIX locale, or in a locale where the radix character is not defined, the
radix character defaults to a period (.).

The format is a character string, beginning and ending in its initial shift state, if any, composed
of zero or more directives. Each directive is composed of one of the following: one or more
white-space characters (space, tab, newline, vertical-tab or form-feed characters); an ordinary
character (neither % nor a white-space character); or a conversion specification. Each conversion

EX specification is introduced by the character % or the character sequence %n$ after which the
following appear in sequence:

• An optional assignment-suppressing character *.

• An optional non-zero decimal integer that specifies the maximum field width.

• An optional size modifier h, l (ell) or L indicating the size of the receiving object. The
conversion characters d, i and n must be preceded by h if the corresponding argument is a
pointer to short int rather than a pointer to int, or by l (ell) if it is a pointer to long int.
Similarly, the conversion characters o, u and x must be preceded by h if the corresponding
argument is a pointer to unsigned short int rather than a pointer to unsigned int, or by l (ell)
if it is a pointer to unsigned long int. The conversion characters e, f and g must be preceded
by l (ell) if the corresponding argument is a pointer to double rather than a pointer to float, or
by L if it is a pointer to long double. Finally, the conversion characters c, s and [must be
precede by l (ell) if the corresponding argument is a pointer to wchar_t rather than a pointer
to a character type. If an h, l (ell) or L appears with any other conversion character, the

System Interfaces and Headers, Issue 5: Volume 1 275

fscanf() System Interfaces

behaviour is undefined.

• A conversion character that specifies the type of conversion to be applied. The valid
conversion characters are described below.

The fscanf() functions execute each directive of the format in turn. If a directive fails, as detailed
below, the function returns. Failures are described as input failures (due to the unavailability of
input bytes) or matching failures (due to inappropriate input).

A directive composed of one or more white-space characters is executed by reading input until
no more valid input can be read, or up to the first byte which is not a white-space character
which remains unread.

A directive that is an ordinary character is executed as follows. The next byte is read from the
input and compared with the byte that comprises the directive; if the comparison shows that
they are not equivalent, the directive fails, and the differing and subsequent bytes remain
unread.

A directive that is a conversion specification defines a set of matching input sequences, as
described below for each conversion character. A conversion specification is executed in the
following steps:

Input white-space characters (as specified by isspace()) are skipped, unless the conversion
specification includes a [, c, C or n conversion character.

An item is read from the input, unless the conversion specification includes an n conversion
character. An input item is defined as the longest sequence of input bytes (up to any specified
maximum field width, which may be measured in characters or bytes dependent on the
conversion character) which is an initial subsequence of a matching sequence. The first byte, if
any, after the input item remains unread. If the length of the input item is 0, the execution of the
conversion specification fails; this condition is a matching failure, unless end-of-file, an encoding
error, or a read error prevented input from the stream, in which case it is an input failure.

Except in the case of a % conversion character, the input item (or, in the case of a %n conversion
specification, the count of input bytes) is converted to a type appropriate to the conversion
character. If the input item is not a matching sequence, the execution of the conversion
specification fails; this condition is a matching failure. Unless assignment suppression was
indicated by a *, the result of the conversion is placed in the object pointed to by the first
argument following the format argument that has not already received a conversion result if the

EX conversion specification is introduced by %, or in the nth argument if introduced by the
character sequence %n$. If this object does not have an appropriate type, or if the result of the
conversion cannot be represented in the space provided, the behaviour is undefined.

The following conversion characters are valid:

d Matches an optionally signed decimal integer, whose format is the same as expected for
the subject sequence of strtol() with the value 10 for the base argument. In the absence
of a size modifier, the corresponding argument must be a pointer to int.

i Matches an optionally signed integer, whose format is the same as expected for the
subject sequence of strtol() with 0 for the base argument. In the absence of a size
modifier, the corresponding argument must be a pointer to int.

o Matches an optionally signed octal integer, whose format is the same as expected for
the subject sequence of strtoul() with the value 8 for the base argument. In the absence
of a size modifier, the corresponding argument must be a pointer to unsigned int.

u Matches an optionally signed decimal integer, whose format is the same as expected for
the subject sequence of strtoul() with the value 10 for the base argument. In the absence

276 CAE Specification (1997)

System Interfaces fscanf()

of a size modifier, the corresponding argument must be a pointer to unsigned int.

x Matches an optionally signed hexadecimal integer, whose format is the same as
expected for the subject sequence of strtoul() with the value 16 for the base argument.
In the absence of a size modifier, the corresponding argument must be a pointer to
unsigned int.

e, f, g Matches an optionally signed floating-point number, whose format is the same as
expected for the subject sequence of strtod(). In the absence of a size modifier, the
corresponding argument must be a pointer to float.

If the fprintf () family of functions generates character string representations for infinity
and NaN (a 7858 symbolic entity encoded in floating-point format) to support the
ANSI/IEEE Std 754:1985 standard, the fscanf() family of functions will recognise them
as input.

s Matches a sequence of bytes that are not white-space characters. The corresponding
argument must be a pointer to the initial byte of an array of char, signed char or
unsigned char large enough to accept the sequence and a terminating null character
code, which will be added automatically.

If an l (ell) qualifier is present, the input is a sequence of characters that begins in the
initial shift state. Each character is converted to a wide-character as if by a call to the
mbrtowc() function, with the conversion state described by an mbstate_t object
initialised to zero before the first character is converted. The corresponding argument
must be a pointer to an array of wchar_t large enough to accept the sequence and the
terminating null wide-character, which will be added automatically.

[Matches a non-empty sequence of characters from a set of expected characters (the
scanset). The normal skip over white-space characters is suppressed in this case. The
corresponding argument must be a pointer to the initial byte of an array of char, signed
char or unsigned char large enough to accept the sequence and a terminating null byte,
which will be added automatically.

If an l (ell) qualifier is present, the input is a sequence of characters that begins in the
initial shift state. Each character in the sequence is converted to a wide-character as if
by a call to the mbrtowc() function, with the conversion state described by an mbstate_t
object initialised to zero before the first character is converted. The corresponding
argument must be a pointer to an array of wchar_t large enough to accept the sequence
and the terminating null wide-character, which will be added automatically.

The conversion specification includes all subsequent characters in the format string up
to and including the matching right square bracket (]). The characters between the
square brackets (the scanlist) comprise the scanset, unless the character after the left
square bracket is a circumflex (ˆ), in which case the scanset contains all characters that
do not appear in the scanlist between the circumflex and the right square bracket. If the
conversion specification begins with [] or [ˆ], the right square bracket is included in the
scanlist and the next right square bracket is the matching right square bracket that ends
the conversion specification; otherwise the first right square bracket is the one that ends
the conversion specification. If a − is in the scanlist and is not the first character, nor the
second where the first character is a ˆ, nor the last character, the behaviour is
implementation-dependent.

c Matches a sequence of characters of the number specified by the field width (1 if no
field width is present in the conversion specification). The corresponding argument
must be a pointer to the initial byte of an array of char, signed char or unsigned char
large enough to accept the sequence. No null byte is added. The normal skip over

System Interfaces and Headers, Issue 5: Volume 1 277

fscanf() System Interfaces

white-space characters is suppressed in this case.

If an l (ell) qualifier is present, the input is a sequence of characters that begins in the
initial shift state. Each character in the sequence is converted to a wide-character as if
by a call to the mbrtowc() function, with the conversion state described by an mbstate_t
object initialised to zero before the first character is converted. The corresponding
argument must be a pointer to an array of wchar_t large enough to accept the resulting
sequence of wide-characters. No null wide-character is added.

p Matches an implementation-dependent set of sequences, which must be the same as
the set of sequences that is produced by the %p conversion of the corresponding
fprintf () functions. The corresponding argument must be a pointer to a pointer to void.
The interpretation of the input item is implementation-dependent. If the input item is a
value converted earlier during the same program execution, the pointer that results will
compare equal to that value; otherwise the behaviour of the %p conversion is
undefined.

n No input is consumed. The corresponding argument must be a pointer to the integer
into which is to be written the number of bytes read from the input so far by this call to
the fscanf() functions. Execution of a %n conversion specification does not increment
the assignment count returned at the completion of execution of the function.

EX C Same as lc.

EX S Same as ls.

% Matches a single %; no conversion or assignment occurs. The complete conversion
specification must be %%.

If a conversion specification is invalid, the behaviour is undefined.

The conversion characters E, G and X are also valid and behave the same as, respectively, e, g
and x.

If end-of-file is encountered during input, conversion is terminated. If end-of-file occurs before
any bytes matching the current conversion specification (except for %n) have been read (other
than leading white-space characters, where permitted), execution of the current conversion
specification terminates with an input failure. Otherwise, unless execution of the current
conversion specification is terminated with a matching failure, execution of the following
conversion specification (if any) is terminated with an input failure.

Reaching the end of the string in sscanf() is equivalent to encountering end-of-file for fscanf().

If conversion terminates on a conflicting input, the offending input is left unread in the input.
Any trailing white space (including newline characters) is left unread unless matched by a
conversion specification. The success of literal matches and suppressed assignments is only
directly determinable via the %n conversion specification.

The fscanf() and scanf() functions may mark the st_atime field of the file associated with stream
for update. The st_atime field will be marked for update by the first successful execution of
fgetc(), fgets(), fread(), getc(), getchar(), gets(), fscanf() or fscanf() using stream that returns data
not supplied by a prior call to ungetc().

RETURN VALUE
Upon successful completion, these functions return the number of successfully matched and
assigned input items; this number can be 0 in the event of an early matching failure. If the input
ends before the first matching failure or conversion, EOF is returned. If a read error occurs the
error indicator for the stream is set, EOF is returned, and errno is set to indicate the error.

278 CAE Specification (1997)

System Interfaces fscanf()

ERRORS
For the conditions under which the fscanf() functions will fail and may fail, refer to fgetc() or
fgetwc().

In addition, fscanf() may fail if:

EX [EILSEQ] Input byte sequence does not form a valid character.

EX [EINVAL] There are insufficient arguments.

EXAMPLES
The call:

int i, n; float x; char name[50];
n = scanf("%d%f%s", &i, &x, name);

with the input line:

25 54.32E −1 Hamster

will assign to n the value 3, to i the value 25, to x the value 5.432, and name will contain the string
Hamster.

The call:

int i; float x; char name[50];
(void) scanf("%2d%f%*d %[0123456789]", &i, &x, name);

with input:

56789 0123 56a72

will assign 56 to i , 789.0 to x , skip 0123, and place the string 56\0 in name. The next call to
getchar() will return the character a.

APPLICATION USAGE
If the application calling fscanf() has any objects of type wint_t or wchar_t, it must also include
the header <wchar.h> to have these objects defined.

FUTURE DIRECTIONS
None.

SEE ALSO
getc(), printf(), setlocale (), strtod(), strtol(), strtoul(), wcrtomb(), <langinfo.h>, <stdio.h>,
<wchar.h>, the XBD specification, Chapter 5, Locale.

CHANGE HISTORY
First released in Issue 1.

Derived from Issue 1 of the SVID.

Issue 4
The following changes are incorporated for alignment with the ISO C standard:

• The type of the argument format for all functions, and the type of argument s for sscanf(), are
changed from char * to const char *.

• The description is updated in various places to align more closely with the text of the ISO C
standard. In particular, this issue fully defines the L conversion character, allows for the
support of multi-byte coded character sets (although these are not mandated by X/Open),
and fills in a number of gaps in the definition (for example, by defining termination
conditions for sscanf().

System Interfaces and Headers, Issue 5: Volume 1 279

fscanf() System Interfaces

• Following an ANSI interpretation, the effect of conversion specifications that consume no
input is better defined, and is no longer marked as an extension.

The following change is incorporated for alignment with the MSE working draft.

• The C and S conversion characters are added, indicating a pointer in the argument list to the
initial wide-character code of an array large enough to accept the input sequence.

Other changes are incorporated as follows:

• Use of the terms ‘‘byte’’ and ‘‘character’’ is rationalised to make it clear when single-byte and
multi-byte values can be used. Similarly, use of the terms ‘‘conversion specification’’ and
‘‘conversion character’’ is now more precise.

• Various errors are corrected. For example, the description of the d conversion character
contained an erroneous reference to strtod() in Issue 3. This is replaced in this issue by
reference to strtol().

• The DESCRIPTION is updated in a number of places to indicate further implications of the
%n$ form of a conversion. All references to this functionality, which is not specified in the
ISO C standard, are marked as extensions.

• The ERRORS section is changed to refer to the entries for fgetc() and fgetwc(); the [EINVAL]
error is marked as an extension; and the [EILSEQ] error is added and marked as an extension.

• The detailed description of this function including the CHANGE HISTORY section for
scanf() is provided here instead of under scanf().

• The APPLICATION USAGE section is amended to record the need for <sys/types.h> or
<stddef.h> if type wchar_t is required.

Issue 5
Aligned with the ISO/IEC 9899:1990/Amendment 1:1994 (E). Specifically, the l (ell) qualifier is
now defined for c, s and [conversion characters.

The DESCRIPTION is updated to indicate that if infinity and Nan can be generated by the
fprintf () family of functions, then they will be recognised by the fscanf() family.

280 CAE Specification (1997)

System Interfaces fseek()

NAME
fseek, fseeko — reposition a file-position indicator in a stream

SYNOPSIS
#include <stdio.h>

int fseek(FILE * stream , long int offset , int whence);
EX int fseeko(FILE * stream , off_t offset , int whence);

DESCRIPTION
The fseek() function sets the file-position indicator for the stream pointed to by stream.

The new position, measured in bytes from the beginning of the file, is obtained by adding offset
to the position specified by whence. The specified point is the beginning of the file for SEEK_SET,
the current value of the file-position indicator for SEEK_CUR, or end-of-file for SEEK_END.

If the stream is to be used with wide-character input/output functions, offset must either be 0 or
a value returned by an earlier call to ftell () on the same stream and whence must be SEEK_SET.

A successful call to fseek() clears the end-of-file indicator for the stream and undoes any effects
of ungetc() and ungetwc() on the same stream. After an fseek() call, the next operation on an
update stream may be either input or output.

If the most recent operation, other than ftell (), on a given stream is fflush(), the file offset in the
underlying open file description will be adjusted to reflect the location specified by fseek().

The fseek() function allows the file-position indicator to be set beyond the end of existing data in
the file. If data is later written at this point, subsequent reads of data in the gap will return bytes
with the value 0 until data is actually written into the gap.

The behaviour of fseek() on devices which are incapable of seeking is implementation-
dependent. The value of the file offset associated with such a device is undefined.

If the stream is writable and buffered data had not been written to the underlying file, fseek() will
cause the unwritten data to be written to the file and mark the st_ctime and st_mtime fields of the
file for update.

In a locale with state-dependent encoding, whether fseek() restores the stream’s shift state is
implementation-dependent.

EX The fseeko() function is identical to the fseek() function except that the offset argument is of type
off_t.

RETURN VALUE
EXEX The fseek() and fseeko() functions return 0 if they succeed; otherwise they return −1 and set errno

to indicate the error.

ERRORS
EX The fseek() and fseeko() functions will fail if, either the stream is unbuffered or the stream´s buffer
EX needed to be flushed, and the call to fseek() or fseeko() causes an underlying lseek() or write() to

be invoked:

[EAGAIN] The O_NONBLOCK flag is set for the file descriptor and the process would be
delayed in the write operation.

[EBADF] The file descriptor underlying the stream file is not open for writing or the
stream’s buffer needed to be flushed and the file is not open.

System Interfaces and Headers, Issue 5: Volume 1 281

fseek() System Interfaces

EX [EFBIG] An attempt was made to write a file that exceeds the maximum file size or the
process’ file size limit.

EX [EFBIG] The file is a regular file and an attempt was made to write at or beyond the
offset maximum associated with the corresponding stream.

[EINTR] The write operation was terminated due to the receipt of a signal, and no data
was transferred.

[EINVAL] The whence argument is invalid. The resulting file-position indicator would be
set to a negative value.

EX [EIO] A physical I/O error has occurred, or the process is a member of a
background process group attempting to perform a write() to its controlling
terminal, TOSTOP is set, the process is neither ignoring nor blocking
SIGTTOU and the process group of the process is orphaned. This error may
also be returned under implementation-dependent conditions.

[ENOSPC] There was no free space remaining on the device containing the file.

EX [EOVERFLOW] For fseek(), the resulting file offset would be a value which cannot be
represented correctly in an object of type long.

EX [EOVERFLOW] For fseeko(), the resulting file offset would be a value which cannot be
represented correctly in an object of type off_t.

[EPIPE] The file descriptor underlying stream is associated with a pipe or FIFO.

[EPIPE] An attempt was made to write to a pipe or FIFO that is not open for reading
by any process; a SIGPIPE signal will also be sent to the thread.

EX [ENXIO] A request was made of a non-existent device, or the request was outside the
capabilities of the device.

EXAMPLES
None.

APPLICATION USAGE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
fopen(), fsetpos(), ftell (), getrlimit(), rewind(), ulimit(), ungetc(), <stdio.h>.

CHANGE HISTORY
First released in Issue 1.

Derived from Issue 1 of the SVID.

Issue 4
The following change is incorporated for alignment with the ISO C standard:

• The type of argument offset is now defined in full as long int instead of long.

The following change is incorporated for alignment with the FIPS requirements:

• The [EINTR] error is no longer an indication that the implementation does not report partial
transfers.

Other changes are incorporated as follows:

282 CAE Specification (1997)

System Interfaces fseek()

• In the DESCRIPTION, the words ‘‘The seek() function does not, by itself, extend the size of a
file’’ are deleted.

• In the RETURN VALUE section, the value −1 is marked as an extension. This is because the
ISO POSIX-1 standard only requires that a non-zero value is returned.

• In the ERRORS section, text is added to indicate that error returns will only be generated
when either the stream is unbuffered, or if the stream buffer needs to be flushed.

• The ‘‘will fail’’ and ‘‘may fail’’ parts of the ERRORS section are revised for consistency with
lseek() and write().

• Text associated with the [EIO] error is expanded and the [ENXIO] error is added.

• Text is added to explain how fseek() is used with wide-character input/output; this is marked
as a WP extension.

• The [EFBIG] error is marked to show extensions.

• The APPLICATION USAGE section is added.

Issue 4, Version 2
In the ERRORS section, the description of [EIO] is updated to include the case where a physical
I/O error occurs.

Issue 5
Normative text previously in the APPLICATION USAGE section is moved to the
DESCRIPTION.

Large File Summit extensions added.

System Interfaces and Headers, Issue 5: Volume 1 283

fsetpos() System Interfaces

NAME
fsetpos — set current file position

SYNOPSIS
#include <stdio.h>

int fsetpos(FILE * stream , const fpos_t * pos);

DESCRIPTION
The fsetpos() function sets the file position and state indicators for the stream pointed to by
stream according to the value of the object pointed to by pos , which must be a value obtained
from an earlier call to fgetpos() on the same stream.

A successful call to fsetpos() function clears the end-of-file indicator for the stream and undoes
any effects of ungetc() on the same stream. After an fsetpos() call, the next operation on an
update stream may be either input or output.

RETURN VALUE
The fsetpos() function returns 0 if it succeeds; otherwise it returns a non-zero value and sets errno
to indicate the error.

ERRORS
The fsetpos() function may fail if:

EX [EBADF] The file descriptor underlying stream is not valid.

[ESPIPE] The file descriptor underlying stream is associated with a pipe or FIFO.

EXAMPLES
None.

APPLICATION USAGE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
fopen(), ftell (), rewind(), ungetc(), <stdio.h>.

CHANGE HISTORY
First released in Issue 4.

Derived from the ISO C standard.

284 CAE Specification (1997)

System Interfaces fstat()

NAME
fstat — get file status

SYNOPSIS
OH #include <sys/types.h>

#include <sys/stat.h>

int fstat(int fildes , struct stat * buf);

DESCRIPTION
The fstat() function obtains information about an open file associated with the file descriptor
fildes , and writes it to the area pointed to by buf.

RT If _XOPEN_REALTIME is defined and has a value other than −1, and fildes references a shared
memory object, the implementation need update in the stat structure pointed to by the buf
argument only the st_uid , st_gid , st_size , and st_mode fields, and only the S_IRUSR, S_IWUSR,
S_IRGRP, S_IWGRP, S_IROTH, and S_IWOTH file permission bits need be valid.

The buf argument is a pointer to a stat structure, as defined in <sys/stat.h>, into which
information is placed concerning the file.

The structure members st_mode, st_ino, st_dev, st_uid, st_gid, st_atime, st_ctime and st_mtime
will have meaningful values for all file types defined in this document. The value of the member
st_nlink will be set to the number of links to the file.

An implementation that provides additional or alternative file access control mechanisms may,
under implementation-dependent conditions, cause fstat() to fail.

The fstat() function updates any time-related fields as described in File Times Update (see the
XBD specification, Chapter 4, Character Set), before writing into the stat structure.

RETURN VALUE
Upon successful completion, 0 is returned. Otherwise, −1 is returned and errno is set to indicate
the error.

ERRORS
The fstat() function will fail if:

[EBADF] The fildes argument is not a valid file descriptor.

EX [EIO] An I/O error occurred while reading from the file system.

EX [EOVERFLOW] The file size in bytes or the number of blocks allocated to the file or the file
serial number cannot be represented correctly in the structure pointed to by
buf.

EX The fstat() function may fail if:

[EOVERFLOW] One of the values is too large to store into the structure pointed to by the buf
argument.

EXAMPLES
None.

APPLICATION USAGE
None.

FUTURE DIRECTIONS
None.

System Interfaces and Headers, Issue 5: Volume 1 285

fstat() System Interfaces

SEE ALSO
lstat(), stat(), <sys/stat.h>, <sys/types.h>.

CHANGE HISTORY
First released in Issue 1.

Derived from Issue 1 of the SVID.

Issue 4
The following changes are incorporated in the DESCRIPTION for alignment with the
ISO POSIX-1 standard:

• A paragraph defining the contents of stat structure members is added.

• The words ‘‘extended security controls’’ are replaced by ‘‘additional or alternative file access
control mechanisms’’.

Another change is incorporated as follows:

• The <sys/types.h> header is now marked as optional (OH); this header need not be included
on XSI-conformant systems.

Issue 4, Version 2
The ERRORS section is updated for X/OPEN UNIX conformance as follows:

• The [EIO] error is added as a mandatory error indicated the occurrence of an I/O error.

• The [EOVERFLOW] error is added as an optional error indicating that one of the values is
too large to store in the area pointed to by buf.

Issue 5
The DESCRIPTION is updated for alignment with POSIX Realtime Extension.

Large File Summit extensions added.

286 CAE Specification (1997)

System Interfaces fstatvfs()

NAME
fstatvfs, statvfs — get file system information

SYNOPSIS
EX #include <sys/statvfs.h>

int fstatvfs(int fildes , struct statvfs * buf);
int statvfs(const char * path , struct statvfs * buf);

DESCRIPTION
The fstatvfs () function obtains information about the file system containing the file referenced by
fildes.

The following flags can be returned in the f_flag member:

ST_RDONLY Read-only file system.

ST_NOSUID Setuid/setgid bits ignored by exec.

The statvfs() function obtains descriptive information about the file system containing the file
named by path.

For both functions, the buf argument is a pointer to a statvfs structure that will be filled. Read,
write, or execute permission of the named file is not required, but all directories listed in the
pathname leading to the file must be searchable.

It is unspecified whether all members of the statvfs structure have meaningful values on all file
systems.

RETURN VALUE
Upon successful completion, statvfs() returns 0. Otherwise, it returns −1 and sets errno to
indicate the error.

ERRORS
The fstatvfs () and statvfs() functions will fail if:

[EIO] An I/O error occurred while reading the file system.

[EINTR] A signal was caught during execution of the function.

EX [EOVERFLOW] One of the values to be returned cannot be represented correctly in the
structure pointed to by buf.

The fstatvfs () function will fail if:

[EBADF] The fildes argument is not an open file descriptor.

The statvfs() function will fail if:

[EACCES] Search permission is denied on a component of the path prefix.

[ELOOP] Too many symbolic links were encountered in resolving path.

[ENAMETOOLONG]
The length of a pathname exceeds {PATH_MAX}, or a pathname component is
longer than {NAME_MAX}.

[ENOENT] A component of path does not name an existing file or path is an empty string.

[ENOTDIR] A component of the path prefix of path is not a directory.

System Interfaces and Headers, Issue 5: Volume 1 287

fstatvfs() System Interfaces

The statvfs() function may fail if:

[ENAMETOOLONG]
Pathname resolution of a symbolic link produced an intermediate result
whose length exceeds {PATH_MAX}.

EXAMPLES
None.

APPLICATION USAGE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
chmod(), chown(), creat(), dup(), exec, fcntl(), link (), mknod(), open(), pipe(), read(), time(),
unlink(), ustat(), utime(), write(), <sys/statvfs.h>.

CHANGE HISTORY
First released in Issue 4, Version 2.

Issue 5
Moved from X/OPEN UNIX extension to BASE.

Large File Summit extensions added.

288 CAE Specification (1997)

System Interfaces fsync()

NAME
fsync — synchronise changes to a file

SYNOPSIS
#include <unistd.h>

int fsync(int fildes);

DESCRIPTION
The fsync() function can be used by an application to indicate that all data for the open file
description named by fildes is to be transferred to the storage device associated with the file
described by fildes in an implementation-dependent manner. The fsync() function does not
return until the system has completed that action or until an error is detected.

RT The fsync() function forces all currently queued I/O operations associated with the file indicated
by file descriptor fildes to the synchronised I/O completion state. All I/O operations are
completed as defined for synchronised I/O file integrity completion.

RETURN VALUE
Upon successful completion, fsync() returns 0. Otherwise, −1 is returned and errno is set to
indicate the error. If the fsync() function fails, outstanding I/O operations are not guaranteed to
have been completed.

ERRORS
The fsync() function will fail if:

[EBADF] The fildes argument is not a valid descriptor.

[EINTR] The fsync() function was interrupted by a signal.

[EINVAL] The fildes argument does not refer to a file on which this operation is possible.

[EIO] An I/O error occurred while reading from or writing to the file system.

In the event that any of the queued I/O operations fail, fsync() returns the error conditions
defined for read() and write().

EXAMPLES
None.

APPLICATION USAGE
The fsync() function should be used by programs which require modifications to a file to be
completed before continuing; for example, a program which contains a simple transaction
facility might use it to ensure that all modifications to a file or files caused by a transaction are
recorded.

FUTURE DIRECTIONS
None.

SEE ALSO
sync(), <unistd.h>.

CHANGE HISTORY
First released in Issue 3.

Issue 4
The following changes are incorporated in this issue:

• The <unistd.h> header is added to the SYNOPSIS section.

• In the APPLICATION USAGE section, the words ‘‘require a file to be in a known state’’ are
replaced by ‘‘require modifications to a file to be completed before continuing’’.

System Interfaces and Headers, Issue 5: Volume 1 289

fsync() System Interfaces

Issue 5
Aligned with fsync() in the POSIX Realtime Extension. Specifically, the DESCRIPTION and
RETURN VALUE sections are much expanded, and the ERRORS section is updated to indicate
that fsync() can return the error conditions defined for read() and write().

290 CAE Specification (1997)

System Interfaces ftell()

NAME
ftell, ftello — return a file offset in a stream

SYNOPSIS
#include <stdio.h>

long int ftell(FILE * stream);
EX off_t ftello(FILE * stream);

DESCRIPTION
The ftell () function obtains the current value of the file-position indicator for the stream pointed
to by stream.

EX The ftello () function is identical to ftell () except that the return value is of type off_t.

RETURN VALUE
EX Upon successful completion, ftell () and ftello () return the current value of the file-position

indicator for the stream measured in bytes from the beginning of the file.

EX Otherwise, ftell () and ftello () return −1, cast to long and off_t respectively, and set errno to
indicate the error.

ERRORS
EX The ftell ()and ftello ()functions will fail if:

[EBADF] The file descriptor underlying stream is not an open file descriptor.

EX [EOVERFLOW] For ftell (), the current file offset cannot be represented correctly in an object of
type long.

EX [EOVERFLOW] For ftello (), the current file offset cannot be represented correctly in an object
of type off_t.

[ESPIPE] The file descriptor underlying stream is associated with a pipe or FIFO.

EXAMPLES
None.

APPLICATION USAGE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
fgetpos(), fopen(), fseek(), ftello (), lseek(), <stdio.h>.

CHANGE HISTORY
First released in Issue 1.

Derived from Issue 1 of the SVID.

Issue 4

The following change is incorporated for alignment with the ISO C standard:

• The function return value is now defined in full as long int. It was previously defined as
long.

Issue 5
Large File Summit extensions added.

System Interfaces and Headers, Issue 5: Volume 1 291

ftime() System Interfaces

NAME
ftime — get date and time

SYNOPSIS
EX #include <sys/timeb.h>

int ftime(struct timeb * tp);

DESCRIPTION
The ftime() function sets the time and millitm members of the timeb structure pointed to by tp
to contain the seconds and milliseconds portions, respectively, of the current time in seconds
since 00:00:00 UTC (Coordinated Universal Time), January 1, 1970. The contents of the timezone
and dstflag members of tp after a call to ftime() are unspecified.

The system clock need not have millisecond granularity. Depending on any granularity
(particularly a granularity of one) renders code non-portable.

RETURN VALUE
Upon successful completion, the ftime() function returns 0. Otherwise −1 is returned.

ERRORS
No errors are defined.

EXAMPLES
None.

APPLICATION USAGE
For portability to implementations conforming to earlier versions of this specification, time() is
preferred over this function.

FUTURE DIRECTIONS
None.

SEE ALSO
ctime(), gettimeofday (), time(), <sys/timeb.h>.

CHANGE HISTORY
First released in Issue 4, Version 2.

Issue 5
Moved from X/OPEN UNIX extension to BASE.

Normative text previously in the APPLICATION USAGE section is moved to the
DESCRIPTION.

292 CAE Specification (1997)

System Interfaces ftok()

NAME
ftok — generate an IPC key

SYNOPSIS
EX #include <sys/ipc.h>

key_t ftok(const char * path , int id);

DESCRIPTION
The ftok () function returns a key based on path and id that is usable in subsequent calls to
msgget(), semget() and shmget(). The path argument must be the pathname of an existing file
that the process is able to stat().

The ftok () function will return the same key value for all paths that name the same file, when
called with the same id value, and will return different key values when called with different id
values or with paths that name different files existing on the same file system at the same time.
It is unspecified whether ftok () returns the same key value when called again after the file
named by path is removed and recreated with the same name.

Only the low order 8-bits of id are significant. The behaviour of ftok () is unspecified if these bits
are 0.

RETURN VALUE
Upon successful completion, ftok () returns a key. Otherwise, ftok () returns (key_t)−1 and sets
errno to indicate the error.

ERRORS
The ftok () function will fail if:

[EACCES] Search permission is denied for a component of the path prefix.

[ELOOP] Too many symbolic links were encountered in resolving path.

[ENAMETOOLONG]
The length of the path argument exceeds {PATH_MAX} or a pathname
component is longer than {NAME_MAX}.

[ENOENT] A component of path does not name an existing file or path is an empty string.

[ENOTDIR] A component of the path prefix is not a directory.

The ftok () function may fail if:

[ENAMETOOLONG]
Pathname resolution of a symbolic link produced an intermediate result
whose length exceeds {PATH_MAX}.

EXAMPLES
None.

APPLICATION USAGE
For maximum portability, id should be a single-byte character.

FUTURE DIRECTIONS
None.

SEE ALSO
msgget(), semget(), shmget(), <sys/ipc.h>.

System Interfaces and Headers, Issue 5: Volume 1 293

ftok() System Interfaces

CHANGE HISTORY
First released in Issue 4, Version 2.

Issue 5
Moved from X/OPEN UNIX extension to BASE.

294 CAE Specification (1997)

System Interfaces ftruncate()

NAME
ftruncate, truncate — truncate a file to a specified length

SYNOPSIS
#include <unistd.h>

int ftruncate(int fildes , off_t length);
EX int truncate(const char * path , off_t length);

DESCRIPTION
The ftruncate() function causes the regular file referenced by fildes to have a size of length bytes.

EX The truncate() function causes the regular file named by path to have a size of length bytes.

If the file previously was larger than length, the extra data is discarded. If it was previously
shorter than length, it is unspecified whether the file is changed or its size increased. If the file is

RT extended, the extended area appears as if it were zero-filled. If fildes references a shared memory
object, ftruncate() sets the size of the shared memory object to length . If the file is not a regular
file or a shared memory object, the result is unspecified.

EX With ftruncate(), the file must be open for writing; for truncate(), the process must have write
permission for the file.

RT If the effect of truncation is to decrease the size of a file or shared memory object and whole
pages beyond the new end were previously mapped, then the whole pages beyond the new end
will be discarded. References to the discarded pages result in generation of a SIGBUS signal.

EX If the request would cause the file size to exceed the soft file size limit for the process, the request
will fail and the implementation will generate the SIGXFSZ signal for the process.

These functions do not modify the file offset for any open file descriptions associated with the
file. On successful completion, if the file size is changed, these functions will mark for update
the st_ctime and st_mtime fields of the file, and if the file is a regular file, the S_ISUID and
S_ISGID bits of the file mode may be cleared.

RETURN VALUE
EX Upon successful completion, ftruncate() and truncate() return 0. Otherwise a −1 is returned, and

errno is set to indicate the error.

ERRORS
EX The ftruncate()and truncate()functions will fail if:

[EINTR] A signal was caught during execution.

[EINVAL] The length argument was less than 0.

[EFBIG] or [EINVAL]
The length argument was greater than the maximum file size.

[EIO] An I/O error occurred while reading from or writing to a file system.

The ftruncate() function will fail if:

[EBADF] or [EINVAL]
The fildes argument is not a file descriptor open for writing.

EX [EFBIG] The file is a regular file and length is greater than the offset maximum
established in the open file description associated with fildes .

[EINVAL] The fildes argument references a file that was opened without write
permission.

System Interfaces and Headers, Issue 5: Volume 1 295

ftruncate() System Interfaces

[EROFS] The named file resides on a read-only file system.

EX The truncate() function will fail if:

[EACCES] A component of the path prefix denies search permission, or write permission
is denied on the file.

[EISDIR] The named file is a directory.

[ELOOP] Too many symbolic links were encountered in resolving path.

[ENAMETOOLONG]
The length of the specified pathname exceeds PATH_MAX bytes, or the length
of a component of the pathname exceeds NAME_MAX bytes.

[ENOENT] A component of path does not name an existing file or path is an empty string.

[ENOTDIR] A component of the path prefix of path is not a directory.

[EROFS] The named file resides on a read-only file system.

The truncate() function may fail if:

[ENAMETOOLONG]
Pathname resolution of a symbolic link produced an intermediate result
whose length exceeds {PATH_MAX}.

EXAMPLES
None.

APPLICATION USAGE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
open(), <unistd.h>.

CHANGE HISTORY
First released in Issue 4, Version 2.

Issue 5
Moved from X/OPEN UNIX extension to BASE and aligned with ftruncate() in the POSIX
Realtime Extension. Specifically, the DESCRIPTION is extensively reworded and [EROFS] is
added to the list of mandatory errors that can be returned by ftruncate().

Large File Summit extensions added.

296 CAE Specification (1997)

System Interfaces ftrylockfile()

NAME
ftrylockfile — stdio locking functions

SYNOPSIS
#include <stdio.h>

int ftrylockfile(FILE * file);

DESCRIPTION
Refer to flockfile().

CHANGE HISTORY
First released in Issue 5.

Included for alignment with the POSIX Threads Extension.

System Interfaces and Headers, Issue 5: Volume 1 297

ftw() System Interfaces

NAME
ftw — traverse (walk) a file tree

SYNOPSIS
EX #include <ftw.h>

int ftw(const char * path , int (* fn)(const char *,
const struct stat * ptr , int flag), int ndirs);

DESCRIPTION
The ftw() function recursively descends the directory hierarchy rooted in path . For each object in
the hierarchy, ftw() calls the function pointed to by fn , passing it a pointer to a null-terminated
character string containing the name of the object, a pointer to a stat structure containing
information about the object, and an integer. Possible values of the integer, defined in the
<ftw.h> header, are:

FTW_D For a directory.

FTW_DNR For a directory that cannot be read.

FTW_F For a file.

EX FTW_SL For a symbolic link (but see also FTW_NS below).

EX FTW_NS For an object other than a symbolic link on which stat() could not successfully be
EX executed. If the object is a symbolic link and stat() failed, it is unspecified whether

ftw() passes FTW_SL or FTW_NS to the user-supplied function.

If the integer is FTW_DNR, descendants of that directory will not be processed. If the integer is
FTW_NS, the stat structure will contain undefined values. An example of an object that would
cause FTW_NS to be passed to the function pointed to by fn would be a file in a directory with
read but without execute (search) permission.

The ftw() function visits a directory before visiting any of its descendants.

EX The ftw() function uses at most one file descriptor for each level in the tree.

The argument ndirs should be in the range of 1 to {OPEN_MAX}.

The tree traversal continues until the tree is exhausted, an invocation of fn returns a non-zero
value, or some error, other than [EACCES], is detected within ftw().

The ndirs argument specifies the maximum number of directory streams or file descriptors or
both available for use by ftw() while traversing the tree. When ftw() returns it closes any
directory streams and file descriptors it uses not counting any opened by the application-
supplied fn() function.

RETURN VALUE
If the tree is exhausted, ftw() returns 0. If the function pointed to by fn returns a non-zero value,
ftw() stops its tree traversal and returns whatever value was returned by the function pointed to
by fn(). If ftw() detects an error, it returns −1 and sets errno to indicate the error.

EX If ftw() encounters an error other than [EACCES] (see FTW_DNR and FTW_NS above), it
returns −1 and errno is set to indicate the error. The external variable errno may contain any error
value that is possible when a directory is opened or when one of the stat functions is executed on
a directory or file.

298 CAE Specification (1997)

System Interfaces ftw()

ERRORS
The ftw() function will fail if:

[EACCES] Search permission is denied for any component of path or read permission is
denied for path.

[ELOOP] Too many symbolic links were encountered.

[ENAMETOOLONG]
The length of the path exceeds {PATH_MAX}, or a pathname component is
longer than {NAME_MAX}.

[ENOENT] A component of path does not name an existing file or path is an empty string.

[ENOTDIR] A component of path is not a directory.

The ftw() function may fail if:

[EINVAL] The value of the ndirs argument is invalid.

EX [ENAMETOOLONG]
Pathname resolution of a symbolic link produced an intermediate result
whose length exceeds {PATH_MAX}.

In addition, if the function pointed to by fn encounters system errors, errno may be set
accordingly.

EXAMPLES
None.

APPLICATION USAGE
The ftw() may allocate dynamic storage during its operation. If ftw() is forcibly terminated,
such as by longjmp() or siglongjmp () being executed by the function pointed to by fn or an
interrupt routine, ftw() will not have a chance to free that storage, so it will remain permanently
allocated. A safe way to handle interrupts is to store the fact that an interrupt has occurred, and
arrange to have the function pointed to by fn return a non-zero value at its next invocation.

FUTURE DIRECTIONS
None.

SEE ALSO
longjmp(), lstat(), malloc (), nftw(), opendir(), siglongjmp (), stat(), <ftw.h>, <sys/stat.h>.

CHANGE HISTORY
First released in Issue 1.

Derived from Issue 1 of the SVID.

Issue 4
The following change is incorporated for alignment with the FIPS requirements:

• In the ERRORS section, the condition whereby [ENAMETOOLONG] will be returned if a
pathname component is larger that {NAME_MAX} is now defined as mandatory and marked
as an extension.

Other changes are incorporated as follows:

• The type of argument path is changed from char * to const char *. The argument list for fn()
has also been defined.

• In the DESCRIPTION, the words ‘‘other than [EACCES]’’ are added to the paragraph
describing termination conditions for tree traversal.

System Interfaces and Headers, Issue 5: Volume 1 299

ftw() System Interfaces

Issue 4, Version 2
The following changes are incorporated for X/OPEN UNIX conformance:

• The DESCRIPTION is updated to describe the use of the FTW_SL and FTW_NS values for a
symbolic link.

• The DESCRIPTION states that ftw() uses at most one file descriptor for each level in the tree.

• The DESCRIPTION constrains ndirs to the range from 1 to {OPEN_MAX}.

• The RETURN VALUE section is updated to describe the case where ftw() encounters an error
other than [EACCES].

• In the ERRORS section, a second [ENAMETOOLONG] condition is defined that may report
excessive length of an intermediate result of pathname resolution of a symbolic link.

Issue 5
UX codings in the DESCRIPTION, RETURN VALUE and ERRORS sections have been changed
to EX.

300 CAE Specification (1997)

System Interfaces funlockfile()

NAME
funlockfile — stdio locking functions

SYNOPSIS
#include <stdio.h>

void funlockfile(FILE * file);

DESCRIPTION
Refer to flockfile().

CHANGE HISTORY
First released in Issue 5.

Included for alignment with the POSIX Threads Extension.

System Interfaces and Headers, Issue 5: Volume 1 301

fwide() System Interfaces

NAME
fwide — set stream orientation

SYNOPSIS
#include <stdio.h>
#include <wchar.h>

int fwide(FILE * stream , int mode);

DESCRIPTION
The fwide() function determines the orientation of the stream pointed to by stream. If mode is
greater than zero, the function first attempts to make the stream wide-orientated. If mode is less
than zero, the function first attempts to make the stream byte-orientated. Otherwise, mode is
zero and the function does not alter the orientation of the stream.

If the orientation of the stream has already been determined, fwide() does not change it.

Because no return value is reserved to indicate an error, an application wishing to check for error
situations should set errno to 0, then call fwide(), then check errno and if it is non-zero, assume an
error has occurred.

RETURN VALUE
The fwide() function returns a value greater than zero if, after the call, the stream has wide-
orientation, a value less than zero if the stream has byte-orientation, or zero if the stream has no
orientation.

ERRORS
The fwide() function may fail if:

EX [EBADF] The stream argument is not a valid stream.

EXAMPLES
None.

APPLICATION USAGE
A call to fwide() with mode set to zero can be used to determine the current orientation of a
stream.

FUTURE DIRECTIONS
None.

SEE ALSO
<wchar.h>.

CHANGE HISTORY
First released in Issue 5.

Included for alignment with the ISO/IEC 9899:1990/Amendment 1:1994 (E).

302 CAE Specification (1997)

System Interfaces fwprintf()

NAME
fwprintf, wprintf, swprintf — print formatted wide-character output

SYNOPSIS
#include <stdio.h>
#include <wchar.h>

int fwprintf(FILE * stream , const wchar_t * format , . . .);
int wprintf(const wchar_t * format , . . .);
int swprintf(wchar_t *s, size_t n, const wchar_t * format , . . .);

DESCRIPTION
The fwprintf() function places output on the named output stream. The wprintf() function places
output on the standard output stream stdout . The swprintf() function places output followed by
the null wide-character in consecutive wide-characters starting at *s; no more than n wide-
characters are written, including a terminating null wide-character, which is always added
(unless n is zero).

Each of these functions converts, formats and prints its arguments under control of the format
wide-character string. The format is composed of zero or more directives: ordinary wide-
characters , which are simply copied to the output stream and conversion specifications , each of
which results in the fetching of zero or more arguments. The results are undefined if there are
insufficient arguments for the format . If the format is exhausted while arguments remain, the
excess arguments are evaluated but are otherwise ignored.

EX Conversions can be applied to the nth argument after the format in the argument list, rather than
to the next unused argument. In this case, the conversion wide-character % (see below) is
replaced by the sequence %n$, where n is a decimal integer in the range [1, {NL_ARGMAX}],
giving the position of the argument in the argument list. This feature provides for the definition
of format wide-character strings that select arguments in an order appropriate to specific
languages (see the EXAMPLES section).

In format wide-character strings containing the %n$ form of conversion specifications,
numbered arguments in the argument list can be referenced from the format wide-character
string as many times as required.

In format wide-character strings containing the % form of conversion specifications, each
argument in the argument list is used exactly once.

All forms of the fwprintf() functions allow for the insertion of a language-dependent radix
character in the output string, output as a wide-character value. The radix character is defined
in the program’s locale (category LC_NUMERIC). In the POSIX locale, or in a locale where the
radix character is not defined, the radix character defaults to a period (.).

EX Each conversion specification is introduced by the % wide-character or by the wide-character
sequence %n$,after which the following appear in sequence:

• Zero or more flags (in any order), which modify the meaning of the conversion specification.

• An optional minimum field width . If the converted value has fewer wide-characters than the
field width, it will be padded with spaces by default on the left; it will be padded on the right,
if the left-adjustment flag (−), described below, is given to the field width. The field width
takes the form of an asterisk (*), described below, or a decimal integer.

• An optional precision that gives the minimum number of digits to appear for the d, i, o, u, x
and X conversions; the number of digits to appear after the radix character for the e, E and f
conversions; the maximum number of significant digits for the g and G conversions; or the
maximum number of wide-characters to be printed from a string in s conversions. The

System Interfaces and Headers, Issue 5: Volume 1 303

fwprintf() System Interfaces

precision takes the form of a period (.) followed either by an asterisk (*), described below, or
an optional decimal digit string, where a null digit string is treated as 0. If a precision
appears with any other conversion wide-character, the behaviour is undefined.

• An optional l (ell) specifying that a following c conversion wide-character applies to a wint_t
argument; an optional l specifying that a following s conversion wide-character applies to a
wchar_t argument; an optional h specifying that a following d, i, o, u, x or X conversion
wide-character applies to a type short int or type unsigned short int argument (the
argument will have been promoted according to the integral promotions, and its value will
be converted to type short int or unsigned short int before printing); an optional h specifying
that a following n conversion wide-character applies to a pointer to a type short int
argument; an optional l (ell) specifying that a following d, i, o, u, x or X conversion wide-
character applies to a type long int or unsigned long int argument; an optional l (ell)
specifying that a following n conversion wide-character applies to a pointer to a type long
int argument; or an optional L specifying that a following e, E, f, g or G conversion wide-
character applies to a type long double argument. If an h, l or L appears with any other
conversion wide-character, the behaviour is undefined.

• A conversion wide-character that indicates the type of conversion to be applied.

A field width, or precision, or both, may be indicated by an asterisk (*). In this case an argument
of type int supplies the field width or precision. Arguments specifying field width, or precision,
or both must appear in that order before the argument, if any, to be converted. A negative field
width is taken as a − flag followed by a positive field width. A negative precision is taken as if

EX the precision were omitted. In format wide-character strings containing the %n$ form of a
conversion specification, a field width or precision may be indicated by the sequence *m$, where
m is a decimal integer in the range [1, {NL_ARGMAX}] giving the position in the argument list
(after the format argument) of an integer argument containing the field width or precision, for
example:

wprintf(L"%1$d:%2$.*3$d:%4$.*3$d\n", hour, min, precision, sec);

The format can contain either numbered argument specifications (that is, %n$ and *m$), or
unnumbered argument specifications (that is, % and *), but normally not both. The only
exception to this is that %% can be mixed with the %n$ form. The results of mixing numbered
and unnumbered argument specifications in a format wide-character string are undefined. When
numbered argument specifications are used, specifying the Nth argument requires that all the
leading arguments, from the first to the (N−1)th, are specified in the format wide-character
string.

The flag wide-characters and their meanings are:

EX ’ The integer portion of the result of a decimal conversion (%i, %d, %u, %f, %g or %G)
will be formatted with thousands’ grouping wide-characters. For other conversions the
behaviour is undefined. The non-monetary grouping wide-character is used.

− The result of the conversion will be left-justified within the field. The conversion will
be right-justified if this flag is not specified.

+ The result of a signed conversion will always begin with a sign (+ or −). The conversion
will begin with a sign only when a negative value is converted if this flag is not
specified.

space If the first wide-character of a signed conversion is not a sign or if a signed conversion
results in no wide-characters, a space will be prefixed to the result. This means that if
the space and + flags both appear, the space flag will be ignored.

304 CAE Specification (1997)

System Interfaces fwprintf()

This flag specifies that the value is to be converted to an alternative form. For o
conversion, it increases the precision (if necessary) to force the first digit of the result to
be 0. For x or X conversions, a non-zero result will have 0x (or 0X) prefixed to it. For e,
E, f, g or G conversions, the result will always contain a radix character, even if no
digits follow it. Without this flag, a radix character appears in the result of these
conversions only if a digit follows it. For g and G conversions, trailing zeros will not be
removed from the result as they normally are. For other conversions, the behaviour is
undefined.

0 For d, i, o, u, x, X, e, E, f, g and G conversions, leading zeros (following any indication of
sign or base) are used to pad to the field width; no space padding is performed. If the 0
and − flags both appear, the 0 flag will be ignored. For d, i, o, u, x and X conversions, if
a precision is specified, the 0 flag will be ignored. If the 0 and ’ flags both appear, the
grouping wide-characters are inserted before zero padding. For other conversions, the
behaviour is undefined.

The conversion wide-characters and their meanings are:

d, i The int argument is converted to a signed decimal in the style [−]dddd. The precision
specifies the minimum number of digits to appear; if the value being converted can be
represented in fewer digits, it will be expanded with leading zeros. The default
precision is 1. The result of converting 0 with an explicit precision of 0 is no wide-
characters.

o The unsigned int argument is converted to unsigned octal format in the style dddd. The
precision specifies the minimum number of digits to appear; if the value being
converted can be represented in fewer digits, it will be expanded with leading zeros.
The default precision is 1. The result of converting 0 with an explicit precision of 0 is no
wide-characters.

u The unsigned int argument is converted to unsigned decimal format in the style dddd .
The precision specifies the minimum number of digits to appear; if the value being
converted can be represented in fewer digits, it will be expanded with leading zeros.
The default precision is 1. The result of converting 0 with an explicit precision of 0 is no
wide-characters.

x The unsigned int argument is converted to unsigned hexadecimal format in the style
dddd ; the letters abcdef are used. The precision specifies the minimum number of digits
to appear; if the value being converted can be represented in fewer digits, it will be
expanded with leading zeros. The default precision is 1. The result of converting 0 with
an explicit precision of 0 is no wide-characters.

X Behaves the same as the x conversion wide-character except that letters ABCDEF are
used instead of abcdef.

f The double argument is converted to decimal notation in the style [−]ddd.ddd, where
the number of digits after the radix character is equal to the precision specification. If
the precision is missing, it is taken as 6; if the precision is explicitly 0 and no # flag is
present, no radix character appears. If a radix character appears, at least one digit
appears before it. The value is rounded to the appropriate number of digits.

EX The fwprintf() family of functions may make available wide-character string
representations for infinity and NaN.

e, E The double argument is converted in the style [−]d.ddde ± dd, where there is one digit
before the radix character (which is non-zero if the argument is non-zero) and the
number of digits after it is equal to the precision; if the precision is missing, it is taken

System Interfaces and Headers, Issue 5: Volume 1 305

fwprintf() System Interfaces

as 6; if the precision is 0 and no # flag is present, no radix character appears. The value
is rounded to the appropriate number of digits. The E conversion wide-character will
produce a number with E instead of e introducing the exponent. The exponent always
contains at least two digits. If the value is 0, the exponent is 0.

EX The fwprintf() family of functions may make available wide-character string
representations for infinity and NaN.

g, G The double argument is converted in the style f or e (or in the style E in the case of a G
conversion wide-character), with the precision specifying the number of significant
digits. If an explicit precision is 0, it is taken as 1. The style used depends on the value
converted; style e (or E) will be used only if the exponent resulting from such a
conversion is less than −4 or greater than or equal to the precision. Trailing zeros are
removed from the fractional portion of the result; a radix character appears only if it is
followed by a digit.

EX The fwprintf() family of functions may make available wide-character string
representations for infinity and NaN.

c If no l (ell) qualifier is present, the int argument is converted to a wide-character as if by
calling the btowc() function and the resulting wide-character is written. Otherwise the
wint_t argument is converted to wchar_t, and written.

s If no l (ell) qualifier is present, the argument must be a pointer to a character array
containing a character sequence beginning in the initial shift state. Characters from the
array are converted as if by repeated calls to the mbrtowc() function, with the
conversion state described by an mbstate_t object initialised to zero before the first
character is converted, and written up to (but not including) the terminating null wide-
character. If the precision is specified, no more than that many wide-characters are
written. If the precision is not specified or is greater than the size of the array, the array
must contain a null wide-character.

If an l (ell) qualifier is present, the argument must be a pointer to an array of type
wchar_t. Wide characters from the array are written up to (but not including) a
terminating null wide-character. If no precision is specified or is greater than the size of
the array, the array must contain a null wide-character. If a precision is specified, no
more than that many wide-characters are written.

p The argument must be a pointer to void. The value of the pointer is converted to a
sequence of printable wide-characters, in an implementation-dependent manner.

n The argument must be a pointer to an integer into which is written the number of
wide-characters written to the output so far by this call to one of the fwprintf()
functions. No argument is converted.

EX C Same as lc.

S Same as ls.

% Output a % wide-character; no argument is converted. The entire conversion
specification must be %%.

If a conversion specification does not match one of the above forms, the behaviour is undefined.

In no case does a non-existent or small field width cause truncation of a field; if the result of a
conversion is wider than the field width, the field is simply expanded to contain the conversion
result. Characters generated by fwprintf() and wprintf() are printed as if fputwc() had been
called.

306 CAE Specification (1997)

System Interfaces fwprintf()

The st_ctime and st_mtime fields of the file will be marked for update between the call to a
successful execution of fwprintf() or wprintf() and the next successful completion of a call to
fflush() or fclose() on the same stream or a call to exit() or abort().

RETURN VALUE
Upon successful completion, these functions return the number of wide-characters transmitted
excluding the terminating null wide-character in the case of swprintf() or a negative value if an
output error was encountered.

ERRORS
For the conditions under which fwprintf() and wprintf() will fail and may fail, refer to fputwc().

In addition, all forms of fwprintf() may fail if:

EX [EILSEQ] A wide-character code that does not correspond to a valid character has been
detected.

EX [EINVAL] There are insufficient arguments.

In addition, wprintf() and fwprintf() may fail if:

[ENOMEM] Insufficient storage space is available.

EXAMPLES
To print the language-independent date and time format, the following statement could be used:

wprintf (format, weekday, month, day, hour, min);

For American usage, format could be a pointer to the wide-character string:

L"%s, %s %d, %d:%.2d\n"

producing the message:

Sunday, July 3, 10:02

whereas for German usage, format could be a pointer to the wide-character string:

L"%1$s, %3$d. %2$s, %4$d:%5$.2d\n"

producing the message:

Sonntag, 3. Juli, 10:02

APPLICATION USAGE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
btowc(), fputwc(), fwscanf(), setlocale (), mbrtowc(), <stdio.h>, <wchar.h>, the XBD specification,
Chapter 5, Locale.

CHANGE HISTORY
First released in Issue 5.

Include for alignment with the ISO/IEC 9899:1990/Amendment 1:1994 (E).

System Interfaces and Headers, Issue 5: Volume 1 307

fwrite() System Interfaces

NAME
fwrite — binary output

SYNOPSIS
#include <stdio.h>

size_t fwrite(const void *ptr, size_t size , size_t nitems ,
FILE * stream);

DESCRIPTION
The fwrite() function writes, from the array pointed to by ptr, up to nitems members whose size
is specified by size , to the stream pointed to by stream. The file-position indicator for the stream
(if defined) is advanced by the number of bytes successfully written. If an error occurs, the
resulting value of the file-position indicator for the stream is indeterminate.

The st_ctime and st_mtime fields of the file will be marked for update between the successful
execution of fwrite() and the next successful completion of a call to fflush() or fclose() on the
same stream or a call to exit() or abort().

RETURN VALUE
The fwrite() function returns the number of members successfully written, which may be less
than nitems if a write error is encountered. If size or nitems is 0, fwrite() returns 0 and the state of
the stream remains unchanged. Otherwise, if a write error occurs, the error indicator for the
stream is set and errno is set to indicate the error.

ERRORS
Refer to fputc().

EXAMPLES
None.

APPLICATION USAGE
Because of possible differences in member length and byte ordering, files written using fwrite()
are application-dependent, and possibly cannot be read using fread() by a different application
or by the same application on a different processor.

FUTURE DIRECTIONS
None.

SEE ALSO
ferror(), fopen(), printf(), putc(), puts(), write(), <stdio.h>.

CHANGE HISTORY
First released in Issue 1.

Derived from Issue 1 of the SVID.

Issue 4
The following change is incorporated for alignment with the ISO C standard:

• The type of argument ptr is changed from void* to const void*.

Another change is incorporated as follows:

• In the DESCRIPTION, the text is changed to make it clear that the function advances the file-
position indicator by the number of bytes successfully written rather than the number of
characters, which could include multi-byte sequences.

308 CAE Specification (1997)

System Interfaces fwscanf()

NAME
fwscanf, wscanf, swscanf — convert formatted wide-character input

SYNOPSIS
#include <stdio.h>
#include <wchar.h>

int fwscanf(FILE * stream , const wchar_t * format , ...);
int wscanf(const wchar_t * format , ...);
int swscanf(const wchar_t * s, const wchar_t * format , ...);

DESCRIPTION
The fwscanf() function reads from the named input stream. The wscanf() function reads from the
standard input stream stdin . The swscanf() function reads from the wide-character string s.
Each function reads wide-characters, interprets them according to a format, and stores the
results in its arguments. Each expects, as arguments, a control wide-character string format
described below, and a set of pointer arguments indicating where the converted input should be
stored. The result is undefined if there are insufficient arguments for the format. If the format is
exhausted while arguments remain, the excess arguments are evaluated but are otherwise
ignored.

EX Conversions can be applied to the nth argument after the format in the argument list, rather than
to the next unused argument. In this case, the conversion wide-character % (see below) is
replaced by the sequence %n$, where n is a decimal integer in the range [1, {NL_ARGMAX}].
This feature provides for the definition of format wide-character strings that select arguments in
an order appropriate to specific languages. In format wide-character strings containing the %n$
form of conversion specifications, it is unspecified whether numbered arguments in the
argument list can be referenced from the format wide-character string more than once.

The format can contain either form of a conversion specification, that is, % or %n$, but the two
forms cannot normally be mixed within a single format wide-character string. The only
exception to this is that %% or %* can be mixed with the %n$ form.

The fwscanf() function in all its forms allows for detection of a language-dependent radix
character in the input string, encoded as a wide-character value. The radix character is defined
in the program’s locale (category LC_NUMERIC). In the POSIX locale, or in a locale where the
radix character is not defined, the radix character defaults to a period (.).

The format is a wide-character string composed of zero or more directives. Each directive is
composed of one of the following: one or more white-space wide-characters (space, tab,
newline, vertical-tab or form-feed characters); an ordinary wide-character (neither % nor a
white-space character); or a conversion specification. Each conversion specification is

EX introduced by a %or the sequence %n$after which the following appear in sequence:

• An optional assignment-suppressing character *.

• An optional non-zero decimal integer that specifies the maximum field width.

• An optional size modifier h, l (ell) or L indicating the size of the receiving object. The
conversion wide-characters c, s and [must be precede by l (ell) if the corresponding
argument is a pointer to wchar_t rather than a pointer to a character type. The conversion
wide-characters d, i and n must be preceded by h if the corresponding argument is a pointer
to short int rather than a pointer to int, or by l (ell) if it is a pointer to long int. Similarly, the
conversion wide-characters o, u and x must be preceded by h if the corresponding argument
is a pointer to unsigned short int rather than a pointer to unsigned int, or by l (ell) if it is a
pointer to unsigned long int. The conversion wide-characters e, f and g must be preceded by
l (ell) if the corresponding argument is a pointer to double rather than a pointer to float, or by

System Interfaces and Headers, Issue 5: Volume 1 309

fwscanf() System Interfaces

L if it is a pointer to long double. If an h, l (ell) or L appears with any other conversion
wide-character, the behaviour is undefined.

• A conversion wide-character that specifies the type of conversion to be applied. The valid
conversion wide-characters are described below.

The fwscanf() functions execute each directive of the format in turn. If a directive fails, as
detailed below, the function returns. Failures are described as input failures (due to the
unavailability of input bytes) or matching failures (due to inappropriate input).

A directive composed of one or more white-space wide-characters is executed by reading input
until no more valid input can be read, or up to the first wide-character which is not a white-
space wide-character, which remains unread.

A directive that is an ordinary wide-character is executed as follows. The next wide-character is
read from the input and compared with the wide-character that comprises the directive; if the
comparison shows that they are not equivalent, the directive fails, and the differing and
subsequent wide-characters remain unread.

A directive that is a conversion specification defines a set of matching input sequences, as
described below for each conversion wide-character. A conversion specification is executed in
the following steps:

Input white-space wide-characters (as specified by iswspace()) are skipped, unless the
conversion specification includes a [, c or n conversion character.

An item is read from the input, unless the conversion specification includes an n conversion
wide-character. An input item is defined as the longest sequence of input wide-characters, not
exceeding any specified field width, which is an initial subsequence of a matching sequence.
The first wide-character, if any, after the input item remains unread. If the length of the input
item is 0, the execution of the conversion specification fails; this condition is a matching failure,
unless end-of-file, an encoding error, or a read error prevented input from the stream, in which
case it is an input failure.

Except in the case of a % conversion wide-character, the input item (or, in the case of a %n
conversion specification, the count of input wide-characters) is converted to a type appropriate
to the conversion wide-character. If the input item is not a matching sequence, the execution of
the conversion specification fails; this condition is a matching failure. Unless assignment
suppression was indicated by a *, the result of the conversion is placed in the object pointed to
by the first argument following the format argument that has not already received a conversion

EX result if the conversion specification is introduced by %, or in the nth argument if introduced by
the wide-character sequence %n$. If this object does not have an appropriate type, or if the
result of the conversion cannot be represented in the space provided, the behaviour is undefined.

The following conversion wide-characters are valid:

d Matches an optionally signed decimal integer, whose format is the same as expected for
the subject sequence of wcstol() with the value 10 for the base argument. In the absence
of a size modifier, the corresponding argument must be a pointer to int.

i Matches an optionally signed integer, whose format is the same as expected for the
subject sequence of wcstol() with 0 for the base argument. In the absence of a size
modifier, the corresponding argument must be a pointer to int.

o Matches an optionally signed octal integer, whose format is the same as expected for
the subject sequence of wcstoul() with the value 8 for the base argument. In the absence
of a size modifier, the corresponding argument must be a pointer to unsigned int.

310 CAE Specification (1997)

System Interfaces fwscanf()

u Matches an optionally signed decimal integer, whose format is the same as expected for
the subject sequence of wcstoul() with the value 10 for the base argument. In the
absence of a size modifier, the corresponding argument must be a pointer to unsigned
int.

x Matches an optionally signed hexadecimal integer, whose format is the same as
expected for the subject sequence of wcstoul() with the value 16 for the base argument.
In the absence of a size modifier, the corresponding argument must be a pointer to
unsigned int.

e, f, g Matches an optionally signed floating-point number, whose format is the same as
expected for the subject sequence of wcstod(). In the absence of a size modifier, the
corresponding argument must be a pointer to float.

If the fwprintf() family of functions generates character string representations for
infinity and NaN (a 7858 symbolic entity encoded in floating-point format) to support
the ANSI/IEEE Std 754:1985 standard, the fwscanf() family of functions will recognise
them as input.

s Matches a sequence of non white-space wide-characters. If no l (ell) qualifier is present,
characters from the input field are converted as if by repeated calls to the wcrtomb()
function, with the conversion state described by an mbstate_t object initialised to zero
before the first wide-character is converted. The corresponding argument must be a
pointer to a character array large enough to accept the sequence and the terminating
null character, which will be added automatically.

Otherwise, the corresponding argument must be a pointer to an array of wchar_t large
enough to accept the sequence and the terminating null wide-character, which will be
added automatically.

[Matches a non-empty sequence of wide-characters from a set of expected wide-
characters (the scanset). If no l (ell) qualifier is present, wide-characters from the input
field are converted as if by repeated calls to the wcrtomb() function, with the conversion
state described by an mbstate_t object initialised to zero before the first wide-character
is converted. The corresponding argument must be a pointer to a character array large
enough to accept the sequence and the terminating null character, which will be added
automatically.

If an l (ell) qualifier is present, the corresponding argument must be a pointer to an
array of wchar_t large enough to accept the sequence and the terminating null wide-
character, which will be added automatically.

The conversion specification includes all subsequent widw characters in the format
string up to and including the matching right square bracket (]). The wide-characters
between the square brackets (the scanlist) comprise the scanset, unless the wide-
character after the left square bracket is a circumflex (ˆ), in which case the scanset
contains all wide-characters that do not appear in the scanlist between the circumflex
and the right square bracket. If the conversion specification begins with [] or [ˆ], the
right square bracket is included in the scanlist and the next right square bracket is the
matching right square bracket that ends the conversion specification; otherwise the first
right square bracket is the one that ends the conversion specification. If a − is in the
scanlist and is not the first wide-character, nor the second where the first wide-
character is a ˆ, nor the last wide-character, the behaviour is implementation-
dependent.

c Matches a sequence of wide-characters of the number specified by the field width (1 if
no field width is present in the conversion specification). If no l (ell) qualifier is present,

System Interfaces and Headers, Issue 5: Volume 1 311

fwscanf() System Interfaces

wide-characters from the input field are converted as if by repeated calls to the
wcrtomb() function, with the conversion state described by an mbstate_t object
initialised to zero before the first wide-character is converted. The corresponding
argument must be a pointer to a character array large enough to accept the sequence.
No null character is added.

Otherwise, the corresponding argument must be a pointer to an array of wchar_t large
enough to accept the sequence. No null wide-character is added.

p Matches an implementation-dependent set of sequences, which must be the same as
the set of sequences that is produced by the %p conversion of the corresponding
fwprintf() functions. The corresponding argument must be a pointer to a pointer to
void. The interpretation of the input item is implementation-dependent. If the input
item is a value converted earlier during the same program execution, the pointer that
results will compare equal to that value; otherwise the behaviour of the %p conversion
is undefined.

n No input is consumed. The corresponding argument must be a pointer to the integer
into which is to be written the number of wide-characters read from the input so far by
this call to the fwscanf() functions. Execution of a %n conversion specification does not
increment the assignment count returned at the completion of execution of the
function.

EX C Same as lc.

S Same as ls.

% Matches a single %; no conversion or assignment occurs. The complete conversion
specification must be %%.

If a conversion specification is invalid, the behaviour is undefined.

The conversion characters E, G and X are also valid and behave the same as, respectively, e, g
and x.

If end-of-file is encountered during input, conversion is terminated. If end-of-file occurs before
any wide-characters matching the current conversion specification (except for %n) have been
read (other than leading white-space, where permitted), execution of the current conversion
specification terminates with an input failure. Otherwise, unless execution of the current
conversion specification is terminated with a matching failure, execution of the following
conversion specification (if any) is terminated with an input failure.

Reaching the end of the string in swscanf() is equivalent to encountering end-of-file for fwscanf().

If conversion terminates on a conflicting input, the offending input is left unread in the input.
Any trailing white space (including newline) is left unread unless matched by a conversion
specification. The success of literal matches and suppressed assignments is only directly
determinable via the %n conversion specification.

The fwscanf() and wscanf() functions may mark the st_atime field of the file associated with
stream for update. The st_atime field will be marked for update by the first successful execution
of fgetc(), fgetwc(), fgets(), fgetws(), fread(), getc(), getwc(), getchar(), getwchar(), gets(), fscanf()
or fwscanf() using stream that returns data not supplied by a prior call to ungetc().

RETURN VALUE
Upon successful completion, these functions return the number of successfully matched and
assigned input items; this number can be 0 in the event of an early matching failure. If the input
ends before the first matching failure or conversion, EOF is returned. If a read error occurs the
error indicator for the stream is set, EOF is returned, and errno is set to indicate the error.

312 CAE Specification (1997)

System Interfaces fwscanf()

ERRORS
For the conditions under which the fwscanf() functions will fail and may fail, refer to fgetwc().

In addition, fwscanf() may fail if:

EX [EILSEQ] Input byte sequence does not form a valid character.

EX [EINVAL] There are insufficient arguments.

EXAMPLES
The call:

int i, n; float x; char name[50];
n = wscanf(L"%d%f%s", &i, &x, name);

with the input line:

25 54.32E −1 Hamster

will assign to n the value 3, to i the value 25, to x the value 5.432, and name will contain the string
Hamster.

The call:

int i; float x; char name[50];
(void) wscanf(L"%2d%f%*d %[0123456789]", &i, &x, name);

with input:

56789 0123 56a72

will assign 56 to i , 789.0 to x , skip 0123, and place the string 56\0 in name. The next call to
getchar() will return the character a.

APPLICATION USAGE
In format strings containing the % form of conversion specifications, each argument in the
argument list is used exactly once.

FUTURE DIRECTIONS
None.

SEE ALSO
getwc(), fwprintf(), setlocale (), wcstod(), wcstol(), wcstoul(), wcrtomb(), <langinfo.h>, <stdio.h>,
<wchar.h>, the XBD specification, Chapter 5, Locale.

CHANGE HISTORY
First released in Issue 5.

Included for alignment with the ISO/IEC 9899:1990/Amendment 1:1994 (E).

System Interfaces and Headers, Issue 5: Volume 1 313

gamma() System Interfaces

NAME
gamma, signgam — log gamma function (LEGACY)

SYNOPSIS
EX #include <math.h>

double gamma(double x);
extern int signgam;

DESCRIPTION
The gamma() function performs identically to lgamma(), including the use of signgam .

This interface need not be reentrant.

RETURN VALUE
Return to lgamma().

ERRORS
None.

EXAMPLES
None.

APPLICATION USAGE
This interface is functionally equivalent to lgamma().

FUTURE DIRECTIONS
None.

SEE ALSO
Return to lgamma().

CHANGE HISTORY
First released in Issue 1.

Derived from Issue 1 of the SVID.

Issue 4
The following changes are incorporated in this issue:

• This interface is marked TO BE WITHDRAWN, as it is functionally equivalent to lgamma().

• The DESCRIPTION is changed to refer to lgamma().

• The APPLICATION USAGE section is added.

Issue 5
A note indicating that this interface need not be reentrant is added to the DESCRIPTION.

Marked LEGACY.

314 CAE Specification (1997)

System Interfaces gcvt()

NAME
gcvt — convert a floating-point number to a string

SYNOPSIS
EX #include <stdlib.h>

char *gcvt(double value , int ndigit , char * buf);

DESCRIPTION
Refer to ecvt().

CHANGE HISTORY
First released in Issue 4, Version 2.

Issue 5
Moved from X/OPEN UNIX extension to BASE.

System Interfaces and Headers, Issue 5: Volume 1 315

getc() System Interfaces

NAME
getc — get a byte from a stream

SYNOPSIS
#include <stdio.h>

int getc(FILE * stream);

DESCRIPTION
The getc() function is equivalent to fgetc(), except that if it is implemented as a macro it may
evaluate stream more than once, so the argument should never be an expression with side effects.

RETURN VALUE
Refer to fgetc().

ERRORS
Refer to fgetc().

EXAMPLES
None.

APPLICATION USAGE
If the integer value returned by getc() is stored into a variable of type char and then compared
against the integer constant EOF, the comparison may never succeed, because sign-extension of
a variable of type char on widening to integer is implementation-dependent.

Because it may be implemented as a macro, getc() may treat incorrectly a stream argument with
side effects. In particular, getc(*f++) will not necessarily work as expected. Therefore, use of this
function should be preceded by ‘‘#undef getc’’ in such situations; fgetc() could also be used.

FUTURE DIRECTIONS
None.

SEE ALSO
fgetc(), <stdio.h>.

CHANGE HISTORY
First released in Issue 1.

Derived from Issue 1 of the SVID.

Issue 4
The following changes are incorporated in this issue:

• The words ‘‘a character variable’’ are replaced by ‘‘a variable of type char’’, to emphasise the
fact that this interface deals with byte values.

• The APPLICATION USAGE section now states that the use of this function is not
recommended.

316 CAE Specification (1997)

System Interfaces getchar()

NAME
getchar — get a byte from a stdin stream

SYNOPSIS
#include <stdio.h>

int getchar(void);

DESCRIPTION
The getchar() function is equivalent to getc(stdin) .

RETURN VALUE
Refer to fgetc().

ERRORS
Refer to fgetc().

EXAMPLES
None.

APPLICATION USAGE
If the integer value returned by getchar() is stored into a variable of type char and then
compared against the integer constant EOF, the comparison may never succeed, because sign-
extension of a variable of type char on widening to integer is implementation-dependent.

FUTURE DIRECTIONS
None.

SEE ALSO
getc(), <stdio.h>.

CHANGE HISTORY
First released in Issue 1.

Derived from Issue 1 of the SVID.

Issue 4
The following change is incorporated for alignment with the ISO C standard:

• The argument list is explicitly defined as void.

Another change is incorporated as follows:

• The words ‘‘a character variable’’ are replaced by ‘‘a variable of type char’’, to emphasise the
fact that this interface deals in byte values.

System Interfaces and Headers, Issue 5: Volume 1 317

getc_unlocked() System Interfaces

NAME
getc_unlocked, getchar_unlocked, putc_unlocked, putchar_unlocked — stdio with explicit client
locking

SYNOPSIS
#include <stdio.h>

int getc_unlocked(FILE * stream);
int getchar_unlocked(void);
int putc_unlocked(int c, FILE * stream);
int putchar_unlocked(int c);

DESCRIPTION
Versions of the functions getc(), getchar(), putc(), and putchar() respectively named
getc_unlocked (), getchar_unlocked (), putc_unlocked (), and putchar_unlocked () are provided which
are functionally identical to the original versions with the exception that they are not required to
be implemented in a thread-safe manner. They may only safely be used within a scope
protected by flockfile() (or ftrylockfile()) and funlockfile(). These functions may safely be used in a
multi-threaded program if and only if they are called while the invoking thread owns the (FILE*)
object, as is the case after a successful call of the flockfile() or ftrylockfile() functions.

RETURN VALUE
See getc(), getchar(), putc(), and putchar().

ERRORS
No errors are defined.

EXAMPLES
None.

APPLICATION USAGE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
getc(), getchar(), putc(), putchar(), <stdio.h>.

CHANGE HISTORY
First released in Issue 5.

Included for alignment with the POSIX Threads Extension.

318 CAE Specification (1997)

System Interfaces getcontext()

NAME
getcontext, setcontext — get and set current user context

SYNOPSIS
EX #include <ucontext.h>

int getcontext(ucontext_t * ucp);
int setcontext(const ucontext_t * ucp);

DESCRIPTION
The getcontext() function initialises the structure pointed to by ucp to the current user context of
the calling thread. The ucontext_t type that ucp points to defines the user context and includes
the contents of the calling thread’s machine registers, the signal mask, and the current execution
stack.

The setcontext() function restores the user context pointed to by ucp. A successful call to
setcontext() does not return; program execution resumes at the point specified by the ucp
argument passed to setcontext(). The ucp argument should be created either by a prior call to
getcontext() or makecontext(), or by being passed as an argument to a signal handler. If the ucp
argument was created with getcontext(), program execution continues as if the corresponding
call of getcontext() had just returned. If the ucp argument was created with makecontext(),
program execution continues with the function passed to makecontext(). When that function
returns, the thread continues as if after a call to setcontext() with the ucp argument that was
input to makecontext(). If the uc_link member of the ucontext_t structure pointed to by the ucp
argument is equal to 0, then this context is the main context, and the thread will exit when this
context returns. The effects of passing a ucp argument obtained from any other source are
unspecified.

RETURN VALUE
On successful completion, setcontext() does not return and getcontext() returns 0. Otherwise, a
value of −1 is returned.

ERRORS
No errors are defined.

EXAMPLES
None.

APPLICATION USAGE
When a signal handler is executed, the current user context is saved and a new context is
created. If the thread leaves the signal handler via longjmp(), then it is unspecified whether the
context at the time of the corresponding setjmp() call is restored and thus whether future calls to
getcontext() will provide an accurate representation of the current context, since the context
restored by longjmp() does not necessarily contain all the information that setcontext() requires.
Signal handlers should use siglongjmp () or setcontext() instead.

Portable applications should not modify or access the uc_mcontext member of ucontext_t. A
portable application cannot assume that context includes any process-wide static data, possibly
including errno. Users manipulating contexts should take care to handle these explicitly when
required.

Use of contexts to create alternate stacks is not defined by this specification.

FUTURE DIRECTIONS
None.

System Interfaces and Headers, Issue 5: Volume 1 319

getcontext() System Interfaces

SEE ALSO
bsd_signal(), makecontext(), setjmp(), sigaction (), sigaltstack (), sigprocmask (), sigsetjmp(),
<ucontext.h>.

CHANGE HISTORY
First released in Issue 4, Version 2.

Issue 5
Moved from X/OPEN UNIX extension to BASE.

The following sentence was removed from the DESCRIPTION: ‘‘If the ucp argument was passed
to a signal handler, program execution continues with the program instruction following the
instruction interrupted by the signal.’’

320 CAE Specification (1997)

System Interfaces getcwd()

NAME
getcwd — get the pathname of the current working directory

SYNOPSIS
#include <unistd.h>

char *getcwd(char * buf , size_t size);

DESCRIPTION
The getcwd() function places an absolute pathname of the current working directory in the array
pointed to by buf, and returns buf. The size argument is the size in bytes of the character array
pointed to by the buf argument. If buf is a null pointer, the behaviour of getcwd() is undefined.

RETURN VALUE
Upon successful completion, getcwd() returns the buf argument. Otherwise, getcwd() returns a
null pointer and sets errno to indicate the error. The contents of the array pointed to by buf is
then undefined.

ERRORS
The getcwd() function will fail if:

[EINVAL] The size argument is 0.

[ERANGE] The size argument is greater than 0, but is smaller than the length of the
pathname +1.

The getcwd() function may fail if:

[EACCES] Read or search permission was denied for a component of the pathname.

EX [ENOMEM] Insufficient storage space is available.

EXAMPLES
None.

APPLICATION USAGE
If buf is a null pointer, getcwd() may obtain size bytes of memory using malloc (). In this case, the
pointer returned by getcwd() may be used as the argument in a subsequent call to free().
Invoking getcwd() with buf as a null pointer is not recommended.

FUTURE DIRECTIONS
None.

SEE ALSO
malloc (), <unistd.h>.

CHANGE HISTORY
First released in Issue 1.

Derived from Issue 1 of the SVID.

System Interfaces and Headers, Issue 5: Volume 1 321

getcwd() System Interfaces

Issue 4
The following change is incorporated for alignment with the ISO POSIX-1 standard:

• The DESCRIPTION is changed to indicate that the effects of passing a null pointer in buf are
undefined.

Other changes are incorporated as follows:

• The <unistd.h> header is added to the SYNOPSIS section.

• The [ENOMEM] error is marked as an extension.

• The words ‘‘as this functionality may be subject to withdrawal’’ have been deleted from the
end of the last sentence in the APPLICATION USAGE section.

322 CAE Specification (1997)

System Interfaces getdate()

NAME
getdate — convert user format date and time

SYNOPSIS
EX #include <time.h>

struct tm *getdate(const char * string);

DESCRIPTION
The getdate() function converts a string representation of a date or time into a broken-down
time.

The external variable or macro getdate_err is used by getdate() to return error values.

Templates are used to parse and interpret the input string. The templates are contained in a text
file identified by the environment variable DATEMSK. The DATEMSK variable should be set to
indicate the full pathname of the file that contains the templates. The first line in the template
that matches the input specification is used for interpretation and conversion into the internal
time format.

The following field descriptors are supported:

%% same as %

%a abbreviated weekday name

%A full weekday name

%b abbreviated month name

%B full month name

%c locale’s appropriate date and time representation

%C century number (00-99; leading zeros are permitted but not required)

%d day of month (01-31; the leading 0 is optional)

%D date as %m/%d/%y

%e same as %d

%h abbreviated month name

%H hour (00-23)

%I hour (01-12)

%m month number (01-12)

%M minute (00-59)

%n same as new line

%p locale’s equivalent of either AM or PM

%r The locale’s appropriate representation of time in AM and PM notation. In the POSIX
locale, this is equivalent to %I:%M:%S %p

%R time as %H:%M

%S seconds (00-61). Leap seconds are allowed but are not predictable through use of
algorithms.

System Interfaces and Headers, Issue 5: Volume 1 323

getdate() System Interfaces

%t same as tab

%T time as %H:%M:%S

%w weekday number (Sunday = 0 - 6)

%x locale’s appropriate date representation

%X locale’s appropriate time representation

%y year within century. When a century is not otherwise specified, values in the range
69-99 refer to years in the twentieth century (1969 to 1999 inclusive); values in the range
00-68 refer to years in the twenty-first century (2000 to 2068 inclusive).

%Y year as ccyy (for example, 1994)

%Z time zone name or no characters if no time zone exists. If the time zone supplied by
%Z is not the time zone that getdate() expects, an invalid input specification error will
result. The getdate() function calculates an expected time zone based on information
supplied to the function (such as the hour, day, and month).

The match between the template and input specification performed by getdate() is case
insensitive.

The month and weekday names can consist of any combination of upper and lower case letters.
The process can request that the input date or time specification be in a specific language by
setting the LC_TIME category (see setlocale ()).

Leading 0’s are not necessary for the descriptors that allow leading 0’s. However, at most two
digits are allowed for those descriptors, including leading 0’s. Extra whitespace in either the
template file or in string is ignored.

The field descriptors %c, %x, and %X will not be supported if they include unsupported field
descriptors.

The following rules apply for converting the input specification into the internal format:

• If %Z is being scanned, then getdate() initialises the broken-down time to be the current time
in the scanned time zone. Otherwise it initialises the broken-down time based on the current
local time as if localtime () had been called.

• If only the weekday is given, today is assumed if the given day is equal to the current day
and next week if it is less,

• If only the month is given, the current month is assumed if the given month is equal to the
current month and next year if it is less and no year is given (the first day of month is
assumed if no day is given),

• If no hour, minute and second are given the current hour, minute and second are assumed,

• If no date is given, today is assumed if the given hour is greater than the current hour and
tomorrow is assumed if it is less.

If a field descriptor specification in the DATEMSK file does not correspond to one of the field
descriptors above, the behaviour is unspecified.

This interface need not be reentrant.

RETURN VALUE
Upon successful completion, getdate() returns a pointer to a struct tm. Otherwise, it returns a
null pointer and getdate_err is set to indicate the error.

324 CAE Specification (1997)

System Interfaces getdate()

ERRORS
The getdate() function will fail in the following cases, setting getdate_err to the value shown in
the list below. Any changes to errno are unspecified.

1 The DATEMSK environment variable is null or undefined.

2 The template file cannot be opened for reading.

3 Failed to get file status information.

4 The template file is not a regular file.

5 An I/O error is encountered while reading the template file.

6 Memory allocation failed (not enough memory available).

7 There is no line in the template that matches the input.

8 Invalid input specification. For example, February 31; or a time is specified that can not be
represented in a time_t (representing the time in seconds since 00:00:00 UTC, January 1,
1970).

EXAMPLES
Example 1:

The following example shows the possible contents of a template:

%m
%A %B %d, %Y, %H:%M:%S
%A
%B
%m/%d/%y %I %p
%d,%m,%Y %H:%M
at %A the %dst of %B in %Y
run job at %I %p,%B %dnd
%A den %d. %B %Y %H.%M Uhr

Example 2:

The following are examples of valid input specifications for the template in Example 1:

getdate("10/1/87 4 PM");
getdate("Friday");
getdate("Friday September 18, 1987, 10:30:30");
getdate("24,9,1986 10:30");
getdate("at monday the 1st of december in 1986");
getdate("run job at 3 PM, december 2nd");

If the LC_TIME category is set to a German locale that includes freitag as a weekday name
and oktober as a month name, the following would be valid:

getdate("freitag den 10. oktober 1986 10.30 Uhr");

System Interfaces and Headers, Issue 5: Volume 1 325

getdate() System Interfaces

Example 3:

The following examples shows how local date and time specification can be defined in the
template.

Invocation Line in Template
getdate("11/27/86") %m/%d/%y
getdate("27.11.86") %d.%m.%y
getdate("86-11-27") %y-%m-%d
getdate("Friday 12:00:00") %A %H:%M:%S

Example 4:

The following examples help to illustrate the above rules assuming that the current date is Mon
Sep 22 12:19:47 EDT 1986 and the LC_TIME category is set to the default "C" locale.

Input Line in Template Date
Mon %a Mon Sep 22 12:19:47 EDT 1986
Sun %a Sun Sep 28 12:19:47 EDT 1986
Fri %a Fri Sep 26 12:19:47 EDT 1986
September %B Mon Sep 1 12:19:47 EDT 1986
January %B Thu Jan 1 12:19:47 EST 1987
December %B Mon Dec 1 12:19:47 EST 1986
Sep Mon %b %a Mon Sep 1 12:19:47 EDT 1986
Jan Fri %b %a Fri Jan 2 12:19:47 EST 1987
Dec Mon %b %a Mon Dec 1 12:19:47 EST 1986
Jan Wed 1989 %b %a %Y Wed Jan 4 12:19:47 EST 1989
Fri 9 %a %H Fri Sep 26 09:00:00 EDT 1986
Feb 10:30 %b %H:%S Sun Feb 1 10:00:30 EST 1987
10:30 %H:%M Tue Sep 23 10:30:00 EDT 1986
13:30 %H:%M Mon Sep 22 13:30:00 EDT 1986

APPLICATION USAGE
Although historical versions of getdate() did not require that <time.h> declare the external
variable getdate_err , this specification does require it. The Open Group encourages applications
to remove declarations of getdate_err and instead incorporate the declaration by including
<time.h>.

Applications should use %Y (4-digit years) in preference to %y (2-digit years).

FUTURE DIRECTIONS
None.

SEE ALSO
ctime(), ctype(), localtime (), setlocale (), strftime(), times(), <time.h>.

CHANGE HISTORY
First released in Issue 4, Version 2.

Issue 5
Moved from X/OPEN UNIX extension to BASE. The last paragraph of the DESCRIPTION is
added.

The %C specifier is added, and the exact meaning of the %y specifier is clarified in the
DESCRIPTION.

326 CAE Specification (1997)

System Interfaces getdate()

A note indicating that this interface need not be reentrant is added to the DESCRIPTION.

The %R specifier is changed to follow historical practise.

System Interfaces and Headers, Issue 5: Volume 1 327

getdtablesize() System Interfaces

NAME
getdtablesize — get the file descriptor table size (LEGACY)

SYNOPSIS
EX #include <unistd.h>

int getdtablesize(void);

DESCRIPTION
The getdtablesize () function is equivalent to getrlimit() with the RLIMIT_NOFILE option.

This interface need not be reentrant.

RETURN VALUE
The getdtablesize () function returns the current soft limit as if obtained from a call to getrlimit()
with the RLIMIT_NOFILE option.

ERRORS

No errors are defined.

EXAMPLES
None.

APPLICATION USAGE
There is no direct relationship between the value returned by getdtablesize () and {OPEN_MAX}
defined in <limits.h>.

The getrlimit() function returns a value of type rlim_t. This interface, returning an int, may have
problems representing appropriate values in the future. Applications should use the getrlimit()
function instead.

FUTURE DIRECTIONS
None.

SEE ALSO
close(), getrlimit(), open(), select(), setrlimit(), <limits.h>, <unistd.h>.

CHANGE HISTORY
First released in Issue 4, Version 2.

Issue 5
Moved from X/OPEN UNIX extension to BASE

A new paragraph is added to the APPLICATION USAGE section giving reasons why the
interface may be withdrawn in a future issue.

A note indicating that this interface need not be reentrant is added to the DESCRIPTION.

Marked LEGACY.

328 CAE Specification (1997)

System Interfaces getegid()

NAME
getegid — get the effective group ID

SYNOPSIS
OH #include <sys/types.h>

#include <unistd.h>

gid_t getegid(void);

DESCRIPTION
The getegid() function returns the effective group ID of the calling process.

RETURN VALUE
The getegid() function is always successful and no return value is reserved to indicate an error.

ERRORS
No errors are defined.

EXAMPLES
None.

APPLICATION USAGE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
getgid(), setgid(), <sys/types.h>, <unistd.h>.

CHANGE HISTORY
First released in Issue 1.

Derived from Issue 1 of the SVID.

Issue 4
The following change is incorporated for alignment with the ISO POSIX-1 standard:

• The argument list is explicitly defined as void.

Other changes are incorporated as follows:

• The <sys/types.h> header is now marked as optional (OH); this header need not be included
on XSI-conformant systems.

• The <unistd.h> header is added to the SYNOPSIS section.

System Interfaces and Headers, Issue 5: Volume 1 329

getenv() System Interfaces

NAME
getenv — get value of an environment variable

SYNOPSIS
#include <stdlib.h>

char *getenv(const char * name);

DESCRIPTION
The getenv() function searches the environment list for a string of the form "name=value", and
returns a pointer to a string containing the value for the specified name. If the specified name
cannot be found, a null pointer is returned. The string pointed to must not be modified by the

EX application, but may be overwritten by a subsequent call to getenv() or putenv() but will not be
overwritten by a call to any other function in this document.

This interface need not be reentrant.

RETURN VALUE
Upon successful completion, getenv() returns a pointer to a string containing the value for the
specified name. If the specified name cannot be found a null pointer is returned.

The return value from getenv() may point to static data which may be overwritten by
subsequent calls to getenv() or putenv().

ERRORS
No errors are defined.

EXAMPLES
None.

APPLICATION USAGE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
exec, putenv(), <stdlib.h>, the XBD specification, Chapter 6, Environment Variables.

CHANGE HISTORY
First released in Issue 1.

Derived from Issue 1 of the SVID.

Issue 4
The following change is incorporated for alignment with the ISO POSIX-1 standard:

• The type of argument name is changed from char * to const char *.

Other changes are incorporated as follows:

• The DESCRIPTION is updated to indicate that the return string (a) must not be modified by
an application, (b) may be overwritten by subsequent calls to getenv() or putenv(), and (c)
will not be overwritten by calls to other XSI system interfaces. A reference to putenv() has
also been added to the APPLICATION USAGE section.

Issue 5
Normative text previously in the APPLICATION USAGE section is moved to the RETURN
VALUE section.

A note indicating that this interface need not be reentrant is added to the DESCRIPTION.

330 CAE Specification (1997)

System Interfaces geteuid()

NAME
geteuid — get the effective user ID

SYNOPSIS
OH #include <sys/types.h>

#include <unistd.h>

uid_t geteuid(void);

DESCRIPTION
The geteuid() function returns the effective user ID of the calling process.

RETURN VALUE
The geteuid() function is always successful and no return value is reserved to indicate an error.

ERRORS
No errors are defined.

EXAMPLES
None.

APPLICATION USAGE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
getuid(), setuid(), <sys/types.h>, <unistd.h>.

CHANGE HISTORY
First released in Issue 1.

Derived from Issue 1 of the SVID.

Issue 4
The following change is incorporated for alignment with the ISO POSIX-1 standard:

• The argument list is explicitly defined as void.

Other changes are incorporated as follows:

• The <sys/types.h> header is now marked as optional (OH); this header need not be included
on XSI-conformant systems.

• The <unistd.h> header is added to the SYNOPSIS section.

System Interfaces and Headers, Issue 5: Volume 1 331

getgid() System Interfaces

NAME
getgid — get the real group ID

SYNOPSIS
OH #include <sys/types.h>

#include <unistd.h>

gid_t getgid(void);

DESCRIPTION
The getgid() function returns the real group ID of the calling process.

RETURN VALUE
The getgid() function is always successful and no return value is reserved to indicate an error.

ERRORS
No errors are defined.

EXAMPLES
None.

APPLICATION USAGE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
getuid(), setgid(), <sys/types.h>, <unistd.h>.

CHANGE HISTORY
First released in Issue 1.

Derived from Issue 1 of the SVID.

Issue 4
The following change is incorporated for alignment with the ISO POSIX-1 standard:

• The argument list is explicitly defined as void.

Other changes are incorporated as follows:

• The <sys/types.h> header is now marked as optional (OH); this header need not be included
on XSI-conformant systems.

• The <unistd.h> header is added to the SYNOPSIS section.

332 CAE Specification (1997)

System Interfaces getgrent()

NAME
getgrent — get the group database entry

SYNOPSIS
EX #include <grp.h>

struct group *getgrent(void);

DESCRIPTION
Refer to endgrent().

CHANGE HISTORY
First released in Issue 4, Version 2.

Issue 5
Moved from X/OPEN UNIX extension to BASE.

System Interfaces and Headers, Issue 5: Volume 1 333

getgrgid() System Interfaces

NAME
getgrgid, getgrgid_r — get group database entry for a group ID

SYNOPSIS
OH #include <sys/types.h>

#include <grp.h>

struct group *getgrgid(gid_t gid);
int getgrgid_r(gid_t gid , struct group * grp , char * buffer ,

size_t bufsize , struct group ** result);

DESCRIPTION
The getgrgid() function searches the group database for an entry with a matching gid .

The getgrgid() interface need not be reentrant.

The getgrgid_r() function updates the group structure pointed to by grp and stores a pointer to
that structure at the location pointed to by result. The structure contains an entry from the group
database with a matching gid or name. Storage referenced by the group structure is allocated
from the memory provided with the buffer parameter, which is bufsize characters in size. The
maximum size needed for this buffer can be determined with the {_SC_GETGR_R_SIZE_MAX}
sysconf() parameter. A NULL pointer is returned at the location pointed to by result on error or
if the requested entry is not found.

RETURN VALUE
Upon successful completion, getgrgid() returns a pointer to a struct group with the structure
defined in <grp.h> with a matching entry if one is found. The getgrgid() function returns a null

EX pointer if either the requested entry was not found, or an error occurred. On error, errno will be
set to indicate the error.

The return value may point to a static area which is overwritten by a subsequent call to
getgrent(), getgrgid() or getgrnam().

If successful, the getgrgid_r() function returns zero. Otherwise, an error number is returned to
indicate the error.

ERRORS
The getgrgid() function may fail if:

EX [EIO] An I/O error has occurred.

[EINTR] A signal was caught during getgrgid().

[EMFILE] {OPEN_MAX} file descriptors are currently open in the calling process.

[ENFILE] The maximum allowable number of files is currently open in the system.

The getgrgid_r() function may fail if:

[ERANGE] Insufficient storage was supplied via buffer and bufsize to contain the data to be
referenced by the resulting group structure.

EXAMPLES
None.

APPLICATION USAGE
Applications wishing to check for error situations should set errno to 0 before calling getgrgid().
If errno is set on return, an error occurred.

FUTURE DIRECTIONS
None.

334 CAE Specification (1997)

System Interfaces getgrgid()

SEE ALSO
endgrent(), getgrnam(), <grp.h>, <limits.h>, <sys/types.h>.

CHANGE HISTORY
First released in Issue 1.

Derived from System V Release 2.0.

Issue 4
The following changes are incorporated in this issue:

• The DESCRIPTION is clarified.

• In the RETURN VALUE section, the reference to the setting of errno is marked as an
extension.

• The errors [EIO], [EINTR], [EMFILE] and [ENFILE] are marked as extensions.

• A note is added to the APPLICATION USAGE section advising how applications should
check for errors.

• The <sys/types.h> header is added as optional (OH); this header need not be included on
XSI-conformant systems.

Issue 5
Normative text previously in the APPLICATION USAGE section is moved to the RETURN
VALUE section.

The getgrgid_r() function is included for alignment with the POSIX Threads Extension.

A note indicating that the getgrgid() interface need not be reentrant is added to the
DESCRIPTION.

System Interfaces and Headers, Issue 5: Volume 1 335

getgrnam() System Interfaces

NAME
getgrnam, getgrnam_r — search group database for a name

SYNOPSIS
OH #include <sys/types.h>

#include <grp.h>

struct group *getgrnam(const char * name);
int getgrnam_r(const char * name, struct group * grp , char * buffer ,

size_t bufsize , struct group ** result);

DESCRIPTION
The getgrnam() function searches the group database for an entry with a matching name.

The getgrnam() interface need not be reentrant.

The getgrnam_r() function updates the group structure pointed to by grp and stores a pointer to
that structure at the location pointed to by result. The structure contains an entry from the group
database with a matching gid or name. Storage referenced by the group structure is allocated
from the memory provided with the buffer parameter, which is bufsize characters in size. The
maximum size needed for this buffer can be determined with the {_SC_GETGR_R_SIZE_MAX}
sysconf() parameter. A NULL pointer is returned at the location pointed to by result on error or
if the requested entry is not found.

RETURN VALUE
The getgrnam() function returns a pointer to a struct group with the structure defined in <grp.h>
with a matching entry if one is found. The getgrnam() function returns a null pointer if either the

EX requested entry was not found, or an error occurred. On error, errno will be set to indicate the
error.

The return value may point to a static area which is overwritten by a subsequent call to
getgrent(), getgrgid() or getgrnam().

If successful, the getgrnam_r() function returns zero. Otherwise, an error number is returned to
indicate the error.

ERRORS
The getgrnam() function may fail if:

EX [EIO] An I/O error has occurred.

[EINTR] A signal was caught during getgrnam().

[EMFILE] {OPEN_MAX} file descriptors are currently open in the calling process.

[ENFILE] The maximum allowable number of files is currently open in the system.

The getgrnam_r() function may fail if:

[ERANGE] Insufficient storage was supplied via buffer and bufsize to contain the data to be
referenced by the resulting group structure.

EXAMPLES
None.

APPLICATION USAGE
Applications wishing to check for error situations should set errno to 0 before calling getgrnam().
If errno is set on return, an error occurred.

FUTURE DIRECTIONS
None.

336 CAE Specification (1997)

System Interfaces getgrnam()

SEE ALSO
endgrent(), getgrgid(), <grp.h>, <limits.h>, <sys/types.h>.

CHANGE HISTORY
First released in Issue 1.

Derived from System V Release 2.0.

Issue 4
The following change is incorporated for alignment with the ISO POSIX-1 standard:

• The type of argument name is changed from char * to const char *.

Other changes are incorporated as follows:

• The DESCRIPTION is clarified.

• The <sys/types.h> header is added as optional (OH); this header need not be included on
XSI-conformant systems.

• In the RETURN VALUE section, reference to the setting of errno is marked as an extension.

• The errors [EIO], [EINTR], [EMFILE] and [ENFILE] are marked as extensions.

• A note is added to the APPLICATION USAGE section advising how applications should
check for errors.

Issue 5
Normative text previously in the APPLICATION USAGE section is moved to the RETURN
VALUE section.

The getgrnam_r() function is included for alignment with the POSIX Threads Extension.

A note indicating that the getgrnam() interface need not be reentrant is added to the
DESCRIPTION.

System Interfaces and Headers, Issue 5: Volume 1 337

getgroups() System Interfaces

NAME
getgroups — get supplementary group IDs

SYNOPSIS
OH #include <sys/types.h>

#include <unistd.h>

int getgroups(int gidsetsize , gid_t grouplist []);

DESCRIPTION
The getgroups() function fills in the array grouplist with the current supplementary group IDs of
the calling process.

The gidsetsize argument specifies the number of elements in the array grouplist . The actual
number of supplementary group IDs stored in the array is returned. The values of array entries
with indices greater than or equal to the value returned are undefined.

If gidsetsize is 0, getgroups() returns the number of supplementary group IDs associated with the
calling process without modifying the array pointed to by grouplist .

It is unspecified whether the effective group ID of the calling process is included in, or omitted
from, the returned list of supplementary group IDs.

RETURN VALUE
Upon successful completion, the number of supplementary group IDs is returned. A return
value of −1 indicates failure and errno is set to indicate the error.

ERRORS
The getgroups() function will fail if:

[EINVAL] The gidsetsize argument is non-zero and is less than the number of
supplementary group IDs.

EXAMPLES
None.

APPLICATION USAGE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
getegid(), setgid(), <sys/types.h>, <unistd.h>.

CHANGE HISTORY
First released in Issue 3.

Entry included for alignment with the POSIX.1-1988 standard.

Issue 4
The following change is incorporated for alignment with the FIPS requirements:

• A return value of 0 is no longer permitted, because {NGROUPS_MAX} cannot be 0.

338 CAE Specification (1997)

System Interfaces getgroups()

Other changes are incorporated as follows:

• The <sys/types.h> header is now marked as optional (OH); this header need not be included
on XSI-conformant systems.

• The <unistd.h> header is added to the SYNOPSIS section.

Issue 5
Normative text previously in the APPLICATION USAGE section is moved to the
DESCRIPTION.

System Interfaces and Headers, Issue 5: Volume 1 339

gethostid() System Interfaces

NAME
gethostid — get an identifier for the current host

SYNOPSIS
EX #include <unistd.h>

long gethostid(void);

DESCRIPTION
The gethostid () function retrieves a 32-bit identifier for the current host.

RETURN VALUE
Upon successful completion, gethostid () returns an identifier for the current host.

ERRORS
No errors are defined.

EXAMPLES
None.

APPLICATION USAGE
The Open Group does not define the domain in which the return value is unique.

FUTURE DIRECTIONS
None.

SEE ALSO
random(), <unistd.h>.

CHANGE HISTORY
First released in Issue 4, Version 2.

Issue 5
Moved from X/OPEN UNIX extension to BASE.

340 CAE Specification (1997)

System Interfaces getitimer()

NAME
getitimer, setitimer — get or set value of interval timer

SYNOPSIS
EX #include <sys/time.h>

int getitimer(int which , struct itimerval * value);
int setitimer(int which , const struct itimerval * value ,

struct itimerval * ovalue);

DESCRIPTION
The getitimer() function stores the current value of the timer specified by which into the structure
pointed to by value. The setitimer() function sets the timer specified by which to the value
specified in the structure pointed to by value, and if ovalue is not a null pointer, stores the
previous value of the timer in the structure pointed to by ovalue.

A timer value is defined by the itimerval structure. If it_value is non-zero, it indicates the time to
the next timer expiration. If it_interval is non-zero, it specifies a value to be used in reloading
it_value when the timer expires. Setting it_value to 0 disables a timer, regardless of the value of
it_interval. Setting it_interval to 0 disables a timer after its next expiration (assuming it_value is
non-zero).

Implementations may place limitations on the granularity of timer values. For each interval
timer, if the requested timer value requires a finer granularity than the implementation supports,
the actual timer value will be rounded up to the next supported value.

An XSI-conforming implementation provides each process with at least three interval timers,
which are indicated by the which argument:

ITIMER_REAL
Decrements in real time. A SIGALRM signal is delivered when this timer expires.

ITIMER_VIRTUAL
Decrements in process virtual time. It runs only when the process is executing. A
SIGVTALRM signal is delivered when it expires.

ITIMER_PROF
Decrements both in process virtual time and when the system is running on behalf of the
process. It is designed to be used by interpreters in statistically profiling the execution of
interpreted programs. Each time the ITIMER_PROF timer expires, the SIGPROF signal is
delivered.

The interaction between setitimer() and any of alarm(), sleep() or usleep() is unspecified.

RETURN VALUE
Upon successful completion, getitimer() or setitimer() returns 0. Otherwise, −1 is returned and
errno is set to indicate the error.

ERRORS
The setitimer() function will fail if:

[EINVAL] The value argument is not in canonical form. (In canonical form, the number
of microseconds is a non-negative integer less than 1,000,000 and the number
of seconds is a non-negative integer.)

The getitimer() and setitimer() functions may fail if:

[EINVAL] The which argument is not recognised.

System Interfaces and Headers, Issue 5: Volume 1 341

getitimer() System Interfaces

EXAMPLES
None.

APPLICATION USAGE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
alarm(), sleep(), timer_gettime(), timer_settime(), ualarm(), usleep(), <signal.h>, <sys/time.h>.

CHANGE HISTORY
First released in Issue 4, Version 2.

Issue 5
Moved from X/OPEN UNIX extension to BASE.

342 CAE Specification (1997)

System Interfaces getlogin()

NAME
getlogin, getlogin_r — get login name

SYNOPSIS
#include <unistd.h>

char *getlogin(void);
int getlogin_r(char * name, size_t namesize);

DESCRIPTION
The getlogin () function returns a pointer to a string giving a user name associated with the
calling process, which is the login name associated with the calling process. If getlogin () returns
a non-null pointer, then that pointer points to the name that the user logged in under, even if
there are several login names with the same user ID.

The getlogin () interface need not be reentrant.

The getlogin_r () function puts the name associated by the login activity with the control terminal
of the current process in the character array pointed to by name. The array is namesize characters
long and should have space for the name and the terminating null character. The maximum size
of the login name is {LOGIN_NAME_MAX}.

If getlogin_r () is successful, name points to the name the user used at login, even if there are
several login names with the same user ID.

RETURN VALUE
Upon successful completion, getlogin () returns a pointer to the login name or a null pointer if the

EX user’s login name cannot be found. Otherwise it returns a null pointer and sets errno to indicate
the error.

The return value may point to static data whose content is overwritten by each call.

If successful, the getlogin_r () function returns zero. Otherwise, an error number is returned to
indicate the error.

ERRORS
The getlogin () function may fail if:

EX [EMFILE] {OPEN_MAX} file descriptors are currently open in the calling process.

[ENFILE] The maximum allowable number of files is currently open in the system.

[ENXIO] The calling process has no controlling terminal.

The getlogin_r () function may fail if:

[ERANGE] The value of namesize is smaller than the length of the string to be returned
including the terminating null character.

EXAMPLES
None.

APPLICATION USAGE
Three names associated with the current process can be determined: getpwuid(geteuid()) returns
the name associated with the effective user ID of the process; getlogin () returns the name
associated with the current login activity; and getpwuid(getuid()) returns the name associated
with the real user ID of the process.

FUTURE DIRECTIONS
None.

System Interfaces and Headers, Issue 5: Volume 1 343

getlogin() System Interfaces

SEE ALSO
getpwnam(), getpwuid(), geteuid(), getuid(), <limits.h>, <unistd.h>.

CHANGE HISTORY
First released in Issue 1.

Derived from System V Release 2.0.

Issue 4
The following changes are incorporated for alignment with the ISO POSIX-1 standard:

• The argument list is explicitly defined as void.

• The DESCRIPTION is updated to state explicitly that the return value is a pointer to a string
giving the user name, rather than simply a pointer to the user name as stated in previous
issues.

Other changes are incorporated as follows:

• The <unistd.h> header is added to the SYNOPSIS section.

• In the RETURN VALUE section, reference to the setting of errno is marked as an extension.

• The behaviour of the function when the login name cannot be found is included in the
RETURN VALUE section instead of the DESCRIPTION.

• The errors [EMFILE], [ENFILE] and [ENXIO] are marked as extensions.

• The APPLICATION USAGE section is changed to refer to getpwuid() rather than cuserid(),
which may be withdrawn in a future issue.

Issue 5
Normative text previously in the APPLICATION USAGE section is moved to the RETURN
VALUE section.

The getlogin_r () function is included for alignment with the POSIX Threads Extension.

A note indicating that the getlogin () interface need not be reentrant is added to the
DESCRIPTION.

344 CAE Specification (1997)

System Interfaces getmsg()

NAME
getmsg, getpmsg — receive next message from a STREAMS file

SYNOPSIS
EX #include <stropts.h>

int getmsg(int fildes , struct strbuf * ctlptr , struct strbuf * dataptr ,
int * flagsp);

int getpmsg(int fildes , struct strbuf * ctlptr , struct strbuf * dataptr ,
int * bandp , int * flagsp);

DESCRIPTION
The getmsg() function retrieves the contents of a message located at the head of the STREAM
head read queue associated with a STREAMS file and places the contents into one or more
buffers. The message contains either a data part, a control part, or both. The data and control
parts of the message are placed into separate buffers, as described below. The semantics of each
part is defined by the originator of the message.

The getpmsg() function does the same thing as getmsg(), but provides finer control over the
priority of the messages received. Except where noted, all requirements on getmsg() also pertain
to getpmsg().

The fildes argument specifies a file descriptor referencing a STREAMS-based file.

The ctlptr and dataptr arguments each point to a strbuf structure, in which the buf member
points to a buffer in which the data or control information is to be placed, and the maxlen
member indicates the maximum number of bytes this buffer can hold. On return, the len
member contains the number of bytes of data or control information actually received. The len
member is set to 0 if there is a zero-length control or data part and len is set to −1 if no data or
control information is present in the message.

When getmsg() is called, flagsp should point to an integer that indicates the type of message the
process is able to receive. This is described further below.

The ctlptr argument is used to hold the control part of the message, and dataptr is used to hold
the data part of the message. If ctlptr (or dataptr) is a null pointer or the maxlen member is −1,
the control (or data) part of the message is not processed and is left on the STREAM head read
queue, and if the ctlptr (or dataptr) is not a null pointer, len is set to −1. If the maxlen member is
set to 0 and there is a zero-length control (or data) part, that zero-length part is removed from
the read queue and len is set to 0. If the maxlen member is set to 0 and there are more than 0
bytes of control (or data) information, that information is left on the read queue and len is set to
0. If the maxlen member in ctlptr (or dataptr) is less than the control (or data) part of the
message, maxlen bytes are retrieved. In this case, the remainder of the message is left on the
STREAM head read queue and a non-zero return value is provided.

By default, getmsg() processes the first available message on the STREAM head read queue.
However, a process may choose to retrieve only high-priority messages by setting the integer
pointed to by flagsp to RS_HIPRI. In this case, getmsg() will only process the next message if it is
a high-priority message. When the integer pointed to by flagsp is 0, any message will be
retrieved. In this case, on return, the integer pointed to by flagsp will be set to RS_HIPRI if a
high-priority message was retrieved, or 0 otherwise.

For getpmsg(), the flags are different. The flagsp argument points to a bitmask with the following
mutually-exclusive flags defined: MSG_HIPRI, MSG_BAND and MSG_ANY. Like getmsg(),
getpmsg() processes the first available message on the STREAM head read queue. A process
may choose to retrieve only high-priority messages by setting the integer pointed to by flagsp to

System Interfaces and Headers, Issue 5: Volume 1 345

getmsg() System Interfaces

MSG_HIPRI and the integer pointed to by bandp to 0. In this case, getpmsg() will only process
the next message if it is a high-priority message. In a similar manner, a process may choose to
retrieve a message from a particular priority band by setting the integer pointed to by flagsp to
MSG_BAND and the integer pointed to by bandp to the priority band of interest. In this case,
getpmsg() will only process the next message if it is in a priority band equal to, or greater than,
the integer pointed to by bandp, or if it is a high-priority message. If a process just wants to get
the first message off the queue, the integer pointed to by flagsp should be set to MSG_ANY and
the integer pointed to by bandp should be set to 0. On return, if the message retrieved was a
high-priority message, the integer pointed to by flagsp will be set to MSG_HIPRI and the integer
pointed to by bandp will be set to 0. Otherwise, the integer pointed to by flagsp will be set to
MSG_BAND and the integer pointed to by bandp will be set to the priority band of the message.

If O_NONBLOCK is not set, getmsg() and getpmsg() will block until a message of the type
specified by flagsp is available at the front of the STREAM head read queue. If O_NONBLOCK is
set and a message of the specified type is not present at the front of the read queue, getmsg() and
getpmsg() fail and set errno to [EAGAIN].

If a hangup occurs on the STREAM from which messages are to be retrieved, getmsg() and
getpmsg() continue to operate normally, as described above, until the STREAM head read queue
is empty. Thereafter, they return 0 in the len members of ctlptr and dataptr.

RETURN VALUE
Upon successful completion, getmsg() and getpmsg() return a non-negative value. A value of 0
indicates that a full message was read successfully. A return value of MORECTL indicates that
more control information is waiting for retrieval. A return value of MOREDATA indicates that
more data is waiting for retrieval. A return value of the bitwise logical OR of MORECTL and
MOREDATA indicates that both types of information remain. Subsequent getmsg() and
getpmsg() calls retrieve the remainder of the message. However, if a message of higher priority
has come in on the STREAM head read queue, the next call to getmsg() or getpmsg() retrieves
that higher-priority message before retrieving the remainder of the previous message.

If the high priority control part of the message is consumed, the message will be placed back on
the queue as a normal message of band 0. Subsequent getmsg() and getpmsg() calls retrieve the
remainder of the message. If, however, a priority message arrives or already exists on the
STREAM head, the subsequent call to getmsg() or getpmsg() retrieves the higher-priority
message before retrieving the remainder of the message that was put back.

Upon failure, getmsg() and getpmsg() return −1 and set errno to indicate the error.

ERRORS
The getmsg() and getpmsg() functions will fail if:

[EAGAIN] The O_NONBLOCK flag is set and no messages are available.

[EBADF] The fildes argument is not a valid file descriptor open for reading.

[EBADMSG] The queued message to be read is not valid for getmsg() or getpmsg() or a
pending file descriptor is at the STREAM head.

[EINTR] A signal was caught during getmsg() or getpmsg().

[EINVAL] An illegal value was specified by flagsp, or the STREAM or multiplexer
referenced by fildes is linked (directly or indirectly) downstream from a
multiplexer.

[ENOSTR] A STREAM is not associated with fildes.

In addition, getmsg() and getpmsg() will fail if the STREAM head had processed an
asynchronous error before the call. In this case, the value of errno does not reflect the result of

346 CAE Specification (1997)

System Interfaces getmsg()

getmsg() or getpmsg() but reflects the prior error.

EXAMPLES
None.

APPLICATION USAGE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
poll (), putmsg(), read(), write(), <stropts.h>, Section 2.5 on page 34.

CHANGE HISTORY
First released in Issue 4, Version 2.

Issue 5
Moved from X/OPEN UNIX extension to BASE.

A paragraph regarding ‘‘high-priority control parts of messages’’ is added to the RETURN
VALUE section.

System Interfaces and Headers, Issue 5: Volume 1 347

getopt() System Interfaces

NAME
getopt, optarg, optind, opterr, optopt — command option parsing

SYNOPSIS
#include <unistd.h>

int getopt(int argc , char * const argv [], const char * optstring);
extern char *optarg;
extern int optind, opterr, optopt;

DESCRIPTION
The getopt() function is a command-line parser that can be used by applications that follow
Utility Syntax Guidelines 3, 4, 5, 6, 7, 9 and 10 in the XBD specification, Section 10.2, Utility
Syntax Guidelines. The remaining guidelines are not addressed by getopt() and are the
responsibility of the application.

The parameters argc and argv are the argument count and argument array as passed to main()
(see exec). The argument optstring is a string of recognised option characters; if a character is
followed by a colon, the option takes an argument. All option characters allowed by Utility
Syntax Guideline 3 are allowed in optstring. The implementation may accept other characters as
an extension.

The variable optind is the index of the next element of the argv[] vector to be processed. It is
initialised to 1 by the system, and getopt() updates it when it finishes with each element of
argv[]. When an element of argv[] contains multiple option characters, it is unspecified how
getopt() determines which options have already been processed.

The getopt() function returns the next option character (if one is found) from argv that matches a
character in optstring, if there is one that matches. If the option takes an argument, getopt() sets
the variable optarg to point to the option-argument as follows:

1. If the option was the last character in the string pointed to by an element of argv, then
optarg contains the next element of argv, and optind is incremented by 2. If the resulting
value of optind is not less than argc, this indicates a missing option-argument, and getopt()
returns an error indication.

2. Otherwise, optarg points to the string following the option character in that element of
argv, and optind is incremented by 1.

If, when getopt() is called:

argv [optind] is a null pointer
* argv [optind] is not the character −

argv [optind] points to the string "−"

getopt() returns −1 without changing optind. If:

argv [optind] points to the string "−−"

getopt() returns −1 after incrementing optind.

If getopt() encounters an option character that is not contained in optstring, it returns the
question-mark (?) character. If it detects a missing option-argument, it returns the colon
character (:) if the first character of optstring was a colon, or a question-mark character (?)
otherwise. In either case, getopt() will set the variable optopt to the option character that caused
the error. If the application has not set the variable opterr to 0 and the first character of optstring
is not a colon, getopt() also prints a diagnostic message to stderr in the format specified for the
getopts utility.

348 CAE Specification (1997)

System Interfaces getopt()

RETURN VALUE
The getopt() function returns the next option character specified on the command line.

A colon (:) is returned if getopt() detects a missing argument and the first character of optstring
was a colon (:).

A question mark (?) is returned if getopt() encounters an option character not in optstring or
detects a missing argument and the first character of optstring was not a colon (:).

Otherwise getopt() returns −1 when all command line options are parsed.

ERRORS
No errors are defined.

EXAMPLES
The following code fragment shows how one might process the arguments for a utility that can
take the mutually exclusive options a and b and the options f and o, both of which require
arguments:

#include <unistd.h>

int
main (int argc, char *argv[])
{

int c;
int bflg, aflg, errflg;
char *ifile;
char *ofile;
extern char *optarg;
extern int optind, optopt;
. . .
while ((c = getopt(argc, argv, ":abf:o:")) != -1) {

switch (c) {
case ’a’:

if (bflg)
errflg++;

else
aflg++;

break;
case ’b’:

if (aflg)
errflg++;

else {
bflg++;
bproc();

}
break;

case ’f’:
ifile = optarg;
break;

case ’o’:
ofile = optarg;
break;
case ’:’: /* -f or -o without operand */

fprintf(stderr,
"Option -%c requires an operand\n", optopt);

errflg++;
break;

case ’?’:
fprintf(stderr,

System Interfaces and Headers, Issue 5: Volume 1 349

getopt() System Interfaces

"Unrecognised option: -%c\n", optopt);
errflg++;

}
}
if (errflg) {

fprintf(stderr, "usage : . . . ");
exit(2);

}
for (; optind < argc; optind++) {

if (access(argv[optind], R_OK)) {
. . .

}

This code accepts any of the following as equivalent:

cmd −ao arg path path
cmd −a −o arg path path
cmd −o arg −a path path
cmd −a −o arg −− path path
cmd −a −oarg path path
cmd −aoarg path path

APPLICATION USAGE
The getopt() function is only required to support option characters included in Guideline 3.
Many historical implementations of getopt() support other characters as options. This is an
allowed extension, but applications that use extensions are not maximally portable. Note that
support for multi-byte option characters is only possible when such characters can be
represented as type int.

The getopt() interface need not be reentrant.

FUTURE DIRECTIONS
None.

SEE ALSO
exec, getopts, <unistd.h>, the XCU specification.

CHANGE HISTORY
First released in Issue 1.

Derived from Issue 1 of the SVID.

Issue 4
The following changes are incorporated for alignment with the ISO POSIX-2 standard:

• The header <unistd.h> is added to the SYNOPSIS section and <stdio.h> is deleted.

• The type of argument argv is changed from char ** to char * const [].

• The integer optopt is added to the list of external data items.

• The DESCRIPTION is largely rewritten, without functional change, for alignment with the
ISO POSIX-2 standard, although the following differences should be noted:

— If the function detects a missing option-argument, it returns a colon (:) and sets optopt to
the option character.

— The termination conditions under which getopt() will return −1 are extended. Also note
that the termination condition is explicitly −1, rather than the value of EOF.

• The EXAMPLES section is changed to illustrate the new functionality.

350 CAE Specification (1997)

System Interfaces getopt()

Issue 5
A note indicating that the getopt() interface need not be reentrant is added to the DESCRIPTION.

System Interfaces and Headers, Issue 5: Volume 1 351

getpagesize() System Interfaces

NAME
getpagesize — get the current page size (LEGACY)

SYNOPSIS
EX #include <unistd.h>

int getpagesize(void);

DESCRIPTION
The getpagesize () function returns the current page size.

The getpagesize () function is equivalent to sysconf (_SC_PAGE_SIZE) and
sysconf (_SC_PAGESIZE).

This interface need not be reentrant.

RETURN VALUE
The getpagesize () function returns the current page size.

ERRORS
No errors are defined.

EXAMPLES
None.

APPLICATION USAGE
The value returned by getpagesize () need not be the minimum value that malloc () can allocate.
Moreover, the application cannot assume that an object of this size can be allocated with
malloc ().

This interface, returning an int, may have problems representing appropriate values in the
future. Applications should use the sysconf() function instead.

FUTURE DIRECTIONS
None.

SEE ALSO
getrlimit(), mmap(), mprotect(), munmap(), msync(), sysconf(), <unistd.h>.

CHANGE HISTORY
First released in Issue 4, Version 2.

Issue 5
Moved from X/OPEN UNIX extension to BASE.

A new paragraph is added to the APPLICATION USAGE section indicating why the interface
may be withdrawn in a future issue.

A note indicating that this interface need not be reentrant is added to the DESCRIPTION.

Marked LEGACY.

352 CAE Specification (1997)

System Interfaces getpass()

NAME
getpass — read a string of characters without echo (LEGACY)

SYNOPSIS
EX #include <unistd.h>

char *getpass(const char * prompt);

DESCRIPTION
The getpass() function opens the process’ controlling terminal, writes to that device the null-
terminated string prompt, disables echoing, reads a string of characters up to the next newline
character or EOF, restores the terminal state and closes the terminal.

This interface need not be reentrant.

RETURN VALUE
Upon successful completion, getpass() returns a pointer to a null-terminated string of at most
{PASS_MAX} bytes that were read from the terminal device. If an error is encountered, the
terminal state is restored and a null pointer is returned.

ERRORS
The getpass() function may fail if:

[EINTR] The getpass() function was interrupted by a signal.

[EIO] The process is a member of a background process attempting to read from its
controlling terminal, the process is ignoring or blocking the SIGTTIN signal or
the process group is orphaned. This error may also be generated for
implementation-dependent reasons.

[EMFILE] {OPEN_MAX} file descriptors are currently open in the calling process.

[ENFILE] The maximum allowable number of files is currently open in the system.

[ENXIO] The process does not have a controlling terminal.

EXAMPLES
None.

APPLICATION USAGE
The return value points to static data whose content may be overwritten by each call.

This function was marked LEGACY since it provides no functionality which a user could not
easily implement, and its name is misleading.

FUTURE DIRECTIONS
None.

SEE ALSO
<limits.h>, <unistd.h>.

CHANGE HISTORY
First released in Issue 1.

Derived from System V Release 2.0.

System Interfaces and Headers, Issue 5: Volume 1 353

getpass() System Interfaces

Issue 4
The following changes are incorporated in this issue:

• The interface is marked TO BE WITHDRAWN, because of its misleading name and because
it provides dubious functionality.

• The <unistd.h> header is added to the SYNOPSIS section.

• The type of argument prompt is changed from char * to const char *.

• In the DESCRIPTION, reference to the character special file /dev/tty is replaced by the phrase
‘‘the process’ controlling terminal’’.

• In the RETURN VALUE section, the word ‘‘characters’’ is replaced by ‘‘bytes’’, to indicate
that this interface deals solely in single-byte values.

• A note is added to the APPLICATION USAGE section indicating why the interface may be
withdrawn in a future issue.

Issue 5
Marked LEGACY.

A note indicating that this interface need not be reentrant is added to the DESCRIPTION.

354 CAE Specification (1997)

System Interfaces getpgid()

NAME
getpgid — get the process group ID for a process

SYNOPSIS
EX #include <unistd.h>

pid_t getpgid(pid_t pid);

DESCRIPTION
The getpgid() function returns the process group ID of the process whose process ID is equal to
pid. If pid is equal to 0, getpgid() returns the process group ID of the calling process.

RETURN VALUE
Upon successful completion, getpgid() returns a process group ID. Otherwise, it returns
(pid_t)−1 and sets errno to indicate the error.

ERRORS
The getpgid() function will fail if:

[EPERM] The process whose process ID is equal to pid is not in the same session as the
calling process, and the implementation does not allow access to the process
group ID of that process from the calling process.

[ESRCH] There is no process with a process ID equal to pid.

The getpgid() function may fail if:

[EINVAL] The value of the pid argument is invalid.

EXAMPLES
None.

APPLICATION USAGE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
exec, fork (), getpgrp(), getpid(), getsid(), setpgid(), setsid(), <unistd.h>.

CHANGE HISTORY
First released in Issue 4, Version 2.

Issue 5
Moved from X/OPEN UNIX extension to BASE.

System Interfaces and Headers, Issue 5: Volume 1 355

getpgrp() System Interfaces

NAME
getpgrp — get the process group ID of the calling process

SYNOPSIS
OH #include <sys/types.h>

#include <unistd.h>

pid_t getpgrp(void);

DESCRIPTION
The getpgrp() function returns the process group ID of the calling process.

RETURN VALUE
The getpgrp() function is always successful and no return value is reserved to indicate an error.

ERRORS
No errors are defined.

EXAMPLES
None.

APPLICATION USAGE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
exec, fork (), getpgid(), getpid(), getppid(), kill (), setpgid(), setsid(), <sys/types.h>, <unistd.h>.

CHANGE HISTORY
First released in Issue 1.

Derived from Issue 1 of the SVID.

Issue 4
The following change is incorporated for alignment with the ISO POSIX-1 standard:

• The argument list is explicitly defined as void.

Other changes are incorporated in this issue as follows:

• The <sys/types.h> header is now marked as optional (OH); this header need not be included
on XSI-conformant systems.

• The <unistd.h> header is added to the SYNOPSIS section.

356 CAE Specification (1997)

System Interfaces getpid()

NAME
getpid — get the process ID

SYNOPSIS
OH #include <sys/types.h>

#include <unistd.h>

pid_t getpid(void);

DESCRIPTION
The getpid() function returns the process ID of the calling process.

RETURN VALUE
The getpid() function is always successful and no return value is reserved to indicate an error.

ERRORS
No errors are defined.

EXAMPLES
None.

APPLICATION USAGE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
exec, fork (), getpgrp(), getppid(), kill (), setpgid(), setsid(), <sys/types.h>, <unistd.h>.

CHANGE HISTORY
First released in Issue 1.

Derived from Issue 1 of the SVID.

Issue 4
The following change is incorporated for alignment with the ISO POSIX-1 standard:

• The argument list is explicitly defined as void.

Other changes are incorporated in this issue as follows:

• The <sys/types.h> header is now marked as optional (OH); this header need not be included
on XSI-conformant systems.

• The <unistd.h> header is added to the SYNOPSIS section.

System Interfaces and Headers, Issue 5: Volume 1 357

getpmsg() System Interfaces

NAME
getpmsg — get the user database entry

SYNOPSIS
EX #include <pwd.h>

int getpmsg(int fildes , struct strbuf * ctlptr , struct strbuf * dataptr ,
int * bandp , int * flagsp);

DESCRIPTION
Refer to getmsg().

CHANGE HISTORY
First released in Issue 4, Version 2.

Issue 5
Moved from X/OPEN UNIX extension to BASE.

358 CAE Specification (1997)

System Interfaces getppid()

NAME
getppid — get the parent process ID

SYNOPSIS
OH #include <sys/types.h>

#include <unistd.h>

pid_t getppid(void);

DESCRIPTION
The getppid() function returns the parent process ID of the calling process.

RETURN VALUE
The getppid() function is always successful and no return value is reserved to indicate an error.

ERRORS
No errors are defined.

EXAMPLES
None.

APPLICATION USAGE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
exec, fork (), getpgid(), getpgrp(), getpid(), kill (), setpgid(), setsid(), <sys/types.h>, <unistd.h>.

CHANGE HISTORY
First released in Issue 1.

Derived from Issue 1 of the SVID.

Issue 4
The following change is incorporated for alignment with the ISO POSIX-1 standard:

• The argument list is explicitly defined as void.

Other changes are incorporated in this issue as follows:

• The <sys/types.h> header is now marked as optional (OH); this header need not be included
on XSI-conformant systems.

• The <unistd.h> header is added to the SYNOPSIS section.

System Interfaces and Headers, Issue 5: Volume 1 359

getpriority() System Interfaces

NAME
getpriority, setpriority — get or set the nice value

SYNOPSIS
EX #include <sys/resource.h>

int getpriority(int which , id_t who);
int setpriority(int which , id_t who, int value);

DESCRIPTION
The getpriority () function obtains the nice value of a process, process group or user. The
setpriority() function sets the nice value of a process, process group or user to value + NZERO.

Target processes are specified by the values of the which and who arguments. The which
argument may be one of the following values: PRIO_PROCESS, PRIO_PGRP or PRIO_USER,
indicating that the who argument is to be interpreted as a process ID, a process group ID or an
effective user ID, respectively. A 0 value for the who argument specifies the current process,
process group or user.

The nice value set with setpriority() is applied to the process. If the process is multi-threaded,
the nice value affects all system scope threads in the process.

If more than one process is specified, getpriority () returns value NZERO less than the lowest nice
value pertaining to any of the specified processes, and setpriority() sets the nice values of all of
the specified processes to value + NZERO.

The default nice value is NZERO; lower nice values cause more favourable scheduling. While
the range of valid nice values is [0, NZERO*2 −1], implementations may enforce more restrictive
limits. If value + NZERO is less than the system’s lowest supported nice value, setpriority() sets
the nice value to the lowest supported value; if value + NZERO is greater than the system’s
highest supported nice value, setpriority() sets the nice value to the highest supported value.

Only a process with appropriate privileges can lower its nice value.

RT Any processes or threads using SCHED_FIFO or SCHED_RR are unaffected by a call to
setpriority(). This is not considered an error.

The effect of changing the nice value may vary depending on the process-scheduling algorithm
in effect.

Because getpriority () can return the value −1 on successful completion, it is necessary to set errno
to 0 prior to a call to getpriority (). If getpriority () returns the value −1, then errno can be checked
to see if an error occurred or if the value is a legitimate nice value.

RETURN VALUE
Upon successful completion, getpriority () returns an integer in the range from −NZERO to
NZERO−1. Otherwise, −1 is returned and errno is set to indicate the error.

Upon successful completion, setpriority() returns 0. Otherwise, −1 is returned and errno is set to
indicate the error.

ERRORS
The getpriority () and setpriority() functions will fail if:

[ESRCH] No process could be located using the which and who argument values
specified.

[EINVAL] The value of the which argument was not recognised, or the value of the who
argument is not a valid process ID, process group ID or user ID.

360 CAE Specification (1997)

System Interfaces getpriority()

In addition, setpriority() may fail if:

[EPERM] A process was located, but neither the real nor effective user ID of the
executing process match the effective user ID of the process whose nice value
is being changed.

[EACCES] A request was made to change the nice value to a lower numeric value and
the current process does not have appropriate privileges.

EXAMPLES
None.

APPLICATION USAGE
The getpriority () and setpriority() functions work with an offset nice value (nice value minus
NZERO). The nice value is in the range [0, 2*NZERO −1], while the return value for getpriority ()
and the third parameter for setpriority() are in the range [−NZERO, NZERO −1].

FUTURE DIRECTIONS
None.

SEE ALSO
nice(), sched_get_priority_max (), sched_setscheduler(), <sys/resource.h>.

CHANGE HISTORY
First released in Issue 4, Version 2.

Issue 5
Moved from X/OPEN UNIX extension to BASE.

The DESCRIPTION is reworded in terms of the nice value rather than priority to avoid confusion
with functionality in the POSIX Realtime Extension.

System Interfaces and Headers, Issue 5: Volume 1 361

getpwent() System Interfaces

NAME
getpwent — get user database entry

SYNOPSIS
EX #include <pwd.h>

struct passwd *getpwent(void);

DESCRIPTION
Refer to endpwent().

CHANGE HISTORY
First released in Issue 4, Version 2.

Issue 5
Moved from X/OPEN UNIX extension to BASE.

362 CAE Specification (1997)

System Interfaces getpwnam()

NAME
getpwnam, getpwnam_r — search user database for a name

SYNOPSIS
OH #include <sys/types.h>

#include <pwd.h>

struct passwd *getpwnam(const char * name);
int getpwnam_r(const char * nam, struct passwd * pwd, char * buffer ,

size_t bufsize , struct passwd ** result);

DESCRIPTION
The getpwnam() function searches the user database for an entry with a matching name.

The getpwnam() interface need not be reentrant.

The getpwnam_r() function updates the passwd structure pointed to by pwd and stores a pointer
to that structure at the location pointed to by result. The structure will contain an entry from the
user database with a matching uid or name. Storage referenced by the structure is allocated from
the memory provided with the buffer parameter, which is bufsize characters in size. The
maximum size needed for this buffer can be determined with the {_SC_GETPW_R_SIZE_MAX}
sysconf() parameter. A NULL pointer is returned at the location pointed to by result on error or
if the requested entry is not found.

Applications wishing to check for error situations should set errno to 0 before calling
getpwnam(). If getpwnam() returns a null pointer and errno is non-zero, an error occurred.

RETURN VALUE
The getpwnam() function returns a pointer to a struct passwd with the structure as defined in
<pwd.h> with a matching entry if found. A null pointer is returned if the requested entry is not

EX found, or an error occurs. On error, errno is set to indicate the error.

The return value may point to a static area which is overwritten by a subsequent call to
getpwent(), getpwnam() or getpwuid().

If successful, the getpwnam_r() function returns zero. Otherwise, an error number is returned to
indicate the error.

ERRORS
The getpwnam() function may fail if:

EX [EIO] An I/O error has occurred.

[EINTR] A signal was caught during getpwnam().

[EMFILE] {OPEN_MAX} file descriptors are currently open in the calling process.

[ENFILE] The maximum allowable number of files is currently open in the system.

The getpwnam_r() function may fail if:

[ERANGE] Insufficient storage was supplied via buffer and bufsize to contain the data to be
referenced by the resulting passwd structure.

EXAMPLES
None.

APPLICATION USAGE
Three names associated with the current process can be determined: getpwuid(geteuid()) returns
the name associated with the effective user ID of the process; getlogin () returns the name
associated with the current login activity; and getpwuid(getuid()) returns the name associated

System Interfaces and Headers, Issue 5: Volume 1 363

getpwnam() System Interfaces

with the real user ID of the process.

FUTURE DIRECTIONS
None.

SEE ALSO
getpwuid(), <limits.h>, <pwd.h>, <sys/types.h>.

CHANGE HISTORY
First released in Issue 1.

Derived from System V Release 2.0.

Issue 4
The following change is incorporated for alignment with the ISO POSIX-1 standard:

• The type of argument name is changed from char * to const char *.

Other changes are incorporated as follows:

• The DESCRIPTION is clarified.

• The <sys/types.h> header is now marked as optional (OH); this header need not be included
on XSI-conformant systems.

• The last sentence in the RETURN VALUE section, indicating that errno will be set on error, is
marked as an extension.

• The errors [EIO], [EINTR], [EMFILE] and [ENFILE] are marked as extensions.

• The APPLICATION USAGE section is expanded (a) to warn about possible reuses of the area
used to pass the return value, and (b) to indicate how applications should check for errors.

Issue 5
Normative text previously in the APPLICATION USAGE section is moved to the RETURN
VALUE section.

The getpwnam_r() function is included for alignment with the POSIX Threads Extension.

A note indicating that the getpwnam() interface need not be reentrant is added to the
DESCRIPTION.

364 CAE Specification (1997)

System Interfaces getpwuid()

NAME
getpwuid, getpwuid_r — search user database for a user ID

SYNOPSIS
OH #include <sys/types.h>

#include <pwd.h>

struct passwd *getpwuid(uid_t uid);
int getpwuid_r(uid_t uid , struct passwd * pwd, char * buffer ,

size_t bufsize , struct passwd ** result);

DESCRIPTION
The getpwuid() function searches the user database for an entry with a matching uid .

The getpwuid() interface need not be reentrant.

The getpwuid_r() function updates the passwd structure pointed to by pwd and stores a pointer
to that structure at the location pointed to by result. The structure will contain an entry from the
user database with a matching uid or name. Storage referenced by the structure is allocated from
the memory provided with the buffer parameter, which is bufsize characters in size. The
maximum size needed for this buffer can be determined with the {_SC_GETPW_R_SIZE_MAX}
sysconf() parameter. A NULL pointer is returned at the location pointed to by result on error or
if the requested entry is not found.

Applications wishing to check for error situations should set errno to 0 before calling getpwuid().
If getpwuid() returns a null pointer and errno is set to non-zero, an error occurred.

RETURN VALUE
The getpwuid() function returns a pointer to a struct passwd with the structure as defined in
<pwd.h> with a matching entry if found. A null pointer is returned if the requested entry is not

EX found, or an error occurs. On error, errno is set to indicate the error.

The return value may point to a static area which is overwritten by a subsequent call to
getpwent(), getpwnam() or getpwuid().

If successful, the getpwuid_r() function returns zero. Otherwise, an error number is returned to
indicate the error.

ERRORS
The getpwuid() function may fail if:

EX [EIO] An I/O error has occurred.

[EINTR] A signal was caught during getpwuid().

[EMFILE] {OPEN_MAX} file descriptors are currently open in the calling process.

[ENFILE] The maximum allowable number of files is currently open in the system.

The getpwuid_r() function may fail if:

[ERANGE] Insufficient storage was supplied via buffer and bufsize to contain the data to be
referenced by the resulting passwd structure.

EXAMPLES
None.

APPLICATION USAGE
Three names associated with the current process can be determined: getpwuid(geteuid()) returns
the name associated with the effective user ID of the process; getlogin () returns the name
associated with the current login activity; and getpwuid(getuid()) returns the name associated

System Interfaces and Headers, Issue 5: Volume 1 365

getpwuid() System Interfaces

with the real user ID of the process.

FUTURE DIRECTIONS
None.

SEE ALSO
getpwnam(), geteuid(), getuid(), getlogin (), <limits.h>, <pwd.h>, <sys/types.h>.

CHANGE HISTORY
First released in Issue 1.

Derived from System V Release 2.0.

Issue 4
The following changes are incorporated in this issue:

• The DESCRIPTION is clarified.

• The <sys/types.h> header is now marked as optional (OH); this header need not be included
on XSI-conformant systems.

• The last sentence in the RETURN VALUE section, indicating that errno will be set on error, is
marked as an extension.

• The errors [EIO], [EINTR], [EMFILE] and [ENFILE] are marked as extensions.

• A note is added to the APPLICATION USAGE section indicating how an application should
check for errors.

Issue 5
Normative text previously in the APPLICATION USAGE section is moved to the RETURN
VALUE section.

The getpwuid_r() function is included for alignment with the POSIX Threads Extension.

A note indicating that the getpwuid() interface need not be reentrant is added to the
DESCRIPTION.

366 CAE Specification (1997)

System Interfaces getrlimit()

NAME
getrlimit, setrlimit — control maximum resource consumption

SYNOPSIS
EX #include <sys/resource.h>

int getrlimit(int resource , struct rlimit * rlp);
int setrlimit(int resource , const struct rlimit * rlp);

DESCRIPTION
Limits on the consumption of a variety of resources by the calling process may be obtained with
getrlimit() and set with setrlimit().

Each call to either getrlimit() or setrlimit() identifies a specific resource to be operated upon as
well as a resource limit. A resource limit is represented by an rlimit structure. The rlim_cur
member specifies the current or soft limit and the rlim_max member specifies the maximum or
hard limit. Soft limits may be changed by a process to any value that is less than or equal to the
hard limit. A process may (irreversibly) lower its hard limit to any value that is greater than or
equal to the soft limit. Only a process with appropriate privileges can raise a hard limit. Both
hard and soft limits can be changed in a single call to setrlimit() subject to the constraints
described above.

The value RLIM_INFINITY, defined in <sys/resource.h>, is considered to be larger than any
other limit value. If a call to getrlimit() returns RLIM_INFINITY for a resource, it means the
implementation does not enforce limits on that resource. Specifying RLIM_INFINITY as any
resource limit value on a successful call to setrlimit() inhibits enforcement of that resource limit.

The following resources are defined:

RLIMIT_CORE This is the maximum size of a core file in bytes that may be created by a
process. A limit of 0 will prevent the creation of a core file. If this limit is
exceeded, the writing of a core file will terminate at this size.

RLIMIT_CPU This is the maximum amount of CPU time in seconds used by a process. If
this limit is exceeded, SIGXCPU is generated for the process. If the process is
catching or ignoring SIGXCPU, or all threads belonging to that process are
blocking SIGXCPU, the behaviour is unspecified.

RLIMIT_DATA This is the maximum size of a process’ data segment in bytes. If this limit is
exceeded, the brk(), malloc () and sbrk() functions will fail with errno set to
[ENOMEM].

RLIMIT_FSIZE This is the maximum size of a file in bytes that may be created by a process. If
a write or truncate operation would cause this limit to be exceeded, SIGXFSZ
is generated for the thread. If the thread is blocking, or the process is catching
or ignoring SIGXFSZ, continued attempts to increase the size of a file from
end-of-file to beyond the limit will fail with errno set to [EFBIG].

RLIMIT_NOFILE
This is a number one greater than the maximum value that the system may
assign to a newly-created descriptor. If this limit is exceeded, functions that
allocate new file descriptors may fail with errno set to [EMFILE]. This limit
constrains the number of file descriptors that a process may allocate.

RLIMIT_STACK This is the maximum size of a process’ stack in bytes. The implementation
will not automatically grow the stack beyond this limit. If this limit is
exceeded, SIGSEGV is generated for the thread. If the thread is blocking

System Interfaces and Headers, Issue 5: Volume 1 367

getrlimit() System Interfaces

SIGSEGV, or the process is ignoring or catching SIGSEGV and has not made
arrangements to use an alternate stack, the disposition of SIGSEGV will be set
to SIG_DFL before it is generated.

RLIMIT_AS This is the maximum size of a process’ total available memory, in bytes. If this
limit is exceeded, the brk(), malloc (), mmap() and sbrk() functions will fail
with errno set to [ENOMEM]. In addition, the automatic stack growth will fail
with the effects outlined above.

When using the getrlimit() function, if a resource limit can be represented correctly in an object
of type rlim_t then its representation is returned; otherwise if the value of the resource limit is
equal to that of the corresponding saved hard limit, the value returned is RLIM_SAVED_MAX;
otherwise the value returned is RLIM_SAVED_CUR.

When using the setrlimit() function, if the requested new limit is RLIM_INFINITY the new limit
will be ‘‘no limit’’; otherwise if the requested new limit is RLIM_SAVED_MAX, the new limit
will be the corresponding saved hard limit; otherwise if the requested new limit is
RLIM_SAVED_CUR, the new limit will be the corresponding saved soft limit; otherwise the new
limit will be the requested value. In addition, if the corresponding saved limit can be represented
correctly in an object of type rlim_t then it will be overwritten with the new limit.

The result of setting a limit to RLIM_SAVED_MAX or RLIM_SAVED_CUR is unspecified unless
a previous call to getrlimit() returned that value as the soft or hard limit for the corresponding
resource limit.

The determination of whether a limit can be correctly represented in an object of type rlim_t is
implementation-dependent. For example, some implementations permit a limit whose value is
greater than RLIM_INFINITY and others do not.

The exec family of functions also cause resource limits to be saved.

RETURN VALUE
Upon successful completion, getrlimit() and setrlimit() return 0. Otherwise, these functions
return −1 and set errno to indicate the error.

ERRORS
The getrlimit() and setrlimit() functions will fail if:

[EINVAL] An invalid resource was specified; or in a setrlimit() call, the new rlim_cur
exceeds the new rlim_max.

[EPERM] The limit specified to setrlimit() would have raised the maximum limit value,
and the calling process does not have appropriate privileges.

The setrlimit() function may fail if:

[EINVAL] The limit specified cannot be lowered because current usage is already higher
than the limit.

EXAMPLES
None.

APPLICATION USAGE
If a process attempts to set the hard limit or soft limit for RLIMIT_NOFILE to less than the value
of _POSIX_OPEN_MAX from <limits.h>, unexpected behaviour may occur.

FUTURE DIRECTIONS
None.

368 CAE Specification (1997)

System Interfaces getrlimit()

SEE ALSO
brk(), exec, fork (), malloc (), open(), sbrk(), sigaltstack (), sysconf(), ulimit(), <stropts.h>,
<sys/resource.h>.

CHANGE HISTORY
First released in Issue 4, Version 2.

Issue 5
Moved from X/OPEN UNIX extension to BASE and an APPLICATION USAGE section is added.

Large File Summit extensions added.

System Interfaces and Headers, Issue 5: Volume 1 369

getrusage() System Interfaces

NAME
getrusage — get information about resource utilisation

SYNOPSIS
EX #include <sys/resource.h>

int getrusage(int who, struct rusage * r_usage);

DESCRIPTION
The getrusage() function provides measures of the resources used by the current process or its
terminated and waited-for child processes. If the value of the who argument is RUSAGE_SELF,
information is returned about resources used by the current process. If the value of the who
argument is RUSAGE_CHILDREN, information is returned about resources used by the
terminated and waited-for children of the current process. If the child is never waited for (for
instance, if the parent has SA_NOCLDWAIT set or sets SIGCHLD to SIG_IGN), the resource
information for the child process is discarded and not included in the resource information
provided by getrusage().

The r_usage argument is a pointer to an object of type struct rusage in which the returned
information is stored.

RETURN VALUE
Upon successful completion, getrusage() returns 0. Otherwise, −1 is returned, and errno is set to
indicate the error.

ERRORS
The getrusage() function will fail if:

[EINVAL] The value of the who argument is not valid.

EXAMPLES
None.

APPLICATION USAGE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
exit(), sigaction (), time(), times(), wait(), <sys/resource.h>.

CHANGE HISTORY
First released in Issue 4, Version 2.

Issue 5
Moved from X/OPEN UNIX extension to BASE.

370 CAE Specification (1997)

System Interfaces gets()

NAME
gets — get a string from a stdin stream

SYNOPSIS
#include <stdio.h>

char *gets(char * s);

DESCRIPTION
The gets() function reads bytes from the standard input stream, stdin, into the array pointed to
by s, until a newline is read or an end-of-file condition is encountered. Any newline is discarded
and a null byte is placed immediately after the last byte read into the array.

The gets() function may mark the st_atime field of the file associated with stream for update. The
st_atime field will be marked for update by the first successful execution of fgetc(), fgets(),
fread(), getc(), getchar(), gets(), fscanf() or scanf() using stream that returns data not supplied by a
prior call to ungetc().

RETURN VALUE
Upon successful completion, gets() returns s. If the stream is at end-of-file, the end-of-file
indicator for the stream is set and gets() returns a null pointer. If a read error occurs, the error
indicator for the stream is set, gets() returns a null pointer and sets errno to indicate the error.

ERRORS
Refer to fgetc().

EXAMPLES
None.

APPLICATION USAGE
Reading a line that overflows the array pointed to by s causes undefined results. The use of
fgets() is recommended.

FUTURE DIRECTIONS
None.

SEE ALSO
feof(), ferror(), fgets(), <stdio.h>.

CHANGE HISTORY
First released in Issue 1.

Derived from Issue 1 of the SVID.

Issue 4
The following change is incorporated in this issue:

• In the DESCRIPTION (a) the text is changed to make it clear that the function reads bytes
rather than (possibly multi-byte) characters, and (b) the list of functions that may cause the
st_atime field to be updated is revised.

System Interfaces and Headers, Issue 5: Volume 1 371

getsid() System Interfaces

NAME
getsid — get the process group ID of session leader

SYNOPSIS
EX #include <unistd.h>

pid_t getsid(pid_t pid);

DESCRIPTION
The getsid() function obtains the process group ID of the process that is the session leader of the
process specified by pid. If pid is (pid_t)0, it specifies the calling process.

RETURN VALUE
Upon successful completion, getsid() returns the process group ID of the session leader of the
specified process. Otherwise, it returns (pid_t)−1 and sets errno to indicate the error.

ERRORS
The getsid() function will fail if:

[EPERM] The process specified by pid is not in the same session as the calling process,
and the implementation does not allow access to the process group ID of the
session leader of that process from the calling process.

[ESRCH] There is no process with a process ID equal to pid.

EXAMPLES
None.

APPLICATION USAGE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
exec, fork (), getpid(), getpgid(), setpgid(), setsid(), <unistd.h>.

CHANGE HISTORY
First released in Issue 4, Version 2.

Issue 5
Moved from X/OPEN UNIX extension to BASE.

372 CAE Specification (1997)

System Interfaces getsubopt()

NAME
getsubopt — parse suboption arguments from a string

SYNOPSIS
EX #include <stdlib.h>

int getsubopt(char ** optionp , char * const * tokens , char ** valuep);

DESCRIPTION
The getsubopt() function parses suboption arguments in a flag argument that was initially parsed
by getopt(). These suboption arguments must be separated by commas and may consist of
either a single token, or a token-value pair separated by an equal sign. Because commas delimit
suboption arguments in the option string, they are not allowed to be part of the suboption
arguments or the value of a suboption argument. Similarly, because the equal sign separates a
token from its value, a token must not contain an equal sign.

The getsubopt() function takes the address of a pointer to the option argument string, a vector of
possible tokens, and the address of a value string pointer. If the option argument string at
*optionp contains only one suboption argument, getsubopt() updates *optionp to point to the null
at the end of the string. Otherwise, it isolates the suboption argument by replacing the comma
separator with a null, and updates *optionp to point to the start of the next suboption argument.
If the suboption argument has an associated value, getsubopt() updates *valuep to point to the
value’s first character. Otherwise it sets *valuep to a null pointer.

The token vector is organised as a series of pointers to strings. The end of the token vector is
identified by a null pointer.

When getsubopt() returns, if *valuep is not a null pointer then the suboption argument processed
included a value. The calling program may use this information to determine if the presence or
lack of a value for this suboption is an error.

Additionally, when getsubopt() fails to match the suboption argument with the tokens in the
tokens array, the calling program should decide if this is an error, or if the unrecognised option
should be passed on to another program.

RETURN VALUE
The getsubopt() function returns the index of the matched token string, or −1 if no token strings
were matched.

ERRORS
No errors are defined.

EXAMPLES
None.

APPLICATION USAGE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
getopt(), <stdlib.h>.

CHANGE HISTORY
First released in Issue 4, Version 2.

System Interfaces and Headers, Issue 5: Volume 1 373

getsubopt() System Interfaces

Issue 5
Moved from X/OPEN UNIX extension to BASE.

374 CAE Specification (1997)

System Interfaces gettimeofday()

NAME
gettimeofday — get the date and time

SYNOPSIS
EX #include <sys/time.h>

int gettimeofday(struct timeval * tp , void * tzp);

DESCRIPTION
The gettimeofday () function obtains the current time, expressed as seconds and microseconds
since 00:00 Coordinated Universal Time (UTC), January 1, 1970, and stores it in the timeval
structure pointed to by tp. The resolution of the system clock is unspecified.

If tzp is not a null pointer, the behaviour is unspecified.

RETURN VALUE
The gettimeofday () function returns 0 and no value is reserved to indicate an error.

ERRORS
No errors are defined.

EXAMPLES
None.

APPLICATION USAGE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
ctime(), ftime(), <sys/time.h>.

CHANGE HISTORY
First released in Issue 4, Version 2.

Issue 5
Moved from X/OPEN UNIX extension to BASE.

System Interfaces and Headers, Issue 5: Volume 1 375

getuid() System Interfaces

NAME
getuid — get a real user ID

SYNOPSIS
OH #include <sys/types.h>

#include <unistd.h>

uid_t getuid (void);

DESCRIPTION
The getuid() function returns the real user ID of the calling process.

RETURN VALUE
The getuid() function is always successful and no return value is reserved to indicate the error.

ERRORS
No errors are defined.

EXAMPLES
None.

APPLICATION USAGE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
geteuid(), getgid(), setuid(), <sys/types.h>, <unistd.h>.

CHANGE HISTORY
First released in Issue 1.

Derived from Issue 1 of the SVID.

Issue 4
The following change is incorporated for alignment with the ISO POSIX-1 standard:

• The argument list is explicitly defined as void.

Other changes are incorporated as follows:

• The <sys/types.h> header is now marked as optional (OH); this header need not be included
on XSI-conformant systems.

• The <unistd.h> header is added to the SYNOPSIS section.

376 CAE Specification (1997)

System Interfaces getutxent()

NAME
getutxent, getutxid, getutxline — get user accounting database entries

SYNOPSIS
EX #include <utmpx.h>

struct utmpx *getutxent(void);
struct utmpx *getutxid(const struct utmpx * id);
struct utmpx *getutxline(const struct utmpx * line);

DESCRIPTION
Refer to endutxent().

CHANGE HISTORY
First released in Issue 4, Version 2.

Issue 5
Moved from X/OPEN UNIX extension to BASE.

System Interfaces and Headers, Issue 5: Volume 1 377

getw() System Interfaces

NAME
getw — get a word from a stream (LEGACY)

SYNOPSIS
EX #include <stdio.h>

int getw(FILE * stream);

DESCRIPTION
The getw() function reads the next word from the stream. The size of a word is the size of an int
and may vary from machine to machine. The getw() function presumes no special alignment in
the file.

The getw() function may mark the st_atime field of the file associated with stream for update. The
st_atime field will be marked for update by the first successful execution of fgetc(), fgets(),
fread(), getc(), getchar(), gets(), fscanf() or scanf() using stream that returns data not supplied by a
prior call to ungetc().

This interface need not be reentrant.

RETURN VALUE
Upon successful completion, getw() returns the next word from the input stream pointed to by
stream. If the stream is at end-of-file, the end-of-file indicator for the stream is set and getw()
returns EOF. If a read error occurs, the error indicator for the stream is set, getw() returns EOF
and sets errno to indicate the error.

ERRORS
Refer to fgetc().

EXAMPLES
None.

APPLICATION USAGE
Because of possible differences in word length and byte ordering, files written using putw() are
implementation-dependent, and possibly cannot be read using getw() by a different application
or by the same application on a different processor.

Because the representation of EOF is a valid integer, applications wishing to check for errors
should use ferror() and feof().

The getw() function is inherently byte stream-oriented and is not tenable in the context of either
multibyte character streams or wide-character streams. Application programmers are
recommended to use one of the character-based input functions instead.

FUTURE DIRECTIONS
None.

SEE ALSO
feof(), ferror(), getc(), putw(), <stdio.h>, <utmpx.h>.

CHANGE HISTORY
First released in Issue 1.

Derived from Issue 1 of the SVID.

Issue 4
The following changes are incorporated in this issue:

• In the DESCRIPTION, the list of functions that may cause the st_atime field to be updated is
revised.

378 CAE Specification (1997)

System Interfaces getw()

• The APPLICATION USAGE section is amended because EOF is always a valid integer.

Issue 5
A note indicating that this interface need not be reentrant is added to the DESCRIPTION.

Marked LEGACY.

System Interfaces and Headers, Issue 5: Volume 1 379

getwc() System Interfaces

NAME
getwc — get a wide character from a stream

SYNOPSIS
#include <stdio.h>
#include <wchar.h>

wint_t getwc(FILE * stream);

DESCRIPTION
The getwc() function is equivalent to fgetwc(), except that if it is implemented as a macro it may
evaluate stream more than once, so the argument should never be an expression with side effects.

RETURN VALUE
Refer to fgetwc().

ERRORS
Refer to fgetwc().

EXAMPLES
None.

APPLICATION USAGE
Because it may be implemented as a macro, getwc() may treat incorrectly a stream argument with
side effects. In particular, getwc(*f ++) will not necessarily work as expected. Therefore, use of
this interface is not recommended; fgetwc() should be used instead.

FUTURE DIRECTIONS
None.

SEE ALSO
fgetwc(), <stdio.h>, <wchar.h>.

CHANGE HISTORY
First released as a World-wide Portability Interface in Issue 4.

Derived from the MSE working draft.

Issue 5
The Optional Header (OH) marking is removed from <stdio.h>.

380 CAE Specification (1997)

System Interfaces getwchar()

NAME
getwchar — get a wide character from a stdin stream

SYNOPSIS
#include <wchar.h>

wint_t getwchar(void);

DESCRIPTION
The getwchar() function is equivalent to getwc(stdin).

RETURN VALUE
Refer to fgetwc().

ERRORS
Refer to fgetwc().

EXAMPLES
None.

APPLICATION USAGE
If the value returned by getwchar() is stored into a variable of type wchar_t and then compared
against the wint_t macro WEOF, the comparison need never succeed.

FUTURE DIRECTIONS
None.

SEE ALSO
fgetwc(), getwc(), <wchar.h>.

CHANGE HISTORY
First released as a World-wide Portability Interface in Issue 4.

Derived from the MSE working draft.

System Interfaces and Headers, Issue 5: Volume 1 381

getwd() System Interfaces

NAME
getwd — get the current working directory pathname

SYNOPSIS
EX #include <unistd.h>

char *getwd(char * path_name);

DESCRIPTION
The getwd() function determines an absolute pathname of the current working directory of the
calling process, and copies that pathname into the array pointed to by the path_name argument.

If the length of the pathname of the current working directory is greater than ({PATH_MAX} + 1)
including the null byte, getwd() fails and returns a null pointer.

RETURN VALUE
Upon successful completion, a pointer to the string containing the absolute pathname of the
current working directory is returned. Otherwise, getwd() returns a null pointer and the
contents of the array pointed to by path_name are undefined.

ERRORS
No errors are defined.

EXAMPLES
None.

APPLICATION USAGE
For portability to implementations conforming to earlier versions of this specification, getcwd()
is preferred over this function.

FUTURE DIRECTIONS
None.

SEE ALSO
getcwd(), <unistd.h>.

CHANGE HISTORY
First released in Issue 4, Version 2.

Issue 5
Moved from X/OPEN UNIX extension to BASE.

382 CAE Specification (1997)

System Interfaces glob()

NAME
glob, globfree — generate pathnames matching a pattern

SYNOPSIS
#include <glob.h>

int glob(const char * pattern , int flags ,
int(* errfunc)(const char * epath , int errno), glob_t * pglob);

void globfree(glob_t * pglob);

DESCRIPTION
The glob() function is a pathname generator that implements the rules defined in the XCU
specification, Section 2.13, Pattern Matching Notation, with optional support for rule 3 in the
XCU specification, Section 2.13.3, Patterns Used for Filename Expansion.

The structure type glob_t is defined in the header <glob.h> and includes at least the following
members:

Member Type Member Name Description
size_t gl_pathc Count of paths matched by pattern.
char ** gl_pathv Pointer to a list of matched pathnames.
size_t gl_offs Slots to reserve at the beginning of gl_pathv.

The argument pattern is a pointer to a pathname pattern to be expanded. The glob() function
matches all accessible pathnames against this pattern and develops a list of all pathnames that
match. In order to have access to a pathname, glob() requires search permission on every
component of a path except the last, and read permission on each directory of any filename
component of pattern that contains any of the following special characters:

* ? [

The glob() function stores the number of matched pathnames into pglob−>gl_pathc and a pointer
to a list of pointers to pathnames into pglob−>gl_pathv. The pathnames are in sort order as
defined by the current setting of the LC_COLLATE category, see the XBD specification, Section
5.3.2, LC_COLLATE . The first pointer after the last pathname is a null pointer. If the pattern
does not match any pathnames, the returned number of matched paths is set to 0, and the
contents of pglob->gl_pathv are implementation-dependent.

It is the caller’s responsibility to create the structure pointed to by pglob. The glob() function
allocates other space as needed, including the memory pointed to by gl_pathv. The globfree()
function frees any space associated with pglob from a previous call to glob().

The flags argument is used to control the behaviour of glob(). The value of flags is a bitwise
inclusive OR of zero or more of the following constants, which are defined in the header
<glob.h>:

GLOB_APPEND Append pathnames generated to the ones from a previous call to glob().

GLOB_DOOFFS Make use of pglob−>gl_offs. If this flag is set, pglob−>gl_offs is used to
specify how many null pointers to add to the beginning of
pglob−>gl_pathv. In other words, pglob−>gl_pathv will point to
pglob−>gl_offs null pointers, followed by pglob−>gl_pathc pathname
pointers, followed by a null pointer.
ne 2

GLOB_ERR Causes glob() to return when it encounters a directory that it cannot open
or read. Ordinarily, glob() continues to find matches.

System Interfaces and Headers, Issue 5: Volume 1 383

glob() System Interfaces

GLOB_MARK Each pathname that is a directory that matches pattern has a slash
appended.

GLOB_NOCHECK Support rule 3 in the XCU specification, Section 2.13.3, Patterns Used for
Filename Expansion. If pattern does not match any pathname, then
glob() returns a list consisting of only pattern, and the number of matched
pathnames is 1.

GLOB_NOESCAPE Disable backslash escaping.

GLOB_NOSORT Ordinarily, glob() sorts the matching pathnames according to the current
setting of the LC_COLLATE category, see the XBD specification, Section
5.3.2, LC_COLLATE . When this flag is used the order of pathnames
returned is unspecified.

The GLOB_APPEND flag can be used to append a new set of pathnames to those found in a
previous call to glob(). The following rules apply when two or more calls to glob() are made
with the same value of pglob and without intervening calls to globfree():

1. The first such call must not set GLOB_APPEND. All subsequent calls must set it.

2. All the calls must set GLOB_DOOFFS, or all must not set it.

3. After the second call, pglob−>gl_pathv points to a list containing the following:

a. Zero or more null pointers, as specified by GLOB_DOOFFS and pglob−>gl_offs.

b. Pointers to the pathnames that were in the pglob−>gl_pathv list before the call, in the
same order as before.

c. Pointers to the new pathnames generated by the second call, in the specified order.

4. The count returned in pglob−>gl_pathc will be the total number of pathnames from the
two calls.

5. The application can change any of the fields after a call to glob(). If it does, it must reset
them to the original value before a subsequent call, using the same pglob value, to globfree()
or glob() with the GLOB_APPEND flag.

If, during the search, a directory is encountered that cannot be opened or read and errfunc is not
a null pointer, glob() calls (*errfunc()) with two arguments:

1. The epath argument is a pointer to the path that failed.

2. The errno argument is the value of errno from the failure, as set by opendir(), readdir() or
stat(). (Other values may be used to report other errors not explicitly documented for
those functions.)

The following constants are defined as error return values for glob():

GLOB_ABORTED The scan was stopped because GLOB_ERR was set or (*errfunc())
returned non-zero.

GLOB_NOMATCH The pattern does not match any existing pathname, and
GLOB_NOCHECK was not set in flags.

GLOB_NOSPACE An attempt to allocate memory failed.

If (*errfunc)() is called and returns non-zero, or if the GLOB_ERR flag is set in flags, glob() stops
the scan and returns GLOB_ABORTED after setting gl_pathc and gl_pathv in pglob to reflect the
paths already scanned. If GLOB_ERR is not set and either errfunc is a null pointer or (*errfunc())
returns 0, the error is ignored.

384 CAE Specification (1997)

System Interfaces glob()

RETURN VALUE
On successful completion, glob() returns 0. The argument pglob−>gl_pathc returns the number
of matched pathnames and the argument pglob−>gl_pathv contains a pointer to a null-
terminated list of matched and sorted pathnames. However, if pglob−>gl_pathc is 0, the content
of pglob−>gl_pathv is undefined.

The globfree() function returns no value.

If glob() terminates due to an error, it returns one of the non-zero constants defined in <glob.h>.
The arguments pglob−>gl_pathc and pglob−>gl_pathv are still set as defined above.

ERRORS
No errors are defined.

EXAMPLES
One use of the GLOB_DOOFFS flag is by applications that build an argument list for use with
execv(), execve() or execvp(). Suppose, for example, that an application wants to do the
equivalent of:

ls -l *.c

but for some reason:

system("ls -l *.c")

is not acceptable. The application could obtain approximately the same result using the
sequence:

globbuf.gl_offs = 2;
glob ("*.c", GLOB_DOOFFS, NULL, &globbuf);
globbuf.gl_pathv[0] = "ls";
globbuf.gl_pathv[1] = "-l";
execvp ("ls", &globbuf.gl_pathv[0]);

Using the same example:

ls -l *.c *.h

could be approximately simulated using GLOB_APPEND as follows:

globbuf.gl_offs = 2;
glob ("*.c", GLOB_DOOFFS, NULL, &globbuf);
glob ("*.h", GLOB_DOOFFS|GLOB_APPEND, NULL, &globbuf);

...

APPLICATION USAGE
This function is not provided for the purpose of enabling utilities to perform pathname
expansion on their arguments, as this operation is performed by the shell, and utilities are
explicitly not expected to redo this. Instead, it is provided for applications that need to do
pathname expansion on strings obtained from other sources, such as a pattern typed by a user or
read from a file.

If a utility needs to see if a pathname matches a given pattern, it can use fnmatch().

Note that gl_pathc and gl_pathv have meaning even if glob() fails. This allows glob() to report
partial results in the event of an error. However, if gl_pathc is 0, gl_pathv is unspecified even if
glob() did not return an error.

The GLOB_NOCHECK option could be used when an application wants to expand a pathname
if wildcards are specified, but wants to treat the pattern as just a string otherwise. The sh utility
might use this for option-arguments, for example.

System Interfaces and Headers, Issue 5: Volume 1 385

glob() System Interfaces

The new pathnames generated by a subsequent call with GLOB_APPEND are not sorted
together with the previous pathnames. This mirrors the way that the shell handles pathname
expansion when multiple expansions are done on a command line.

Applications that need tilde and parameter expansion should use wordexp().

FUTURE DIRECTIONS
None.

SEE ALSO
execv(), fnmatch(), opendir(), readdir(), stat(), wordexp(), <glob.h>, the XCU specification.

CHANGE HISTORY
First released in Issue 4.

Derived from the ISO POSIX-2 standard.

Issue 5
Moved from POSIX2 C-language Binding to BASE.

386 CAE Specification (1997)

System Interfaces gmtime()

NAME
gmtime, gmtime_r — convert a time value to a broken-down UTC time

SYNOPSIS
#include <time.h>

struct tm *gmtime(const time_t * timer);
struct tm *gmtime_r(const time_t * clock , struct tm * result);

DESCRIPTION
The gmtime() function converts the time in seconds since the Epoch pointed to by timer into a
broken-down time, expressed as Coordinated Universal Time (UTC).

The gmtime() interface need not be reentrant.

The gmtime_r() function converts the calendar time pointed to by clock into a broken-down time
expressed as Coordinated Universal Time (UTC). The broken-down time is stored in the
structure referred to by result. The gmtime_r() function also returns the address of the same
structure.

RETURN VALUE
The gmtime() function returns a pointer to a struct tm.

Upon successful completion, gmtime_r() returns the address of the structure pointed to by the
argument result. If an error is detected, or UTC is not available, gmtime_r() returns a NULL
pointer.

ERRORS
No errors are defined.

EXAMPLES
None.

APPLICATION USAGE
The asctime(), ctime(), gmtime() and localtime () functions return values in one of two static
objects: a broken-down time structure and an array of char. Execution of any of the functions
may overwrite the information returned in either of these objects by any of the other functions.

FUTURE DIRECTIONS
None.

SEE ALSO
asctime(), clock (), ctime(), difftime(), localtime (), mktime(), strftime(), strptime(), time(), utime(),
<time.h>.

CHANGE HISTORY
First released in Issue 1.

Derived from Issue 1 of the SVID.

Issue 4
The following change is incorporated for alignment with the ISO C standard:

• The type of argument timer is changed from time_t* to const time_t*.

Another change is incorporated as follows:

• In the APPLICATION USAGE section, the list of functions with which this function may
interact is revised and the wording clarified.

System Interfaces and Headers, Issue 5: Volume 1 387

gmtime() System Interfaces

Issue 5
A note indicating that the gmtime() interface need not be reentrant is added to the
DESCRIPTION.

The gmtime_r() function is included for alignment with the POSIX Threads Extension.

388 CAE Specification (1997)

System Interfaces grantpt()

NAME
grantpt — grant access to the slave pseudo-terminal device

SYNOPSIS
EX #include <stdlib.h>

int grantpt(int fildes);

DESCRIPTION
The grantpt() function changes the mode and ownership of the slave pseudo-terminal device
associated with its master pseudo-terminal counter part. The fildes argument is a file descriptor
that refers to a master pseudo-terminal device. The user ID of the slave is set to the real UID of
the calling process and the group ID is set to an unspecified group ID. The permission mode of
the slave pseudo-terminal is set to readable and writable by the owner, and writable by the
group.

The behaviour of the grantpt() function is unspecified if the application has installed a signal
handler to catch SIGCHLD signals

RETURN VALUE
Upon successful completion, grantpt() returns 0. Otherwise, it returns −1 and sets errno to
indicate the error.

ERRORS
The grantpt() function may fail if:

[EBADF] The fildes argument is not a valid open file descriptor.

[EINVAL] The fildes argument is not associated with a master pseudo-terminal device.

[EACCES] The corresponding slave pseudo-terminal device could not be accessed.

EXAMPLES
None.

APPLICATION USAGE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
open(), ptsname(), unlockpt (), <stdlib.h>.

CHANGE HISTORY
First released in Issue 4, Version 2.

Issue 5
Moved from X/OPEN UNIX extension to BASE.

The last paragraph of the DESCRIPTION is moved from the APPLICATION USAGE section in
previous issues.

System Interfaces and Headers, Issue 5: Volume 1 389

hcreate() System Interfaces

NAME
hcreate, hdestroy, hsearch — manage hash search table

SYNOPSIS
EX #include <search.h>

int hcreate(size_t nel);
void hdestroy(void);
ENTRY *hsearch (ENTRY item , ACTION action);

DESCRIPTION
The hcreate(), hdestroy() and hsearch() functions manage hash search tables.

The hcreate() function allocates sufficient space for the table, and must be called before hsearch()
is used. The nel argument is an estimate of the maximum number of entries that the table will
contain. This number may be adjusted upward by the algorithm in order to obtain certain
mathematically favourable circumstances.

The hdestroy() function disposes of the search table, and may be followed by another call to
hcreate(). After the call to hdestroy(), the data can no longer be considered accessible.

The hsearch() function is a hash-table search routine. It returns a pointer into a hash table
indicating the location at which an entry can be found. The item argument is a structure of type
ENTRY (defined in the <search.h> header) containing two pointers: item.key points to the
comparison key (a char *), and item.data (a void *) points to any other data to be associated with
that key. The comparison function used by hsearch() is strcmp(). The action argument is a
member of an enumeration type ACTION indicating the disposition of the entry if it cannot be
found in the table. ENTER indicates that the item should be inserted in the table at an
appropriate point. FIND indicates that no entry should be made. Unsuccessful resolution is
indicated by the return of a null pointer.

RETURN VALUE
The hcreate() function returns 0 if it cannot allocate sufficient space for the table, and returns
non-zero otherwise.

The hdestroy() function returns no value.

The hsearch() function returns a null pointer if either the action is FIND and the item could not
be found or the action is ENTER and the table is full.

ERRORS
The hcreate() and hsearch() functions may fail if:

[ENOMEM] Insufficient storage space is available.

EXAMPLES
The following example will read in strings followed by two numbers and store them in a hash
table, discarding duplicates. It will then read in strings and find the matching entry in the hash
table and print it out.

#include <stdio.h>
#include <search.h>
#include <string.h>

struct info { /* this is the info stored in the table */
int age, room; /* other than the key. */

};

390 CAE Specification (1997)

System Interfaces hcreate()

#define NUM_EMPL 5000 /* # of elements in search table */

int main(void)
{

char string_space[NUM_EMPL*20]; /* space to store strings */
struct info info_space[NUM_EMPL]; /* space to store employee info*/
char *str_ptr = string_space; /* next space in string_space */
struct info *info_ptr = info_space;/* next space in info_space */
ENTRY item;
ENTRY *found_item; /* name to look for in table */
char name_to_find[30];

int i = 0;

/* create table; no error checking is performed */
(void) hcreate(NUM_EMPL);
while (scanf("%s%d%d", str_ptr, &info_ptr −>age,

&info_ptr −>room) != EOF && i++ < NUM_EMPL) {

/* put information in structure, and structure in item */
item.key = str_ptr;
item.data = info_ptr;
str_ptr += strlen(str_ptr) + 1;
info_ptr++;

/* put item into table */
(void) hsearch(item, ENTER);

}

/* access table */
item.key = name_to_find;
while (scanf("%s", item.key) != EOF) {

if ((found_item = hsearch(item, FIND)) != NULL) {

/* if item is in the table */
(void)printf("found %s, age = %d, room = %d\n",

found_item −>key,
((struct info *)found_item −>data) −>age,
((struct info *)found_item −>data) −>room);

} else
(void)printf("no such employee %s\n", name_to_find);

}
return 0;

}

APPLICATION USAGE
The hcreate() and hsearch() functions may use malloc () to allocate space.

FUTURE DIRECTIONS
None.

SEE ALSO
bsearch(), lsearch(), malloc (), strcmp(), tsearch(), <search.h>.

System Interfaces and Headers, Issue 5: Volume 1 391

hcreate() System Interfaces

CHANGE HISTORY
First released in Issue 1.

Derived from Issue 1 of the SVID.

Issue 4
The following changes are incorporated in this issue:

• In the SYNOPSIS section, the type of argument nel in the declaration of hcreate() is changed
from unsigned to size_t, and the argument list is explicitly defined as void in the declaration
of hdestroy().

• In the DESCRIPTION, the type of the comparison key is explicitly defined as char *, the type
of item.data is explicitly defined as void*, and a statement is added indicating that hsearch()
uses strcmp() as the comparison function.

• In the EXAMPLES section, the sample code is updated to use ISO C syntax.

• An ERRORS section is added and [ENOMEM] is defined as an error that may be returned by
hsearch() and hcreate().

392 CAE Specification (1997)

System Interfaces hypot()

NAME
hypot — Euclidean distance function

SYNOPSIS
EX #include <math.h>

double hypot(double x, double y);

DESCRIPTION
The hypot() function computes the length of the hypotenuse of a right-angled triangle:

√MM M M M M M Mx*x+y*y

An application wishing to check for error situations should set errno to 0 before calling hypot().
If errno is non-zero on return, or the return value is HUGE_VAL or NaN, an error has occurred.

RETURN VALUE
Upon successful completion, hypot() returns the length of the hypotenuse of a right angled
triangle with sides of length x and y .

If the result would cause overflow, HUGE_VAL is returned and errno may be set to [ERANGE].

If x or y is NaN, NaN is returned. and errno may be set to [EDOM].

If the correct result would cause underflow, 0 is returned and errno may be set to [ERANGE].

ERRORS
The hypot() function may fail if:

[EDOM] The value of x or y is NaN.

[ERANGE] The result overflows or underflows.

No other errors will occur.

EXAMPLES
None.

APPLICATION USAGE
The hypot() function takes precautions against overflow during intermediate steps of the
computation. If the calculated result would still overflow a double, then hypot() returns
HUGE_VAL.

FUTURE DIRECTIONS
None.

SEE ALSO
isnan(), sqrt(), <math.h>.

CHANGE HISTORY
First released in Issue 1.

Derived from Issue 1 of the SVID.

Issue 4
The following changes are incorporated in this issue:

• References to matherr() are removed.

• The RETURN VALUE and ERRORS sections are substantially rewritten to rationalise error
handling in the mathematics functions.

System Interfaces and Headers, Issue 5: Volume 1 393

hypot() System Interfaces

Issue 5
The DESCRIPTION is updated to indicate how an application should check for an error. This
text was previously published in the APPLICATION USAGE section.

394 CAE Specification (1997)

System Interfaces iconv()

NAME
iconv — codeset conversion function

SYNOPSIS
EX #include <iconv.h>

size_t iconv(iconv_t cd , const char * *inbuf , size_t * inbytesleft ,
char * *outbuf , size_t * outbytesleft);

DESCRIPTION
The iconv() function converts the sequence of characters from one codeset, in the array specified
by inbuf , into a sequence of corresponding characters in another codeset, in the array specified
by outbuf . The codesets are those specified in the iconv_open () call that returned the conversion
descriptor, cd . The inbuf argument points to a variable that points to the first character in the
input buffer and inbytesleft indicates the number of bytes to the end of the buffer to be converted.
The outbuf argument points to a variable that points to the first available byte in the output
buffer and outbytesleft indicates the number of the available bytes to the end of the buffer.

For state-dependent encodings, the conversion descriptor cd is placed into its initial shift state by
a call for which inbuf is a null pointer, or for which inbuf points to a null pointer. When iconv() is
called in this way, and if outbuf is not a null pointer or a pointer to a null pointer, and outbytesleft
points to a positive value, iconv() will place, into the output buffer, the byte sequence to change
the output buffer to its initial shift state. If the output buffer is not large enough to hold the
entire reset sequence, iconv() will fail and set errno to [E2BIG]. Subsequent calls with inbuf as
other than a null pointer or a pointer to a null pointer cause the conversion to take place from
the current state of the conversion descriptor.

If a sequence of input bytes does not form a valid character in the specified codeset, conversion
stops after the previous successfully converted character. If the input buffer ends with an
incomplete character or shift sequence, conversion stops after the previous successfully
converted bytes. If the output buffer is not large enough to hold the entire converted input,
conversion stops just prior to the input bytes that would cause the output buffer to overflow.
The variable pointed to by inbuf is updated to point to the byte following the last byte
successfully used in the conversion. The value pointed to by inbytesleft is decremented to reflect
the number of bytes still not converted in the input buffer. The variable pointed to by outbuf is
updated to point to the byte following the last byte of converted output data. The value pointed
to by outbytesleft is decremented to reflect the number of bytes still available in the output buffer.
For state-dependent encodings, the conversion descriptor is updated to reflect the shift state in
effect at the end of the last successfully converted byte sequence.

If iconv() encounters a character in the input buffer that is valid, but for which an identical
character does not exist in the target codeset, iconv() performs an implementation-dependent
conversion on this character.

RETURN VALUE
The iconv() function updates the variables pointed to by the arguments to reflect the extent of
the conversion and returns the number of non-identical conversions performed. If the entire
string in the input buffer is converted, the value pointed to by inbytesleft will be 0. If the input
conversion is stopped due to any conditions mentioned above, the value pointed to by inbytesleft
will be non-zero and errno is set to indicate the condition. If an error occurs iconv() returns
(size_t)−1 and sets errno to indicate the error.

System Interfaces and Headers, Issue 5: Volume 1 395

iconv() System Interfaces

ERRORS
The iconv() function will fail if:

[EILSEQ] Input conversion stopped due to an input byte that does not belong to the
input codeset.

[E2BIG] Input conversion stopped due to lack of space in the output buffer.

[EINVAL] Input conversion stopped due to an incomplete character or shift sequence at
the end of the input buffer.

The iconv() function may fail if:

[EBADF] iX EBADF The cd argument is not a valid open conversion descriptor.

EXAMPLES
None.

APPLICATION USAGE
The inbuf argument indirectly points to the memory area which contains the conversion input
data. The outbuf argument indirectly points to the memory area which is to contain the result of
the conversion. The objects indirectly pointed to by inbuf and outbuf are not restricted to
containing data that is directly representable in the ISO C language char data type. The type of
inbuf and outbuf , char **, does not imply that the objects pointed to are interpreted as null-
terminated C strings or arrays of characters. Any interpretation of a byte sequence that
represents a character in a given character set encoding scheme is done internally within the
codeset converters. For example, the area pointed to indirectly by inbuf and/or outbuf can
contain all zero octets that are not interpreted as string terminators but as coded character data
according to the respective codeset encoding scheme. The type of the data (char, short int, long
int, and so on) read or stored in the objects is not specified, but may be inferred for both the
input and output data by the converters determined by the fromcode and tocode arguments of
iconv_open ().

Regardless of the data type inferred by the converter, the size of the remaining space in both
input and output objects (the intbytesleft and outbytesleft arguments) is always measured in bytes.

For implementations that support the conversion of state-dependent encodings, the conversion
descriptor must be able to accurately reflect the shift-state in effect at the end of the last
successful conversion. It is not required that the conversion descriptor itself be updated, which
would require it to be a pointer type. Thus, implementations are free to implement the
descriptor as a handle (other than a pointer type) by which the conversion information can be
accessed and updated.

FUTURE DIRECTIONS
None.

SEE ALSO
iconv_open (), iconv_close (), <iconv.h>.

CHANGE HISTORY
First released in Issue 4.

Derived from the HP-UX manual.

396 CAE Specification (1997)

System Interfaces iconv_close()

NAME
iconv_close — codeset conversion deallocation function

SYNOPSIS
EX #include <iconv.h>

int iconv_close(iconv_t cd);

DESCRIPTION
The iconv_close () function deallocates the conversion descriptor cd and all other associated
resources allocated by iconv_open ().

If a file descriptor is used to implement the type iconv_t, that file descriptor will be closed.

RETURN VALUE
Upon successful completion, 0 is returned. Otherwise, −1 is returned and errno is set to indicate
the error.

ERRORS
The iconv_close () function may fail if:

[EBADF] The conversion descriptor is invalid.

EXAMPLES
None.

APPLICATION USAGE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
iconv(), iconv_open (), <iconv.h>.

CHANGE HISTORY
First released in Issue 4.

Derived from the HP-UX manual.

System Interfaces and Headers, Issue 5: Volume 1 397

iconv_open() System Interfaces

NAME
iconv_open — codeset conversion allocation function

SYNOPSIS
EX #include <iconv.h>

iconv_t iconv_open(const char * tocode , const char * fromcode);

DESCRIPTION
The iconv_open () function returns a conversion descriptor that describes a conversion from the
codeset specified by the string pointed to by the fromcode argument to the codeset specified by
the string pointed to by the tocode argument. For state-dependent encodings, the conversion
descriptor will be in a codeset-dependent initial shift state, ready for immediate use with iconv().

Settings of fromcode and tocode and their permitted combinations are implementation-dependent.

A conversion descriptor remains valid in a process until that process closes it.

If a file descriptor is used to implement conversion descriptors, the FD_CLOEXEC flag will be
set; see <fcntl.h>.

RETURN VALUE
Upon successful completion, iconv_open () returns a conversion descriptor for use on subsequent
calls to iconv(). Otherwise iconv_open () returns (iconv_t)−1 and sets errno to indicate the error.

ERRORS
The iconv_open () function may fail if:

[EMFILE] {OPEN_MAX} files descriptors are currently open in the calling process.

[ENFILE] Too many files are currently open in the system.

[ENOMEM] Insufficient storage space is available.

[EINVAL] The conversion specified by fromcode and tocode is not supported by the
implementation.

EXAMPLES
None.

APPLICATION USAGE
Some implementations of iconv_open () use malloc () to allocate space for internal buffer areas.
The iconv_open () function may fail if there is insufficient storage space to accommodate these
buffers.

Portable applications must assume that conversion descriptors are not valid after a call to one of
the exec functions.

FUTURE DIRECTIONS
None.

SEE ALSO
iconv(), iconv_close (), <iconv.h>.

CHANGE HISTORY
First released in Issue 4.

Derived from the HP-UX manual.

398 CAE Specification (1997)

System Interfaces ilogb()

NAME
ilogb — return an unbiased exponent

SYNOPSIS
EX #include <math.h>

int ilogb (double x)

DESCRIPTION
The ilogb () function returns the exponent part of x. Formally, the return value is the integral part
of logr | x | as a signed integral value, for non-zero x, where r is the radix of the machine’s
floating point arithmetic.

The call ilogb(x) is equivalent to (int)logb(x).

RETURN VALUE
Upon successful completion, ilogb () returns the exponent part of x.

If x is 0, then ilogb () returns −INT_MIN. If x is NaN or ±Inf, then ilogb () returns INT_MAX.

ERRORS
No errors are defined.

EXAMPLES
None.

APPLICATION USAGE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
logb(), <math.h>.

CHANGE HISTORY
First released in Issue 4, Version 2.

Issue 5
Moved from X/OPEN UNIX extension to BASE.

System Interfaces and Headers, Issue 5: Volume 1 399

index() System Interfaces

NAME
index — character string operations

SYNOPSIS
EX #include <strings.h>

char *index(const char * s, int c);

DESCRIPTION
The index() function is identical to strchr().

RETURN VALUE
See strchr().

ERRORS
See strchr().

EXAMPLES
None.

APPLICATION USAGE
For portability to implementations conforming to earlier versions of this specification, strchr() is
preferred over this function.

FUTURE DIRECTIONS
None.

SEE ALSO
strchr(), <strings.h>.

CHANGE HISTORY
First released in Issue 4, Version 2.

Issue 5
Moved from X/OPEN UNIX extension to BASE.

400 CAE Specification (1997)

System Interfaces initstate()

NAME
initstate, random, setstate, srandom — pseudorandom number functions

SYNOPSIS
EX #include <stdlib.h>

char *initstate(unsigned int seed , char *state , size_t size);
long random(void);
char *setstate(const char * state);
void srandom(unsigned int seed);

DESCRIPTION
The random() function uses a non-linear additive feedback random-number generator
employing a default state array size of 31 long integers to return successive pseudo-random
numbers in the range from 0 to 231−1. The period of this random-number generator is
approximately 16 x (231−1). The size of the state array determines the period of the random-
number generator. Increasing the state array size increases the period.

With 256 bytes of state information, the period of the random-number generator is greater than
269.

Like rand(), random() produces by default a sequence of numbers that can be duplicated by
calling srandom() with 1 as the seed.

The srandom() function initialises the current state array using the value of seed.

The initstate() and setstate() functions handle restarting and changing random-number
generators. The initstate() function allows a state array, pointed to by the state argument, to be
initialised for future use. The size argument, which specifies the size in bytes of the state array, is
used by initstate() to decide what type of random-number generator to use; the larger the state
array, the more random the numbers. Values for the amount of state information are 8, 32, 64,
128, and 256 bytes. Other values greater than 8 bytes are rounded down to the nearest one of
these values. For values greater than or equal to 8, or less than 32 random() uses a simple linear
congruential random number generator. The seed argument specifies a starting point for the
random-number sequence and provides for restarting at the same point. The initstate() function
returns a pointer to the previous state information array.

If initstate() has not been called, then random() behaves as though initstate() had been called
with seed = 1 and size = 128.

If initstate() is called with 8 < = size < 3 2, then random() uses a simple linear congruential
random number generator.

Once a state has been initialised, setstate() allows switching between state arrays. The array
defined by the state argument is used for further random-number generation until initstate() is
called or setstate() is called again. The setstate() function returns a pointer to the previous state
array.

RETURN VALUE
If initstate() is called with size less than 8, it returns NULL.

The random() function returns the generated pseudo-random number.

The srandom() function returns no value.

Upon successful completion, initstate() and setstate() return a pointer to the previous state array.
Otherwise, a null pointer is returned.

System Interfaces and Headers, Issue 5: Volume 1 401

initstate() System Interfaces

ERRORS
No errors are defined.

EXAMPLES
None.

APPLICATION USAGE
After initialisation, a state array can be restarted at a different point in one of two ways:

• The initstate() function can be used, with the desired seed, state array, and size of the array.

• The setstate() function, with the desired state, can be used, followed by srandom() with the
desired seed. The advantage of using both of these functions is that the size of the state array
does not have to be saved once it is initialised.

Although some implementations of random() have written messages to standard error, such
implementations do not conform to this specification.

Issue 5 restores the historical behaviour of this function.

Threaded applications should use rand_r(), erand48(), nrand48() or jrand48() instead of
random() when an independent random number sequence in multiple threads is required.

FUTURE DIRECTIONS
None.

SEE ALSO
drand48(), rand(), <stdlib.h>.

CHANGE HISTORY
First released in Issue 4, Version 2.

Issue 5
Moved from X/OPEN UNIX extension to BASE.

In the DESCRIPTION, the phrase "values smaller than 8" is replaced with "values greater than or
equal to 8, or less than 32", "size<8" is replaced with "size>=8 and <32", and a new first paragraph
is added to the RETURN VALUE section. A note is added to the APPLICATION USAGE
indicating that these changes restore the historical behaviour of the function.

402 CAE Specification (1997)

System Interfaces insque()

NAME
insque, remque — insert or remove an element in a queue

SYNOPSIS
EX #include <search.h>

void insque(void * element , void * pred);
void remque(void * element);

DESCRIPTION
The insque() and remque() functions manipulate queues built from doubly-linked lists. The
queue can be either circular or linear. An application using insque() or remque() must define a
structure in which the first two members of the structure are pointers to the same type of
structure, and any further members are application-specific. The first member of the structure is
a forward pointer to the next entry in the queue. The second member is a backward pointer to
the previous entry in the queue. If the queue is linear, the queue is terminated with null
pointers. The names of the structure and of the pointer members are not subject to any special
restriction.

The insque() function inserts the element pointed to by element into a queue immediately after
the element pointed to by pred.

The remque() function removes the element pointed to by element from a queue.

If the queue is to be used as a linear list, invoking insque (&element, NULL), where element is the
initial element of the queue, will initialise the forward and backward pointers of element to null
pointers.

If the queue is to be used as a circular list, the application must initialise the forward pointer and
the backward pointer of the initial element of the queue to the element’s own address.

RETURN VALUE
The insque() and remque() functions do not return a value.

ERRORS
No errors are defined.

EXAMPLES
None.

APPLICATION USAGE
The historical implementations of these functions described the arguments as being of type
struct qelem * rather than as being of type void * as defined here. In those implementations,
struct qelem was commonly defined in <search.h> as:

struct qelem {
struct qelem *q_forw;
struct qelem *q_back;

};

Applications using these functions, however, were never able to use this structure directly since
it provided no room for the actual data contained in the elements. Most applications defined
structures that contained the two pointers as the initial elements and also provided space for, or
pointers to, the object’s data. Applications that used these functions to update more than one
type of table also had the problem of specifying two or more different structures with the same
name, if they literally used struct qelem as specified.

System Interfaces and Headers, Issue 5: Volume 1 403

insque() System Interfaces

As described here, the implementations were actually expecting a structure type where the first
two members were forward and backward pointers to structures. With C compilers that didn’t
provide function prototypes, applications used structures as specified in the DESCRIPTION
above and the compiler did what the application expected.

If this method had been carried forward with an ISO C compiler and the historical function
prototype, most applications would have to be modified to cast pointers to the structures
actually used to be pointers to struct qelem to avoid compilation warnings. By specifying void *
as the argument type, applications won’t need to change (unless they specifically referenced
struct qelem and depended on it being defined in <search.h>).

FUTURE DIRECTIONS
None.

SEE ALSO
<search.h>.

CHANGE HISTORY
First released in Issue 4, Version 2.

Issue 5
Moved from X/OPEN UNIX extension to BASE.

404 CAE Specification (1997)

System Interfaces ioctl()

NAME
ioctl — control a STREAMS device

SYNOPSIS
EX #include <stropts.h>

int ioctl(int fildes , int request , ... /* arg */);

DESCRIPTION
The ioctl () function performs a variety of control functions on STREAMS devices. For non-
STREAMS devices, the functions performed by this call are unspecified. The request argument
and an optional third argument (with varying type) are passed to and interpreted by the
appropriate part of the STREAM associated with fildes.

The fildes argument is an open file descriptor that refers to a device.

The request argument selects the control function to be performed and will depend on the
STREAMS device being addressed.

The arg argument represents additional information that is needed by this specific STREAMS
device to perform the requested function. The type of arg depends upon the particular control
request, but it is either an integer or a pointer to a device-specific data structure.

The ioctl () commands applicable to STREAMS, their arguments, and error statuses that apply to
each individual command are described below.

The following ioctl () commands, with error values indicated, are applicable to all STREAMS
files:

I_PUSH Pushes the module whose name is pointed to by arg onto the top of the
current STREAM, just below the STREAM head. It then calls the open()
function of the newly-pushed module.

The ioctl () function with the I_PUSH command will fail if:

[EINVAL] Invalid module name.

[ENXIO] Open function of new module failed.

[ENXIO] Hangup received on fildes.

I_POP Removes the module just below the STREAM head of the STREAM pointed to
by fildes. The arg argument should be 0 in an I_POP request.

The ioctl () function with the I_POP command will fail if:

[EINVAL] No module present in the STREAM.

[ENXIO] Hangup received on fildes.

I_LOOK Retrieves the name of the module just below the STREAM head of the
STREAM pointed to by fildes, and places it in a character string pointed to by
arg. The buffer pointed to by arg should be at least FMNAMESZ+1 bytes long,
where FMNAMESZ is defined in <stropts.h>.

The ioctl () function with the I_LOOK command will fail if:

[EINVAL] No module present in the STREAM.

I_FLUSH This request flushes read and/or write queues, depending on the value of arg.
Valid arg values are:

System Interfaces and Headers, Issue 5: Volume 1 405

ioctl() System Interfaces

FLUSHR Flush all read queues.

FLUSHW Flush all write queues.

FLUSHRW Flush all read and all write queues.

The ioctl () function with the I_FLUSH command will fail if:

[EINVAL] Invalid arg value.

[EAGAIN] or [ENOSR]
Unable to allocate buffers for flush message.

[ENXIO] Hangup received on fildes.

I_FLUSHBAND Flushes a particular band of messages. The arg argument points to a bandinfo
structure. The bi_flag member may be one of FLUSHR, FLUSHW, or
FLUSHRW as described above. The bi_pri member determines the priority
band to be flushed.

I_SETSIG Requests that the STREAMS implementation send the SIGPOLL signal to the
calling process when a particular event has occurred on the STREAM
associated with fildes. I_SETSIG supports an asynchronous processing
capability in STREAMS. The value of arg is a bitmask that specifies the events
for which the process should be signaled. It is the bitwise-OR of any
combination of the following constants:

S_RDNORM A normal (priority band set to 0) message has arrived at the
head of a STREAM head read queue. A signal will be
generated even if the message is of zero length.

S_RDBAND A message with a non-zero priority band has arrived at the
head of a STREAM head read queue. A signal will be
generated even if the message is of zero length.

S_INPUT A message, other than a high-priority message, has arrived
at the head of a STREAM head read queue. A signal will be
generated even if the message is of zero length.

S_HIPRI A high-priority message is present on a STREAM head read
queue. A signal will be generated even if the message is of
zero length.

S_OUTPUT The write queue for normal data (priority band 0) just
below the STREAM head is no longer full. This notifies the
process that there is room on the queue for sending (or
writing) normal data downstream.

S_WRNORM Same as S_OUTPUT.

S_WRBAND The write queue for a non-zero priority band just below the
STREAM head is no longer full. This notifies the process
that there is room on the queue for sending (or writing)
priority data downstream.

S_MSG A STREAMS signal message that contains the SIGPOLL
signal has reached the front of the STREAM head read
queue.

S_ERROR Notification of an error condition has reached the STREAM
head.

406 CAE Specification (1997)

System Interfaces ioctl()

S_HANGUP Notification of a hangup has reached the STREAM head.

S_BANDURG When used in conjunction with S_RDBAND, SIGURG is
generated instead of SIGPOLL when a priority message
reaches the front of the STREAM head read queue.

If arg is 0, the calling process will be unregistered and will not receive further
SIGPOLL signals for the stream associated with fildes.

Processes that wish to receive SIGPOLL signals must explicitly register to
receive them using I_SETSIG. If several processes register to receive this
signal for the same event on the same STREAM, each process will be signaled
when the event occurs.

The ioctl () function with the I_SETSIG command will fail if:

[EINVAL] The value of arg is invalid.

[EINVAL] The value of arg is 0 and the calling process is not registered
to receive the SIGPOLL signal.

[EAGAIN] There were insufficient resources to store the signal request.

I_GETSIG Returns the events for which the calling process is currently registered to be
sent a SIGPOLL signal. The events are returned as a bitmask in an int pointed
to by arg, where the events are those specified in the description of I_SETSIG
above.

The ioctl () function with the I_GETSIG command will fail if:

[EINVAL] Process is not registered to receive the SIGPOLL signal.

I_FIND This request compares the names of all modules currently present in the
STREAM to the name pointed to by arg, and returns 1 if the named module is
present in the STREAM, or returns 0 if the named module is not present.

The ioctl () function with the I_FIND command will fail if:

[EINVAL] arg does not contain a valid module name.

I_PEEK This request allows a process to retrieve the information in the first message
on the STREAM head read queue without taking the message off the queue. It
is analogous to getmsg() except that this command does not remove the
message from the queue. The arg argument points to a strpeek structure.

The maxlen member in the ctlbuf and databuf strbuf structures must be set to
the number of bytes of control information and/or data information,
respectively, to retrieve. The flags member may be marked RS_HIPRI or 0, as
described by getmsg(). If the process sets flags to RS_HIPRI, for example,
I_PEEK will only look for a high-priority message on the STREAM head read
queue.

I_PEEK returns 1 if a message was retrieved, and returns 0 if no message was
found on the STREAM head read queue, or if the RS_HIPRI flag was set in
flags and a high-priority message was not present on the STREAM head read
queue. It does not wait for a message to arrive. On return, ctlbuf specifies
information in the control buffer, databuf specifies information in the data
buffer, and flags contains the value RS_HIPRI or 0.

I_SRDOPT Sets the read mode using the value of the argument arg. Read modes are
described in read(). Valid arg flags are:

System Interfaces and Headers, Issue 5: Volume 1 407

ioctl() System Interfaces

RNORM Byte-stream mode, the default.

RMSGD Message-discard mode.

RMSGN Message-nondiscard mode.

The bitwise inclusive OR of RMSGD and RMSGN will return [EINVAL]. The
bitwise inclusive OR of RNORM and either RMSGD or RMSGN will result in
the other flag overriding RNORM which is the default.

In addition, treatment of control messages by the STREAM head may be
changed by setting any of the following flags in arg:

RPROTNORM Fail read() with [EBADMSG] if a message containing a
control part is at the front of the STREAM head read queue.

RPROTDAT Deliver the control part of a message as data when a
process issues a read().

RPROTDIS Discard the control part of a message, delivering any data
portion, when a process issues a read().

The ioctl () function with the I_SRDOPT command will fail if:

[EINVAL] The arg argument is not valid.

I_GRDOPT Returns the current read mode setting as, described above, in an int pointed to
by the argument arg. Read modes are described in read().

I_NREAD Counts the number of data bytes in the data part of the first message on the
STREAM head read queue and places this value in the int pointed to by arg.
The return value for the command is the number of messages on the STREAM
head read queue. For example, if 0 is returned in arg, but the ioctl () return
value is greater than 0, this indicates that a zero-length message is next on the
queue.

I_FDINSERT Creates a message from specified buffer(s), adds information about another
STREAM, and sends the message downstream. The message contains a
control part and an optional data part. The data and control parts to be sent
are distinguished by placement in separate buffers, as described below. The
arg argument points to a strfdinsert structure.

The len member in the ctlbuf strbuf structure must be set to the size of a
t_uscalar_t plus the number of bytes of control information to be sent with the
message. The fildes member specifies the file descriptor of the other
STREAM, and the offset member, which must be suitably aligned for use as a
t_uscalar_t, specifies the offset from the start of the control buffer where
I_FDINSERT will store a t_uscalar_t whose interpretation is specific to the
STREAM end. The len member in the databuf strbuf structure must be set to
the number of bytes of data information to be sent with the message, or to 0 if
no data part is to be sent.

The flags member specifies the type of message to be created. A normal
message is created if flags is set to 0, and a high-priority message is created if
flags is set to RS_HIPRI. For non-priority messages, I_FDINSERT will block if
the STREAM write queue is full due to internal flow control conditions. For
priority messages, I_FDINSERT does not block on this condition. For non-
priority messages, I_FDINSERT does not block when the write queue is full
and O_NONBLOCK is set. Instead, it fails and sets errno to [EAGAIN].

408 CAE Specification (1997)

System Interfaces ioctl()

I_FDINSERT also blocks, unless prevented by lack of internal resources,
waiting for the availability of message blocks in the STREAM, regardless of
priority or whether O_NONBLOCK has been specified. No partial message is
sent.

The ioctl () function with the I_FDINSERT command will fail if:

[EAGAIN] A non-priority message is specified, the O_NONBLOCK
flag is set, and the STREAM write queue is full due to
internal flow control conditions.

[EAGAIN] or [ENOSR]
Buffers can not be allocated for the message that is to be
created.

[EINVAL] One of the following:

• The fildes member of the strfdinsert structure is not a
valid, open STREAM file descriptor.

• The size of a t_uscalar_t plus offset is greater than the len
member for the buffer specified through ctlptr.

• The offset member does not specify a properly-aligned
location in the data buffer.

• An undefined value is stored in flags.

[ENXIO] Hangup received on the STREAM identified by either the
fildes argument or the fildes member of the strfdinsert
structure.

[ERANGE] The len member for the buffer specified through databuf
does not fall within the range specified by the maximum
and minimum packet sizes of the topmost STREAM module
or the len member for the buffer specified through databuf is
larger than the maximum configured size of the data part of
a message; or the len member for the buffer specified
through ctlbuf is larger than the maximum configured size
of the control part of a message.

I_STR Constructs an internal STREAMS ioctl () message from the data pointed to by
arg, and sends that message downstream.

This mechanism is provided to send ioctl () requests to downstream modules
and drivers. It allows information to be sent with ioctl (), and returns to the
process any information sent upstream by the downstream recipient. I_STR
blocks until the system responds with either a positive or negative
acknowledgement message, or until the request "times out" after some period
of time. If the request times out, it fails with errno set to [ETIME].

At most, one I_STR can be active on a STREAM. Further I_STR calls will block
until the active I_STR completes at the STREAM head. The default timeout
interval for these requests is 15 seconds. The O_NONBLOCK flag has no
effect on this call.

To send requests downstream, arg must point to a strioctl structure.

The ic_cmd member is the internal ioctl () command intended for a
downstream module or driver and ic_timout is the number of seconds (−1 =

System Interfaces and Headers, Issue 5: Volume 1 409

ioctl() System Interfaces

infinite, 0 = use implementation-dependent timeout interval, > 0 = as
specified) an I_STR request will wait for acknowledgement before timing out.
ic_len is the number of bytes in the data argument, and ic_dp is a pointer to
the data argument. The ic_len member has two uses: on input, it contains the
length of the data argument passed in, and on return from the command, it
contains the number of bytes being returned to the process (the buffer pointed
to by ic_dp should be large enough to contain the maximum amount of data
that any module or the driver in the STREAM can return).

The STREAM head will convert the information pointed to by the strioctl
structure to an internal ioctl () command message and send it downstream.

The ioctl () function with the I_STR command will fail if:

[EAGAIN] or [ENOSR]
Unable to allocate buffers for the ioctl () message.

[EINVAL] The ic_len member is less than 0 or larger than the
maximum configured size of the data part of a message, or
ic_timout is less than −1.

[ENXIO] Hangup received on fildes.

[ETIME] A downstream ioctl () timed out before acknowledgement
was received.

An I_STR can also fail while waiting for an acknowledgement if a message
indicating an error or a hangup is received at the STREAM head. In addition,
an error code can be returned in the positive or negative acknowledgement
message, in the event the ioctl () command sent downstream fails. For these
cases, I_STR fails with errno set to the value in the message.

I_SWROPT Sets the write mode using the value of the argument arg. Valid bit settings for
arg are:

SNDZERO Send a zero-length message downstream when a write() of
0 bytes occurs. To not send a zero-length message when a
write() of 0 bytes occurs, this bit must not be set in arg (for
example, arg would be set to 0).

The ioctl () function with the I_SWROPT command will fail if:

[EINVAL] arg is not the above value.

I_GWROPT Returns the current write mode setting, as described above, in the int that is
pointed to by the argument arg.

I_SENDFD I_SENDFD creates a new reference to the open file description associated with
the file descriptor arg, and writes a message on the STREAMS-based pipe fildes
containing this reference, together with the user ID and group ID of the calling
process.

The ioctl () function with the I_SENDFD command will fail if:

[EAGAIN] The sending STREAM is unable to allocate a message block
to contain the file pointer; or the read queue of the receiving
STREAM head is full and cannot accept the message sent by
I_SENDFD.

410 CAE Specification (1997)

System Interfaces ioctl()

[EBADF] The arg argument is not a valid, open file descriptor.

[EINVAL] The fildes argument is not connected to a STREAM pipe.

[ENXIO] Hangup received on fildes.

I_RECVFD Retrieves the reference to an open file description from a message written to a
STREAMS-based pipe using the I_SENDFD command, and allocates a new file
descriptor in the calling process that refers to this open file description. The
arg argument is a pointer to an strrecvfd data structure as defined in
<stropts.h>.

The fd member is a file descriptor. The uid and gid members are the effective
user ID and effective group ID, respectively, of the sending process.

If O_NONBLOCK is not set I_RECVFD blocks until a message is present at
the STREAM head. If O_NONBLOCK is set, I_RECVFD fails with errno set to
[EAGAIN] if no message is present at the STREAM head.

If the message at the STREAM head is a message sent by an I_SENDFD, a new
file descriptor is allocated for the open file descriptor referenced in the
message. The new file descriptor is placed in the fd member of the strrecvfd
structure pointed to by arg.

The ioctl () function with the I_RECVFD command will fail if:

[EAGAIN] A message is not present at the STREAM head read queue
and the O_NONBLOCK flag is set.

[EBADMSG] The message at the STREAM head read queue is not a
message containing a passed file descriptor.

[EMFILE] The process has the maximum number of file descriptors
currently open that it is allowed.

[ENXIO] Hangup received on fildes.

I_LIST This request allows the process to list all the module names on the STREAM,
up to and including the topmost driver name. If arg is a null pointer, the
return value is the number of modules, including the driver, that are on the
STREAM pointed to by fildes. This lets the process allocate enough space for
the module names. Otherwise, it should point to an str_list structure.

The sl_nmods member indicates the number of entries the process has
allocated in the array. Upon return, the sl_modlist member of the str_list
structure contains the list of module names, and the number of entries that
have been filled into the sl_modlist array is found in the sl_nmods member
(the number includes the number of modules including the driver). The
return value from ioctl () is 0. The entries are filled in starting at the top of the
STREAM and continuing downstream until either the end of the STREAM is
reached, or the number of requested modules (sl_nmods) is satisfied.

The ioctl () function with the I_LIST command will fail if:

[EINVAL] The sl_nmods member is less than 1.

[EAGAIN] or [ENOSR]
Unable to allocate buffers.

I_ATMARK This request allows the process to see if the message at the head of the
STREAM head read queue is marked by some module downstream. The arg

System Interfaces and Headers, Issue 5: Volume 1 411

ioctl() System Interfaces

argument determines how the checking is done when there may be multiple
marked messages on the STREAM head read queue. It may take on the
following values:

ANYMARK Check if the message is marked.

LASTMARK Check if the message is the last one marked on the queue.

The bitwise inclusive OR of the flags ANYMARK and LASTMARK is
permitted.

The return value is 1 if the mark condition is satisfied and 0 otherwise.

The ioctl () function with the I_ATMARK command will fail if:

[EINVAL] Invalid arg value.

I_CKBAND Check if the message of a given priority band exists on the STREAM head
read queue. This returns 1 if a message of the given priority exists, 0 if no
such message exists, or −1 on error. arg should be of type int.

The ioctl () function with the I_CKBAND command will fail if:

[EINVAL] Invalid arg value.

I_GETBAND Return the priority band of the first message on the STREAM head read queue
in the integer referenced by arg.

The ioctl () function with the I_GETBAND command will fail if:

[ENODATA] No message on the STREAM head read queue.

I_CANPUT Check if a certain band is writable. arg is set to the priority band in question.
The return value is 0 if the band is flow-controlled, 1 if the band is writable, or
−1 on error.

The ioctl () function with the I_CANPUT command will fail if:

[EINVAL] Invalid arg value.

I_SETCLTIME This request allows the process to set the time the STREAM head will delay
when a STREAM is closing and there is data on the write queues. Before
closing each module or driver, if there is data on its write queue, the STREAM
head will delay for the specified amount of time to allow the data to drain. If,
after the delay, data is still present, they will be flushed. The arg argument is a
pointer to an integer specifying the number of milliseconds to delay, rounded
up to the nearest valid value. If I_SETCLTIME is not performed on a
STREAM, an implementation-dependent default timeout interval is used.

The ioctl () function with the I_SETCLTIME command will fail if:

[EINVAL] Invalid arg value.

I_GETCLTIME This request returns the close time delay in the integer pointed to by arg.

412 CAE Specification (1997)

System Interfaces ioctl()

Multiplexed STREAMS Configurations

The following four commands are used for connecting and disconnecting multiplexed
STREAMS configurations. These commands use an implementation-dependent default timeout
interval.

I_LINK Connects two STREAMs, where fildes is the file descriptor of the STREAM
connected to the multiplexing driver, and arg is the file descriptor of the
STREAM connected to another driver. The STREAM designated by arg gets
connected below the multiplexing driver. I_LINK requires the multiplexing
driver to send an acknowledgement message to the STREAM head regarding
the connection. This call returns a multiplexer ID number (an identifier used
to disconnect the multiplexer; see I_UNLINK) on success, and −1 on failure.

The ioctl () function with the I_LINK command will fail if:

[ENXIO] Hangup received on fildes.

[ETIME] Time out before acknowledgement message was received at
STREAM head.

[EAGAIN] or [ENOSR]
Unable to allocate STREAMS storage to perform the
I_LINK.

[EBADF] The arg argument is not a valid, open file descriptor.

[EINVAL] The fildes argument does not support multiplexing; or arg is
not a STREAM or is already connected downstream from a
multiplexer; or the specified I_LINK operation would
connect the STREAM head in more than one place in the
multiplexed STREAM.

An I_LINK can also fail while waiting for the multiplexing driver to
acknowledge the request, if a message indicating an error or a hangup is
received at the STREAM head of fildes. In addition, an error code can be
returned in the positive or negative acknowledgement message. For these
cases, I_LINK fails with errno set to the value in the message.

I_UNLINK Disconnects the two STREAMs specified by fildes and arg. fildes is the file
descriptor of the STREAM connected to the multiplexing driver. The arg
argument is the multiplexer ID number that was returned by the I_LINK
ioctl () command when a STREAM was connected downstream from the
multiplexing driver. If arg is MUXID_ALL, then all STREAMs that were
connected to fildes are disconnected. As in I_LINK, this command requires
acknowledgement.

The ioctl () function with the I_UNLINK command will fail if:

[ENXIO] Hangup received on fildes.

[ETIME] Time out before acknowledgement message was received at
STREAM head.

[EAGAIN] or [ENOSR]
Unable to allocate buffers for the acknowledgement
message.

[EINVAL] Invalid multiplexer ID number.

System Interfaces and Headers, Issue 5: Volume 1 413

ioctl() System Interfaces

An I_UNLINK can also fail while waiting for the multiplexing driver to
acknowledge the request if a message indicating an error or a hangup is
received at the STREAM head of fildes. In addition, an error code can be
returned in the positive or negative acknowledgement message. For these
cases, I_UNLINK fails with errno set to the value in the message.

I_PLINK Creates a persistent connection between two STREAMs, where fildes is the file
descriptor of the STREAM connected to the multiplexing driver, and arg is the
file descriptor of the STREAM connected to another driver. This call creates a
persistent connection which can exist even if the file descriptor fildes
associated with the upper STREAM to the multiplexing driver is closed. The
STREAM designated by arg gets connected via a persistent connection below
the multiplexing driver. I_PLINK requires the multiplexing driver to send an
acknowledgement message to the STREAM head. This call returns a
multiplexer ID number (an identifier that may be used to disconnect the
multiplexer, see I_PUNLINK) on success, and −1 on failure.

The ioctl () function with the I_PLINK command will fail if:

[ENXIO] Hangup received on fildes.

[ETIME] Time out before acknowledgement message was received at
STREAM head.

[EAGAIN] or [ENOSR]
Unable to allocate STREAMS storage to perform the
I_PLINK.

[EBADF] The arg argument is not a valid, open file descriptor.

[EINVAL] The fildes argument does not support multiplexing; or arg is
not a STREAM or is already connected downstream from a
multiplexer; or the specified I_PLINK operation would
connect the STREAM head in more than one place in the
multiplexed STREAM.

An I_PLINK can also fail while waiting for the multiplexing driver to
acknowledge the request, if a message indicating an error or a hangup is
received at the STREAM head of fildes. In addition, an error code can be
returned in the positive or negative acknowledgement message. For these
cases, I_PLINK fails with errno set to the value in the message.

I_PUNLINK Disconnects the two STREAMs specified by fildes and arg from a persistent
connection. The fildes argument is the file descriptor of the STREAM
connected to the multiplexing driver. The arg argument is the multiplexer ID
number that was returned by the I_PLINK ioctl () command when a STREAM
was connected downstream from the multiplexing driver. If arg is
MUXID_ALL then all STREAMs which are persistent connections to fildes are
disconnected. As in I_PLINK, this command requires the multiplexing driver
to acknowledge the request.

The ioctl () function with the I_PUNLINK command will fail if:

[ENXIO] Hangup received on fildes.

[ETIME] Time out before acknowledgement message was received at
STREAM head.

414 CAE Specification (1997)

System Interfaces ioctl()

[EAGAIN] or [ENOSR]
Unable to allocate buffers for the acknowledgement
message.

[EINVAL] Invalid multiplexer ID number.

An I_PUNLINK can also fail while waiting for the multiplexing driver to
acknowledge the request if a message indicating an error or a hangup is
received at the STREAM head of fildes. In addition, an error code can be
returned in the positive or negative acknowledgement message. For these
cases, I_PUNLINK fails with errno set to the value in the message.

RETURN VALUE
Upon successful completion, ioctl () returns a value other than −1 that depends upon the
STREAMS device control function. Otherwise, it returns −1 and sets errno to indicate the error.

ERRORS
Under the following general conditions, ioctl () will fail if:

[EBADF] The fildes argument is not a valid open file descriptor.

[EINTR] A signal was caught during the ioctl () operation.

[EINVAL] The STREAM or multiplexer referenced by fildes is linked (directly or
indirectly) downstream from a multiplexer.

If an underlying device driver detects an error, then ioctl () will fail if:

[EINVAL] The request or arg argument is not valid for this device.

[EIO] Some physical I/O error has occurred.

[ENOTTY] The fildes argument is not associated with a STREAMS device that accepts
control functions.

[ENXIO] The request and arg arguments are valid for this device driver, but the service
requested cannot be performed on this particular sub-device.

[ENODEV] The fildes argument refers to a valid STREAMS device, but the corresponding
device driver does not support the ioctl () function.

If a STREAM is connected downstream from a multiplexer, any ioctl () command except
I_UNLINK and I_PUNLINK will set errno to [EINVAL].

EXAMPLES
None.

APPLICATION USAGE
The implementation-dependent timeout interval for STREAMS has historically been 15 seconds.

FUTURE DIRECTIONS
None.

SEE ALSO
close(), fcntl(), getmsg(), open(), pipe(), poll (), putmsg(), read(), sigaction (), write(), <stropts.h>,
Section 2.5 on page 34.

CHANGE HISTORY
First released in Issue 4, Version 2.

System Interfaces and Headers, Issue 5: Volume 1 415

ioctl() System Interfaces

Issue 5
Moved from X/OPEN UNIX extension to BASE.

416 CAE Specification (1997)

System Interfaces isalnum()

NAME
isalnum — test for an alphanumeric character

SYNOPSIS
#include <ctype.h>

int isalnum(int c);

DESCRIPTION
The isalnum() function tests whether c is a character of class alpha or digit in the program’s
current locale, see the XBD specification, Chapter 5, Locale.

In all cases c is an int, the value of which must be representable as an unsigned char or must
equal the value of the macro EOF. If the argument has any other value, the behaviour is
undefined.

RETURN VALUE
The isalnum() function returns non-zero if c is an alphanumeric character; otherwise it returns 0.

ERRORS
No errors are defined.

EXAMPLES
None.

APPLICATION USAGE
To ensure application portability, especially across natural languages, only this function and
those listed in the SEE ALSO section should be used for character classification.

FUTURE DIRECTIONS
None.

SEE ALSO
isalpha (), iscntrl(), isdigit (), isgraph(), islower(), isprint(), ispunct(), isspace(), isupper(), isxdigit (),
setlocale (), <ctype.h>, <stdio.h>, the XBD specification, Chapter 5, Locale.

CHANGE HISTORY
First released in Issue 1.

Derived from Issue 1 of the SVID.

Issue 4
The following change is incorporated in this issue:

• The text of the DESCRIPTION and RETURN VALUE sections is revised, although there are
no functional differences between this issue and Issue 3. Operation in the C locale is no
longer described explicitly on this page.

System Interfaces and Headers, Issue 5: Volume 1 417

isalpha() System Interfaces

NAME
isalpha — test for an alphabetic character

SYNOPSIS
#include <ctype.h>

int isalpha(int c);

DESCRIPTION
The isalpha () function tests whether c is a character of class alpha in the program’s current locale,
see the XBD specification, Chapter 5, Locale.

In all cases c is an int, the value of which must be representable as an unsigned char or must
equal the value of the macro EOF. If the argument has any other value, the behaviour is
undefined.

RETURN VALUE
The isalpha () function returns non-zero if c is an alphabetic character; otherwise it returns 0.

ERRORS
No errors are defined.

EXAMPLES
None.

APPLICATION USAGE
To ensure application portability, especially across natural languages, only this function and
those listed in the SEE ALSO section should be used for character classification.

FUTURE DIRECTIONS
None.

SEE ALSO
isalnum(), iscntrl(), isdigit (), isgraph(), islower(), isprint(), ispunct(), isspace(), isupper(),
isxdigit (), setlocale (), <ctype.h>, <stdio.h>, the XBD specification, Chapter 5, Locale.

CHANGE HISTORY
First released in Issue 1.

Derived from Issue 1 of the SVID.

Issue 4
The following change is incorporated in this issue:

• The text of the DESCRIPTION and RETURN VALUE sections is revised, although there are
no functional differences between this issue and Issue 3. Operation in the C locale is no
longer described explicitly on this page.

418 CAE Specification (1997)

System Interfaces isascii()

NAME
isascii — test for a 7-bit US-ASCII character

SYNOPSIS
EX #include <ctype.h>

int isascii(int c);

DESCRIPTION
The isascii () function tests whether c is a 7-bit US-ASCII character code.

The isascii () function is defined on all integer values.

RETURN VALUE
The isascii () function returns non-zero if c is a 7-bit US-ASCII character code between 0 and octal
0177 inclusive; otherwise it returns 0.

ERRORS
No errors are defined.

EXAMPLES
None.

APPLICATION USAGE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
<ctype.h>.

CHANGE HISTORY
First released in Issue 1.

Derived from Issue 1 of the SVID.

System Interfaces and Headers, Issue 5: Volume 1 419

isastream() System Interfaces

NAME
isastream — test a file descriptor

SYNOPSIS
EX #include <stropts.h>

int isastream(int fildes);

DESCRIPTION
The isastream() function tests whether fildes , an open file descriptor, is associated with a
STREAMS-based file.

RETURN VALUE
Upon successful completion, isastream() returns 1 if fildes refers to a STREAMS-based file and 0 if
not. Otherwise, isastream() returns −1 and sets errno to indicate the error.

ERRORS
The isastream() function will fail if:

[EBADF] The fildes argument is not a valid open file descriptor.

EXAMPLES
None.

APPLICATION USAGE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
<stropts.h>.

CHANGE HISTORY
First released in Issue 4, Version 2.

Issue 5
Moved from X/OPEN UNIX extension to BASE.

420 CAE Specification (1997)

System Interfaces isatty()

NAME
isatty — test for a terminal device

SYNOPSIS
#include <unistd.h>

int isatty(int fildes);

DESCRIPTION
The isatty() function tests whether fildes , an open file descriptor, is associated with a terminal
device.

RETURN VALUE
The isatty() function returns 1 if fildes is associated with a terminal; otherwise it returns 0 and
may set errno to indicate the error.

ERRORS
The isatty() function may fail if:

EX [EBADF] The fildes argument is not a valid open file descriptor.

[ENOTTY] The fildes argument is not associated with a terminal.

EXAMPLES
None.

APPLICATION USAGE
The isatty() function does not necessarily indicate that a human being is available for interaction
via fildes . It is quite possible that non-terminal devices are connected to the communications
line.

FUTURE DIRECTIONS
None.

SEE ALSO
<unistd.h>.

CHANGE HISTORY
First released in Issue 1.

Derived from Issue 1 of the SVID.

Issue 4
The following changes are incorporated in this issue:

• The header <unistd.h> is added to the SYNOPSIS section.

• In the RETURN VALUE section, the sentence indicating that this function may set errno is
marked as an extension.

• The errors [EBADF] and [ENOTTY] are marked as extensions.

System Interfaces and Headers, Issue 5: Volume 1 421

iscntrl() System Interfaces

NAME
iscntrl — test for a control character

SYNOPSIS
#include <ctype.h>

int iscntrl(int c);

DESCRIPTION
The iscntrl() function tests whether c is a character of class cntrl in the program’s current locale,
see the XBD specification, Chapter 5, Locale.

In all cases c is a type int, the value of which must be a character representable as an unsigned
char or must equal the value of the macro EOF. If the argument has any other value, the
behaviour is undefined.

RETURN VALUE
The iscntrl() function returns non-zero if c is a control character; otherwise it returns 0.

ERRORS
No errors are defined.

EXAMPLES
None.

APPLICATION USAGE
To ensure applications portability, especially across natural languages, only this function and
those listed in the SEE ALSO section should be used for character classification.

FUTURE DIRECTIONS
None.

SEE ALSO
isalnum(), isalpha (), isdigit (), isgraph(), islower(), isprint(), ispunct(), isspace(), isupper(),
isxdigit (), setlocale (), <ctype.h>, the XBD specification, Chapter 5, Locale.

CHANGE HISTORY
First released in Issue 1.

Derived from Issue 1 of the SVID.

Issue 4
The following change is incorporated in this issue:

• The text of the DESCRIPTION and RETURN VALUE sections is revised, although there are
no functional differences between this issue and Issue 3. Operation in the C locale is no
longer described explicitly on this page.

422 CAE Specification (1997)

System Interfaces isdigit()

NAME
isdigit — test for a decimal digit

SYNOPSIS
#include <ctype.h>

int isdigit(int c);

DESCRIPTION
The isdigit () function tests whether c is a character of class digit in the program’s current locale,
see the XBD specification, Chapter 5, Locale.

In all cases c is an int, the value of which must be a character representable as an unsigned char
or must equal the value of the macro EOF. If the argument has any other value, the behaviour is
undefined.

RETURN VALUE
The isdigit () function returns non-zero if c is a decimal digit; otherwise it returns 0.

ERRORS
No errors are defined.

EXAMPLES
None.

APPLICATION USAGE
To ensure applications portability, especially across natural languages, only this function and
those listed in the SEE ALSO section should be used for character classification.

FUTURE DIRECTIONS
None.

SEE ALSO
isalnum(), isalpha (), iscntrl(), isgraph(), islower(), isprint(), ispunct(), isspace(), isupper(),
isxdigit (), <ctype.h>.

CHANGE HISTORY
First released in Issue 1.

Derived from Issue 1 of the SVID.

Issue 4
The following change is incorporated in this issue:

• The text of the DESCRIPTION is revised, although there are no functional differences
between this issue and Issue 3.

System Interfaces and Headers, Issue 5: Volume 1 423

isgraph() System Interfaces

NAME
isgraph — test for a visible character

SYNOPSIS
#include <ctype.h>

int isgraph(int c);

DESCRIPTION
The isgraph() function tests whether c is a character of class graph in the program’s current
locale, see the XBD specification, Chapter 5, Locale.

In all cases c is an int, the value of which must be a character representable as an unsigned char
or must equal the value of the macro EOF. If the argument has any other value, the behaviour is
undefined.

RETURN VALUE
The isgraph() function returns non-zero if c is a character with a visible representation; otherwise
it returns 0.

ERRORS
No errors are defined.

EXAMPLES
None.

APPLICATION USAGE
To ensure applications portability, especially across natural languages, only this function and
those listed in the SEE ALSO section should be used for character classification.

FUTURE DIRECTIONS
None.

SEE ALSO
isalnum(), isalpha (), iscntrl(), isdigit (), islower(), isprint(), ispunct(), isspace(), isupper(), isxdigit (),
setlocale (), <ctype.h>, the XBD specification, Chapter 5, Locale.

CHANGE HISTORY
First released in Issue 1.

Derived from Issue 1 of the SVID.

Issue 4
The following change is incorporated in this issue:

• The text of the DESCRIPTION and RETURN VALUE sections is revised, although there are
no functional differences between this issue and Issue 3. Operation in the C locale is no
longer described explicitly on this page.

424 CAE Specification (1997)

System Interfaces islower()

NAME
islower — test for a lower-case letter

SYNOPSIS
#include <ctype.h>

int islower(int c);

DESCRIPTION
The islower() function tests whether c is a character of class lower in the program’s current
locale, see the XBD specification, Chapter 5, Locale.

In all cases c is an int, the value of which must be a character representable as an unsigned char
or must equal the value of the macro EOF. If the argument has any other value, the behaviour is
undefined.

RETURN VALUE
The islower() function returns non-zero if c is a lower-case letter; otherwise it returns 0.

ERRORS
No errors are defined.

EXAMPLES
None.

APPLICATION USAGE
To ensure applications portability, especially across natural languages, only this function and
those listed in the SEE ALSO section should be used for character classification.

FUTURE DIRECTIONS
None.

SEE ALSO
isalnum(), isalpha (), iscntrl(), isdigit (), isgraph(), isprint(), ispunct(), isspace(), isupper(),
isxdigit (), setlocale (), <ctype.h>, the XBD specification, Chapter 5, Locale.

CHANGE HISTORY
First released in Issue 1.

Derived from Issue 1 of the SVID.

Issue 4
The following change is incorporated in this issue:

• The text of the DESCRIPTION and RETURN VALUE sections is revised, although there are
no functional differences between this issue and Issue 3. Operation in the C locale is no
longer described explicitly on this page.

System Interfaces and Headers, Issue 5: Volume 1 425

isnan() System Interfaces

NAME
isnan — test for a NaN

SYNOPSIS
EX #include <math.h>

int isnan(double x);

DESCRIPTION
The isnan() function tests whether x is NaN.

On systems not supporting NaN values, isnan() always returns 0.

RETURN VALUE
The isnan() function returns non-zero if x is NaN. Otherwise, 0 is returned.

ERRORS
No errors are defined.

EXAMPLES
None.

APPLICATION USAGE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
<math.h>.

CHANGE HISTORY
First released in Issue 3.

Issue 4
The following change is incorporated in this issue:

• The words ‘‘not supporting NaN’’ are added to the APPLICATION USAGE section.

Issue 5
The DESCRIPTION is updated to indicate the return value when NaN is not supported. This
text was previously published in the APPLICATION USAGE section.

426 CAE Specification (1997)

System Interfaces isprint()

NAME
isprint — test for a printing character

SYNOPSIS
#include <ctype.h>

int isprint(int c);

DESCRIPTION
The isprint() function tests whether c is a character of class print in the program’s current locale,
see the XBD specification, Chapter 5, Locale.

In all cases c is an int, the value of which must be a character representable as an unsigned char
or must equal the value of the macro EOF. If the argument has any other value, the behaviour is
undefined.

RETURN VALUE
The isprint() function returns non-zero if c is a printing character; otherwise it returns 0.

ERRORS
No errors are defined.

EXAMPLES
None.

APPLICATION USAGE
To ensure applications portability, especially across natural languages, only this function and
those listed in the SEE ALSO section should be used for character classification.

FUTURE DIRECTIONS
None.

SEE ALSO
isalnum(), isalpha (), iscntrl(), isdigit (), isgraph(), islower(), ispunct(), isspace(), isupper(),
isxdigit (), setlocale (), <ctype.h>, the XBD specification, Chapter 5, Locale.

CHANGE HISTORY
First released in Issue 1.

Derived from Issue 1 of the SVID.

Issue 4
The following change is incorporated in this issue:

• The text of the DESCRIPTION and RETURN VALUE sections is revised, although there are
no functional differences between this issue and Issue 3. Operation in the C locale is no
longer described explicitly on this page.

System Interfaces and Headers, Issue 5: Volume 1 427

ispunct() System Interfaces

NAME
ispunct — test for a punctuation character

SYNOPSIS
#include <ctype.h>

int ispunct(int c);

DESCRIPTION
The ispunct() function tests whether c is a character of class punct in the program’s current
locale, see the XBD specification, Chapter 5, Locale.

In all cases c is an int, the value of which must be a character representable as an unsigned char
or must equal the value of the macro EOF. If the argument has any other value, the behaviour is
undefined.

RETURN VALUE
The ispunct() function returns non-zero if c is a punctuation character; otherwise it returns 0.

ERRORS
No errors are defined.

EXAMPLES
None.

APPLICATION USAGE
To ensure applications portability, especially across natural languages, only this function and
those listed in the SEE ALSO section should be used for character classification.

FUTURE DIRECTIONS
None.

SEE ALSO
isalnum(), isalpha (), iscntrl(), isdigit (), isgraph(), islower(), isprint(), isspace(), isupper(), isxdigit (),
setlocale (), <ctype.h>, the XBD specification, Chapter 5, Locale.

CHANGE HISTORY
First released in Issue 1.

Derived from Issue 1 of the SVID.

Issue 4
The following change is incorporated in this issue:

• The text of the DESCRIPTION and RETURN VALUE sections is revised, although there are
no functional differences between this issue and Issue 3. Operation in the C locale is no
longer described explicitly on this page.

428 CAE Specification (1997)

System Interfaces isspace()

NAME
isspace — test for a white-space character

SYNOPSIS
#include <ctype.h>

int isspace(int c);

DESCRIPTION
The isspace() function tests whether c is a character of class space in the program’s current locale,
see the XBD specification, Chapter 5, Locale.

In all cases c is an int, the value of which must be a character representable as an unsigned char
or must equal the value of the macro EOF. If the argument has any other value, the behaviour is
undefined.

RETURN VALUE
The isspace() function returns non-zero if c is a white-space character; otherwise it returns 0.

ERRORS
No errors are defined.

EXAMPLES
None.

APPLICATION USAGE
To ensure applications portability, especially across natural languages, only this function and
those listed in the SEE ALSO section should be used for character classification.

FUTURE DIRECTIONS
None.

SEE ALSO
isalnum(), isalpha (), iscntrl(), isdigit (), isgraph(), islower(), isprint(), ispunct(), isupper(),
isxdigit (), setlocale (), <ctype.h>, the XBD specification, Chapter 5, Locale.

CHANGE HISTORY
First released in Issue 1.

Derived from Issue 1 of the SVID.

Issue 4
The following change is incorporated in this issue:

• The text of the DESCRIPTION and RETURN VALUE sections is revised, although there are
no functional differences between this issue and Issue 3. Operation in the C locale is no
longer described explicitly on this page.

System Interfaces and Headers, Issue 5: Volume 1 429

isupper() System Interfaces

NAME
isupper — test for an upper-case letter

SYNOPSIS
#include <ctype.h>

int isupper(int c);

DESCRIPTION
The isupper() function tests whether c is a character of class upper in the program’s current
locale, see the XBD specification, Chapter 5, Locale.

In all cases c is an int, the value of which must be a character representable as an unsigned char
or must equal the value of the macro EOF. If the argument has any other value, the behaviour is
undefined.

RETURN VALUE
The isupper() function returns non-zero if c is an upper-case letter; otherwise it returns 0.

ERRORS
No errors are defined.

EXAMPLES
None.

APPLICATION USAGE
To ensure applications portability, especially across natural languages, only this function and
those listed in the SEE ALSO section should be used for character classification.

FUTURE DIRECTIONS
None.

SEE ALSO
isalnum(), isalpha (), iscntrl(), isdigit (), isgraph(), islower(), isprint(), ispunct(), isspace(), isxdigit (),
setlocale (), <ctype.h>, the XBD specification, Chapter 5, Locale.

CHANGE HISTORY
First released in Issue 1.

Derived from Issue 1 of the SVID.

Issue 4
The following change is incorporated in this issue:

• The text of the DESCRIPTION and RETURN VALUE sections is revised, although there are
no functional differences between this issue and Issue 3. Operation in the C locale is no
longer described explicitly on this page.

430 CAE Specification (1997)

System Interfaces iswalnum()

NAME
iswalnum — test for an alphanumeric wide-character code

SYNOPSIS
#include <wctype.h>

int iswalnum(wint_t wc);

DESCRIPTION
The iswalnum() function tests whether wc is a wide-character code representing a character of
class alpha or digit in the program’s current locale, see the XBD specification, Chapter 5, Locale.

In all cases wc is a wint_t, the value of which must be a wide-character code corresponding to a
valid character in the current locale or must equal the value of the macro WEOF. If the
argument has any other value, the behaviour is undefined.

RETURN VALUE
The iswalnum() function returns non-zero if wc is an alphanumeric wide-character code;
otherwise it returns 0.

ERRORS
No errors are defined.

EXAMPLES
None.

APPLICATION USAGE
To ensure applications portability, especially across natural languages, only this function and
those listed in the SEE ALSO section should be used for classification of wide-character codes.

FUTURE DIRECTIONS
None.

SEE ALSO
iswalpha (), iswcntrl(), iswdigit (), iswgraph(), iswlower(), iswprint(), iswpunct(), iswspace(),
iswupper(), iswxdigit (), setlocale (), <wctype.h>, <wchar.h>, <stdio.h>, the XBD specification,
Chapter 5, Locale.

CHANGE HISTORY
First released as a World-wide Portability Interface in Issue 4.

Issue 5
The following change has been made in this issue for alignment with ISO/IEC
9899:1990/Amendment 1:1994 (E).

• The SYNOPSIS has been changed to indicate that this function and associated data types are
now made visible by inclusion of the header <wctype.h> rather than <wchar.h>.

System Interfaces and Headers, Issue 5: Volume 1 431

iswalpha() System Interfaces

NAME
iswalpha — test for an alphabetic wide-character code

SYNOPSIS
#include <wctype.h>

int iswalpha(wint_t wc);

DESCRIPTION
The iswalpha () function tests whether wc is a wide-character code representing a character of
class alpha in the program’s current locale, see the XBD specification, Chapter 5, Locale.

In all cases wc is a wint_t, the value of which must be a wide-character code corresponding to a
valid character in the current locale or must equal the value of the macro WEOF. If the
argument has any other value, the behaviour is undefined.

RETURN VALUE
The iswalpha () function returns non-zero if wc is an alphabetic wide-character code; otherwise it
returns 0.

ERRORS
No errors are defined.

EXAMPLES
None.

APPLICATION USAGE
To ensure applications portability, especially across natural languages, only this function and
those listed in the SEE ALSO section should be used for classification of wide-character codes.

FUTURE DIRECTIONS
None.

SEE ALSO
iswalnum(), iswcntrl(), iswdigit (), iswgraph(), iswlower(), iswprint(), iswpunct(), iswspace(),
iswupper(), iswxdigit (), setlocale (), <wctype.h>, <wchar.h>, <stdio.h>, the XBD specification,
Chapter 5, Locale.

CHANGE HISTORY
First released in Issue 4.

Issue 5
The following change has been made in this issue for alignment with ISO/IEC
9899:1990/Amendment 1:1994 (E).

• The SYNOPSIS has been changed to indicate that this function and associated data types are
now made visible by inclusion of the header <wctype.h> rather than <wchar.h>.

432 CAE Specification (1997)

System Interfaces iswcntrl()

NAME
iswcntrl — test for a control wide-character code

SYNOPSIS
#include <wctype.h>

int iswcntrl(wint_t wc);

DESCRIPTION
The iswcntrl() function tests whether wc is a wide-character code representing a character of
class control in the program’s current locale, see the XBD specification, Chapter 5, Locale.

In all cases wc is a wint_t, the value of which must be a wide-character code corresponding to a
valid character in the current locale or must equal the value of the macro WEOF. If the
argument has any other value, the behaviour is undefined.

RETURN VALUE
The iswcntrl() function returns non-zero if wc is a control wide-character code; otherwise it
returns 0.

ERRORS
No errors are defined.

EXAMPLES
None.

APPLICATION USAGE
To ensure applications portability, especially across natural languages, only this function and
those listed in the SEE ALSO section should be used for classification of wide-character codes.

FUTURE DIRECTIONS
None.

SEE ALSO
iswalnum(), iswalpha (), iswdigit (), iswgraph(), iswlower(), iswprint(), iswpunct(), iswspace(),
iswupper(), iswxdigit (), setlocale (), <wctype.h>, <wchar.h>, the XBD specification, Chapter 5,
Locale.

CHANGE HISTORY
First released in Issue 4.

Issue 5
The following change has been made in this issue for alignment with ISO/IEC
9899:1990/Amendment 1:1994 (E).

• The SYNOPSIS has been changed to indicate that this function and associated data types are
now made visible by inclusion of the header <wctype.h> rather than <wchar.h>.

System Interfaces and Headers, Issue 5: Volume 1 433

iswctype() System Interfaces

NAME
iswctype — test character for a specified class

SYNOPSIS
#include <wctype.h>

int iswctype(wint_t wc, wctype_t charclass);

DESCRIPTION
The iswctype() function determines whether the wide-character code wc has the character class
charclass , returning true or false. The iswctype() function is defined on WEOF and wide-
character codes corresponding to the valid character encodings in the current locale. If the wc
argument is not in the domain of the function, the result is undefined. If the value of charclass is
invalid (that is, not obtained by a call to wctype() or charclass is invalidated by a subsequent call
to setlocale () that has affected category LC_CTYPE) the result is implementation-dependent.

RETURN VALUE
The iswctype() function returns 0 for false and non-zero for true.

ERRORS
No errors are defined.

EXAMPLES
None.

APPLICATION USAGE
The twelve strings — "alnum", "alpha", "blank" "cntrl", "digit", "graph", "lower", "print", "punct",
"space", "upper" and "xdigit" — are reserved for the standard character classes. In the table
below, the functions in the left column are equivalent to the functions in the right column.

iswalnum(wc) iswctype(wc, wctype("alnum"))
iswalpha(wc) iswctype(wc, wctype("alpha"))
iswcntrl(wc) iswctype(wc, wctype("cntrl"))
iswdigit(wc) iswctype(wc, wctype("digit"))
iswgraph(wc) iswctype(wc, wctype("graph"))
iswlower(wc) iswctype(wc, wctype("lower"))
iswprint(wc) iswctype(wc, wctype("print"))
iswpunct(wc) iswctype(wc, wctype("punct"))
iswspace(wc) iswctype(wc, wctype("space"))
iswupper(wc) iswctype(wc, wctype("upper"))
iswxdigit(wc) iswctype(wc, wctype("xdigit"))

Note: The call:

iswctype(wc, wctype("blank"))

does not have an equivalent isw*() function.

FUTURE DIRECTIONS
None.

SEE ALSO
iswalnum(), iswalpha (), iswcntrl(), iswdigit (), iswgraph(), iswlower(), iswprint(), iswpunct(),
iswspace(), iswupper(), iswxdigit (), wctype(), <wctype.h>, <wchar.h>.

434 CAE Specification (1997)

System Interfaces iswctype()

CHANGE HISTORY
First released as World-wide Portability Interfaces in Issue 4.

Issue 5
The following change has been made in this issue for alignment with ISO/IEC
9899:1990/Amendment 1:1994 (E).

• The SYNOPSIS has been changed to indicate that this function and associated data types are
now made visible by inclusion of the header <wctype.h> rather than <wchar.h>.

System Interfaces and Headers, Issue 5: Volume 1 435

iswdigit() System Interfaces

NAME
iswdigit — test for a decimal digit wide-character code

SYNOPSIS
#include <wctype.h>

int iswdigit(wint_t wc);

DESCRIPTION
The iswdigit () function tests whether wc is a wide-character code representing a character of
class digit in the program’s current locale, see the XBD specification, Chapter 5, Locale.

In all cases wc is a wint_t, the value of which must be a wide-character code corresponding to a
valid character in the current locale or must equal the value of the macro WEOF. If the
argument has any other value, the behaviour is undefined.

RETURN VALUE
The iswdigit () function returns non-zero if wc is a decimal digit wide-character code; otherwise it
returns 0.

ERRORS
No errors are defined.

EXAMPLES
None.

APPLICATION USAGE
To ensure applications portability, especially across natural languages, only this function and
those listed in the SEE ALSO section should be used for classification of wide-character codes.

FUTURE DIRECTIONS
None.

SEE ALSO
iswalnum(), iswalpha (), iswcntrl(), iswgraph(), iswlower(), iswprint(), iswpunct(), iswspace(),
iswupper(), iswxdigit (), <wctype.h>, <wchar.h>.

CHANGE HISTORY
First released in Issue 4.

Issue 5
The following change has been made in this issue for alignment with ISO/IEC
9899:1990/Amendment 1:1994 (E).

• The SYNOPSIS has been changed to indicate that this function and associated data types are
now made visible by inclusion of the header <wctype.h> rather than <wchar.h>.

436 CAE Specification (1997)

System Interfaces iswgraph()

NAME
iswgraph — test for a visible wide-character code

SYNOPSIS
#include <wctype.h>

int iswgraph(wint_t wc);

DESCRIPTION
The iswgraph() function tests whether wc is a wide-character code representing a character of
class graph in the program’s current locale, see the XBD specification, Chapter 5, Locale.

In all cases wc is a wint_t, the value of which must be a wide-character code corresponding to a
valid character in the current locale or must equal the value of the macro WEOF. If the
argument has any other value, the behaviour is undefined.

RETURN VALUE
The iswgraph() function returns non-zero if wc is a wide-character code with a visible
representation; otherwise it returns 0.

ERRORS
No errors are defined.

EXAMPLES
None.

APPLICATION USAGE
To ensure applications portability, especially across natural languages, only this function and
those listed in the SEE ALSO section should be used for classification of wide-character codes.

FUTURE DIRECTIONS
None.

SEE ALSO
iswalnum(), iswalpha (), iswcntrl(), iswdigit (), iswlower(), iswprint(), iswpunct(), iswspace(),
iswupper(), iswxdigit (), setlocale (), <wctype.h>, <wchar.h>, the XBD specification, Chapter 5,
Locale.

CHANGE HISTORY
First released in Issue 4.

Issue 5
The following change has been made in this issue for alignment with ISO/IEC
9899:1990/Amendment 1:1994 (E).

• The SYNOPSIS has been changed to indicate that this function and associated data types are
now made visible by inclusion of the header <wctype.h> rather than <wchar.h>.

System Interfaces and Headers, Issue 5: Volume 1 437

iswlower() System Interfaces

NAME
iswlower — test for a lower-case letter wide-character code

SYNOPSIS
#include <wctype.h>

int iswlower(wint_t wc);

DESCRIPTION
The iswlower() function tests whether wc is a wide-character code representing a character of
class lower in the program’s current locale, see the XBD specification, Chapter 5, Locale.

In all cases wc is a wint_t, the value of which must be a wide-character code corresponding to a
valid character in the current locale or must equal the value of the macro WEOF. If the
argument has any other value, the behaviour is undefined.

RETURN VALUE
The iswlower() function returns non-zero if wc is a lower-case letter wide-character code;
otherwise it returns 0.

ERRORS
No errors are defined.

EXAMPLES
None.

APPLICATION USAGE
To ensure applications portability, especially across natural languages, only this function and
those listed in the SEE ALSO section should be used for classification of wide-character codes.

FUTURE DIRECTIONS
None.

SEE ALSO
iswalnum(), iswalpha (), iswcntrl(), iswdigit (), iswgraph(), iswprint(), iswpunct(), iswspace(),
iswupper(), iswxdigit (), setlocale (), <wctype.h>, <wchar.h>, the XBD specification, Chapter 5,
Locale.

CHANGE HISTORY
First released in Issue 4.

Issue 5
The following change has been made in this issue for alignment with ISO/IEC
9899:1990/Amendment 1:1994 (E).

• The SYNOPSIS has been changed to indicate that this function and associated data types are
now made visible by inclusion of the header <wctype.h> rather than <wchar.h>.

438 CAE Specification (1997)

System Interfaces iswprint()

NAME
iswprint — test for a printing wide-character code

SYNOPSIS
#include <wctype.h>

int iswprint(wint_t wc);

DESCRIPTION
The iswprint() function tests whether wc is a wide-character code representing a character of
class print in the program’s current locale, see the XBD specification, Chapter 5, Locale.

In all cases wc is a wint_t, the value of which must be a wide-character code corresponding to a
valid character in the current locale or must equal the value of the macro WEOF. If the
argument has any other value, the behaviour is undefined.

RETURN VALUE
The iswprint() function returns non-zero if wc is a printing wide-character code; otherwise it
returns 0.

ERRORS
No errors are defined.

EXAMPLES
None.

APPLICATION USAGE
To ensure applications portability, especially across natural languages, only this function and
those listed in the SEE ALSO section should be used for classification of wide-character codes.

FUTURE DIRECTIONS
None.

SEE ALSO
iswalnum(), iswalpha (), iswcntrl(), iswdigit (), iswgraph(), iswlower(), iswpunct(), iswspace(),
iswupper(), iswxdigit (), setlocale (), <wctype.h>, <wchar.h>, the XBD specification, Chapter 5,
Locale.

CHANGE HISTORY
First released in Issue 4.

Issue 5
The following change has been made in this issue for alignment with ISO/IEC
9899:1990/Amendment 1:1994 (E).

• The SYNOPSIS has been changed to indicate that this function and associated data types are
now made visible by inclusion of the header <wctype.h> rather than <wchar.h>.

System Interfaces and Headers, Issue 5: Volume 1 439

iswpunct() System Interfaces

NAME
iswpunct — test for a punctuation wide-character code

SYNOPSIS
#include <wctype.h>

int iswpunct(wint_t wc);

DESCRIPTION
The iswpunct() function tests whether wc is a wide-character code representing a character of
class punct in the program’s current locale, see the XBD specification, Chapter 5, Locale.

In all cases wc is a wint_t, the value of which must be a wide-character code corresponding to a
valid character in the current locale or must equal the value of the macro WEOF. If the
argument has any other value, the behaviour is undefined.

RETURN VALUE
The iswpunct() function returns non-zero if wc is a punctuation wide-character code; otherwise it
returns 0.

ERRORS
No errors are defined.

EXAMPLES
None.

APPLICATION USAGE
To ensure applications portability, especially across natural languages, only this function and
those listed in the SEE ALSO section should be used for classification of wide-character codes.

FUTURE DIRECTIONS
None.

SEE ALSO
iswalnum(), iswalpha (), iswcntrl(), iswdigit (), iswgraph(), iswlower(), iswprint(), iswspace(),
iswupper(), iswxdigit (), setlocale (), <wctype.h>, <wchar.h>, the XBD specification, Chapter 5,
Locale.

CHANGE HISTORY
First released in Issue 4.

Issue 5
The following change has been made in this issue for alignment with ISO/IEC
9899:1990/Amendment 1:1994 (E).

• The SYNOPSIS has been changed to indicate that this function and associated data types are
now made visible by inclusion of the header <wctype.h> rather than <wchar.h>.

440 CAE Specification (1997)

System Interfaces iswspace()

NAME
iswspace — test for a white-space wide-character code

SYNOPSIS
#include <wctype.h>

int iswspace(wint_t wc);

DESCRIPTION
The iswspace() function tests whether wc is a wide-character code representing a character of
class space in the program’s current locale, see the XBD specification, Chapter 5, Locale.

In all cases wc is a wint_t, the value of which must be a wide-character code corresponding to a
valid character in the current locale or must equal the value of the macro WEOF. If the
argument has any other value, the behaviour is undefined.

RETURN VALUE
The iswspace() function returns non-zero if wc is a white-space wide-character code; otherwise it
returns 0.

ERRORS
No errors are defined.

EXAMPLES
None.

APPLICATION USAGE
To ensure applications portability, especially across natural languages, only this function and
those listed in the SEE ALSO section should be used for classification of wide-character codes.

FUTURE DIRECTIONS
None.

SEE ALSO
iswalnum(), iswalpha (), iswcntrl(), iswdigit (), iswgraph(), iswlower(), iswprint(), iswpunct(),
iswupper(), iswxdigit (), setlocale (), <wctype.h>, <wchar.h>, the XBD specification, Chapter 5,
Locale.

CHANGE HISTORY
First released in Issue 4.

Issue 5
The following change has been made in this issue for alignment with ISO/IEC
9899:1990/Amendment 1:1994 (E).

• The SYNOPSIS has been changed to indicate that this function and associated data types are
now made visible by inclusion of the header <wctype.h> rather than <wchar.h>.

System Interfaces and Headers, Issue 5: Volume 1 441

iswupper() System Interfaces

NAME
iswupper — test for an upper-case letter wide-character code

SYNOPSIS
#include <wctype.h>

int iswupper(wint_t wc);

DESCRIPTION
The iswupper() function tests whether wc is a wide-character code representing a character of
class upper in the program’s current locale, see the XBD specification, Chapter 5, Locale.

In all cases wc is a wint_t, the value of which must be a wide-character code corresponding to a
valid character in the current locale or must equal the value of the macro WEOF. If the
argument has any other value, the behaviour is undefined.

RETURN VALUE
The iswupper() function returns non-zero if wc is an upper-case letter wide-character code;
otherwise it returns 0.

ERRORS
No errors are defined.

EXAMPLES
None.

APPLICATION USAGE
To ensure applications portability, especially across natural languages, only this function and
those listed in the SEE ALSO section should be used for classification of wide-character codes.

FUTURE DIRECTIONS
None.

SEE ALSO
iswalnum(), iswalpha (), iswcntrl(), iswdigit (), iswgraph(), iswlower(), iswprint(), iswpunct(),
iswspace(), iswxdigit (), setlocale (), <wctype.h>, <wchar.h>, the XBD specification, Chapter 5,
Locale.

CHANGE HISTORY
First released in Issue 4.

Issue 5
The following change has been made in this issue for alignment with ISO/IEC
9899:1990/Amendment 1:1994 (E).

• The SYNOPSIS has been changed to indicate that this function and associated data types are
now made visible by inclusion of the header <wctype.h> rather than <wchar.h>.

442 CAE Specification (1997)

System Interfaces iswxdigit()

NAME
iswxdigit — test for a hexadecimal digit wide-character code

SYNOPSIS
#include <wctype.h>

int iswxdigit(wint_t wc);

DESCRIPTION
The iswxdigit () function tests whether wc is a wide-character code representing a character of
class xdigit in the program’s current locale, see the XBD specification, Chapter 5, Locale.

In all cases wc is a wint_t, the value of which must be a wide-character code corresponding to a
valid character in the current locale or must equal the value of the macro WEOF. If the
argument has any other value, the behaviour is undefined.

RETURN VALUE
The iswxdigit () function returns non-zero if wc is a hexadecimal digit wide-character code;
otherwise it returns 0.

ERRORS
No errors are defined.

EXAMPLES
None.

APPLICATION USAGE
To ensure applications portability, especially across natural languages, only this function and
those listed in the SEE ALSO section should be used for classification of wide-character codes.

FUTURE DIRECTIONS
None.

SEE ALSO
iswalnum(), iswalpha (), iswcntrl(), iswdigit (), iswgraph(), iswlower(), iswprint(), iswpunct(),
iswspace(), iswupper(), setlocale (), <wctype.h>, <wchar.h>.

CHANGE HISTORY
First released in Issue 4.

Issue 5
The following change has been made in this issue for alignment with ISO/IEC
9899:1990/Amendment 1:1994 (E).

• The SYNOPSIS has been changed to indicate that this function and associated data types are
now made visible by inclusion of the header <wctype.h> rather than <wchar.h>.

System Interfaces and Headers, Issue 5: Volume 1 443

isxdigit() System Interfaces

NAME
isxdigit — test for a hexadecimal digit

SYNOPSIS
#include <ctype.h>

int isxdigit(int c);

DESCRIPTION
The isxdigit () function tests whether c is a character of class xdigit in the program’s current
locale, see the XBD specification, Chapter 5, Locale.

In all cases c is an int, the value of which must be a character representable as an unsigned char
or must equal the value of the macro EOF. If the argument has any other value, the behaviour is
undefined.

RETURN VALUE
The isxdigit () function returns non-zero if c is a hexadecimal digit; otherwise it returns 0.

ERRORS
No errors are defined.

EXAMPLES
None.

APPLICATION USAGE
To ensure applications portability, especially across natural languages, only this function and
those listed in the SEE ALSO section should be used for character classification.

FUTURE DIRECTIONS
None.

SEE ALSO
isalnum(), isalpha (), iscntrl(), isdigit (), isgraph(), islower(), isprint(), ispunct(), isspace(), isupper(),
<ctype.h>.

CHANGE HISTORY
First released in Issue 1.

Derived from Issue 1 of the SVID.

Issue 4
The following change is incorporated in this issue:

• The text of the DESCRIPTION is revised, although there are no functional differences
between this issue and Issue 3.

444 CAE Specification (1997)

System Interfaces j0()

NAME
j0, j1, jn — Bessel functions of the first kind

SYNOPSIS
EX #include <math.h>

double j0(double x);
double j1(double x);
double jn(int n, double x);

DESCRIPTION
The j0(), j1() and jn() functions compute Bessel functions of x of the first kind of orders 0, 1 and
n respectively.

An application wishing to check for error situations should set errno to 0 before calling j0(), j1()
or jn(). If errno is non-zero on return, or the return value is NaN, an error has occurred.

RETURN VALUE
Upon successful completion, j0(), j1() and jn() return the relevant Bessel value of x of the first
kind.

If the x argument is too large in magnitude, 0 is returned and errno may be set to [ERANGE].

If x is NaN, NaN is returned and errno may be set to [EDOM].

If the correct result would cause underflow, 0 is returned and errno may be set to [ERANGE].

ERRORS
The j0(), j1() and jn() functions may fail if:

[EDOM] The value of x is NaN.

[ERANGE] The value of x was too large in magnitude, or underflow occurred.

No other errors will occur.

EXAMPLES
None.

APPLICATION USAGE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
isnan(), y0(), <math.h>.

CHANGE HISTORY
First released in Issue 1.

Derived from Issue 1 of the SVID.

Issue 4
The following changes are incorporated in this issue:

• References to matherr() are removed.

• The RETURN VALUE and ERRORS sections are substantially rewritten to rationalise error
handling in the mathematics functions.

System Interfaces and Headers, Issue 5: Volume 1 445

j0() System Interfaces

Issue 5
The DESCRIPTION is updated to indicate how an application should check for an error. This
text was previously published in the APPLICATION USAGE section.

446 CAE Specification (1997)

System Interfaces jrand48()

NAME
jrand48 — generate a uniformly distributed pseudo-random long signed integer

SYNOPSIS
EX #include <stdlib.h>

long int jrand48(unsigned short int xsubi [3]);

DESCRIPTION
Refer to drand48().

CHANGE HISTORY
First released in Issue 1.

Derived from Issue 1 of the SVID.

Issue 4
The following changes are incorporated this issue:

• The <stdlib.h> header is added to the SYNOPSIS section.

• The word long is replaced by the words long int in the SYNOPSIS section.

System Interfaces and Headers, Issue 5: Volume 1 447

kill() System Interfaces

NAME
kill — send a signal to a process or a group of processes

SYNOPSIS
OH #include <sys/types.h>

#include <signal.h>

int kill(pid_t pid , int sig);

DESCRIPTION
The kill () function will send a signal to a process or a group of processes specified by pid . The
signal to be sent is specified by sig and is either one from the list given in <signal.h> or 0. If sig is
0 (the null signal), error checking is performed but no signal is actually sent. The null signal can
be used to check the validity of pid .

{_POSIX_SAVED_IDS} will be defined on all XSI-conformant systems, and for a process to have
permission to send a signal to a process designated by pid , the real or effective user ID of the

FIPS sending process must match the real or saved set-user-ID of the receiving process, unless the
sending process has appropriate privileges.

If pid is greater than 0, sig will be sent to the process whose process ID is equal to pid .

If pid is 0, sig will be sent to all processes (excluding an unspecified set of system processes)
whose process group ID is equal to the process group ID of the sender, and for which the
process has permission to send a signal.

EX If pid is −1, sig will be sent to all processes (excluding an unspecified set of system processes) for
which the process has permission to send that signal.

If pid is negative, but not −1, sig will be sent to all processes (excluding an unspecified set of
system processes) whose process group ID is equal to the absolute value of pid , and for which
the process has permission to send a signal.

If the value of pid causes sig to be generated for the sending process, and if sig is not blocked for
the calling thread and if no other thread has sig unblocked or is waiting in a sigwait () function
for sig , either sig or at least one pending unblocked signal will be delivered to the sending thread
before kill () returns.

The user ID tests described above will not be applied when sending SIGCONT to a process that
is a member of the same session as the sending process.

An implementation that provides extended security controls may impose further
implementation-dependent restrictions on the sending of signals, including the null signal. In
particular, the system may deny the existence of some or all of the processes specified by pid .

The kill () function is successful if the process has permission to send sig to any of the processes
specified by pid . If kill () fails, no signal will be sent.

RETURN VALUE
Upon successful completion, 0 is returned. Otherwise, −1 is returned and errno is set to indicate
the error.

ERRORS
The kill () function will fail if:

[EINVAL] The value of the sig argument is an invalid or unsupported signal number.

[EPERM] The process does not have permission to send the signal to any receiving
process.

448 CAE Specification (1997)

System Interfaces kill()

[ESRCH] No process or process group can be found corresponding to that specified by
pid .

EXAMPLES
None.

APPLICATION USAGE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
getpid(), raise(), setsid(), sigaction (), <signal.h>, sigqueue(), <sys/types.h>.

CHANGE HISTORY
First released in Issue 1.

Derived from Issue 1 of the SVID.

Issue 4
The following change is incorporated for alignment with the FIPS requirements:

• In the DESCRIPTION, the second paragraph is reworded to indicate that the saved set-user-
ID of the calling process will be checked in place of its effective user ID. This functionality is
marked as an extension.

Other changes are incorporated as follows:

• The <sys/types.h> header is now marked as optional (OH); this header need not be included
on XSI-conformant systems.

• The DESCRIPTION is clarified in various places.

Issue 5
The DESCRIPTION is updated for alignment with POSIX Threads Extension.

System Interfaces and Headers, Issue 5: Volume 1 449

killpg() System Interfaces

NAME
killpg — send a signal to a process group

SYNOPSIS
EX #include <signal.h>

int killpg(pid_t pgrp , int sig);

DESCRIPTION
The killpg () function sends the signal specified by sig to the process group specified by pgrp .

If pgrp is greater than 1, killpg (pgrp , sig) is equivalent to kill (−pgrp , sig). If pgrp is less than or
equal to 1, the behaviour of killpg () is undefined.

RETURN VALUE
Refer to kill ().

ERRORS
Refer to kill ().

EXAMPLES
None.

APPLICATION USAGE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
getpgid(), getpid(), kill (), raise(), <signal.h>.

CHANGE HISTORY
First released in Issue 4, Version 2.

Issue 5
Moved from X/OPEN UNIX extension to BASE.

450 CAE Specification (1997)

System Interfaces l64a()

NAME
l64a — convert a 32-bit integer to a radix-64 ASCII string

SYNOPSIS
EX #include <stdlib.h>

char *l64a(long value);

DESCRIPTION
Refer to a64l ().

CHANGE HISTORY
First released in Issue 4, Version 2.

Issue 5
Moved from X/OPEN UNIX extension to BASE.

System Interfaces and Headers, Issue 5: Volume 1 451

labs() System Interfaces

NAME
labs — return a long integer absolute value

SYNOPSIS
#include <stdlib.h>

long int labs(long int i);

DESCRIPTION
The labs() function computes the absolute value of its long integer operand, i. If the result
cannot be represented, the behaviour is undefined.

RETURN VALUE
The labs() function returns the absolute value of its long integer operand.

ERRORS
No errors are defined.

EXAMPLES
None.

APPLICATION USAGE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
abs(), <stdlib.h>.

CHANGE HISTORY
First released in Issue 4.

Derived from the ISO C standard.

452 CAE Specification (1997)

System Interfaces lchown()

NAME
lchown — change the owner and group of a symbolic link

SYNOPSIS
EX #include <unistd.h>

int lchown(const char * path , uid_t owner , gid_t group);

DESCRIPTION
The lchown() function has the same effect as chown() except in the case where the named file is a
symbolic link. In this case lchown() changes the ownership of the symbolic link file itself, while
chown() changes the ownership of the file or directory to which the symbolic link refers.

RETURN VALUE
Upon successful completion, lchown() returns 0. Otherwise, it returns −1 and sets errno to
indicate an error.

ERRORS
The lchown() function will fail if:

[EACCES] Search permission is denied on a component of the path prefix of path .

[EINVAL] The owner or group id is not a value supported by the implementation.

[ENAMETOOLONG]
The length of a pathname exceeds {PATH_MAX}, or pathname component is
longer than {NAME_MAX}.

[ENOENT] A component of path does not name an existing file or path is an empty string.

[ENOTDIR] A component of the path prefix of path is not a directory.

[EOPNOTSUPP] The path argument names a symbolic link and the implementation does not
support setting the owner or group of a symbolic link.

[ELOOP] Too many symbolic links were encountered in resolving path.

[EPERM] The effective user ID does not match the owner of the file and the process does
not have appropriate privileges.

[EROFS] The file resides on a read-only file system.

The lchown() function may fail if:

[EIO] An I/O error occurred while reading or writing to the file system.

[EINTR] A signal was caught during execution of the function.

[ENAMETOOLONG]
Pathname resolution of a symbolic link produced an intermediate result
whose length exceeds {PATH_MAX}.

EXAMPLES
None.

APPLICATION USAGE
None.

FUTURE DIRECTIONS
None.

System Interfaces and Headers, Issue 5: Volume 1 453

lchown() System Interfaces

SEE ALSO
chown(), symlink(), <unistd.h>.

CHANGE HISTORY
First released in Issue 4, Version 2.

Issue 5
Moved from X/OPEN UNIX extension to BASE.

454 CAE Specification (1997)

System Interfaces lcong48()

NAME
lcong48 — seed a uniformly distributed pseudo-random signed long integer generator

SYNOPSIS
EX #include <stdlib.h>

void lcong48(unsigned short int param [7]);

DESCRIPTION
Refer to drand48().

CHANGE HISTORY
First released in Issue 1.

Derived from Issue 1 of the SVID.

Issue 4
The following change is incorporated in this issue:

• The <stdlib.h> header is now included in the SYNOPSIS section.

System Interfaces and Headers, Issue 5: Volume 1 455

ldexp() System Interfaces

NAME
ldexp — load exponent of a floating point number

SYNOPSIS
#include <math.h>

double ldexp(double x, int exp);

DESCRIPTION
The ldexp() function computes the quantity x * 2exp .

An application wishing to check for error situations should set errno to 0 before calling ldexp().
If errno is non-zero on return, or the return value is NaN, an error has occurred.

RETURN VALUE
Upon successful completion, ldexp() returns a double representing the value x multiplied by 2
raised to the power exp.

EX If the value of x is NaN, NaN is returned and errno may be set to [EDOM].

If ldexp() would cause overflow, ±HUGE_VAL is returned (according to the sign of x), and errno
is set to [ERANGE].

If ldexp() would cause underflow, 0 is returned and errno may be set to [ERANGE].

ERRORS
The ldexp() function will fail if:

[ERANGE] The value to be returned would have caused overflow.

The ldexp() function may fail if:

EX [EDOM] The argument x is NaN.

[ERANGE] The value to be returned would have caused underflow.

No other errors will occur.

EXAMPLES
None.

APPLICATION USAGE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
frexp(), isnan(), <math.h>.

CHANGE HISTORY
First released in Issue 1.

Derived from Issue 1 of the SVID.

Issue 4
The following changes are incorporated in this issue:

• Removed references to matherr().

• The RETURN VALUE and ERRORS sections are substantially rewritten for alignment with
the ISO C standard and to rationalise error handling in the mathematics functions.

456 CAE Specification (1997)

System Interfaces ldexp()

• The return value specified for [EDOM] is marked as an extension.

Issue 5
The DESCRIPTION is updated to indicate how an application should check for an error. This
text was previously published in the APPLICATION USAGE section.

System Interfaces and Headers, Issue 5: Volume 1 457

ldiv() System Interfaces

NAME
ldiv — compute quotient and remainder of a long division

SYNOPSIS
#include <stdlib.h>

ldiv_t ldiv(long int numer , long int denom);

DESCRIPTION
The ldiv () function computes the quotient and remainder of the division of the numerator numer
by the denominator denom. If the division is inexact, the resulting quotient is the long integer of
lesser magnitude that is the nearest to the algebraic quotient. If the result cannot be represented,
the behaviour is undefined; otherwise, quot * denom + rem will equal numer.

RETURN VALUE
The ldiv () function returns a structure of type ldiv_t, comprising both the quotient and the
remainder. The structure includes the following members, in any order:

long int quot; /* quotient */
long int rem; /* remainder */

ERRORS
No errors are defined.

EXAMPLES
None.

APPLICATION USAGE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
div(), <stdlib.h>.

CHANGE HISTORY
First released in Issue 4.

Derived from the ISO C standard.

458 CAE Specification (1997)

System Interfaces lfind()

NAME
lfind — find entry in a linear search table

SYNOPSIS
EX #include <search.h>

void *lfind(const void * key , const void * base , size_t * nelp ,
size_t width , int (* compar) (const void *, const void *));

DESCRIPTION
Refer to lsearch().

CHANGE HISTORY
First released in Issue 1.

Derived from Issue 1 of the SVID.

Issue 4
The following change is incorporated in this issue:

• In the SYNOPSIS section, the type of the function return value is changed from char * to
void*, the type of the key and base arguments is changed from void* to const void*, and
argument declarations for compar() are added.

System Interfaces and Headers, Issue 5: Volume 1 459

lgamma() System Interfaces

NAME
lgamma — log gamma function

SYNOPSIS
EX #include <math.h>

double lgamma(double x);
extern int signgam;

DESCRIPTION

The lgamma() function computes loge LΓ(x) L where Γ(x) is defined as
0
∫
∞

e−tt x−1dt. The sign of Γ(x)

is returned in the external integer signgam . The argument x need not be a non-positive integer
(Γ(x) is defined over the reals, except the non-positive integers).

An application wishing to check for error situations should set errno to 0 before calling lgamma().
If errno is non-zero on return, or the return value is NaN, an error has occurred.

This interface need not be reentrant.

RETURN VALUE
Upon successful completion, lgamma() returns the logarithmic gamma of x .

If x is NaN, NaN is returned and errno may be set to [EDOM].

If x is a non-positive integer, either HUGE_VAL or NaN is returned and errno may be set to
[EDOM].

If the correct value would cause overflow, lgamma() returns HUGE_VAL and may set errno to
[ERANGE].

If the correct value would cause underflow, lgamma() returns 0 and may set errno to [ERANGE].

ERRORS
The lgamma() function may fail if:

[EDOM] The value of x is a non-positive integer or NaN.

[ERANGE] The value to be returned would have caused overflow or underflow.

No other errors will occur.

EXAMPLES
None.

APPLICATION USAGE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
exp(), isnan(), <math.h>.

CHANGE HISTORY
First released in Issue 3.

460 CAE Specification (1997)

System Interfaces lgamma()

Issue 4
The following changes are incorporated in this issue:

• This page no longer points to gamma(), but contains all information relating to lgamma().

• The RETURN VALUE and ERRORS sections are substantially rewritten to rationalise error
handling in the mathematics functions.

Issue 5
The DESCRIPTION is updated to indicate how an application should check for an error. This
text was previously published in the APPLICATION USAGE section.

A note indicating that this interface need not be reentrant is added to the DESCRIPTION.

System Interfaces and Headers, Issue 5: Volume 1 461

link() System Interfaces

NAME
link — link to a file

SYNOPSIS
#include <unistd.h>

int link(const char * path1 , const char * path2);

DESCRIPTION
The link () function creates a new link (directory entry) for the existing file, path1 .

The path1 argument points to a pathname naming an existing file. The path2 argument points to
a pathname naming the new directory entry to be created. The link () function will atomically
create a new link for the existing file and the link count of the file is incremented by one.

If path1 names a directory, link () will fail unless the process has appropriate privileges and the
implementation supports using link () on directories.

Upon successful completion, link () will mark for update the st_ctime field of the file. Also, the
st_ctime and st_mtime fields of the directory that contains the new entry are marked for update.

If link () fails, no link is created and the link count of the file will remain unchanged.

The implementation may require that the calling process has permission to access the existing
file.

RETURN VALUE
Upon successful completion, 0 is returned. Otherwise, −1 is returned and errno is set to indicate
the error.

ERRORS
The link () function will fail if:

[EACCES] A component of either path prefix denies search permission, or the requested
link requires writing in a directory with a mode that denies write permission,
or the calling process does not have permission to access the existing file and
this is required by the implementation.

[EEXIST] The link named by path2 exists.

EX [ELOOP] Too many symbolic links were encountered in resolving path1 or path2.

[EMLINK] The number of links to the file named by path1 would exceed {LINK_MAX}.

[ENAMETOOLONG]
FIPS The length of path1 or path2 exceeds {PATH_MAX} or a pathname component

is longer than {NAME_MAX}.

[ENOENT] A component of either path prefix does not exist; the file named by path1 does
not exist; or path1 or path2 points to an empty string.

[ENOSPC] The directory to contain the link cannot be extended.

[ENOTDIR] A component of either path prefix is not a directory.

[EPERM] The file named by path1 is a directory and either the calling process does not
have appropriate privileges or the implementation prohibits using link () on
directories.

[EROFS] The requested link requires writing in a directory on a read-only file system.

462 CAE Specification (1997)

System Interfaces link()

[EXDEV] The link named by path2 and the file named by path1 are on different file
systems and the implementation does not support links between file systems,

EX or path1 refers to a named STREAM.

The link () function may fail if:

EX [ENAMETOOLONG]
Pathname resolution of a symbolic link produced an intermediate result
whose length exceeds {PATH_MAX}.

EXAMPLES
None.

APPLICATION USAGE
Some implementations do allow links between file systems.

FUTURE DIRECTIONS
None.

SEE ALSO
symlink(), unlink(), <unistd.h>.

CHANGE HISTORY
First released in Issue 1.

Derived from Issue 1 of the SVID.

Issue 4
The following change is incorporated for alignment with the ISO POSIX-1 standard:

• The type of arguments path1 and path2 are changed from char * to const char *.

The following change is incorporated for alignment with the FIPS requirements:

• In the ERRORS section, the condition whereby [ENAMETOOLONG] will be returned if a
pathname component is larger that {NAME_MAX} is now defined as mandatory and marked
as an extension.

Other changes are incorporated as follows:

• The <unistd.h> header is added to the SYNOPSIS section.

Issue 4, Version 2
The ERRORS section is updated for X/OPEN UNIX conformance as follows:

• The [ELOOP] error will be returned if too many symbolic links are encountered during
pathname resolution.

• The [EXDEV] error may also be returned if path1 refers to a named STREAM.

• A second [ENAMETOOLONG] condition is defined that may report excessive length of an
intermediate result of pathname resolution of a symbolic link.

System Interfaces and Headers, Issue 5: Volume 1 463

lio_listio() System Interfaces

NAME
lio_listio — list directed I/O (REALTIME)

SYNOPSIS
RT #include <aio.h>

int lio_listio(int mode, struct aiocb * const list [], int nent ,
struct sigevent * sig);

DESCRIPTION
The lio_listio () function allows the calling process to initiate a list of I/O requests with a single
function call.

The mode argument takes one of the values LIO_WAIT or LIO_NOWAIT declared in <aio.h> and
determines whether the function returns when the I/O operations have been completed, or as
soon as the operations have been queued. If the mode argument is LIO_WAIT, the function waits
until all I/O is complete and the sig argument is ignored.

If the mode argument is LIO_NOWAIT, the function returns immediately, and asynchronous
notification occurs, according to the sig argument, when all the I/O operations complete. If sig is
NULL, then no asynchronous notification occurs. If sig is not NULL, asynchronous notification
occurs as specified in Signal Generation and Delivery on page 808 when all the requests in list
have completed.

The I/O requests enumerated by list are submitted in an unspecified order.

The list argument is an array of pointers to aiocb structures. The array contains nent elements.
The array may contain NULL elements, which are ignored.

The aio_lio_opcode field of each aiocb structure specifies the operation to be performed. The
supported operations are LIO_READ, LIO_WRITE and LIO_NOP; these symbols are defined in
<aio.h>. The LIO_NOP operation causes the list entry to be ignored. If the aio_lio_opcode
element is equal to LIO_READ, then an I/O operation is submitted as if by a call to aio_read ()
with the aiocbp equal to the address of the aiocb structure. If the aio_lio_opcode element is equal
to LIO_WRITE, then an I/O operation is submitted as if by a call to aio_write () with the aiocbp
equal to the address of the aiocb structure.

The aio_fildes member specifies the file descriptor on which the operation is to be performed.

The aio_buf member specifies the address of the buffer to or from which the data is to be
transferred.

The aio_nbytes member specifies the number of bytes of data to be transferred.

The members of the aiocb structure further describe the I/O operation to be performed, in a
manner identical to that of the corresponding aiocb structure when used by the aio_read () and
aio_write () functions.

The nent argument specifies how many elements are members of the list, that is, the length of the
array.

The behaviour of this function is altered according to the definitions of synchronised I/O data
integrity completion and synchronised I/O file integrity completion. if synchronised I/O is
enabled on the file associated with aio_fildes .

EX For regular files, no data transfer will occur past the offset maximum established in the open file
description associated with aiocbp->aio_fildes .

464 CAE Specification (1997)

System Interfaces lio_listio()

RETURN VALUE
If the mode argument has the value LIO_NOWAIT, the lio_listio () function returns the value zero
if the I/O operations are successfully queued; otherwise, the function returns the value −1 and
sets errno to indicate the error.

If the mode argument has the value LIO_WAIT, the lio_listio () function returns the value zero
when all the indicated I/O has completed successfully. Otherwise, lio_listio () returns a value of
−1 and sets errno to indicate the error.

In either case, the return value only indicates the success or failure of the lio_listio () call itself,
not the status of the individual I/O requests. In some cases one or more of the I/O requests
contained in the list may fail. Failure of an individual request does not prevent completion of
any other individual request. To determine the outcome of each I/O request, the application
examines the error status associated with each aiocb control block. The error statuses so
returned are identical to those returned as the result of an aio_read () or aio_write () function.

ERRORS
The lio_listio () function will fail if:

[EAGAIN] The resources necessary to queue all the I/O requests were not available. The
application may check the error status for each aiocb to determine the
individual request(s) that failed.

[EAGAIN] The number of entries indicated by nent would cause the systemwide limit
AIO_MAX to be exceeded.

[EINVAL] The mode argument is not a proper value, or the value of nent was greater than
AIO_LISTIO_MAX.

[EINTR] A signal was delivered while waiting for all I/O requests to complete during a
LIO_WAIT operation. Note that, since each I/O operation invoked by
lio_listio () may possibly provoke a signal when it completes, this error return
may be caused by the completion of one (or more) of the very I/O operations
being awaited. Outstanding I/O requests are not canceled, and the
application examines each list element to determine whether the request was
initiated, canceled, or completed.

[EIO] One or more of the individual I/O operations failed. The application may
check the error status for each aiocb structure to determine the individual
request(s) that failed.

[ENOSYS] The lio_listio () function is not supported by this implementation.

In addition to the errors returned by the lio_listio () function, if the lio_listio () function succeeds
or fails with errors of [EAGAIN], [EINTR], or [EIO], then some of the I/O specified by the list
may have been initiated. If the lio_listio () function fails with an error code other than
[EAGAIN], [EINTR], or [EIO], no operations from the list have been initiated. The I/O operation
indicated by each list element can encounter errors specific to the individual read or write
function being performed. In this event, the error status for each aiocb control block contains
the associated error code. The error codes that can be set are the same as would be set by a
read() or write() function, with the following additional error codes possible:

[EAGAIN] The requested I/O operation was not queued due to resource limitations.

[ECANCELED] The requested I/O was canceled before the I/O completed due to an explicit
aio_cancel () request.

EX [EFBIG] The aiocbp->aio_lio_opcode is LIO_WRITE, the file is a regular file, aiocbp-
>aio_nbytes is greater than 0, and the aiocbp->aio_offset is greater than or equal

System Interfaces and Headers, Issue 5: Volume 1 465

lio_listio() System Interfaces

to the offset maximum in the open file description associated with aiocbp-
>aio_fildes .

[EINPROGRESS] The requested I/O is in progress.

EX [EOVERFLOW] The aiocbp->aio_lio_opcode is LIO_READ, the file is a regular file, aiocbp-
>aio_nbytes is greater than 0, and the aiocbp->aio_offset is before the end-of-file
and is greater than or equal to the offset maximum in the open file description
associated with aiocbp->aio_fildes .

EXAMPLES
None.

APPLICATION USAGE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
aio_read (), aio_write (), aio_error (), aio_return(), aio_cancel (), read(), lseek(), close(), _exit(), exec,
fork ().

CHANGE HISTORY
First released in Issue 5.

Included for alignment with the POSIX Realtime Extension.

Large File Summit extensions added.

466 CAE Specification (1997)

System Interfaces loc1

NAME
loc1, loc2 — pointers to characters matched by regular expressions (LEGACY)

SYNOPSIS
EX #include <regexp.h>

extern char *loc1;
extern char *loc2;

DESCRIPTION
Refer to regexp().

APPLICATION USAGE
These variables are kept for historical reasons, but may be withdrawn in a future issue.

New applications should use fnmatch(), glob(), regcomp() and regexec(), which provide full
internationalised regular expression functionality compatible with the ISO POSIX-2 standard, as
described in the XBD specification, Chapter 7, Regular Expressions.

CHANGE HISTORY
First released in Issue 2.

Derived from Issue 2 of the SVID.

Issue 4
The following changes are incorporated in this issue:

• The <regexp.h> header is added to the SYNOPSIS section.

• The interfaces are marked TO BE WITHDRAWN, because improved functionality is now
provided by interfaces introduced for alignment with the ISO POSIX-2 standard.

Issue 5
Marked LEGACY.

System Interfaces and Headers, Issue 5: Volume 1 467

localeconv() System Interfaces

NAME
localeconv — determine the program locale

SYNOPSIS
#include <locale.h>

struct lconv *localeconv(void);

DESCRIPTION
The localeconv () function sets the components of an object with the type struct lconv with the
values appropriate for the formatting of numeric quantities (monetary and otherwise) according
to the rules of the current locale.

The members of the structure with type char * are pointers to strings, any of which (except
decimal_point) can point to "", to indicate that the value is not available in the current locale or
is of zero length. The members with type char are non-negative numbers, any of which can be
{CHAR_MAX} to indicate that the value is not available in the current locale.

The members include the following:

char *decimal_point
The radix character used to format non-monetary quantities.

char *thousands_sep
The character used to separate groups of digits before the decimal-point character in
formatted non-monetary quantities.

char *grouping
A string whose elements taken as one-byte integer values indicate the size of each group of
digits in formatted non-monetary quantities.

char *int_curr_symbol
The international currency symbol applicable to the current locale. The first three characters
contain the alphabetic international currency symbol in accordance with those specified in
the ISO 4217: 1987 standard. The fourth character (immediately preceding the null byte) is
the character used to separate the international currency symbol from the monetary
quantity.

char *currency_symbol
The local currency symbol applicable to the current locale.

char *mon_decimal_point
The radix character used to format monetary quantities.

char *mon_thousands_sep
The separator for groups of digits before the decimal-point in formatted monetary
quantities.

char *mon_grouping
A string whose elements taken as one-byte integer values indicate the size of each group of
digits in formatted monetary quantities.

char *positive_sign
The string used to indicate a non-negative valued formatted monetary quantity.

char *negative_sign
The string used to indicate a negative valued formatted monetary quantity.

char int_frac_digits
The number of fractional digits (those after the decimal-point) to be displayed in an

468 CAE Specification (1997)

System Interfaces localeconv()

internationally formatted monetary quantity.

char frac_digits
The number of fractional digits (those after the decimal-point) to be displayed in a
formatted monetary quantity.

char p_cs_precedes
EX Set to 1 if the currency_symbol or int_curr_symbol precedes the value for a non-negative

formatted monetary quantity. Set to 0 if the symbol succeeds the value.

char p_sep_by_space
EX Set to 0 if no space separates the currency_symbol or int_curr_symbol from the value for a

non-negative formatted monetary quantity. Set to 1 if a space separates the symbol from
EX the value; and set to 2 if a space separates the symbol and the sign string, if adjacent.

char n_cs_precedes
EX Set to 1 if the currency_symbol or int_curr_symbol precedes the value for a negative

formatted monetary quantity. Set to 0 if the symbol succeeds the value.

char n_sep_by_space
EX Set to 0 if no space separates the currency_symbol or int_curr_symbol from the value for a

negative formatted monetary quantity. Set to 1 if a space separates the symbol from the
EX value; and set to 2 if a space separates the symbol and the sign string, if adjacent.

char p_sign_posn
Set to a value indicating the positioning of the positive_sign for a non-negative formatted
monetary quantity.

char n_sign_posn
Set to a value indicating the positioning of the negative_sign for a negative formatted
monetary quantity.

The elements of grouping and mon_grouping are interpreted according to the following:

{CHAR_MAX} No further grouping is to be performed.

0 The previous element is to be repeatedly used for the remainder of the digits.

other The integer value is the number of digits that comprise the current group. The
next element is examined to determine the size of the next group of digits
before the current group.

The values of p_sign_posn and n_sign_posn are interpreted according to the following:

EX 0 Parentheses surround the quantity and currency_symbol or int_curr_symbol.

EX 1 The sign string precedes the quantity and currency_symbol or int_curr_symbol.

EX 2 The sign string succeeds the quantity and currency_symbol or int_curr_symbol.

EX 3 The sign string immediately precedes the currency_symbol or int_curr_symbol.

EX 4 The sign string immediately succeeds the currency_symbol or int_curr_symbol.

The implementation will behave as if no function in this specification calls localeconv ().

RETURN VALUE
The localeconv () function returns a pointer to the filled-in object. The structure pointed to by the
return value must not be modified by the program, but may be overwritten by a subsequent call
to localeconv (). In addition, calls to setlocale () with the categories LC_ALL, LC_MONETARY, or
LC_NUMERIC may overwrite the contents of the structure.

System Interfaces and Headers, Issue 5: Volume 1 469

localeconv() System Interfaces

ERRORS
No errors are defined.

EXAMPLES
None.

APPLICATION USAGE
The following table illustrates the rules which may be used by four countries to format monetary
quantities.

Country Positive Format Negative Format International Format
Italy L.1.230 −L.1.230 ITL.1.230
Netherlands F 1.234,56 F −1.234,56 NLG 1.234,56
Norway kr1.234,56 kr1.234,56− NOK 1.234,56
Switzerland SFrs.1,234.56 SFrs.1,234.56C CHF 1,234.56

For these four countries, the respective values for the monetary members of the structure
returned by localeconv () are:

Italy Netherlands Norway Switzerland
int_curr_symbol "ITL." "NLG " "NOK " "CHF "
currency_symbol "L." "F" "kr" "SFrs."
mon_decimal_point "" "," "," "."
mon_thousands_sep "." "." "." ","
mon_grouping "\3" "\3" "\3" "\3"
positive_sign "" "" "" ""
negative_sign "-" "-" "-" "C"
int_frac_digits 0 2 2 2
frac_digits 0 2 2 2
p_cs_precedes 1 1 1 1
p_sep_by_space 0 1 0 0
n_cs_precedes 1 1 1 1
n_sep_by_space 0 1 0 0
p_sign_posn 1 1 1 1
n_sign_posn 1 4 2 2

FUTURE DIRECTIONS
None.

SEE ALSO
isalpha (), isascii (), nl_langinfo (), printf(), scanf(), setlocale (), strcat(), strchr(), strcmp(), strcoll(),
strcpy(), strftime(), strlen(), strpbrk(), strspn(), strtok(), strxrfm(), strtod(), <langinfo.h>,
<locale.h>.

CHANGE HISTORY
First released in Issue 4.

Derived from the ANSI C standard.

470 CAE Specification (1997)

System Interfaces localtime()

NAME
localtime, localtime_r — convert a time value to a broken-down local time

SYNOPSIS
#include <time.h>

struct tm *localtime(const time_t * timer);
struct tm *localtime_r(const time_t * clock , struct tm * result);

DESCRIPTION
The localtime () function converts the time in seconds since the Epoch pointed to by timer into a
broken-down time, expressed as a local time. The function corrects for the timezone and any
seasonal time adjustments. Local timezone information is used as though localtime () calls
tzset().

The localtime () interface need not be reentrant.

The localtime_r () function converts the calendar time pointed to by clock into a broken-down
time stored in the structure to which result points. The localtime_r () function also returns a
pointer to that same structure.

Unlike localtime (), the reentrant version is not required to set tzname .

RETURN VALUE
The localtime () function returns a pointer to the broken-down time structure.

Upon successful completion, localtime_r () returns a pointer to the structure pointed to by the
argument result.

ERRORS
No errors are defined.

EXAMPLES
None.

APPLICATION USAGE
The asctime(), ctime(), getdate(), gettimeofday (), gmtime() and localtime () functions return values
in one of two static objects: a broken-down time structure and an array of char. Execution of any
of the functions may overwrite the information returned in either of these objects by any of the
other functions.

FUTURE DIRECTIONS
None.

SEE ALSO
asctime(), clock (), ctime(), difftime(), getdate(), gettimeofday (), gmtime(), mktime(), strftime(),
strptime(), time(), utime(), <time.h>.

CHANGE HISTORY
First released in Issue 1.

Derived from Issue 1 of the SVID.

Issue 4
The following change is incorporated for alignment with the ISO C standard:

• The timer argument is now a type const time_t.

Another change is incorporated as follows:

• The APPLICATION USAGE section is expanded to provide a more complete description of
how static areas are used by the *time() functions.

System Interfaces and Headers, Issue 5: Volume 1 471

localtime() System Interfaces

Issue 5
A note indicating that the localtime () interface need not be reentrant is added to the
DESCRIPTION.

The localtime_r () function is included for alignment with the POSIX Threads Extension.

472 CAE Specification (1997)

System Interfaces lockf()

NAME
lockf — record locking on files

SYNOPSIS
EX #include <unistd.h>

int lockf(int fildes , int function , off_t size);

DESCRIPTION
The lockf () function allows sections of a file to be locked with advisory-mode locks. Calls to
lockf () from other threads which attempt to lock the locked file section will either return an error
value or block until the section becomes unlocked. All the locks for a process are removed when
the process terminates. Record locking with lockf () is supported for regular files and may be
supported for other files.

The fildes argument is an open file descriptor. The file descriptor must have been opened with
write-only permission (O_WRONLY) or with read/write permission (O_RDWR) to establish a
lock with this function.

The function argument is a control value which specifies the action to be taken. The permissible
values for function are defined in <unistd.h> as follows:

Function Description
F_ULOCK unlock locked sections
F_LOCK lock a section for exclusive use
F_TLOCK test and lock a section for exclusive use
F_TEST test a section for locks by other processes

F_TEST detects if a lock by another process is present on the specified section; F_LOCK and
F_TLOCK both lock a section of a file if the section is available; F_ULOCK removes locks from a
section of the file.

The size argument is the number of contiguous bytes to be locked or unlocked. The section to be
locked or unlocked starts at the current offset in the file and extends forward for a positive size
or backward for a negative size (the preceding bytes up to but not including the current offset).
If size is 0, the section from the current offset through the largest possible file offset is locked
(that is, from the current offset through the present or any future end-of-file). An area need not
be allocated to the file to be locked because locks may exist past the end-of-file.

The sections locked with F_LOCK or F_TLOCK may, in whole or in part, contain or be contained
by a previously locked section for the same process. When this occurs, or if adjacent locked
sections would occur, the sections are combined into a single locked section. If the request
would cause the number of locks to exceed a system-imposed limit, the request will fail.

F_LOCK and F_TLOCK requests differ only by the action taken if the section is not available.
F_LOCK blocks the calling thread until the section is available. F_TLOCK makes the function
fail if the section is already locked by another process.

File locks are released on first close by the locking process of any file descriptor for the file.

F_ULOCK requests may release (wholly or in part) one or more locked sections controlled by the
process. Locked sections will be unlocked starting at the current file offset through size bytes or
to the end of file if size is (off_t)0. When all of a locked section is not released (that is, when the
beginning or end of the area to be unlocked falls within a locked section), the remaining portions
of that section are still locked by the process. Releasing the center portion of a locked section
will cause the remaining locked beginning and end portions to become two separate locked

System Interfaces and Headers, Issue 5: Volume 1 473

lockf() System Interfaces

sections. If the request would cause the number of locks in the system to exceed a system-
imposed limit, the request will fail.

A potential for deadlock occurs if the threads of a process controlling a locked section are
blocked by accessing another process’ locked section. If the system detects that deadlock would
occur, lockf () will fail with an [EDEADLK] error.

The interaction between fcntl() and lockf () locks is unspecified.

Blocking on a section is interrupted by any signal.

EX An F_ULOCK request in which size is non-zero and the offset of the last byte of the requested
section is the maximum value for an object of type off_t, when the process has an existing lock
in which size is 0 and which includes the last byte of the requested section, will be treated as a
request to unlock from the start of the requested section with a size equal to 0. Otherwise an
F_ULOCK request will attempt to unlock only the requested section.

Attempting to lock a section of a file that is associated with a buffered stream produces
unspecified results.

RETURN VALUE
Upon successful completion, lockf () returns 0. Otherwise, it returns −1, sets errno to indicate an
error, and existing locks are not changed.

ERRORS
The lockf () function will fail if:

[EBADF] The fildes argument is not a valid open file descriptor; or function is F_LOCK or
F_TLOCK and fildes is not a valid file descriptor open for writing.

[EACCES] or [EAGAIN]
The function argument is F_TLOCK or F_TEST and the section is already
locked by another process.

[EDEADLK] The function argument is F_LOCK and a deadlock is detected.

[EINTR] A signal was caught during execution of the function.

EX [EINVAL] The function argument is not one of F_LOCK, F_TLOCK, F_TEST or
F_ULOCK; or size plus the current file offset is less than 0.

EX [EOVERFLOW] The offset of the first, or if size is not 0 then the last, byte in the requested
section cannot be represented correctly in an object of type off_t.

The lockf () function may fail if:

[EAGAIN] The function argument is F_LOCK or F_TLOCK and the file is mapped with
mmap().

[EDEADLK] or [ENOLCK]
The function argument is F_LOCK, F_TLOCK, or F_ULOCK, and the request
would cause the number of locks to exceed a system-imposed limit.

[EOPNOTSUPP] or [EINVAL]
The implementation does not support the locking of files of the type indicated
by the fildes argument.

EXAMPLES
None.

474 CAE Specification (1997)

System Interfaces lockf()

APPLICATION USAGE
Record-locking should not be used in combination with the fopen(), fread(), fwrite() and other
stdio functions. Instead, the more primitive, non-buffered functions (such as open()) should be
used. Unexpected results may occur in processes that do buffering in the user address space.
The process may later read/write data which is/was locked. The stdio functions are the most
common source of unexpected buffering.

The alarm() function may be used to provide a timeout facility in applications requiring it.

FUTURE DIRECTIONS
None.

SEE ALSO
alarm(), chmod(), close(), creat(), fcntl(), fopen(), mmap(), open(), read(), write(), <unistd.h>.

CHANGE HISTORY
First released in Issue 4, Version 2.

Issue 5
Moved from X/OPEN UNIX extension to BASE.

Large File Summit extensions added. In particular the description of [EINVAL] is clarified and
moved from optional to mandatory status.

A note is added to the DESCRIPTION indicating the effects of attempting to lock a section of a
file that is associated with a buffered stream.

System Interfaces and Headers, Issue 5: Volume 1 475

locs System Interfaces

NAME
locs — stop regular expression matching in a string (LEGACY)

SYNOPSIS
EX #include <regexp.h>

extern char *locs;

DESCRIPTION
Refer to regexp().

APPLICATION USAGE
This variable is kept for historical reasons, but may be withdrawn in a future issue.

New applications should use fnmatch(), glob(), regcomp() and regexec(), which provide full
internationalised regular expression functionality compatible with the ISO POSIX-2 standard, as
described in the XBD specification, Chapter 7, Regular Expressions.

CHANGE HISTORY
First released in Issue 2.

Derived from Issue 2 of the SVID.

Issue 4
The following changes are incorporated in this issue:

• The <regexp.h> header is added to the SYNOPSIS section.

• The interface is marked TO BE WITHDRAWN, because improved functionality is now
provided by interfaces introduced for alignment with the ISO POSIX-2 standard.

Issue 5
Marked LEGACY.

476 CAE Specification (1997)

System Interfaces log()

NAME
log — natural logarithm function

SYNOPSIS
#include <math.h>

double log(double x);

DESCRIPTION
The log() function computes the natural logarithm of x, loge(x). The value of x must be positive.

An application wishing to check for error situations should set errno to 0 before calling log(). If
errno is non-zero on return, or the return value is NaN, an error has occurred.

RETURN VALUE
Upon successful completion, log() returns the natural logarithm of x .

EX If x is NaN, NaN is returned and errno may be set to [EDOM].

EX If x is less than 0, −HUGE_VAL or NaN is returned, and errno is set to [EDOM].

If x is 0, −HUGE_VAL is returned and errno may be set to [ERANGE].

ERRORS
The log() function will fail if:

[EDOM] The value of x is negative.

The log() function may fail if:

EX [EDOM] The value of x is NaN.

[ERANGE] The value of x is 0.

EX No other errors will occur.

EXAMPLES
None.

APPLICATION USAGE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
exp(), isnan(), log10 (), log1p (), <math.h>.

CHANGE HISTORY
First released in Issue 1.

Derived from Issue 1 of the SVID.

Issue 4
The following changes are incorporated in this issue:

• Removed references to matherr().

• The RETURN VALUE and ERRORS sections are substantially rewritten for alignment with
the ISO C standard and to rationalise error handling in the mathematics functions.

• The return value specified for [EDOM] is marked as an extension.

System Interfaces and Headers, Issue 5: Volume 1 477

log() System Interfaces

Issue 5
The DESCRIPTION is updated to indicate how an application should check for an error. This
text was previously published in the APPLICATION USAGE section.

478 CAE Specification (1997)

System Interfaces log10()

NAME
log10 — base 10 logarithm function

SYNOPSIS
#include <math.h>

double log10(double x);

DESCRIPTION
The log10 () function computes the base 10 logarithm of x , log

10
(x). The value of x must be

positive.

An application wishing to check for error situations should set errno to 0 before calling log10 ().
If errno is non-zero on return, or the return value is NaN, an error has occurred.

RETURN VALUE
Upon successful completion, log10 () returns the base 10 logarithm of x .

EX If x is NaN, NaN is returned and errno may be set to [EDOM].

EX If x is less than 0, −HUGE_VAL or NaN is returned, and errno is set to [EDOM].

If x is 0, −HUGE_VAL is returned and errno may be set to [ERANGE].

ERRORS
The log10 () function will fail if:

[EDOM] The value of x is negative.

The log10 () function may fail if:

EX [EDOM] The value of x is NaN.

[ERANGE] The value of x is 0.

EX No other errors will occur.

EXAMPLES
None.

APPLICATION USAGE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
isnan(), log(), pow(), <math.h>.

CHANGE HISTORY
First released in Issue 1.

Derived from Issue 1 of the SVID.

Issue 4
The following changes are incorporated in this issue:

• Removed references to matherr().

• The RETURN VALUE and ERRORS sections are substantially rewritten for alignment with
the ISO C standard and to rationalise error handling in the mathematics functions.

• The return value specified for [EDOM] is marked as an extension.

System Interfaces and Headers, Issue 5: Volume 1 479

log10() System Interfaces

Issue 5
The DESCRIPTION is updated to indicate how an application should check for an error. This
text was previously published in the APPLICATION USAGE section.

480 CAE Specification (1997)

System Interfaces log1p()

NAME
log1p — compute a natural logarithm

SYNOPSIS
EX #include <math.h>

double log1p (double x);

DESCRIPTION
The log1p () function computes log

e
(1.0 + x). The value of x must be greater than −1.0.

RETURN VALUE
Upon successful completion, log1p () returns the natural logarithm of 1.0 + x.

If x is NaN, log1p () returns NaN and may set errno to [EDOM].

If x is less than −1.0, log1p () returns −HUGE_VAL or NaN and sets errno to [EDOM].

If x is −1.0, log1p () returns −HUGE_VAL and may set errno to [ERANGE].

ERRORS
The log1p () function will fail if:

[EDOM] The value of x is less than −1.0.

The log1p () function may fail and set errno to:

[EDOM] The value of x is NaN.

[ERANGE] The value of x is −1.0.

No other errors will occur.

EXAMPLES
None.

APPLICATION USAGE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
log(), <math.h>.

CHANGE HISTORY
First released in Issue 4, Version 2.

Issue 5
Moved from X/OPEN UNIX extension to BASE.

System Interfaces and Headers, Issue 5: Volume 1 481

logb() System Interfaces

NAME
logb — radix-independent exponent

SYNOPSIS
EX #include <math.h>

double logb(double x);

DESCRIPTION
The logb() function computes the exponent of x, which is the integral part of logr A x A , as a
signed floating point value, for non-zero x, where r is the radix of the machine’s floating-point
arithmetic.

RETURN VALUE
Upon successful completion, logb() returns the exponent of x.

If x is 0.0, logb() returns −HUGE_VAL and sets errno to [EDOM].

If x is ±Inf, logb() returns +Inf.

If x is NaN, logb() returns NaN and may set errno to [EDOM].

ERRORS
The logb() function will fail if:

[EDOM] The x argument is 0.0.

The logb() function may fail if:

[EDOM] The x argument is NaN.

EXAMPLES
None.

APPLICATION USAGE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
ilogb (), <math.h>.

CHANGE HISTORY
First released in Issue 4, Version 2.

Issue 5
Moved from X/OPEN UNIX extension to BASE.

482 CAE Specification (1997)

System Interfaces _longjmp()

NAME
_longjmp, _setjmp — non-local goto

SYNOPSIS
EX #include <setjmp.h>

void _longjmp(jmp_buf env , int val);
int _setjmp(jmp_buf env);

DESCRIPTION
The _longjmp () and _setjmp() functions are identical to longjmp() and setjmp(), respectively, with
the additional restriction that _longjmp () and _setjmp() do not manipulate the signal mask.

If _longjmp () is called even though env was never initialised by a call to _setjmp(), or when the
last such call was in a function that has since returned, the results are undefined.

RETURN VALUE
Refer to longjmp() and setjmp().

ERRORS
No errors are defined.

EXAMPLES
None.

APPLICATION USAGE
If _longjmp () is executed and the environment in which _setjmp() was executed no longer exists,
errors can occur. The conditions under which the environment of the _setjmp() no longer exists
include exiting the function that contains the _setjmp() call, and exiting an inner block with
temporary storage. This condition might not be detectable, in which case the _longjmp () occurs
and, if the environment no longer exists, the contents of the temporary storage of an inner block
are unpredictable. This condition might also cause unexpected process termination. If the
function has returned, the results are undefined.

Passing longjmp() a pointer to a buffer not created by setjmp(), passing _longjmp () a pointer to a
buffer not created by _setjmp(), passing siglongjmp () a pointer to a buffer not created by
sigsetjmp() or passing any of these three functions a buffer that has been modified by the user
can cause all the problems listed above, and more.

The _longjmp () and _setjmp() functions are included to support programs written to historical
system interfaces. New applications should use siglongjmp () and sigsetjmp() respectively.

FUTURE DIRECTIONS
None.

SEE ALSO
longjmp(), setjmp(), siglongjmp (), sigsetjmp(), <setjmp.h>.

CHANGE HISTORY
First released in Issue 4, Version 2.

Issue 5
Moved from X/OPEN UNIX extension to BASE.

System Interfaces and Headers, Issue 5: Volume 1 483

longjmp() System Interfaces

NAME
longjmp — non-local goto

SYNOPSIS
#include <setjmp.h>

void longjmp(jmp_buf env , int val);

DESCRIPTION
The longjmp() function restores the environment saved by the most recent invocation of setjmp()
in the same thread, with the corresponding jmp_buf argument. If there is no such invocation, or
if the function containing the invocation of setjmp() has terminated execution in the interim, the

EX behaviour is undefined. It is unspecified whether longjmp() restores the signal mask, leaves the
signal mask unchanged or restores it to its value at the time setjmp() was called.

All accessible objects have values as of the time setjmp() was called, except that the values of
objects of automatic storage duration are indeterminate if they meet all the following conditions:

• They are local to the function containing the corresponding setjmp() invocation.

• They do not have volatile-qualified type.

• They are changed between the setjmp() invocation and longjmp() call.

As it bypasses the usual function call and return mechanisms, longjmp() will execute correctly in
contexts of interrupts, signals and any of their associated functions. However, if longjmp() is
invoked from a nested signal handler (that is, from a function invoked as a result of a signal
raised during the handling of another signal), the behaviour is undefined.

The effect of a call to longjmp() where initialisation of the jmp_buf structure was not performed
in the calling thread is undefined.

RETURN VALUE
After longjmp() is completed, program execution continues as if the corresponding invocation of
setjmp() had just returned the value specified by val . The longjmp() function cannot cause
setjmp() to return 0; if val is 0, setjmp() returns 1.

ERRORS
No errors are defined.

EXAMPLES
None.

APPLICATION USAGE
Applications whose behaviour depends on the value of the signal mask should not use
longjmp() and setjmp(), since their effect on the signal mask is unspecified, but should instead
use the siglongjmp () and sigsetjmp() functions (which can save and restore the signal mask under
application control).

FUTURE DIRECTIONS
None.

SEE ALSO
setjmp(), sigaction (), siglongjmp (), sigsetjmp(), <setjmp.h>.

CHANGE HISTORY
First released in Issue 1.

Derived from Issue 1 of the SVID.

484 CAE Specification (1997)

System Interfaces longjmp()

Issue 4
The following change is incorporated for alignment with the ISO C standard:

• Mention of volatile-qualified types is added to the DESCRIPTION.

Another change is incorporated as follows:

• The APPLICATION USAGE section is deleted.

Issue 4, Version 2
The DESCRIPTION is updated for X/OPEN UNIX conformance and discusses valid possibilities
for the resulting state of the signal mask.

Issue 5
The DESCRIPTION is updated for alignment with the POSIX Threads Extension.

System Interfaces and Headers, Issue 5: Volume 1 485

lrand48() System Interfaces

NAME
lrand48 — generate uniformly distributed pseudo-random non-negative long integers

SYNOPSIS
EX #include <stdlib.h>

long int lrand48(void);

DESCRIPTION
Refer to drand48().

CHANGE HISTORY
First released in Issue 1.

Derived from Issue 1 of the SVID.

Issue 4
The following changes are incorporated in this issue:

• The <stdlib.h> header is now included in the SYNOPSIS section.

• The argument list now contains void.

486 CAE Specification (1997)

System Interfaces lsearch()

NAME
lsearch, lfind — linear search and update

SYNOPSIS
EX #include <search.h>

void *lsearch(const void * key , void * base , size_t * nelp , size_t width ,
int (* compar)(const void *, const void *));

void *lfind(const void * key , const void * base , size_t * nelp ,
size_t width, int (* compar)(const void *, const void *));

DESCRIPTION
The lsearch() function is a linear search routine. It returns a pointer into a table indicating where
an entry may be found. If the entry does not occur, it is added at the end of the table. The key
argument points to the entry to be sought in the table. The base argument points to the first
element in the table. The width argument is the size of an element in bytes. The nelp argument
points to an integer containing the current number of elements in the table. The integer to which
nelp points is incremented if the entry is added to the table. The compar argument points to a
comparison function which the user must supply (strcmp(), for example). It is called with two
arguments that point to the elements being compared. The function must return 0 if the
elements are equal and non-zero otherwise.

The lfind() function is the same as lsearch() except that if the entry is not found, it is not added to
the table. Instead, a null pointer is returned.

RETURN VALUE
If the searched for entry is found, both lsearch() and lfind() return a pointer to it. Otherwise,
lfind() returns a null pointer and lsearch() returns a pointer to the newly added element.

Both functions return a null pointer in case of error.

ERRORS
No errors are defined.

EXAMPLES
This fragment will read in less than or equal to TABSIZE strings of length less than or equal to
ELSIZE and store them in a table, eliminating duplicates.

#include <stdio.h>
#include <string.h>
#include <search.h>

#define TABSIZE 50
#define ELSIZE 120

...
char line[ELSIZE], tab[TABSIZE][ELSIZE];
size_t nel = 0;
...
while (fgets(line, ELSIZE, stdin) != NULL && nel < TABSIZE)

(void) lsearch(line, tab, &nel,
ELSIZE, (int (*)(const void *, const void *)) strcmp);

...

System Interfaces and Headers, Issue 5: Volume 1 487

lsearch() System Interfaces

APPLICATION USAGE
The comparison function need not compare every byte, so arbitrary data may be contained in
the elements in addition to the values being compared.

Undefined results can occur if there is not enough room in the table to add a new item.

FUTURE DIRECTIONS
None.

SEE ALSO
bsearch(), hsearch(), tsearch(), <search.h>.

CHANGE HISTORY
First released in Issue 1.

Derived from Issue 1 of the SVID.

Issue 4
The following changes are incorporated in this issue:

• In the SYNOPSIS section, the type of argument key in the declaration of lsearch() is changed
from void* to const void*, the type arguments key and base have been changed from void* to
const void* in the declaration of lfind(), and the arguments to compar() are defined for both
functions.

• In the EXAMPLES section, the sample code is updated to use ISO C syntax.

• Warnings about the casting of various arguments are removed from the APPLICATION
USAGE section, as casting requirements are now clear from the function definitions.

488 CAE Specification (1997)

System Interfaces lseek()

NAME
lseek — move the read/write file offset

SYNOPSIS
OH #include <sys/types.h>

#include <unistd.h>

off_t lseek(int fildes , off_t offset , int whence);

DESCRIPTION
The lseek() function will set the file offset for the open file description associated with the file
descriptor fildes, as follows:

• If whence is SEEK_SET the file offset is set to offset bytes.

• If whence is SEEK_CUR the file offset is set to its current location plus offset.

• If whence is SEEK_END the file offset is set to the size of the file plus offset.

The symbolic constants SEEK_SET, SEEK_CUR and SEEK_END are defined in the header
<unistd.h>.

The behaviour of lseek() on devices which are incapable of seeking is implementation-
dependent. The value of the file offset associated with such a device is undefined.

The lseek() function will allow the file offset to be set beyond the end of the existing data in the
file. If data is later written at this point, subsequent reads of data in the gap will return bytes
with the value 0 until data is actually written into the gap.

The lseek() function will not, by itself, extend the size of a file.

RT If fildes refers to a shared memory object, the result of the lseek() function is unspecified.

RETURN VALUE
Upon successful completion, the resulting offset, as measured in bytes from the beginning of the
file, is returned. Otherwise, (off_t)−1 is returned, errno is set to indicate the error and the file
offset will remain unchanged.

ERRORS
The lseek() function will fail if:

[EBADF] The fildes argument is not an open file descriptor.

[EINVAL] The whence argument is not a proper value, or the resulting file offset would be
invalid.

EX [EOVERFLOW] The resulting file offset would be a value which cannot be represented
correctly in an object of type off_t.

[ESPIPE] The fildes argument is associated with a pipe or FIFO.

EXAMPLES
None.

APPLICATION USAGE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
open(), <sys/types.h>, <unistd.h>.

System Interfaces and Headers, Issue 5: Volume 1 489

lseek() System Interfaces

CHANGE HISTORY
First released in Issue 1.

Derived from Issue 1 of the SVID.

Issue 4
The following changes are incorporated in this issue:

• The <sys/types.h> header is now marked as optional (OH); this header need not be included
on XSI-conformant systems.

• The APPLICATION USAGE section is removed, as the ISO POSIX-1 standard now requires
that off_t be signed.

Issue 5
The DESCRIPTION is updated for alignment with the POSIX Realtime Extension.

Large File Summit extensions added.

490 CAE Specification (1997)

System Interfaces lstat()

NAME
lstat — get symbolic link status

SYNOPSIS
EX #include <sys/stat.h>

int lstat(const char * path , struct stat * buf);

DESCRIPTION
The lstat() function has the same effect as stat(), except when path refers to a symbolic link. In
that case lstat() returns information about the link, while stat() returns information about the file
the link references.

For symbolic links, the st_mode member will contain meaningful information when used with
the file type macros, and the st_size member will contain the length of the pathname contained
in the symbolic link. File mode bits and the contents of the remaining members of the stat
structure are unspecified. The value returned in the st_size member is the length of the contents
of the symbolic link, and does not count any trailing null.

RETURN VALUE
Upon successful completion, lstat() returns 0. Otherwise, it returns −1 and sets errno to indicate
the error.

ERRORS
The lstat() function will fail if:

[EACCES] A component of the path prefix denies search permission.

[EIO] An error occurred while reading from the file system.

[ELOOP] Too many symbolic links were encountered in resolving path.

[ENAMETOOLONG]
The length of a pathname exceeds {PATH_MAX}, or pathname component is
longer than {NAME_MAX}.

[ENOTDIR] A component of the path prefix is not a directory.

[ENOENT] A component of path does not name an existing file or path is an empty string.

EX [EOVERFLOW] The file size in bytes or the number of blocks allocated to the file or the file
serial number cannot be represented correctly in the structure pointed to by
buf.

The lstat() function may fail if:

[ENAMETOOLONG]
Pathname resolution of a symbolic link produced an intermediate result
whose length exceeds {PATH_MAX}.

[EOVERFLOW] One of the members is too large to store into the structure pointed to by the
buf argument.

EXAMPLES
None.

APPLICATION USAGE
None.

System Interfaces and Headers, Issue 5: Volume 1 491

lstat() System Interfaces

FUTURE DIRECTIONS
None.

SEE ALSO
fstat(), readlink (), stat(), symlink(), <sys/stat.h>.

CHANGE HISTORY
First released in Issue 4, Version 2.

Issue 5
Moved from X/OPEN UNIX extension to BASE.

Large File Summit extensions added.

492 CAE Specification (1997)

System Interfaces makecontext()

NAME
makecontext, swapcontext — manipulate user contexts

SYNOPSIS
EX #include <ucontext.h>

void makecontext(ucontext_t * ucp , (void * func)(), int argc , ...);
int swapcontext(ucontext_t * oucp , const ucontext_t * ucp);

DESCRIPTION
The makecontext() function modifies the context specified by ucp, which has been initialised
using getcontext(). When this context is resumed using swapcontext() or setcontext(), program
execution continues by calling func, passing it the arguments that follow argc in the
makecontext() call.

Before a call is made to makecontext(), the context being modified should have a stack allocated
for it. The value of argc must match the number of integer arguments passed to func, otherwise
the behaviour is undefined.

The uc_link member is used to determine the context that will be resumed when the context
being modified by makecontext() returns. The uc_link member should be initialised prior to the
call to makecontext().

The swapcontext() function saves the current context in the context structure pointed to by oucp
and sets the context to the context structure pointed to by ucp.

RETURN VALUE
On successful completion, swapcontext() returns 0. Otherwise, −1 is returned and errno is set to
indicate the error.

ERRORS
The swapcontext() function will fail if:

[ENOMEM] The ucp argument does not have enough stack left to complete the operation.

EXAMPLES
None.

APPLICATION USAGE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
exit(), getcontext(), sigaction (), sigprocmask (), <ucontext.h>.

CHANGE HISTORY
First released in Issue 4, Version 2.

Issue 5
Moved from X/OPEN UNIX extension to BASE.

In the ERRORS section, the description of [ENOMEM] is changed to apply to swapcontext() only.

System Interfaces and Headers, Issue 5: Volume 1 493

malloc() System Interfaces

NAME
malloc — a memory allocator

SYNOPSIS
#include <stdlib.h>

void *malloc(size_t size);

DESCRIPTION
The malloc () function allocates unused space for an object whose size in bytes is specified by size
and whose value is indeterminate.

The order and contiguity of storage allocated by successive calls to malloc () is unspecified. The
pointer returned if the allocation succeeds is suitably aligned so that it may be assigned to a
pointer to any type of object and then used to access such an object in the space allocated (until
the space is explicitly freed or reallocated). Each such allocation will yield a pointer to an object
disjoint from any other object. The pointer returned points to the start (lowest byte address) of
the allocated space. If the space cannot be allocated, a null pointer is returned. If the size of the
space requested is 0, the behaviour is implementation-dependent; the value returned will be
either a null pointer or a unique pointer.

RETURN VALUE
Upon successful completion with size not equal to 0, malloc () returns a pointer to the allocated
space. If size is 0, either a null pointer or a unique pointer that can be successfully passed to

EX free() will be returned. Otherwise, it returns a null pointerand sets errno to indicate the error.

ERRORS
The malloc () function will fail if:

EX [ENOMEM] Insufficient storage space is available.

EXAMPLES
None.

APPLICATION USAGE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
calloc (), free(), realloc (), <stdlib.h>.

CHANGE HISTORY
First released in Issue 1.

Derived from Issue 1 of the SVID.

Issue 4

The following change is incorporated for alignment with the ISO C standard:

• The RETURN VALUE section is updated to indicate what will be returned if size is 0.

Other changes are incorporated as follows:

• The setting of errno and the [ENOMEM] error are marked as extensions.

• The APPLICATION USAGE section is changed to record that <malloc.h> need no longer be
supported on XSI-conformant systems.

494 CAE Specification (1997)

System Interfaces mblen()

NAME
mblen — get number of bytes in a character

SYNOPSIS
#include <stdlib.h>

int mblen(const char * s, size_t n);

DESCRIPTION
If s is not a null pointer, mblen() determines the number of bytes constituting the character
pointed to by s. Except that the shift state of mbtowc() is not affected, it is equivalent to:

mbtowc((wchar_t *)0, s, n);

The implementation will behave as if no function defined in this document calls mblen().

The behaviour of this function is affected by the LC_CTYPE category of the current locale. For a
state-dependent encoding, this function is placed into its initial state by a call for which its
character pointer argument, s, is a null pointer. Subsequent calls with s as other than a null
pointer cause the internal state of the function to be altered as necessary. A call with s as a null
pointer causes this function to return a non-zero value if encodings have state dependency, and
0 otherwise. If the implementation employs special bytes to change the shift state, these bytes
do not produce separate wide-character codes, but are grouped with an adjacent character.
Changing the LC_CTYPE category causes the shift state of this function to be indeterminate.

RETURN VALUE
If s is a null pointer, mblen() returns a non-zero or 0 value, if character encodings, respectively,
do or do not have state-dependent encodings. If s is not a null pointer, mblen() either returns 0
(if s points to the null byte), or returns the number of bytes that constitute the character (if the
next n or fewer bytes form a valid character), or returns −1 (if they do not form a valid character)
and may set errno to indicate the error. In no case will the value returned be greater than n or the
value of the MB_CUR_MAX macro.

ERRORS
The mblen() function may fail if:

EX [EILSEQ] Invalid character sequence is detected.

EXAMPLES
None.

APPLICATION USAGE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
mbtowc(), mbstowcs(), wctomb(), wcstombs(), <stdlib.h>.

CHANGE HISTORY
First released in Issue 4.

Aligned with the ISO C standard.

System Interfaces and Headers, Issue 5: Volume 1 495

mbrlen() System Interfaces

NAME
mbrlen — get number of bytes in a character (restartable)

SYNOPSIS
#include <wchar.h>

size_t mbrlen(const char * s, size_t n, mbstate_t * ps);

DESCRIPTION
If s is not a null pointer, mbrlen() determines the number of bytes constituting the character
pointed to by s. It is equivalent to:

mbstate_t internal;
mbrtowc(NULL, s, n, ps != NULL ? ps : &internal);

If ps is a null pointer, the mbrlen() function uses its own internal mbstate_t object, which is
initialised at program startup to the initial conversion state. Otherwise, the mbstate_t object
pointed to by ps is used to completely describe the current conversion state of the associated
character sequence. The implementation will behave as if no function defined in this
specification calls mbrlen().

The behaviour of this function is affected by the LC_CTYPE category of the current locale.

RETURN VALUE
The mbrlen() function returns the first of the following that applies:

0 If the next n or fewer bytes complete the character that corresponds to the null
wide-character.

positive If the next n or fewer bytes complete a valid character; the value returned is
the number of bytes that complete the character.

(size_t)-2 If the next n bytes contribute to an incomplete but potentially valid character,
and all n bytes have been processed. When n has at least the value of the
MB_CUR_MAX macro, this case can only occur if s points at a sequence of
redundant shift sequences (for implementations with state-dependent
encodings).

(size_t)−1 If an encoding error occurs, in which case the next n or fewer bytes do not
contribute to a complete and valid character. In this case, EILSEQ is stored in
errno and the conversion state is undefined.

ERRORS
The mbrlen() function may fail if:

[EINVAL] ps points to an object that contains an invalid conversion state.

[EILSEQ] Invalid character sequence is detected.

EXAMPLES
None.

APPLICATION USAGE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
mbsinit(), mbrtowc(), <wchar.h>.

496 CAE Specification (1997)

System Interfaces mbrlen()

CHANGE HISTORY
First released in Issue 5.

Included for alignment with the ISO/IEC 9899:1990/Amendment 1:1994 (E).

System Interfaces and Headers, Issue 5: Volume 1 497

mbrtowc() System Interfaces

NAME
mbrtowc — convert a character to a wide-character code (restartable)

SYNOPSIS
#include <wchar.h>

size_t mbrtowc(wchar_t * pwc, const char * s, size_t n, mbstate_t * ps);

DESCRIPTION
If s is a null pointer, the mbrtowc() function is equivalent to the call:

mbrtowc(NULL, ‘‘’’, 1, ps)

In this case, the values of the arguments pwc and n are ignored.

If s is not a null pointer, the mbrtowc() function inspects at most n bytes beginning at the byte
pointed to by s to determine the number of bytes needed to complete the next character
(including any shift sequences). If the function determines that the next character is completed,
it determines the value of the corresponding wide-character and then, if pwc is not a null pointer,
stores that value in the object pointed to by pwc. If the corresponding wide-character is the null
wide-character, the resulting state described is the initial conversion state.

If ps is a null pointer, the mbrtowc() function uses its own internal mbstate_t object, which is
initialised at program startup to the initial conversion state. Otherwise, the mbstate_t object
pointed to by ps is used to completely describe the current conversion state of the associated
character sequence. The implementation will behave as if no function defined in this
specification calls mbrtowc().

The behaviour of this function is affected by the LC_CTYPE category of the current locale.

RETURN VALUE
The mbrtowc() function returns the first of the following that applies:

0 If the next n or fewer bytes complete the character that corresponds to the null
wide-character (which is the value stored).

positive If the next n or fewer bytes complete a valid character (which is the value
stored); the value returned is the number of bytes that complete the character.

(size_t)-2 If the next n bytes contribute to an incomplete but potentially valid character,
and all n bytes have been processed (no value is stored). When n has at least
the value of the MB_CUR_MAX macro, this case can only occur if s points at a
sequence of redundant shift sequences (for implementations with state-
dependent encodings).

(size_t)−1 If an encoding error occurs, in which case the next n or fewer bytes do not
contribute to a complete and valid character (no value is stored). In this case,
EILSEQ is stored in errno and the conversion state is undefined.

ERRORS
The mbrtowc() function may fail if:

[EINVAL] ps points to an object that contains an invalid conversion state.

[EILSEQ] Invalid character sequence is detected.

EXAMPLES
None.

APPLICATION USAGE
None.

498 CAE Specification (1997)

System Interfaces mbrtowc()

FUTURE DIRECTIONS
None.

SEE ALSO
mbsinit(), <wchar.h>.

CHANGE HISTORY
First released in Issue 5.

Included for alignment with the ISO/IEC 9899:1990/Amendment 1:1994 (E).

System Interfaces and Headers, Issue 5: Volume 1 499

mbsinit() System Interfaces

NAME
mbsinit — determine conversion object status

SYNOPSIS
#include <wchar.h>

int mbsinit(const mbstate_t * ps);

DESCRIPTION
If ps is not a null pointer, the mbsinit() function determines whether the object pointed to by ps
describes an initial conversion state.

RETURN VALUE
The mbsinit() function returns non-zero if ps is a null pointer, or if the pointed-to object describes
an initial conversion state; otherwise, it returns zero.

If an mbstate_t object is altered by any of the functions described as "restartable", and is then
used with a different character sequence, or in the other conversion direction, or with a different
LC_CTYPE category setting than on earlier function calls, the behaviour is undefined.

ERRORS
No errors are defined.

EXAMPLES
None.

APPLICATION USAGE
The mbstate_t object is used to describe the current conversion state from a particular character
sequence to a wide-character sequence (or vice versa) under the rules of a particular setting of
the LC_CTYPE category of the current locale.

The initial conversion state corresponds, for a conversion in either direction, to the beginning of
a new character sequence in the initial shift state. A zero valued mbstate_t object is at least one
way to describe an initial conversion state. A zero valued mbstate_t object can be used to
initiate conversion involving any character sequence, in any LC_CTYPE category setting.

FUTURE DIRECTIONS
None.

SEE ALSO
mbrlen(), mbrtowc(), wcrtomb(), mbsrtowcs(), wcsrtombs(), <wchar.h>.

CHANGE HISTORY
First released in Issue 5.

Included for alignment with the ISO/IEC 9899:1990/Amendment 1:1994 (E).

500 CAE Specification (1997)

System Interfaces mbsrtowcs()

NAME
mbsrtowcs — convert a character string to a wide-character string (restartable)

SYNOPSIS
#include <wchar.h>

size_t mbsrtowcs(wchar_t * dst , const char ** src , size_t len ,
mbstate_t * ps);

DESCRIPTION
The mbsrtowcs() function converts a sequence of characters, beginning in the conversion state
described by the object pointed to by ps, from the array indirectly pointed to by src into a
sequence of corresponding wide-characters. If dst is not a null pointer, the converted characters
are stored into the array pointed to by dst. Conversion continues up to and including a
terminating null character, which is also stored. Conversion stops early in either of the
following cases:

• When a sequence of bytes is encountered that does not form a valid character.

• When len codes have been stored into the array pointed to by dst (and dst is not a null
pointer).

Each conversion takes place as if by a call to the mbrtowc() function.

If dst is not a null pointer, the pointer object pointed to by src is assigned either a null pointer (if
conversion stopped due to reaching a terminating null character) or the address just past the last
character converted (if any). If conversion stopped due to reaching a terminating null character,
and if dst is not a null pointer, the resulting state described is the initial conversion state.

If ps is a null pointer, the mbsrtowcs() function uses its own internal mbstate_t object, which is
initialised at program startup to the initial conversion state. Otherwise, the mbstate_t object
pointed to by ps is used to completely describe the current conversion state of the associated
character sequence. The implementation will behave as if no function defined in this
specification calls mbsrtowcs().

The behaviour of this function is affected by the LC_CTYPE category of the current locale.

RETURN VALUE
If the input conversion encounters a sequence of bytes that do not form a valid character, an
encoding error occurs. In this case, the mbsrtowcs() function stores the value of the macro
EILSEQ in errno and returns (size_t)−1); the conversion state is undefined. Otherwise, it returns
the number of characters successfully converted, not including the terminating null (if any).

ERRORS
The mbsrtowcs() function may fail if:

[EINVAL] ps points to an object that contains an invalid conversion state.

[EILSEQ] Invalid character sequence is detected.

EXAMPLES
None.

APPLICATION USAGE
None.

FUTURE DIRECTIONS
None.

System Interfaces and Headers, Issue 5: Volume 1 501

mbsrtowcs() System Interfaces

SEE ALSO
mbsinit(), mbrtowc(), <wchar.h>.

CHANGE HISTORY
First released in Issue 5.

Included for alignment with the ISO/IEC 9899:1990/Amendment 1:1994 (E).

502 CAE Specification (1997)

System Interfaces mbstowcs()

NAME
mbstowcs — convert a character string to a wide-character string

SYNOPSIS
#include <stdlib.h>

size_t mbstowcs(wchar_t * pwcs , const char * s, size_t n);

DESCRIPTION
The mbstowcs() function converts a sequence of characters that begins in the initial shift state
from the array pointed to by s into a sequence of corresponding wide-character codes and stores
not more than n wide-character codes into the array pointed to by pwcs. No characters that
follow a null byte (which is converted into a wide-character code with value 0) will be examined
or converted. Each character is converted as if by a call to mbtowc(), except that the shift state of
mbtowc() is not affected.

No more than n elements will be modified in the array pointed to by pwcs. If copying takes place
between objects that overlap, the behaviour is undefined.

EX The behaviour of this function is affected by the LC_CTYPE category of the current locale. If
pwcs is a null pointer, mbstowcs() returns the length required to convert the entire array
regardless of the value of n, but no values are stored.

RETURN VALUE
If an invalid character is encountered, mbstowcs() returns (size_t)−1 and may set errno to indicate
the error. Otherwise, mbstowcs() returns the number of the array elements modified (or required
if pwcs is null), not including a terminating 0 code, if any. The array will not be zero-terminated
if the value returned is n.

ERRORS
The mbstowcs() function may fail if:

EX [EILSEQ] Invalid byte sequence is detected.

EXAMPLES
None.

APPLICATION USAGE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
mblen(), mbtowc(), wctomb(), wcstombs(), <stdlib.h>.

CHANGE HISTORY
First released in Issue 4.

Aligned with the ISO C standard.

System Interfaces and Headers, Issue 5: Volume 1 503

mbtowc() System Interfaces

NAME
mbtowc — convert a character to a wide-character code

SYNOPSIS
#include <stdlib.h>

int mbtowc(wchar_t * pwc, const char * s, size_t n);

DESCRIPTION
If s is not a null pointer, mbtowc() determines the number of the bytes that constitute the
character pointed to by s. It then determines the wide-character code for the value of type
wchar_t that corresponds to that character. (The value of the wide-character code
corresponding to the null byte is 0.) If the character is valid and pwc is not a null pointer,
mbtowc() stores the wide-character code in the object pointed to by pwc.

The behaviour of this function is affected by the LC_CTYPE category of the current locale. For a
state-dependent encoding, this function is placed into its initial state by a call for which its
character pointer argument, s, is a null pointer. Subsequent calls with s as other than a null
pointer cause the internal state of the function to be altered as necessary. A call with s as a null
pointer causes this function to return a non-zero value if encodings have state dependency, and
0 otherwise. If the implementation employs special bytes to change the shift state, these bytes
do not produce separate wide-character codes, but are grouped with an adjacent character.
Changing the LC_CTYPE category causes the shift state of this function to be indeterminate. At
most n bytes of the array pointed to by s will be examined.

The implementation will behave as if no function defined in this specification calls mbtowc().

RETURN VALUE
If s is a null pointer, mbtowc() returns a non-zero or 0 value, if character encodings, respectively,
do or do not have state-dependent encodings. If s is not a null pointer, mbtowc() either returns 0
(if s points to the null byte), or returns the number of bytes that constitute the converted
character (if the next n or fewer bytes form a valid character), or returns −1 and may set errno to
indicate the error (if they do not form a valid character).

In no case will the value returned be greater than n or the value of the MB_CUR_MAX macro.

ERRORS
The mbtowc() function may fail if:

EX [EILSEQ] Invalid character sequence is detected.

EXAMPLES
None.

APPLICATION USAGE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
mblen(), mbstowcs(), wctomb(), wcstombs(), <stdlib.h>.

CHANGE HISTORY
First released in Issue 4.

Aligned with the ISO C standard.

504 CAE Specification (1997)

System Interfaces memccpy()

NAME
memccpy — copy bytes in memory

SYNOPSIS
EX #include <string.h>

void *memccpy(void * s1 , const void * s2 , int c, size_t n);

DESCRIPTION
The memccpy() function copies bytes from memory area s2 into s1, stopping after the first
occurrence of byte c (converted to an unsigned char) is copied, or after n bytes are copied,
whichever comes first. If copying takes place between objects that overlap, the behaviour is
undefined.

RETURN VALUE
The memccpy() function returns a pointer to the byte after the copy of c in s1, or a null pointer if c
was not found in the first n bytes of s2.

ERRORS
No errors are defined.

EXAMPLES
None.

APPLICATION USAGE
The memccpy() function does not check for the overflow of the receiving memory area.

FUTURE DIRECTIONS
None.

SEE ALSO
<string.h>.

CHANGE HISTORY
First released in Issue 1.

Derived from Issue 1 of the SVID.

Issue 4
The following changes are incorporated in this issue:

• The type of argument s2 is changed from void* to const void*.

• Reference to use of the <memory.h> header is removed from the APPLICATION USAGE
section.

• The FUTURE DIRECTIONS section is removed.

System Interfaces and Headers, Issue 5: Volume 1 505

memchr() System Interfaces

NAME
memchr — find byte in memory

SYNOPSIS
#include <string.h>

void *memchr(const void * s, int c, size_t n);

DESCRIPTION
The memchr() function locates the first occurrence of c (converted to an unsigned char) in the
initial n bytes (each interpreted as unsigned char) of the object pointed to by s.

RETURN VALUE
The memchr() function returns a pointer to the located byte, or a null pointer if the byte does not
occur in the object.

ERRORS
No errors are defined.

EXAMPLES
None.

APPLICATION USAGE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
<string.h>.

CHANGE HISTORY
First released in Issue 1.

Derived from Issue 1 of the SVID.

Issue 4
The following changes are incorporated for alignment with the ISO C standard:

• The function is no longer marked as an extension.

• The type of argument s is changed from void* to const void*.

Another change is incorporated as follows:

• The APPLICATION USAGE section is removed.

506 CAE Specification (1997)

System Interfaces memcmp()

NAME
memcmp — compare bytes in memory

SYNOPSIS
#include <string.h>

int memcmp(const void * s1 , const void * s2 , size_t n);

DESCRIPTION
The memcmp() function compares the first n bytes (each interpreted as unsigned char) of the
object pointed to by s1 to the first n bytes of the object pointed to by s2.

The sign of a non-zero return value is determined by the sign of the difference between the
values of the first pair of bytes (both interpreted as type unsigned char) that differ in the objects
being compared.

RETURN VALUE
The memcmp() function returns an integer greater than, equal to or less than 0, if the object
pointed to by s1 is greater than, equal to or less than the object pointed to by s2 respectively.

ERRORS
No errors are defined.

EXAMPLES
None.

APPLICATION USAGE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
<string.h>.

CHANGE HISTORY
First released in Issue 1.

Derived from Issue 1 of the SVID.

Issue 4
The following changes are incorporated for alignment with the ISO C standard:

• The function is no longer marked as an extension.

• The type of arguments s1 and s2 are changed from void* to const void*.

Other changes are incorporated as follows:

• The RETURN VALUE section is clarified.

• The APPLICATION USAGE section is removed.

System Interfaces and Headers, Issue 5: Volume 1 507

memcpy() System Interfaces

NAME
memcpy — copy bytes in memory

SYNOPSIS
#include <string.h>

void *memcpy(void * s1 , const void * s2 , size_t n);

DESCRIPTION
The memcpy() function copies n bytes from the object pointed to by s2 into the object pointed to
by s1. If copying takes place between objects that overlap, the behaviour is undefined.

RETURN VALUE
The memcpy() function returns s1; no return value is reserved to indicate an error.

ERRORS
No errors are defined.

EXAMPLES
None.

APPLICATION USAGE
The memcpy() function does not check for the overflowing of the receiving memory area.

FUTURE DIRECTIONS
None.

SEE ALSO
<string.h>.

CHANGE HISTORY
First released in Issue 1.

Derived from Issue 1 of the SVID.

Issue 4
The following changes are incorporated for alignment with the ISO C standard:

• The function is no longer marked as an extension.

• The type of argument s2 is changed from void* to const void*.

Other changes are incorporated as follows:

• Reference to use of the <memory.h> header is removed from the APPLICATION USAGE
section, and a note about overflow checking has been added.

• The FUTURE DIRECTIONS section is removed.

508 CAE Specification (1997)

System Interfaces memmove()

NAME
memmove — copy bytes in memory with overlapping areas

SYNOPSIS
#include <string.h>

void *memmove(void * s1 , const void * s2 , size_t n);

DESCRIPTION
The memmove() function copies n bytes from the object pointed to by s2 into the object pointed to
by s1. Copying takes place as if the n bytes from the object pointed to by s2 are first copied into
a temporary array of n bytes that does not overlap the objects pointed to by s1 and s2, and then
the n bytes from the temporary array are copied into the object pointed to by s1.

RETURN VALUE
The memmove() function returns s1; no return value is reserved to indicate an error.

ERRORS
No errors are defined.

EXAMPLES
None.

APPLICATION USAGE
None.

SEE ALSO
<string.h>.

CHANGE HISTORY
First released in Issue 4.

Derived from the ANSI C standard.

System Interfaces and Headers, Issue 5: Volume 1 509

memset() System Interfaces

NAME
memset — set bytes in memory

SYNOPSIS
#include <string.h>

void *memset(void * s, int c, size_t n);

DESCRIPTION
The memset() function copies c (converted to an unsigned char) into each of the first n bytes of
the object pointed to by s.

RETURN VALUE
The memset() function returns s; no return value is reserved to indicate an error.

ERRORS
No errors are defined.

EXAMPLES
None.

APPLICATION USAGE
None.

SEE ALSO
<string.h>.

CHANGE HISTORY
First released in Issue 1.

Derived from Issue 1 of the SVID.

Issue 4
The following change is incorporated for alignment with the ISO C standard:

• The function is no longer marked as an extension.

Another change is incorporated as follows:

• The APPLICATION USAGE section is removed.

510 CAE Specification (1997)

System Interfaces mkdir()

NAME
mkdir — make a directory

SYNOPSIS
OH #include <sys/types.h>

#include <sys/stat.h>

int mkdir(const char * path , mode_t mode);

DESCRIPTION
The mkdir() function creates a new directory with name path . The file permission bits of the new
directory are initialised from mode. These file permission bits of the mode argument are modified
by the process’ file creation mask.

When bits in mode other than the file permission bits are set, the meaning of these additional bits
is implementation-dependent.

The directory’s user ID is set to the process’ effective user ID. The directory’s group ID is set to
the group ID of the parent directory or to the effective group ID of the process.

The newly created directory will be an empty directory.

Upon successful completion, mkdir() will mark for update the st_atime , st_ctime and st_mtime
fields of the directory. Also, the st_ctime and st_mtime fields of the directory that contains the
new entry are marked for update.

RETURN VALUE
Upon successful completion, mkdir() returns 0. Otherwise, −1 is returned, no directory is created
and errno is set to indicate the error.

ERRORS
The mkdir() function will fail if:

[EACCES] Search permission is denied on a component of the path prefix, or write
permission is denied on the parent directory of the directory to be created.

[EEXIST] The named file exists.

EX [ELOOP] Too many symbolic links were encountered in resolving path.

[EMLINK] The link count of the parent directory would exceed {LINK_MAX}.

FIPS [ENAMETOOLONG]
The length of the path argument exceeds {PATH_MAX} or a pathname
component is longer than {NAME_MAX}.

[ENOENT] A component of the path prefix specified by path does not name an existing
directory or path is an empty string.

[ENOSPC] The file system does not contain enough space to hold the contents of the new
directory or to extend the parent directory of the new directory.

[ENOTDIR] A component of the path prefix is not a directory.

[EROFS] The parent directory resides on a read-only file system.

The mkdir() function may fail if:

EX [ENAMETOOLONG]
Pathname resolution of a symbolic link produced an intermediate result
whose length exceeds {PATH_MAX}.

System Interfaces and Headers, Issue 5: Volume 1 511

mkdir() System Interfaces

EXAMPLES
None.

APPLICATION USAGE
None.

SEE ALSO
umask(), <sys/stat.h>, <sys/types.h>.

CHANGE HISTORY
First released in Issue 3.

Entry included for alignment with the POSIX.1-1988 standard.

Issue 4
The following change is incorporated for alignment with the ISO POSIX-1 standard:

• The type of argument path is changed from char * to const char *.

The following changes are incorporated for alignment with the FIPS requirements:

• In the ERRORS section, the condition whereby [ENAMETOOLONG] will be returned if a
pathname component is larger than {NAME_MAX} is now defined as mandatory and
marked as an extension.

Another change is incorporated as follows:

• The <sys/types.h> header is now marked as optional (OH); this header need not be included
on XSI-conformant systems.

Issue 4, Version 2
The ERRORS section is updated for X/OPEN UNIX conformance as follows:

• It states that [ELOOP] will be returned if too many symbolic links are encountered during
pathname resolution.

• A second [ENAMETOOLONG] condition is defined that may report excessive length of an
intermediate result of pathname resolution of a symbolic link.

512 CAE Specification (1997)

System Interfaces mkfifo()

NAME
mkfifo — make a FIFO special file

SYNOPSIS
OH #include <sys/types.h>

#include <sys/stat.h>

int mkfifo(const char * path , mode_t mode);

DESCRIPTION
The mkfifo() function creates a new FIFO special file named by the pathname pointed to by path .
The file permission bits of the new FIFO are initialised from mode. The file permission bits of the
mode argument are modified by the process’ file creation mask.

When bits in mode other than the file permission bits are set, the effect is implementation-
dependent.

The FIFO’s user ID will be set to the process’ effective user ID. The FIFO’s group ID will be set to
the group ID of the parent directory or to the effective group ID of the process.

Upon successful completion, mkfifo() will mark for update the st_atime , st_ctime and st_mtime
fields of the file. Also, the st_ctime and st_mtime fields of the directory that contains the new
entry are marked for update.

RETURN VALUE
Upon successful completion, 0 is returned. Otherwise, −1 is returned, no FIFO is created and
errno is set to indicate the error.

ERRORS
The mkfifo() function will fail if:

[EACCES] A component of the path prefix denies search permission, or write permission
is denied on the parent directory of the FIFO to be created.

[EEXIST] The named file already exists.

EX [ELOOP] Too many symbolic links were encountered in resolving path.

FIPS [ENAMETOOLONG]
The length of the path argument exceeds {PATH_MAX} or a pathname
component is longer than {NAME_MAX}.

[ENOENT] A component of the path prefix specified by path does not name an existing
directory or path is an empty string.

[ENOSPC] The directory that would contain the new file cannot be extended or the file
system is out of file-allocation resources.

[ENOTDIR] A component of the path prefix is not a directory.

[EROFS] The named file resides on a read-only file system.

The mkfifo() function may fail if:

EX [ENAMETOOLONG]
Pathname resolution of a symbolic link produced an intermediate result
whose length exceeds {PATH_MAX}.

EXAMPLES
None.

System Interfaces and Headers, Issue 5: Volume 1 513

mkfifo() System Interfaces

APPLICATION USAGE
None.

SEE ALSO
umask(), <sys/stat.h>, <sys/types.h>.

CHANGE HISTORY
First released in Issue 3.

Entry included for alignment with the POSIX.1-1988 standard.

Issue 4
The following changes are incorporated for alignment with the ISO POSIX-1 standard:

• The type of argument path is changed from char * to const char *.

• The description of [EACCES] is updated to indicate that this error will also be returned if
write permission is denied to the parent directory.

The following changes are incorporated for alignment with the FIPS requirements:

• In the ERRORS section, the condition whereby [ENAMETOOLONG] will be returned if a
pathname component is larger that {NAME_MAX} is now defined as mandatory and marked
as an extension.

Another change is incorporated as follows:

• The <sys/types.h> header is now marked as optional (OH); this header need not be included
on XSI-conformant systems.

Issue 4, Version 2
The ERRORS section is updated for X/OPEN UNIX conformance as follows:

• It states that [ELOOP] will be returned if too many symbolic links are encountered during
pathname resolution.

• A second [ENAMETOOLONG] condition is defined that may report excessive length of an
intermediate result of pathname resolution of a symbolic link.

514 CAE Specification (1997)

System Interfaces mknod()

NAME
mknod — make a directory, a special or regular file

SYNOPSIS
EX #include <sys/stat.h>

int mknod(const char * path , mode_t mode, dev_t dev);

DESCRIPTION
The mknod() function creates a new file named by the pathname to which the argument path
points.

The file type for path is OR-ed into the mode argument, and must be selected from one of the
following symbolic constants:

Name Description
S_IFIFO FIFO-special
S_IFCHR Character-special (non-portable)
S_IFDIR Directory (non-portable)
S_IFBLK Block-special (non-portable)
S_IFREG Regular (non-portable)

The only portable use of mknod() is to create a FIFO-special file. If mode is not S_IFIFO or dev is
not 0, the behaviour of mknod() is unspecified.

The permissions for the new file are OR-ed into the mode argument, and may be selected from
any combination of the following symbolic constants:

Name Description
S_ISUID Set user ID on execution.
S_ISGID Set group ID on execution.
S_IRWXU Read, write or execute (search) by owner.
S_IRUSR Read by owner.
S_IWUSR Write by owner.
S_IXUSR Execute (search) by owner.
S_IRWXG Read, write or execute (search) by group.
S_IRGRP Read by group.
S_IWGRP Write by group.
S_IXGRP Execute (search) by group.
S_IRWXO Read, write or execute (search) by others.
S_IROTH Read by others.
S_IWOTH Write by others.
S_IXOTH Execute (search) by others.
S_ISVTX On directories, restricted deletion flag.

The user ID of the file is initialised to the effective user ID of the process. The group ID of the file
is initialised to either the effective group ID of the process or the group ID of the parent
directory.

The owner, group, and other permission bits of mode are modified by the file mode creation
mask of the process. The mknod() function clears each bit whose corresponding bit in the file
mode creation mask of the process is set.

System Interfaces and Headers, Issue 5: Volume 1 515

mknod() System Interfaces

Upon successful completion, mknod() marks for update the st_atime , st_ctime and st_mtime fields
of the file. Also, the st_ctime and st_mtime fields of the directory that contains the new entry are
marked for update.

Only a process with appropriate privileges may invoke mknod() for file types other than FIFO-
special.

RETURN VALUE
Upon successful completion, mknod() returns 0. Otherwise, it returns −1, the new file is not
created, and errno is set to indicate the error.

ERRORS
The mknod() function will fail if:

[EPERM] The invoking process does not have appropriate privileges and the file type is
not FIFO-special.

[ENOTDIR] A component of the path prefix is not a directory.

[ENOENT] A component of the path prefix specified by path does not name an existing
directory or path is an empty string.

[EACCES] A component of the path prefix denies search permission, or write permission
is denied on the parent directory.

[EROFS] The directory in which the file is to be created is located on a read-only file
system.

[EEXIST] The named file exists.

[EIO] An I/O error occurred while accessing the file system.

[EINVAL] An invalid argument exists.

[ENOSPC] The directory that would contain the new file cannot be extended or the file
system is out of file allocation resources.

[ELOOP] Too many symbolic links were encountered in resolving path.

[ENAMETOOLONG]
The length of a pathname exceeds {PATH_MAX}, or pathname component is
longer than {NAME_MAX}.

The mknod() function may fail if:

[ENAMETOOLONG]
Pathname resolution of a symbolic link produced an intermediate result
whose length exceeds {PATH_MAX}.

EXAMPLES
None.

APPLICATION USAGE
For portability to implementations conforming to earlier versions of this specification, mkfifo() is
preferred over this function for making FIFO special files.

FUTURE DIRECTIONS
None.

SEE ALSO
chmod(), creat(), exec, mkdir(), mkfifo(), open(), stat(), umask(), <sys/stat.h>.

516 CAE Specification (1997)

System Interfaces mknod()

CHANGE HISTORY
First released in Issue 4, Version 2.

Issue 5
Moved from X/OPEN UNIX extension to BASE.

System Interfaces and Headers, Issue 5: Volume 1 517

mkstemp() System Interfaces

NAME
mkstemp — make a unique file name

SYNOPSIS
EX #include <stdlib.h>

int mkstemp(char * template);

DESCRIPTION
The mkstemp() function replaces the contents of the string pointed to by template by a unique file
name, and returns a file descriptor for the file open for reading and writing. The function thus
prevents any possible race condition between testing whether the file exists and opening it for
use. The string in template should look like a file name with six trailing ’X’s; mkstemp() replaces
each ’X’ with a character from the portable file name character set. The characters are chosen
such that the resulting name does not duplicate the name of an existing file.

RETURN VALUE
Upon successful completion, mkstemp() returns an open file descriptor. Otherwise −1 is returned
if no suitable file could be created.

ERRORS
No errors are defined.

EXAMPLES
None.

APPLICATION USAGE
It is possible to run out of letters.

The mkstemp() function need not check to determine whether the file name part of template
exceeds the maximum allowable file name length.

For portability with previous versions of this document, tmpfile() is preferred over this function.

FUTURE DIRECTIONS
None.

SEE ALSO
getpid(), open(), tmpfile(), tmpnam(), <stdlib.h>.

CHANGE HISTORY
First released in Issue 4, Version 2.

Issue 5
Moved from X/OPEN UNIX extension to BASE.

518 CAE Specification (1997)

System Interfaces mktemp()

NAME
mktemp — make a unique filename

SYNOPSIS
EX #include <stdlib.h>

char *mktemp(char * template);

DESCRIPTION
The mktemp() function replaces the contents of the string pointed to by template by a unique
filename and returns template. The application must initialise template to be a filename with six
trailing ’X’s; mktemp() replaces each ’X’ with a single byte character from the portable filename
character set.

RETURN VALUE
The mktemp() function returns the pointer template. If a unique name cannot be created, template
points to a null string.

ERRORS
No errors are defined.

EXAMPLES
None.

APPLICATION USAGE
Between the time a pathname is created and the file opened, it is possible for some other process
to create a file with the same name. The mkstemp() function avoids this problem.

For portability with previous versions of this document, tmpnam() is preferred over this
function.

FUTURE DIRECTIONS
None.

SEE ALSO
mkstemp(), tmpfile(), tmpnam(), <stdlib.h>.

CHANGE HISTORY
First released in Issue 4, Version 2.

Issue 5
Moved from X/OPEN UNIX extension to BASE.

System Interfaces and Headers, Issue 5: Volume 1 519

mktime() System Interfaces

NAME
mktime — convert broken-down time into time since the Epoch

SYNOPSIS
#include <time.h>

time_t mktime(struct tm * timeptr);

DESCRIPTION
The mktime() function converts the broken-down time, expressed as local time, in the structure
pointed to by timeptr, into a time since the Epoch value with the same encoding as that of the
values returned by time(). The original values of the tm_wday and tm_yday components of the
structure are ignored, and the original values of the other components are not restricted to the
ranges described in the <time.h> entry.

A positive or 0 value for tm_isdst causes mktime() to presume initially that Daylight Savings
Time, respectively, is or is not in effect for the specified time. A negative value for tm_isdst
causes mktime() to attempt to determine whether Daylight Saving Time is in effect for the
specified time.

Local timezone information is set as though mktime() called tzset().

Upon successful completion, the values of the tm_wday and tm_yday components of the structure
are set appropriately, and the other components are set to represent the specified time since the
Epoch, but with their values forced to the ranges indicated in the <time.h> entry; the final value
of tm_mday is not set until tm_mon and tm_year are determined.

RETURN VALUE
The mktime() function returns the specified time since the Epoch encoded as a value of type
time_t. If the time since the Epoch cannot be represented, the function returns the value
(time_t)−1.

ERRORS
No errors are defined.

EXAMPLES
What day of the week is July 4, 2001?

#include <stdio.h>
#include <time.h>

struct tm time_str;

char daybuf[20];

int main(void)
{

time_str.tm_year = 2001 — 1900;
time_str.tm_mon = 7 — 1;
time_str.tm_mday = 4;
time_str.tm_hour = 0;
time_str.tm_min = 0;
time_str.tm_sec = 1;
time_str.tm_isdst = −1;
if (mktime(&time_str) == -1)

(void)puts("-unknown-");
else {

520 CAE Specification (1997)

System Interfaces mktime()

(void)strftime(daybuf, sizeof(daybuf), "%A", &time_str);
(void)puts(daybuf);

}
return 0;

}

APPLICATION USAGE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
asctime(), clock (), ctime(), difftime(), gmtime(), localtime (), strftime(), strptime(), time(), utime(),
<time.h>.

CHANGE HISTORY
First released in Issue 3.

Entry included for alignment with the POSIX.1-1988 standard and ANSI C standard.

Issue 4
The following changes are incorporated in this issue:

• In the DESCRIPTION, a paragraph is added indicating the possible settings of tm_isdst, and
reference to setting of tm_sec for leap seconds or double leap seconds is removed (although
this functionality is still supported).

• In the EXAMPLES section, the sample code is updated to use ISO C syntax.

System Interfaces and Headers, Issue 5: Volume 1 521

mlock() System Interfaces

NAME
mlock, munlock — lock or unlock a range of process address space (REALTIME)

SYNOPSIS
RT #include <sys/mman.h>

int mlock(const void * addr , size_t len);
int munlock(const void * addr , size_t len);

DESCRIPTION
The function mlock() causes those whole pages containing any part of the address space of the
process starting at address addr and continuing for len bytes to be memory resident until
unlocked or until the process exits or execs another process image. The implementation may
require that addr be a multiple of {PAGESIZE}.

The function munlock() unlocks those whole pages containing any part of the address space of
the process starting at address addr and continuing for len bytes, regardless of how many times
mlock() has been called by the process for any of the pages in the specified range. The
implementation may require that addr be a multiple of the {PAGESIZE}.

If any of the pages in the range specified to a call to munlock() are also mapped into the address
spaces of other processes, any locks established on those pages by another process are
unaffected by the call of this process to munlock(). If any of the pages in the range specified by a
call to munlock() are also mapped into other portions of the address space of the calling process
outside the range specified, any locks established on those pages via the other mappings are also
unaffected by this call.

Upon successful return from mlock(), pages in the specified range will be locked and memory
resident. Upon successful return from munlock(), pages in the specified range will be unlocked
with respect to the address space of the process. Memory residency of unlocked pages is
unspecified.

The appropriate privilege is required to lock process memory with mlock().

RETURN VALUE
Upon successful completion, the mlock() and munlock() functions return a value of zero.
Otherwise, no change is made to any locks in the address space of the process, and the function
returns a value of −1 and sets errno to indicate the error.

ERRORS
The mlock() and munlock() functions will fail if:

[ENOMEM] Some or all of the address range specified by the addr and len arguments does
not correspond to valid mapped pages in the address space of the process.

[ENOSYS] The implementation does not support this memory locking interface.

The mlock() functions will fail if:

[EAGAIN] Some or all of the memory identified by the operation could not be locked
when the call was made.

The mlock() and munlock() functions may fail if:

[EINVAL] The addr argument is not a multiple of {PAGESIZE}.

The mlock() function may fail if:

[ENOMEM] Locking the pages mapped by the specified range would exceed an
implementation-dependent limit on the amount of memory that the process

522 CAE Specification (1997)

System Interfaces mlock()

may lock.

[EPERM] The calling process does not have the appropriate privilege to perform the
requested operation.

EXAMPLES
None.

APPLICATION USAGE
None.

SEE ALSO
exec, _exit(), fork (), mlockall (), munmap(), <sys/mman.h>.

CHANGE HISTORY
First released in Issue 5.

Included for alignment with the POSIX Realtime Extension.

System Interfaces and Headers, Issue 5: Volume 1 523

mlockall() System Interfaces

NAME
mlockall, munlockall — lock/unlock the address space of a process (REALTIME)

SYNOPSIS
RT #include <sys/mman.h>

int mlockall(int flags);
int munlockall(void);

DESCRIPTION
The function mlockall () causes all of the pages mapped by the address space of a process to be
memory resident until unlocked or until the process exits or execs another process image. The
flags argument determines whether the pages to be locked are those currently mapped by the
address space of the process, those that will be mapped in the future, or both. The flags
argument is constructed from the inclusive OR of one or more of the following symbolic
constants, defined in <sys/mman.h>:

MCL_CURRENT Lock all of the pages currently mapped into the address space of the process.

MCL_FUTURE Lock all of the pages that become mapped into the address space of the
process in the future, when those mappings are established.

If MCL_FUTURE is specified, and the automatic locking of future mappings eventually causes
the amount of locked memory to exceed the amount of available physical memory or any other
implementation-dependent limit, the behaviour is implementation-dependent. The manner in
which the implementation informs the application of these situations is also implementation-
dependent.

The munlockall () function unlocks all currently mapped pages of the address space of the
process. Any pages that become mapped into the address space of the process after a call to
munlockall () will not be locked, unless there is an intervening call to mlockall () specifying
MCL_FUTURE or a subsequent call to mlockall () MCL_CURRENT. If pages mapped into the
address space of the process are also mapped into the address spaces of other processes and are
locked by those processes, the locks established by the other processes are unaffected by a call by
this process to munlockall ().

Upon successful return from the mlockall () function that specifies MCL_CURRENT, all currently
mapped pages of the process’s address space will be memory resident and locked. Upon return
from the munlockall () function, all currently mapped pages of the process’s address space will be
unlocked with respect to the process’s address space. The memory residency of unlocked pages
is unspecified.

The appropriate privilege is required to lock process memory with mlockall ().

RETURN VALUE
Upon successful completion, the mlockall () function returns a value of zero. Otherwise, no
additional memory is locked, and the function returns a value of −1 and sets errno to indicate the
error. The effect of failure of mlockall () on previously existing locks in the address space is
unspecified.

If it is supported by the implementation, the munlockall () function always returns a value of
zero. Otherwise, the function returns a value of −1 and sets errno to indicate the error.

ERRORS
The mlockall () and munlockall () functions will fail if:

[ENOSYS] The implementation does not support this memory locking interface.

524 CAE Specification (1997)

System Interfaces mlockall()

The mlockall () function will fail if:

[EAGAIN] Some or all of the memory identified by the operation could not be locked
when the call was made.

[EINVAL] The flags argument is zero, or includes unimplemented flags.

The mlockall () function may fail if:

[ENOMEM] Locking all of the pages currently mapped into the address space of the
process would exceed an implementation-dependent limit on the amount of
memory that the process may lock.

[EPERM] The calling process does not have the appropriate privilege to perform the
requested operation.

EXAMPLES
None.

APPLICATION USAGE
None.

SEE ALSO
exec, _exit(), fork (), mlock(), munmap(), <sys/mman.h>.

CHANGE HISTORY
First released in Issue 5.

Included for alignment with the POSIX Realtime Extension.

System Interfaces and Headers, Issue 5: Volume 1 525

mmap() System Interfaces

NAME
mmap — map pages of memory

SYNOPSIS
#include <sys/mman.h>

void *mmap(void * addr , size_t len , int prot , int flags ,
int fildes , off_t off);

DESCRIPTION
RT The mmap() function establishes a mapping between a process’ address space and a file or

shared memory object. The format of the call is as follows:

pa=mmap(addr , len , prot , flags , fildes , off);

The mmap() function establishes a mapping between the address space of the process at an
address pa for len bytes to the memory object represented by the file descriptor fildes at offset off
for len bytes. The value of pa is an implementation-dependent function of the parameter addr
and the values of flags , further described below. A successful mmap() call returns pa as its result.
The address range starting at pa and continuing for len bytes will be legitimate for the possible
(not necessarily current) address space of the process. The range of bytes starting at off and
continuing for len bytes will be legitimate for the possible (not necessarily current) offsets in the

RT fileor shared memory object represented by fildes .

The mapping established by mmap() replaces any previous mappings for those whole pages
containing any part of the address space of the process starting at pa and continuing for len
bytes.

If the size of the mapped file changes after the call to mmap() as a result of some other operation
on the mapped file, the effect of references to portions of the mapped region that correspond to
added or removed portions of the file is unspecified.

RT The mmap() function is supported for regular files and shared memory objects. Support for any
other type of file is unspecified.

The parameter prot determines whether read, write, execute, or some combination of accesses
are permitted to the data being mapped. The prot should be either PROT_NONE or the bitwise
inclusive OR of one or more of the other flags in the following table, defined in the header
<sys/mman.h>.

Symbolic Constant Description
PROT_READ Data can be read.
PROT_WRITE Data can be written.
PROT_EXEC Data can be executed.
PROT_NONE Data cannot be accessed.

If an implementation cannot support the combination of access types specified by prot , the call
to mmap() fails. An implementation may permit accesses other than those specified by prot ;
however, the implementation will not permit a write to succeed where PROT_WRITE has not
been set or permit any access where PROT_NONE alone has been set. The implementation will
support at least the following values of prot : PROT_NONE, PROT_READ, PROT_WRITE, and
the inclusive OR of PROT_READ and PROT_WRITE. The file descriptor fildes will have been
opened with read permission, regardless of the protection options specified. If PROT_WRITE is
specified, the application must have opened the file descriptor fildes with write permission
unless MAP_PRIVATE is specified in the flags parameter as described below.

526 CAE Specification (1997)

System Interfaces mmap()

The parameter flags provides other information about the handling of the mapped data. The
value of flags is the bitwise inclusive OR of these options, defined in <sys/mman.h>:

Symbolic Constant Description
MAP_SHARED Changes are shared.
MAP_PRIVATE Changes are private.
MAP_FIXED Interpret addr exactly.

MAP_SHARED and MAP_PRIVATE describe the disposition of write references to the memory
object. If MAP_SHARED is specified, write references change the underlying object. If
MAP_PRIVATE is specified, modifications to the mapped data by the calling process will be
visible only to the calling process and will not change the underlying object. It is unspecified
whether modifications to the underlying object done after the MAP_PRIVATE mapping is
established are visible through the MAP_PRIVATE mapping. Either MAP_SHARED or
MAP_PRIVATE can be specified, but not both. The mapping type is retained across fork ().

When MAP_FIXED is set in the flags argument, the implementation is informed that the value of
EX pa must be addr , exactly. If MAP_FIXED is set, mmap() may return (void *)−1 and set errno to

[EINVAL]. If a MAP_FIXED request is successful, the mapping established by mmap() replaces
any previous mappings for the process’ pages in the range [pa, pa + len).

When MAP_FIXED is not set, the implementation uses addr in an unspecified manner to arrive at
pa . The pa so chosen will be an area of the address space that the implementation deems
suitable for a mapping of len bytes to the file. All implementations interpret an addr value of 0 as
granting the implementation complete freedom in selecting pa , subject to constraints described
below. A non-zero value of addr is taken to be a suggestion of a process address near which the
mapping should be placed. When the implementation selects a value for pa , it never places a
mapping at address 0, nor does it replace any extant mapping.

The off argument is constrained to be aligned and sized according to the value returned by
sysconf() when passed _SC_PAGESIZE or _SC_PAGE_SIZE. When MAP_FIXED is specified, the
argument addr must also meet these constraints. The implementation performs mapping
operations over whole pages. Thus, while the argument len need not meet a size or alignment
constraint, the implementation will include, in any mapping operation, any partial page
specified by the range [pa, pa + len).

The system always zero-fills any partial page at the end of an object. Further, the system never
writes out any modified portions of the last page of an object that are beyond its end. References
within the address range starting at pa and continuing for len bytes to whole pages following the
end of an object result in delivery of a SIGBUS signal.

An implementation may deliver SIGBUS signals when a reference would cause an error in the
mapped object, such as out-of-space condition.

EX The mmap() function adds an extra reference to the file associated with the file descriptor fildes
which is not removed by a subsequent close() on that file descriptor. This reference is removed
when there are no more mappings to the file.

The st_atime field of the mapped file may be marked for update at any time between the mmap()
call and the corresponding munmap() call. The initial read or write reference to a mapped region
will cause the file’s st_atime field to be marked for update if it has not already been marked for
update.

The st_ctime and st_mtime fields of a file that is mapped with MAP_SHARED and
PROT_WRITE, will be marked for update at some point in the interval between a write reference
to the mapped region and the next call to msync() with MS_ASYNC or MS_SYNC for that

System Interfaces and Headers, Issue 5: Volume 1 527

mmap() System Interfaces

portion of the file by any process. If there is no such call, these fields may be marked for update
at any time after a write reference if the underlying file is modified as a result.

EX There may be implementation-dependent limits on the number of memory regions that can be
mapped (per process or per system). If such a limit is imposed, whether the number of memory
regions that can be mapped by a process is decreased by the use of shmat() is implementation-
dependent.

RETURN VALUE
Upon successful completion, the mmap() function returns the address at which the mapping was
placed (pa); otherwise, it returns a value of MAP_FAILED and sets errno to indicate the error.
The symbol MAP_FAILED is defined in the header <sys/mman.h>. No successful return from
mmap() will return the value MAP_FAILED.

If mmap() fails for reasons other than [EBADF], [EINVAL] or [ENOTSUP], some of the mappings
in the address range starting at addr and continuing for len bytes may have been unmapped.

ERRORS
The mmap() function will fail if:

[EACCES] The fildes argument is not open for read, regardless of the protection specified,
or fildes is not open for write and PROT_WRITE was specified for a
MAP_SHARED type mapping.

RT [EAGAIN] The mapping could not be locked in memory, if required by mlockall (), due to
a lack of resources.

[EBADF] The fildes argument is not a valid open file descriptor.

EX [EINVAL] The addr argument (if MAP_FIXED was specified) or off is not a multiple of the
page size as returned by sysconf(), or are considered invalid by the
implementation.

EX [EINVAL] The value of flags is invalid (neither MAP_PRIVATE nor MAP_SHARED is
set).

EX [EMFILE] The number of mapped regions would exceed an implementation-dependent
limit (per process or per system).

[ENODEV] The fildes argument refers to a file whose type is not supported by mmap().

[ENOMEM] MAP_FIXED was specified, and the range [addr, addr + len) exceeds that
allowed for the address space of a process; or if MAP_FIXED was not
specified and there is insufficient room in the address space to effect the
mapping.

RT [ENOMEM] The mapping could not be locked in memory, if required by mlockall (),
because it would require more space than the system is able to supply.

[ENOTSUP] The implementation does not support the combination of accesses requested
in the prot argument.

[ENXIO] Addresses in the range [off, off + len) are invalid for the object specified by
fildes.

[ENXIO] MAP_FIXED was specified in flags and the combination of addr , len and off is
invalid for the object specified by fildes .

EX [EOVERFLOW] The file is a regular file and the value of off plus len exceeds the offset
maximum established in the open file description associated with fildes .

528 CAE Specification (1997)

System Interfaces mmap()

EXAMPLES
None.

APPLICATION USAGE
Use of mmap() may reduce the amount of memory available to other memory allocation
functions.

Use of MAP_FIXED may result in unspecified behaviour in further use of brk(), sbrk(), malloc ()
and shmat(). The use of MAP_FIXED is discouraged, as it may prevent an implementation from
making the most effective use of resources.

The application must ensure correct synchronisation when using mmap() in conjunction with
any other file access method, such as read() and write(), standard input/output, and shmat().

The mmap() function allows access to resources via address space manipulations, instead of
read()/write(). Once a file is mapped, all a process has to do to access it is use the data at the
address to which the file was mapped. So, using pseudo-code to illustrate the way in which an
existing program might be changed to use mmap(), the following:

fildes = open(...)
lseek(fildes, some_offset)
read(fildes, buf, len)
/* use data in buf */

becomes:

fildes = open(...)
address = mmap(0, len, PROT_READ, MAP_PRIVATE, fildes, some_offset)
/* use data at address */

The [EINVAL] error above is marked EX because it is defined as an optional error in the POSIX
Realtime Extension.

FUTURE DIRECTIONS
None.

SEE ALSO
brk(), exec, fcntl(), fork (), lockf (), msync(), munmap(), mprotect(), sbrk(), shmat(), sysconf(),
<sys/mman.h>.

CHANGE HISTORY
First released in Issue 4, Version 2.

Issue 5
Moved from X/OPEN UNIX extension to BASE and aligned with mmap() in the POSIX Realtime
Extension. Specifically, the DESCRIPTION is extensively reworded, [EAGAIN] and [ENOTSUP]
are added to the mandatory errors, and new cases of [ENOMEM] and [ENXIO] are added to the
mandatory errors. Also the value returned on failure is the value of the constant MAP_FAILED;
this was previously defined as −1.

Large File Summit extensions added.

System Interfaces and Headers, Issue 5: Volume 1 529

modf() System Interfaces

NAME
modf — decompose a floating-point number

SYNOPSIS
#include <math.h>

double modf(double x, double * iptr);

DESCRIPTION
The modf() function breaks the argument x into integral and fractional parts, each of which has
the same sign as the argument. It stores the integral part as a double in the object pointed to by
iptr .

An application wishing to check for error situations should set errno to 0 before calling modf(). If
errno is non-zero on return, or the return value is NaN, an error has occurred.

RETURN VALUE
Upon successful completion, modf() returns the signed fractional part of x.

EX If x is NaN, NaN is returned, errno may be set to [EDOM] and *iptr is set to NaN.

If the correct value would cause underflow, 0 is returned and errno may be set to [ERANGE].

ERRORS
The modf() function may fail if:

EX [EDOM] The value of x is NaN.

[ERANGE] The result underflows.

EX No other errors will occur.

EXAMPLES
None.

APPLICATION USAGE
None.

SEE ALSO
frexp(), isnan(), ldexp(), <math.h>.

CHANGE HISTORY
First released in Issue 1.

Derived from Issue 1 of the SVID.

Issue 4
The following changes are incorporated in this issue:

• Removed references to matherr().

• The name of the first argument is changed from value to x .

• The RETURN VALUE and ERRORS sections are substantially rewritten for alignment with
the ISO C standard and to rationalise error handling in the mathematics functions.

• The return value specified for [EDOM] is marked as an extension.

530 CAE Specification (1997)

System Interfaces modf()

Issue 5
The DESCRIPTION is updated to indicate how an application should check for an error. This
text was previously published in the APPLICATION USAGE section.

System Interfaces and Headers, Issue 5: Volume 1 531

mprotect() System Interfaces

NAME
mprotect — set protection of memory mapping

SYNOPSIS
#include <sys/mman.h>

int mprotect(void * addr , size_t len , int prot);

DESCRIPTION
The function mprotect() changes the access protections to be that specified by prot for those
whole pages containing any part of the address space of the process starting at address addr and
continuing for len bytes. The parameter prot determines whether read, write, execute, or some
combination of accesses are permitted to the data being mapped. The prot argument should be
either PROT_NONE or the bitwise inclusive OR of one or more of PROT_READ, PROT_WRITE
and PROT_EXEC.

If an implementation cannot support the combination of access types specified by prot , the call
to mprotect() fails.

An implementation may permit accesses other than those specified by prot ; however, no
implementation permits a write to succeed where PROT_WRITE has not been set or permits any
access where PROT_NONE alone has been set. Implementations will support at least the
following values of prot : PROT_NONE, PROT_READ, PROT_WRITE, and the inclusive OR of
PROT_READ and PROT_WRITE. If PROT_WRITE is specified, the application must have
opened the mapped objects in the specified address range with write permission, unless
MAP_PRIVATE was specified in the original mapping, regardless of whether the file descriptors
used to map the objects have since been closed.

EX The implementation willrequire that addr be a multiple of the page size as returned by sysconf().

The behaviour of this function is unspecified if the mapping was not established by a call to
mmap().

When mprotect() fails for reasons other than [EINVAL], the protections on some of the pages in
the range [addr, addr + len) may have been changed.

RETURN VALUE
Upon successful completion, mprotect() returns 0. Otherwise, it returns −1 and sets errno to
indicate the error.

ERRORS
The mprotect() function will fail if:

[EACCES] The prot argument specifies a protection that violates the access permission
the process has to the underlying memory object.

[EAGAIN] The prot argument specifies PROT_WRITE over a MAP_PRIVATE mapping
and there are insufficient memory resources to reserve for locking the private
page.

EX [EINVAL] The addr argument is not a multiple of the page size as returned by sysconf().

[ENOMEM] Addresses in the range [addr, addr + len) are invalid for the address space of a
process, or specify one or more pages which are not mapped.

[ENOMEM] The prot argument specifies PROT_WRITE on a MAP_PRIVATE mapping, and
it would require more space than the system is able to supply for locking the
private pages, if required.

532 CAE Specification (1997)

System Interfaces mprotect()

[ENOTSUP] The implementation does not support the combination of accesses requested
in the prot argument.

EXAMPLES
None.

APPLICATION USAGE
The EINVAL error above is marked EX because it is defined as an optional error in the POSIX
Realtime Extension.

FUTURE DIRECTIONS
None.

SEE ALSO
mmap(), sysconf(), <sys/mman.h>.

CHANGE HISTORY
First released in Issue 4, Version 2.

Issue 5
Moved from X/OPEN UNIX extension to BASE and aligned with mprotect() in the POSIX
Realtime Extension. Specifically, the DESCRIPTION is largely reworded, [ENOTSUP] and a
second form of [ENOMEM] are added to the mandatory errors, [EAGAIN] is moved from the
optional to the mandatory errors.

System Interfaces and Headers, Issue 5: Volume 1 533

mq_close() System Interfaces

NAME
mq_close — close a message queue (REALTIME)

SYNOPSIS
RT #include <mqueue.h>

int mq_close(mqd_t mqdes);

DESCRIPTION
The mq_close() function removes the association between the message queue descriptor, mqdes,
and its message queue. The results of using this message queue descriptor after successful
return from this mq_close(), and until the return of this message queue descriptor from a
subsequent mq_open(), are undefined.

If the process has successfully attached a notification request to the message queue via this
mqdes, this attachment will be removed, and the message queue is available for another process
to attach for notification.

RETURN VALUE
Upon successful completion, the mq_close() function returns a value of zero; otherwise, the
function returns a value of −1 and sets errno to indicate the error.

ERRORS
The mq_close() function will fail if:

[EBADF] The mqdes argument is not a valid message queue descriptor.

[ENOSYS] The function mq_close() is not supported by this implementation.

EXAMPLES
None.

APPLICATION USAGE
None.

SEE ALSO
mq_open(), mq_unlink(), <mqueue.h>, msgctl(), msgget(), msgrcv(), msgsnd().

CHANGE HISTORY
First released in Issue 5.

Included for alignment with the POSIX Realtime Extension.

534 CAE Specification (1997)

System Interfaces mq_getattr()

NAME
mq_getattr — get message queue attributes (REALTIME)

SYNOPSIS
RT #include <mqueue.h>

int mq_getattr(mqd_t mqdes, struct mq_attr * mqstat);

DESCRIPTION
The mqdes argument specifies a message queue descriptor. The mq_getattr() function is used to
get status information and attributes of the message queue and the open message queue
description associated with the message queue descriptor. The results are returned in the
mq_attr structure referenced by the mqstatargument.

Upon return, the following members will have the values associated with the open message
queue description as set when the message queue was opened and as modified by subsequent
mq_setattr() calls:

mq_flags

The following attributes of the message queue are returned as set at message queue creation.

mq_maxmsg
mq_msgsize
mq_curmsgs The number of messages currently on the queue.

RETURN VALUE
Upon successful completion, the mq_getattr() function returns zero. Otherwise, the function
returns −1 and sets errno to indicate the error.

ERRORS
The mq_getattr() function will fail if:

[EBADF] The mqdes argument is not a valid message queue descriptor.

[ENOSYS] The function mq_getattr() is not supported by this implementation.

EXAMPLES
None.

APPLICATION USAGE
None.

SEE ALSO
mq_open(), mq_send(), mq_setattr() <mqueue.h>, msgctl(), msgget(), msgrcv(), msgsnd().

CHANGE HISTORY
First released in Issue 5.

Included for alignment with the POSIX Realtime Extension.

System Interfaces and Headers, Issue 5: Volume 1 535

mq_notify() System Interfaces

NAME
mq_notify — notify process that a message is available (REALTIME)

SYNOPSIS
RT #include <mqueue.h>

int mq_notify(mqd_t mqdes, const struct sigevent * notification);

DESCRIPTION
If the argument notification is not NULL, this function registers the calling process to be notified
of message arrival at an empty message queue associated with the specified message queue
descriptor, mqdes. The notification specified by the notification argument will be sent to the
process when the message queue transitions from empty to non-empty. At any time, only one
process may be registered for notification by a message queue. If the calling process or any other
process has already registered for notification of message arrival at the specified message queue,
subsequent attempts to register for that message queue fail.

If notification is NULL and the process is currently registered for notification by the specified
message queue, the existing registration is removed.

When the notification is sent to the registered process, its registration will be removed. The
message queue will then be available for registration.

If a process has registered for notification of message arrival at a message queue and some
thread is blocked in mq_receive() waiting to receive a message when a message arrives at the
queue, the arriving message satisfies the appropriate mq_receive(). The resulting behaviour is as
if the message queue remains empty, and no notification is sent.

RETURN VALUE
Upon successful completion, the mq_notify() function returns a value of zero; otherwise, the
function returns a value of −1 and sets errno to indicate the error.

ERRORS
The mq_notify() function will fail if:

[EBADF] The mqdes argument is not a valid message queue descriptor.

[EBUSY] A process is already registered for notification by the message queue.

[ENOSYS] The function mq_notify() is not supported by this implementation.

EXAMPLES
None.

APPLICATION USAGE
None.

SEE ALSO
mq_open(), mq_send(), <mqueue.h>, msgctl(), msgget(), msgrcv(), msgsnd().

CHANGE HISTORY
First released in Issue 5.

Included for alignment with the POSIX Realtime Extension.

536 CAE Specification (1997)

System Interfaces mq_open()

NAME
mq_open — open a message queue (REALTIME)

SYNOPSIS
RT #include <mqueue.h>

mqd_t mq_open(const char * name, int oflag , ...);

DESCRIPTION
The mq_open() function establishes the connection between a process and a message queue with
a message queue descriptor. It creates a open message queue description that refers to the
message queue, and a message queue descriptor that refers to that open message queue
description. The message queue descriptor is used by other functions to refer to that message
queue. The name argument points to a string naming a message queue. It is unspecified whether
the name appears in the file system and is visible to other functions that take pathnames as
arguments. The name argument conforms to the construction rules for a pathname. If name
begins with the slash character, then processes calling mq_open() with the same value of name
refer to the same message queue object, as long as that name has not been removed. If name
does not begin with the slash character, the effect is implementation-dependent. The
interpretation of slash characters other than the leading slash character in name is
implementation-dependent. If the name argument is not the name of an existing message queue
and creation is not requested, mq_open() fails and returns an error.

The oflag argument requests the desired receive and/or send access to the message queue. The
requested access permission to receive messages or send messages is granted if the calling
process would be granted read or write access, respectively, to an equivalently protected file.

The value of oflag is the bitwise inclusive OR of values from the following list. Applications
specify exactly one of the first three values (access modes) below in the value of oflag :

O_RDONLY Open the message queue for receiving messages. The process can use the
returned message queue descriptor with mq_receive(), but not mq_send(). A
message queue may be open multiple times in the same or different processes
for receiving messages.

O_WRONLY Open the queue for sending messages. The process can use the returned
message queue descriptor with mq_send() but not mq_receive(). A message
queue may be open multiple times in the same or different processes for
sending messages.

O_RDWR Open the queue for both receiving and sending messages. The process can
use any of the functions allowed for O_RDONLY and O_WRONLY. A
message queue may be open multiple times in the same or different processes
for sending messages.

Any combination of the remaining flags may be specified in the value of oflag :

O_CREAT This option is used to create a message queue, and it requires two additional
arguments: mode, which is of type mode_t, and attr , which is a pointer to a
mq_attr structure. If the pathname, name, has already been used to create a
message queue that still exists, then this flag has no effect, except as noted
under O_EXCL. Otherwise, a message queue is created without any messages
in it. The user ID of the message queue is set to the effective user ID of the
process, and the group ID of the message queue is set to the effective group ID
of the process. The file permission bits are set to the value of mode. When bits
in mode other than file permission bits are set, the effect is implementation-

System Interfaces and Headers, Issue 5: Volume 1 537

mq_open() System Interfaces

dependent. If attr is NULL, the message queue is created with
implementation-dependent default message queue attributes. If attr is non-
NULL and the calling process has the appropriate privilege on name, the
message queue mq_maxmsg and mq_msgsize attributes are set to the values of
the corresponding members in the mq_attr structure referred to by attr . If attr
is non-NULL, but the calling process does not have the appropriate privilege
on name, the mq_open() function fails and returns an error without creating the
message queue.

O_EXCL If O_EXCL and O_CREAT are set, mq_open() fails if the message queue name
exists. The check for the existence of the message queue and the creation of
the message queue if it does not exist are atomic with respect to other
processes executing mq_open() naming the same name with O_EXCL and
O_CREAT set. If O_EXCL is set and O_CREAT is not set, the result is
undefined.

O_NONBLOCK The setting of this flag is associated with the open message queue description
and determines whether a mq_send() or mq_receive() waits for resources or
messages that are not currently available, or fails with errno set to [EAGAIN].
See mq_send() and mq_receive() for details.

The mq_open() function does not add or remove messages from the queue.

RETURN VALUE
Upon successful completion, the function returns a message queue descriptor. Otherwise, the
function returns (mqd_t)−1 and sets errno to indicate the error.

ERRORS
The mq_open() function will fail if:

[EACCES] The message queue exists and the permissions specified by oflag are denied, or
the message queue does not exist and permission to create the message queue
is denied.

[EEXIST] O_CREAT and O_EXCL are set and the named message queue already exists.

[EINTR] The mq_open() operation was interrupted by a signal.

[EINVAL] The mq_open() operation is not supported for the given name.

[EINVAL] O_CREAT was specified in oflag , the value of attr is not NULL, and either
mq_maxmsg or mq_msgsize was less than or equal to zero.

[EMFILE] Too many message queue descriptors or file descriptors are currently in use by
this process.

[ENAMETOOLONG]
The length of the name string exceeds {PATH_MAX}, or a pathname
component is longer than {NAME_MAX} while _POSIX_NO_TRUNC is in
effect.

[ENFILE] Too many message queues are currently open in the system.

[ENOENT] O_CREAT is not set and the named message queue does not exist.

[ENOSPC] There is insufficient space for the creation of the new message queue.

[ENOSYS] The function mq_open() is not supported by this implementation.

538 CAE Specification (1997)

System Interfaces mq_open()

EXAMPLES
None.

APPLICATION USAGE
None.

SEE ALSO
mq_close(), mq_receive(), mq_send(), mq_setattr(), mq_getattr(), mq_unlink(), <mqueue.h>,
msgctl(), msgget(), msgrcv(), msgsnd().

CHANGE HISTORY
First released in Issue 5.

Included for alignment with the POSIX Realtime Extension.

System Interfaces and Headers, Issue 5: Volume 1 539

mq_receive() System Interfaces

NAME
mq_receive — receive a message from a message queue (REALTIME)

SYNOPSIS
RT #include <mqueue.h>

ssize_t mq_receive(mqd_t mqdes, char * msg_ptr , size_t msg_len ,
unsigned int * msg_prio);

DESCRIPTION
The mq_receive() function is used to receive the oldest of the highest priority message(s) from the
message queue specified by mqdes. If the size of the buffer in bytes, specified by the msg_len
argument, is less than the mq_msgsize attribute of the message queue, the function fails and
returns an error. Otherwise, the selected message is removed from the queue and copied to the
buffer pointed to by the msg_ptr argument.

EX If the value of maxsize is greater than {SSIZE_MAX}, the result is implementation-dependent.

If the argument msg_prio is not NULL, the priority of the selected message is stored in the
location referenced by msg_prio .

If the specified message queue is empty and O_NONBLOCK is not set in the message queue
description associated with mqdes, mq_receive() blocks until a message is enqueued on the
message queue or until mq_receive() is interrupted by a signal. If more than one thread is
waiting to receive a message when a message arrives at an empty queue and the Priority
Scheduling option is supported, then the thread of highest priority that has been waiting the
longest will be selected to receive the message. Otherwise, it is unspecified which waiting
thread receives the message. If the specified message queue is empty and O_NONBLOCK is set
in the message queue description associated with mqdes, no message is removed from the queue,
and mq_receive() returns an error.

RETURN VALUE
Upon successful completion, mq_receive() returns the length of the selected message in bytes and
the message is removed from the queue. Otherwise, no message is removed from the queue, the
function returns a value of −1, and sets errno to indicate the error.

ERRORS
The mq_receive() function will fail if:

[EAGAIN] O_NONBLOCK was set in the message description associated with mqdes,
and the specified message queue is empty.

[EBADF] The mqdes argument is not a valid message queue descriptor open for reading.

[EMSGSIZE] The specified message buffer size, msg_len, is less than the message size
attribute of the message queue.

[EINTR] The mq_receive() operation was interrupted by a signal.

[ENOSYS] The mq_receive() function is not supported by this implementation.

The mq_receive() function may fail if:

[EBADMSG] The implementation has detected a data corruption problem with the
message.

EXAMPLES
None.

540 CAE Specification (1997)

System Interfaces mq_receive()

APPLICATION USAGE
None.

SEE ALSO
mq_send(), <mqueue.h>, msgctl(), msgget(), msgrcv(), msgsnd().

CHANGE HISTORY
First released in Issue 5.

Included for alignment with the POSIX Realtime Extension.

System Interfaces and Headers, Issue 5: Volume 1 541

mq_send() System Interfaces

NAME
mq_send — send a message to a message queue (REALTIME)

SYNOPSIS
RT #include <mqueue.h>

int mq_send(mqd_t mqdes, const char * msg_ptr , size_t msg_len ,
unsigned int msg_prio);

DESCRIPTION
The mq_send() function adds the message pointed to by the argument msg_ptr to the message
queue specified by mqdes. The msg_len argument specifies the length of the message in bytes
pointed to by msg_ptr. The value of msg_len is less than or equal to the mq_msgsize attribute of
the message queue, or mq_send() fails.

If the specified message queue is not full, mq_send() behaves as if the message is inserted into the
message queue at the position indicated by the msg_prio argument. A message with a larger
numeric value of msg_prio is inserted before messages with lower values of msg_prio . A message
will be inserted after other messages in the queue, if any, with equal msg_prio . The value of
msg_prio will be less than MQ_PRIO_MAX.

If the specified message queue is full and O_NONBLOCK is not set in the message queue
description associated with mqdes, mq_send() blocks until space becomes available to enqueue
the message, or until mq_send() is interrupted by a signal. If more than one thread is waiting to
send when space becomes available in the message queue and the Priority Scheduling option is
supported, then the thread of the highest priority that has been waiting the longest will be
unblocked to send its message. Otherwise, it is unspecified which waiting thread is unblocked.
If the specified message queue is full and O_NONBLOCK is set in the message queue
description associated with mqdes, the message is not queued and mq_send() returns an error.

RETURN VALUE
Upon successful completion, the mq_send() function returns a value of zero. Otherwise, no
message is enqueued, the function returns −1, and is set to indicate the error.

ERRORS
The mq_send() function will fail if:

[EAGAIN] The O_NONBLOCK flag is set in the message queue description associated
with mqdes, and the specified message queue is full.

[EBADF] The mqdes argument is not a valid message queue descriptor open for writing.

[EINTR] A signal interrupted the call to mq_send().

[EINVAL] The value of msg_prio was outside the valid range.

[EMSGSIZE] The specified message length, msg_len, exceeds the message size attribute of
the message queue.

[ENOSYS] The function mq_send() is not supported by this implementation.

EXAMPLES
None.

APPLICATION USAGE
None.

SEE ALSO
mq_receive(), mq_setattr(), <mqueue.h>.

542 CAE Specification (1997)

System Interfaces mq_send()

CHANGE HISTORY
First released in Issue 5.

Included for alignment with the POSIX Realtime Extension.

System Interfaces and Headers, Issue 5: Volume 1 543

mq_setattr() System Interfaces

NAME
mq_setattr — set message queue attributes (REALTIME)

SYNOPSIS
RT #include <mqueue.h>

int mq_setattr(mqd_t mqdes, const struct mq_attr * mqstat ,
struct mq_attr * omqstat);

DESCRIPTION
The mq_setattr() function is used to set attributes associated with the open message queue
description referenced by the message queue descriptor specified by mqdes.

The message queue attributes corresponding to the following members defined in the mq_attr
structure are set to the specified values upon successful completion of mq_setattr():

mq_flags The value of this member is the bitwise logical OR of zero or more of
O_NONBLOCK and any implementation-dependent flags.

The values of the mq_maxmsg, mq_msgsize and mq_curmsgs members of the mq_attr structure are
ignored by mq_setattr().

If omqstat is non-NULL, the function mq_setattr() stores, in the location referenced by omqstat , the
previous message queue attributes and the current queue status. These values are the same as
would be returned by a call to mq_getattr() at that point.

RETURN VALUE
Upon successful completion, the function returns a value of zero and the attributes of the
message queue will have been changed as specified. Otherwise, the message queue attributes
are unchanged, and the function returns a value of −1 and sets errno to indicate the error.

ERRORS
The mq_setattr() function will fail if:

[EBADF] The mqdes argument is not a valid message queue descriptor.

[ENOSYS] The function mq_setattr() is not supported by this implementation.

EXAMPLES
None.

APPLICATION USAGE
None.

SEE ALSO
mq_open(), mq_send(), <mqueue.h>, msgctl(), msgget(), msgrcv(), msgsnd().

CHANGE HISTORY
First released in Issue 5.

Included for alignment with the POSIX Realtime Extension.

544 CAE Specification (1997)

System Interfaces mq_unlink()

NAME
mq_unlink — remove a message queue (REALTIME)

SYNOPSIS
RT #include <mqueue.h>

int mq_unlink(const char * name);

DESCRIPTION
The mq_unlink() function removes the message queue named by the pathname name. After a
successful call to mq_unlink() with name, a call to mq_open() with name fails if the flag O_CREAT
is not set in flags . If one or more processes have the message queue open when mq_unlink() is
called, destruction of the message queue is postponed until all references to the message queue
have been closed. Calls to mq_open() to re-create the message queue may fail until the message
queue is actually removed. However, the mq_unlink() call need not block until all references
have been closed; it may return immediately.

RETURN VALUE
Upon successful completion, the function returns a value of zero. Otherwise, the named
message queue is changed by this function call, and the function returns a value of −1 and sets
errno to indicate the error.

ERRORS
The mq_unlink() function will fail if:

[EACCES] Permission is denied to unlink the named message queue.

[ENAMETOOLONG]
The length of the name string exceeds {NAME_MAX} while
_POSIX_NO_TRUNC is in effect.

[ENOENT] The named message queue does not exist.

[ENOSYS] The function mq_unlink() is not supported by this implementation.

EXAMPLES
None.

APPLICATION USAGE
None.

SEE ALSO
mq_close(), mq_open(), <mqueue.h>, msgctl(), msgget(), msgrcv(), msgsnd().

CHANGE HISTORY
First released in Issue 5.

Included for alignment with the POSIX Realtime Extension.

System Interfaces and Headers, Issue 5: Volume 1 545

mrand48() System Interfaces

NAME
mrand48 — generate uniformly distributed pseudo-random signed long integers

SYNOPSIS
EX #include <stdlib.h>

long int mrand48(void);

DESCRIPTION
Refer to drand48().

CHANGE HISTORY
First released in Issue 1.

Derived from Issue 1 of the SVID.

Issue 4
The following changes are incorporated in this issue:

• The <stdlib.h> header is now required.

• The mrand48() function is now defined to return long int.

• The argument list now includes void.

546 CAE Specification (1997)

System Interfaces msgctl()

NAME
msgctl — message control operations

SYNOPSIS
EX #include <sys/msg.h>

int msgctl(int msqid , int cmd, struct msqid_ds * buf);

DESCRIPTION
The msgctl() function provides message control operations as specified by cmd. The following
values for cmd, and the message control operations they specify, are:

IPC_STAT Place the current value of each member of the msqid_ds data structure
associated with msqid into the structure pointed to by buf. The contents of this
structure are defined in <sys/msg.h>.

IPC_SET Set the value of the following members of the msqid_ds data structure
associated with msqid to the corresponding value found in the structure
pointed to by buf:

msg_perm.uid
msg_perm.gid
msg_perm.mode
msg_qbytes

IPC_SET can only be executed by a process with appropriate privileges or that
has an effective user ID equal to the value of msg_perm.cuid or
msg_perm.uid in the msqid_ds data structure associated with msqid. Only a
process with appropriate privileges can raise the value of msg_qbytes.

IPC_RMID Remove the message queue identifier specified by msqid from the system and
destroy the message queue and msqid_ds data structure associated with it.
IPC_RMD can only be executed by a process with appropriate privileges or
one that has an effective user ID equal to the value of msg_perm.cuid or
msg_perm.uid in the msqid_ds data structure associated with msqid.

RETURN VALUE
Upon successful completion, msgctl() returns 0. Otherwise, it returns −1 and errno will be set to
indicate the error.

ERRORS
The msgctl() function will fail if:

[EACCES] The argument cmd is IPC_STAT and the calling process does not have read
permission, see Section 2.6 on page 36.

[EINVAL] The value of msqid is not a valid message queue identifier; or the value of cmd
is not a valid command.

[EPERM] The argument cmd is IPC_RMID or IPC_SET and the effective user ID of the
calling process is not equal to that of a process with appropriate privileges
and it is not equal to the value of msg_perm.cuid or msg_perm.uid in the data
structure associated with msqid.

[EPERM] The argument cmd is IPC_SET, an attempt is being made to increase to the
value of msg_qbytes, and the effective user ID of the calling process does not
have appropriate privileges.

System Interfaces and Headers, Issue 5: Volume 1 547

msgctl() System Interfaces

EXAMPLES
None.

APPLICATION USAGE
The POSIX Realtime Extension defines alternative interfaces for interprocess communication.
Application developers who need to use IPC should design their applications so that modules
using the IPC routines described in Section 2.6 on page 36 can be easily modified to use the
alternative interfaces.

FUTURE DIRECTIONS
None.

SEE ALSO
mq_close(), mq_getattr(), mq_notify(), mq_open(), mq_receive(), mq_send(), mq_setattr(),
mq_unlink(), msgget(), msgrcv(), msgsnd(), <sys/msg.h>, Section 2.6 on page 36.

CHANGE HISTORY
First released in Issue 2.

Derived from Issue 2 of the SVID.

Issue 4
The following changes are incorporated in this issue:

• The interface is no longer marked as OPTIONAL FUNCTIONALITY.

• Inclusion of the <sys/types.h> and <sys/ipc.h> headers is removed from the SYNOPSIS
section.

• A FUTURE DIRECTIONS section is added warning application developers about migration
to IEEE 1003.4 interfaces for interprocess communication.

• The [ENOSYS] error is removed from the ERRORS section.

Issue 5
The note about use of POSIX Realtime Extension IPC routines has been moved from FUTURE
DIRECTIONS to a new APPLICATION USAGE section.

548 CAE Specification (1997)

System Interfaces msgget()

NAME
msgget — get the message queue identifier

SYNOPSIS
EX #include <sys/msg.h>

int msgget(key_t key , int msgflg);

DESCRIPTION
The msgget() function returns the message queue identifier associated with the argument key .

A message queue identifier, associated message queue and data structure, see <sys/msg.h>, are
created for the argument key if one of the following is true:

• The argument key is equal to IPC_PRIVATE.

• The argument key does not already have a message queue identifier associated with it, and
(msgflg & IPC_CREAT) is non-zero.

Upon creation, the data structure associated with the new message queue identifier is initialised
as follows:

• msg_perm.cuid, msg_perm.uid, msg_perm.cgid and msg_perm.gid are set equal to the
effective user ID and effective group ID, respectively, of the calling process.

• The low-order 9 bits of msg_perm.mode are set equal to the low-order 9 bits of msgflg .

• msg_qnum, msg_lspid, msg_lrpid, msg_stime and msg_rtime are set equal to 0.

• msg_ctime is set equal to the current time.

• msg_qbytes is set equal to the system limit.

RETURN VALUE
Upon successful completion, msgget() returns a non-negative integer, namely a message queue
identifier. Otherwise, it returns −1 and errno is set to indicate the error.

ERRORS
The msgget() function will fail if:

[EACCES] A message queue identifier exists for the argument key , but operation
permission as specified by the low-order 9 bits of msgflg would not be granted,
see Section 2.6 on page 36.

[EEXIST] A message queue identifier exists for the argument key but ((msgflg &
IPC_CREAT) && (msgflg & IPC_EXCL)) is non-zero.

[ENOENT] A message queue identifier does not exist for the argument key and (msgflg &
IPC_CREAT) is 0.

[ENOSPC] A message queue identifier is to be created but the system-imposed limit on
the maximum number of allowed message queue identifiers system-wide
would be exceeded.

EXAMPLES
None.

APPLICATION USAGE
The POSIX Realtime Extension defines alternative interfaces for interprocess communication.
Application developers who need to use IPC should design their applications so that modules
using the IPC routines described in Section 2.6 on page 36 can be easily modified to use the

System Interfaces and Headers, Issue 5: Volume 1 549

msgget() System Interfaces

alternative interfaces.

FUTURE DIRECTIONS
None.

SEE ALSO
mq_close(), mq_getattr(), mq_notify(), mq_open(), mq_receive(), mq_send(), mq_setattr(),
mq_unlink(), msgctl(), msgrcv(), msgsnd(), <sys/msg.h>, Section 2.6 on page 36.

CHANGE HISTORY
First released in Issue 2.

Derived from Issue 2 of the SVID.

Issue 4
The following changes are incorporated in this issue:

• The interface is no longer marked as OPTIONAL FUNCTIONALITY.

• Inclusion of the <sys/types.h> and <sys/ipc.h> headers is removed from the SYNOPSIS
section.

• The [ENOSYS] error is removed from the ERRORS section.

Issue 5
The note about use of POSIX Realtime Extension IPC routines has been moved from FUTURE
DIRECTIONS to a new APPLICATION USAGE section.

550 CAE Specification (1997)

System Interfaces msgrcv()

NAME
msgrcv — message receive operation

SYNOPSIS
EX #include <sys/msg.h>

ssize_t msgrcv(int msqid , void * msgp, size_t msgsz, long int msgtyp ,
int msgflg);

DESCRIPTION
The msgrcv() function reads a message from the queue associated with the message queue
identifier specified by msqid and places it in the user-defined buffer pointed to by msgp.

The argument msgp points to a user-defined buffer that must contain first a field of type long int
that will specify the type of the message, and then a data portion that will hold the data bytes of
the message. The structure below is an example of what this user-defined buffer might look like:

struct mymsg {
long int mtype; /* message type */
char mtext[1]; /* message text */

}

The structure member mtype is the received message’s type as specified by the sending process.

The structure member mtext is the text of the message.

The argument msgsz specifies the size in bytes of mtext. The received message is truncated to
msgsz bytes if it is larger than msgsz and (msgflg & MSG_NOERROR) is non-zero. The truncated
part of the message is lost and no indication of the truncation is given to the calling process.

If the value of msgsz is greater than {SSIZE_MAX}, the result is implementation-dependent.

The argument msgtyp specifies the type of message requested as follows:

• If msgtyp is 0, the first message on the queue is received.

• If msgtyp is greater than 0, the first message of type msgtyp is received.

• If msgtyp is less than 0, the first message of the lowest type that is less than or equal to the
absolute value of msgtyp is received.

The argument msgflg specifies the action to be taken if a message of the desired type is not on the
queue. These are as follows:

• If (msgflg & IPC_NOWAIT) is non-zero, the calling thread will return immediately with a
return value of −1 and errno set to [ENOMSG].

• If (msgflg & IPC_NOWAIT) is 0, the calling thread will suspend execution until one of the
following occurs:

— A message of the desired type is placed on the queue.

— The message queue identifier msqid is removed from the system; when this occurs, errno is
set equal to [EIDRM] and −1 is returned.

— The calling thread receives a signal that is to be caught; in this case a message is not
received and the calling thread resumes execution in the manner prescribed in sigaction ().

System Interfaces and Headers, Issue 5: Volume 1 551

msgrcv() System Interfaces

Upon successful completion, the following actions are taken with respect to the data structure
associated with msqid:

• msg_qnum is decremented by 1.

• msg_lrpid is set equal to the process ID of the calling process.

• msg_rtime is set equal to the current time.

RETURN VALUE
Upon successful completion, msgrcv() returns a value equal to the number of bytes actually
placed into the buffer mtext. Otherwise, no message will be received, msgrcv() will return
(ssize_t)−1 and errno will be set to indicate the error.

ERRORS
The msgrcv() function will fail if:

[E2BIG] The value of mtext is greater than msgsz and (msgflg & MSG_NOERROR) is 0.

[EACCES] Operation permission is denied to the calling process. See Section 2.6 on page
36.

[EIDRM] The message queue identifier msqid is removed from the system.

[EINTR] The msgrcv() function was interrupted by a signal.

[EINVAL] msqid is not a valid message queue identifier; or the value of msgsz is less than
0.

[ENOMSG] The queue does not contain a message of the desired type and (msgflg &
IPC_NOWAIT) is non-zero.

EXAMPLES
None.

APPLICATION USAGE
The POSIX Realtime Extension defines alternative interfaces for interprocess communication.
Application developers who need to use IPC should design their applications so that modules
using the IPC routines described in Section 2.6 on page 36 can be easily modified to use the
alternative interfaces.

FUTURE DIRECTIONS
None.

SEE ALSO
mq_close(), mq_getattr(), mq_notify(), mq_open(), mq_receive(), mq_send(), mq_setattr(),
mq_unlink(), msgctl(), msgget(), msgsnd(), sigaction (), <sys/msg.h>, Section 2.6 on page 36.

CHANGE HISTORY
First released in Issue 2.

Derived from Issue 2 of the SVID.

Issue 4
The following changes are incorporated in this issue:

• The interface is no longer marked as OPTIONAL FUNCTIONALITY.

• Inclusion of the <sys/types.h> and <sys/ipc.h> headers is removed from the SYNOPSIS
section.

• The [ENOSYS] error is removed from the ERRORS section.

552 CAE Specification (1997)

System Interfaces msgrcv()

• A FUTURE DIRECTIONS section is added warning application developers about migration
to IEEE 1003.4 interfaces for interprocess communication.

Issue 5
The type of the return value is changed from int to ssize_t, and a warning is added to the
DESCRIPTION about values of msgsz larger the {SSIZE_MAX}.

The note about use of POSIX Realtime Extension IPC routines has been moved from FUTURE
DIRECTIONS to the APPLICATION USAGE section.

System Interfaces and Headers, Issue 5: Volume 1 553

msgsnd() System Interfaces

NAME
msgsnd — message send operation

SYNOPSIS
EX #include <sys/msg.h>

int msgsnd(int msqid , const void * msgp, size_t msgsz, int msgflg);

DESCRIPTION
The msgsnd() function is used to send a message to the queue associated with the message
queue identifier specified by msqid.

The argument msgp points to a user-defined buffer that must contain first a field of type long int
that will specify the type of the message, and then a data portion that will hold the data bytes of
the message. The structure below is an example of what this user-defined buffer might look like:

struct mymsg {
long int mtype; /* message type */
char mtext[1]; /* message text */

}

The structure member mtype is a non-zero positive type long int that can be used by the
receiving process for message selection.

The structure member mtext is any text of length msgsz bytes. The argument msgsz can range
from 0 to a system-imposed maximum.

The argument msgflg specifies the action to be taken if one or more of the following are true:

• The number of bytes already on the queue is equal to msg_qbytes, see <sys/msg.h>.

• The total number of messages on all queues system-wide is equal to the system-imposed
limit.

These actions are as follows:

• If (msgflg & IPC_NOWAIT) is non-zero, the message will not be sent and the calling thread
will return immediately.

• If (msgflg & IPC_NOWAIT) is 0, the calling thread will suspend execution until one of the
following occurs:

— The condition responsible for the suspension no longer exists, in which case the message
is sent.

— The message queue identifier msqid is removed from the system; when this occurs, errno is
set equal to [EIDRM] and −1 is returned.

— The calling thread receives a signal that is to be caught; in this case the message is not
sent and the calling thread resumes execution in the manner prescribed in sigaction ().

Upon successful completion, the following actions are taken with respect to the data structure
associated with msqid, see <sys/msg.h>:

• msg_qnum is incremented by 1.

• msg_lspid is set equal to the process ID of the calling process.

• msg_stime is set equal to the current time.

554 CAE Specification (1997)

System Interfaces msgsnd()

RETURN VALUE
Upon successful completion, msgsnd() returns 0. Otherwise, no message will be sent, msgsnd()
will return −1 and errno will be set to indicate the error.

ERRORS
The msgsnd() function will fail if:

[EACCES] Operation permission is denied to the calling process. See Section 2.6 on page
36.

[EAGAIN] The message cannot be sent for one of the reasons cited above and (msgflg &
IPC_NOWAIT) is non-zero.

[EIDRM] The message queue identifier msgid is removed from the system.

[EINTR] The msgsnd() function was interrupted by a signal.

[EINVAL] The value of msqid is not a valid message queue identifier, or the value of
mtype is less than 1; or the value of msgsz is less than 0 or greater than the
system-imposed limit.

EXAMPLES
None.

APPLICATION USAGE
The POSIX Realtime Extension defines alternative interfaces for interprocess communication.
Application developers who need to use IPC should design their applications so that modules
using the IPC routines described in Section 2.6 on page 36 can be easily modified to use the
alternative interfaces.

FUTURE DIRECTIONS
None.

SEE ALSO
mq_close(), mq_getattr(), mq_notify(), mq_open(), mq_receive(), mq_send(), mq_setattr(),
mq_unlink(), msgctl(), msgget(), msgrcv(), sigaction (), <sys/msg.h>, Section 2.6 on page 36.

CHANGE HISTORY
First released in Issue 2.

Derived from Issue 2 of the SVID.

Issue 4
The following changes are incorporated in this issue:

• The interface is no longer marked as OPTIONAL FUNCTIONALITY.

• Inclusion of the <sys/types.h> and <sys/ipc.h> headers is removed from the SYNOPSIS
section. Also the type of argument msgp is changed from void* to const void*.

• In the DESCRIPTION, the example of a message buffer is changed:

— explicitly to define the first member as being of type long int

— to define the size of the message array mtext.

• The [ENOSYS] error is removed from the ERRORS section.

• A FUTURE DIRECTIONS section is added warning application developers about migration
to IEEE 1003.4 interfaces for interprocess communication.

System Interfaces and Headers, Issue 5: Volume 1 555

msgsnd() System Interfaces

Issue 5
The note about use of POSIX Realtime Extension IPC routines has been moved from FUTURE
DIRECTIONS to a new APPLICATION USAGE section.

556 CAE Specification (1997)

System Interfaces msync()

NAME
msync — synchronise memory with physical storage

SYNOPSIS
#include <sys/mman.h>

int msync(void * addr , size_t len , int flags);

DESCRIPTION
The msync() function writes all modified data to permanent storage locations, if any, in those
whole pages containing any part of the address space of the process starting at address addr and
continuing for len bytes. If no such storage exists, msync() need not have any effect. If
requested, the msync() function then invalidates cached copies of data.

EX The implementation willrequire that addr be a multiple of the page size as returned by sysconf().

For mappings to files, the msync() function ensures that all write operations are completed as
defined for synchronised I/O data integrity completion. It is unspecified whether the
implementation also writes out other file attributes. When the msync() function is called on
MAP_PRIVATE mappings, any modified data will not be written to the underlying object and
will not cause such data to be made visible to other processes. It is unspecified whether data in

RT MAP_PRIVATE mappings has any permanent storage locations. The effect of msync() on shared
memory objects is unspecified.

The flags argument is constructed from the bitwise inclusive OR of one or more of the following
flags defined in the header <sys/mman.h>:

Symbolic Constant Description
MS_ASYNC Perform asynchronous writes.
MS_SYNC Perform synchronous writes.
MS_INVALIDATE Invalidate cached data.

When MS_ASYNC is specified, msync() returns immediately once all the write operations are
initiated or queued for servicing; when MS_SYNC is specified, msync() will not return until all
write operations are completed as defined for synchronised I/O data integrity completion.
Either MS_ASYNC or MS_SYNC is specified, but not both.

When MS_INVALIDATE is specified, msync() invalidates all cached copies of mapped data that
are inconsistent with the permanent storage locations such that subsequent references obtain
data that was consistent with the permanent storage locations sometime between the call to
msync() and the first subsequent memory reference to the data.

The behaviour of this function is unspecified if the mapping was not established by a call to
mmap().

If msync() causes any write to a file, the file’s st_ctime and st_mtime fields are marked for update.

RETURN VALUE
Upon successful completion, msync() returns 0. Otherwise, it returns −1 and sets errno to
indicate the error.

ERRORS
The msync() function will fail if:

RT [EBUSY] Some or all of the addresses in the range starting at addr and continuing for len
bytes are locked, and MS_INVALIDATE is specified.

System Interfaces and Headers, Issue 5: Volume 1 557

msync() System Interfaces

[EINVAL] The value in flags is invalid.

EX [EINVAL] The value of addr is not a multiple of the page size, {PAGESIZE}.

[ENOMEM] The addresses in the range starting at addr and continuing for len bytes are
outside the range allowed for the address space of a process or specify one or
more pages that are not mapped.

EXAMPLES
None.

APPLICATION USAGE
The msync() function should be used by programs that require a memory object to be in a
known state, for example in building transaction facilities.

Normal system activity can cause pages to be written to disk. Therefore, there are no guarantees
that msync() is the only control over when pages are or are not written to disk.

The second form of [EINVAL] above is marked EX because it is defined as an optional error in
the POSIX Realtime Extension.

FUTURE DIRECTIONS
None.

SEE ALSO
mmap(), sysconf(), <sys/mman.h>.

CHANGE HISTORY
First released in Issue 4, Version 2.

Issue 5
Moved from X/OPEN UNIX extension to BASE and aligned with msync() in the POSIX Realtime
Extension. Specifically, the DESCRIPTION is extensively reworded, [EBUSY] and a new form of
[EINVAL] are added to the mandatory errors.

558 CAE Specification (1997)

System Interfaces munlock()

NAME
munlock — unlock a range of process address space

SYNOPSIS
RT #include <sys/mman.h>

int munlock(const void * addr , size_t len);

DESCRIPTION
Refer to mlock().

CHANGE HISTORY
First released in Issue 5.

Included for alignment with the POSIX Realtime Extension.

System Interfaces and Headers, Issue 5: Volume 1 559

munlockall() System Interfaces

NAME
munlockall — unlock the address space of a process

SYNOPSIS
RT #include <sys/mman.h>

int munlockall(void);

DESCRIPTION
Refer to mlockall ().

CHANGE HISTORY
First released in Issue 5.

Included for alignment with the POSIX Realtime Extension.

560 CAE Specification (1997)

System Interfaces munmap()

NAME
munmap — unmap pages of memory

SYNOPSIS
#include <sys/mman.h>

int munmap(void * addr , size_t len);

DESCRIPTION
The function munmap() removes any mappings for those entire pages containing any part of the
address space of the process starting at addr and continuing for len bytes. Further references to
these pages result in the generation of a SIGSEGV signal to the process. If there are no mappings
in the specified address range, then munmap() has no effect.

EX The implementation willrequire that addr be a multiple of the page size {PAGESIZE}.

If a mapping to be removed was private, any modifications made in this address range will be
discarded.

RT Any memory locks (see mlock() and mlockall ()) associated with this address range will be
removed, as if by an appropriate call to munlock().

The behaviour of this function is unspecified if the mapping was not established by a call to
mmap().

RETURN VALUE
Upon successful completion, munmap() returns 0. Otherwise, it returns −1 and sets errno to
indicate the error.

ERRORS
The munmap() function will fail if:

[EINVAL] Addresses in the range [addr, addr + len) are outside the valid range for the
address space of a process.

EX [EINVAL] The len argument is 0.

EX [EINVAL] The addr argument is not a multiple of the page size as returned by sysconf().

EXAMPLES
None.

APPLICATION USAGE
The third form of EINVAL above is marked EX because it is defined as an optional error in the
POSIX Realtime Extension.

FUTURE DIRECTIONS
None.

SEE ALSO
mmap(), sysconf(), <signal.h>, <sys/mman.h>.

CHANGE HISTORY
First released in Issue 4, Version 2.

Issue 5
Moved from X/OPEN UNIX extension to BASE and aligned with munmap() in the POSIX
Realtime Extension. Specifically, the DESCRIPTION is extensively reworded and the SIGBUS
error is no longer permitted to be generated.

System Interfaces and Headers, Issue 5: Volume 1 561

nanosleep() System Interfaces

NAME
nanosleep — high resolution sleep (REALTIME)

SYNOPSIS
RT #include <time.h>

int nanosleep(const struct timespec * rqtp , struct timespec * rmtp);

DESCRIPTION
The nanosleep() function causes the current thread to be suspended from execution until either
the time interval specified by the rqtp argument has elapsed or a signal is delivered to the calling
thread and its action is to invoke a signal-catching function or to terminate the process. The
suspension time may be longer than requested because the argument value is rounded up to an
integer multiple of the sleep resolution or because of the scheduling of other activity by the
system. But, except for the case of being interrupted by a signal, the suspension time will not be
less than the time specified by rqtp, as measured by the system clock, CLOCK_REALTIME.

The use of the nanosleep() function has no effect on the action or blockage of any signal.

RETURN VALUE
If the nanosleep() function returns because the requested time has elapsed, its return value is
zero.

If the nanosleep() function returns because it has been interrupted by a signal, the function
returns a value of −1 and sets errno to indicate the interruption. If the rmtp argument is non-
NULL, the timespec structure referenced by it is updated to contain the amount of time
remaining in the interval (the requested time minus the time actually slept). If the rmtp
argument is NULL, the remaining time is not returned.

If nanosleep() fails, it returns a value of −1 and sets errno to indicate the error.

ERRORS
The nanosleep() function will fail if:

[EINTR] The nanosleep() function was interrupted by a signal.

[EINVAL] The rqtp argument specified a nanosecond value less than zero or greater than
or equal to 1000 million.

[ENOSYS] The nanosleep() function is not supported by this implementation.

EXAMPLES
None.

APPLICATION USAGE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
sleep(), <time.h>.

CHANGE HISTORY
First released in Issue 5.

Included for alignment with the POSIX Realtime Extension.

562 CAE Specification (1997)

System Interfaces nextafter()

NAME
nextafter — next representable double-precision floating-point number

SYNOPSIS
EX #include <math.h>

double nextafter(double x, double y);

DESCRIPTION
The nextafter() function computes the next representable double-precision floating-point value
following x in the direction of y. Thus, if y is less than x, nextafter() returns the largest
representable floating-point number less than x.

An application wishing to check for error situations should set errno to 0 before calling
nextafter(). If errno is non-zero on return, or the value NaN is returned, an error has occurred.

RETURN VALUE
The nextafter() function returns the next representable double-precision floating-point value
following x in the direction of y.

If x or y is NaN, then nextafter() returns NaN and may set errno to [EDOM].

If x is finite and the correct function value would overflow, HUGE_VAL is returned and errno is
set to [ERANGE].

ERRORS
The nextafter() function will fail if:

[ERANGE] The correct value would overflow.

The nextafter() function may fail if:

[EDOM] The x or y argument is NaN.

EXAMPLES
None.

APPLICATION USAGE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
<math.h>.

CHANGE HISTORY
First released in Issue 4, Version 2.

Issue 5
Moved from X/OPEN UNIX extension to BASE.

System Interfaces and Headers, Issue 5: Volume 1 563

nftw() System Interfaces

NAME
nftw — walk a file tree

SYNOPSIS
EX #include <ftw.h>

int nftw(const char * path , int (* fn)(const char *,
const struct stat *, int, struct FTW *), int depth , int flags);

DESCRIPTION
The nftw() function recursively descends the directory hierarchy rooted in path . The nftw()
function has a similar effect to ftw() except that it takes an additional argument flags, which is a
bitwise inclusive-OR of zero or more of the following flags:

FTW_CHDIR If set, nftw() will change the current working directory to each directory as it
reports files in that directory. If clear, nftw() will not change the current
working directory.

FTW_DEPTH If set, nftw() will report all files in a directory before reporting the directory
itself. If clear, nftw() will report any directory before reporting the files in that
directory.

FTW_MOUNT If set, nftw() will only report files in the same file system as path . If clear,
nftw() will report all files encountered during the walk.

FTW_PHYS If set, nftw() performs a physical walk and does not follow symbolic links. If
clear, nftw() will follow links instead of reporting them, and will not report
the same file twice.

At each file it encounters, nftw() calls the user-supplied function fn() with four arguments:

• The first argument is the pathname of the object.

• The second argument is a pointer to the stat buffer containing information on the object.

• The third argument is an integer giving additional information. Its value is one of the
following:

FTW_F The object is a file.

FTW_D The object is a directory.

FTW_DP The object is a directory and subdirectories have been visited. (This condition
will only occur if the FTW_DEPTH flag is included in flags.)

FTW_SL The object is a symbolic link. (This condition will only occur if the FTW_PHYS
flag is included in flags.)

FTW_SLN The object is a symbolic link that does not name an existing file. (This
condition will only occur if the FTW_PHYS flag is not included in flags.)

FTW_DNR The object is a directory that cannot be read. The fn() function will not be
called for any of its descendants.

FTW_NS The stat() function failed on the object because of lack of appropriate
permission. The stat buffer passed to fn() is undefined. Failure of stat() for any
other reason is considered an error and nftw() returns −1.

• The fourth argument is a pointer to an FTW structure. The value of base is the offset of the
object’s filename in the pathname passed as the first argument to fn(). The value of level
indicates depth relative to the root of of the walk, where the root level is 0.

564 CAE Specification (1997)

System Interfaces nftw()

The argument depth sets the maximum number of file descriptors that will be used by nftw()
while traversing the file tree. At most one file descriptor will be used for each directory level.

RETURN VALUE
The nftw() function continues until the first of the following conditions occurs:

• An invocation of fn() returns a non-zero value, in which case nftw() returns that value.

• The nftw() function detects an error other than [EACCES] (see FTW_DNR and FTW_NS
above), in which case nftw() returns −1 and sets errno to indicate the error.

• The tree is exhausted, in which case nftw() returns 0.

ERRORS
The nftw() function will fail if:

[EACCES] Search permission is denied for any component of path or read permission is
denied for path, or fn() returns −1 and does not reset errno.

[ENAMETOOLONG]
The length of the path string exceeds {PATH_MAX}, or a pathname component
is longer than {NAME_MAX}.

[ENOENT] A component of path does not name an existing file or path is an empty string.

[ENOTDIR] A component of path is not a directory.

The nftw() function may fail if:

[ELOOP] Too many symbolic links were encountered in resolving path.

[EMFILE] {OPEN_MAX} file descriptors are currently open in the calling process.

[ENAMETOOLONG]
Pathname resolution of a symbolic link produced an intermediate result
whose length exceeds {PATH_MAX}.

[ENFILE] Too many files are currently open in the system.

In addition, errno may be set if the function pointed by fn() causes errno to be set.

EXAMPLES
None.

APPLICATION USAGE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
lstat(), opendir(), readdir(), stat(), <ftw.h>.

CHANGE HISTORY
First released in Issue 4, Version 2.

Issue 5
Moved from X/OPEN UNIX extension to BASE.

In the DESCRIPTION, the definition of the depth argument is clarified.

System Interfaces and Headers, Issue 5: Volume 1 565

nice() System Interfaces

NAME
nice — change nice value of a process

SYNOPSIS
EX #include <unistd.h>

int nice(int incr);

DESCRIPTION
The nice() function adds the value of incr to the nice value of the calling process. A process’ nice
value is a non-negative number for which a more positive value results in less favourable
scheduling.

A maximum nice value of 2 * {NZERO} −1 and a minimum nice value of 0 are imposed by the
system. Requests for values above or below these limits result in the nice value being set to the
corresponding limit. Only a process with appropriate privileges can lower the nice value.

RT Calling the nice() function has no effect on the priority of processes or threads with policy
SCHED_FIFO or SCHED_RR. The effect on processes or threads with other scheduling policies
is implementation-dependent.

The nice value set with nice() is applied to the process. If the process is multi-threaded, the nice
value affects all system scope threads in the process.

RETURN VALUE
Upon successful completion, nice() returns the new nice value minus {NZERO}. Otherwise, −1
is returned, the process’ nice value is not changed, and errno is set to indicate the error.

ERRORS
The nice() function will fail if:

[EPERM] The incr argument is negative and the calling process does not have
appropriate privileges.

EXAMPLES
None.

APPLICATION USAGE
As −1 is a permissible return value in a successful situation, an application wishing to check for
error situations should set errno to 0, then call nice(), and if it returns −1, check to see if errno is
non-zero.

FUTURE DIRECTIONS
None.

SEE ALSO
<limits.h>, <unistd.h>.

CHANGE HISTORY
First released in Issue 1.

Derived from Issue 1 of the SVID.

Issue 4
The following changes are incorporated in this issue:

• The <unistd.h> header is added to the SYNOPSIS section.

• A statement is added to the DESCRIPTION indicating that the nice value can only be
lowered by a process with appropriate privileges.

566 CAE Specification (1997)

System Interfaces nice()

Issue 4, Version 2
The RETURN VALUE section is updated for X/OPEN UNIX conformance to define that the
process’ nice value is not changed if an error is detected.

Issue 5
A statement is added to the description indicating the effects of this function on the different
scheduling policies and multi-threaded processes.

System Interfaces and Headers, Issue 5: Volume 1 567

nl_langinfo() System Interfaces

NAME
nl_langinfo — language information

SYNOPSIS
EX #include <langinfo.h>

char *nl_langinfo(nl_item item);

DESCRIPTION
The nl_langinfo () function returns a pointer to a string containing information relevant to the
particular language or cultural area defined in the program’s locale (see <langinfo.h>). The
manifest constant names and values of item are defined in <langinfo.h>. For example:

nl_langinfo (ABDAY_1)

would return a pointer to the string ‘‘Dom’’ if the identified language was Portuguese, and
‘‘Sun’’ if the identified language was English.

Calls to setlocale () with a category corresponding to the category of item (see <langinfo.h>), or to
the category LC_ALL, may overwrite the array pointed to by the return value.

This interface need not be reentrant.

RETURN VALUE
In a locale where langinfo data is not defined, nl_langinfo () returns a pointer to the corresponding
string in the POSIX locale. In all locales, nl_langinfo () returns a pointer to an empty string if item
contains an invalid setting.

This pointer may point to static data that may be overwritten on the next call.

ERRORS
No errors are defined.

EXAMPLES
None.

APPLICATION USAGE
The array pointed to by the return value should not be modified by the program, but may be
modified by further calls to nl_langinfo ().

FUTURE DIRECTIONS
None.

SEE ALSO
setlocale (), <langinfo.h>, <nl_types.h>, the XBD specification, Chapter 5, Locale.

CHANGE HISTORY
First released in Issue 2.

Issue 4
The <nl_types.h> header is removed from the SYNOPSIS section.

Issue 5
The last paragraph of the DESCRIPTION is moved from the APPLICATION USAGE section.

A note indicating that this interface need not be reentrant is added to the DESCRIPTION.

568 CAE Specification (1997)

System Interfaces nrand48()

NAME
nrand48 — generate uniformly distributed pseudo-random non-negative long integers

SYNOPSIS
EX #include <stdlib.h>

long int nrand48(unsigned short int xsubi [3]);

DESCRIPTION
Refer to drand48().

CHANGE HISTORY
First released in Issue 1.

Derived from Issue 1 of the SVID.

Issue 4
The declaration of xsubi is expanded to unsigned short int.

System Interfaces and Headers, Issue 5: Volume 1 569

open() System Interfaces

NAME
open — open a file

SYNOPSIS
OH #include <sys/types.h>

#include <sys/stat.h>
#include <fcntl.h>

int open(const char * path , int oflag , . . .);

DESCRIPTION
The open() function establishes the connection between a file and a file descriptor. It creates an
open file description that refers to a file and a file descriptor that refers to that open file
description. The file descriptor is used by other I/O functions to refer to that file. The path
argument points to a pathname naming the file.

The open() function will return a file descriptor for the named file that is the lowest file
descriptor not currently open for that process. The open file description is new, and therefore
the file descriptor does not share it with any other process in the system. The FD_CLOEXEC file
descriptor flag associated with the new file descriptor will be cleared.

The file offset used to mark the current position within the file is set to the beginning of the file.

The file status flags and file access modes of the open file description will be set according to the
value of oflag .

Values for oflag are constructed by a bitwise-inclusive-OR of flags from the following list,
defined in <fcntl.h>. Applications must specify exactly one of the first three values (file access
modes) below in the value of oflag :

O_RDONLY Open for reading only.

O_WRONLY Open for writing only.

O_RDWR Open for reading and writing. The result is undefined if this flag is applied to
a FIFO.

Any combination of the following may be used:

O_APPEND If set, the file offset will be set to the end of the file prior to each write.

O_CREAT If the file exists, this flag has no effect except as noted under O_EXCL below.
Otherwise, the file is created; the user ID of the file is set to the effective user

FIPS ID of the process; the group ID of the file is set to the group ID of the file’s
parent directory or to the effective group ID of the process; and the access
permission bits (see <sys/stat.h>) of the file mode are set to the value of the
third argument taken as type mode_t modified as follows: a bitwise-AND is
performed on the file-mode bits and the corresponding bits in the complement
of the process’ file mode creation mask. Thus, all bits in the file mode whose
corresponding bit in the file mode creation mask is set are cleared. When bits
other than the file permission bits are set, the effect is unspecified. The third
argument does not affect whether the file is open for reading, writing or for
both.

RT O_DSYNC Write I/O operations on the file descriptor complete as defined by
synchronised I/O data integrity completion

O_EXCL If O_CREAT and O_EXCL are set, open() will fail if the file exists. The check
for the existence of the file and the creation of the file if it does not exist will be
atomic with respect to other processes executing open() naming the same

570 CAE Specification (1997)

System Interfaces open()

filename in the same directory with O_EXCL and O_CREAT set. If O_CREAT
is not set, the effect is undefined.

O_NOCTTY If set and path identifies a terminal device, open() will not cause the terminal
device to become the controlling terminal for the process.

O_NONBLOCK When opening a FIFO with O_RDONLY or O_WRONLY set:

If O_NONBLOCK is set:

An open() for reading only will return without delay. An open() for
writing only will return an error if no process currently has the file open
for reading.

If O_NONBLOCK is clear:

An open() for reading only will block the calling thread until a thread
opens the file for writing. An open() for writing only will block the calling
thread until a thread opens the file for reading.

When opening a block special or character special file that supports non-
blocking opens:

If O_NONBLOCK is set:

The open() function will return without blocking for the device to be ready
or available. Subsequent behaviour of the device is device-specific.

If O_NONBLOCK is clear:

The open() function will block the calling thread until the device is ready
or available before returning.

Otherwise, the behaviour of O_NONBLOCK is unspecified.

RT O_RSYNC Read I/O operations on the file descriptor complete at the same level of
integrity as specified by the O_DSYNC and O_SYNC flags. If both O_DSYNC
and O_RSYNC are set in oflag, all I/O operations on the file descriptor
complete as defined by synchronised I/O data integrity completion. If both
O_SYNC and O_RSYNC are set in flags, all I/O operations on the file
descriptor complete as defined by synchronised I/O file integrity completion.

O_SYNC Write I/O operations on the file descriptor complete as defined by
synchronised I/O file integrity completion.

O_TRUNC If the file exists and is a regular file, and the file is successfully opened
O_RDWR or O_WRONLY, its length is truncated to 0 and the mode and
owner are unchanged. It will have no effect on FIFO special files or terminal
device files. Its effect on other file types is implementation-dependent. The
result of using O_TRUNC with O_RDONLY is undefined.

If O_CREAT is set and the file did not previously exist, upon successful completion, open() will
mark for update the st_atime, st_ctime and st_mtime fields of the file and the st_ctime and st_mtime
fields of the parent directory.

If O_TRUNC is set and the file did previously exist, upon successful completion, open() will
mark for update the st_ctime and st_mtime fields of the file.

RT If both the O_SYNC and O_DSYNC flags are set, the effect is as if only the O_SYNC flag was set.

EX If path refers to a STREAMS file, oflag may be constructed from O_NONBLOCK OR-ed with
either O_RDONLY, O_WRONLY or O_RDWR. Other flag values are not applicable to

System Interfaces and Headers, Issue 5: Volume 1 571

open() System Interfaces

STREAMS devices and have no effect on them. The value O_NONBLOCK affects the operation
of STREAMS drivers and certain functions applied to file descriptors associated with STREAMS
files. For STREAMS drivers, the implementation of O_NONBLOCK is device-specific.

If path names the master side of a pseudo-terminal device, then it is unspecified whether open()
locks the slave side so that it cannot be opened. Portable applications must call unlockpt () before
opening the slave side.

The largest value that can be represented correctly in an object of type off_t will be established
as the offset maximum in the open file description.

RETURN VALUE
Upon successful completion, the function will open the file and return a non-negative integer
representing the lowest numbered unused file descriptor. Otherwise, −1 is returned and errno is
set to indicate the error. No files will be created or modified if the function returns −1.

ERRORS
The open() function will fail if:

[EACCES] Search permission is denied on a component of the path prefix, or the file
exists and the permissions specified by oflag are denied, or the file does not
exist and write permission is denied for the parent directory of the file to be
created, or O_TRUNC is specified and write permission is denied.

[EEXIST] O_CREAT and O_EXCL are set, and the named file exists.

[EINTR] A signal was caught during open().

RT [EINVAL] The implementation does not support synchronised I/O for this file.

EX [EIO] The path argument names a STREAMS file and a hangup or error occurred
during the open().

[EISDIR] The named file is a directory and oflag includes O_WRONLY or O_RDWR.

EX [ELOOP] Too many symbolic links were encountered in resolving path.

[EMFILE] {OPEN_MAX} file descriptors are currently open in the calling process.

[ENAMETOOLONG]
FIPS The length of the path argument exceeds {PATH_MAX} or a pathname

component is longer than {NAME_MAX}.

[ENFILE] The maximum allowable number of files is currently open in the system.

[ENOENT] O_CREAT is not set and the named file does not exist; or O_CREAT is set and
either the path prefix does not exist or the path argument points to an empty
string.

EX [ENOSR] The path argument names a STREAMS-based file and the system is unable to
allocate a STREAM.

[ENOSPC] The directory or file system that would contain the new file cannot be
expanded, the file does not exist, and O_CREAT is specified.

[ENOTDIR] A component of the path prefix is not a directory.

572 CAE Specification (1997)

System Interfaces open()

[ENXIO] O_NONBLOCK is set, the named file is a FIFO, O_WRONLY is set and no
process has the file open for reading.

EX [ENXIO] The named file is a character special or block special file, and the device
associated with this special file does not exist.

EX [EOVERFLOW] The named file is a regular file and the size of the file cannot be represented
correctly in an object of type off_t.

[EROFS] The named file resides on a read-only file system and either O_WRONLY,
O_RDWR, O_CREAT (if file does not exist) or O_TRUNC is set in the oflag
argument.

The open() function may fail if:

EX [EAGAIN] The path argument names the slave side of a pseudo-terminal device that is
locked.

EX [EINVAL] The value of the oflag argument is not valid.

EX [ENAMETOOLONG]
Pathname resolution of a symbolic link produced an intermediate result
whose length exceeds {PATH_MAX}.

EX [ENOMEM] The path argument names a STREAMS file and the system is unable to allocate
resources.

EX [ETXTBSY] The file is a pure procedure (shared text) file that is being executed and oflag is
O_WRONLY or O_RDWR.

EXAMPLES
None.

APPLICATION USAGE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
chmod(), close(), creat(), dup(), fcntl(), lseek(), read(), umask(), unlockpt (), write(), <fcntl.h>,
<sys/stat.h>, <sys/types.h>.

CHANGE HISTORY
First released in Issue 1.

Derived from Issue 1 of the SVID.

Issue 4
The following changes are incorporated for alignment with the ISO POSIX-1 standard:

• The type of argument path is changed from char * to const char *.

• Various wording changes are made to the DESCRIPTION to improve clarity and to align the
text with the ISO POSIX-1 standard.

The following changes are incorporated for alignment with the FIPS requirements:

• In the DESCRIPTION, the description of O_CREAT is amended and the relevant part marked
as an extension.

• In the ERRORS section, the condition whereby [ENAMETOOLONG] will be returned if a
pathname component is larger that {NAME_MAX} is now defined as mandatory and marked

System Interfaces and Headers, Issue 5: Volume 1 573

open() System Interfaces

as an extension.

Other changes are incorporated as follows:

• The <sys/types.h> and <sys/stat.h> headers are now marked as optional (OH); these headers
do not need to be included on XSI-conformant systems.

• O_NDELAY is removed from the list of oflag values (this flag was marked WITHDRAWN in
Issue 3).

• The [ENXIO] error (for the condition where the file is a character or block special file and the
associated device does not exist) and the [EINVAL] error are marked as extensions.

Issue 4, Version 2
The following changes are incorporated for X/OPEN UNIX conformance:

• The DESCRIPTION is updated to define the use of open flags with STREAMS files, and to
identify special considerations when opening the master side of a pseudo-terminal.

• The [EIO], [ELOOP] and [ENOSR] errors are added to the ERRORS section as mandatory
errors; [EAGAIN], [ENAMETOOLONG] and [ENOMEM] are added as optional errors.

Issue 5
The DESCRIPTION is updated for alignment with the POSIX Realtime Extension and the POSIX
Threads Extension.

Large File Summit extensions added.

574 CAE Specification (1997)

System Interfaces opendir()

NAME
opendir — open a directory

SYNOPSIS
OH #include <sys/types.h>

#include <dirent.h>

DIR *opendir(const char * dirname);

DESCRIPTION
The opendir() function opens a directory stream corresponding to the directory named by the
dirname argument. The directory stream is positioned at the first entry. If the type DIR, is
implemented using a file descriptor, applications will only be able to open up to a total of
{OPEN_MAX} files and directories. A successful call to any of the exec functions will close any
directory streams that are open in the calling process.

RETURN VALUE
Upon successful completion, opendir() returns a pointer to an object of type DIR. Otherwise, a
null pointer is returned and errno is set to indicate the error.

ERRORS
The opendir() function will fail if:

[EACCES] Search permission is denied for the component of the path prefix of dirname or
read permission is denied for dirname.

EX [ELOOP] Too many symbolic links were encountered in resolving path.

FIPS [ENAMETOOLONG]
The length of the dirname argument exceeds {PATH_MAX}, or a pathname
component is longer than {NAME_MAX}.

[ENOENT] A component of dirname does not name an existing directory or dirname is an
empty string.

[ENOTDIR] A component of dirname is not a directory.

The opendir() function may fail if:

[EMFILE] {OPEN_MAX} file descriptors are currently open in the calling process.

EX [ENAMETOOLONG]
Pathname resolution of a symbolic link produced an intermediate result
whose length exceeds {PATH_MAX}.

[ENFILE] Too many files are currently open in the system.

EXAMPLES
None.

APPLICATION USAGE
The opendir() function should be used in conjunction with readdir(), closedir() and rewinddir() to
examine the contents of the directory (see the EXAMPLES section in readdir()). This method is
recommended for portability.

FUTURE DIRECTIONS
None.

SEE ALSO
closedir(), lstat(), readdir(), rewinddir(), symlink(), <dirent.h>, <limits.h>, <sys/types.h>.

System Interfaces and Headers, Issue 5: Volume 1 575

opendir() System Interfaces

CHANGE HISTORY
First released in Issue 2.

Issue 4
The following changes are incorporated for alignment with the ISO POSIX-1 standard:

• The type of argument dirname is changed from char * to const char *.

• The generation of an [ENOENT] error when dirname points to an empty string is made
mandatory.

The following change is incorporated for alignment with the FIPS requirements:

• In the ERRORS section, the condition whereby [ENAMETOOLONG] will be returned if a
pathname component is larger that {NAME_MAX} is now defined as mandatory and marked
as an extension.

Other changes are incorporated as follows:

• The <sys/types.h> header is now marked as optional (OH); this header need not be included
on XSI-conformant systems.

• In the DESCRIPTION, the following sentence is moved to the XBD specification:

The type DIR, which is defined in <dirent.h>, represents a directory stream, which is an
ordered sequence of all directory entries in a particular directory.

Issue 4, Version 2
The ERRORS section is updated for X/OPEN UNIX conformance as follows:

• It states that [ELOOP] will be returned if too many symbolic links are encountered during
pathname resolution.

• A second [ENAMETOOLONG] condition is defined that may report excessive length of an
intermediate result of pathname resolution of a symbolic link.

576 CAE Specification (1997)

System Interfaces openlog()

NAME
openlog — open a connection to the logging facility

SYNOPSIS
EX #include <syslog.h>

void openlog(const char * ident , int logopt , int facility);

DESCRIPTION
Refer to closelog ().

CHANGE HISTORY
First released in Issue 4, Version 2.

Issue 5
Moved from X/OPEN UNIX extension to BASE.

System Interfaces and Headers, Issue 5: Volume 1 577

optarg System Interfaces

NAME
optarg, opterr, optind, optopt — options parsing variables

SYNOPSIS
#include <stdio.h>

extern char *optarg;
extern int opterr, optind, optopt;

DESCRIPTION
Refer to getopt().

CHANGE HISTORY
First released in Issue 1.

Originally derived from Issue 1 of the SVID.

Issue 4
Entry derived from getopt() in Issue 3, with the following change:

• Item optopt is added to the list of external data items.

578 CAE Specification (1997)

System Interfaces pathconf()

NAME
pathconf — get configurable pathname variables

SYNOPSIS
#include <unistd.h>

long int pathconf(const char * path , int name);

DESCRIPTION
Refer to fpathconf ().

CHANGE HISTORY
First released in Issue 3.

Entry included for alignment with the POSIX.1-1988 standard.

Issue 4
The following changes gave been made for alignment with the ISO POSIX-1 standard:

• The type of argument path is changed from char * to const char *. Also the return value of
both functions is changed from long to long int.

• In the DESCRIPTION, the words ‘‘The behaviour is undefined if’’ have been replaced by ‘‘it
is unspecified whether an implementation supports an association of the variable name with
the specified file’’ in notes 2, 4 and 6.

• In the RETURN VALUE section, errors associated with the use of path and fildes, when an
implementation does not support the requested association, are now specified separately.

• The requirement that errno be set to indicate the error is added.

The following change is incorporated for alignment with the FIPS requirements:

• In the ERRORS section, the condition whereby [ENAMETOOLONG] will be returned if a
pathname component is larger that {NAME_MAX} is now defined as mandatory and marked
as an extension.

Issue 4, Version 2
The ERRORS section is updated for X/OPEN UNIX conformance as follows:

• It states that [ELOOP] will be returned if too many symbolic links are encountered during
pathname resolution.

• A second [ENAMETOOLONG] condition is defined that may report excessive length of an
intermediate result of pathname resolution of a symbolic link.

Issue 5
The DESCRIPTION is updated for alignment with the POSIX Realtime Extension.

Large File Summit extensions added.

System Interfaces and Headers, Issue 5: Volume 1 579

pause() System Interfaces

NAME
pause — suspend the thread until signal is received

SYNOPSIS
#include <unistd.h>

int pause(void);

DESCRIPTION
The pause() function suspends the calling thread until delivery of a signal whose action is either
to execute a signal-catching function or to terminate the process.

If the action is to terminate the process, pause() will not return.

If the action is to execute a signal-catching function, pause() will return after the signal-catching
function returns.

RETURN VALUE
Since pause() suspends thread execution indefinitely unless interrupted by a signal, there is no
successful completion return value. A value of −1 is returned and errno is set to indicate the
error.

ERRORS
The pause() function will fail if:

[EINTR] A signal is caught by the calling process and control is returned from the
signal-catching function.

EXAMPLES
None.

APPLICATION USAGE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
sigsuspend(), <unistd.h>.

CHANGE HISTORY
First released in Issue 1.

Derived from Issue 1 of the SVID.

Issue 4
The following change is incorporated for alignment with the ISO POSIX-1 standard:

• The argument list is explicitly defined as void.

Other changes are incorporated as follows:

• The <unistd.h> header is added to the SYNOPSIS section.

• In the RETURN VALUE section, the text is expanded to indicate that process execution is
suspended indefinitely ‘‘unless interrupted by a signal’’.

Issue 5
The DESCRIPTION is updated for alignment with the POSIX Threads Extension.

580 CAE Specification (1997)

System Interfaces pclose()

NAME
pclose — close a pipe stream to or from a process

SYNOPSIS
#include <stdio.h>

int pclose(FILE * stream);

DESCRIPTION
The pclose() function closes a stream that was opened by popen(), waits for the command to
terminate, and returns the termination status of the process that was running the command
language interpreter. However, if a call caused the termination status to be unavailable to
pclose(), then pclose() returns −1 with errno set to [ECHILD] to report this situation; this can
happen if the application calls one of the following functions:

• wait()

• waitpid () with a pid argument less than or equal to 0 or equal to the process ID of the
command line interpreter

• any other function not defined in this specification that could do one of the above.

In any case, pclose() will not return before the child process created by popen() has terminated.

If the command language interpreter cannot be executed, the child termination status returned
by pclose() will be as if the command language interpreter terminated using exit(127) or
_exit(127).

The pclose() function will not affect the termination status of any child of the calling process
other than the one created by popen() for the associated stream.

If the argument stream to pclose() is not a pointer to a stream created by popen(), the result of
pclose() is undefined.

RETURN VALUE
Upon successful return, pclose() returns the termination status of the command language
interpreter. Otherwise, pclose() returns −1 and sets errno to indicate the error.

ERRORS
The pclose() function will fail if:

[ECHILD] The status of the child process could not be obtained, as described above.

EXAMPLES
None.

APPLICATION USAGE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
fork (), popen(), waitpid (), <stdio.h>.

System Interfaces and Headers, Issue 5: Volume 1 581

pclose() System Interfaces

CHANGE HISTORY
First released in Issue 1.

Derived from Issue 1 of the SVID.

Issue 4
The following changes are incorporated for alignment with the ISO POSIX-2 standard:

• The interface is no longer marked as an extension.

• The simple DESCRIPTION given in Issue 3 is replaced with a more complete description in
this issue. In particular, interactions between this function and wait() and waitpid () are
defined.

582 CAE Specification (1997)

System Interfaces perror()

NAME
perror — write error messages to standard error

SYNOPSIS
#include <stdio.h>

void perror(const char * s);

DESCRIPTION
The perror() function maps the error number accessed through the symbol errno to a language-
dependent error message, which is written to the standard error stream as follows: first (if s is
not a null pointer and the character pointed to by s is not the null byte), the string pointed to by s
followed by a colon and a space character; then an error message string followed by a newline
character. The contents of the error message strings are the same as those returned by strerror()
with argument errno.

The perror() function will mark the file associated with the standard error stream as having been
written (st_ctime , st_mtime marked for update) at some time between its successful completion
and exit(), abort(), or the completion of fflush() or fclose() on stderr.

The perror() function does not change the orientation of the standard error stream.

RETURN VALUE
The perror() function returns no value.

ERRORS
No errors are defined.

EXAMPLES
None.

APPLICATION USAGE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
strerror(), <stdio.h>.

CHANGE HISTORY
First released in Issue 1.

Derived from Issue 1 of the SVID.

Issue 4
The following change is incorporated for alignment with the ISO POSIX-1 standard:

• A paragraph is added to the DESCRIPTION defining the effects of this function on the
st_ctime and st_mtime fields of the standard error stream.

The following change is incorporated for alignment with the ISO C standard:

• The type of argument s is changed from char * to const char *.

Another change is incorporated as follows:

• The language for error message strings was given as implementation-dependent in Issue 3.
In this issue, they are defined as language-dependent.

System Interfaces and Headers, Issue 5: Volume 1 583

perror() System Interfaces

Issue 5
A paragraph is added to the DESCRIPTION indicating that perror() does not change the
orientation of the standard error stream.

584 CAE Specification (1997)

System Interfaces pipe()

NAME
pipe — create an interprocess channel

SYNOPSIS
#include <unistd.h>

int pipe(int fildes [2]);

DESCRIPTION
The pipe() function will create a pipe and place two file descriptors, one each into the arguments
fildes[0] and fildes[1], that refer to the open file descriptions for the read and write ends of the
pipe. Their integer values will be the two lowest available at the time of the pipe() call. The
O_NONBLOCK and FD_CLOEXEC flags shall be clear on both file descriptors. (The fcntl()
function can be used to set both these flags.)

Data can be written to the file descriptor fildes[1] and read from file descriptor fildes[0]. A read
on the file descriptor fildes[0] will access data written to file descriptor fildes[1] on a first-in-first-

EX out basis. It is unspecified whether fildes[0] is also open for writing and whether fildes[1] is also
open for reading.

A process has the pipe open for reading (correspondingly writing) if it has a file descriptor open
that refers to the read end, fildes[0] (write end, fildes[1]).

Upon successful completion, pipe() will mark for update the st_atime , st_ctime and st_mtime
fields of the pipe.

RETURN VALUE
Upon successful completion, 0 is returned. Otherwise, −1 is returned and errno is set to indicate
the error.

ERRORS
The pipe() function will fail if:

[EMFILE] More than {OPEN_MAX} minus two file descriptors are already in use by this
process.

[ENFILE] The number of simultaneously open files in the system would exceed a
system-imposed limit.

EXAMPLES
None.

APPLICATION USAGE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
fcntl(), read(), write(), <fcntl.h>, <unistd.h>.

CHANGE HISTORY
First released in Issue 1.

Derived from Issue 1 of the SVID.

Issue 4
The following change is incorporated in this issue:

• The <unistd.h> header is added to the SYNOPSIS section.

System Interfaces and Headers, Issue 5: Volume 1 585

pipe() System Interfaces

Issue 4, Version 2
The DESCRIPTION is updated for X/OPEN UNIX conformance to indicate that certain
dispositions of fildes[0] and fildes[1] are unspecified.

586 CAE Specification (1997)

System Interfaces poll()

NAME
poll — input/output multiplexing

SYNOPSIS
EX #include <poll.h>

int poll(struct pollfd fds [], nfds_t nfds , int timeout);

DESCRIPTION
The poll () function provides applications with a mechanism for multiplexing input/output over
a set of file descriptors. For each member of the array pointed to by fds, poll () examines the
given file descriptor for the event(s) specified in events. The number of pollfd structures in the
fds array is specified by nfds. The poll () function identifies those file descriptors on which an
application can read or write data, or on which certain events have occurred.

The fds argument specifies the file descriptors to be examined and the events of interest for each
file descriptor. It is a pointer to an array with one member for each open file descriptor of
interest. The array’s members are pollfd structures within which fd specifies an open file
descriptor and events and revents are bitmasks constructed by OR-ing a combination of the
following event flags:

POLLIN Data other than high-priority data may be read without blocking. For
STREAMS, this flag is set in revents even if the message is of zero length.

POLLRDNORM Normal data (priority band equals 0) may be read without blocking. For
STREAMS, this flag is set in revents even if the message is of zero length.

POLLRDBAND Data from a non-zero priority band may be read without blocking. For
STREAMS, this flag is set in revents even if the message is of zero length.

POLLPRI High-priority data may be received without blocking. For STREAMS, this flag
is set in revents even if the message is of zero length.

POLLOUT Normal data (priority band equals 0) may be written without blocking.

POLLWRNORM Same as POLLOUT.

POLLWRBAND Priority data (priority band > 0) may be written. This event only examines
bands that have been written to at least once.

POLLERR An error has occurred on the device or stream. This flag is only valid in the
revents bitmask; it is ignored in the events member.

POLLHUP The device has been disconnected. This event and POLLOUT are mutually
exclusive; a stream can never be writable if a hangup has occurred. However,
this event and POLLIN, POLLRDNORM, POLLRDBAND or POLLPRI are not
mutually exclusive. This flag is only valid in the revents bitmask; it is ignored
in the events member.

POLLNVAL The specified fd value is invalid. This flag is only valid in the revents
member; it is ignored in the events member.

If the value of fd is less than 0, events is ignored and revents is set to 0 in that entry on return
from poll ().

In each pollfd structure, poll () clears the revents member except that where the application
requested a report on a condition by setting one of the bits of events listed above, poll () sets the
corresponding bit in revents if the requested condition is true. In addition, poll () sets the
POLLHUP, POLLERR and POLLNVAL flag in revents if the condition is true, even if the

System Interfaces and Headers, Issue 5: Volume 1 587

poll() System Interfaces

application did not set the corresponding bit in events.

If none of the defined events have occurred on any selected file descriptor, poll () waits at least
timeout milliseconds for an event to occur on any of the selected file descriptors. If the value of
timeout is 0, poll () returns immediately. If the value of timeout is −1, poll () blocks until a
requested event occurs or until the call is interrupted.

Implementations may place limitations on the granularity of timeout intervals. If the requested
timeout interval requires a finer granularity than the implementation supports, the actual
timeout interval will be rounded up to the next supported value.

The poll () function is not affected by the O_NONBLOCK flag.

The poll () function supports regular files, terminal and pseudo-terminal devices, STREAMS-
based files, FIFOs and pipes. The behaviour of poll () on elements of fds that refer to other types
of file is unspecified.

Regular files always poll TRUE for reading and writing.

RETURN VALUE
Upon successful completion, poll () returns a non-negative value. A positive value indicates the
total number of file descriptors that have been selected (that is, file descriptors for which the
revents member is non-zero). A value of 0 indicates that the call timed out and no file
descriptors have been selected. Upon failure, poll () returns −1 and sets errno to indicate the
error.

ERRORS
The poll () function will fail if:

[EAGAIN] The allocation of internal data structures failed but a subsequent request may
succeed.

[EINTR] A signal was caught during poll ().

[EINVAL] The nfds argument is greater than {OPEN_MAX}, or one of the fd members
refers to a STREAM or multiplexer that is linked (directly or indirectly)
downstream from a multiplexer.

EXAMPLES
None.

APPLICATION USAGE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
getmsg(), putmsg(), read(), select(), write(), <poll.h>, <stropts.h>, Section 2.5 on page 34.

CHANGE HISTORY
First released in Issue 4, Version 2.

Issue 5
Moved from X/OPEN UNIX extension to BASE.

The description of POLLWRBAND is updated.

588 CAE Specification (1997)

System Interfaces popen()

NAME
popen — initiate pipe streams to or from a process

SYNOPSIS
#include <stdio.h>

FILE *popen(const char * command, const char * mode);

DESCRIPTION
The popen() function executes the command specified by the string command. It creates a pipe
between the calling program and the executed command, and returns a pointer to a stream that
can be used to either read from or write to the pipe.

If the implementation supports the referenced XCU specification, the environment of the
executed command will be as if a child process were created within the popen() call using fork (),
and the child invoked the sh utility using the call:

execl(shell path , "sh", "-c", command, (char *)0);

where shell path is an unspecified pathname for the sh utility.

The popen() function ensures that any streams from previous popen() calls that remain open in
the parent process are closed in the new child process.

The mode argument to popen() is a string that specifies I/O mode:

1. If mode is r, when the child process is started its file descriptor STDOUT_FILENO will be
the writable end of the pipe, and the file descriptor fileno(stream) in the calling process,
where stream is the stream pointer returned by popen(), will be the readable end of the
pipe.

2. If mode is w, when the child process is started its file descriptor STDIN_FILENO will be the
readable end of the pipe, and the file descriptor fileno(stream) in the calling process, where
stream is the stream pointer returned by popen(), will be the writable end of the pipe.

3. If mode is any other value, the result is undefined.

After popen(), both the parent and the child process will be capable of executing independently
before either terminates.

Pipe streams are byte oriented.

RETURN VALUE
On successful completion, popen() returns a pointer to an open stream that can be used to read
or write to the pipe. Otherwise, it returns a null pointer and may set errno to indicate the error.

ERRORS
The popen() function may fail if:

EX [EMFILE] {FOPEN_MAX} or {STREAM_MAX} streams are currently open in the calling
process.

[EINVAL] The mode argument is invalid.

The popen() function may also set errno values as described by fork () or pipe().

System Interfaces and Headers, Issue 5: Volume 1 589

popen() System Interfaces

EXAMPLES
None.

APPLICATION USAGE
Because open files are shared, a mode r command can be used as an input filter and a mode w
command as an output filter.

Buffered reading before opening an input filter may leave the standard input of that filter
mispositioned. Similar problems with an output filter may be prevented by careful buffer
flushing, for example, with fflush().

A stream opened by popen() should be closed by pclose().

The behaviour of popen() is specified for values of mode of r and w. Other modes such as rb and
wb might be supported by specific implementations, but these would not be portable features.
Note that historical implementations of popen() only check to see if the first character of mode is
r. Thus, a mode of robert the robot would be treated as mode r, and a mode of anything else
would be treated as mode w.

If the application calls waitpid () or waitid () with a pid argument greater than 0, and it still has a
stream that was called with popen() open, it must ensure that pid does not refer to the process
started by popen().

To determine whether or not the XCU specification environment is present, use the function call:

sysconf(_SC_2_VERSION)

(See sysconf()).

FUTURE DIRECTIONS
None.

SEE ALSO
sh, pclose(), pipe(), sysconf(), system(), <stdio.h>.

CHANGE HISTORY
First released in Issue 1.

Derived from Issue 1 of the SVID.

Issue 4
The following changes are incorporated for alignment with the ISO POSIX-2 standard:

• The interface is no longer marked as an extension.

• The type of arguments command and mode are changed from char * to const char *.

• The DESCRIPTION is completely rewritten for alignment with the ISO POSIX-2 standard,
although it describes essentially the same functionality as Issue 3.

• The XCU specification’s sh utility is no longer required in all circumstances.

• The ERRORS section is added.

Another change is incorporated as follows:

• The APPLICATION USAGE section is extended. Only notes about buffer flushing are
retained from Issue 3.

Issue 5
A statement is added to the DESCRIPTION indicating that pipe streams are byte oriented.

590 CAE Specification (1997)

System Interfaces pow()

NAME
pow — power function

SYNOPSIS
#include <math.h>

double pow(double x, double y);

DESCRIPTION
The pow() function computes the value of x raised to the power y, xy . If x is negative, y must be
an integer value.

An application wishing to check for error situations should set errno to 0 before calling pow(). If
errno is non-zero on return, or the return value is NaN, an error has occurred.

RETURN VALUE
Upon successful completion, pow() returns the value of x raised to the power y.

If x is 0 and y is 0, 1.0 is returned.

EX If y is NaN, or y is non-zero and x is NaN, NaN is returned and errno may be set to [EDOM]. If y
is 0.0 and x is NaN, either 1.0 is returned, or NaN is returned and errno may be set to [EDOM].

EX If x is 0.0 and y is negative, −HUGE_VAL is returned and errno may be set to [EDOM] or
[ERANGE].

If the correct value would cause overflow, ±HUGE_VAL is returned, and errno is set to
[ERANGE].

If the correct value would cause underflow, 0 is returned and errno may be set to [ERANGE].

ERRORS
The pow() function will fail if:

[EDOM] The value of x is negative and y is non-integral.

[ERANGE] The value to be returned would have caused overflow.

The pow() function may fail if:

EX [EDOM] The value of x is 0.0 and y is negative, or y is NaN.

[ERANGE] The correct value would cause underflow.

EX No other errors will occur.

EXAMPLES
None.

APPLICATION USAGE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
exp(), isnan(), <math.h>.

CHANGE HISTORY
First released in Issue 1.

Derived from Issue 1 of the SVID.

System Interfaces and Headers, Issue 5: Volume 1 591

pow() System Interfaces

Issue 4
The following changes are incorporated in this issue:

• References to matherr() are removed.

• The RETURN VALUE and ERRORS sections are substantially rewritten for alignment with
the ISO C standard and to rationalise error handling in the mathematics functions.

• The return value specified for [EDOM] is marked as an extension.

Issue 5
The DESCRIPTION is updated to indicate how an application should check for an error. This
text was previously published in the APPLICATION USAGE section.

592 CAE Specification (1997)

System Interfaces pread()

NAME
pread — read from a file

SYNOPSIS
EX #include <unistd.h>

ssize_t pread(int fildes , void * buf , size_t nbyte , off_t offset);

DESCRIPTION
Refer to read().

CHANGE HISTORY
First released in Issue 5.

System Interfaces and Headers, Issue 5: Volume 1 593

printf() System Interfaces

NAME
printf — print formatted output

SYNOPSIS
#include <stdio.h>

int printf(const char * format , . . .);

DESCRIPTION
Refer to fprintf ().

CHANGE HISTORY
First released in Issue 1.

Derived from Issue 1 of the SVID.

Issue 4
The following change is incorporated for alignment with the ISO C standard:

• The type of the argument format is changed from char * to const char *.

Another change is incorporated as follows:

• The detailed description, including the printf() CHANGE HISTORY section is located under
fprintf ().

594 CAE Specification (1997)

System Interfaces pthread_atfork()

NAME
pthread_atfork — register fork handlers

SYNOPSIS
#include <sys/types.h>
#include <unistd.h>

int pthread_atfork(void (* prepare)(void), void (* parent)(void),
void (* child)(void));

DESCRIPTION
The pthread_atfork () function declares fork handlers to be called before and after fork (), in the
context of the thread that called fork (). The prepare fork handler is called before fork () processing
commences. The parent fork handle is called after fork () processing completes in the parent
process. The child fork handler is called after fork () processing completes in the child process. If
no handling is desired at one or more of these three points, the corresponding fork handler
address(es) may be set to NULL.

The order of calls to pthread_atfork () is significant. The parent and child fork handlers are called
in the order in which they were established by calls to pthread_atfork (). The prepare fork handlers
are called in the opposite order.

RETURN VALUE
Upon successful completion, pthread_atfork () returns a value of zero. Otherwise, an error
number is returned to indicate the error.

ERRORS
The pthread_atfork () function will fail if:

[ENOMEM] Insufficient table space exists to record the fork handler addresses.

The pthread_atfork () function will not return an error code of [EINTR].

EXAMPLES
None.

APPLICATION USAGE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
atexit(), fork (), <sys/types.h>

CHANGE HISTORY
First released in Issue 5.

Derived from POSIX Threads Extension, including PASC 1003.1c-95 #4.

System Interfaces and Headers, Issue 5: Volume 1 595

pthread_attr_getguardsize() System Interfaces

NAME
pthread_attr_getguardsize, pthread_attr_setguardsize — get or set the thread guardsize
attribute

SYNOPSIS
EX #include <pthread.h>

int pthread_attr_getguardsize(const pthread_attr_t *attr ,
size_t *guardsize);

int pthread_attr_setguardsize(pthread_attr_t *attr ,
size_t guardsize);

DESCRIPTION
The guardsize attribute controls the size of the guard area for the created thread’s stack. The
guardsize attribute provides protection against overflow of the stack pointer. If a thread’s stack is
created with guard protection, the implementation allocates extra memory at the overflow end
of the stack as a buffer against stack overflow of the stack pointer. If an application overflows
into this buffer an error results (possibly in a SIGSEGV signal being delivered to the thread).

The guardsize attribute is provided to the application for two reasons:

1. Overflow protection can potentially result in wasted system resources. An application that
creates a large number of threads, and which knows its threads will never overflow their
stack, can save system resources by turning off guard areas.

2. When threads allocate large data structures on the stack, large guard areas may be needed
to detect stack overflow.

The pthread_attr_getguardsize () function gets the guardsize attribute in the attr object. This
attribute is returned in the guardsize parameter.

The pthread_attr_setguardsize () function sets the guardsize attribute in the attr object. The new
value of this attribute is obtained from the guardsize parameter. If guardsize is zero, a guard area
will not be provided for threads created with attr. If guardsize is greater than zero, a guard area of
at least size guardsize bytes is provided for each thread created with attr.

A conforming implementation is permitted to round up the value contained in guardsize to a
multiple of the configurable system variable PAGESIZE (see <sys/mman.h>). If an
implementation rounds up the value of guardsize to a multiple of PAGESIZE, a call to
pthread_attr_getguardsize () specifying attr will store in the guardsize parameter the guard size
specified by the previous pthread_attr_setguardsize () function call.

The default value of the guardsize attribute is PAGESIZE bytes. The actual value of PAGESIZE is
implementation-dependent and may not be the same on all implementations.

If the stackaddr attribute has been set (that is, the caller is allocating and managing its own thread
stacks), the guardsize attribute is ignored and no protection will be provided by the
implementation. It is the responsibility of the application to manage stack overflow along with
stack allocation and management in this case.

RETURN VALUE
If successful, the pthread_attr_getguardsize () and pthread_attr_setsguardsize () functions return
zero. Otherwise, an error number is returned to indicate the error.

596 CAE Specification (1997)

System Interfaces pthread_attr_getguardsize()

ERRORS
The pthread_attr_getguardsize () and pthread_attr_setguardsize () functions will fail if:

[EINVAL] The attribute attr is invalid.

[EINVAL] The parameter guardsize is invalid.

[EINVAL] The parameter guardsize contains an invalid value.

EXAMPLES
None.

APPLICATION USAGE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
<pthread.h>.

CHANGE HISTORY
First released in Issue 5.

System Interfaces and Headers, Issue 5: Volume 1 597

pthread_attr_init() System Interfaces

NAME
pthread_attr_init, pthread_attr_destroy — initialise and destroy threads attribute object

SYNOPSIS
#include <pthread.h>

int pthread_attr_init(pthread_attr_t * attr);
int pthread_attr_destroy(pthread_attr_t * attr);

DESCRIPTION
The function pthread_attr_init () initialises a thread attributes object attr with the default value
for all of the individual attributes used by a given implementation.

The resulting attribute object (possibly modified by setting individual attribute values), when
used by pthread_create(), defines the attributes of the thread created. A single attributes object
can be used in multiple simultaneous calls to pthread_create().

The pthread_attr_destroy () function is used to destroy a thread attributes object. An
implementation may cause pthread_attr_destroy () to set attr to an implementation-dependent
invalid value. The behaviour of using the attribute after it has been destroyed is undefined.

RETURN VALUE
Upon successful completion, pthread_attr_init () and pthread_attr_destroy () return a value of 0.
Otherwise, an error number is returned to indicate the error.

ERRORS
The pthread_attr_init () function will fail if:

[ENOMEM] Insufficient memory exists to initialise the thread attributes object.

These functions will not return an error code of [EINTR].

EXAMPLES
None.

APPLICATION USAGE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
pthread_attr_setstackaddr (), pthread_attr_setstacksize (), pthread_attr_setdetachstate (),
pthread_create(), <pthread.h>.

CHANGE HISTORY
First released in Issue 5.

Included for alignment with the POSIX Threads Extension.

598 CAE Specification (1997)

System Interfaces pthread_attr_setdetachstate()

NAME
pthread_attr_setdetachstate, pthread_attr_getdetachstate — set and get detachstate attribute

SYNOPSIS
#include <pthread.h>

int pthread_attr_setdetachstate(pthread_attr_t * attr , int detachstate);
int pthread_attr_getdetachstate(const pthread_attr_t * attr ,

int * detachstate);

DESCRIPTION
The detachstate attribute controls whether the thread is created in a detached state. If the thread
is created detached, then use of the ID of the newly created thread by the pthread_detach () or
pthread_join () function is an error.

The pthread_attr_setdetachstate () and pthread_attr_getdetachstate (), respectively, set and get the
detachstate attribute in the attr object.

The detachstate can be set to either PTHREAD_CREATE_DETACHED or
PTHREAD_CREATE_JOINABLE. A value of PTHREAD_CREATE_DETACHED causes all
threads created with attr to be in the detached state, whereas using a value of
PTHREAD_CREATE_JOINABLE causes all threads created with attr to be in the joinable state.
The default value of the detachstate attribute is PTHREAD_CREATE_JOINABLE .

RETURN VALUE
Upon successful completion, pthread_attr_setdetachstate () and pthread_attr_getdetachstate () return
a value of 0. Otherwise, an error number is returned to indicate the error.

The pthread_attr_getdetachstate () function stores the value of the detachstate attribute in detachstate
if successful.

ERRORS
The pthread_attr_setdetachstate () function will fail if:

[EINVAL] The value of detachstate was not valid

These functions will not return an error code of [EINTR].

EXAMPLES
None.

APPLICATION USAGE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
pthread_attr_init (), pthread_attr_setstackaddr (), pthread_attr_setstacksize (), pthread_create(),
<pthread.h>.

CHANGE HISTORY
First released in Issue 5.

Included for alignment with the POSIX Threads Extension.

System Interfaces and Headers, Issue 5: Volume 1 599

pthread_attr_setinheritsched() System Interfaces

NAME
pthread_attr_setinheritsched, pthread_attr_getinheritsched — set and get inheritsched attribute
(REALTIME THREADS)

SYNOPSIS
RTT #include <pthread.h>

int pthread_attr_setinheritsched(pthread_attr_t * attr ,
int inheritsched);

int pthread_attr_getinheritsched(const pthread_attr_t * attr ,
int * inheritsched);

DESCRIPTION
The functions pthread_attr_setinheritsched () and pthread_attr_getinheritsched (), respectively, set
and get the inheritsched attribute in the attr argument.

When the attribute objects are used by pthread_create(), the inheritsched attribute determines how
the other scheduling attributes of the created thread are to be set:

PTHREAD_INHERIT_SCHED
Specifies that the scheduling policy and associated attributes are to be inherited from the
creating thread, and the scheduling attributes in this attr argument are to be ignored.

PTHREAD_EXPLICIT_SCHED
Specifies that the scheduling policy and associated attributes are to be set to the
corresponding values from this attribute object.

The symbols PTHREAD_INHERIT_SCHED and PTHREAD_EXPLICIT_SCHED are defined in
the header <pthread.h>.

RETURN VALUE
If successful, the pthread_attr_setinheritsched () and pthread_attr_getinheritsched () functions return
zero. Otherwise, an error number is returned to indicate the error.

ERRORS
The pthread_attr_setinheritsched () and pthread_attr_getinheritsched () functions will fail if:

[ENOSYS] The option _POSIX_THREAD_PRIORITY_SCHEDULING is not defined and
the implementation does not support the function.

The pthread_attr_setinheritsched () function may fail if:

[EINVAL] The value of the attribute being set is not valid.

[ENOTSUP] An attempt was made to set the attribute to an unsupported value.

EXAMPLES
None.

APPLICATION USAGE
After these attributes have been set, a thread can be created with the specified attributes using
pthread_create(). Using these routines does not affect the current running thread.

FUTURE DIRECTIONS
None.

SEE ALSO
pthread_attr_init (), pthread_attr_setscope (), pthread_attr_setschedpolicy (),
pthread_attr_setschedparam (), pthread_create(), <pthread.h>, pthread_setsched_param (), <sched.h>.

600 CAE Specification (1997)

System Interfaces pthread_attr_setinheritsched()

CHANGE HISTORY
First released in Issue 5.

Included for alignment with the POSIX Threads Extension.

Marked as part of the Realtime Threads Feature Group.

System Interfaces and Headers, Issue 5: Volume 1 601

pthread_attr_setschedparam() System Interfaces

NAME
pthread_attr_setschedparam, pthread_attr_getschedparam — set and get schedparam attribute

SYNOPSIS
#include <pthread.h>

int pthread_attr_setschedparam(pthread_attr_t * attr ,
const struct sched_param * param);

int pthread_attr_getschedparam(const pthread_attr_t * attr ,
struct sched_param * param);

DESCRIPTION
The functions pthread_attr_setschedparam () and pthread_attr_getschedparam (), respectively, set
and get the scheduling parameter attributes in the attr argument. The contents of the param
structure are defined in <sched.h>. For the SCHED_FIFO and SCHED_RR policies, the only
required member of param is sched_priority .

RETURN VALUE
If successful, the pthread_attr_setschedparam () and pthread_attr_getschedparam () functions return
zero. Otherwise, an error number is returned to indicate the error.

ERRORS
The pthread_attr_setschedparam () function may fail if:

[EINVAL] The value of the attribute being set is not valid.

[ENOTSUP] An attempt was made to set the attribute to an unsupported value.

The pthread_attr_setschedparam () and pthread_attr_getschedparam () functions will not return an
error code of [EINTR].

EXAMPLES
None.

APPLICATION USAGE
After these attributes have been set, a thread can be created with the specified attributes using
pthread_create(). Using these routines does not affect the current running thread.

FUTURE DIRECTIONS
None.

SEE ALSO
pthread_attr_init (), pthread_attr_setscope (), pthread_attr_setinheritsched (),
pthread_attr_setschedpolicy (), pthread_create(), <pthread.h>, pthread_setsched_param (), <sched.h>.

CHANGE HISTORY
First released in Issue 5.

Included for alignment with the POSIX Threads Extension.

602 CAE Specification (1997)

System Interfaces pthread_attr_setschedpolicy()

NAME
pthread_attr_setschedpolicy, pthread_attr_getschedpolicy — set and get schedpolicy attribute
(REALTIME THREADS)

SYNOPSIS
RTT #include <pthread.h>

int pthread_attr_setschedpolicy(pthread_attr_t * attr , int policy);
int pthread_attr_getschedpolicy(const pthread_attr_t * attr ,

int * policy);

DESCRIPTION
The functions pthread_attr_setschedpolicy () and pthread_attr_getschedpolicy (), respectively, set and
get the schedpolicy attribute in the attr argument.

The supported values of policy include SCHED_FIFO, SCHED_RR and SCHED_OTHER, which
are defined by the header <sched.h>. When threads executing with the scheduling policy
SCHED_FIFO or SCHED_RR are waiting on a mutex, they acquire the mutex in priority order
when the mutex is unlocked.

RETURN VALUE
If successful, the pthread_attr_setschedpolicy () and pthread_attr_getschedpolicy () functions return
zero. Otherwise, an error number is returned to indicate the error.

ERRORS
The pthread_attr_setschedpolicy () and pthread_attr_getschedpolicy () functions will fail if:

[ENOSYS] The option _POSIX_THREAD_PRIORITY_SCHEDULING is not defined and
the implementation does not support the function.

The pthread_attr_setschedpolicy () function may fail if:

[EINVAL] The value of the attribute being set is not valid.

[ENOTSUP] An attempt was made to set the attribute to an unsupported value.

EXAMPLES
None.

APPLICATION USAGE
After these attributes have been set, a thread can be created with the specified attributes using
pthread_create(). Using these routines does not affect the current running thread.

FUTURE DIRECTIONS
None.

SEE ALSO
pthread_attr_init (), pthread_attr_setscope (), pthread_attr_setinheritsched (),
pthread_attr_setschedparam (), pthread_create(), <pthread.h>, pthread_setsched_param (), <sched.h>.

CHANGE HISTORY
First released in Issue 5.

Included for alignment with the POSIX Threads Extension.

Marked as part of the Realtime Threads Feature Group.

System Interfaces and Headers, Issue 5: Volume 1 603

pthread_attr_setscope() System Interfaces

NAME
pthread_attr_setscope, pthread_attr_getscope — set and get contentionscope attribute
(REALTIME THREADS)

SYNOPSIS
RTT #include <pthread.h>

int pthread_attr_setscope(pthread_attr_t * attr , int contentionscope);
int pthread_attr_getscope(const pthread_attr_t * attr ,

int * contentionscope);

DESCRIPTION
The pthread_attr_setscope () and pthread_attr_getscope () functions are used to set and get the
contentionscope attribute in the attr object.

The contentionscope attribute may have the values PTHREAD_SCOPE_SYSTEM, signifying
system scheduling contention scope, or PTHREAD_SCOPE_PROCESS, signifying process
scheduling contention scope. The symbols PTHREAD_SCOPE_SYSTEM and
PTHREAD_SCOPE_PROCESS are defined by the header <pthread.h>.

RETURN VALUE
If successful, the pthread_attr_setscope () and pthread_attr_getscope () functions return zero.
Otherwise, an error number is returned to indicate the error.

ERRORS
The pthread_attr_setscope () and pthread_attr_getscope () functions will fail if:

[ENOSYS] The option _POSIX_THREAD_PRIORITY_SCHEDULING is not defined and
the implementation does not support the function.

The pthread_attr_setscope (), function may fail if:

[EINVAL] The value of the attribute being set is not valid.

[ENOTSUP] An attempt was made to set the attribute to an unsupported value.

EXAMPLES
None.

APPLICATION USAGE
After these attributes have been set, a thread can be created with the specified attributes using
pthread_create(). Using these routines does not affect the current running thread.

FUTURE DIRECTIONS
None.

SEE ALSO
pthread_attr_init (), pthread_attr_setinheritsched (), pthread_attr_setschedpolicy (),
pthread_attr_setschedparam (), pthread_create(), <pthread.h>, pthread_setsched_param (), <sched.h>.

CHANGE HISTORY
First released in Issue 5.

Included for alignment with the POSIX Threads Extension.

Marked as part of the Realtime Threads Feature Group.

604 CAE Specification (1997)

System Interfaces pthread_attr_setstackaddr()

NAME
pthread_attr_setstackaddr, pthread_attr_getstackaddr — set and get stackaddr attribute

SYNOPSIS
#include <pthread.h>

int pthread_attr_setstackaddr(pthread_attr_t * attr , void * stackaddr);
int pthread_attr_getstackaddr(const pthread_attr_t * attr ,

void ** stackaddr);

DESCRIPTION
The functions pthread_attr_setstackaddr () and pthread_attr_getstackaddr (), respectively, set and get
the thread creation stackaddr attribute in the attr object.

The stackaddr attribute specifies the location of storage to be used for the created thread’s stack.
The size of the storage is at least PTHREAD_STACK_MIN.

RETURN VALUE
Upon successful completion, pthread_attr_setstackaddr () and pthread_attr_getstackaddr () return a
value of 0. Otherwise, an error number is returned to indicate the error.

The pthread_attr_getstackaddr () function stores the stackaddr attribute value in stackaddr if
successful.

ERRORS
No errors are defined.

These functions will not return an error code of [EINTR].

EXAMPLES
None.

APPLICATION USAGE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
pthread_attr_init (), pthread_attr_setdetachstate (), pthread_attr_setstacksize (), pthread_create(),
<limits.h>, <pthread.h>.

CHANGE HISTORY
First released in Issue 5.

Included for alignment with the POSIX Threads Extension.

System Interfaces and Headers, Issue 5: Volume 1 605

pthread_attr_setstacksize() System Interfaces

NAME
pthread_attr_setstacksize, pthread_attr_getstacksize — set and get stacksize attribute

SYNOPSIS
#include <pthread.h>

int pthread_attr_setstacksize(pthread_attr_t * attr , size_t stacksize);
int pthread_attr_getstacksize(const pthread_attr_t * attr ,

size_t * stacksize);

DESCRIPTION
The functions pthread_attr_setstacksize () and pthread_attr_getstacksize (), respectively, set and get
the thread creation stacksize attribute in the attr object.

The stacksize attribute defines the minimum stack size (in bytes) allocated for the created threads
stack.

RETURN VALUE
Upon successful completion, pthread_attr_setstacksize () and pthread_attr_getstacksize () return a
value of 0. Otherwise, an error number is returned to indicate the error. The
pthread_attr_getstacksize () function stores the stacksize attribute value in stacksize if successful.

ERRORS
The pthread_attr_setstacksize () function will fail if:

[EINVAL] The value of stacksize is less than PTHREAD_STACK_MIN or exceeds a
system-imposed limit.

These functions will not return an error code of [EINTR].

EXAMPLES
None.

APPLICATION USAGE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
pthread_attr_init (), pthread_attr_setstackaddr (), pthread_attr_setdetachstate (), pthread_create(),
<limits.h>, <pthread.h>.

CHANGE HISTORY
First released in Issue 5.

Included for alignment with the POSIX Threads Extension.

606 CAE Specification (1997)

System Interfaces pthread_cancel()

NAME
pthread_cancel — cancel execution of a thread

SYNOPSIS
#include <pthread.h>

int pthread_cancel(pthread_t thread);

DESCRIPTION
The pthread_cancel () function requests that thread be canceled. The target threads cancelability
state and type determines when the cancellation takes effect. When the cancellation is acted on,
the cancellation cleanup handlers for thread are called. When the last cancellation cleanup
handler returns, the thread-specific data destructor functions are called for thread . When the last
destructor function returns, thread is terminated.

The cancellation processing in the target thread runs asynchronously with respect to the calling
thread returning from pthread_cancel ().

RETURN VALUE
If successful, the pthread_cancel () function returns zero. Otherwise, an error number is returned
to indicate the error.

ERRORS
The ptread_cancel () function may fail if:

[ESRCH] No thread could be found corresponding to that specified by the given thread
ID.

The pthread_cancel () function will not return an error code of [EINTR].

EXAMPLES
None.

APPLICATION USAGE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
pthread_exit (), pthread_join (), pthread_setcancelstate (), pthread_cond_wait (),
pthread_cond_timedwait (), <pthread.h>.

CHANGE HISTORY
First released in Issue 5.

Included for alignment with the POSIX Threads Extension.

System Interfaces and Headers, Issue 5: Volume 1 607

pthread_cleanup_push() System Interfaces

NAME
pthread_cleanup_push, pthread_cleanup_pop — establish cancellation handlers

SYNOPSIS
#include <pthread.h>

void pthread_cleanup_push(void (* routine)(void*), void * arg);
void pthread_cleanup_pop(int execute);

DESCRIPTION
The pthread_cleanup_push () function pushes the specified cancellation cleanup handler routine
onto the calling thread’s cancellation cleanup stack. The cancellation cleanup handler is popped
from the cancellation cleanup stack and invoked with the argument arg when: (a) the thread
exits (that is, calls pthread_exit ()), (b) the thread acts upon a cancellation request, or (c) the thread
calls pthread_cleanup_pop () with a non-zero execute argument.

The pthread_cleanup_pop () function removes the routine at the top of the calling thread’s
cancellation cleanup stack and optionally invokes it (if execute is non-zero).

These functions may be implemented as macros and will appear as statements and in pairs
within the same lexical scope (that is, the pthread_cleanup_push () macro may be thought to
expand to a token list whose first token is ‘{’ with pthread_cleanup_pop () expanding to a token list
whose last token is the corresponding ‘}’).

The effect of calling longjmp() or siglongjmp () is undefined if there have been any calls to
pthread_cleanup_push () or pthread_cleanup_pop () made without the matching call since the jump
buffer was filled. The effect of calling longjmp() or siglongjmp () from inside a cancellation
cleanup handler is also undefined unless the jump buffer was also filled in the cancellation
cleanup handler.

RETURN VALUE
The pthread_cleanup_push () and pthread_cleanup_pop () functions return no value.

ERRORS
No errors are defined.

These functions will not return an error code of [EINTR].

EXAMPLES
None.

APPLICATION USAGE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
pthread_cancel (), pthread_setcancelstate (), <pthread.h>.

CHANGE HISTORY
First released in Issue 5.

Included for alignment with the POSIX Threads Extension.

608 CAE Specification (1997)

System Interfaces pthread_cond_init()

NAME
pthread_cond_init, pthread_cond_destroy — initialise and destroy condition variables

SYNOPSIS
#include <pthread.h>

int pthread_cond_init(pthread_cond_t * cond ,
const pthread_condattr_t * attr);

int pthread_cond_destroy(pthread_cond_t * cond);
pthread_cond_t cond = PTHREAD_COND_INITIALIZER;

DESCRIPTION
The function pthread_cond_init () initialises the condition variable referenced by cond with
attributes referenced by attr . If attr is NULL, the default condition variable attributes are used;
the effect is the same as passing the address of a default condition variable attributes object.
Upon successful initialisation, the state of the condition variable becomes initialised.

Attempting to initialise an already initialised condition variable results in undefined behaviour.

The function pthread_cond_destroy () destroys the given condition variable specified by cond ; the
object becomes, in effect, uninitialised. An implementation may cause pthread_cond_destroy () to
set the object referenced by cond to an invalid value. A destroyed condition variable object can
be re-initialised using pthread_cond_init (); the results of otherwise referencing the object after it
has been destroyed are undefined.

It is safe to destroy an initialised condition variable upon which no threads are currently
blocked. Attempting to destroy a condition variable upon which other threads are currently
blocked results in undefined behaviour.

In cases where default condition variable attributes are appropriate, the macro
PTHREAD_COND_INITIALIZER can be used to initialise condition variables that are statically
allocated. The effect is equivalent to dynamic initialisation by a call to pthread_cond_init () with
parameter attr specified as NULL, except that no error checks are performed.

RETURN VALUE
If successful, the pthread_cond_init () and pthread_cond_destroy () functions return zero.
Otherwise, an error number is returned to indicate the error. The [EBUSY] and [EINVAL] error
checks, if implemented, act as if they were performed immediately at the beginning of
processing for the function and caused an error return prior to modifying the state of the
condition variable specified by cond .

ERRORS
The pthread_cond_init () function will fail if:

[EAGAIN] The system lacked the necessary resources (other than memory) to initialise
another condition variable.

[ENOMEM] Insufficient memory exists to initialise the condition variable.

The pthread_cond_init () function may fail if:

[EBUSY] The implementation has detected an attempt to re-initialise the object
referenced by cond , a previously initialised, but not yet destroyed, condition
variable.

[EINVAL] The value specified by attr is invalid.

System Interfaces and Headers, Issue 5: Volume 1 609

pthread_cond_init() System Interfaces

The pthread_cond_destroy () function may fail if:

[EBUSY] The implementation has detected an attempt to destroy the object referenced
by cond while it is referenced (for example, while being used in a
pthread_cond_wait () or pthread_cond_timedwait ()) by another thread.

[EINVAL] The value specified by cond is invalid.

These functions will not return an error code of [EINTR].

EXAMPLES
None.

APPLICATION USAGE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
pthread_cond_signal (), pthread_cond_broadcast (), pthread_cond_wait (), pthread_cond_timedwait (),
<pthread.h>.

CHANGE HISTORY
First released in Issue 5.

Included for alignment with the POSIX Threads Extension.

610 CAE Specification (1997)

System Interfaces pthread_cond_signal()

NAME
pthread_cond_signal, pthread_cond_broadcast — signal or broadcast a condition

SYNOPSIS
#include <pthread.h>

int pthread_cond_signal(pthread_cond_t * cond);
int pthread_cond_broadcast(pthread_cond_t * cond);

DESCRIPTION
These two functions are used to unblock threads blocked on a condition variable.

The pthread_cond_signal () call unblocks at least one of the threads that are blocked on the
specified condition variable cond (if any threads are blocked on cond).

The pthread_cond_broadcast () call unblocks all threads currently blocked on the specified
condition variable cond .

If more than one thread is blocked on a condition variable, the scheduling policy determines the
order in which threads are unblocked. When each thread unblocked as a result of a
pthread_cond_signal () or pthread_cond_broadcast () returns from its call to pthread_cond_wait () or
pthread_cond_timedwait (), the thread owns the mutex with which it called pthread_cond_wait () or
pthread_cond_timedwait (). The thread(s) that are unblocked contend for the mutex according to
the scheduling policy (if applicable), and as if each had called pthread_mutex_lock ().

The pthread_cond_signal () or pthread_cond_broadcast () functions may be called by a thread
whether or not it currently owns the mutex that threads calling pthread_cond_wait () or
pthread_cond_timedwait () have associated with the condition variable during their waits;
however, if predictable scheduling behaviour is required, then that mutex is locked by the
thread calling pthread_cond_signal () or pthread_cond_broadcast ().

The pthread_cond_signal () and pthread_cond_broadcast () functions have no effect if there are no
threads currently blocked on cond .

RETURN VALUE
If successful, the pthread_cond_signal () and pthread_cond_broadcast () functions return zero.
Otherwise, an error number is returned to indicate the error.

ERRORS
The pthread_cond_signal () and pthread_cond_broadcast () function may fail if:

[EINVAL] The value cond does not refer to an initialised condition variable.

These functions will not return an error code of [EINTR].

EXAMPLES
None.

APPLICATION USAGE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
pthread_cond_init (), pthread_cond_wait (), pthread_cond_timedwait (), <pthread.h>.

System Interfaces and Headers, Issue 5: Volume 1 611

pthread_cond_signal() System Interfaces

CHANGE HISTORY
First released in Issue 5.

Included for alignment with the POSIX Threads Extension.

612 CAE Specification (1997)

System Interfaces pthread_cond_wait()

NAME
pthread_cond_wait, pthread_cond_timedwait — wait on a condition

SYNOPSIS
#include <pthread.h>

int pthread_cond_wait(pthread_cond_t * cond);
int pthread_cond_timedwait(pthread_cond_t * cond ,

pthread_mutex_t * mutex , const struct timespec * abstime);

DESCRIPTION
The pthread_cond_wait () and pthread_cond_timedwait () functions are used to block on a condition
variable. They are called with mutex locked by the calling thread or undefined behaviour will
result.

These functions atomically release mutex and cause the calling thread to block on the condition
variable cond ; atomically here means ‘‘atomically with respect to access by another thread to the
mutex and then the condition variable’’. That is, if another thread is able to acquire the mutex
after the about-to-block thread has released it, then a subsequent call to pthread_cond_signal () or
pthread_cond_broadcast () in that thread behaves as if it were issued after the about-to-block
thread has blocked.

Upon successful return, the mutex has been locked and is owned by the calling thread.

When using condition variables there is always a boolean predicate involving shared variables
associated with each condition wait that is true if the thread should proceed. Spurious wakeups
from the pthread_cond_wait () or pthread_cond_timedwait () functions may occur. Since the return
from pthread_cond_wait () or pthread_cond_timedwait () does not imply anything about the value
of this predicate, the predicate should be re-evaluated upon such return.

The effect of using more than one mutex for concurrent pthread_cond_wait () or
pthread_cond_timedwait () operations on the same condition variable is undefined; that is, a
condition variable becomes bound to a unique mutex when a thread waits on the condition
variable, and this (dynamic) binding ends when the wait returns.

A condition wait (whether timed or not) is a cancellation point. When the cancelability enable
state of a thread is set to PTHREAD_CANCEL_DEFERRED, a side effect of acting upon a
cancellation request while in a condition wait is that the mutex is (in effect) re-acquired before
calling the first cancellation cleanup handler. The effect is as if the thread were unblocked,
allowed to execute up to the point of returning from the call to pthread_cond_wait () or
pthread_cond_timedwait (), but at that point notices the cancellation request and instead of
returning to the caller of pthread_cond_wait () or pthread_cond_timedwait (), starts the thread
cancellation activities, which includes calling cancellation cleanup handlers.

A thread that has been unblocked because it has been canceled while blocked in a call to
pthread_cond_wait () or pthread_cond_timedwait () does not consume any condition signal that
may be directed concurrently at the condition variable if there are other threads blocked on the
condition variable.

The pthread_cond_timedwait () function is the same as pthread_cond_wait () except that an error is
returned if the absolute time specified by abstime passes (that is, system time equals or exceeds
abstime) before the condition cond is signaled or broadcasted, or if the absolute time specified by
abstime has already been passed at the time of the call. When such time-outs occur,
pthread_cond_timedwait () will nonetheless release and reacquire the mutex referenced by mutex.
The function pthread_cond_timedwait () is also a cancellation point.

If a signal is delivered to a thread waiting for a condition variable, upon return from the signal
handler the thread resumes waiting for the condition variable as if it was not interrupted, or it

System Interfaces and Headers, Issue 5: Volume 1 613

pthread_cond_wait() System Interfaces

returns zero due to spurious wakeup.

RETURN VALUE
Except in the case of [ETIMEDOUT], all these error checks act as if they were performed
immediately at the beginning of processing for the function and cause an error return, in effect,
prior to modifying the state of the mutex specified by mutex or the condition variable specified
by cond .

Upon successful completion, a value of zero is returned. Otherwise, an error number is returned
to indicate the error.

ERRORS
The pthread_cond_timedwait () function will fail if:

[ETIMEDOUT] The time specified by abstime to pthread_cond_timedwait () has passed.

The pthread_cond_wait () and pthread_cond_timedwait () functions may fail if:

[EINVAL] The value specified by cond , mutex, or abstime is invalid.

[EINVAL] Different mutexes were supplied for concurrent pthread_cond_wait () or
pthread_cond_timedwait () operations on the same condition variable.

[EINVAL] The mutex was not owned by the current thread at the time of the call.

These functions will not return an error code of [EINTR].

EXAMPLES
None.

APPLICATION USAGE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
pthread_cond_signal (), pthread_cond_broadcast (), <pthread.h>.

CHANGE HISTORY
First released in Issue 5.

Included for alignment with the POSIX Threads Extension.

614 CAE Specification (1997)

System Interfaces pthread_condattr_getpshared()

NAME
pthread_condattr_getpshared, pthread_condattr_setpshared — get and set the process-shared
condition variable attributes

SYNOPSIS
#include <pthread.h>

int pthread_condattr_getpshared(const pthread_condattr_t * attr ,
int * pshared);

int pthread_condattr_setpshared(pthread_condattr_t * attr ,
int pshared);

DESCRIPTION
The pthread_condattr_getpshared () function obtains the value of the process-shared attribute from
the attributes object referenced by attr . The pthread_condattr_setpshared () function is used to set
the process-shared attribute in an initialised attributes object referenced by attr .

The process-shared attribute is set to PTHREAD_PROCESS_SHARED to permit a condition
variable to be operated upon by any thread that has access to the memory where the condition
variable is allocated, even if the condition variable is allocated in memory that is shared by
multiple processes. If the process-shared attribute is PTHREAD_PROCESS_PRIVATE, the
condition variable will only be operated upon by threads created within the same process as the
thread that initialised the condition variable; if threads of differing processes attempt to operate
on such a condition variable, the behaviour is undefined. The default value of the attribute is
PTHREAD_PROCESS_PRIVATE.

Additional attributes, their default values, and the names of the associated functions to get and
set those attribute values are implementation-dependent.

RETURN VALUE
If successful, the pthread_condattr_setpshared () function returns zero. Otherwise, an error
number is returned to indicate the error.

If successful, the pthread_condattr_getpshared () function returns zero and stores the value of the
process-shared attribute of attr into the object referenced by the pshared parameter. Otherwise, an
error number is returned to indicate the error.

ERRORS
The pthread_condattr_getpshared () and pthread_condattr_setpshared () functions may fail if:

[EINVAL] The value specified by attr is invalid.

The pthread_condattr_setpshared () function may fail if:

[EINVAL] The new value specified for the attribute is outside the range of legal values
for that attribute.

These functions will not return an error code of [EINTR].

EXAMPLES
None.

APPLICATION USAGE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
pthread_condattr_init (), pthread_create(), pthread_mutex_init (), pthread_cond_init (), <pthread.h>.

System Interfaces and Headers, Issue 5: Volume 1 615

pthread_condattr_getpshared() System Interfaces

CHANGE HISTORY
First released in Issue 5.

Included for alignment with the POSIX Threads Extension.

616 CAE Specification (1997)

System Interfaces pthread_condattr_init()

NAME
pthread_condattr_init, pthread_condattr_destroy — initialise and destroy condition variable
attributes object

SYNOPSIS
#include <pthread.h>

int pthread_condattr_init(pthread_condattr_t * attr);
int pthread_condattr_destroy(pthread_condattr_t * attr);

DESCRIPTION
The function pthread_condattr_init () initialises a condition variable attributes object attr with the
default value for all of the attributes defined by the implementation.

Attempting to initialise an already initialised condition variable attributes object results in
undefined behaviour.

After a condition variable attributes object has been used to initialise one or more condition
variables, any function affecting the attributes object (including destruction) does not affect any
previously initialised condition variables.

The pthread_condattr_destroy () function destroys a condition variable attributes object; the object
becomes, in effect, uninitialised. An implementation may cause pthread_condattr_destroy () to set
the object referenced by attr to an invalid value. A destroyed condition variable attributes object
can be re-initialised using pthread_condattr_init (); the results of otherwise referencing the object
after it has been destroyed are undefined.

Additional attributes, their default values, and the names of the associated functions to get and
set those attribute values are implementation-dependent.

RETURN VALUE
If successful, the pthread_condattr_init () and pthread_condattr_destroy () functions return zero.
Otherwise, an error number is returned to indicate the error.

ERRORS
The pthread_condattr_init () function will fail if:

[ENOMEM] Insufficient memory exists to initialise the condition variable attributes object.

The pthread_condattr_destroy () function may fail if:

[EINVAL] The value specified by attr is invalid.

These functions will not return an error code of [EINTR].

EXAMPLES
None.

APPLICATION USAGE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
pthread_condattr_getpshared (), pthread_create(), pthread_mutex_init (), pthread_cond_init (),
<pthread.h>.

System Interfaces and Headers, Issue 5: Volume 1 617

pthread_condattr_init() System Interfaces

CHANGE HISTORY
First released in Issue 5.

Included for alignment with the POSIX Threads Extension.

618 CAE Specification (1997)

System Interfaces pthread_create()

NAME
pthread_create — thread creation

SYNOPSIS
#include <pthread.h>

int pthread_create(pthread_t * thread , const pthread_attr_t * attr ,
void *(* start_routine)(void*), void * arg);

DESCRIPTION
The pthread_create() function is used to create a new thread, with attributes specified by attr ,
within a process. If attr is NULL, the default attributes are used. If the attributes specified by
attr are modified later, the thread’s attributes are not affected. Upon successful completion,
pthread_create() stores the ID of the created thread in the location referenced by thread .

The thread is created executing start_routine with arg as its sole argument. If the start_routine
returns, the effect is as if there was an implicit call to pthread_exit () using the return value of
start_routine as the exit status. Note that the thread in which main() was originally invoked
differs from this. When it returns from main(), the effect is as if there was an implicit call to
exit() using the return value of main() as the exit status.

The signal state of the new thread is initialised as follows:

• The signal mask is inherited from the creating thread.

• The set of signals pending for the new thread is empty.

If pthread_create() fails, no new thread is created and the contents of the location referenced by
thread are undefined.

RETURN VALUE
If successful, the pthread_create() function returns zero. Otherwise, an error number is returned
to indicate the error.

ERRORS
The pthread_create() function will fail if:

[EAGAIN] The system lacked the necessary resources to create another thread, or the
system-imposed limit on the total number of threads in a process
PTHREAD_THREADS_MAX would be exceeded.

[EINVAL] The value specified by attr is invalid.

EX [EPERM] The caller does not have appropriate permission to set the required
scheduling parameters or scheduling policy.

The pthread_create() function will not return an error code of [EINTR].

EXAMPLES
None.

APPLICATION USAGE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
pthread_exit (), pthread_join (), fork (), <pthread.h>.

System Interfaces and Headers, Issue 5: Volume 1 619

pthread_create() System Interfaces

CHANGE HISTORY
First released in Issue 5.

Included for alignment with the POSIX Threads Extension.

620 CAE Specification (1997)

System Interfaces pthread_detach()

NAME
pthread_detach — detach a thread

SYNOPSIS
#include <pthread.h>

int pthread_detach(pthread_t thread);

DESCRIPTION
The pthread_detach () function is used to indicate to the implementation that storage for the
thread thread can be reclaimed when that thread terminates. If thread has not terminated,
pthread_detach () will not cause it to terminate. The effect of multiple pthread_detach () calls on the
same target thread is unspecified.

RETURN VALUE
If the call succeeds, pthread_detach () returns 0. Otherwise, an error number is returned to
indicate the error.

ERRORS
The pthread_detach () function will fail if:

[EINVAL] The implementation has detected that the value specified by thread does not
refer to a joinable thread.

[ESRCH] No thread could be found corresponding to that specified by the given thread
ID.

The pthread_detach () function will not return an error code of [EINTR].

EXAMPLES
None.

APPLICATION USAGE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
pthread_join (), <pthread.h>.

CHANGE HISTORY
First released in Issue 5.

Included for alignment with the POSIX Threads Extension.

System Interfaces and Headers, Issue 5: Volume 1 621

pthread_equal() System Interfaces

NAME
pthread_equal — compare thread IDs

SYNOPSIS
#include <pthread.h>

int pthread_equal(pthread_t t1 , pthread_t t2);

DESCRIPTION
This function compares the thread IDs t1 and t2 .

RETURN VALUE
The pthread_equal() function returns a non-zero value if t1 and t2 are equal; otherwise, zero is
returned.

If either t1 or t2 are not valid thread IDs, the behaviour is undefined.

ERRORS
No errors are defined.

The pthread_equal() function will not return an error code of [EINTR].

EXAMPLES
None.

APPLICATION USAGE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
pthread_create(), pthread_self (), <pthread.h>.

CHANGE HISTORY
First released in Issue 5.

Included for alignment with the POSIX Threads Extension.

622 CAE Specification (1997)

System Interfaces pthread_exit()

NAME
pthread_exit — thread termination

SYNOPSIS
#include <pthread.h>

void pthread_exit(void * value_ptr);

DESCRIPTION
The pthread_exit () function terminates the calling thread and makes the value value_ptr available
to any successful join with the terminating thread. Any cancellation cleanup handlers that have
been pushed and not yet popped are popped in the reverse order that they were pushed and
then executed. After all cancellation cleanup handlers have been executed, if the thread has any
thread-specific data, appropriate destructor functions will be called in an unspecified order.
Thread termination does not release any application visible process resources, including, but not
limited to, mutexes and file descriptors, nor does it perform any process level cleanup actions,
including, but not limited to, calling any atexit() routines that may exist.

An implicit call to pthread_exit () is made when a thread other than the thread in which main()
was first invoked returns from the start routine that was used to create it. The function’s return
value serves as the thread’s exit status.

The behaviour of pthread_exit () is undefined if called from a cancellation cleanup handler or
destructor function that was invoked as a result of either an implicit or explicit call to
pthread_exit ().

After a thread has terminated, the result of access to local (auto) variables of the thread is
undefined. Thus, references to local variables of the exiting thread should not be used for the
pthread_exit () value_ptr parameter value.

The process exits with an exit status of 0 after the last thread has been terminated. The
behaviour is as if the implementation called exit() with a zero argument at thread termination
time.

RETURN VALUE
The pthread_exit () function cannot return to its caller.

ERRORS
No errors are defined.

The pthread_exit () function will not return an error code of [EINTR].

EXAMPLES
None.

APPLICATION USAGE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
pthread_create(), pthread_join (), exit(), _exit(), <pthread.h>.

CHANGE HISTORY
First released in Issue 5.

Included for alignment with the POSIX Threads Extension.

System Interfaces and Headers, Issue 5: Volume 1 623

pthread_getconcurrency() System Interfaces

NAME
pthread_getconcurrency, pthread_setconcurrency — get or set level of concurrency

SYNOPSIS
EX #include <pthread.h>

int pthread_getconcurrency(void);
int pthread_setconcurrency(int new_level);

DESCRIPTION
Unbound threads in a process may or may not be required to be simultaneously active. By
default, the threads implementation ensures that a sufficient number of threads are active so that
the process can continue to make progress. While this conserves system resources, it may not
produce the most effective level of concurrency.

The pthread_setconcurrency() function allows an application to inform the threads
implementation of its desired concurrency level, new_level. The actual level of concurrency
provided by the implementation as a result of this function call is unspecified.

If new_level is zero, it causes the implementation to maintain the concurrency level at its
discretion as if pthread_setconcurrency() was never called.

The pthread_getconcurrency() function returns the value set by a previous call to the
pthread_setconcurrency() function. If the pthread_setconcurrency() function was not previously
called, this function returns zero to indicate that the implementation is maintaining the
concurrency level.

When an application calls pthread_setconcurrency() it is informing the implementation of its
desired concurrency level. The implementation uses this as a hint, not a requirement.

If an implementation does not support multiplexing of user threads on top of several kernel
scheduled entities, the pthread_setconcurrency() and pthread_getconcurrency() functions will be
provided for source code compatibility but they will have no effect when called. To maintain the
function semantics, the new_level parameter will be saved when pthread_setconcurrency() is called
so that a subsequent call to pthread_getconcurrency() returns the same value.

RETURN VALUE
If successful, the pthread_setconcurrency() function returns zero. Otherwise, an error number is
returned to indicate the error.

The pthread_getconcurrency() function always returns the concurrency level set by a previous call
to pthread_setconcurrency(). If the pthread_setconcurrency() function has never been called,
pthread_getconcurrency() returns zero.

ERRORS
The pthread_setconcurrency() function will fail if:

[EINVAL] The value specified by new_level is negative.

[EAGAIN] The value specific by new_level would cause a system resource to be exceeded.

EXAMPLES
None.

APPLICATION USAGE
Use of these functions changes the state of the underlying concurrency upon which the
application depends. Library developers are advised to not use the pthread_getconcurrency() and
pthread_setconcurrency() functions since their use may conflict with an applications use of these
functions.

624 CAE Specification (1997)

System Interfaces pthread_getconcurrency()

FUTURE DIRECTIONS
None.

SEE ALSO
<pthread.h>.

CHANGE HISTORY
First released in Issue 5.

System Interfaces and Headers, Issue 5: Volume 1 625

pthread_getschedparam() System Interfaces

NAME
pthread_getschedparam, pthread_setschedparam — dynamic thread scheduling parameters
access (REALTIME THREADS)

SYNOPSIS
RTT #include <pthread.h>

int pthread_getschedparam(pthread_t thread , int * policy ,
struct sched_param * param);

int pthread_setschedparam(pthread_t thread , int * policy ,
const struct sched_param * param);

DESCRIPTION
The pthread_getschedparam () and pthread_setschedparam() allow the scheduling policy and
scheduling parameters of individual threads within a multi-threaded process to be retrieved and
set. For SCHED_FIFO and SCHED_RR, the only required member of the sched_param structure
is the priority sched_priority . For SCHED_OTHER, the affected scheduling parameters are
implementation-dependent.

The pthread_getschedparam () function retrieves the scheduling policy and scheduling parameters
for the thread whose thread ID is given by thread and stores those values in policy and param ,
respectively. The priority value returned from pthread_getschedparam () is the value specified by
the most recent pthread_setschedparam() or pthread_create() call affecting the target thread, and
reflects any temporary adjustments to its priority as a result of any priority inheritance or ceiling
functions. The pthread_setschedparam() function sets the scheduling policy and associated
scheduling parameters for the thread whose thread ID is given by thread to the policy and
associated parameters provided in policy and param , respectively.

The policy parameter may have the value SCHED_OTHER, that has implementation-dependent
scheduling parameters, SCHED_FIFO or SCHED_RR, that have the single scheduling parameter,
priority.

If the pthread_setschedparam() function fails, no scheduling parameters will be changed for the
target thread.

RETURN VALUE
If successful, the pthread_getschedparam () and pthread_setschedparam() functions return zero.
Otherwise, an error number is returned to indicate the error.

ERRORS
The pthread_getschedparam () and pthread_setschedparam() functions will fail if:

[ENOSYS] The option _POSIX_THREAD_PRIORITY_SCHEDULING is not defined and
the implementation does not support the function.

The pthread_getschedparam () function may fail if:

[ESRCH] The value specified by thread does not refer to a existing thread.

The pthread_setschedparam() function may fail if:

[EINVAL] The value specified by policy or one of the scheduling parameters associated
with the scheduling policy policy is invalid.

[ENOTSUP] An attempt was made to set the policy or scheduling parameters to an
unsupported value.

[EPERM] The caller does not have the appropriate permission to set either the
scheduling parameters or the scheduling policy of the specified thread.

626 CAE Specification (1997)

System Interfaces pthread_getschedparam()

[EPERM] The implementation does not allow the application to modify one of the
parameters to the value specified.

[ESRCH] The value specified by thread does not refer to a existing thread.

EXAMPLES
None.

APPLICATION USAGE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
sched_setparam(), sched_getparam(), sched_setscheduler(), sched_getscheduler(), <pthread.h>,
<sched.h>.

CHANGE HISTORY
First released in Issue 5.

Included for alignment with the POSIX Threads Extension.

System Interfaces and Headers, Issue 5: Volume 1 627

pthread_join() System Interfaces

NAME
pthread_join — wait for thread termination

SYNOPSIS
#include <pthread.h>

int pthread_join(pthread_t thread , void ** value_ptr);

DESCRIPTION
The pthread_join () function suspends execution of the calling thread until the target thread
terminates, unless the target thread has already terminated. On return from a successful
pthread_join () call with a non-NULL value_ptr argument, the value passed to pthread_exit () by
the terminating thread is made available in the location referenced by value_ptr . When a
pthread_join () returns successfully, the target thread has been terminated. The results of
multiple simultaneous calls to pthread_join () specifying the same target thread are undefined. If
the thread calling pthread_join () is canceled, then the target thread will not be detached.

It is unspecified whether a thread that has exited but remains unjoined counts against
_POSIX_THREAD_THREADS_MAX.

RETURN VALUE
If successful, the pthread_join () function returns zero. Otherwise, an error number is returned to
indicate the error.

ERRORS
The pthread_join () function will fail if:

[EINVAL] The implementation has detected that the value specified by thread does not
refer to a joinable thread.

[ESRCH] No thread could be found corresponding to that specified by the given thread
ID.

The pthread_join () function may fail if:

[EDEADLK] A deadlock was detected or the value of thread specifies the calling thread.

The pthread_join () function will not return an error code of [EINTR].

EXAMPLES
None.

APPLICATION USAGE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
pthread_create(), wait(), <pthread.h>.

CHANGE HISTORY
First released in Issue 5.

Included for alignment with the POSIX Threads Extension.

628 CAE Specification (1997)

System Interfaces pthread_key_create()

NAME
pthread_key_create — thread-specific data key creation

SYNOPSIS
#include <pthread.h>

int pthread_key_create(pthread_key_t * key , void (* destructor)(void*));

DESCRIPTION
This function creates a thread-specific data key visible to all threads in the process. Key values
provided by pthread_key_create () are opaque objects used to locate thread-specific data.
Although the same key value may be used by different threads, the values bound to the key by
pthread_setspecific() are maintained on a per-thread basis and persist for the life of the calling
thread.

Upon key creation, the value NULL is associated with the new key in all active threads. Upon
thread creation, the value NULL is associated with all defined keys in the new thread.

An optional destructor function may be associated with each key value. At thread exit, if a key
value has a non-NULL destructor pointer, and the thread has a non-NULL value associated with
that key, the function pointed to is called with the current associated value as its sole argument.
The order of destructor calls is unspecified if more than one destructor exists for a thread when
it exits.

If, after all the destructors have been called for all non-NULL values with associated destructors,
there are still some non-NULL values with associated destructors, then the process will be
repeated. If, after at least PTHREAD_DESTRUCTOR_ITERATIONS iterations of destructor calls
for outstanding non-NULL values, there are still some non-NULL values with associated
destructors, implementations may stop calling destructors, or they may continue calling
destructors until no non-NULL values with associated destructors exist, even though this might
result in an infinite loop.

RETURN VALUE
If successful, the pthread_key_create () function stores the newly created key value at *key and
returns zero. Otherwise, an error number is returned to indicate the error.

ERRORS
The pthread_key_create () function will fail if:

[EAGAIN] The system lacked the necessary resources to create another thread-specific
data key, or the system-imposed limit on the total number of keys per process
PTHREAD_KEYS_MAX has been exceeded.

[ENOMEM] Insufficient memory exists to create the key.

The pthread_key_create () function will not return an error code of [EINTR].

EXAMPLES
None.

APPLICATION USAGE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
pthread_getspecific(), pthread_setspecific(), pthread_key_delete (), <pthread.h>.

System Interfaces and Headers, Issue 5: Volume 1 629

pthread_key_create() System Interfaces

CHANGE HISTORY
First released in Issue 5.

Included for alignment with the POSIX Threads Extension.

630 CAE Specification (1997)

System Interfaces pthread_key_delete()

NAME
pthread_key_delete — thread-specific data key deletion

SYNOPSIS
#include <pthread.h>

int pthread_key_delete(pthread_key_t key);

DESCRIPTION
This function deletes a thread-specific data key previously returned by pthread_key_create (). The
thread-specific data values associated with key need not be NULL at the time pthread_key_delete ()
is called. It is the responsibility of the application to free any application storage or perform any
cleanup actions for data structures related to the deleted key or associated thread-specific data in
any threads; this cleanup can be done either before or after pthread_key_delete () is called. Any
attempt to use key following the call to pthread_key_delete () results in undefined behaviour.

The pthread_key_delete () function is callable from within destructor functions. No destructor
functions will be invoked by pthread_key_delete (). Any destructor function that may have been
associated with key will no longer be called upon thread exit.

RETURN VALUE
If successful, the pthread_key_delete () function returns zero. Otherwise, an error number is
returned to indicate the error.

ERRORS
The pthread_key_delete () function may fail if:

[EINVAL] The key value is invalid.

The pthread_key_delete () function will not return an error code of [EINTR].

EXAMPLES
None.

APPLICATION USAGE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
pthread_key_create (), <pthread.h>.

CHANGE HISTORY
First released in Issue 5.

Included for alignment with the POSIX Threads Extension.

System Interfaces and Headers, Issue 5: Volume 1 631

pthread_kill() System Interfaces

NAME
pthread_kill — send a signal to a thread

SYNOPSIS
#include <signal.h>

int pthread_kill(pthread_t thread , int sig);

DESCRIPTION
The pthread_kill () function is used to request that a signal be delivered to the specified thread.

As in kill (), if sig is zero, error checking is performed but no signal is actually sent.

RETURN VALUE
Upon successful completion, the function returns a value of zero. Otherwise the function
returns an error number. If the pthread_kill () function fails, no signal is sent.

ERRORS
The pthread_kill () function will fail if:

[ESRCH] No thread could be found corresponding to that specified by the given thread
ID.

[EINVAL] The value of the sig argument is an invalid or unsupported signal number.

The pthread_kill () function will not return an error code of [EINTR].

EXAMPLES
None.

APPLICATION USAGE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
kill (), pthread_self (), raise(), <signal.h>.

CHANGE HISTORY
First released in Issue 5.

Included for alignment with the POSIX Threads Extension.

632 CAE Specification (1997)

System Interfaces pthread_mutex_init()

NAME
pthread_mutex_init, pthread_mutex_destroy — initialise or destroy a mutex

SYNOPSIS
#include <pthread.h>

int pthread_mutex_init(pthread_mutex_t * mutex ,
const pthread_mutexattr_t * attr);

int pthread_mutex_destroy(pthread_mutex_t * mutex);
pthread_mutex_t mutex = PTHREAD_MUTEX_INITIALIZER;

DESCRIPTION
The pthread_mutex_init () function initialises the mutex referenced by mutex with attributes
specified by attr . If attr is NULL, the default mutex attributes are used; the effect is the same as
passing the address of a default mutex attributes object. Upon successful initialisation, the state
of the mutex becomes initialised and unlocked.

Attempting to initialise an already initialised mutex results in undefined behaviour.

The pthread_mutex_destroy() function destroys the mutex object referenced by mutex; the mutex
object becomes, in effect, uninitialised. An implementation may cause pthread_mutex_destroy()
to set the object referenced by mutex to an invalid value. A destroyed mutex object can be re-
initialised using pthread_mutex_init (); the results of otherwise referencing the object after it has
been destroyed are undefined.

It is safe to destroy an initialised mutex that is unlocked. Attempting to destroy a locked mutex
results in undefined behaviour.

In cases where default mutex attributes are appropriate, the macro
PTHREAD_MUTEX_INITIALIZER can be used to initialise mutexes that are statically allocated.
The effect is equivalent to dynamic initialisation by a call to pthread_mutex_init () with parameter
attr specified as NULL, except that no error checks are performed.

RETURN VALUE
If successful, the pthread_mutex_init () and pthread_mutex_destroy() functions return zero.
Otherwise, an error number is returned to indicate the error. The [EBUSY] and [EINVAL] error
checks, if implemented, act as if they were performed immediately at the beginning of
processing for the function and cause an error return prior to modifying the state of the mutex
specified by mutex.

ERRORS
The pthread_mutex_init () function will fail if:

[EAGAIN] The system lacked the necessary resources (other than memory) to initialise
another mutex.

[ENOMEM] Insufficient memory exists to initialise the mutex.

[EPERM] The caller does not have the privilege to perform the operation.

The pthread_mutex_init () function may fail if:

[EBUSY] The implementation has detected an attempt to re-initialise the object
referenced by mutex, a previously initialised, but not yet destroyed, mutex.

[EINVAL] The value specified by attr is invalid.

The pthread_mutex_destroy() function may fail if:

[EBUSY] The implementation has detected an attempt to destroy the object referenced
by mutex while it is locked or referenced (for example, while being used in a

System Interfaces and Headers, Issue 5: Volume 1 633

pthread_mutex_init() System Interfaces

pthread_cond_wait () or pthread_cond_timedwait ()) by another thread.

[EINVAL] The value specified by mutex is invalid.

These functions will not return an error code of [EINTR].

EXAMPLES
None.

APPLICATION USAGE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
pthread_mutex_getprioceiling (), pthread_mutex_lock (), pthread_mutex_unlock (),
pthread_mutex_setprioceiling (), pthread_mutex_trylock (), pthread_mutexattr_getpshared (),
pthread_mutexattr_setpshared (), <pthread.h>.

CHANGE HISTORY
First released in Issue 5.

Included for alignment with the POSIX Threads Extension.

634 CAE Specification (1997)

System Interfaces pthread_mutex_lock()

NAME
pthread_mutex_lock, pthread_mutex_trylock, pthread_mutex_unlock — lock and unlock a
mutex

SYNOPSIS
#include <pthread.h>

int pthread_mutex_lock(pthread_mutex_t * mutex);
int pthread_mutex_trylock(pthread_mutex_t * mutex);
int pthread_mutex_unlock(pthread_mutex_t * mutex);

DESCRIPTION
The mutex object referenced by mutex is locked by calling pthread_mutex_lock (). If the mutex is
already locked, the calling thread blocks until the mutex becomes available. This operation
returns with the mutex object referenced by mutex in the locked state with the calling thread as
its owner.

EX If the mutex type is PTHREAD_MUTEX_NORMAL, deadlock detection is not provided.
Attempting to relock the mutex causes deadlock. If a thread attempts to unlock a mutex that it
has not locked or a mutex which is unlocked, undefined behaviour results.

If the mutex type is PTHREAD_MUTEX_ERRORCHECK, then error checking is provided. If a
thread attempts to relock a mutex that it has already locked, an error will be returned. If a thread
attempts to unlock a mutex that it has not locked or a mutex which is unlocked, an error will be
returned.

If the mutex type is PTHREAD_MUTEX_RECURSIVE, then the mutex maintains the concept of
a lock count. When a thread successfully acquires a mutex for the first time, the lock count is set
to one. Every time a thread relocks this mutex, the lock count is incremented by one. Each time
the thread unlocks the mutex, the lock count is decremented by one. When the lock count
reaches zero, the mutex becomes available for other threads to acquire. If a thread attempts to
unlock a mutex that it has not locked or a mutex which is unlocked, an error will be returned.

If the mutex type is PTHREAD_MUTEX_DEFAULT, attempting to recursively lock the mutex
results in undefined behaviour. Attempting to unlock the mutex if it was not locked by the
calling thread results in undefined behaviour. Attempting to unlock the mutex if it is not locked
results in undefined behaviour.

The function pthread_mutex_trylock () is identical to pthread_mutex_lock () except that if the mutex
object referenced by mutex is currently locked (by any thread, including the current thread), the
call returns immediately.

EX The pthread_mutex_unlock () function releases the mutex object referenced by mutex. The manner
in which a mutex is released is dependent upon the mutex’s type attribute. If there are threads
blocked on the mutex object referenced by mutex when pthread_mutex_unlock () is called,
resulting in the mutex becoming available, the scheduling policy is used to determine which

EX thread shall acquire the mutex. (In the case of PTHREAD_MUTEX_RECURSIVE mutexes, the
mutex becomes available when the count reaches zero and the calling thread no longer has any
locks on this mutex).

If a signal is delivered to a thread waiting for a mutex, upon return from the signal handler the
thread resumes waiting for the mutex as if it was not interrupted.

RETURN VALUE
If successful, the pthread_mutex_lock () and pthread_mutex_unlock () functions return zero.
Otherwise, an error number is returned to indicate the error.

System Interfaces and Headers, Issue 5: Volume 1 635

pthread_mutex_lock() System Interfaces

The function pthread_mutex_trylock () returns zero if a lock on the mutex object referenced by
mutex is acquired. Otherwise, an error number is returned to indicate the error.

ERRORS
The pthread_mutex_lock () and pthread_mutex_trylock () functions will fail if:

[EINVAL] The mutex was created with the protocol attribute having the value
PTHREAD_PRIO_PROTECT and the calling thread’s priority is higher than
the mutex’s current priority ceiling.

The pthread_mutex_trylock () function will fail if:

[EBUSY] The mutex could not be acquired because it was already locked.

The pthread_mutex_lock (), pthread_mutex_trylock () and pthread_mutex_unlock () functions may fail
if:

[EINVAL] The value specified by mutex does not refer to an initialised mutex object.

EX [EAGAIN] The mutex could not be acquired because the maximum number of recursive
locks for mutex has been exceeded.

The pthread_mutex_lock () function may fail if:

[EDEADLK] The current thread already owns the mutex.

The pthread_mutex_unlock () function may fail if:

[EPERM] The current thread does not own the mutex.

These functions will not return an error code of [EINTR].

EXAMPLES
None.

APPLICATION USAGE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
pthread_mutex_init (), pthread_mutex_destroy(), <pthread.h>.

CHANGE HISTORY
First released in Issue 5.

Included for alignment with the POSIX Threads Extension.

636 CAE Specification (1997)

System Interfaces pthread_mutex_setprioceiling()

NAME
pthread_mutex_setprioceiling, pthread_mutex_getprioceiling — change the priority ceiling of a
mutex (REALTIME THREADS)

SYNOPSIS
RTT #include <pthread.h>

int pthread_mutex_setprioceiling(pthread_mutex_t * mutex ,
int prioceiling , int * old_ceiling);

int pthread_mutex_getprioceiling(const pthread_mutex_t * mutex ,
int * prioceiling);

DESCRIPTION
The pthread_mutex_getprioceiling () function returns the current priority ceiling of the mutex.

The pthread_mutex_setprioceiling () function either locks the mutex if it is unlocked, or blocks until
it can successfully lock the mutex, then it changes the mutex’s priority ceiling and releases the
mutex. When the change is successful, the previous value of the priority ceiling is returned in
old_ceiling . The process of locking the mutex need not adhere to the priority protect protocol.

If the pthread_mutex_setprioceiling () function fails, the mutex priority ceiling is not changed.

RETURN VALUE
If successful, the pthread_mutex_setprioceiling () and pthread_mutex_getprioceiling () functions
return zero. Otherwise, an error number is returned to indicate the error.

ERRORS
The pthread_mutex_getprioceiling () and pthread_mutex_setprioceiling () functions will fail if:

[ENOSYS] The option _POSIX_THREAD_PRIO_PROTECT is not defined and the
implementation does not support the function.

The pthread_mutex_setprioceiling () and pthread_mutex_getprioceiling () functions may fail if:

[EINVAL] The priority requested by prioceiling is out of range.

[EINVAL] The value specified by mutex does not refer to a currently existing mutex.

[ENOSYS] The implementation does not support the priority ceiling protocol for
mutexes.

[EPERM] The caller does not have the privilege to perform the operation.

EXAMPLES
None.

APPLICATION USAGE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
pthread_mutex_init (), pthread_mutex_lock (), pthread_mutex_unlock (), pthread_mutex_trylock (),
<pthread.h>.

System Interfaces and Headers, Issue 5: Volume 1 637

pthread_mutex_setprioceiling() System Interfaces

CHANGE HISTORY
First released in Issue 5.

Included for alignment with the POSIX Threads Extension.

Marked as part of the Realtime Threads Feature Group.

638 CAE Specification (1997)

System Interfaces pthread_mutexattr_getpshared()

NAME
pthread_mutexattr_getpshared, pthread_mutexattr_setpshared — set and get process-shared
attribute

SYNOPSIS
#include <pthread.h>

int pthread_mutexattr_getpshared(const pthread_mutexattr_t * attr ,
int * pshared);

int pthread_mutexattr_setpshared(pthread_mutexattr_t * attr ,
int pshared);

DESCRIPTION
The pthread_mutexattr_getpshared () function obtains the value of the process-shared attribute from
the attributes object referenced by attr . The pthread_mutexattr_setpshared () function is used to set
the process-shared attribute in an initialised attributes object referenced by attr .

The process-shared attribute is set to PTHREAD_PROCESS_SHARED to permit a mutex to be
operated upon by any thread that has access to the memory where the mutex is allocated, even if
the mutex is allocated in memory that is shared by multiple processes. If the process-shared
attribute is PTHREAD_PROCESS_PRIVATE, the mutex will only be operated upon by threads
created within the same process as the thread that initialised the mutex; if threads of differing
processes attempt to operate on such a mutex, the behaviour is undefined. The default value of
the attribute is PTHREAD_PROCESS_PRIVATE.

RETURN VALUE
Upon successful completion, pthread_mutexattr_setpshared () returns zero. Otherwise, an error
number is returned to indicate the error.

Upon successful completion, pthread_mutexattr_getpshared () returns zero and stores the value of
the process-shared attribute of attr into the object referenced by the pshared parameter. Otherwise,
an error number is returned to indicate the error.

ERRORS
The pthread_mutexattr_getpshared () and pthread_mutexattr_setpshared () functions may fail if:

[EINVAL] The value specified by attr is invalid.

The pthread_mutexattr_setpshared () function may fail if:

[EINVAL] The new value specified for the attribute is outside the range of legal values
for that attribute.

These functions will not return an error code of [EINTR].

EXAMPLES
None.

APPLICATION USAGE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
pthread_create(), pthread_mutex_init (), pthread_mutexattr_init (), pthread_cond_init (), <pthread.h>.

System Interfaces and Headers, Issue 5: Volume 1 639

pthread_mutexattr_getpshared() System Interfaces

CHANGE HISTORY
First released in Issue 5.

Included for alignment with the POSIX Threads Extension.

640 CAE Specification (1997)

System Interfaces pthread_mutexattr_init()

NAME
pthread_mutexattr_init, pthread_mutexattr_destroy — initialise and destroy mutex attributes
object

SYNOPSIS
#include <pthread.h>

int pthread_mutexattr_init(pthread_mutexattr_t * attr);
int pthread_mutexattr_destroy(pthread_mutexattr_t * attr);

DESCRIPTION
The function pthread_mutexattr_init () initialises a mutex attributes object attr with the default
value for all of the attributes defined by the implementation.

The effect of initialising an already initialised mutex attributes object is undefined.

After a mutex attributes object has been used to initialise one or more mutexes, any function
affecting the attributes object (including destruction) does not affect any previously initialised
mutexes.

The pthread_mutexattr_destroy () function destroys a mutex attributes object; the object becomes,
in effect, uninitialised. An implementation may cause pthread_mutexattr_destroy () to set the
object referenced by attr to an invalid value. A destroyed mutex attributes object can be re-
initialised using pthread_mutexattr_init (); the results of otherwise referencing the object after it
has been destroyed are undefined.

RETURN VALUE
Upon successful completion, pthread_mutexattr_init () and pthread_mutexattr_destroy () return
zero. Otherwise, an error number is returned to indicate the error.

ERRORS
The pthread_mutexattr_init () function may fail if:

[ENOMEM] Insufficient memory exists to initialise the mutex attributes object.

The pthread_mutexattr_destroy () function may fail if:

[EINVAL] The value specified by attr is invalid.

These functions will not return an error code of [EINTR].

EXAMPLES
None.

APPLICATION USAGE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
pthread_create(), pthread_mutex_init (), pthread_mutexattr_init (), pthread_cond_init (), <pthread.h>.

CHANGE HISTORY
First released in Issue 5.

Included for alignment with the POSIX Threads Extension.

System Interfaces and Headers, Issue 5: Volume 1 641

pthread_mutexattr_setprioceiling() System Interfaces

NAME
pthread_mutexattr_setprioceiling, pthread_mutexattr_getprioceiling — set and get prioceiling
attribute of mutex attribute object (REALTIME THREADS)

SYNOPSIS
RTT #include <pthread.h>

int pthread_mutexattr_setprioceiling(pthread_mutexattr_t * attr ,
int prioceiling);

int pthread_mutexattr_getprioceiling(const pthread_mutexattr_t * attr ,
int * prioceiling);

DESCRIPTION
The pthread_mutexattr_setprioceiling () and pthread_mutexattr_getprioceiling () functions,
respectively, set and get the priority ceiling attribute of a mutex attribute object pointed to by
attr which was previously created by the function pthread_mutexattr_init ().

The prioceiling attribute contains the priority ceiling of initialised mutexes. The values of
prioceiling will be within the maximum range of priorities defined by SCHED_FIFO.

The prioceiling attribute defines the priority ceiling of initialised mutexes, which is the minimum
priority level at which the critical section guarded by the mutex is executed. In order to avoid
priority inversion, the priority ceiling of the mutex will be set to a priority higher than or equal
to the highest priority of all the threads that may lock that mutex. The values of prioceiling will
be within the maximum range of priorities defined under the SCHED_FIFO scheduling policy.

RETURN VALUE
Upon successful completion, the pthread_mutexattr_setprioceiling () and
pthread_mutexattr_getprioceiling () functions return zero. Otherwise, an error number is returned
to indicate the error.

ERRORS
The pthread_mutexattr_setprioceiling () and pthread_mutexattr_getprioceiling () functions will fail if:

[ENOSYS] The option _POSIX_THREAD_PRIO_PROTECT is not defined and the
implementation does not support the function.

The pthread_mutexattr_setprioceiling () and pthread_mutexattr_getprioceiling () functions may fail if:

[EINVAL] The value specified by attr or prioceiling is invalid.

[EPERM] The caller does not have the privilege to perform the operation.

EXAMPLES
None.

APPLICATION USAGE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
pthread_create(), pthread_mutex_init (), pthread_cond_init (), <pthread.h>.

642 CAE Specification (1997)

System Interfaces pthread_mutexattr_setprioceiling()

CHANGE HISTORY
First released in Issue 5.

Included for alignment with the POSIX Threads Extension.

Marked as part of the Realtime Threads Feature Group.

System Interfaces and Headers, Issue 5: Volume 1 643

pthread_mutexattr_setprotocol() System Interfaces

NAME
pthread_mutexattr_setprotocol, pthread_mutexattr_getprotocol — set and get protocol attribute
of mutex attribute object (REALTIME THREADS)

SYNOPSIS
RTT #include <pthread.h>

int pthread_mutexattr_setprotocol(pthread_mutexattr_t * attr ,
int protocol);

int pthread_mutexattr_getprotocol(const pthread_mutexattr_t * attr ,
int * protocol);

DESCRIPTION
The pthread_mutexattr_setprotocol () and pthread_mutexattr_getprotocol () functions, respectively,
set and get the protocol attribute of a mutex attribute object pointed to by attr which was
previously created by the function pthread_mutexattr_init ().

The protocol attribute defines the protocol to be followed in utilising mutexes. The value of
protocol may be one of PTHREAD_PRIO_NONE, PTHREAD_PRIO_INHERIT or
PTHREAD_PRIO_PROTECT, which are defined by the header <pthread.h>.

When a thread owns a mutex with the PTHREAD_PRIO_NONE protocol attribute, its priority
and scheduling are not affected by its mutex ownership.

When a thread is blocking higher priority threads because of owning one or more mutexes with
the PTHREAD_PRIO_INHERIT protocol attribute, it executes at the higher of its priority or the
priority of the highest priority thread waiting on any of the mutexes owned by this thread and
initialised with this protocol.

When a thread owns one or more mutexes initialised with the PTHREAD_PRIO_PROTECT
protocol, it executes at the higher of its priority or the highest of the priority ceilings of all the
mutexes owned by this thread and initialised with this attribute, regardless of whether other
threads are blocked on any of these mutexes or not.

While a thread is holding a mutex which has been initialised with the PRIO_INHERIT or
PRIO_PROTECT protocol attributes, it will not be subject to being moved to the tail of the
scheduling queue at its priority in the event that its original priority is changed, such as by a call
to sched_setparam(). Likewise, when a thread unlocks a mutex that has been initialised with the
PRIO_INHERIT or PRIO_PROTECT protocol attributes, it will not be subject to being moved to
the tail of the scheduling queue at its priority in the event that its original priority is changed.

If a thread simultaneously owns several mutexes initialised with different protocols, it will
execute at the highest of the priorities that it would have obtained by each of these protocols.

When a thread makes a call to pthread_mutex_lock (), if the symbol
_POSIX_THREAD_PRIO_INHERIT is defined and the mutex was initialised with the protocol
attribute having the value PTHREAD_PRIO_INHERIT, when the calling thread is blocked
because the mutex is owned by another thread, that owner thread will inherit the priority level
of the calling thread as long as it continues to own the mutex. The implementation updates its
execution priority to the maximum of its assigned priority and all its inherited priorities.
Furthermore, if this owner thread itself becomes blocked on another mutex, the same priority
inheritance effect will be propagated to this other owner thread, in a recursive manner.

RETURN VALUE
Upon successful completion, the pthread_mutexattr_setprotocol () and
pthread_mutexattr_getprotocol () functions return zero. Otherwise, an error number is returned to
indicate the error.

644 CAE Specification (1997)

System Interfaces pthread_mutexattr_setprotocol()

ERRORS
The pthread_mutexattr_setprotocol () and pthread_mutexattr_getprotocol () functions will fail if:

[ENOSYS] Neither one of the options _POSIX_THREAD_PRIO_PROTECT and
_POSIX_THREAD_PRIO_INHERIT is defined and the implementation does
not support the function.

[ENOTSUP] The value specified by protocol is an unsupported value.

The pthread_mutexattr_setprotocol () and pthread_mutexattr_getprotocol () functions may fail if:

[EINVAL] The value specified by attr ro protocol is invalid.

[EPERM] The caller does not have the privilege to perform the operation.

EXAMPLES
None.

APPLICATION USAGE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
pthread_create(), pthread_mutex_init (), pthread_cond_init (), <pthread.h>.

CHANGE HISTORY
First released in Issue 5.

Included for alignment with the POSIX Threads Extension.

Marked as part of the Realtime Threads Feature Group.

System Interfaces and Headers, Issue 5: Volume 1 645

pthread_mutexattr_settype() System Interfaces

NAME
pthread_mutexattr_gettype, pthread_mutexattr_settype — get or set a mutex type

SYNOPSIS
EX #include <pthread.h>

int pthread_mutexattr_gettype(pthread_mutexattr_t *attr , int *type);
int pthread_mutexattr_settype(pthread_mutexattr_t *attr , int type);

DESCRIPTION
The pthread_mutexattr_gettype () and pthread_mutexattr_settype() functions respectively get and
set the mutex type attribute. This attribute is set in the type parameter to these functions. The
default value of the type attribute is PTHREAD_MUTEX_DEFAULT.

The type of mutex is contained in the type attribute of the mutex attributes. Valid mutex types
include:

PTHREAD_MUTEX_NORMAL
This type of mutex does not detect deadlock. A thread attempting to relock this mutex
without first unlocking it will deadlock. Attempting to unlock a mutex locked by a different
thread results in undefined behaviour. Attempting to unlock an unlocked mutex results in
undefined behaviour.

PTHREAD_MUTEX_ERRORCHECK
This type of mutex provides error checking. A thread attempting to relock this mutex
without first unlocking it will return with an error. A thread attempting to unlock a mutex
which another thread has locked will return with an error. A thread attempting to unlock
an unlocked mutex will return with an error.

PTHREAD_MUTEX_RECURSIVE
A thread attempting to relock this mutex without first unlocking it will succeed in locking
the mutex. The relocking deadlock which can occur with mutexes of type
PTHREAD_MUTEX_NORMAL cannot occur with this type of mutex. Multiple locks of this
mutex require the same number of unlocks to release the mutex before another thread can
acquire the mutex. A thread attempting to unlock a mutex which another thread has locked
will return with an error. A thread attempting to unlock an unlocked mutex will return with
an error.

PTHREAD_MUTEX_DEFAULT
Attempting to recursively lock a mutex of this type results in undefined behaviour.
Attempting to unlock a mutex of this type which was not locked by the calling thread
results in undefined behaviour. Attempting to unlock a mutex of this type which is not
locked results in undefined behaviour. An implementation is allowed to map this mutex to
one of the other mutex types.

RETURN VALUE
If successful, the pthread_mutexattr_settype() function returns zero. Otherwise, an error number
is returned to indicate the error.

Upon successful completion, the pthread_mutexattr_gettype () function returns zero and stores the
value of the type attribute of attr into the object referenced by the type parameter. Otherwise an
error is returned to indicate the error.

646 CAE Specification (1997)

System Interfaces pthread_mutexattr_settype()

ERRORS
The pthread_mutexattr_gettype () and pthread_mutexattr_settype() functions will fail if:

[EINVAL] The value type is invalid.

The pthread_mutexattr_gettype () and pthread_mutexattr_settype() functions may fail if:

[EINVAL] The value specified by attr is invalid.

EXAMPLES
None.

APPLICATION USAGE
It is advised that an application should not use a PTHREAD_MUTEX_RECURSIVE mutex with
condition variables because the implicit unlock performed for a pthread_cond_wait () or
pthread_cond_timedwait () may not actually release the mutex (if it had been locked multiple
times). If this happens, no other thread can satisfy the condition of the predicate.

FUTURE DIRECTIONS
None.

SEE ALSO
pthread_cond_wait (), pthread_cond_timedwait (), <pthread.h>.

CHANGE HISTORY
First released in Issue 5.

System Interfaces and Headers, Issue 5: Volume 1 647

pthread_once() System Interfaces

NAME
pthread_once — dynamic package initialisation

SYNOPSIS
#include <pthread.h>

int pthread_once(pthread_once_t * once_control ,
void (* init_routine)(void));

pthread_once_t once_control = PTHREAD_ONCE_INIT;

DESCRIPTION
The first call to pthread_once() by any thread in a process, with a given once_control , will call the
init_routine () with no arguments. Subsequent calls of pthread_once() with the same once_control
will not call the init_routine (). On return from pthread_once(), it is guaranteed that init_routine ()
has completed. The once_control parameter is used to determine whether the associated
initialisation routine has been called.

The function pthread_once() is not a cancellation point. However, if init_routine () is a
cancellation point and is canceled, the effect on once_control is as if pthread_once() was never
called.

The constant PTHREAD_ONCE_INIT is defined by the header <pthread.h>.

The behaviour of pthread_once() is undefined if once_control has automatic storage duration or is
not initialised by PTHREAD_ONCE_INIT.

RETURN VALUE
Upon successful completion, pthread_once() returns zero. Otherwise, an error number is
returned to indicate the error.

ERRORS
No errors are defined.

The pthread_once() function will not return an error code of [EINTR].

EXAMPLES
None.

APPLICATION USAGE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
<pthread,h>.

CHANGE HISTORY
First released in Issue 5.

Included for alignment with the POSIX Threads Extension.

648 CAE Specification (1997)

System Interfaces pthread_rwlock_init()

NAME
pthread_rwlock_init, pthread_rwlock_destroy — initialise or destroy a read-write lock object

SYNOPSIS
EX #include <pthread.h>

int pthread_rwlock_init(pthread_rwlock_t *rwlock,
const pthread_rwlockattr_t *attr);

int pthread_rwlock_destroy(pthread_rwlock_t *rwlock);
pthread_rwlock_t rwlock =PTHREAD_RWLOCK_INITIALIZER;

DESCRIPTION
The pthread_rwlock_init () function initialises the read-write lock referenced by rwlock with the
attributes referenced by attr. If attr is NULL, the default read-write lock attributes are used; the
effect is the same as passing the address of a default read-write lock attributes object. Once
initialised, the lock can be used any number of times without being re-initialised. Upon
successful initialisation, the state of the read-write lock becomes initialised and unlocked.
Results are undefined if pthread_rwlock_init () is called specifying an already initialised read-
write lock. Results are undefined if a read-write lock is used without first being initialised.

If the pthread_rwlock_init () function fails, rwlock is not initialised and the contents of rwlock are
undefined.

The pthread_rwlock_destroy () function destroys the read-write lock object referenced by rwlock
and releases any resources used by the lock. The effect of subsequent use of the lock is undefined
until the lock is re-initialised by another call to pthread_rwlock_init (). An implementation may
cause pthread_rwlock_destroy () to set the object referenced by rwlock to an invalid value. Results
are undefined if pthread_rwlock_destroy () is called when any thread holds rwlock. Attempting to
destroy an uninitialised read-write lock results in undefined behaviour. A destroyed read-write
lock object can be re-initialised using pthread_rwlock_init (); the results of otherwise referencing
the read-write lock object after it has been destroyed are undefined.

In cases where default read-write lock attributes are appropriate, the macro
PTHREAD_RWLOCK_INITIALIZER can be used to initialise read-write locks that are statically
allocated. The effect is equivalent to dynamic initialisation by a call to pthread_rwlock_init () with
the parameter attr specified as NULL, except that no error checks are performed.

RETURN VALUE
If successful, the pthread_rwlock_init () and pthread_rwlock_destroy () functions return zero.
Otherwise, an error number is returned to indicate the error. The [EBUSY] and [EINVAL] error
checks, if implemented, will act as if they were performed immediately at the beginning of
processing for the function and caused an error return prior to modifying the state of the read-
write lock specified by rwlock.

ERRORS
The pthread_rwlock_init () function will fail if:

[EAGAIN] The system lacked the necessary resources (other than memory) to initialise
another read-write lock.

[ENOMEM] Insufficient memory exists to initialise the read-write lock.

[EPERM] The caller does not have the privilege to perform the operation.

The pthread_rwlock_init () function may fail if:

[EBUSY] The implementation has detected an attempt to re-initialise the object
referenced by rwlock, a previously initialised but not yet destroyed read-write

System Interfaces and Headers, Issue 5: Volume 1 649

pthread_rwlock_init() System Interfaces

lock.

[EINVAL] The value specified by attr is invalid.

The pthread_rwlock_destroy () function may fail if:

[EBUSY] The implementation has detected an attempt to destroy the object referenced
by rwlock while it is locked.

[EINVAL] The value specified by attr is invalid.

EXAMPLES
None.

APPLICATION USAGE
Similar functions are being developed by IEEE PASC. In keeping with its objective of ensuring
that CAE Specifications are fully aligned with formal standards, The Open Group intends to add
any new interfaces adopted by an official IEEE standard in this area.

FUTURE DIRECTIONS
None.

SEE ALSO
<pthread.h>, pthread_rwlock_rdlock (), pthread_rwlock_wrlock (), pthread_rwlockattr_init (),
pthread_rwlock_unlock ().

CHANGE HISTORY
First released in Issue 5.

650 CAE Specification (1997)

System Interfaces pthread_rwlock_rdlock()

NAME
pthread_rwlock_rdlock, pthread_rwlock_tryrdlock — lock a read-write lock object for reading

SYNOPSIS
EX #include <pthread.h>

int pthread_rwlock_rdlock(pthread_rwlock_t *rwlock);
int pthread_rwlock_tryrdlock(pthread_rwlock_t *rwlock);

DESCRIPTION
The pthread_rwlock_rdlock () function applies a read lock to the read-write lock referenced by
rwlock. The calling thread acquires the read lock if a writer does not hold the lock and there are
no writers blocked on the lock. It is unspecified whether the calling thread acquires the lock
when a writer does not hold the lock and there are writers waiting for the lock. If a writer holds
the lock, the calling thread will not acquire the read lock. If the read lock is not acquired, the
calling thread blocks (that is, it does not return from the pthread_rwlock_rdlock () call) until it can
acquire the lock. Results are undefined if the calling thread holds a write lock on rwlock at the
time the call is made.

Implementations are allowed to favour writers over readers to avoid writer starvation.

A thread may hold multiple concurrent read locks on rwlock (that is, successfully call the
pthread_rwlock_rdlock () function n times). If so, the thread must perform matching unlocks (that
is, it must call the pthread_rwlock_unlock () function n times).

The function pthread_rwlock_tryrdlock () applies a read lock as in the pthread_rwlock_rdlock ()
function with the exception that the function fails if any thread holds a write lock on rwlock or
there are writers blocked on rwlock.

Results are undefined if any of these functions are called with an uninitialised read-write lock.

If a signal is delivered to a thread waiting for a read-write lock for reading, upon return from the
signal handler the thread resumes waiting for the read-write lock for reading as if it was not
interrupted.

RETURN VALUE
If successful, the pthread_rwlock_rdlock () function returns zero. Otherwise, an error number is
returned to indicate the error.

The function pthread_rwlock_tryrdlock () returns zero if the lock for reading on the read-write lock
object referenced by rwlock is acquired. Otherwise an error number is returned to indicate the
error.

ERRORS
The pthread_rwlock_tryrdlock () function will fail if:

[EBUSY] The read-write lock could not be acquired for reading because a writer holds
the lock or was blocked on it.

The pthread_rwlock_rdlock () and pthread_rwlock_tryrdlock () functions may fail if:

[EINVAL] The value specified by rwlock does not refer to an initialised read-write lock
object.

[EDEADLK] The current thread already owns the read-write lock for writing.

[EAGAIN] The read lock could not be acquired because the maximum number of read
locks for rwlock has been exceeded.

System Interfaces and Headers, Issue 5: Volume 1 651

pthread_rwlock_rdlock() System Interfaces

EXAMPLES
None.

APPLICATION USAGE
Similar functions are being developed by IEEE PASC. In keeping with its objective of ensuring
that CAE Specifications are fully aligned with formal standards, The Open Group intends to add
any new interfaces adopted by an official IEEE standard in this area.

Realtime applications may encounter priority inversion when using read-write locks. The
problem occurs when a high priority thread ‘‘locks’’ a read-write lock that is about to be
‘‘unlocked’’ by a low priority thread, but the low priority thread is preempted by a medium
priority thread. This scenario leads to priority inversion; a high priority thread is blocked by
lower priority threads for an unlimited period of time. During system design, realtime
programmers must take into account the possibility of this kind of priority inversion. They can
deal with it in a number of ways, such as by having critical sections that are guarded by read-
write locks execute at a high priority, so that a thread cannot be preempted while executing in its
critical section.

FUTURE DIRECTIONS
None.

SEE ALSO
<pthread.h>, pthread_rwlock_init (), pthread_rwlock_wrlock (), pthread_rwlockattr_init (),
pthread_rwlock_unlock ().

CHANGE HISTORY
First released in Issue 5.

652 CAE Specification (1997)

System Interfaces pthread_rwlock_unlock()

NAME
pthread_rwlock_unlock — unlock a read-write lock object

SYNOPSIS
EX #include <pthread.h>

int pthread_rwlock_unlock(pthread_rwlock_t *rwlock);

DESCRIPTION
The pthread_rwlock_unlock () function is called to release a lock held on the read-write lock object
referenced by rwlock. Results are undefined if the read-write lock rwlock is not held by the calling
thread.

If this function is called to release a read lock from the read-write lock object and there are other
read locks currently held on this read-write lock object, the read-write lock object remains in the
read locked state. If this function releases the calling thread’s last read lock on this read-write
lock object, then the calling thread is no longer one of the owners of the object. If this function
releases the last read lock for this read-write lock object, the read-write lock object will be put in
the unlocked state with no owners.

If this function is called to release a write lock for this read-write lock object, the read-write lock
object will be put in the unlocked state with no owners.

If the call to the pthread_rwlock_unlock () function results in the read-write lock object becoming
unlocked and there are multiple threads waiting to acquire the read-write lock object for writing,
the scheduling policy is used to determine which thread acquires the read-write lock object for
writing. If there are multiple threads waiting to acquire the read-write lock object for reading,
the scheduling policy is used to determine the order in which the waiting threads acquire the
read-write lock object for reading. If there are multiple threads blocked on rwlock for both read
locks and write locks, it is unspecified whether the readers acquire the lock first or whether a
writer acquires the lock first.

Results are undefined if any of these functions are called with an uninitialised read-write lock.

RETURN VALUE
If successful, the pthread_rwlock_unlock () function returns zero. Otherwise, an error number is
returned to indicate the error.

ERRORS
The pthread_rwlock_unlock () function may fail if:

[EINVAL] The value specified by rwlock does not refer to an initialised read-write lock
object.

[EPERM] The current thread does not own the read-write lock.

EXAMPLES
None.

APPLICATION USAGE
Similar functions are being developed by IEEE PASC. In keeping with its objective of ensuring
that CAE Specifications are fully aligned with formal standards, The Open Group intends to add
any new interfaces adopted by an official IEEE standard in this area.

FUTURE DIRECTIONS
None.

System Interfaces and Headers, Issue 5: Volume 1 653

pthread_rwlock_unlock() System Interfaces

SEE ALSO
<pthread.h>, pthread_rwlock_init (), pthread_rwlock_wrlock (), pthread_rwlockattr_init (),
pthread_rwlock_rdlock ().

CHANGE HISTORY
First released in Issue 5.

654 CAE Specification (1997)

System Interfaces pthread_rwlock_wrlock()

NAME
pthread_rwlock_wrlock, pthread_rwlock_trywrlock — lock a read-write lock object for writing

SYNOPSIS
EX #include <pthread.h>

int pthread_rwlock_wrlock(pthread_rwlock_t *rwlock);
int pthread_rwlock_trywrlock(pthread_rwlock_t *rwlock);

DESCRIPTION
The pthread_rwlock_wrlock () function applies a write lock to the read-write lock referenced by
rwlock. The calling thread acquires the write lock if no other thread (reader or writer) holds the
read-write lock rwlock. Otherwise, the thread blocks (that is, does not return from the
pthread_rwlock_wrlock () call) until it can acquire the lock. Results are undefined if the calling
thread holds the read-write lock (whether a read or write lock) at the time the call is made.

Implementations are allowed to favour writers over readers to avoid writer starvation.

The function pthread_rwlock_trywrlock () applies a write lock like the pthread_rwlock_wrlock ()
function, with the exception that the function fails if any thread currently holds rwlock (for
reading or writing).

Results are undefined if any of these functions are called with an uninitialised read-write lock.

If a signal is delivered to a thread waiting for a read-write lock for writing, upon return from the
signal handler the thread resumes waiting for the read-write lock for writing as if it was not
interrupted.

RETURN VALUE
If successful, the pthread_rwlock_wrlock () function returns zero. Otherwise, an error number is
returned to indicate the error.

The function pthread_rwlock_trywrlock () returns zero if the lock for writing on the read-write lock
object referenced by rwlock is acquired. Otherwise an error number is returned to indicate the
error.

ERRORS
The pthread_rwlock_trywrlock () function will fail if:

[EBUSY] The read-write lock could not be acquired for writing because it was already
locked for reading or writing.

The pthread_rwlock_wrlock () and pthread_rwlock_trywrlock () functions may fail if:

[EINVAL] The value specified by rwlock does not refer to an initialised read-write lock
object.

[EDEADLK] The current thread already owns the read-write lock for writing or reading.

EXAMPLES
None.

APPLICATION USAGE
Similar functions are being developed by IEEE PASC. In keeping with its objective of ensuring
that CAE Specifications are fully aligned with formal standards, The Open Group intends to add
any new interfaces adopted by an official IEEE standard in this area.

Realtime applications may encounter priority inversion when using read-write locks. The
problem occurs when a high priority thread ‘‘locks’’ a read-write lock that is about to be
‘‘unlocked’’ by a low priority thread, but the low priority thread is preempted by a medium

System Interfaces and Headers, Issue 5: Volume 1 655

pthread_rwlock_wrlock() System Interfaces

priority thread. This scenario leads to priority inversion; a high priority thread is blocked by
lower priority threads for an unlimited period of time. During system design, realtime
programmers must take into account the possibility of this kind of priority inversion. They can
deal with it in a number of ways, such as by having critical sections that are guarded by read-
write locks execute at a high priority, so that a thread cannot be preempted while executing in its
critical section.

FUTURE DIRECTIONS
None.

SEE ALSO
<pthread.h>, pthread_rwlock_init (), pthread_rwlock_unlock (), pthread_rwlockattr_init (),
pthread_rwlock_rdlock ().

CHANGE HISTORY
First released in Issue 5.

656 CAE Specification (1997)

System Interfaces pthread_rwlockattr_getpshared()

NAME
pthread_rwlockattr_getpshared, pthread_rwlockattr_setpshared — get and set process-shared
attribute of read-write lock attributes object

SYNOPSIS
EX #include <pthread.h>

int pthread_rwlockattr_getpshared(const pthread_rwlockattr_t *attr ,
int *pshared);

int pthread_rwlockattr_setpshared(pthread_rwlockattr_t *attr ,
int pshared);

DESCRIPTION
The process-shared attribute is set to PTHREAD_PROCESS_SHARED to permit a read-write lock
to be operated upon by any thread that has access to the memory where the read-write lock is
allocated, even if the read-write lock is allocated in memory that is shared by multiple processes.
If the process-shared attribute is PTHREAD_PROCESS_PRIVATE, the read-write lock will only be
operated upon by threads created within the same process as the thread that initialised the
read-write lock; if threads of differing processes attempt to operate on such a read-write lock, the
behaviour is undefined. The default value of the process-shared attribute is
PTHREAD_PROCESS_PRIVATE.

The pthread_rwlockattr_getpshared () function obtains the value of the process-shared attribute from
the initialised attributes object referenced by attr. The pthread_rwlockattr_setpshared () function is
used to set the process-shared attribute in an initialised attributes object referenced by attr.

RETURN VALUE
If successful, the pthread_rwlockattr_setpshared () function returns zero. Otherwise, an error
number is returned to indicate the error.

Upon successful completion, the pthread_rwlockattr_getpshared () returns zero and stores the
value of the process-shared attribute of attr into the object referenced by the pshared parameter.
Otherwise an error number is returned to indicate the error.

ERRORS
The pthread_rwlockattr_getpshared () and pthread_rwlockattr_setpshared () functions may fail if:

[EINVAL] The value specified by attr is invalid.

The pthread_rwlockattr_setpshared () function may fail if:

[EINVAL] The new value specified for the attribute is outside the range of legal values
for that attribute.

EXAMPLES
None.

APPLICATION USAGE
Similar functions are being developed by IEEE PASC. In keeping with its objective of ensuring
that CAE Specifications are fully aligned with formal standards, The Open Group intends to add
any new interfaces adopted by an official IEEE standard in this area.

FUTURE DIRECTIONS
None.

SEE ALSO
<pthread.h>, pthread_rwlock_init (), pthread_rwlock_unlock (), pthread_rwlock_wrlock (),
pthread_rwlock_rdlock (), pthread_rwlockattr_init ().

System Interfaces and Headers, Issue 5: Volume 1 657

pthread_rwlockattr_getpshared() System Interfaces

CHANGE HISTORY
First released in Issue 5.

658 CAE Specification (1997)

System Interfaces pthread_rwlockattr_init()

NAME
pthread_rwlockattr_init, pthread_rwlockattr_destroy — initialise and destroy read-write lock
attributes object

SYNOPSIS
EX #include <pthread.h>

int pthread_rwlockattr_init(pthread_rwlockattr_t *attr);
int pthread_rwlockattr_destroy(pthread_rwlockattr_t *attr);

DESCRIPTION
The function pthread_rwlockattr_init () initialises a read-write lock attributes object attr with the
default value for all of the attributes defined by the implementation.

Results are undefined if pthread_rwlockattr_init () is called specifying an already initialised read-
write lock attributes object.

After a read-write lock attributes object has been used to initialise one or more read-write locks,
any function affecting the attributes object (including destruction) does not affect any previously
initialised read-write locks.

The pthread_rwlockattr_destroy () function destroys a read-write lock attributes object. The effect
of subsequent use of the object is undefined until the object is re-initialised by another call to
pthread_rwlockattr_init (). An implementation may cause pthread_rwlockattr_destroy () to set the
object referenced by attr to an invalid value.

RETURN VALUE
If successful, the pthread_rwlockattr_init () and pthread_rwlockattr_destroy () functions return zero.
Otherwise, an error number is returned to indicate the error.

ERRORS
The pthread_rwlockattr_init () function will fail if:

[ENOMEM] Insufficient memory exists to initialise the read-write lock attributes object.

The pthread_rwlockattr_destroy () function may fail if:

[EINVAL] The value specified by attr is invalid.

EXAMPLES
None.

APPLICATION USAGE
Similar functions are being developed by IEEE PASC. In keeping with its objective of ensuring
that CAE Specifications are fully aligned with formal standards, The Open Group intends to add
any new interfaces adopted by an official IEEE standard in this area.

FUTURE DIRECTIONS
None.

SEE ALSO
<pthread.h>, pthread_rwlock_init (), pthread_rwlock_unlock (), pthread_rwlock_wrlock (),
pthread_rwlock_rdlock (), pthread_rwlockattr_getpshared ().

CHANGE HISTORY
First released in Issue 5.

System Interfaces and Headers, Issue 5: Volume 1 659

pthread_self() System Interfaces

NAME
pthread_self — get calling thread’s ID

SYNOPSIS
#include <pthread.h>

pthread_t pthread_self(void);

DESCRIPTION
The pthread_self () function returns the thread ID of the calling thread.

RETURN VALUE
See DESCRIPTION above.

ERRORS
No errors are defined.

The pthread_self () function will not return an error code of [EINTR].

EXAMPLES
None.

APPLICATION USAGE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
pthread_create(), pthread_equal(), <pthread.h>.

CHANGE HISTORY
First released in Issue 5.

Included for alignment with the POSIX Threads Extension.

660 CAE Specification (1997)

System Interfaces pthread_setcancelstate()

NAME
pthread_setcancelstate, pthread_setcanceltype, pthread_testcancel — set cancelability state

SYNOPSIS
#include <pthread.h>

int pthread_setcancelstate(int state , int * oldstate);
int pthread_setcanceltype(int type , int * oldtype);
void pthread_testcancel(void);

DESCRIPTION
The pthread_setcancelstate () function atomically both sets the calling thread’s cancelability state
to the indicated state and returns the previous cancelability state at the location referenced by
oldstate. Legal values for state are PTHREAD_CANCEL_ENABLE and
PTHREAD_CANCEL_DISABLE.

The pthread_setcanceltype () function atomically both sets the calling thread’s cancelability type to
the indicated type and returns the previous cancelability type at the location referenced by
oldtype. Legal values for type are PTHREAD_CANCEL_DEFERRED and
PTHREAD_CANCEL_ASYNCHRONOUS.

The cancelability state and type of any newly created threads, including the thread in which
main() was first invoked, are PTHREAD_CANCEL_ENABLE and
PTHREAD_CANCEL_DEFERRED respectively.

The pthread_testcancel () function creates a cancellation point in the calling thread. The
pthread_testcancel () function has no effect if cancelability is disabled.

RETURN VALUE
If successful, the pthread_setcancelstate () and pthread_setcanceltype () functions return zero.
Otherwise, an error number is returned to indicate the error.

ERRORS
The pthread_setcancelstate () function may fail if:

[EINVAL] The specified state is not PTHREAD_CANCEL_ENABLE or
PTHREAD_CANCEL_DISABLE.

The pthread_setcanceltype () function may fail if:

[EINVAL] The specified type is not PTHREAD_CANCEL_DEFERRED or
PTHREAD_CANCEL_ASYNCHRONOUS.

These functions will not return an error code of [EINTR].

EXAMPLES
None.

APPLICATION USAGE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
pthread_cancel (), <pthread.h>.

System Interfaces and Headers, Issue 5: Volume 1 661

pthread_setcancelstate() System Interfaces

CHANGE HISTORY
First released in Issue 5.

Included for alignment with the POSIX Threads Extension.

662 CAE Specification (1997)

System Interfaces pthread_setconcurrency()

NAME
pthread_setconcurrency — get or set level of concurrency

SYNOPSIS
EX #include <pthread.h>

int pthread_setconcurrency(int new_level);

DESCRIPTION
Refer to pthread_getconcurrency().

CHANGE HISTORY
First released in Issue 5.

System Interfaces and Headers, Issue 5: Volume 1 663

pthread_setspecific() System Interfaces

NAME
pthread_setspecific, pthread_getspecific — thread-specific data management

SYNOPSIS
#include <pthread.h>

int pthread_setspecific(pthread_key_t key , const void * value);
void *pthread_getspecific(pthread_key_t key);

DESCRIPTION
The pthread_setspecific() function associates a thread-specific value with a key obtained via a
previous call to pthread_key_create (). Different threads may bind different values to the same
key. These values are typically pointers to blocks of dynamically allocated memory that have
been reserved for use by the calling thread.

The pthread_getspecific() function returns the value currently bound to the specified key on behalf
of the calling thread.

The effect of calling pthread_setspecific() or pthread_getspecific() with a key value not obtained
from pthread_key_create () or after key has been deleted with pthread_key_delete () is undefined.

Both pthread_setspecific() and pthread_getspecific() may be called from a thread-specific data
destructor function. However, calling pthread_setspecific() from a destructor may result in lost
storage or infinite loops.

Both functions may be implemented as macros.

RETURN VALUE
The function pthread_getspecific() returns the thread-specific data value associated with the given
key . If no thread-specific data value is associated with key , then the value NULL is returned.

If successful, the pthread_setspecific() function returns zero. Otherwise, an error number is
returned to indicate the error.

ERRORS
The pthread_setspecific() function will fail if:

[ENOMEM] Insufficient memory exists to associate the value with the key.

The pthread_setspecific() function may fail if:

[EINVAL] The key value is invalid.

No errors are returned from pthread_getspecific().

These functions will not return an error code of [EINTR].

EXAMPLES
None.

APPLICATION USAGE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
pthread_key_create (), <pthread.h>.

664 CAE Specification (1997)

System Interfaces pthread_setspecific()

CHANGE HISTORY
First released in Issue 5.

Included for alignment with the POSIX Threads Extension.

System Interfaces and Headers, Issue 5: Volume 1 665

pthread_sigmask() System Interfaces

NAME
pthread_sigmask — examine and change blocked signals

SYNOPSIS
#include <signal.h>

int pthread_sigmask(int how, const sigset_t * set , sigset_t * oset fP);

DESCRIPTION
Refer to sigprocmask ().

CHANGE HISTORY
First released in Issue 5.

Included for alignment with the POSIX Threads Extension.

666 CAE Specification (1997)

System Interfaces ptsname()

NAME
ptsname — get name of the slave pseudo-terminal device

SYNOPSIS
EX #include <stdlib.h>

char *ptsname(int fildes);

DESCRIPTION
The ptsname() function returns the name of the slave pseudo-terminal device associated with a
master pseudo-terminal device. The fildes argument is a file descriptor that refers to the master
device. The ptsname() function returns a pointer to a string containing the pathname of the
corresponding slave device.

This interface need not be reentrant.

RETURN VALUE
Upon successful completion, ptsname() returns a pointer to a string which is the name of the
pseudo-terminal slave device. Upon failure, ptsname() returns a null pointer. This could occur if
fildes is an invalid file descriptor or if the slave device name does not exist in the file system.

ERRORS
No errors are defined.

EXAMPLES
None.

APPLICATION USAGE
The value returned may point to a static data area that is overwritten by each call to ptsname().

FUTURE DIRECTIONS
None.

SEE ALSO
grantpt(), open(), ttyname(), unlockpt (), <stdlib.h>.

CHANGE HISTORY
First released in Issue 4, Version 2.

Issue 5
Moved from X/OPEN UNIX extension to BASE.

A note indicating that this interface need not be reentrant is added to the DESCRIPTION.

System Interfaces and Headers, Issue 5: Volume 1 667

putc() System Interfaces

NAME
putc — put byte on a stream

SYNOPSIS
#include <stdio.h>

int putc(int c, FILE * stream);

DESCRIPTION
The putc() function is equivalent to fputc(), except that if it is implemented as a macro it may
evaluate stream more than once, so the argument should never be an expression with side-
effects.

RETURN VALUE
Refer to fputc().

ERRORS
Refer to fputc().

EXAMPLES
None.

APPLICATION USAGE
Because it may be implemented as a macro, putc() may treat a stream argument with side-effects
incorrectly. In particular, putc(c , *f++) will not necessarily work correctly. Therefore, use of this
interface is not recommended in such situations; fputc() should be used instead.

FUTURE DIRECTIONS
None.

SEE ALSO
fputc(), <stdio.h>.

CHANGE HISTORY
First released in Issue 1.

Derived from Issue 1 of the SVID.

Issue 4
The following change is incorporated for alignment with the ISO C standard:

• The c argument is not allowed to be evaluated more than once.

Another change is incorporated as follows:

• The APPLICATION USAGE section now states that the use of this function is not
recommended with a stream argument with side effects.

668 CAE Specification (1997)

System Interfaces putchar()

NAME
putchar — put byte on stdout stream

SYNOPSIS
#include <stdio.h>

int putchar(int c);

DESCRIPTION
The function call putchar(c) is equivalent to putc(c , stdout).

RETURN VALUE
Refer to fputc().

ERRORS
Refer to fputc().

EXAMPLES
None.

APPLICATION USAGE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
putc(), <stdio.h>.

CHANGE HISTORY
First released in Issue 1.

Derived from Issue 1 of the SVID.

System Interfaces and Headers, Issue 5: Volume 1 669

putc_unlocked() System Interfaces

NAME
putc_unlocked — stdio with explicit client locking

SYNOPSIS
#include <stdio.h>

int putc_unlocked(int c, FILE * stream);

DESCRIPTION
Refer to getc_unlocked ().

CHANGE HISTORY
First released in Issue 5.

Included for alignment with the POSIX Threads Extension.

670 CAE Specification (1997)

System Interfaces putchar_unlocked()

NAME
putchar_unlocked — stdio with explicit client locking

SYNOPSIS
#include <stdio.h>

int putchar_unlocked(int c);

DESCRIPTION
Refer to getc_unlocked ().

CHANGE HISTORY
First released in Issue 5.

Included for alignment with the POSIX Threads Extension.

System Interfaces and Headers, Issue 5: Volume 1 671

putenv() System Interfaces

NAME
putenv — change or add a value to environment

SYNOPSIS
EX #include <stdlib.h>

int putenv(char * string);

DESCRIPTION
The putenv() function uses the string argument to set environment variable values. The string
argument should point to a string of the form "name=value". The putenv() function makes the
value of the environment variable name equal to value by altering an existing variable or creating
a new one. In either case, the string pointed to by string becomes part of the environment, so
altering the string will change the environment. The space used by string is no longer used once
a new string-defining name is passed to putenv().

This interface need not be reentrant.

RETURN VALUE
Upon successful completion, putenv() returns 0. Otherwise, it returns a non-zero value and sets
errno to indicate the error.

ERRORS
The putenv() function may fail if:

[ENOMEM] Insufficient memory was available.

EXAMPLES
None.

APPLICATION USAGE
The putenv() function manipulates the environment pointed to by environ , and can be used in
conjunction with getenv().

This routine may use malloc () to enlarge the environment.

A potential error is to call putenv() with an automatic variable as the argument, then return from
the calling function while string is still part of the environment.

FUTURE DIRECTIONS
None.

SEE ALSO
exec, getenv(), malloc (), <stdlib.h>.

CHANGE HISTORY
First released in Issue 1.

Derived from Issue 1 of the SVID.

Issue 4
The following changes are incorporated in this issue:

• The <stdlib.h> header is added to the SYNOPSIS section.

• The type of argument string is changed from char * to const char *.

672 CAE Specification (1997)

System Interfaces putenv()

Issue 5
The type of the argument to this function is changed from const char* to char*. This was
indicated as a FUTURE DIRECTION in previous issues.

A note indicating that this interface need not be reentrant is added to the DESCRIPTION.

System Interfaces and Headers, Issue 5: Volume 1 673

putmsg() System Interfaces

NAME
putmsg, putpmsg — send a message on a STREAM

SYNOPSIS
EX #include <stropts.h>

int putmsg(int fildes , const struct strbuf * ctlptr ,
const struct strbuf * dataptr , int flags);

int putpmsg(int fildes , const struct strbuf * ctlptr ,
const struct strbuf * dataptr , int band , int flags);

DESCRIPTION
The putmsg() function creates a message from a process buffer(s) and sends the message to a
STREAMS file. The message may contain either a data part, a control part, or both. The data
and control parts are distinguished by placement in separate buffers, as described below. The
semantics of each part is defined by the STREAMS module that receives the message.

The putpmsg() function does the same thing as putmsg(), but the process can send messages in
different priority bands. Except where noted, all requirements on putmsg() also pertain to
putpmsg().

The fildes argument specifies a file descriptor referencing an open STREAM. The ctlptr and
dataptr arguments each point to a strbuf structure.

The ctlptr argument points to the structure describing the control part, if any, to be included in
the message. The buf member in the strbuf structure points to the buffer where the control
information resides, and the len member indicates the number of bytes to be sent. The maxlen
member is not used by putmsg(). In a similar manner, the argument dataptr specifies the data, if
any, to be included in the message. The flags argument indicates what type of message should
be sent and is described further below.

To send the data part of a message, dataptr must not be a null pointer and the len member of
dataptr must be 0 or greater. To send the control part of a message, the corresponding values
must be set for ctlptr. No data (control) part will be sent if either dataptr (ctlptr) is a null pointer
or the len member of dataptr (ctlptr) is set to −1.

For putmsg(), if a control part is specified and flags is set to RS_HIPRI, a high priority message is
sent. If no control part is specified, and flags is set to RS_HIPRI, putmsg() fails and sets errno to
[EINVAL]. If flags is set to 0, a normal message (priority band equal to 0) is sent. If a control part
and data part are not specified and flags is set to 0, no message is sent and 0 is returned.

For putpmsg(), the flags are different. The flags argument is a bitmask with the following
mutually-exclusive flags defined: MSG_HIPRI and MSG_BAND. If flags is set to 0, putpmsg()
fails and sets errno to [EINVAL]. If a control part is specified and flags is set to MSG_HIPRI and
band is set to 0, a high-priority message is sent. If flags is set to MSG_HIPRI and either no control
part is specified or band is set to a non-zero value, putpmsg() fails and sets errno to [EINVAL]. If
flags is set to MSG_BAND, then a message is sent in the priority band specified by band. If a
control part and data part are not specified and flags is set to MSG_BAND, no message is sent
and 0 is returned.

The putmsg() function blocks if the STREAM write queue is full due to internal flow control
conditions, with the following exceptions:

• For high-priority messages, putmsg() does not block on this condition and continues
processing the message.

674 CAE Specification (1997)

System Interfaces putmsg()

• For other messages, putmsg() does not block but fails when the write queue is full and
O_NONBLOCK is set.

The putmsg() function also blocks, unless prevented by lack of internal resources, while waiting
for the availability of message blocks in the STREAM, regardless of priority or whether
O_NONBLOCK has been specified. No partial message is sent.

RETURN VALUE
Upon successful completion, putmsg() and putpmsg() return 0. Otherwise, they return −1 and
set errno to indicate the error.

ERRORS
The putmsg() and putpmsg() functions will fail if:

[EAGAIN] A non-priority message was specified, the O_NONBLOCK flag is set, and the
STREAM write queue is full due to internal flow control conditions; or buffers
could not be allocated for the message that was to be created.

[EBADF] fildes is not a valid file descriptor open for writing.

[EINTR] A signal was caught during putmsg().

[EINVAL] An undefined value is specified in flags, or flags is set to RS_HIPRI or
MSG_HIPRI and no control part is supplied, or the STREAM or multiplexer
referenced by fildes is linked (directly or indirectly) downstream from a
multiplexer, or flags is set to MSG_HIPRI and band is non-zero (for putpmsg()
only).

[ENOSR] Buffers could not be allocated for the message that was to be created due to
insufficient STREAMS memory resources.

[ENOSTR] A STREAM is not associated with fildes.

[ENXIO] A hangup condition was generated downstream for the specified STREAM.

[EPIPE] or [EIO] The fildes argument refers to a STREAMS-based pipe and the other end of the
pipe is closed. A SIGPIPE signal is generated for the calling thread.

[ERANGE] The size of the data part of the message does not fall within the range
specified by the maximum and minimum packet sizes of the topmost
STREAM module. This value is also returned if the control part of the
message is larger than the maximum configured size of the control part of a
message, or if the data part of a message is larger than the maximum
configured size of the data part of a message.

In addition, putmsg() and putpmsg() will fail if the STREAM head had processed an
asynchronous error before the call. In this case, the value of errno does not reflect the result of
putmsg() or putpmsg() but reflects the prior error.

EXAMPLES
None.

APPLICATION USAGE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
getmsg(), poll (), read(), write(), <stropts.h>, Section 2.5 on page 34.

System Interfaces and Headers, Issue 5: Volume 1 675

putmsg() System Interfaces

CHANGE HISTORY
First released in Issue 4, Version 2.

Issue 5
Moved from X/OPEN UNIX extension to BASE.

The following line of text is removed from the DESCRIPTION: "The STREAM head guarantees
that the control part of a message generated by putmsg() is at least 64 bytes in length".

676 CAE Specification (1997)

System Interfaces puts()

NAME
puts — put a string on standard output

SYNOPSIS
#include <stdio.h>

int puts(const char * s);

DESCRIPTION
The puts() function writes the string pointed to by s, followed by a newline character, to the
standard output stream stdout . The terminating null byte is not written.

The st_ctime and st_mtime fields of the file will be marked for update between the successful
execution of puts() and the next successful completion of a call to fflush() or fclose() on the same
stream or a call to exit() or abort().

RETURN VALUE
Upon successful completion, puts() returns a non-negative number. Otherwise it returns EOF,
sets an error indicator for the stream and errno is set to indicate the error.

ERRORS
Refer to fputc().

EXAMPLES
None.

APPLICATION USAGE
The puts() function appends a newline character, while fputs() does not.

FUTURE DIRECTIONS
None.

SEE ALSO
fputs(), fopen(), putc(), stdio(), <stdio.h>.

CHANGE HISTORY
First released in Issue 1.

Derived from Issue 1 of the SVID.

Issue 4
The following change is incorporated for alignment with the ISO C standard:

• The type of argument s is changed from char * to const char *.

Another change is incorporated as follows:

• In the DESCRIPTION, the words ‘‘null character’’ are replaced by ‘‘null byte’’.

System Interfaces and Headers, Issue 5: Volume 1 677

pututxline() System Interfaces

NAME
pututxline — put an entry into user accounting database

SYNOPSIS
EX #include <utmpx.h>

struct utmpx *pututxline(const struct utmpx * utmpx);

DESCRIPTION
Refer to endutxent().

CHANGE HISTORY
First released in Issue 4, Version 2.

Issue 5
Moved from X/OPEN UNIX extension to BASE.

678 CAE Specification (1997)

System Interfaces putw()

NAME
putw — put a word on a stream (LEGACY)

SYNOPSIS
EX #include <stdio.h>

int putw(int w, FILE * stream);

DESCRIPTION
The putw() function writes the word (that is, type int) w to the output stream (at the position at
which the file offset, if defined, is pointing). The size of a word is the size of a type int and varies
from machine to machine. The putw() function neither assumes nor causes special alignment in
the file.

The st_ctime and st_mtime fields of the file will be marked for update between the successful
execution of putw() and the next successful completion of a call to fflush() or fclose() on the same
stream or a call to exit() or abort().

This interface need not be reentrant.

RETURN VALUE
Upon successful completion, putw() returns 0. Otherwise, a non-zero value is returned, the error
indicators for the stream are set, and errno is set to indicate the error.

ERRORS
Refer to fputc().

EXAMPLES
None.

APPLICATION USAGE
Because of possible differences in word length and byte ordering, files written using putw() are
implementation-dependent, and possibly cannot be read using getw() by a different application
or by the same application on a different processor.

The putw() function is inherently byte stream oriented and is not tenable in the context of either
multibyte character streams or wide-character streams. Application programmers are
recommended to use one of the character based output functions instead.

FUTURE DIRECTIONS
None.

SEE ALSO
fopen(), fwrite(), getw(), <stdio.h>.

CHANGE HISTORY
First released in Issue 1.

Derived from Issue 1 of the SVID.

Issue 5
A note indicating that this interface need not be reentrant is added to the DESCRIPTION.

Marked LEGACY.

System Interfaces and Headers, Issue 5: Volume 1 679

putwc() System Interfaces

NAME
putwc — put a wide-character on a stream

SYNOPSIS
#include <stdio.h>
#include <wchar.h>

wint_t putwc(wchar_t wc, FILE * stream);

DESCRIPTION
The putwc() function is equivalent to fputwc(), except that if it is implemented as a macro it may
evaluate stream more than once, so the argument should never be an expression with side-
effects.

RETURN VALUE
Refer to fputwc().

ERRORS
Refer to fputwc().

EXAMPLES
None.

APPLICATION USAGE
Because it may be implemented as a macro, putwc() may treat a stream argument with side-
effects incorrectly. In particular, putwc (wc, *f++) need not work correctly. Therefore, use of this
interface is not recommended; fputwc() should be used instead.

FUTURE DIRECTIONS
None.

SEE ALSO
fputwc(), <stdio.h>, <wchar.h>.

CHANGE HISTORY
First released as a World-wide Portability Interface in Issue 4.

Issue 5
Aligned with ISO/IEC 9899:1990/Amendment 1:1994 (E). Specifically, the type of argument wc
is changed from wint_t to wchar_t.

The Optional Header (OH) marking is removed from <stdio.h>.

680 CAE Specification (1997)

System Interfaces putwchar()

NAME
putwchar — put a wide-character on stdout stream

SYNOPSIS
#include <wchar.h>

wint_t putwchar(wchar_t wc);

DESCRIPTION
The function call putwchar(wc) is equivalent to putwc(wc, stdout).

RETURN VALUE
Refer to fputwc().

ERRORS
Refer to fputwc().

EXAMPLES
None.

APPLICATION USAGE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
fputwc(), putwc(), <wchar.h>.

CHANGE HISTORY
First released in Issue 4.

Issue 5
Aligned with ISO/IEC 9899:1990/Amendment 1:1994 (E). Specifically, the type of argument wc
is changed from wint_t to wchar_t.

System Interfaces and Headers, Issue 5: Volume 1 681

pwrite() System Interfaces

NAME
pwrite — write on a file

SYNOPSIS
EX #include <unistd.h>

ssize_t pwrite(int fildes , const void * buf , size_t nbyte ,
off_t offset);

DESCRIPTION
Refer to write().

CHANGE HISTORY
First released in Issue 5.

682 CAE Specification (1997)

System Interfaces qsort()

NAME
qsort — sort a table of data

SYNOPSIS
#include <stdlib.h>

void qsort(void * base , size_t nel , size_t width
int (* compar)(const void *, const void *));

DESCRIPTION
The qsort() function sorts an array of nel objects, the initial element of which is pointed to by
base. The size of each object, in bytes, is specified by the width argument.

The contents of the array are sorted in ascending order according to a comparison function. The
compar argument is a pointer to the comparison function, which is called with two arguments
that point to the elements being compared. The function must return an integer less than, equal
to, or greater than 0, if the first argument is considered respectively less than, equal to, or greater
than the second. If two members compare as equal, their order in the sorted array is unspecified.

RETURN VALUE
The qsort() function returns no value.

ERRORS
No errors are defined.

EXAMPLES
None.

APPLICATION USAGE
The comparison function need not compare every byte, so arbitrary data may be contained in
the elements in addition to the values being compared.

FUTURE DIRECTIONS
None.

SEE ALSO
<stdlib.h>.

CHANGE HISTORY
First released in Issue 1.

Derived from Issue 1 of the SVID.

Issue 4
The following change is incorporated for alignment with the ISO C standard:

• The arguments to compar() are formally defined in the SYNOPSIS section.

System Interfaces and Headers, Issue 5: Volume 2 683

raise() System Interfaces

NAME
raise — send a signal to the executing process

SYNOPSIS
#include <signal.h>

int raise(int sig);

DESCRIPTION
The raise() function sends the signal sig to the executing thread.

The effect of the raise() function is equivalent to calling:

pthread_kill(pthread_self(), sig);

RETURN VALUE
EX Upon successful completion, 0 is returned. Otherwise, a non-zero value is returned and errno is

set to indicate the error.

ERRORS
The raise() function will fail if:

EX [EINVAL] The value of the sig argument is an invalid signal number.

EXAMPLES
None.

APPLICATION USAGE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
kill (), sigaction (), <signal.h>, <sys/types.h>.

CHANGE HISTORY
First released in Issue 4.

Derived from the ANSI C standard.

Issue 5
The DESCRIPTION is updated for alignment with the POSIX Threads Extension.

684 CAE Specification (1997)

System Interfaces rand()

NAME
rand, rand_r — pseudo-random number generator

SYNOPSIS
#include <stdlib.h>

int rand (void);
void srand(unsigned int seed);
int rand_r(unsigned int * seed);

DESCRIPTION
The rand() function computes a sequence of pseudo-random integers in the range 0 to

EX {RAND_MAX} with a period of at least 232.

The srand() function uses the argument as a seed for a new sequence of pseudo-random
numbers to be returned by subsequent calls to rand(). If srand() is then called with the same
seed value, the sequence of pseudo-random numbers will be repeated. If rand() is called before
any calls to srand() are made, the same sequence will be generated as when srand() is first called
with a seed value of 1.

The implementation will behave as if no function defined in this document calls rand() or srand.

The rand() interface need not be reentrant.

The rand_r() function computes a sequence of pseudo-random integers in the range 0 to
{RAND_MAX}. (The value of the {RAND_MAX} macro will be at least 32767.)

If rand_r() is called with the same initial value for the object pointed to by seed and that object is
not modified between successive returns and calls to rand_r(), the same sequence shall be
generated.

RETURN VALUE
The rand() function returns the next pseudo-random number in the sequence. The srand()
function returns no value.

The rand_r() function returns a pseudo-random integer.

ERRORS
No errors are defined.

EXAMPLES
None.

APPLICATION USAGE
The drand48() function provides a much more elaborate random number generator.

The following code defines a pair of functions which could be incorporated into applications
wishing to ensure that the same sequence of numbers is generated across different machines:

System Interfaces and Headers, Issue 5: Volume 2 685

rand() System Interfaces

static unsigned long int next = 1;
int myrand(void) /* RAND_MAX assumed to be 32767 */
{

next = next * 1103515245 + 12345;
return ((unsigned int) (next/65536) % 32768);

}

void mysrand(unsigned int seed)
{

next = seed;
}

FUTURE DIRECTIONS
None.

SEE ALSO
drand48(), srand(), <stdlib.h>.

CHANGE HISTORY
First released in Issue 1.

Derived from Issue 1 of the SVID.

Issue 4
The following changes are incorporated for alignment with the ISO C standard:

• The argument list of rand() is explicitly defined as void.

• The argument seed is explicitly defined as unsigned int.

Other changes are incorporated as follows:

• The definition of srand() is added to the SYNOPSIS section.

• In the DESCRIPTION, the text referring to the period of pseudo-random numbers is marked
as an extension.

• The example in the APPLICATION USAGE section is updated (a) to use ISO C syntax, and
(b) to avoid name clashes with standard functions.

Issue 5
The rand_r() function is included for alignment with the POSIX Threads Extension.

A note indicating that the rand() interface need not be reentrant is added to the DESCRIPTION.

686 CAE Specification (1997)

System Interfaces random()

NAME
random — generate pseudorandom number

SYNOPSIS
EX #include <stdlib.h>

long random(void);

DESCRIPTION
Refer to initstate().

CHANGE HISTORY
First released in Issue 4, Version 2.

Issue 5
Moved from X/OPEN UNIX extension to BASE.

System Interfaces and Headers, Issue 5: Volume 2 687

read() System Interfaces

NAME
read, readv, pread — read from a file

SYNOPSIS
#include <unistd.h>

ssize_t read(int fildes , void * buf , size_t nbyte);
EX ssize_t pread(int fildes , void * buf , size_t nbyte , off_t offset);

#include <sys/uio.h>

ssize_t readv(int fildes , const struct iovec * iov , int iovcnt);

DESCRIPTION
The read() function attempts to read nbyte bytes from the file associated with the open file
descriptor, fildes , into the buffer pointed to by buf.

If nbyte is 0, read() will return 0 and have no other results.

On files that support seeking (for example, a regular file), the read() starts at a position in the file
given by the file offset associated with fildes . The file offset is incremented by the number of
bytes actually read.

Files that do not support seeking, for example, terminals, always read from the current position.
The value of a file offset associated with such a file is undefined.

No data transfer will occur past the current end-of-file. If the starting position is at or after the
end-of-file, 0 will be returned. If the file refers to a device special file, the result of subsequent
read() requests is implementation-dependent.

If the value of nbyte is greater than {SSIZE_MAX}, the result is implementation-dependent.

When attempting to read from an empty pipe or FIFO:

• If no process has the pipe open for writing, read() will return 0 to indicate end-of-file.

• If some process has the pipe open for writing and O_NONBLOCK is set, read() will return −1
and set errno to [EAGAIN].

• If some process has the pipe open for writing and O_NONBLOCK is clear, read() will block
the calling thread until some data is written or the pipe is closed by all processes that had the
pipe open for writing.

When attempting to read a file (other than a pipe or FIFO) that supports non-blocking reads and
has no data currently available:

• If O_NONBLOCK is set, read() will return a −1 and set errno to [EAGAIN].

• If O_NONBLOCK is clear, read() will block the calling thread until some data becomes
available.

• The use of the O_NONBLOCK flag has no effect if there is some data available.

The read() function reads data previously written to a file. If any portion of a regular file prior to
the end-of-file has not been written, read() returns bytes with value 0. For example, lseek()
allows the file offset to be set beyond the end of existing data in the file. If data is later written at
this point, subsequent reads in the gap between the previous end of data and the newly written
data will return bytes with value 0 until data is written into the gap.

688 CAE Specification (1997)

System Interfaces read()

Upon successful completion, where nbyte is greater than 0, read() will mark for update the
st_atime field of the file, and return the number of bytes read. This number will never be greater
than nbyte. The value returned may be less than nbyte if the number of bytes left in the file is less
than nbyte, if the read() request was interrupted by a signal, or if the file is a pipe or FIFO or
special file and has fewer than nbyte bytes immediately available for reading. For example, a
read() from a file associated with a terminal may return one typed line of data.

If a read() is interrupted by a signal before it reads any data, it will return −1 with errno set to
[EINTR].

FIPS If a read() is interrupted by a signal after it has successfully read some data, it will return the
number of bytes read.

EX A read() from a STREAMS file can read data in three different modes: byte-stream mode,
message-nondiscard mode, and message-discard mode. The default is byte-stream mode. This
can be changed using the I_SRDOPT ioctl () request, and can be tested with the I_GRDOPT
ioctl (). In byte-stream mode, read() retrieves data from the STREAM until as many bytes as
were requested are transferred, or until there is no more data to be retrieved. Byte-stream mode
ignores message boundaries.

In STREAMS message-nondiscard mode, read() retrieves data until as many bytes as were
requested are transferred, or until a message boundary is reached. If read() does not retrieve all
the data in a message, the remaining data is left on the STREAM, and can be retrieved by the
next read() call. Message-discard mode also retrieves data until as many bytes as were
requested are transferred, or a message boundary is reached. However, unread data remaining
in a message after the read() returns is discarded, and is not available for a subsequent read(),
readv() or getmsg() call.

How read() handles zero-byte STREAMS messages is determined by the current read mode
setting. In byte-stream mode, read() accepts data until it has read nbyte bytes, or until there is no
more data to read, or until a zero-byte message block is encountered. The read() function then
returns the number of bytes read, and places the zero-byte message back on the STREAM to be
retrieved by the next read(), readv() or getmsg(). In message-nondiscard mode or message-
discard mode, a zero-byte message returns 0 and the message is removed from the STREAM.
When a zero-byte message is read as the first message on a STREAM, the message is removed
from the STREAM and 0 is returned, regardless of the read mode.

A read() from a STREAMS file returns the data in the message at the front of the STREAM head
read queue, regardless of the priority band of the message.

By default, STREAMs are in control-normal mode, in which a read() from a STREAMS file can
only process messages that contain a data part but do not contain a control part. The read() fails
if a message containing a control part is encountered at the STREAM head. This default action
can be changed by placing the STREAM in either control-data mode or control-discard mode
with the I_SRDOPT ioctl () command. In control-data mode, read() converts any control part to
data and passes it to the application before passing any data part originally present in the same
message. In control-discard mode, read() discards message control parts but returns to the
process any data part in the message.

In addition, read() and readv() will fail if the STREAM head had processed an asynchronous
error before the call. In this case, the value of errno does not reflect the result of read() or readv()
but reflects the prior error. If a hangup occurs on the STREAM being read, read() continues to
operate normally until the STREAM head read queue is empty. Thereafter, it returns 0.

EX The readv() function is equivalent to read(), but places the input data into the iovcnt buffers
specified by the members of the iov array: iov[0], iov[1], ..., iov[iovcnt−1]. The iovcnt argument is
valid if greater than 0 and less than or equal to {IOV_MAX}.

System Interfaces and Headers, Issue 5: Volume 2 689

read() System Interfaces

Each iovec entry specifies the base address and length of an area in memory where data should
be placed. The readv() function always fills an area completely before proceeding to the next.

Upon successful completion, readv() marks for update the st_atime field of the file.

RT If the Synchronized Input and Output option is supported:

If the O_DSYNC and O_RSYNC bits have been set, read I/O operations on the file descriptor
complete as defined by synchronised I/O data integrity completion. If the O_SYNC and
O_RSYNC bits have been set, read I/O operations on the file descriptor complete as defined
by synchronised I/O file integrity completion.

If the Shared Memory Objects option is supported:

If fildes refers to a shared memory object, the result of the read() function is unspecified.

EX For regular files, no data transfer will occur past the offset maximum established in the open file
description associated with fildes .

The pread() function performs the same action as read(), except that it reads from a given
position in the file without changing the file pointer. The first three arguments to pread() are the
same as read() with the addition of a fourth argument offset for the desired position inside the
file. An attempt to perform a pread() on a file that is incapable of seeking results in an error.

RETURN VALUE
EX Upon successful completion, read(), pread() and readv() return a non-negative integer indicating

the number of bytes actually read. Otherwise, the functions return −1 and set errno to indicate
the error.

ERRORS
EX The read(),pread() and readv()functions will fail if:

[EAGAIN] The O_NONBLOCK flag is set for the file descriptor and the process would be
delayed.

[EBADF] The fildes argument is not a valid file descriptor open for reading.

EX [EBADMSG] The file is a STREAM file that is set to control-normal mode and the message
waiting to be read includes a control part.

[EINTR] The read operation was terminated due to the receipt of a signal, and no data
was transferred.

EX [EINVAL] The STREAM or multiplexer referenced by fildes is linked (directly or
indirectly) downstream from a multiplexer.

EX [EIO] A physical I/O error has occurred.

[EIO] The process is a member of a background process attempting to read from its
controlling terminal, the process is ignoring or blocking the SIGTTIN signal or
the process group is orphaned. This error may also be generated for
implementation-dependent reasons.

EX [EISDIR] The fildes argument refers to a directory and the implementation does not
allow the directory to be read using read(), pread() or readv(). The readdir()
function should be used instead.

[EOVERFLOW] The file is a regular file, nbyte is greater than 0, the starting position is before
the end-of-file and the starting position is greater than or equal to the offset
maximum established in the open file description associated with fildes .

690 CAE Specification (1997)

System Interfaces read()

The readv() function will fail if:

[EINVAL] The sum of the iov_len values in the iov array overflowed an ssize_t.

EX The read(),pread() and readv()functions may fail if:

EX [ENXIO] A request was made of a non-existent device, or the request was outside the
capabilities of the device.

The readv() function may fail if:

[EINVAL] The iovcnt argument was less than or equal to 0, or greater than {IOV_MAX}.

The pread() function will fail, and the file pointer remains unchanged, if:

[EINVAL] The offset argument is invalid. The value is negative.

[EOVERFLOW] The file is a regular file and an attempt was made to read or write at or beyond
the offset maximum associated with the file.

[ENXIO] A request was outside the capabilities of the device.

[ESPIPE] fildes is associated with a pipe or FIFO.

EXAMPLES
None.

APPLICATION USAGE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
fcntl(), ioctl (), lseek(), open(), pipe(), <stropts.h>, <sys/uio.h>, <unistd.h>, XBD specification,
Chapter 9, General Terminal Interface.

CHANGE HISTORY
First released in Issue 1.

Derived from Issue 1 of the SVID.

Issue 4
The following changes are incorporated for alignment with the ISO POSIX-1 standard:

• The type of the argument buf is changed from char * to void*, and the type of the argument
nbyte is changed from unsigned to size_t.

• The DESCRIPTION now states that the result is implementation-dependent if nbyte is greater
than {SSIZE_MAX}. This limit was defined by the constant {INT_MAX} in Issue 3.

The following change is incorporated for alignment with the FIPS requirements:

• The last paragraph of the DESCRIPTION now states that if read() is interrupted by a signal
after it has successfully read some data, it will return the number of bytes read. In Issue 3 it
was optional whether read() returned the number of bytes read, or whether it returned −1
with errno set to [EINTR].

System Interfaces and Headers, Issue 5: Volume 2 691

read() System Interfaces

Other changes are incorporated as follows:

• The <unistd.h> header is added to the SYNOPSIS section.

• The DESCRIPTION is rearranged for clarity and to align more closely with the ISO POSIX-1
standard. No functional changes are made other than as noted elsewhere in this CHANGE
HISTORY section.

• In the ERRORS section in previous issues, generation of the [EIO] error depended on whether
or not an implementation supported Job Control. This functionality is now defined as
mandatory.

• The [ENXIO] error is marked as an extension.

• The APPLICATION USAGE section is removed.

• The description of [EINTR] is amended.

Issue 4, Version 2
The following changes are incorporated for X/OPEN UNIX conformance:

• The readv() function is added to the SYNOPSIS.

• The DESCRIPTION is updated to describe the reading of data from STREAMS files. An
operational description of the readv() function is also added.

• References to the readv() function are added to the RETURN VALUE and ERRORS sections
in appropriate places.

• The ERRORS section has been restructured to describe errors that apply generally (that is, to
both read() and readv()), and to describe those that apply to readv() specifically. The
[EBADMSG], [EINVAL] and [EISDIR] errors are also added.

Issue 5
The DESCRIPTION is updated for alignment with the POSIX Realtime Extension and the POSIX
Threads Extension.

Large File Summit extensions added.

The pread() function is added.

692 CAE Specification (1997)

System Interfaces readdir()

NAME
readdir, readdir_r — read directory

SYNOPSIS
OH #include <sys/types.h>

#include <dirent.h>

struct dirent *readdir(DIR * dirp);
int readdir_r(DIR * dirp , struct direct * entry , struct dirent ** result);

DESCRIPTION
The type DIR, which is defined in the header <dirent.h>, represents a directory stream, which is
an ordered sequence of all the directory entries in a particular directory. Directory entries
represent files; files may be removed from a directory or added to a directory asynchronously to
the operation of readdir().

The readdir() function returns a pointer to a structure representing the directory entry at the
current position in the directory stream specified by the argument dirp , and positions the
directory stream at the next entry. It returns a null pointer upon reaching the end of the
directory stream. The structure dirent defined by the <dirent.h> header describes a directory
entry.

EX If entries for dot or dot-dot exist, one entry will be returned for dot and one entry will be
returned for dot-dot; otherwise they will not be returned.

The pointer returned by readdir() points to data which may be overwritten by another call to
readdir() on the same directory stream. This data is not overwritten by another call to readdir()
on a different directory stream.

If a file is removed from or added to the directory after the most recent call to opendir() or
rewinddir(), whether a subsequent call to readdir() returns an entry for that file is unspecified.

The readdir() function may buffer several directory entries per actual read operation; readdir()
marks for update the st_atime field of the directory each time the directory is actually read.

After a call to fork (), either the parent or child (but not both) may continue processing the
EX directory stream using readdir(), rewinddir() or seekdir(). If both the parent and child processes

use these functions, the result is undefined.

EX If the entry names a symbolic link, the value of the d_ino member is unspecified.

The readdir() interface need not be reentrant.

The readdir_r() function initialises the dirent structure referenced by entry to represent the
directory entry at the current position in the directory stream referred to by dirp , store a pointer
to this structure at the location referenced by result, and positions the directory stream at the
next entry.

The storage pointed to by entry will be large enough for a dirent with an array of char d_name
member containing at least {NAME_MAX} plus one elements.

On successful return, the pointer returned at *result will the same value as the argument entry.
Upon reaching the end of the directory stream, this pointer will have the value NULL.

The readdir_r() function will not return directory entries containing empty names. It is
unspecified whether entries are returned for dot or dot-dot.

If a file is removed from or added to the directory after the most recent call to opendir() or
rewinddir(), whether a subsequent call to readdir_r() returns an entry for that file is unspecified.

System Interfaces and Headers, Issue 5: Volume 2 693

readdir() System Interfaces

The readdir_r() function may buffer several directory entries per actual read operation; the
readdir_r() function marks for update the st_atime field of the directory each time the directory is
actually read.

Applications wishing to check for error situations should set errno to 0 before calling readdir(). If
errno is set to non-zero on return, an error occurred.

RETURN VALUE
Upon successful completion, readdir() returns a pointer to an object of type struct dirent. When
an error is encountered, a null pointer is returned and errno is set to indicate the error. When the
end of the directory is encountered, a null pointer is returned and errno is not changed.

If successful, the readdir_r() function returns zero. Otherwise, an error number is returned to
indicate the error.

ERRORS
EX The readdir() function will fail if:

[EOVERFLOW] One of the values in the structure to be returned cannot be represented
correctly.

The readdir() function may fail if:

[EBADF] The dirp argument does not refer to an open directory stream.

EX [ENOENT] The current position of the directory stream is invalid.

The readdir_r() function may fail if:

[EBADF] The dirp argument does not refer to an open directory stream.

EXAMPLES
The following sample code will search the current directory for the entry name:

dirp = opendir(".");

while (dirp) {
errno = 0;
if ((dp = readdir(dirp)) != NULL) {

if (strcmp(dp->d_name, name) == 0) {
closedir(dirp);
return FOUND;

}
} else {

if (errno == 0) {
closedir(dirp);
return NOT_FOUND;

}
closedir(dirp);
return READ_ERROR;

}
}

return OPEN_ERROR;

APPLICATION USAGE
The readdir() function should be used in conjunction with opendir(), closedir() and rewinddir() to
examine the contents of the directory.

694 CAE Specification (1997)

System Interfaces readdir()

FUTURE DIRECTIONS
None.

SEE ALSO
closedir(), lstat(), opendir(), rewinddir(), symlink(), <dirent.h>, <sys/types.h>.

CHANGE HISTORY
First released in Issue 2.

Issue 4
The following change is incorporated for alignment with the ISO POSIX-1 standard:

• The last paragraph of the DESCRIPTION describing a restriction after fork () is added.

Other changes are incorporated as follows:

• The <sys/types.h> header is now marked as optional (OH); this header need not be included
on XSI-conformant systems.

• In the DESCRIPTION, the fact that XSI-conformant systems will return entries for dot and
dot-dot is marked as an extension. This functionality is not specified in the ISO POSIX-1
standard.

• There is some rewording of the DESCRIPTION and RETURN VALUE sections. No
functional changes are made other than as noted elsewhere in this CHANGE HISTORY
section.

Issue 4, Version 2
The following changes are incorporated for X/OPEN UNIX conformance:

• A statement is added to the DESCRIPTION indicating the disposition of certain fields in
struct dirent when an entry refers to a symbolic link.

• The [ENOENT] error is added to the ERRORS section as an optional error.

Issue 5
Large File Summit extensions added.

The readdir_r() function is included for alignment with the POSIX Threads Extension.

A note indicating that the readdir() interface need not be reentrant is added to the
DESCRIPTION.

System Interfaces and Headers, Issue 5: Volume 2 695

readlink() System Interfaces

NAME
readlink — read the contents of a symbolic link

SYNOPSIS
EX #include <unistd.h>

int readlink(const char * path , char * buf , size_t bufsize);

DESCRIPTION
The readlink () function places the contents of the symbolic link referred to by path in the buffer
buf which has size bufsize. If the number of bytes in the symbolic link is less than bufsize, the
contents of the remainder of buf are unspecified.

RETURN VALUE
Upon successful completion, readlink () returns the count of bytes placed in the buffer.
Otherwise, it returns a value of −1, leaves the buffer unchanged, and sets errno to indicate the
error.

ERRORS
The readlink () function will fail if:

[EACCES] Search permission is denied for a component of the path prefix of path.

[EINVAL] The path argument names a file that is not a symbolic link.

[EIO] An I/O error occurred while reading from the file system.

[ENOENT] A component of path does not name an existing file or path is an empty string.

[ELOOP] Too many symbolic links were encountered in resolving path.

[ENAMETOOLONG]
The length of path exceeds {PATH_MAX}, or a pathname component is longer
than {NAME_MAX}.

[ENOTDIR] A component of the path prefix is not a directory.

The readlink () function may fail if:

[EACCES] Read permission is denied for the directory.

[ENAMETOOLONG]
Pathname resolution of a symbolic link produced an intermediate result
whose length exceeds {PATH_MAX}.

EXAMPLES
None.

APPLICATION USAGE
Portable applications should not assume that the returned contents of the symbolic link are
null-terminated.

FUTURE DIRECTIONS
The return value may change in a future issue to align with IEEE PASC.

SEE ALSO
stat(), symlink(), <unistd.h>.

CHANGE HISTORY
First released in Issue 4, Version 2.

696 CAE Specification (1997)

System Interfaces readlink()

Issue 5
Moved from X/OPEN UNIX extension to BASE.

System Interfaces and Headers, Issue 5: Volume 2 697

readv() System Interfaces

NAME
readv — vectored read from file

SYNOPSIS
EX #include <sys/uio.h>

ssize_t readv(int fildes , const struct iovec * iov , int iovcnt);

DESCRIPTION
Refer to read().

CHANGE HISTORY
First released in Issue 4, Version 2.

698 CAE Specification (1997)

System Interfaces realloc()

NAME
realloc — memory reallocator

SYNOPSIS
#include <stdlib.h>

void *realloc(void * ptr , size_t size);

DESCRIPTION
The realloc () function changes the size of the memory object pointed to by ptr to the size
specified by size . The contents of the object will remain unchanged up to the lesser of the new
and old sizes. If the new size of the memory object would require movement of the object, the
space for the previous instantiation of the object is freed. If the new size is larger, the contents of
the newly allocated portion of the object are unspecified. If size is 0 and ptr is not a null pointer,
the object pointed to is freed. If the space cannot be allocated, the object remains unchanged.

If ptr is a null pointer, realloc () behaves like malloc () for the specified size.

If ptr does not match a pointer returned earlier by calloc (), malloc () or realloc () or if the space has
previously been deallocated by a call to free() or realloc (), the behaviour is undefined.

The order and contiguity of storage allocated by successive calls to realloc () is unspecified. The
pointer returned if the allocation succeeds is suitably aligned so that it may be assigned to a
pointer to any type of object and then used to access such an object in the space allocated (until
the space is explicitly freed or reallocated). Each such allocation will yield a pointer to an object
disjoint from any other object. The pointer returned points to the start (lowest byte address) of
the allocated space. If the space cannot be allocated, a null pointer is returned.

RETURN VALUE
Upon successful completion with a size not equal to 0, realloc () returns a pointer to the (possibly
moved) allocated space. If size is 0, either a null pointer or a unique pointer that can be
successfully passed to free() is returned. If there is not enough available memory, realloc ()

EX returns a null pointer and sets errno to [ENOMEM].

ERRORS
The realloc () function will fail if:

EX [ENOMEM] Insufficient memory is available.

EXAMPLES
None.

APPLICATION USAGE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
calloc (), free(), malloc (), <stdlib.h>.

CHANGE HISTORY
First released in Issue 1.

Derived from Issue 1 of the SVID.

System Interfaces and Headers, Issue 5: Volume 2 699

realloc() System Interfaces

Issue 4
The following changes are incorporated for alignment with the ISO C standard:

• The DESCRIPTION is updated to indicate (a) that the order and contiguity of storage
allocated by successive calls to this function is unspecified, (b) that each allocation yields a
pointer to an object disjoint from any other object, and (c) that the returned pointer points to
the lowest byte address of the allocation.

• The RETURN VALUE section is updated to indicate what will be returned if size is 0.

Other changes are incorporated as follows:

• The setting of errno and the [ENOMEM] error are marked as extensions.

• The APPLICATION USAGE section is removed.

700 CAE Specification (1997)

System Interfaces realpath()

NAME
realpath — resolve a pathname

SYNOPSIS
EX #include <stdlib.h>

char *realpath(const char * file_name , char * resolved_name);

DESCRIPTION
The realpath () function derives, from the pathname pointed to by file_name, an absolute
pathname that names the same file, whose resolution does not involve ".", "..", or symbolic links.
The generated pathname is stored, up to a maximum of {PATH_MAX} bytes, in the buffer
pointed to by resolved_name .

RETURN VALUE
On successful completion, realpath () returns a pointer to the resolved name. Otherwise,
realpath () returns a null pointer and sets errno to indicate the error, and the contents of the buffer
pointed to by resolved_name are undefined.

ERRORS
The realpath () function will fail if:

[EACCES] Read or search permission was denied for a component of file_name.

[EINVAL] Either the file_name or resolved_name argument is a null pointer.

[EIO] An error occurred while reading from the file system.

[ELOOP] Too many symbolic links were encountered in resolving path.

[ENAMETOOLONG]
The file_name argument is longer than {PATH_MAX} or a pathname
component is longer than {NAME_MAX}.

[ENOENT] A component of file_name does not name an existing file or file_name points to
an empty string.

[ENOTDIR] A component of the path prefix is not a directory.

The realpath () function may fail if:

[ENAMETOOLONG]
Pathname resolution of a symbolic link produced an intermediate result
whose length exceeds {PATH_MAX}.

[ENOMEM] Insufficient storage space is available.

EXAMPLES
None.

APPLICATION USAGE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
getcwd(), sysconf(), <stdlib.h>.

CHANGE HISTORY
First released in Issue 4, Version 2.

System Interfaces and Headers, Issue 5: Volume 2 701

realpath() System Interfaces

Issue 5
Moved from X/OPEN UNIX extension to BASE.

702 CAE Specification (1997)

System Interfaces re_comp()

NAME
re_comp, re_exec — compile and execute regular expressions (LEGACY)

SYNOPSIS
EX #include <re_comp.h>

char *re_comp(const char * string);
int re_exec(const char * string);

DESCRIPTION
The re_comp() function converts a regular expression string (RE) into an internal form suitable
for pattern matching. The re_exec() function compares the string pointed to by the string
argument with the last regular expression passed to re_comp().

If re_comp() is called with a null pointer argument, the current regular expression remains
unchanged.

Strings passed to both re_comp() and re_exec() must be terminated by a null byte, and may
include newline characters.

The re_comp() and re_exec() functions support simple regular expressions, which are defined
below.

The following one-character REs match a single character:

1.1 An ordinary character (not one of those discussed in 1.2 below) is a one-character RE that
matches itself.

1.2 A backslash (\) followed by any special character is a one-character RE that matches the
special character itself. The special characters are:

a. ., *, [, and \ (period, asterisk, left square bracket, and backslash, respectively), which
are always special, except when they appear within square brackets ([]; see 1.4
below).

b. ˆ (caret or circumflex), which is special at the beginning of an entire RE (see 3.1 and 3.2
below), or when it immediately follows the left of a pair of square brackets ([]) (see
1.4 below).

c. $ (dollar symbol), which is special at the end of an entire RE (see 3.2 below).

d. The character used to bound (delimit) an entire RE, which is special for that RE.

1.3 A period (.) is a one-character RE that matches any character except new-line.

1.4 A non-empty string of characters enclosed in square brackets ([]) is a one-character RE that
matches any one character in that string. If, however, the first character of the string is a
circumflex (ˆ), the one-character RE matches any character except new-line and the
remaining characters in the string. The ˆ has this special meaning only if it occurs first in the
string. The minus (-) may be used to indicate a range of consecutive ASCII characters; for
example, [0-9] is equivalent to [0123456789]. The - loses this special meaning if it occurs
first (after an initial ˆ, if any) or last in the string. The right square bracket (]) does not
terminate such a string when it is the first character within it (after an initial ˆ, if any); for
example, []a-f] matches either a right square bracket (]) or one of the letters a through f
inclusive. The four characters listed in 1.2.a above stand for themselves within such a string
of characters.

System Interfaces and Headers, Issue 5: Volume 2 703

re_comp() System Interfaces

The following rules may be used to construct REs from one-character REs:

2.1 A one-character RE is a RE that matches whatever the one-character RE matches.

2.2 A one-character RE followed by an asterisk (*) is a RE that matches zero or more
occurrences of the one-character RE. If there is any choice, the longest leftmost string that
permits a match is chosen.

2.3 A one-character RE followed by \{m\}, \{m,\}, or \{m,n\} is a RE that matches a range of
occurrences of the one-character RE. The values of m and n must be non-negative integers
less than 256; \{m\} matches exactly m occurrences; \{m,\} matches at least m occurrences;
\{m,n\} matches any number of occurrences between m and n inclusive. Whenever a
choice exists, the RE matches as many occurrences as possible.

2.4 The concatenation of REs is a RE that matches the concatenation of the strings matched by
each component of the RE.

2.5 A RE enclosed between the character sequences \(and \) is a RE that matches whatever the
unadorned RE matches.

2.6 The expression \n matches the same string of characters as was matched by an expression
enclosed between \(and \) earlier in the same RE. Here n is a digit; the sub-expression
specified is that beginning with the n-th occurrence of \(counting from the left. For
example, the expression ˆ\(.*\)\1$ matches a line consisting of two repeated appearances of
the same string.

Finally, an entire RE may be constrained to match only an initial segment or final segment of a
line (or both).

3.1 A circumflex (ˆ) at the beginning of an entire RE constrains that RE to match an initial
segment of a line.

3.2 A dollar symbol ($) at the end of an entire RE constrains that RE to match a final segment of
a line. The construction ˆentire RE$ constrains the entire RE to match the entire line.

The null RE (that is, //) is equivalent to the last RE encountered.

The behaviour of re_comp() and re_exec() in locales other than the POSIX locale is unspecified.

These interfaces need not be reentrant.

RETURN VALUE
The re_comp() function returns a null pointer when the string pointed to by the string argument
is successfully converted. Otherwise, a pointer to an unspecified error message string is
returned.

Upon successful completion, re_exec() returns 1 if string matches the last compiled regular
expression. Otherwise, re_exec() returns 0 if string fails to match the last compiled regular
expression, and −1 if the compiled regular expression is invalid (indicating an internal error).

ERRORS
No errors are defined.

EXAMPLES
None.

APPLICATION USAGE
For portability to implementations conforming to earlier versions of this specification, regcomp()
and regexec() are preferred to these functions.

704 CAE Specification (1997)

System Interfaces re_comp()

FUTURE DIRECTIONS
None.

SEE ALSO
regcomp(), <re_comp.h>.

CHANGE HISTORY
First released in Issue 4, Version 2.

Issue 5
Marked LEGACY.

A note indicating that these interfaces need not be reentrant is added to the DESCRIPTION.

System Interfaces and Headers, Issue 5: Volume 2 705

regcmp() System Interfaces

NAME
regcmp, regex — compile and execute a regular expression (LEGACY)

SYNOPSIS
EX #include <libgen.h>

char *regcmp (const char * string1 , ... /*, (char *)0 */);
char *regex (const char * re , const char * subject , ...);
extern char *__loc1;

DESCRIPTION
The regcmp() function compiles a regular expression consisting of the concatenated arguments
and returns a pointer to the compiled form. The end of arguments is indicated by a null pointer.
The malloc () function is used to create space for the compiled form. It is the process’
responsibility to free unneeded space so allocated. A null pointer returned from regcmp()
indicates an invalid argument.

The regex() function executes a compiled pattern against the subject string. Additional
arguments of type char * must be passed to receive matched subexpressions back. If an
insufficient number of arguments is passed to accept all the values that the regular expression
returns, the behaviour is undefined. A global character pointer _ _loc1 points to the first
matched character in the subject string. Both regcmp() and regex() were largely borrowed from
the editor, and are defined in re_comp(), but the syntax and semantics have been changed
slightly. The following are the valid symbols and their associated meanings:

[]*.ˆ These symbols retain their meaning as defined in re_comp().

$ Matches the end of the string; \n matches a new-line.

- Used within brackets, the hyphen signifies an ASCII character range. For example,
[a-z] is equivalent to [abcd . . . xyz] . The - can represent itself only if used as the
first or last character. For example, the character class expression []-] matches the
characters] and -.

+ A regular expression followed by + means one or more times. For example, [0-9]+
is equivalent to [0-9][0-9]* .

{m} {m,} {m,u}
Integer values enclosed in { } indicate the number of times the preceding regular
expression can be applied. The value m is the minimum number and u is a
number, less than 256, which is the maximum. If the value of either m or u is 256
or greater, the behaviour is undefined. The syntax {m} indicates the exact number
of times the regular expression can be applied. The syntax {m,} is analogous to
{m,infinity}. The plus (+) and asterisk (*) operations are equivalent to {1,} and {0,}
respectively.

(. . .)$n The value of the enclosed regular expression is returned. The value is stored in the
(n+1)th argument following the subject argument. A maximum of ten enclosed
regular expressions are allowed. The regex() function makes its assignments
unconditionally.

(. . .) Parentheses are used for grouping. An operator, such as *, +, or { }, can work on a
single character or a regular expression enclosed in parentheses. For example,
(a*(cb+)*)$0 .

Since all of the above defined symbols are special characters, they must be escaped to be used as
themselves.

706 CAE Specification (1997)

System Interfaces regcmp()

The behaviour of regcmp() and regex() in locales other than the POSIX locale is unspecified.

These interfaces need not be reentrant.

RETURN VALUE
Upon successful completion, regcmp() returns a pointer to the compiled regular expression.
Otherwise, a null pointer is returned and errno may be set to indicate the error.

Upon successful completion, regex() returns a pointer to the next unmatched character in the
subject string. Otherwise, a null pointer is returned.

The regex() function returns a null pointer on failure, or a pointer to the next unmatched
character on success.

ERRORS
The regcmp() function may fail if:

[ENOMEM] Insufficient storage space was available.

No errors are defined for regex().

EXAMPLES
None.

APPLICATION USAGE
For portability to implementations conforming to earlier versions of this specification, regcomp()
is preferred over this function.

User programs that use regcmp() may run out of memory if regcmp() is called iteratively without
freeing compiled regular expression strings that are no longer required.

FUTURE DIRECTIONS
None.

SEE ALSO
malloc (), regcomp(), <libgen.h>.

CHANGE HISTORY
First released in Issue 4, Version 2.

Issue 5
Marked LEGACY.

A note indicating that these interfaces need not be reentrant is added to the DESCRIPTION.

System Interfaces and Headers, Issue 5: Volume 2 707

regcomp() System Interfaces

NAME
regcomp, regexec, regerror, regfree — regular expression matching

SYNOPSIS
OH #include <sys/types.h>

#include <regex.h>

int regcomp(regex_t * preg , const char * pattern , int cflags);
int regexec(const regex_t * preg , const char * string ,

size_t nmatch , regmatch_t pmatch [], int eflags);
size_t regerror(int errcode , const regex_t * preg ,

char * errbuf , size_t errbuf_size);
void regfree(regex_t * preg);

DESCRIPTION
These functions interpret basic and extended regular expressions as described in the XBD
specification, Chapter 7, Regular Expressions.

The structure type regex_t contains at least the following member:

Member Type Member Name Description
size_t re_nsub Number of parenthesised subexpressions.

The structure type regmatch_t contains at least the following members:

Member Type Member Name Description
regoff_t rm_so Byte offset from start of string to start of substring.

Byte offset from start of string of the first character
after the end of substring.

regoff_t rm_eo

The regcomp() function will compile the regular expression contained in the string pointed to by
the pattern argument and place the results in the structure pointed to by preg. The cflags
argument is the bitwise inclusive OR of zero or more of the following flags, which are defined in
the header <regex.h>:

REG_EXTENDED Use Extended Regular Expressions.

REG_ICASE Ignore case in match. (See the XBD specification, Chapter 7, Regular
Expressions.)

REG_NOSUB Report only success/fail in regexec().

REG_NEWLINE Change the handling of newline characters, as described in the text.

The default regular expression type for pattern is a Basic Regular Expression. The application
can specify Extended Regular Expressions using the REG_EXTENDED cflags flag.

On successful completion, it returns 0; otherwise it returns non-zero, and the content of preg is
undefined.

If the REG_NOSUB flag was not set in cflags, then regcomp() will set re_nsub to the number of
parenthesised subexpressions (delimited by \(\) in basic regular expressions or () in extended
regular expressions) found in pattern.

The regexec() function compares the null-terminated string specified by string with the compiled
regular expression preg initialised by a previous call to regcomp(). If it finds a match, regexec()
returns 0; otherwise it returns non-zero indicating either no match or an error. The eflags

708 CAE Specification (1997)

System Interfaces regcomp()

argument is the bitwise inclusive OR of zero or more of the following flags, which are defined in
the header <regex.h>:

REG_NOTBOL The first character of the string pointed to by string is not the beginning of the
line. Therefore, the circumflex character (ˆ), when taken as a special
character, will not match the beginning of string.

REG_NOTEOL The last character of the string pointed to by string is not the end of the line.
Therefore, the dollar sign ($), when taken as a special character, will not
match the end of string.

If nmatch is 0 or REG_NOSUB was set in the cflags argument to regcomp(), then regexec() will
ignore the pmatch argument. Otherwise, the pmatch argument must point to an array with at
least nmatch elements, and regexec() will fill in the elements of that array with offsets of the
substrings of string that correspond to the parenthesised subexpressions of pattern:
pmatch[i].rm_so will be the byte offset of the beginning and pmatch[i].rm_eo will be one greater
than the byte offset of the end of substring i. (Subexpression i begins at the ith matched open
parenthesis, counting from 1.) Offsets in pmatch[0] identify the substring that corresponds to the
entire regular expression. Unused elements of pmatch up to pmatch[nmatch−1] will be filled with
−1. If there are more than nmatch subexpressions in pattern (pattern itself counts as a
subexpression), then regexec() will still do the match, but will record only the first nmatch
substrings.

When matching a basic or extended regular expression, any given parenthesised subexpression
of pattern might participate in the match of several different substrings of string, or it might not
match any substring even though the pattern as a whole did match. The following rules are
used to determine which substrings to report in pmatch when matching regular expressions:

1. If subexpression i in a regular expression is not contained within another subexpression,
and it participated in the match several times, then the byte offsets in pmatch[i] will delimit
the last such match.

2. If subexpression i is not contained within another subexpression, and it did not participate
in an otherwise successful match, the byte offsets in pmatch[i] will be −1. A subexpression
does not participate in the match when:

* or \{ \} appears immediately after the subexpression in a basic regular expression, or
*, ?, or { } appears immediately after the subexpression in an extended regular
expression, and the subexpression did not match (matched 0 times)

or:

| is used in an extended regular expression to select this subexpression or another, and
the other subexpression matched.

3. If subexpression i is contained within another subexpression j , and i is not contained
within any other subexpression that is contained within j , and a match of subexpression j
is reported in pmatch[j], then the match or non-match of subexpression i reported in
pmatch[i] will be as described in 1. and 2. above, but within the substring reported in
pmatch[j] rather than the whole string.

4. If subexpression i is contained in subexpression j , and the byte offsets in pmatch[j] are −1,
then the pointers in pmatch[i] also will be −1.

5. If subexpression i matched a zero-length string, then both byte offsets in pmatch[i] will be
the byte offset of the character or null terminator immediately following the zero-length
string.

System Interfaces and Headers, Issue 5: Volume 2 709

regcomp() System Interfaces

If, when regexec() is called, the locale is different from when the regular expression was
compiled, the result is undefined.

If REG_NEWLINE is not set in cflags, then a newline character in pattern or string will be treated
as an ordinary character. If REG_NEWLINE is set, then newline will be treated as an ordinary
character except as follows:

1. A newline character in string will not be matched by a period outside a bracket expression
or by any form of a non-matching list (see the XBD specification, Chapter 7, Regular
Expressions).

2. A circumflex (ˆ) in pattern, when used to specify expression anchoring (see the XBD
specification, Section 7.3.8, BRE Expression Anchoring), will match the zero-length string
immediately after a newline in string, regardless of the setting of REG_NOTBOL.

3. A dollar-sign ($) in pattern, when used to specify expression anchoring, will match the
zero-length string immediately before a newline in string, regardless of the setting of
REG_NOTEOL.

The regfree() function frees any memory allocated by regcomp() associated with preg.

The following constants are defined as error return values:

REG_NOMATCH regexec() failed to match.

REG_BADPAT Invalid regular expression.

REG_ECOLLATE Invalid collating element referenced.

REG_ECTYPE Invalid character class type referenced.

REG_EESCAPE Trailing \ in pattern.

REG_ESUBREG Number in \digit invalid or in error.

REG_EBRACK [] imbalance.

REG_ENOSYS The function is not supported.

REG_EPAREN \(\) or () imbalance.

REG_EBRACE \{ \} imbalance.

REG_BADBR Content of \{ \} invalid: not a number, number too large, more than two
numbers, first larger than second.

REG_ERANGE Invalid endpoint in range expression.

REG_ESPACE Out of memory.

REG_BADRPT ?, * or + not preceded by valid regular expression.

The regerror() function provides a mapping from error codes returned by regcomp() and
regexec() to unspecified printable strings. It generates a string corresponding to the value of the
errcode argument, which must be the last non-zero value returned by regcomp() or regexec() with
the given value of preg. If errcode is not such a value, the content of the generated string is
unspecified.

If preg is a null pointer, but errcode is a value returned by a previous call to regexec() or regcomp(),
the regerror() still generates an error string corresponding to the value of errcode, but it might not
be as detailed under some implementations.

If the errbuf_size argument is not 0, regerror() will place the generated string into the buffer of
size errbuf_size bytes pointed to by errbuf. If the string (including the terminating null) cannot fit

710 CAE Specification (1997)

System Interfaces regcomp()

in the buffer, regerror() will truncate the string and null-terminate the result.

If errbuf_size is 0, regerror() ignores the errbuf argument, and returns the size of the buffer needed
to hold the generated string.

If the preg argument to regexec() or regfree() is not a compiled regular expression returned by
regcomp(), the result is undefined. A preg is no longer treated as a compiled regular expression
after it is given to regfree().

RETURN VALUE
On successful completion, the regcomp() function returns 0. Otherwise, it returns an integer
value indicating an error as described in <regex.h>, and the content of preg is undefined.

On successful completion, the regexec() function returns 0. Otherwise it returns
REG_NOMATCH to indicate no match, or REG_ENOSYS to indicate that the function is not
supported.

Upon successful completion, the regerror() function returns the number of bytes needed to hold
the entire generated string. Otherwise, it returns 0 to indicate that the function is not
implemented.

The regfree() function returns no value.

ERRORS
No errors are defined.

EXAMPLES

#include <regex.h>

/*
* Match string against the extended regular expression in
* pattern, treating errors as no match.
*
* return 1 for match, 0 for no match
*/

int
match(const char *string, char *pattern)
{

int status;
regex_t re;

if (regcomp(&re, pattern, REG_EXTENDED | REG_NOSUB) != 0) {
return(0); /* report error */

}
status = regexec(&re, string, (size_t) 0, NULL, 0);
regfree(&re);
if (status != 0) {

return(0); /* report error */
}
return(1);

}

The following demonstrates how the REG_NOTBOL flag could be used with regexec() to find all
substrings in a line that match a pattern supplied by a user. (For simplicity of the example, very
little error checking is done.)

System Interfaces and Headers, Issue 5: Volume 2 711

regcomp() System Interfaces

(void) regcomp (&re, pattern, 0);
/* this call to regexec() finds the first match on the line */
error = regexec (&re, &buffer[0], 1, &pm, 0);
while (error == 0) { /* while matches found */

/* substring found between pm.rm_so and pm.rm_eo */
/* This call to regexec() finds the next match */
error = regexec (&re, buffer + pm.rm_eo, 1, &pm, REG_NOTBOL);

}

APPLICATION USAGE
An application could use:

regerror(code,preg,(char *)NULL,(size_t)0)

to find out how big a buffer is needed for the generated string, malloc () a buffer to hold the
string, and then call regerror() again to get the string. Alternatively, it could allocate a fixed,
static buffer that is big enough to hold most strings, and then use malloc () to allocate a larger
buffer if it finds that this is too small.

To match a pattern as described in the XCU specification, Section 2.13, Pattern Matching
Notation use the fnmatch() function.

FUTURE DIRECTIONS
None.

SEE ALSO
fnmatch(), glob(), <regex.h>, <sys/types.h>.

CHANGE HISTORY
First released in Issue 4.

Derived from the ISO POSIX-2 standard.

Issue 5
Moved from POSIX2 C-language Binding to BASE.

712 CAE Specification (1997)

System Interfaces regex()

NAME
regex — execute a regular expression (LEGACY)

SYNOPSIS
EX #include <libgen.h>

char *regex (const char * re , const char * subject , ...);

DESCRIPTION
Refer to regcmp().

CHANGE HISTORY
First released in Issue 4, Version 2.

Issue 5
Marked LEGACY.

System Interfaces and Headers, Issue 5: Volume 2 713

regexp System Interfaces

NAME
advance, compile, step, loc1, loc2, locs — compile and match regular expressions (LEGACY)

SYNOPSIS
EX #define INIT declarations

#define GETC() getc code
#define PEEK() peek code
#define UNGETC() ungetc code
#define RETURN(ptr) return code
#define ERROR(val) error code

#include <regexp.h>

char *compile(char * instring , char * expbuf ,
const char * endbuf , int eof);

int step(const char * string , const char * expbuf);

int advance(const char * string , const char * expbuf);

extern char *loc1, *loc2, *locs;

DESCRIPTION
These are general-purpose, regular expression-matching functions to be used in programs that
perform regular expression matching, using the Regular Expressions described in Simple
Regular Expressions (Historical Version) on page 716. These functions are defined by the
<regexp.h> header.

Implementations may also accept internationalised simple regular expressions as input.

Programs must have the following five macros declared before the #include <regexp.h>
statement. These macros are used by compile(). The macros GETC(), PEEKC() and UNGETC()
operate on the regular expression given as input to compile().

GETC() This macro returns the value of the next character (byte) in the regular
expression pattern. Successive calls to GETC() should return successive
characters of the regular expression.

PEEKC() This macro returns the next character (byte) in the regular expression.
Immediately successive calls to PEEKC() should return the same byte, which
should also be the next character returned by GETC().

UNGETC(c) This macro causes the argument c to be returned by the next call to GETC()
and PEEKC(). No more than one character of pushback is ever needed and
this character is guaranteed to be the last character read by GETC(). The
value of the macro UNGETC(c) is always ignored.

RETURN(ptr) This macro is used on normal exit of the compile() function. The value of the
argument ptr is a pointer to the character after the last character of the
compiled regular expression. This is useful to programs that have memory
allocation to manage.

ERROR(val) This macro is the abnormal return from compile(). The argument val is an
error number (see the ERRORS section below for meanings). This call should
never return.

The step() and advance() functions do pattern matching given a character string and a compiled
regular expression as input.

714 CAE Specification (1997)

System Interfaces regexp

The compile() function takes as input a simple regular expression (see Simple Regular
Expressions (Historical Version) on page 716) and produces a compiled expression that can be
used with step() and advance().

The first parameter instring is never used explicitly by compile() but is useful for programs that
pass down different pointers to input characters. It is sometimes used in the INIT declaration
(see below). Programs which invoke functions to input characters or have characters in an
external array can pass down (char *) 0 for this parameter.

The next parameter expbuf is a character pointer. It points to the place where the compiled
regular expression will be placed.

The parameter endbuf is one more than the highest address where the compiled regular
expression may be placed. If the compiled expression cannot fit in (endbuf−expbuf) bytes, a call
to ERROR(50) is made.

The parameter eof is the character which marks the end of the regular expression.

Each program that includes the <regexp.h> header must have a #define statement for INIT. It is
used for dependent declarations and initialisations. Most often it is used to set a register
variable to point to the beginning of the regular expression so that this register variable can be
used in the declarations for GETC(), PEEKC() and UNGETC(). Otherwise it can be used to
declare external variables that might be used by GETC(), PEEKC() and UNGETC(). See the
EXAMPLES section below.

The first parameter to step() is a pointer to a string of characters to be checked for a match. This
string should be null-terminated.

The second parameter, expbuf, is the compiled regular expression which was obtained by a call
to compile .

The step() function returns non-zero if some substring of string matches the regular expression
in expbuf, and 0, if there is no match. If there is a match, two external character pointers are set
as a side effect to the call to step(). The variable loc1 points to the first character that matched the
regular expression; the variable loc2 points to the character after the last character that matches
the regular expression. Thus if the regular expression matches the entire input string, loc1 will
point to the first character of string and loc2 will point to the null at the end of string.

The advance() function returns non-zero if the initial substring of string matches the regular
expression in expbuf. If there is a match an external character pointer, loc2 , is set as a side effect.
The variable loc2 points to the next character in string after the last character that matched.

When advance() encounters a "*" or \{ \} sequence in the regular expression, it will advance its
pointer to the string to be matched as far as possible and will recursively call itself trying to
match the rest of the string to the rest of the regular expression. As long as there is no match,
advance() will back up along the string until it finds a match or reaches the point in the string
that initially matched the * or \{ \}. It is sometimes desirable to stop this backing up before the
initial point in the string is reached. If the external character pointer locs is equal to the point in
the string at some time during the backing up process, advance() will break out of the loop that
backs up and will return 0.

The external variables circf , sed and nbra are reserved.

System Interfaces and Headers, Issue 5: Volume 2 715

regexp System Interfaces

Simple Regular Expressions (Historical Version)

A Simple Regular Expression (SRE) specifies a set of character strings. A member of this set of
strings is said to be matched by the SRE.

A pattern is constructed from one or more SREs. An SRE consists of ordinary characters or
metacharacters.

Within a pattern, all alphanumeric characters that are not part of a bracket expression, back-
reference or duplication match themselves; that is, the SRE pattern abc , when applied to a set of
strings, will match only those strings containing the character sequence abc anywhere in them.

Most other characters also match themselves. However, a small set of characters, known as the
metacharacters, have special meanings when encountered in patterns. They are described below.

Simple Regular Expression Construction

SREs are constructed as follows:

Expression Meaning

c The character c, where c is not a special character.

\c The character c, where c is any character with special meaning, see below.

ˆ The beginning of the string being compared.

$ The end of the string being compared.

. Any character.

[s] Any character in the non-empty set s, where s is a sequence of characters. Ranges
may be specified as c−c. The character] may be included in the set by placing it
first in the set. The character "−" may be included in the set by placing it first or
last in the set. The character "ˆ" may be included in the set by placing it anywhere
other than first in the set, see below. Ranges in Simple Regular Expressions are
only valid if the LC_COLLATE category is set to the C locale. Otherwise, the effect
of using the range notation is unspecified.

[ˆs] Any character not in the set s, where s is defined as above.

r* Zero or more successive occurrences of the regular expression r. The longest
leftmost match is chosen.

rx The occurrence of regular expression r followed by the occurrence of regular
expression x . (Concatenation.)

r\{m,n\} Any number of m through n successive occurrences of the regular expression r.
The regular expression r\{m\} matches exactly m occurrences, r\{m,\} matches at
least m occurrences. The maximum number of occurrences is matched.

\(r\) The regular expression r. The \(and \) sequences are ignored.

\n When \n (where n is a number in the range 1 to 9) appears in a concatenated
regular expression, it stands for the regular expression x , where x is the nth regular
expression enclosed in \(and \) sequences that appeared earlier in the
concatenated regular expression. For example, in the pattern \(r \)x \(y the \2
matches the regular expression y , giving rxyzy .

716 CAE Specification (1997)

System Interfaces regexp

Characters that have special meaning except where they appear within square brackets, [] , or
are preceded by "\" are:

. * [\

Other special characters, such as $ have special meaning in more restricted contexts.

The character "ˆ" at the beginning of an expression permits a successful match only immediately
after a newline or at the beginning of each of the strings to which the match is applied, and the
character "$" at the end of an expression requires a trailing newline.

Two characters have special meaning only when used within square brackets. The character "−"
denotes a range, [c−c], unless it is just after the left square bracket or before the right square
bracket, [−c] or [c−], in which case it has no special meaning. The character "ˆ" has the meaning
complement of if it immediately follows the left square bracket, [ˆc]. Elsewhere between brackets,
[cˆ], it stands for the ordinary character "ˆ". The right square bracket (]) loses its special meaning
and represents itself in a bracket expression if it occurs first in the list after any initial circumflex
(ˆ) character.

The special meaning of the "\" operator can be escaped only by preceding it with another "\";
that is, "\\".

SRE Operator Precedence

The precedence of the operators is as shown below:

[. . .] High precedence.
* .
concatenation Low precedence.

Internationalised SREs

Character expressions within square brackets are constructed as follows:

Expression Meaning

c The single character c where c is not a special character.

[[:class:]] A character class expression. Any character of type class , as defined by category
LC_CTYPE in the program’s locale (see the XBD specification, Chapter 5, Locale).
For class , one of the following should be substituted:

alpha A letter.
upper An upper-case letter.
lower A lower-case letter.
digit A decimal digit.
xdigit A hexadecimal digit.
alnum An alphanumeric (letter or digit).
space A character producing white space in displayed text.
punct A punctuation character.
print A printing character.
graph A character with a visible representation.
cntrl A control character.

[[=c=]] An equivalence class. Any collation element defined as having the same relative
order in the current collation sequence as c. As an example, if A and a belong to
the same equivalence class, then both [[=A=]b] and [[=a=]b] are equivalent to [
Aab].

System Interfaces and Headers, Issue 5: Volume 2 717

regexp System Interfaces

[[.cc.]] A collating symbol. Multi-character collating elements must be represented as
collating symbols to distinguish them from single-character collating elements. As
an example, if the string ch is a valid collating element, then [[.ch.]] will be treated
as an element matching the same string of characters, while ch will be treated as a
simple list of c and h . If the string is not a valid collating element in the current
collating sequence definition, the symbol will be treated as an invalid expression.

[c−c] Any collation element in the character expression range c−c, where c can identify a
collating symbol or an equivalence class. If the character "−" appears immediately
after an opening square bracket (for example, [−c]) or immediately prior to a
closing square bracket (for example, [c−]), it has no special meaning.

ˆ Immediately following an opening square bracket, means the complement of, for
example, [ˆc]. Otherwise, it has no special meaning.

Within square brackets, a "." that is not part of a [[.cc.]] sequence, or a ":" that is not part of a
[[:class:]] sequence, or an "=" that is not part of a [[=c=]] sequence, matches itself.

SRE Examples

Below are examples of regular expressions:

Pattern Meaning
ab.d ab any character d
ab.*d ab any sequence of characters (including none) d
ab[xyz]d ab one of x y or z d
ab[ˆc]d ab anything except c d
ˆabcd$ a line containing only abcd
[a-d] any one of a b c or d

These interfaces need not be reentrant.

RETURN VALUE
The compile() function uses the macro RETURN() on success and the macro ERROR() on failure,
see above. The step() and advance() functions return non-zero on a successful match and 0 if
there is no match.

ERRORS

11 Range endpoint too large.
16 Bad number.
25 \digit out of range.
36 Illegal or missing delimiter.
41 No remembered search string.
42 \(\) imbalance.
43 Too many \(.
44 More than two numbers given in \{ \} .
45 } expected after \ .
46 First number exceeds second in \{ \} .
49 [] imbalance.
50 Regular expression overflow.

718 CAE Specification (1997)

System Interfaces regexp

EXAMPLES
The following is an example of how the regular expression macros and calls might be defined by
an application program:

#define INIT char *sp = instring;
#define GETC() (*sp++)
#define PEEKC() (*sp)
#define UNGETC(c) (− −sp)
#define RETURN(c) return;
#define ERROR(c) regerr()

#include <regexp.h>
. . .

(void) compile(*argv, expbuf, &expbuf[ESIZE], ´\0´);
. . .

if (step(linebuf, expbuf))
succeed();

APPLICATION USAGE
Applications should migrate to the fnmatch(), glob(), regcomp() and regexec() functions which
provide full internationalised regular expression functionality compatible with the ISO POSIX-2
standard, as described in the XBD specification, Chapter 7, Regular Expressions.

FUTURE DIRECTIONS
None.

SEE ALSO
fnmatch(), glob(), regcomp(), regexec(), setlocale (), <regex.h>, <regexp.h>, the XBD specification,
Chapter 7, Regular Expressions.

CHANGE HISTORY
First released in Issue 2.

Derived from Issue 2 of the SVID.

Issue 4
The following changes are incorporated in this issue:

• The interface is marked TO BE WITHDRAWN, because improved functionality is now
provided by interfaces introduced for alignment with the ISO POSIX-2 standard.

• The type of the arguments endbuf, string and expbuf is changed from char * to const char *.

• In the DESCRIPTION some of the text is reworded to improve clarity.

• The APPLICATION USAGE section is added.

• The example is corrected.

• The FUTURE DIRECTIONS section is removed.

Issue 5
Marked LEGACY.

A note indicating that these interfaces need not be reentrant is added to the DESCRIPTION.

System Interfaces and Headers, Issue 5: Volume 2 719

remainder() System Interfaces

NAME
remainder — remainder function

SYNOPSIS
EX #include <math.h>

double remainder(double x, double y);

DESCRIPTION
The remainder() function returns the floating point remainder r = x − ny when y is non-zero. The
value n is the integral value nearest the exact value x/y. When A n − x/y A = ⁄1

2, the value n is
chosen to be even.

The behaviour of remainder() is independent of the rounding mode.

RETURN VALUE
The remainder() function returns the floating point remainder r = x − ny when y is non-zero.

When y is 0, remainder() returns (NaN or equivalent if available) and sets errno to [EDOM].

If the value of x is ±Inf, remainder() returns NaN and sets errno to [EDOM].

If x or y is NaN, then the function returns NaN and errno may be set to [EDOM].

ERRORS
The remainder() function will fail if:

[EDOM] The y argument is 0 or the x argument is positive or negative infinity.

The remainder() function may fail if:

[EDOM] The x or y argument is NaN.

EXAMPLES
None.

APPLICATION USAGE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
abs(), <math.h>.

CHANGE HISTORY
First released in Issue 4, Version 2.

Issue 5
Moved from X/OPEN UNIX extension to BASE.

720 CAE Specification (1997)

System Interfaces remove()

NAME
remove — remove files

SYNOPSIS
#include <stdio.h>

int remove(const char * path);

DESCRIPTION
The remove() function causes the file named by the pathname pointed to by path to be no longer
accessible by that name. A subsequent attempt to open that file using that name will fail, unless
it is created anew.

EX If path does not name a directory, remove(path) is equivalent to unlink(path).

If path names a directory, remove (path) is equivalent to rmdir (path).

RETURN VALUE
EX Refer to rmdir() or unlink().

ERRORS
EX Refer to rmdir() or unlink().

EXAMPLES
None.

APPLICATION USAGE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
rmdir(), unlink(), <stdio.h>.

CHANGE HISTORY
First released in Issue 3.

Entry included for alignment with the POSIX.1-1988 standard and the ISO C standard.

Issue 4
The following changes are incorporated for alignment with the ISO C standard:

• The type of argument path is changed from char * to const char *.

• The DESCRIPTION is expanded to describe the operation of remove() more completely.

Another change is incorporated as follows:

• All statements containing references to unlink() and rmdir() in the DESCRIPTION, RETURN
VALUE and ERRORS sections are marked as extensions.

System Interfaces and Headers, Issue 5: Volume 2 721

remque() System Interfaces

NAME
remque — remove an element from a queue

SYNOPSIS
EX #include <search.h>

void remque(void * element);

DESCRIPTION
Refer to insque().

CHANGE HISTORY
First released in Issue 4, Version 2.

Issue 5
Moved from X/OPEN UNIX extension to BASE.

722 CAE Specification (1997)

System Interfaces rename()

NAME
rename — rename a file

SYNOPSIS
#include <stdio.h>

int rename(const char * old , const char * new);

DESCRIPTION
The rename() function changes the name of a file. The old argument points to the pathname of
the file to be renamed. The new argument points to the new pathname of the file.

If the old argument and the new argument both refer to, and both link to the same existing file,
rename() returns successfully and performs no other action.

If the old argument points to the pathname of a file that is not a directory, the new argument
must not point to the pathname of a directory. If the link named by the new argument exists, it is
removed and old renamed to new. In this case, a link named new will remain visible to other
processes throughout the renaming operation and will refer either to the file referred to by new
or old before the operation began. Write access permission is required for both the directory
containing old and the directory containing new.

If the old argument points to the pathname of a directory, the new argument must not point to
the pathname of a file that is not a directory. If the directory named by the new argument exists,
it will be removed and old renamed to new. In this case, a link named new will exist throughout
the renaming operation and will refer either to the file referred to by new or old before the
operation began. Thus, if new names an existing directory, it must be an empty directory.

EX If old points to a pathname that names a symbolic link, the symbolic link is renamed. If new
points to a pathname that names a symbolic link, the symbolic link is removed.

The new pathname must not contain a path prefix that names old . Write access permission is
required for the directory containing old and the directory containing new. If the old argument
points to the pathname of a directory, write access permission may be required for the directory
named by old , and, if it exists, the directory named by new.

If the link named by the new argument exists and the file’s link count becomes 0 when it is
removed and no process has the file open, the space occupied by the file will be freed and the file
will no longer be accessible. If one or more processes have the file open when the last link is
removed, the link will be removed before rename() returns, but the removal of the file contents
will be postponed until all references to the file are closed.

Upon successful completion, rename() will mark for update the st_ctime and st_mtime fields of
the parent directory of each file.

RETURN VALUE
Upon successful completion, rename() returns 0. Otherwise, −1 is returned, errno is set to
indicate the error, and neither the file named by old nor the file named by new will be changed or
created.

System Interfaces and Headers, Issue 5: Volume 2 723

rename() System Interfaces

ERRORS
The rename() function will fail if:

[EACCES] A component of either path prefix denies search permission; or one of the
directories containing old or new denies write permissions; or, write
permission is required and is denied for a directory pointed to by the old or
new arguments.

[EBUSY] The directory named by old or new is currently in use by the system or another
process, and the implementation considers this an error.

[EEXIST] or [ENOTEMPTY]
The link named by new is a directory that is not an empty directory.

[EINVAL] The new directory pathname contains a path prefix that names the old
directory.

EX [EIO] A physical I/O error has occurred.

[EISDIR] The new argument points to a directory and the old argument points to a file
that is not a directory.

EX [ELOOP] Too many symbolic links were encountered in resolving either pathname.

[EMLINK] The file named by old is a directory, and the link count of the parent directory
of new would exceed {LINK_MAX}.

[ENAMETOOLONG]
FIPS The length of the old or new argument exceeds {PATH_MAX} or a pathname

component is longer than {NAME_MAX}.

[ENOENT] The link named by old does not name an existing file, or either old or new
points to an empty string.

[ENOSPC] The directory that would contain new cannot be extended.

[ENOTDIR] A component of either path prefix is not a directory; or the old argument
names a directory and new argument names a non-directory file.

EX [EPERM] or [EACCES]
The S_ISVTX flag is set on the directory containing the file referred to by old
and the caller is not the file owner, nor is the caller the directory owner, nor
does the caller have appropriate privileges; or new refers to an existing file, the
S_ISVTX flag is set on the directory containing this file and the caller is not the
file owner, nor is the caller the directory owner, nor does the caller have
appropriate privileges.

[EROFS] The requested operation requires writing in a directory on a read-only file
system.

[EXDEV] The links named by new and old are on different file systems and the
implementation does not support links between file systems.

The rename() function may fail if:

EX [EBUSY] The file named by the old or new arguments is a named STREAM.

EX [ENAMETOOLONG]
Pathname resolution of a symbolic link produced an intermediate result
whose length exceeds {PATH_MAX}.

724 CAE Specification (1997)

System Interfaces rename()

[ETXTBSY] The file to be renamed is a pure procedure (shared text) file that is being
executed.

EXAMPLES
None.

APPLICATION USAGE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
link (), rmdir(), symlink(), unlink(), <stdio.h>.

CHANGE HISTORY
First released in Issue 3.

Entry included for alignment with the POSIX.1-1988 standard.

Issue 4
The following changes are incorporated for alignment with the ISO POSIX-1 standard:

• The type of arguments old and new are changed from char * to const char *.

• The RETURN VALUE section now states that if an error occurs, neither file will be changed
or created.

The following change is incorporated for alignment with the FIPS requirements:

• In the ERRORS section, the condition whereby [ENAMETOOLONG] will be returned if a
pathname component is larger that {NAME_MAX}, is now defined as mandatory and
marked as an extension.

Another change is incorporated as follows:

• The [EMLINK] error is added to the ERRORS section.

Issue 4, Version 2
The following changes are made for X/OPEN UNIX conformance:

• The DESCRIPTION is updated to indicate the results of naming a symbolic link in either old
or new.

• In the ERRORS section, [EIO] is added to indicate that a physical I/O error has occurred,
[ELOOP] to indicate that too many symbolic links were encountered during pathname
resolution, and [EPERM] or [EACCES] to indicate a permission check failure when operating
on directories with S_ISVTX set.

• In the ERRORS section, a second [ENAMETOOLONG] condition is defined that may report
excessive length of an intermediate result of pathname resolution of a symbolic link.

Issue 5
The [EBUSY] error is added to the ‘‘may fail’’ part of the ERRORS section.

System Interfaces and Headers, Issue 5: Volume 2 725

rewind() System Interfaces

NAME
rewind — reset file position indicator in a stream

SYNOPSIS
#include <stdio.h>

void rewind(FILE * stream);

DESCRIPTION
The call:

rewind(stream)

is equivalent to:

(void) fseek(stream, 0L, SEEK_SET)

except that rewind() also clears the error indicator.

RETURN VALUE
The rewind() function returns no value.

ERRORS
Refer to fseek() with the exception of [EINVAL] which does not apply.

EXAMPLES
None.

APPLICATION USAGE
Because rewind() does not return a value, an application wishing to detect errors should clear
errno, then call rewind(), and if errno is non-zero, assume an error has occurred.

FUTURE DIRECTIONS
None.

SEE ALSO
fseek(), <stdio.h>.

CHANGE HISTORY
First released in Issue 1.

Derived from Issue 1 of the SVID.

726 CAE Specification (1997)

System Interfaces rewinddir()

NAME
rewinddir — reset position of directory stream to the beginning of a directory

SYNOPSIS
OH #include <sys/types.h>

#include <dirent.h>

void rewinddir(DIR * dirp);

DESCRIPTION
The rewinddir() function resets the position of the directory stream to which dirp refers to the
beginning of the directory. It also causes the directory stream to refer to the current state of the
corresponding directory, as a call to opendir() would have done. If dirp does not refer to a
directory stream, the effect is undefined.

After a call to the fork () function, either the parent or child (but not both) may continue
EX processing the directory stream using readdir(), rewinddir() or seekdir(). If both the parent and

child processes use these functions, the result is undefined.

RETURN VALUE
The rewinddir() function does not return a value.

ERRORS
No errors are defined.

EXAMPLES
None.

APPLICATION USAGE
The rewinddir() function should be used in conjunction with opendir(), readdir() and closedir() to
examine the contents of the directory. This method is recommended for portability.

FUTURE DIRECTIONS
None.

SEE ALSO
closedir(), opendir(), readdir(), <dirent.h>, <sys/types.h>.

CHANGE HISTORY
First released in Issue 2.

Issue 4
The following change is incorporated for alignment with the ISO POSIX-1 standard:

• The last paragraph of the DESCRIPTION, describing a restriction after a fork () function is
added.

Other changes are incorporated as follows:

• The <sys/types.h> header is now marked as optional (OH); this header need not be included
on XSI-conformant systems.

System Interfaces and Headers, Issue 5: Volume 2 727

rindex() System Interfaces

NAME
rindex — character string operations

SYNOPSIS
EX #include <strings.h>

char *rindex(const char * s, int c);

DESCRIPTION
The rindex() function is identical to strrchr().

RETURN VALUE
See strrchr().

ERRORS
See strrchr().

EXAMPLES
None.

APPLICATION USAGE
For portability to implementations conforming to earlier versions of this specification, strrchr()
is preferred over this function.

FUTURE DIRECTIONS
None.

SEE ALSO
strrchr(), <strings.h>.

CHANGE HISTORY
First released in Issue 4, Version 2.

Issue 5
Moved from X/OPEN UNIX extension to BASE.

728 CAE Specification (1997)

System Interfaces rint()

NAME
rint — round-to-nearest integral value

SYNOPSIS
EX #include <math.h>

double rint(double x);

DESCRIPTION
The rint() function returns the integral value (represented as a double) nearest x in the direction
of the current rounding mode. The current rounding mode is implementation-dependent.

If the current rounding mode rounds toward negative infinity, then rint() is identical to floor().
If the current rounding mode rounds toward positive infinity, then rint() is identical to ceil().

RETURN VALUE
Upon successful completion, the rint() function returns the integer (represented as a double
precision number) nearest x in the direction of the current rounding mode.

When x is ±Inf, rint() returns x.

If the value of x is NaN, NaN is returned and errno may be set to [EDOM].

ERRORS
The rint() function may fail if:

[EDOM] The x argument is NaN.

EXAMPLES
None.

APPLICATION USAGE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
abs(), isnan(), <math.h>.

CHANGE HISTORY
First released in Issue 4, Version 2.

Issue 5
Moved from X/OPEN UNIX extension to BASE.

System Interfaces and Headers, Issue 5: Volume 2 729

rmdir() System Interfaces

NAME
rmdir — remove a directory

SYNOPSIS
#include <unistd.h>

int rmdir(const char * path);

DESCRIPTION
The rmdir() function removes a directory whose name is given by path . The directory is
removed only if it is an empty directory.

If the directory is the root directory or the current working directory of any process, it is
unspecified whether the function succeeds, or whether it fails and sets errno to [EBUSY].

EX If path names a symbolic link, then rmdir() fails and sets errno to [ENOTDIR].

If the directory’s link count becomes 0 and no process has the directory open, the space occupied
by the directory will be freed and the directory will no longer be accessible. If one or more
processes have the directory open when the last link is removed, the dot and dot-dot entries, if
present, are removed before rmdir() returns and no new entries may be created in the directory,
but the directory is not removed until all references to the directory are closed.

Upon successful completion, the rmdir() function marks for update the st_ctime and st_mtime
fields of the parent directory.

RETURN VALUE
Upon successful completion, the function rmdir() returns 0. Otherwise, −1 is returned, and errno
is set to indicate the error. If −1 is returned, the named directory is not changed.

ERRORS
The rmdir() function will fail if:

[EACCES] Search permission is denied on a component of the path prefix, or write
permission is denied on the parent directory of the directory to be removed.

[EBUSY] The directory to be removed is currently in use by the system or another
process and the implementation considers this to be an error.

[EEXIST] or [ENOTEMPTY]
The path argument names a directory that is not an empty directory.

EX [EIO] A physical I/O error has occurred.

EX [ELOOP] Too many symbolic links were encountered in resolving path.

![ENAMETOOLONG]
FIPS The length of the path argument exceeds {PATH_MAX} or a pathname

component is longer than {NAME_MAX}.

[ENOENT] A component of path does not name an existing file, or the path argument
names a non-existent directory or points to an empty string.

[ENOTDIR] A component of the path is not a directory.

[EPERM] or [EACCES]
EX The S_ISVTX flag is set on the parent directory of the directory to be removed

and the caller is not the owner of the directory to be removed, nor is the caller
the owner of the parent directory, nor does the caller have the appropriate
privileges.

730 CAE Specification (1997)

System Interfaces rmdir()

[EROFS] The directory entry to be removed resides on a read-only file system.

The rmdir() function may fail if:

EX [ENAMETOOLONG]
Pathname resolution of a symbolic link produced an intermediate result
whose length exceeds {PATH_MAX}.

EXAMPLES
None.

APPLICATION USAGE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
mkdir(), remove(), unlink(), <unistd.h>.

CHANGE HISTORY
First released in Issue 3.

Entry included for alignment with the POSIX.1-1988 standard.

Issue 4
The following changes are incorporated for alignment with the ISO POSIX-1 standard:

• The type of argument path is changed from char * to const char *.

• The DESCRIPTION is expanded to indicate that, if the directory is a root directory or a
current working directory, it is unspecified whether the function succeeds, or whether it fails
and sets errno to [EBUSY]. In Issue 3, the behaviour under these circumstances was defined
as ‘‘implementation-dependent’’.

• The RETURN VALUE section is expanded to direct that if −1 is returned, the directory will
not be changed.

The following change is incorporated for alignment with the FIPS requirements:

• In the ERRORS section, the condition whereby [ENAMETOOLONG] will be returned if a
pathname component is larger that {NAME_MAX} is now defined as mandatory and marked
as an extension.

Other changes are incorporated as follows:

• The header <unistd.h> is added to the SYNOPSIS section.

• The [ENAMETOOLONG] description is amended.

Issue 4, Version 2
The following changes are made for X/OPEN UNIX conformance:

• The DESCRIPTION is updated to indicate the results of naming a symbolic link in path.

• In the ERRORS section, [EIO] is added to indicate that a physical I/O error has occurred,
[ELOOP] to indicate that too many symbolic links were encountered during pathname
resolution, and [EPERM] or [EACCES] to indicate a permission check failure when operating
on directories with S_ISVTX set.

• In the ERRORS section, a second [ENAMETOOLONG] condition is defined that may report
excessive length of an intermediate result of pathname resolution of a symbolic link.

System Interfaces and Headers, Issue 5: Volume 2 731

sbrk() System Interfaces

NAME
sbrk — change space allocation (LEGACY)

SYNOPSIS
EX #include <unistd.h>

void *sbrk(intptr_t incr);

DESCRIPTION
Refer to brk().

CHANGE HISTORY
First released in Issue 4, Version 2.

Issue 5
Moved from X/OPEN UNIX extension to BASE.

Marked LEGACY.

The type of the argument to sbrk() is changed from int to intptr_t.

732 CAE Specification (1997)

System Interfaces scalb()

NAME
scalb — load exponent of a radix-independent floating-point number

SYNOPSIS
EX #include <math.h>

double scalb(double x, double n);

DESCRIPTION
The scalb() function computes x * rn, where r is the radix of the machine’s floating point
arithmetic. When r is 2, scalb() is equivalent to ldexp().

An application wishing to check for error situations should set errno to 0 before calling scalb(). If
errno is non-zero on return, or the return value is NaN, an error has occurred.

RETURN VALUE
Upon successful completion, the scalb() function returns x * rn.

If the correct value would overflow, scalb() returns ±HUGE_VAL (according to the sign of x) and
sets errno to [ERANGE].

If the correct value would underflow, scalb() returns 0 and sets errno to [ERANGE].

The scalb() function returns x when x is ±Inf.

If x or n is NaN, then scalb() returns NaN and may set errno to [EDOM].

ERRORS
The scalb() function will fail if:

[ERANGE] The correct value would overflow or underflow.

The scalb() function may fail if:

[EDOM] The x or n argument is NaN.

EXAMPLES
None.

APPLICATION USAGE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
ldexp(), <math.h>.

CHANGE HISTORY
First released in Issue 4, Version 2.

Issue 5
Moved from X/OPEN UNIX extension to BASE.

The DESCRIPTION is updated to indicate how an application should check for an error. This
text was previously published in the APPLICATION USAGE section.

System Interfaces and Headers, Issue 5: Volume 2 733

scanf() System Interfaces

NAME
scanf — convert formatted input

SYNOPSIS
#include <stdio.h>

int scanf(const char * format , . . .);

DESCRIPTION
Refer to fscanf().

CHANGE HISTORY
First released in Issue 1.

Derived from Issue 1 of the SVID.

Issue 4
The following change is incorporated for alignment with the ISO C standard:

• The type of the argument format is changed from char * to const char *.

Other changes are incorporated as follows:

• The description of this function, including its change history, is located under fscanf().

734 CAE Specification (1997)

System Interfaces sched_get_priority_max()

NAME
sched_get_priority_max, sched_get_priority_min — get priority limits (REALTIME)

SYNOPSIS
RT #include <sched.h>

int sched_get_priority_max(int policy);
int sched_get_priority_min(int policy);

DESCRIPTION
The sched_get_priority_max () and sched_get_priority_min () functions return the appropriate
maximum or minimum, respectfully, for the scheduling policy specified by policy .

The value of policy is one of the scheduling policy values defined in <sched.h>.

RETURN VALUE
If successful, the sched_get_priority_max () and sched_get_priority_min () functions return the
appropriate maximum or minimum values, respectively. If unsuccessful, they return a value of
−1 and set errno to indicate the error.

ERRORS
The sched_get_priority_max () and sched_get_priority_min () functions will fail if:

[EINVAL] The value of the policy parameter does not represent a defined scheduling
policy.

[ENOSYS] The sched_get_priority_max (), sched_get_priority_min () and
sched_rr_get_interval () functions are not supported by this implementation.

EXAMPLES
None.

APPLICATION USAGE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
sched_getparam(), sched_setparam(), sched_getscheduler(), sched_rr_get_interval (),
sched_setscheduler(), <sched.h>.

CHANGE HISTORY
First released in Issue 5.

Included for alignment with the POSIX Realtime Extension.

System Interfaces and Headers, Issue 5: Volume 2 735

sched_getparam() System Interfaces

NAME
sched_getparam — get scheduling parameters (REALTIME)

SYNOPSIS
RT #include <sched.h>

int sched_getparam(pid_t pid , struct sched_param * param);

DESCRIPTION
The sched_getparam() function returns the scheduling parameters of a process specified by pid in
the sched_param structure pointed to by param .

If a process specified by pid exists and if the calling process has permission, the scheduling
parameters for the process whose process ID is equal to pid will be returned.

If pid is zero, the scheduling parameters for the calling process will be returned. The behaviour
of the sched_getparam() function is unspecified if the value of pid is negative.

RETURN VALUE
Upon successful completion, the sched_getparam() function returns zero. If the call to
sched_getparam() is unsuccessful, the function returns a value of −1 and sets errno to indicate the
error.

ERRORS
The sched_getparam() function will fail if:

[ENOSYS] The function sched_getparam() is not supported by this implementation.

[EPERM] The requesting process does not have permission to obtain the scheduling
parameters of the specified process.

[ESRCH] No process can be found corresponding to that specified by pid .

EXAMPLES
None.

APPLICATION USAGE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
sched_getscheduler(), sched_setparam(), sched_setscheduler(), <sched.h>.

CHANGE HISTORY
First released in Issue 5.

Included for alignment with the POSIX Realtime Extension.

736 CAE Specification (1997)

System Interfaces sched_getscheduler()

NAME
sched_getscheduler — get scheduling policy (REALTIME)

SYNOPSIS
RT #include <sched.h>

int sched_getscheduler(pid_t pid);

DESCRIPTION
The sched_getscheduler() function returns the scheduling policy of the process specified by pid . If
the value of pid is negative, the behaviour of the sched_getscheduler() function is unspecified.

The values that can be returned by sched_getscheduler() are defined in the header file <sched.h>

If a process specified by pid exists and if the calling process has permission, the scheduling
policy will be returned for the process whose process ID is equal to pid .

If pid is zero, the scheduling policy will be returned for the calling process.

RETURN VALUE
Upon successful completion, the sched_getscheduler() function returns the scheduling policy of
the specified process. If unsuccessful, the function returns −1 and sets errno to indicate the error.

ERRORS
The sched_getscheduler() function will fail if:

[ENOSYS] The function sched_getscheduler() is not supported by this implementation.

[EPERM] The requesting process does not have permission to determine the scheduling
policy of the specified process.

[ESRCH] No process can be found corresponding to that specified by pid .

EXAMPLES
None.

APPLICATION USAGE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
sched_getparam(), sched_setparam(), sched_setscheduler(), <sched.h>.

CHANGE HISTORY
First released in Issue 5.

Included for alignment with the POSIX Realtime Extension.

System Interfaces and Headers, Issue 5: Volume 2 737

sched_rr_get_interval() System Interfaces

NAME
sched_rr_get_interval — get execution time limits (REALTIME)

SYNOPSIS
RT #include <sched.h>

int sched_rr_get_interval(pid_t pid , struct timespec * interval);

DESCRIPTION
The sched_rr_get_interval () function updates the timespec structure referenced by the interval
argument to contain the current execution time limit (that is, time quantum) for the process
specified by pid . If pid is zero, the current execution time limit for the calling process will be
returned.

RETURN VALUE
If successful, the sched_rr_get_interval () function returns zero. Otherwise, it returns a value of −1
and sets errno to indicate the error.

ERRORS
The sched_rr_get_interval () function will fail if:

[ENOSYS] The sched_get_priority_max (), sched_get_priority_min () and
sched_rr_get_interval () functions are not supported by this implementation.

[ESRCH] No process can be found corresponding to that specified by pid .

EXAMPLES
None.

APPLICATION USAGE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
sched_getparam(), sched_setparam(), sched_get_priority_max (), sched_getscheduler(),
sched_setscheduler(), <sched.h>.

CHANGE HISTORY
First released in Issue 5.

Included for alignment with the POSIX Realtime Extension.

738 CAE Specification (1997)

System Interfaces sched_setparam()

NAME
sched_setparam — set scheduling parameters (REALTIME)

SYNOPSIS
RT #include <sched.h>

int sched_setparam(pid_t pid , const struct sched_param * param);

DESCRIPTION
The sched_setparam() function sets the scheduling parameters of the process specified by pid to
the values specified by the sched_param structure pointed to by param . The value of the
sched_priority member in the sched_param structure is any integer within the inclusive priority
range for the current scheduling policy of the process specified by pid . Higher numerical values
for the priority represent higher priorities. If the value of pid is negative, the behaviour of the
sched_setparam() function is unspecified.

If a process specified by pid exists and if the calling process has permission, the scheduling
parameters will be set for the process whose process ID is equal to pid .

If pid is zero, the scheduling parameters will be set for the calling process.

The conditions under which one process has permission to change the scheduling parameters of
another process are implementation-dependent.

Implementations may require the requesting process to have the appropriate privilege to set its
own scheduling parameters or those of another process.

The target process, whether it is running or not running, resumes execution after all other
runnable processes of equal or greater priority have been scheduled to run.

If the priority of the process specified by the pid argument is set higher than that of the lowest
priority running process and if the specified process is ready to run, the process specified by the
pid argument preempts a lowest priority running process. Similarly, if the process calling
sched_setparam() sets its own priority lower than that of one or more other non-empty process
lists, then the process that is the head of the highest priority list also preempts the calling
process. Thus, in either case, the originating process might not receive notification of the
completion of the requested priority change until the higher priority process has executed.

If the current scheduling policy for the process specified by pid is not SCHED_FIFO or
SCHED_RR, including SCHED_OTHER, the result is implementation-dependent.

The effect of this function on individual threads is dependent on the scheduling contention
scope of the threads:

• For threads with system scheduling contention scope, these functions have no effect on their
scheduling.

EX • For threads with process scheduling contention scope, the threads’ scheduling parameters
will not be affected. However, the scheduling of these threads with respect to threads in
other processes may be dependent on the scheduling parameters of their process, which are
governed using these functions.

EX If an implementation supports a two-level scheduling model in which library threads are
multiplexed on top of several kernel scheduled entities, then the underlying kernel scheduled
entities for the system contention scope threads will not be affected by these functions.

The underlying kernel scheduled entities for the process contention scope threads will have their
scheduling parameters changed to the value specified in param. Kernel scheduled entities for use
by process contention scope threads that are created after this call completes inherit their

System Interfaces and Headers, Issue 5: Volume 2 739

sched_setparam() System Interfaces

scheduling policy and associated scheduling parameters from the process.

This function is not atomic with respect to other threads in the process. Threads are allowed to
continue to execute while this function call is in the process of changing the scheduling policy
for the underlying kernel scheduled entities used by the process contention scope threads.

RETURN VALUE
If successful, the sched_setparam() function returns zero.

If the call to sched_setparam() is unsuccessful, the priority remains unchanged, and the function
returns a value of −1 and sets errno to indicate the error.

ERRORS
The sched_setparam() function will fail if:

[EINVAL] One or more of the requested scheduling parameters is outside the range
defined for the scheduling policy of the specified pid .

[ENOSYS] The function sched_setparam() is not supported by this implementation.

[EPERM] The requesting process does not have permission to set the scheduling
parameters for the specified process, or does not have the appropriate
privilege to invoke sched_setparam().

[ESRCH] No process can be found corresponding to that specified by pid .

EXAMPLES
None.

APPLICATION USAGE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
sched_getparam(), sched_getscheduler(), sched_setscheduler(), <sched.h>.

CHANGE HISTORY
First released in Issue 5.

Included for alignment with the POSIX Realtime Extension.

740 CAE Specification (1997)

System Interfaces sched_setscheduler()

NAME
sched_setscheduler — set scheduling policy and parameters (REALTIME)

SYNOPSIS
RT #include <sched.h>

int sched_setscheduler(pid_t pid , int policy ,
const struct sched_param * param);

DESCRIPTION
The sched_setscheduler() function sets the scheduling policy and scheduling parameters of the
process specified by pid to policy and the parameters specified in the sched_param structure
pointed to by param , respectively. The value of the sched_priority member in the sched_param
structure is any integer within the inclusive priority range for the scheduling policy specified by
policy . If the value of pid is negative, the behaviour of the sched_setscheduler() function is
unspecified.

The possible values for the policy parameter are defined in the header file <sched.h>.

If a process specified by pid exists and if the calling process has permission, the scheduling
policy and scheduling parameters will be set for the process whose process ID is equal to pid .

If pid is zero, the scheduling policy and scheduling parameters will be set for the calling process.

The conditions under which one process has the appropriate privilege to change the scheduling
parameters of another process are implementation-dependent.

Implementations may require that the requesting process have permission to set its own
scheduling parameters or those of another process. Additionally, implementation-dependent
restrictions may apply as to the appropriate privileges required to set a process’s own
scheduling policy, or another process’s scheduling policy, to a particular value.

The sched_setscheduler() function is considered successful if it succeeds in setting the scheduling
policy and scheduling parameters of the process specified by pid to the values specified by policy
and the structure pointed to by param , respectively.

The effect of this function on individual threads is dependent on the scheduling contention
scope of the threads:

• For threads with system scheduling contention scope, these functions have no effect on their
scheduling.

EX • For threads with process scheduling contention scope, the threads’ scheduling policy and
associated parameters will not be affected. However, the scheduling of these threads with
respect to threads in other processes may be dependent on the scheduling parameters of their
process, which are governed using these functions.

EX If an implementation supports a two-level scheduling model in which library threads are
multiplexed on top of several kernel scheduled entities, then the underlying kernel scheduled
entities for the system contention scope threads will not be affected by these functions.

The underlying kernel scheduled entities for the process contention scope threads will have their
scheduling policy and associated scheduling parameters changed to the values specified in policy
and param, respectively. Kernel scheduled entities for use by process contention scope threads
that are created after this call completes inherit their scheduling policy and associated
scheduling parameters from the process.

This function is not atomic with respect to other threads in the process. Threads are allowed to
continue to execute while this function call is in the process of changing the scheduling policy

System Interfaces and Headers, Issue 5: Volume 2 741

sched_setscheduler() System Interfaces

and associated scheduling parameters for the underlying kernel scheduled entities used by the
process contention scope threads.

RETURN VALUE
Upon successful completion, the function returns the former scheduling policy of the specified
process. If the sched_setscheduler() function fails to complete successfully, the policy and
scheduling paramenters remain unchanged, and the function returns a value of −1 and sets errno
to indicate the error.

ERRORS
The sched_setscheduler() function will fail if:

[EINVAL] The value of the policy parameter is invalid, or one or more of the parameters
contained in param is outside the valid range for the specified scheduling
policy.

[ENOSYS] The function sched_setscheduler() is not supported by this implementation.

[EPERM] The requesting process does not have permission to set either or both of the
scheduling parameters or the scheduling policy of the specified process.

[ESRCH] No process can be found corresponding to that specified by pid .

EXAMPLES
None.

APPLICATION USAGE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
sched_getparam(), sched_getscheduler(), sched_setparam(), <sched.h>.

CHANGE HISTORY
First released in Issue 5.

Included for alignment with the POSIX Realtime Extension.

742 CAE Specification (1997)

System Interfaces sched_yield()

NAME
sched_yield — yield processor

SYNOPSIS
#include <sched.h>

int sched_yield(void);

DESCRIPTION
The sched_yield() function forces the running thread to relinquish the processor until it again
becomes the head of its thread list. It takes no arguments.

RETURN VALUE
The sched_yield() function returns 0 if it completes successfully, or it returns a value of −1 and
sets errno to indicate the error.

ERRORS
No errors are defined.

EXAMPLES
None.

APPLICATION USAGE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
<sched.h>.

CHANGE HISTORY
First released in Issue 5.

Included for alignment with the POSIX Realtime Extension and the POSIX Threads Extension.

System Interfaces and Headers, Issue 5: Volume 2 743

seed48() System Interfaces

NAME
seed48 — seed uniformly distributed pseudo-random non-negative long integer generator

SYNOPSIS
EX #include <stdlib.h>

unsigned short int *seed48(unsigned short int seed16v [3]);

DESCRIPTION
Refer to drand48().

CHANGE HISTORY
First released in Issue 1.

Derived from Issue 1 of the SVID.

Issue 4
The following change is incorporated in this issue:

• The header <stdlib.h> is added to the SYNOPSIS section.

744 CAE Specification (1997)

System Interfaces seekdir()

NAME
seekdir — set position of directory stream

SYNOPSIS
EX OH #include <sys/types.h>
EX #include <dirent.h>

void seekdir(DIR * dirp , long int loc);

DESCRIPTION
The seekdir() function sets the position of the next readdir() operation on the directory stream
specified by dirp to the position specified by loc . The value of loc should have been returned
from an earlier call to telldir(). The new position reverts to the one associated with the directory
stream when telldir() was performed.

If the value of loc was not obtained from an earlier call to telldir() or if a call to rewinddir()
occurred between the call to telldir() and the call to seekdir(), the results of subsequent calls to
readdir() are unspecified.

RETURN VALUE
The seekdir() function returns no value.

ERRORS
No errors are defined.

EXAMPLES
None.

APPLICATION USAGE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
opendir(), readdir(), telldir(), <dirent.h> <stdio.h>, <sys/types.h>.

CHANGE HISTORY
First released in Issue 2.

Issue 4
The following changes are incorporated in this issue:

• The <sys/types.h> header is now marked as optional (OH); this header need not be included
on XSI-conformant systems.

• The type of argument loc is expanded to long int.

Issue 4, Version 2
The DESCRIPTION is updated for X/OPEN UNIX conformance to indicate that a call to
readdir() may produce unspecified results if either loc was not obtained by a previous call to
telldir(), or if there is an intervening call to rewinddir().

System Interfaces and Headers, Issue 5: Volume 2 745

select() System Interfaces

NAME
select — synchronous I/O multiplexing

SYNOPSIS
EX #include <sys/time.h>

int select(int nfds , fd_set * readfds , fd_set * writefds ,
fd_set * errorfds , struct timeval * timeout);

void FD_CLR(int fd , fd_set * fdset);
int FD_ISSET(int fd , fd_set * fdset);
void FD_SET(int fd , fd_set * fdset);
void FD_ZERO(fd_set * fdset);

DESCRIPTION
The select() function indicates which of the specified file descriptors is ready for reading, ready
for writing, or has an error condition pending. If the specified condition is false for all of the
specified file descriptors, select() blocks, up to the specified timeout interval, until the specified
condition is true for at least one of the specified file descriptors.

The select() function supports regular files, terminal and pseudo-terminal devices, STREAMS-
based files, FIFOs and pipes. The behaviour of select() on file descriptors that refer to other types
of file is unspecified.

The nfds argument specifies the range of file descriptors to be tested. The select() function tests
file descriptors in the range of 0 to nfds−1.

If the readfs argument is not a null pointer, it points to an object of type fd_set that on input
specifies the file descriptors to be checked for being ready to read, and on output indicates which
file descriptors are ready to read.

If the writefs argument is not a null pointer, it points to an object of type fd_set that on input
specifies the file descriptors to be checked for being ready to write, and on output indicates
which file descriptors are ready to write.

If the errorfds argument is not a null pointer, it points to an object of type fd_set that on input
specifies the file descriptors to be checked for error conditions pending, and on output indicates
which file descriptors have error conditions pending.

On successful completion, the objects pointed to by the readfs, writefs, and errorfds arguments are
modified to indicate which file descriptors are ready for reading, ready for writing, or have an
error condition pending, respectively. For each file descriptor less than nfds, the corresponding
bit will be set on successful completion if it was set on input and the associated condition is true
for that file descriptor.

If the timeout argument is not a null pointer, it points to an object of type struct timeval that
specifies a maximum interval to wait for the selection to complete. If the timeout argument
points to an object of type struct timeval whose members are 0, select() does not block. If the
timeout argument is a null pointer, select() blocks until an event causes one of the masks to be
returned with a valid (non-zero) value. If the time limit expires before any event occurs that
would cause one of the masks to be set to a non-zero value, select() completes successfully and
returns 0.

The use of a timeout does not affect any pending timers set up by alarm(), ualarm() or settimer().

On successful completion, the object pointed to by the timeout argument may be modified.

Implementations may place limitations on the maximum timeout interval supported. On all
implementations, the maximum timeout interval supported will be at least 31 days. If the

746 CAE Specification (1997)

System Interfaces select()

timeout argument specifies a timeout interval greater than the implementation-dependent
maximum value, the maximum value will be used as the actual timeout value. Implementations
may also place limitations on the granularity of timeout intervals. If the requested timeout
interval requires a finer granularity than the implementation supports, the actual timeout
interval will be rounded up to the next supported value.

If the readfs, writefs, and errorfds arguments are all null pointers and the timeout argument is not a
null pointer, select() blocks for the time specified, or until interrupted by a signal. If the readfs,
writefs, and errorfds arguments are all null pointers and the timeout argument is a null pointer,
select() blocks until interrupted by a signal.

File descriptors associated with regular files always select true for ready to read, ready to write,
and error conditions.

On failure, the objects pointed to by the readfs, writefs, and errorfds arguments are not modified.
If the timeout interval expires without the specified condition being true for any of the specified
file descriptors, the objects pointed to by the readfs, writefs, and errorfds arguments have all bits
set to 0.

File descriptor masks of type fd_set can be initialised and tested with FD_CLR(), FD_ISSET(),
FD_SET(), and FD_ZERO(). It is unspecified whether each of these is a macro or a function. If a
macro definition is suppressed in order to access an actual function, or a program defines an
external identifier with any of these names, the behaviour is undefined.

FD_CLR(fd, &fdset) Clears the bit for the file descriptor fd in the file descriptor set fdset.

FD_ISSET(fd, &fdset) Returns a non-zero value if the bit for the file descriptor fd is set in the file
descriptor set pointed to by fdset, and 0 otherwise.

FD_SET(fd, &fdset) Sets the bit for the file descriptor fd in the file descriptor set fdset.

FD_ZERO(&fdset) Initialises the file descriptor set fdset to have zero bits for all file
descriptors.

The behaviour of these macros is undefined if the fd argument is less than 0 or greater than or
equal to FD_SETSIZE, or if any of the arguments are expressions with side effects.

RETURN VALUE
FD_CLR(), FD_SET() and FD_ZERO() return no value. FD_ISSET() a non-zero value if the bit
for the file descriptor fd is set in the file descriptor set pointed to by fdset , and 0 otherwise.

On successful completion, select() returns the total number of bits set in the bit masks.
Otherwise, −1 is returned, and errno is set to indicate the error.

ERRORS
Under the following conditions, select() fails and sets errno to:

[EBADF] One or more of the file descriptor sets specified a file descriptor that is not a
valid open file descriptor.

[EINTR] The select() function was interrupted before any of the selected events
occurred and before the timeout interval expired.

If SA_RESTART has been set for the interrupting signal, it is implementation-
dependent whether select() restarts or returns with [EINTR].

[EINVAL] An invalid timeout interval was specified.

[EINVAL] The nfds argument is less than 0 or greater than FD_SETSIZE.

System Interfaces and Headers, Issue 5: Volume 2 747

select() System Interfaces

[EINVAL] One of the specified file descriptors refers to a STREAM or multiplexer that is
linked (directly or indirectly) downstream from a multiplexer.

EXAMPLES
None.

APPLICATION USAGE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
fcntl(), poll (), read(), write(), <sys/time.h>.

CHANGE HISTORY
First released in Issue 4, Version 2.

Issue 5
Moved from X/OPEN UNIX extension to BASE.

In the ERRORS section, the text has been changed to indicate that [EINVAL] will be returned
when nfds is less than 0 or greater than FD_SETSIZE. It previously stated less than 0, or greater
than or equal to FD_SETSIZE.

Text about timeout is moved from the APPLICATION USAGE section to the DESCRIPTION.

748 CAE Specification (1997)

System Interfaces sem_close()

NAME
sem_close — close a named semaphore (REALTIME)

SYNOPSIS
RT #include <semaphore.h>

int sem_close(sem_t * sem);

DESCRIPTION
The sem_close() function is used to indicate that the calling process is finished using the named
semaphore indicated by sem. The effects of calling sem_close() for an unnamed semaphore (one
created by sem_init()) are undefined. The sem_close() function deallocates (that is, make
available for reuse by a subsequent sem_open() by this process) any system resources allocated
by the system for use by this process for this semaphore. The effect of subsequent use of the
semaphore indicated by sem by this process is undefined. If the semaphore has not been
removed with a successful call to sem_unlink(), then sem_close() has no effect on the state of the
semaphore. If the sem_unlink() function has been successfully invoked for name after the most
recent call to sem_open() with O_CREAT for this semaphore, then when all processes that have
opened the semaphore close it, the semaphore is no longer be accessible.

RETURN VALUE
Upon successful completion, a value of zero is returned. Otherwise, a value of −1 is returned
and errno is set to indicate the error.

ERRORS
The sem_close() function will fail if:

[EINVAL] The sem argument is not a valid semaphore descriptor.

[ENOSYS] The function sem_close() is not supported by this implementation.

EXAMPLES
None.

APPLICATION USAGE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
semctl(), semget(), semop(), sem_init(), sem_open(), sem_unlink(), <semaphore.h>.

CHANGE HISTORY
First released in Issue 5.

Included for alignment with the POSIX Realtime Extension.

System Interfaces and Headers, Issue 5: Volume 2 749

sem_destroy() System Interfaces

NAME
sem_destroy — destroy an unnamed semaphore (REALTIME)

SYNOPSIS
RT #include <semaphore.h>

int sem_destroy(sem_t * sem);

DESCRIPTION
The sem_destroy() function is used to destroy the unnamed semaphore indicated by sem. Only a
semaphore that was created using sem_init() may be destroyed using sem_destroy(); the effect of
calling sem_destroy() with a named semaphore is undefined. The effect of subsequent use of the
semaphore sem is undefined until sem is re-initialised by another call to sem_init().

It is safe to destroy an initialised semaphore upon which no threads are currently blocked. The
effect of destroying a semaphore upon which other threads are currently blocked is undefined.

RETURN VALUE
Upon successful completion, a value of zero is returned. Otherwise, a value of −1 is returned
and errno is set to indicate the error.

ERRORS
The sem_destroy() function will fail if:

[EINVAL] The sem argument is not a valid semaphore.

[ENOSYS] The function sem_destroy() is not supported by this implementation.

The sem_destroy() function may fail if:

[EBUSY] There are currently processes blocked on the semaphore.

EXAMPLES
None.

APPLICATION USAGE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
semctl(), semget(), semop(), sem_init(), sem_open(), <semaphore.h>.

CHANGE HISTORY
First released in Issue 5.

Included for alignment with the POSIX Realtime Extension.

750 CAE Specification (1997)

System Interfaces sem_getvalue()

NAME
sem_getvalue — get the value of a semaphore (REALTIME)

SYNOPSIS
RT #include <semaphore.h>

int sem_getvalue(sem_t * sem, int * sval);

DESCRIPTION
The sem_getvalue() function updates the location referenced by the sval argument to have the
value of the semaphore referenced by sem without affecting the state of the semaphore. The
updated value represents an actual semaphore value that occurred at some unspecified time
during the call, but it need not be the actual value of the semaphore when it is returned to the
calling process.

If sem is locked, then the value returned by sem_getvalue() is either zero or a negative number
whose absolute value represents the number of processes waiting for the semaphore at some
unspecified time during the call.

RETURN VALUE
Upon successful completion, the function returns a value of zero. Otherwise, the function
returns a value of −1 and sets errno to indicate the error.

ERRORS
The sem_getvalue() function will fail if:

[EINVAL] The sem argument does not refer to a valid semaphore.

[ENOSYS] The function sem_getvalue() is not supported by this implementation.

EXAMPLES
None.

APPLICATION USAGE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
semctl(), semget(), semop(), sem_post(), sem_trywait(), sem_wait(), <semaphore.h>.

CHANGE HISTORY
First released in Issue 5.

Included for alignment with the POSIX Realtime Extension.

System Interfaces and Headers, Issue 5: Volume 2 751

sem_init() System Interfaces

NAME
sem_init — initialise an unnamed semaphore (REALTIME)

SYNOPSIS
RT #include <semaphore.h>

int sem_init(sem_t * sem, int pshared , unsigned int value);

DESCRIPTION
The sem_init() function is used to initialise the unnamed semaphore referred to by sem. The
value of the initialised semaphore is value . Following a successful call to sem_init(), the
semaphore may be used in subsequent calls to sem_wait(), sem_trywait(), sem_post(), and
sem_destroy(). This semaphore remains usable until the semaphore is destroyed.

If the pshared argument has a non-zero value, then the semaphore is shared between processes;
in this case, any process that can access the semaphore sem can use sem for performing
sem_wait(), sem_trywait(), sem_post(), and sem_destroy() operations.

Only sem itself may be used for performing synchronisation. The result of referring to copies of
sem in calls to sem_wait(), sem_trywait(), sem_post(), and sem_destroy(), is undefined.

If the pshared argument is zero, then the semaphore is shared between threads of the process; any
thread in this process can use sem for performing sem_wait(), sem_trywait(), sem_post(), and
sem_destroy() operations. The use of the semaphore by threads other than those created in the
same process is undefined.

Attempting to initialise an already initialised semaphore results in undefined behaviour.

RETURN VALUE
Upon successful completion, the function initialises the semaphore in sem. Otherwise, it returns
−1 and sets errno to indicate the error.

ERRORS
The sem_init() function will fail if:

[EINVAL] The value argument exceeds SEM_VALUE_MAX.

[ENOSPC] A resource required to initialise the semaphore has been exhausted, or the
limit on semaphores (SEM_NSEMS_MAX) has been reached.

[ENOSYS] The function sem_init() is not supported by this implementation.

[EPERM] The process lacks the appropriate privileges to initialise the semaphore.

EXAMPLES
None.

APPLICATION USAGE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
sem_destroy(), sem_post(), sem_trywait(), sem_wait(), <semaphore.h>.

CHANGE HISTORY
First released in Issue 5.

Included for alignment with the POSIX Realtime Extension.

752 CAE Specification (1997)

System Interfaces sem_open()

NAME
sem_open — initialise and open a named semaphore (REALTIME)

SYNOPSIS
RT #include <semaphore.h>

sem_t *sem_open(const char * name, int oflag , ...);

DESCRIPTION
The sem_open() function establishes a connection between a named semaphore and a process.
Following a call to sem_open() with semaphore name name, the process may reference the
semaphore associated with name using the address returned from the call. This semaphore may
be used in subsequent calls to sem_wait(), sem_trywait(), sem_post(), and sem_close(). The
semaphore remains usable by this process until the semaphore is closed by a successful call to
sem_close(), _exit(), or one of the exec functions.

The oflag argument controls whether the semaphore is created or merely accessed by the call to
sem_open(). The following flag bits may be set in oflag :

O_CREAT This flag is used to create a semaphore if it does not already exist. If
O_CREAT is set and the semaphore already exists, then O_CREAT has no
effect, except as noted under O_EXCL. Otherwise, sem_open() creates a
named semaphore. The O_CREAT flag requires a third and a fourth
argument: mode, which is of type mode_t, and value , which is of type
unsigned int. The semaphore is created with an initial value of value . Valid
initial values for semaphores are less than or equal to SEM_VALUE_MAX.

The user ID of the semaphore is set to the effective user ID of the process; the
group ID of the semaphore is set to a system default group ID or to the
effective group ID of the process. The permission bits of the semaphore are
set to the value of the mode argument except those set in the file mode creation
mask of the process. When bits in mode other than the file permission bits are
specified, the effect is unspecified.

After the semaphore named name has been created by sem_open() with the
O_CREAT flag, other processes can connect to the semaphore by calling
sem_open() with the same value of name.

O_EXCL If O_EXCL and O_CREAT are set, sem_open() fails if the semaphore name
exists. The check for the existence of the semaphore and the creation of the
semaphore if it does not exist are atomic with respect to other processes
executing sem_open() with O_EXCL and O_CREAT set. If O_EXCL is set and
O_CREAT is not set, the effect is undefined.

If flags other than O_CREAT and O_EXCL are specified in the oflag parameter,
the effect is unspecified.

The name argument points to a string naming a semaphore object. It is unspecified whether the
name appears in the file system and is visible to functions that take pathnames as arguments.
The name argument conforms to the construction rules for a pathname. If name begins with the
slash character, then processes calling sem_open() with the same value of name will refer to the
same semaphore object, as long as that name has not been removed. If name does not begin with
the slash character, the effect is implementation-dependent. The interpretation of slash
characters other than the leading slash character in name is implementation-dependent.

If a process makes multiple successful calls to sem_open() with the same value for name, the
same semaphore address is returned for each such successful call, provided that there have been

System Interfaces and Headers, Issue 5: Volume 2 753

sem_open() System Interfaces

no calls to sem_unlink() for this semaphore.

References to copies of the semaphore produce undefined results.

RETURN VALUE
Upon successful completion, the function returns the address of the semaphore. Otherwise, it
will return a value of SEM_FAILED and set errno to indicate the error. The symbol SEM_FAILED
is defined in the header <semaphore.h>. No successful return from sem_open() will return the
value SEM_FAILED.

ERRORS
If any of the following conditions occur, the sem_open() function will return SEM_FAILED and
set errno to the corresponding value:

[EACCES] The named semaphore exists and the permissions specified by oflag are
denied, or the named semaphore does not exist and permission to create the
named semaphore is denied.

[EEXIST] O_CREAT and O_EXCL are set and the named semaphore already exists.

[EINTR] The sem_open() operation was interrupted by a signal.

[EINVAL] The sem_open() operation is not supported for the given name, or O_CREAT
was specified in oflag and value was greater than SEM_VALUE_MAX.

[EMFILE] Too many semaphore descriptors or file descriptors are currently in use by
this process.

[ENAMETOOLONG]
The length of the name string exceeds PATH_MAX, or a pathname component
is longer than NAME_MAX while _POSIX_NO_TRUNC is in effect.

[ENFILE] Too many semaphores are currently open in the system.

[ENOENT] O_CREAT is not set and the named semaphore does not exist.

[ENOSPC] There is insufficient space for the creation of the new named semaphore.

[ENOSYS] The function sem_open() is not supported by this implementation.

EXAMPLES
None.

APPLICATION USAGE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
semctl(), semget(), semop(), sem_close(), sem_post(), sem_trywait(), sem_unlink(), sem_wait(),
<semaphore.h>.

CHANGE HISTORY
First released in Issue 5.

Included for alignment with the POSIX Realtime Extension.

754 CAE Specification (1997)

System Interfaces sem_post()

NAME
sem_post — unlock a semaphore (REALTIME)

SYNOPSIS
RT #include <semaphore.h>

int sem_post(sem_t * sem);

DESCRIPTION
The sem_post() function unlocks the semaphore referenced by sem by performing a semaphore
unlock operation on that semaphore.

If the semaphore value resulting from this operation is positive, then no threads were blocked
waiting for the semaphore to become unlocked; the semaphore value is simply incremented.

If the value of the semaphore resulting from this operation is zero, then one of the threads
blocked waiting for the semaphore will be allowed to return successfully from its call to
sem_wait(). If the symbol _POSIX_PRIORITY_SCHEDULING is defined, the thread to be
unblocked will be chosen in a manner appropriate to the scheduling policies and parameters in
effect for the blocked threads. In the case of the schedulers SCHED_FIFO and SCHED_RR, the
highest priority waiting thread will be unblocked, and if there is more than one highest priority
thread blocked waiting for the semaphore, then the highest priority thread that has been waiting
the longest will be unblocked. If the symbol _POSIX_PRIORITY_SCHEDULING is not defined,
the choice of a thread to unblock is unspecified.

The sem_post() interface is reentrant with respect to signals and may be invoked from a signal-
catching function.

RETURN VALUE
If successful, the sem_post() function returns zero; otherwise the function returns −1 and sets
errno to indicate the error.

ERRORS
The sem_post() function will fail if:

[EINVAL] The sem does not refer to a valid semaphore.

[ENOSYS] The function sem_post() is not supported by this implementation.

EXAMPLES
None.

APPLICATION USAGE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
semctl(), semget(), semop(), sem_trywait(), sem_wait(), <semaphore.h>.

CHANGE HISTORY
First released in Issue 5.

Included for alignment with the POSIX Realtime Extension.

System Interfaces and Headers, Issue 5: Volume 2 755

sem_unlink() System Interfaces

NAME
sem_unlink — remove a named semaphore (REALTIME)

SYNOPSIS
RT #include <semaphore.h>

int sem_unlink(const char * name);

DESCRIPTION
The sem_unlink() function removes the semaphore named by the string name. If the semaphore
named by name is currently referenced by other processes, then sem_unlink() has no effect on the
state of the semaphore. If one or more processes have the semaphore open when sem_unlink() is
called, destruction of the semaphore is postponed until all references to the semaphore have
been destroyed by calls to sem_close(), _exit(), or exec. Calls to sem_open() to re-create or re-
connect to the semaphore refer to a new semaphore after sem_unlink() is called. The
sem_unlink() call does not block until all references have been destroyed; it returns immediately.

RETURN VALUE
Upon successful completion, the function returns a value of 0. Otherwise, the semaphore is not
changed and the function returns a value of −1 and sets errno to indicate the error.

ERRORS
The sem_unlink() function will fail if:

[EACCES] Permission is denied to unlink the named semaphore.

[ENAMETOOLONG]
The length of the name string exceeds {NAME_MAX} while
{POSIX_NO_TRUNC} is in effect.

[ENOENT] The named semaphore does not exist.

[ENOSYS] The function sem_unlink() is not supported by this implementation.

EXAMPLES
None.

APPLICATION USAGE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
semctl(), semget(), semop(), sem_close(), sem_open(), <semaphore.h>.

CHANGE HISTORY
First released in Issue 5.

Included for alignment with the POSIX Realtime Extension.

756 CAE Specification (1997)

System Interfaces sem_wait()

NAME
sem_wait, sem_trywait — lock a semaphore (REALTIME)

SYNOPSIS
RT #include <semaphore.h>

int sem_wait(sem_t * sem);
int sem_trywait(sem_t * sem);

DESCRIPTION
The sem_wait() function locks the semaphore referenced by sem by performing a semaphore lock
operation on that semaphore. If the semaphore value is currently zero, then the calling thread
will not return from the call to sem_wait() until it either locks the semaphore or the call is
interrupted by a signal. The sem_trywait() function locks the semaphore referenced by sem only
if the semaphore is currently not locked; that is, if the semaphore value is currently positive.
Otherwise, it does not lock the semaphore.

Upon successful return, the state of the semaphore is locked and remains locked until the
sem_post() function is executed and returns successfully.

The sem_wait() function is interruptible by the delivery of a signal.

RETURN VALUE
The sem_wait() and sem_trywait() functions return zero if the calling process successfully
performed the semaphore lock operation on the semaphore designated by sem. If the call was
unsuccessful, the state of the semaphore is unchanged, and the function returns a value of −1
and sets errno to indicate the error.

ERRORS
The sem_wait() and sem_trywait() functions will fail if:

[EAGAIN] The semaphore was already locked, so it cannot be immediately locked by the
sem_trywait() operation (sem_trywait() only).

[EINVAL] The sem argument does not refer to a valid semaphore.

[ENOSYS] The functions sem_wait() and sem_trywait() are not supported by this
implementation.

The sem_wait() and sem_trywait() functions may fail if:

[EDEADLK] A deadlock condition was detected.

[EINTR] A signal interrupted this function.

EXAMPLES
None.

APPLICATION USAGE
Realtime applications may encounter priority inversion when using semaphores. The problem
occurs when a high priority thread ‘‘locks’’ (that is, waits on) a semaphore that is about to be
‘‘unlocked’’ (that is, posted) by a low priority thread, but the low priority thread is preempted
by a medium priority thread. This scenario leads to priority inversion; a high priority thread is
blocked by lower priority threads for an unlimited period of time. During system design,
realtime programmers must take into account the possibility of this kind of priority inversion.
They can deal with it in a number of ways, such as by having critical sections that are guarded
by semaphores execute at a high priority, so that a thread cannot be preempted while executing
in its critical section.

System Interfaces and Headers, Issue 5: Volume 2 757

sem_wait() System Interfaces

FUTURE DIRECTIONS
None.

SEE ALSO
semctl(), semget(), semop(), sem_post(), <semaphore.h>.

CHANGE HISTORY
First released in Issue 5.

Included for alignment with the POSIX Realtime Extension.

758 CAE Specification (1997)

System Interfaces semctl()

NAME
semctl — semaphore control operations

SYNOPSIS
EX #include <sys/sem.h>

int semctl(int semid , int semnum, int cmd, . . .);

DESCRIPTION
The semctl() function provides a variety of semaphore control operations as specified by cmd.
The fourth argument is optional and depends upon the operation requested. If required, it is of
type union semun, which the application program must explicitly declare:

union semun {
int val;
struct semid_ds *buf;
unsigned short *array;

} arg;

The following semaphore control operations as specified by cmd are executed with respect to the
semaphore specified by semid and semnum. The level of permission required for each operation
is shown with each command, see Section 2.6 on page 36. The symbolic names for the values of
cmd are defined by the <sys/sem.h> header:

GETVAL Return the value of semval , see <sys/sem.h>. Requires read permission.

SETVAL Set the value of semval to arg.val , where arg is the value of the fourth argument
to semctl(). When this command is successfully executed, the semadj value
corresponding to the specified semaphore in all processes is cleared. Requires
alter permission, see Section 2.6 on page 36.

GETPID Return the value of sempid. Requires read permission.

GETNCNT Return the value of semncnt. Requires read permission.

GETZCNT Return the value of semzcnt. Requires read permission.

The following values of cmd operate on each semval in the set of semaphores:

GETALL Return the value of semval for each semaphore in the semaphore set and place
into the array pointed to by arg.array , where arg is the fourth argument to
semctl(). Requires read permission.

SETALL Set the value of semval for each semaphore in the semaphore set according to
the array pointed to by arg.array , where arg is the fourth argument to semctl().
When this command is successfully executed, the semadj values corresponding
to each specified semaphore in all processes are cleared. Requires alter
permission.

The following values of cmd are also available:

IPC_STAT Place the current value of each member of the semid_ds data structure
associated with semid into the structure pointed to by arg.buf, where arg is the
fourth argument to semctl(). The contents of this structure are defined in
<sys/sem.h>. Requires read permission.

System Interfaces and Headers, Issue 5: Volume 2 759

semctl() System Interfaces

IPC_SET Set the value of the following members of the semid_ds data structure
associated with semid to the corresponding value found in the structure
pointed to by arg.buf, where arg is the fourth argument to semctl():

sem_perm.uid
sem_perm.gid
sem_perm.mode

The mode bits specified in Section 2.6.1 on page 36 are copied into the
corresponding bits of the sem_perm.mode associated with semid. The stored
values of any other bits are unspecified.

This command can only be executed by a process that has an effective user ID
equal to either that of a process with appropriate privileges or to the value of
sem_perm.cuid or sem_perm.uid in the semid_ds data structure associated
with semid.

IPC_RMID Remove the semaphore-identifier specified by semid from the system and
destroy the set of semaphores and semid_ds data structure associated with it.
This command can only be executed by a process that has an effective user ID
equal to either that of a process with appropriate privileges or to the value of
sem_perm.cuid or sem_perm.uid in the semid_ds data structure associated
with semid.

RETURN VALUE
If successful, the value returned by semctl() depends on cmd as follows:

GETVAL The value of semval .

GETPID The value of sempid.

GETNCNT The value of semncnt.

GETZCNT The value of semzcnt.

All others 0.

Otherwise, semctl() returns −1 and errno indicates the error.

ERRORS
The semctl() function will fail if:

[EACCES] Operation permission is denied to the calling process, see Section 2.6 on page
36.

[EINVAL] The value of semid is not a valid semaphore identifier, or the value of semnum
is less than 0 or greater than or equal to sem_nsems, or the value of cmd is not a
valid command.

[EPERM] The argument cmd is equal to IPC_RMID or IPC_SET and the effective user ID
of the calling process is not equal to that of a process with appropriate
privileges and it is not equal to the value of sem_perm.cuid or sem_perm.uid
in the data structure associated with semid.

[ERANGE] The argument cmd is equal to SETVAL or SETALL and the value to which
semval is to be set is greater than the system-imposed maximum.

EXAMPLES
None.

760 CAE Specification (1997)

System Interfaces semctl()

APPLICATION USAGE
The fourth parameter in the SYNOPSIS section is now specified as . . . in order to avoid a clash
with the ISO C standard when referring to the union semun (as defined in XPG3) and for
backward compatibility.

The POSIX Realtime Extension defines alternative interfaces for interprocess communication.
Application developers who need to use IPC should design their applications so that modules
using the IPC routines described in Section 2.6 on page 36 can be easily modified to use the
alternative interfaces.

FUTURE DIRECTIONS
None.

SEE ALSO
semget(), semop(), sem_close(), sem_destroy(), sem_getvalue(), sem_init(), sem_open(), sem_post(),
sem_unlink(), sem_wait(), <sys/sem.h>, Section 2.6 on page 36.

CHANGE HISTORY
First released in Issue 2.

Derived from Issue 2 of the SVID.

Issue 4
The following changes are incorporated in this issue:

• The interface is no longer marked as OPTIONAL FUNCTIONALITY.

• Inclusion of the <sys/types.h> and <sys/ipc.h> headers is removed from the SYNOPSIS
section.

• The last argument is now defined by an ellipsis symbol. In previous issues it was defined as
a union of the various types required by settings of cmd. These are now defined individually
in each description of permitted cmd settings. The text of the description of SETALL in the
DESCRIPTION now refers to the fourth argument instead of arg.buf.

• In the DESCRIPTION the type of the array is specified in the descriptions of GETALL and
SETALL.

• The [ENOSYS] error is removed from the ERRORS section.

• A FUTURE DIRECTIONS section is added warning application developers about migration
to IEEE 1003.4 interfaces for interprocess communication.

Issue 4, Version 2
The fourth argument to semctl(), formerly specified in APPLICATION USAGE , is moved to the
DESCRIPTION, and references to its elements are made more precise.

Issue 5
The note about use of POSIX Realtime Extension IPC routines has been moved from FUTURE
DIRECTIONS to the APPLICATION USAGE section.

System Interfaces and Headers, Issue 5: Volume 2 761

semget() System Interfaces

NAME
semget — get set of semaphores

SYNOPSIS
EX #include <sys/sem.h>

int semget(key_t key , int nsems, int semflg);

DESCRIPTION
The semget() function returns the semaphore identifier associated with key .

A semaphore identifier with its associated semid_ds data structure and its associated set of
nsems semaphores, see <sys/sem.h>, are created for key if one of the following is true:

• The argument key is equal to IPC_PRIVATE .

• The argument key does not already have a semaphore identifier associated with it and
(semflg & IPC_CREAT) is non-zero.

Upon creation, the semid_ds data structure associated with the new semaphore identifier is
initialised as follows:

• In the operation permissions structure sem_perm.cuid, sem_perm.uid, sem_perm.cgid and
sem_perm.gid are set equal to the effective user ID and effective group ID, respectively, of the
calling process.

• The low-order 9 bits of sem_perm.mode are set equal to the low-order 9 bits of semflg .

• The variable sem_nsems is set equal to the value of nsems.

• The variable sem_otime is set equal to 0 and sem_ctime is set equal to the current time.

• The data structure associated with each semaphore in the set is not initialised. The semctl()
function with the command SETVAL or SETALL can be used to initialise each semaphore.

RETURN VALUE
Upon successful completion, semget() returns a non-negative integer, namely a semaphore
identifier; otherwise, it returns −1 and errno will be set to indicate the error.

ERRORS
The semget() function will fail if:

[EACCES] A semaphore identifier exists for key , but operation permission as specified by
the low-order 9 bits of semflg would not be granted. See Section 2.6 on page
36.

[EEXIST] A semaphore identifier exists for the argument key but
((semflg & IPC_CREAT) && (semflg & IPC_EXCL)) is non-zero.

[EINVAL] The value of nsems is either less than or equal to 0 or greater than the system-
imposed limit, or a semaphore identifier exists for the argument key , but the
number of semaphores in the set associated with it is less than nsems and
nsems is not equal to 0.

[ENOENT] A semaphore identifier does not exist for the argument key and
(semflg & IPC_CREAT) is equal to 0.

[ENOSPC] A semaphore identifier is to be created but the system-imposed limit on the
maximum number of allowed semaphores system-wide would be exceeded.

762 CAE Specification (1997)

System Interfaces semget()

EXAMPLES
None.

APPLICATION USAGE
The POSIX Realtime Extension defines alternative interfaces for interprocess communication.
Application developers who need to use IPC should design their applications so that modules
using the IPC routines described in Section 2.6 on page 36 can be easily modified to use the
alternative interfaces.

FUTURE DIRECTIONS
None.

SEE ALSO
semctl(), semop(), sem_close(), sem_destroy(), sem_getvalue(), sem_init(), sem_open(), sem_post(),
sem_unlink(), sem_wait(), <sys/sem.h>, Section 2.6 on page 36.

CHANGE HISTORY
First released in Issue 2.

Derived from Issue 2 of the SVID.

Issue 4
The following changes are incorporated in this issue:

• The interface is no longer marked as OPTIONAL FUNCTIONALITY.

• Inclusion of the <sys/types.h> and <sys/ipc.h> headers is removed from the SYNOPSIS
section.

• The [ENOSYS] error is removed from the ERRORS section.

• A FUTURE DIRECTIONS section is added warning application developers about migration
to IEEE 1003.4 interfaces for interprocess communication.

Issue 5
The note about use of POSIX Realtime Extension IPC routines has been moved from FUTURE
DIRECTIONS to a new APPLICATION USAGE section.

System Interfaces and Headers, Issue 5: Volume 2 763

semop() System Interfaces

NAME
semop — semaphore operations

SYNOPSIS
EX #include <sys/sem.h>

int semop(int semid , struct sembuf * sops , size_t nsops);

DESCRIPTION
The semop() function is used to perform atomically a user-defined array of semaphore
operations on the set of semaphores associated with the semaphore identifier specified by the
argument semid.

The argument sops is a pointer to a user-defined array of semaphore operation structures. The
implementation will not modify elements of this array unless the application uses
implementation-dependent extensions.

The argument nsops is the number of such structures in the array.

Each structure, sembuf, includes the following members:

Member Type Member Name Description
short sem_num semaphore number
short sem_op semaphore operation
short sem_flg operation flags

Each semaphore operation specified by sem_op is performed on the corresponding semaphore
specified by semid and sem_num.

The variable sem_op specifies one of three semaphore operations:

1. If sem_op is a negative integer and the calling process has alter permission, one of the
following will occur:

• If semval , see <sys/sem.h>, is greater than or equal to the absolute value of sem_op, the
absolute value of sem_op is subtracted from semval . Also, if (sem_flg & SEM_UNDO) is
non-zero, the absolute value of sem_op is added to the calling process’ semadj value for
the specified semaphore.

• If semval is less than the absolute value of sem_op and (sem_flg & IPC_NOWAIT) is non-
zero, semop() will return immediately.

• If semval is less than the absolute value of sem_op and (sem_flg & IPC_NOWAIT) is 0,
semop() will increment the semncnt associated with the specified semaphore and
suspend execution of the calling thread until one of the following conditions occurs:

— The value of semval becomes greater than or equal to the absolute value of sem_op.
When this occurs, the value of semncnt associated with the specified semaphore is
decremented, the absolute value of sem_op is subtracted from semval and, if
(sem_flg & SEM_UNDO) is non-zero, the absolute value of sem_op is added to the
calling process’ semadj value for the specified semaphore.

— The semid for which the calling thread is awaiting action is removed from the
system. When this occurs, errno is set equal to [EIDRM] and −1 is returned.

764 CAE Specification (1997)

System Interfaces semop()

— The calling thread receives a signal that is to be caught. When this occurs, the value
of semncnt associated with the specified semaphore is decremented, and the calling
thread resumes execution in the manner prescribed in sigaction ().

2. If sem_op is a positive integer and the calling process has alter permission, the value of
sem_op is added to semval and, if (sem_flg & SEM_UNDO) is non-zero, the value of sem_op is
subtracted from the calling process’ semadj value for the specified semaphore.

3. If sem_op is 0 and the calling process has read permission, one of the following will occur:

• If semval is 0, semop() will return immediately.

• If semval is non-zero and (sem_flg & IPC_NOWAIT) is non-zero, semop() will return
immediately.

• If semval is non-zero and (sem_flg & IPC_NOWAIT) is 0, semop() will increment the
semzcnt associated with the specified semaphore and suspend execution of the calling
thread until one of the following occurs:

— The value of semval becomes 0, at which time the value of semzcnt associated with
the specified semaphore is decremented.

— The semid for which the calling thread is awaiting action is removed from the
system. When this occurs, errno is set equal to [EIDRM] and −1 is returned.

— The calling thread receives a signal that is to be caught. When this occurs, the value
of semzcnt associated with the specified semaphore is decremented, and the calling
thread resumes execution in the manner prescribed in sigaction ().

Upon successful completion, the value of sempid for each semaphore specified in the array
pointed to by sops is set equal to the process ID of the calling process.

RETURN VALUE
Upon successful completion, semop() returns 0. Otherwise, it returns −1 and errno will be set to
indicate the error.

ERRORS
The semop() function will fail if:

[E2BIG] The value of nsops is greater than the system-imposed maximum.

[EACCES] Operation permission is denied to the calling process, see Section 2.6 on page
36.

[EAGAIN] The operation would result in suspension of the calling process but
(sem_flg & IPC_NOWAIT) is non-zero.

[EFBIG] The value of sem_num is less than 0 or greater than or equal to the number of
semaphores in the set associated with semid.

[EIDRM] The semaphore identifier semid is removed from the system.

[EINTR] The semop() function was interrupted by a signal.

[EINVAL] The value of semid is not a valid semaphore identifier, or the number of
individual semaphores for which the calling process requests a SEM_UNDO
would exceed the system-imposed limit.

[ENOSPC] The limit on the number of individual processes requesting a SEM_UNDO
would be exceeded.

System Interfaces and Headers, Issue 5: Volume 2 765

semop() System Interfaces

[ERANGE] An operation would cause a semval to overflow the system-imposed limit, or
an operation would cause a semadj value to overflow the system-imposed
limit.

EXAMPLES
None.

APPLICATION USAGE
The POSIX Realtime Extension defines alternative interfaces for interprocess communication.
Application developers who need to use IPC should design their applications so that modules
using the IPC routines described in Section 2.6 on page 36 can be easily modified to use the
alternative interfaces.

FUTURE DIRECTIONS
None.

SEE ALSO
exec, exit(), fork (), semctl(), semget(), sem_close(), sem_destroy(), sem_getvalue(), sem_init(),
sem_open(), sem_post(), sem_unlink(), sem_wait(), <sys/ipc.h>, <sys/sem.h>, <sys/types.h>,
Section 2.6 on page 36.

CHANGE HISTORY
First released in Issue 2.

Derived from Issue 2 of the SVID.

Issue 4
The following changes are incorporated in this issue:

• The interface is no longer marked as OPTIONAL FUNCTIONALITY.

• Inclusion of the <sys/types.h> and <sys/ipc.h> headers is removed from the SYNOPSIS
section.

• The type of nsops is changed to size_t.

• The DESCRIPTION is updated to indicate that an implementation will not modify the
elements of sops unless the application uses implementation-dependent extensions.

• The [ENOSYS] error is removed from the ERRORS section.

• A FUTURE DIRECTIONS section is added warning application developers about migration
to IEEE 1003.4 interfaces for interprocess communication.

Issue 5
The note about use of POSIX Realtime Extension IPC routines has been moved from FUTURE
DIRECTIONS to a new APPLICATION USAGE section.

766 CAE Specification (1997)

System Interfaces setbuf()

NAME
setbuf — assign buffering to a stream

SYNOPSIS
#include <stdio.h>

void setbuf(FILE * stream , char * buf);

DESCRIPTION
Except that it returns no value, the function call:

setbuf(stream, buf)

is equivalent to:

setvbuf(stream, buf, _IOFBF, BUFSIZ)

if buf is not a null pointer, or to:

setvbuf(stream, buf, _IONBF, BUFSIZ)

if buf is a null pointer.

RETURN VALUE
The setbuf() function returns no value.

ERRORS
No errors are defined.

EXAMPLES
None.

APPLICATION USAGE
A common source of error is allocating buffer space as an ‘‘automatic’’ variable in a code block,
and then failing to close the stream in the same block.

With setbuf(), allocating a buffer of BUFSIZ bytes does not necessarily imply that all of BUFSIZ
bytes are used for the buffer area.

FUTURE DIRECTIONS
None.

SEE ALSO
fopen(), setvbuf(), <stdio.h>.

CHANGE HISTORY
First released in Issue 1.

Derived from Issue 1 of the SVID.

System Interfaces and Headers, Issue 5: Volume 2 767

setcontext() System Interfaces

NAME
setcontext — set current user context

SYNOPSIS
EX #include <ucontext.h>

int setcontext(const ucontext_t * ucp);

DESCRIPTION
Refer to getcontext().

CHANGE HISTORY
First released in Issue 4, Version 2.

Issue 5
Moved from X/OPEN UNIX extension to BASE.

768 CAE Specification (1997)

System Interfaces setgid()

NAME
setgid — set-group-ID

SYNOPSIS
OH #include <sys/types.h>

#include <unistd.h>

int setgid(gid_t gid);

DESCRIPTION
FIPS If the process has appropriate privileges, setgid() sets the real group ID, effective group ID and

the saved set-group-ID to gid .

FIPS If the process does not have appropriate privileges, but gid is equal to the real group ID or the
FIPS saved set-group-ID, setgid() function sets the effective group ID to gid ; the real group ID and

saved set-group-ID remain unchanged.

Any supplementary group IDs of the calling process remain unchanged.

RETURN VALUE
Upon successful completion, 0 is returned. Otherwise, −1 is returned and errno is set to indicate
the error.

ERRORS
The setgid() function will fail if:

[EINVAL] The value of the gid argument is invalid and is not supported by the
implementation.

[EPERM] The process does not have appropriate privileges and gid does not match the
FIPS real group ID or the saved set-group-ID.

EXAMPLES
None.

APPLICATION USAGE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
exec, getgid(), setuid(), <sys/types.h>, <unistd.h>.

CHANGE HISTORY
First released in Issue 1.

Derived from Issue 1 of the SVID.

Issue 4
The following change is incorporated for alignment with the FIPS requirements:

• All references to the saved set-user-ID are marked as extensions. This is because Issue 4
defines this mechanism as mandatory, whereas the ISO POSIX-1 standard defines that it is
only supported if {POSIX_SAVED_IDS} is set.

Another change is incorporated as follows:

• The <sys/types.h> header is now marked as optional (OH); this header need not be included
on XSI-conformant systems.

System Interfaces and Headers, Issue 5: Volume 2 769

setgrent() System Interfaces

NAME
setgrent — reset group database to first entry

SYNOPSIS
EX #include <grp.h>

void setgrent(void);

DESCRIPTION
Refer to endgrent().

CHANGE HISTORY
First released in Issue 4, Version 2.

Issue 5
Moved from X/OPEN UNIX extension to BASE.

770 CAE Specification (1997)

System Interfaces setitimer()

NAME
setitimer — set value of interval timer

SYNOPSIS
EX #include <sys/time.h>

int setitimer(int which , const struct itimerval * value ,
struct itimerval * ovalue);

DESCRIPTION
Refer to getitimer().

CHANGE HISTORY
First released in Issue 4, Version 2.

Issue 5
Moved from X/OPEN UNIX extension to BASE.

System Interfaces and Headers, Issue 5: Volume 2 771

_setjmp() System Interfaces

NAME
_setjmp — set jump point for a non-local goto

SYNOPSIS
EX #include <setjmp.h>

int _setjmp(jmp_buf env);

DESCRIPTION
Refer to _longjmp ().

CHANGE HISTORY
First released in Issue 4, Version 2.

Issue 5
Moved from X/OPEN UNIX extension to BASE.

772 CAE Specification (1997)

System Interfaces setjmp()

NAME
setjmp — set jump point for a non-local goto

SYNOPSIS
#include <setjmp.h>

int setjmp(jmp_buf env);

DESCRIPTION
A call to setjmp(), saves the calling environment in its env argument for later use by longjmp().

It is unspecified whether setjmp() is a macro or a function. If a macro definition is suppressed in
order to access an actual function, or a program defines an external identifier with the name
setjmp the behaviour is undefined.

All accessible objects have values as of the time longjmp() was called, except that the values of
objects of automatic storage duration which are local to the function containing the invocation of
the corresponding setjmp() which do not have volatile-qualified type and which are changed
between the setjmp() invocation and longjmp() call are indeterminate.

An invocation of setjmp() must appear in one of the following contexts only:

• the entire controlling expression of a selection or iteration statement

• one operand of a relational or equality operator with the other operand an integral constant
expression, with the resulting expression being the entire controlling expression of a
selection or iteration statement

• the operand of a unary "!" operator with the resulting expression being the entire controlling
expression of a selection or iteration

• the entire expression of an expression statement (possibly cast to void).

RETURN VALUE
If the return is from a direct invocation, setjmp() returns 0. If the return is from a call to
longjmp(), setjmp() returns a non-zero value.

ERRORS
No errors are defined.

EXAMPLES
None.

APPLICATION USAGE
In general, sigsetjmp() is more useful in dealing with errors and interrupts encountered in a low-
level subroutine of a program.

FUTURE DIRECTIONS
None.

SEE ALSO
longjmp(), sigsetjmp(), <setjmp.h>.

CHANGE HISTORY
First released in Issue 1.

Derived from Issue 1 of the SVID.

System Interfaces and Headers, Issue 5: Volume 2 773

setjmp() System Interfaces

Issue 4
The following changes are incorporated in this issue:

• This issue states that setjmp() is a macro or a function; previous issues stated that it was a
macro. Warnings have also been added about the suppression of a setjmp() macro definition.

• Text describing the accessibility of objects after a longjmp() call is added to the
DESCRIPTION. This text is imported from the entry for longjmp().

• Text describing the contexts in which calls to setjmp() are valid is moved to the
DESCRIPTION from the APPLICATION USAGE section.

• The APPLICATION USAGE section is changed to refer to sigsetjmp().

774 CAE Specification (1997)

System Interfaces setkey()

NAME
setkey — set encoding key (CRYPT)

SYNOPSIS
EX #include <stdlib.h>

void setkey(const char * key);

DESCRIPTION
The setkey() function provides (rather primitive) access to an implementation-dependent
encoding algorithm. The argument of setkey() is an array of length 64 bytes containing only the
bytes with numerical value of 0 and 1. If this string is divided into groups of 8, the low-order bit
in each group is ignored; this gives a 56-bit key which is used by the algorithm. This is the key
that will be used with the algorithm to encode a string block passed to encrypt().

The setkey() function will not change the setting of errno if successful.

This interface need not be reentrant.

RETURN VALUE
No values are returned.

ERRORS
The setkey() function will fail if:

[ENOSYS] The functionality is not supported on this implementation.

EXAMPLES
None.

APPLICATION USAGE
Decoding need not be implemented in all environments. This is related to U.S. Government
restrictions on encryption and decryption routines: the DES decryption algorithm cannot be
exported outside the U.S.A. Historical practice has been to ship a different version of the
encryption library without the decryption feature in the routines supplied. Thus the exported
version of encrypt() does encoding but not decoding.

FUTURE DIRECTIONS
None.

SEE ALSO
crypt(), encrypt(), <stdlib.h>.

CHANGE HISTORY
First released in Issue 1.

Derived from Issue 1 of the SVID.

Issue 4
The following changes are incorporated in this issue:

• The type of argument key is changed from char * to const char *.

• The description of the array is put in terms of bytes instead of characters.

• The APPLICATION USAGE section is added.

Issue 5
The DESCRIPTION is updated to indicate that errno will not be changed if the function is
successful.

System Interfaces and Headers, Issue 5: Volume 2 775

setlocale() System Interfaces

NAME
setlocale — set program locale

SYNOPSIS
#include <locale.h>

char *setlocale(int category , const char * locale);

DESCRIPTION
The setlocale () function selects the appropriate piece of the program’s locale, as specified by the
category and locale arguments, and may be used to change or query the program’s entire locale or
portions thereof. The value LC_ALL for category names the program’s entire locale; other values
for category name only a part of the program’s locale:

LC_COLLATE Affects the behaviour of regular expressions and the collation functions.

LC_CTYPE Affects the behaviour of regular expressions, character classification, character
conversion functions and wide-character functions.

LC_MESSAGES Affects what strings are expected by commands and utilities as affirmative or
EX negative responses, what strings are given by commands and utilities as

affirmative or negative responses, and the content of messages.

LC_MONETARY Affects the behaviour of functions that handle monetary values.

LC_NUMERIC Affects the radix character for the formatted input/output functions and the
string conversion functions.

LC_TIME Affects the behaviour of the time conversion functions.

The locale argument is a pointer to a character string containing the required setting of category.
The contents of this string are implementation-dependent. In addition, the following preset
values of locale are defined for all settings of category:

"POSIX" Specifies the minimal environment for C-language translation called POSIX
locale. If setlocale () is not invoked, the POSIX locale is the default.

"C" Same as POSIX.

" " Specifies an implementation-dependent native environment. For XSI-
conformant systems, this corresponds to the value of the associated
environment variables, LC_* and LANG; see the XBD specification, Chapter 5,
Locale and the XBD specification, Chapter 6, Environment Variables.

A null pointer
Used to direct setlocale () to query the current internationalised environment
and return the name of the locale ().

The locale state is common to all threads within a process.

RETURN VALUE
Upon successful completion, setlocale () returns the string associated with the specified category
for the new locale. Otherwise, setlocale () returns a null pointer and the program’s locale is not
changed.

A null pointer for locale causes setlocale () to return a pointer to the string associated with the
category for the program’s current locale. The program’s locale is not changed.

The string returned by setlocale () is such that a subsequent call with that string and its associated
category will restore that part of the program’s locale. The string returned must not be modified
by the program, but may be overwritten by a subsequent call to setlocale ().

776 CAE Specification (1997)

System Interfaces setlocale()

ERRORS
No errors are defined.

EXAMPLES
None.

APPLICATION USAGE
The following code illustrates how a program can initialise the international environment for
one language, while selectively modifying the program’s locale such that regular expressions
and string operations can be applied to text recorded in a different language:

setlocale(LC_ALL, "De");
setlocale(LC_COLLATE, "Fr@dict");

Internationalised programs must call setlocale () to initiate a specific language operation. This
can be done by calling setlocale () as follows:

setlocale(LC_ALL, " ");

Changing the setting of LC_MESSAGES has no effect on catalogues that have already been
opened by calls to catopen().

FUTURE DIRECTIONS
None.

SEE ALSO
exec, isalnum(), isalpha (), iscntrl(), isgraph(), islower(), isprint(), ispunct(), isspace(), isupper(),
iswalnum(), iswalpha (), iswcntrl(), iswgraph(), iswlower(), iswprint(), iswpunct(), iswspace(),
iswupper(), localeconv (), mblen(), mbstowcs(), mbtowc(), nl_langinfo (), printf(), scanf(), setlocale (),
strcoll(), strerror(), strfmon(), strtod(), strxfrm(), tolower(), toupper(), towlower(), towupper(),
wcscoll(), wcstod(), wcstombs(), wcsxfrm(), wctomb(), <langinfo.h>, <locale.h>.

CHANGE HISTORY
First released in Issue 3.

Issue 4
The following changes are incorporated for alignment with the ISO C standard and the
ISO POSIX-1 standard:

• The type of the argument locale is changed from char * to const char *.

• The name POSIX is added to the list of standard locale names.

The following change is incorporated for alignment with the ISO POSIX-2 standard:

• The LC_MESSAGES value for category is added to the DESCRIPTION.

Other changes are incorporated as follows:

• The description of LC_MESSAGES is extended to indicate that this category also determines
what strings are produced by commands and utilities for affirmative and negative responses,
and that it affects the content of other program messages. This is marked as an extension.

• References to nl_langinfo () are removed.

• The description of the implementation-dependent native locale ("") is clarified by stating the
related environment variables explicitly.

• The APPLICATION USAGE section is expanded.

System Interfaces and Headers, Issue 5: Volume 2 777

setlocale() System Interfaces

Issue 5
The DESCRIPTION is updated for alignment with the POSIX Threads Extension.

778 CAE Specification (1997)

System Interfaces setlogmask()

NAME
setlogmask — set log priority mask

SYNOPSIS
EX #include <syslog.h>

int setlogmask(int maskpri);

DESCRIPTION
Refer to closelog ().

CHANGE HISTORY
First released in Issue 4, Version 2.

Issue 5
Moved from X/OPEN UNIX extension to BASE.

System Interfaces and Headers, Issue 5: Volume 2 779

setpgid() System Interfaces

NAME
setpgid — set process group ID for job control

SYNOPSIS
OH #include <sys/types.h>

#include <unistd.h>

int setpgid(pid_t pid , pid_t pgid);

DESCRIPTION
The setpgid() function is used either to join an existing process group or create a new process
group within the session of the calling process. The process group ID of a session leader will not
change. Upon successful completion, the process group ID of the process with a process ID that
matches pid will be set to pgid . As a special case, if pid is 0, the process ID of the calling process
will be used. Also, if pgid is 0, the process group ID of the indicated process will be used.

RETURN VALUE
Upon successful completion, setpgid() returns 0. Otherwise −1 is returned and errno is set to
indicate the error.

ERRORS
The setpgid() function will fail if:

[EACCES] The value of the pid argument matches the process ID of a child process of the
calling process and the child process has successfully executed one of the exec
functions.

[EINVAL] The value of the pgid argument is less than 0, or is not a value supported by
the implementation.

[EPERM] The process indicated by the pid argument is a session leader.

The value of the pid argument matches the process ID of a child process of the
calling process and the child process is not in the same session as the calling
process.

The value of the pgid argument is valid but does not match the process ID of
the process indicated by the pid argument and there is no process with a
process group ID that matches the value of the pgid argument in the same
session as the calling process.

[ESRCH] The value of the pid argument does not match the process ID of the calling
process or of a child process of the calling process.

EXAMPLES
None.

APPLICATION USAGE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
exec, getpgrp(), setsid(), tcsetpgrp(), <sys/types.h>, <unistd.h>.

CHANGE HISTORY
First released in Issue 3.

Entry included for alignment with the POSIX.1-1988 standard.

780 CAE Specification (1997)

System Interfaces setpgid()

Issue 4
The following changes are incorporated in this issue:

• The interface is no longer marked as OPTIONAL FUNCTIONALITY.

• The <sys/types.h> header is now marked as optional (OH); this header need not be included
on XSI-conformant systems.

• The header <unistd.h> is added to the SYNOPSIS section.

• The DESCRIPTION in Issue 3 defined the behaviour of this function for implementations
that either supported or did not support job control. As job control is defined as mandatory
in Issue 4, only the former of these is now described.

• The [ENOSYS] error is removed from the ERRORS section.

System Interfaces and Headers, Issue 5: Volume 2 781

setpgrp() System Interfaces

NAME
setpgrp — set process group ID

SYNOPSIS
EX #include <unistd.h>

pid_t setpgrp(void);

DESCRIPTION
If the calling process is not already a session leader, setpgrp() sets the process group ID of the
calling process to the process ID of the calling process. If setpgrp() creates a new session, then
the new session has no controlling terminal.

The setpgrp() function has no effect when the calling process is a session leader.

RETURN VALUE
Upon completion, setpgrp() returns the process group ID.

ERRORS
No errors are defined.

EXAMPLES
None.

APPLICATION USAGE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
exec, fork (), getpid(), getsid(), kill (), setsid(), <unistd.h>.

CHANGE HISTORY
First released in Issue 4, Version 2.

Issue 5
Moved from X/OPEN UNIX extension to BASE.

782 CAE Specification (1997)

System Interfaces setpriority()

NAME
setpriority — set the nice value

SYNOPSIS
EX #include <sys/resource.h>

int setpriority(int which , id_t who, int nice);

DESCRIPTION
Refer to getpriority ().

CHANGE HISTORY
First released in Issue 4, Version 2.

Issue 5
Moved from X/OPEN UNIX extension to BASE.

Nice value added.

System Interfaces and Headers, Issue 5: Volume 2 783

setpwent() System Interfaces

NAME
setpwent — user database function

SYNOPSIS
EX #include <pwd.h>

void setpwent(void);

DESCRIPTION
Refer to endpwent().

CHANGE HISTORY
First released in Issue 4, Version 2.

Issue 5
Moved from X/OPEN UNIX extension to BASE.

784 CAE Specification (1997)

System Interfaces setregid()

NAME
setregid — set real and effective group IDs

SYNOPSIS
EX #include <unistd.h>

int setregid(gid_t rgid , gid_t egid);

DESCRIPTION
The setregid() function is used to set the real and effective group IDs of the calling process. If
rgid is −1, the real group ID is not changed; if egid is −1, the effective group ID is not changed.
The real and effective group IDs may be set to different values in the same call.

Only a process with appropriate privileges can set the real group ID and the effective group ID
to any valid value.

A non-privileged process can set either the real group ID to the saved set-group-ID from exec*(),
or the effective group ID to the saved set-group-ID or the real group ID.

Any supplementary group IDs of the calling process remain unchanged.

RETURN VALUE
Upon successful completion, 0 is returned. Otherwise, −1 is returned and errno is set to indicate
the error and neither of the group IDs will be changed.

ERRORS
The setregid() function will fail if:

[EINVAL] The value of the rgid or egid argument is invalid or out-of-range.

[EPERM] The process does not have appropriate privileges and a change other than
changing the real group ID to the saved set-group-ID, or changing the
effective group ID to the real group ID or the saved group ID, was requested.

EXAMPLES
None.

APPLICATION USAGE
If a set-group-ID process sets its effective group ID to its real group ID, it can still set its effective
group ID back to the saved set-group-ID.

FUTURE DIRECTIONS
None.

SEE ALSO
exec, getuid(), setreuid(), setuid(), <unistd.h>.

CHANGE HISTORY
First released in Issue 4, Version 2.

Issue 5
Moved from X/OPEN UNIX extension to BASE.

The DESCRIPTION is updated to indicate that the saved set-group-ID can be set by any of the
exec*() functions, not just execev().

System Interfaces and Headers, Issue 5: Volume 2 785

setreuid() System Interfaces

NAME
setreuid — set real and effective user IDs

SYNOPSIS
EX #include <unistd.h>

int setreuid(uid_t ruid , uid_t euid);

DESCRIPTION
The setreuid() function sets the real and effective user IDs of the current process to the values
specified by the ruid and euid arguments. If ruid or euid is −1, the corresponding effective or real
user ID of the current process is left unchanged.

A process with appropriate privileges can set either ID to any value. An unprivileged process
can only set the effective user ID if the euid argument is equal to either the real, effective, or
saved user ID of the process.

It is unspecified whether a process without appropriate privileges is permitted to change the real
user ID to match the current real, effective or saved user ID of the process.

RETURN VALUE
Upon successful completion, 0 is returned. Otherwise, −1 is returned and errno is set to indicate
the error.

ERRORS
The setreuid() function will fail if:

[EINVAL] The value of the ruid or euid argument is invalid or out-of-range.

[EPERM] The current process does not have appropriate privileges, and either an
attempt was made to change the effective user ID to a value other than the
real user ID or the saved set-user-ID or an an attempt was made to change the
real user ID to a value not permitted by the implementation.

EXAMPLES
None.

APPLICATION USAGE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
getuid(), setuid(), <unistd.h>.

CHANGE HISTORY
First released in Issue 4, Version 2.

Issue 5
Moved from X/OPEN UNIX extension to BASE.

786 CAE Specification (1997)

System Interfaces setrlimit()

NAME
setrlimit — control maximum resource consumption

SYNOPSIS
EX #include <sys/resource.h>

int setrlimit(int resource , const struct rlimit * rlp);

DESCRIPTION
Refer to getrlimit().

CHANGE HISTORY
First released in Issue 4, Version 2.

Issue 5
Moved from X/OPEN UNIX extension to BASE.

System Interfaces and Headers, Issue 5: Volume 2 787

setsid() System Interfaces

NAME
setsid — create session and set process group ID

SYNOPSIS
OH #include <sys/types.h>

#include <unistd.h>

pid_t setsid(void);

DESCRIPTION
The setsid() function creates a new session, if the calling process is not a process group leader.
Upon return the calling process will be the session leader of this new session, will be the process
group leader of a new process group, and will have no controlling terminal. The process group
ID of the calling process will be set equal to the process ID of the calling process. The calling
process will be the only process in the new process group and the only process in the new
session.

RETURN VALUE
Upon successful completion, setsid() returns the value of the process group ID of the calling
process. Otherwise it returns (pid_t)−1 and sets errno to indicate the error.

ERRORS
The setsid() function will fail if:

[EPERM] The calling process is already a process group leader, or the process group ID
of a process other than the calling process matches the process ID of the
calling process.

EXAMPLES
None.

APPLICATION USAGE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
getsid(), setpgid(), setpgrp(), <sys/types.h>, <unistd.h>.

CHANGE HISTORY
First released in Issue 3.

Entry included for alignment with the POSIX.1-1988 standard.

Issue 4
The following changes are incorporated in this issue:

• The <sys/types.h> header is now marked as optional (OH); this header need not be included
on XSI-conformant systems.

• The header <unistd.h> is added to the SYNOPSIS section.

• The argument list is explicitly defined as void.

788 CAE Specification (1997)

System Interfaces setstate()

NAME
setstate — switch pseudorandom number generator state arrays

SYNOPSIS
EX #include <stdlib.h>

char *setstate(const char * state);

DESCRIPTION
Refer to initstate().

CHANGE HISTORY
First released in Issue 4, Version 2.

Issue 5
Moved from X/OPEN UNIX extension to BASE.

System Interfaces and Headers, Issue 5: Volume 2 789

setuid() System Interfaces

NAME
setuid — set-user-ID

SYNOPSIS
OH #include <sys/types.h>

#include <unistd.h>

int setuid(uid_t uid);

DESCRIPTION
FIPS If the process has appropriate privileges, setuid() sets the real user ID, effective user ID, and the

saved set-user-IDto uid .

FIPS If the process does not have appropriate privileges, but uid is equal to the real user ID or the
FIPS saved set-user-ID, setuid() sets the effective user ID to uid ; the real user IDand saved set-user-ID

remain unchanged.

RETURN VALUE
Upon successful completion, 0 is returned. Otherwise, −1 is returned and errno is set to indicate
the error.

ERRORS
The setuid() function will fail and return −1 and set errno to the corresponding value if one or
more of the following are true:

[EINVAL] The value of the uid argument is invalid and not supported by the
implementation.

[EPERM] The process does not have appropriate privileges and uid does not match the
FIPS real user ID or the saved set-user-ID.

EXAMPLES
None.

APPLICATION USAGE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
exec, geteuid(), getuid(), setgid(), <sys/types.h>, <unistd.h>.

CHANGE HISTORY
First released in Issue 1.

Derived from Issue 1 of the SVID.

Issue 4
The following change is incorporated for alignment with the FIPS requirements:

• All references to the saved set-user-ID are marked as extensions. This is because Issue 4
defines this mechanism as mandatory, whereas the ISO POSIX-1 standard defines that it is
only supported if {POSIX_SAVED_IDS} is set.

Other changes are incorporated as follows:

• The <sys/types.h> header is now marked as optional (OH); this header need not be included
on XSI-conformant systems.

• The header <unistd.h> is added to the SYNOPSIS section.

790 CAE Specification (1997)

System Interfaces setutxent()

NAME
setutxent — reset user accounting database to first entry

SYNOPSIS
EX #include <utmpx.h>

void setutxent(void);

DESCRIPTION
Refer to endutxent().

CHANGE HISTORY
First released in Issue 4, Version 2.

Issue 5
Moved from X/OPEN UNIX extension to BASE.

System Interfaces and Headers, Issue 5: Volume 2 791

setvbuf() System Interfaces

NAME
setvbuf — assign buffering to a stream

SYNOPSIS
#include <stdio.h>

int setvbuf(FILE * stream , char * buf , int type , size_t size);

DESCRIPTION
The setvbuf() function may be used after the stream pointed to by stream is associated with an
open file but before any other operation is performed on the stream. The argument type
determines how stream will be buffered, as follows: _IOFBF causes input/output to be fully
buffered; _IOLBF causes input/output to be line buffered; _IONBF causes input/output to be
unbuffered. If buf is not a null pointer, the array it points to may be used instead of a buffer
allocated by setvbuf(). The argument size specifies the size of the array. The contents of the
array at any time are indeterminate.

For information about streams, see Section 2.4 on page 30.

RETURN VALUE
Upon successful completion, setvbuf() returns 0. Otherwise, it returns a non-zero value if an
invalid value is given for type or if the request cannot be honoured.

ERRORS
The setvbuf() function may fail if:

EX [EBADF] The file descriptor underlying stream is not valid.

EXAMPLES
None.

APPLICATION USAGE
A common source of error is allocating buffer space as an ‘‘automatic’’ variable in a code block,
and then failing to close the stream in the same block.

With setvbuf(), allocating a buffer of size bytes does not necessarily imply that all of size bytes are
used for the buffer area.

Applications should note that many implementations only provide line buffering on input from
terminal devices.

FUTURE DIRECTIONS
None.

SEE ALSO
fopen(), setbuf(), <stdio.h>.

CHANGE HISTORY
First released in Issue 1.

Derived from Issue 1 of the SVID.

Issue 4
The following change is incorporated for alignment with the ISO C standard:

• This function is no longer marked as an extension.

Other changes are incorporated as follows:

• The second paragraph of the DESCRIPTION is now in Section 2.4 on page 30.

792 CAE Specification (1997)

System Interfaces setvbuf()

• The [EBADF] error is marked as an extension.

• The APPLICATION USAGE section is expanded.

System Interfaces and Headers, Issue 5: Volume 2 793

shm_open() System Interfaces

NAME
shm_open — open a shared memory object (REALTIME)

SYNOPSIS
RT #include <sys/mman.h>

int shm_open(const char * name, int oflag , mode_t mode);

DESCRIPTION
The shm_open() function establishes a connection between a shared memory object and a file
descriptor. It creates an open file description that refers to the shared memory object and a file
descriptor that refers to that open file description. The file descriptor is used by other functions
to refer to that shared memory object. The name argument points to a string naming a shared
memory object. It is unspecified whether the name appears in the file system and is visible to
other functions that take pathnames as arguments. The name argument conforms to the
construction rules for a pathname. If name begins with the slash character, then processes calling
shm_open() with the same value of name refer to the same shared memory object, as long as that
name has not been removed. If name does not begin with the slash character, the effect is
implementation-dependent. The interpretation of slash characters other than the leading slash
character in name is implementation-dependent.

If successful, shm_open() returns a file descriptor for the shared memory object that is the lowest
numbered file descriptor not currently open for that process. The open file description is new,
and therefore the file descriptor does not share it with any other processes. It is unspecified
whether the file offset is set. The FD_CLOEXEC file descriptor flag associated with the new file
descriptor is set.

The file status flags and file access modes of the open file description are according to the value
of oflag . The oflag argument is the bitwise inclusive OR of the following flags defined in the
header <fcntl.h>. Applications specify exactly one of the first two values (access modes) below
in the value of oflag :

O_RDONLY Open for read access only.

O_RDWR Open for read or write access.

Any combination of the remaining flags may be specified in the value of oflag :

O_CREAT If the shared memory object exists, this flag has no effect, except as noted
under O_EXCL below. Otherwise the shared memory object is created; the
user ID of the shared memory object will be set to the effective user ID of the
process; the group ID of the shared memory object will be set to a system
default group ID or to the effective group ID of the process. The permission
bits of the shared memory object will be set to the value of the mode argument
except those set in the file mode creation mask of the process. When bits in
mode other than the file permission bits are set, the effect is unspecified. The
mode argument does not affect whether the shared memory object is opened
for reading, for writing, or for both. The shared memory object has a size of
zero.

O_EXCL If O_EXCL and O_CREAT are set, shm_open() fails if the shared memory
object exists. The check for the existence of the shared memory object and the
creation of the object if it does not exist is atomic with respect to other
processes executing shm_open() naming the same shared memory object with
O_EXCL and O_CREAT set. If O_EXCL is set and O_CREAT is not set, the
result is undefined.

794 CAE Specification (1997)

System Interfaces shm_open()

O_TRUNC If the shared memory object exists, and it is successfully opened O_RDWR,
the object will be truncated to zero length and the mode and owner will be
unchanged by this function call. The result of using O_TRUNC with
O_RDONLY is undefined.

When a shared memory object is created, the state of the shared memory object, including all
data associated with the shared memory object, persists until the shared memory object is
unlinked and all other references are gone. It is unspecified whether the name and shared
memory object state remain valid after a system reboot.

RETURN VALUE
Upon successful completion, the shm_open() function returns a non-negative integer
representing the lowest numbered unused file descriptor. Otherwise, it returns −1 and sets errno
to indicate the error.

ERRORS
The shm_open() function will fail if:

[EACCES] The shared memory object exists and the permissions specified by oflag are
denied, or the shared memory object does not exist and permission to create
the shared memory object is denied, or O_TRUNC is specified and write
permission is denied.

[EEXIST] O_CREAT and O_EXCL are set and the named shared memory object already
exists.

[EINTR] The shm_open() operation was interrupted by a signal.

[EINVAL] The shm_open() operation is not supported for the given name.

[EMFILE] Too many file descriptors are currently in use by this process.

[ENAMETOOLONG]
The length of the name string exceeds {PATH_MAX}, or a pathname
component is longer than {NAME_MAX} while _POSIX_NO_TRUNC is in
effect.

[ENFILE] Too many shared memory objects are currently open in the system.

[ENOENT] O_CREAT is not set and the named shared memory object does not exist.

[ENOSPC] There is insufficient space for the creation of the new shared memory object.

[ENOSYS] The function shm_open() is not supported by this implementation.

EXAMPLES
None.

APPLICATION USAGE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
close(), dup(), exec, fcntl(), mmap(), shmat(), shmctl(), shmdt(), shm_unlink(), umask(), <fcntl.h>,
<sys/mman.h>.

System Interfaces and Headers, Issue 5: Volume 2 795

shm_open() System Interfaces

CHANGE HISTORY
First released in Issue 5.

Included for alignment with the POSIX Realtime Extension.

796 CAE Specification (1997)

System Interfaces shm_unlink()

NAME
shm_unlink — remove a shared memory object (REALTIME)

SYNOPSIS
RT #include <sys/mman.h>

int shm_unlink(const char * name);

DESCRIPTION
The shm_unlink() function removes the name of the shared memory object named by the string
pointed to by name. If one or more references to the shared memory object exist when the object
is unlinked, the name is removed before shm_unlink() returns, but the removal of the memory
object contents is postponed until all open and map references to the shared memory object have
been removed.

RETURN VALUE
Upon successful completion, a value of zero is returned. Otherwise, a value of −1 is returned
and errno will be set to indicate the error. If −1 is returned, the named shared memory object will
not be changed by this function call.

ERRORS
The shm_unlink() function will fail if:

[EACCES] Permission is denied to unlink the named shared memory object.

[ENAMETOOLONG]
The length of the name string exceeds {NAME_MAX} while
_POSIX_NO_TRUNC is in effect.

[ENOENT] The named shared memory object does not exist.

[ENOSYS] The function shm_unlink() is not supported by this implementation.

EXAMPLES
None.

APPLICATION USAGE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
close(), mmap(), munmap(), shmat(), shmctl(), shmdt(), shm_open(), <sys/mman.h>.

CHANGE HISTORY
First released in Issue 5.

Included for alignment with the POSIX Realtime Extension.

System Interfaces and Headers, Issue 5: Volume 2 797

shmat() System Interfaces

NAME
shmat — shared memory attach operation

SYNOPSIS
EX #include <sys/shm.h>

void *shmat(int shmid , const void * shmaddr , int shmflg);

DESCRIPTION
The shmat() function attaches the shared memory segment associated with the shared memory
identifier specified by shmid to the address space of the calling process. The segment is attached
at the address specified by one of the following criteria:

• If shmaddr is a null pointer, the segment is attached at the first available address as selected
by the system.

• If shmaddr is not a null pointer and (shmflg & SHM_RND) is non-zero, the segment is attached
at the address given by (shmaddr − ((ptrdiff_t)shmaddr % SHMLBA)) The character % is the C-
language remainder operator.

• If shmaddr is not a null pointer and (shmflg & SHM_RND) is 0, the segment is attached at the
address given by shmaddr .

• The segment is attached for reading if (shmflg & SHM_RDONLY) is non-zero and the calling
process has read permission; otherwise, if it is 0 and the calling process has read and write
permission, the segment is attached for reading and writing.

RETURN VALUE
Upon successful completion, shmat() increments the value of shm_nattch in the data structure
associated with the shared memory ID of the attached shared memory segment and returns the
segment’s start address.

Otherwise, the shared memory segment is not attached, shmat() returns −1 and errno is set to
indicate the error.

ERRORS
The shmat() function will fail if:

[EACCES] Operation permission is denied to the calling process, see Section 2.6 on page
36.

[EINVAL] The value of shmid is not a valid shared memory identifier; the shmaddr is not a
null pointer and the value of (shmaddr − ((ptrdiff_t)shmaddr % SHMLBA)) is an
illegal address for attaching shared memory; or the shmaddr is not a null
pointer, (shmflg & SHM_RND) is 0 and the value of shmaddr is an illegal
address for attaching shared memory.

[EMFILE] The number of shared memory segments attached to the calling process
would exceed the system-imposed limit.

[ENOMEM] The available data space is not large enough to accommodate the shared
memory segment.

EXAMPLES
None.

APPLICATION USAGE
The POSIX Realtime Extension defines alternative interfaces for interprocess communication.
Application developers who need to use IPC should design their applications so that modules

798 CAE Specification (1997)

System Interfaces shmat()

using the IPC routines described in Section 2.6 on page 36 can be easily modified to use the
alternative interfaces.

FUTURE DIRECTIONS
None.

SEE ALSO
exec, exit(), fork (), shmctl(), shmdt(), shmget(), shm_open(), shm_unlink(), <sys/shm.h>, Section
2.6 on page 36.

CHANGE HISTORY
First released in Issue 2.

Derived from Issue 2 of the SVID.

Issue 4
The following changes are incorporated in this issue:

• The interface is no longer marked as OPTIONAL FUNCTIONALITY.

• Inclusion of the <sys/types.h> and <sys/ipc.h> headers is removed from the SYNOPSIS
section.

• The type of argument shmaddr is changed from char * to const void*.

• The [ENOSYS] error is removed from the ERRORS section.

• The DESCRIPTION is clarified in several places.

• A FUTURE DIRECTIONS section is added warning application developers about migration
to IEEE 1003.4 interfaces for interprocess communication.

Issue 5
Moved from SHARED MEMORY to BASE.

The note about use of POSIX Realtime Extension IPC routines has been moved from FUTURE
DIRECTIONS to a new APPLICATION USAGE section.

System Interfaces and Headers, Issue 5: Volume 2 799

shmctl() System Interfaces

NAME
shmctl — shared memory control operations

SYNOPSIS
EX #include <sys/shm.h>

int shmctl(int shmid , int cmd, struct shmid_ds * buf);

DESCRIPTION
The shmctl() function provides a variety of shared memory control operations as specified by
cmd. The following values for cmd are available:

IPC_STAT Place the current value of each member of the shmid_ds data structure
associated with shmid into the structure pointed to by buf. The contents of the
structure are defined in <sys/shm.h>.

IPC_SET Set the value of the following members of the shmid_ds data structure
associated with shmid to the corresponding value found in the structure
pointed to by buf:

shm_perm.uid
shm_perm.gid
shm_perm.mode low-order nine bits

IPC_SET can only be executed by a process that has an effective user ID equal
to either that of a process with appropriate privileges or to the value of
shm_perm.cuid or shm_perm.uid in the shmid_ds data structure associated
with shmid.

IPC_RMID Remove the shared memory identifier specified by shmid from the system and
destroy the shared memory segment and shmid_ds data structure associated
with it. IPC_RMID can only be executed by a process that has an effective
user ID equal to either that of a process with appropriate privileges or to the
value of shm_perm.cuid or shm_perm.uid in the shmid_ds data structure
associated with shmid.

RETURN VALUE
Upon successful completion, shmctl() returns 0. Otherwise, it returns −1 and errno will be set to
indicate the error.

ERRORS
The shmctl() function will fail if:

[EACCES] The argument cmd is equal to IPC_STAT and the calling process does not have
read permission, see Section 2.6 on page 36.

[EINVAL] The value of shmid is not a valid shared memory identifier, or the value of cmd
is not a valid command.

[EPERM] The argument cmd is equal to IPC_RMID or IPC_SET and the effective user ID
of the calling process is not equal to that of a process with appropriate
privileges and it is not equal to the value of shm_perm.cuid or shm_perm.uid
in the data structure associated with shmid.

The shmctl() function may fail if:

EX [EOVERFLOW] The cmd argument is IPC_STAT and the gid or uid value is too large to be
stored in the structure pointed to by the buf argument.

800 CAE Specification (1997)

System Interfaces shmctl()

EXAMPLES
None.

APPLICATION USAGE
The POSIX Realtime Extension defines alternative interfaces for interprocess communication.
Application developers who need to use IPC should design their applications so that modules
using the IPC routines described in Section 2.6 on page 36 can be easily modified to use the
alternative interfaces.

FUTURE DIRECTIONS
None.

SEE ALSO
shmat(), shmdt(), shmget(), shm_open(), shm_unlink(), <sys/shm.h>, Section 2.6 on page 36.

CHANGE HISTORY
First released in Issue 2.

Derived from Issue 2 of the SVID.

Issue 4
The following changes are incorporated in this issue:

• The interface is no longer marked as OPTIONAL FUNCTIONALITY.

• Inclusion of the <sys/types.h> and <sys/ipc.h> headers is removed from the SYNOPSIS
section.

• The [ENOSYS] error is removed from the ERRORS section.

• A FUTURE DIRECTIONS section is added warning application developers about migration
to IEEE 1003.4 interfaces for interprocess communication.

Issue 4, Version 2
The ERRORS section is updated for X/OPEN UNIX conformance to include [EOVERFLOW] as
an optional error.

Issue 5
Moved from SHARED MEMORY to BASE.

The note about use of POSIX Realtime Extension IPC routines has been moved from FUTURE
DIRECTIONS to a new APPLICATION USAGE section.

System Interfaces and Headers, Issue 5: Volume 2 801

shmdt() System Interfaces

NAME
shmdt — shared memory detach operation

SYNOPSIS
EX #include <sys/shm.h>

int shmdt(const void * shmaddr);

DESCRIPTION
The shmdt() function detaches the shared memory segment located at the address specified by
shmaddr . from the address space of the calling process.

RETURN VALUE
Upon successful completion, shmdt() will decrement the value of shm_nattch in the data
structure associated with the shared memory ID of the attached shared memory segment and
return 0.

Otherwise, the shared memory segment will not be detached, shmdt() will return −1 and errno
will be set to indicate the error.

ERRORS
The shmdt() function will fail if:

[EINVAL] The value of shmaddr is not the data segment start address of a shared
memory segment.

EXAMPLES
None.

APPLICATION USAGE
The POSIX Realtime Extension defines alternative interfaces for interprocess communication.
Application developers who need to use IPC should design their applications so that modules
using the IPC routines described in Section 2.6 on page 36 can be easily modified to use the
alternative interfaces.

FUTURE DIRECTIONS
None.

SEE ALSO
exec, exit(), fork (), shmat(), shmctl(), shmget(), shm_open(), shm_unlink(), <sys/shm.h>, Section
2.6 on page 36.

CHANGE HISTORY
First released in Issue 2.

Derived from Issue 2 of the SVID.

Issue 4
The following changes are incorporated in this issue:

• The interface is no longer marked as OPTIONAL FUNCTIONALITY.

• Inclusion of the <sys/types.h> and <sys/ipc.h> headers is removed from the SYNOPSIS
section.

802 CAE Specification (1997)

System Interfaces shmdt()

• The type of argument shmaddr is changed from char * to const void*.

• The DESCRIPTION is clarified in several places.

• The [ENOSYS] error is removed from the ERRORS section.

• A FUTURE DIRECTIONS section is added warning application developers about migration
to IEEE 1003.4 interfaces for interprocess communication.

Issue 5
Moved from SHARED MEMORY to BASE.

The note about use of POSIX Realtime Extension IPC routines has been moved from FUTURE
DIRECTIONS to a new APPLICATION USAGE section.

System Interfaces and Headers, Issue 5: Volume 2 803

shmget() System Interfaces

NAME
shmget — get shared memory segment

SYNOPSIS
EX #include <sys/shm.h>

int shmget(key_t key , size_t size , int shmflg);

DESCRIPTION
The shmget() function returns the shared memory identifier associated with key .

A shared memory identifier, associated data structure and shared memory segment of at least
size bytes, see <sys/shm.h>, are created for key if one of the following is true:

• The argument key is equal to IPC_PRIVATE.

• The argument key does not already have a shared memory identifier associated with it and
(shmflg & IPC_CREAT) is non-zero.

Upon creation, the data structure associated with the new shared memory identifier is initialised
as follows:

• The values of shm_perm.cuid, shm_perm.uid, shm_perm.cgid and shm_perm.gid are set equal to
the effective user ID and effective group ID, respectively, of the calling process.

• The low-order nine bits of shm_perm.mode are set equal to the low-order nine bits of shmflg .
The value of shm_segsz is set equal to the value of size .

• The values of shm_lpid , shm_nattch , shm_atime and shm_dtime are set equal to 0.

• The value of shm_ctime is set equal to the current time.

When the shared memory segment is created, it will be initialised with all zero values.

RETURN VALUE
Upon successful completion, shmget() returns a non-negative integer, namely a shared memory
identifier; otherwise, it returns −1 and errno will be set to indicate the error.

ERRORS
The shmget() function will fail if:

[EACCES] A shared memory identifier exists for key but operation permission as
specified by the low-order nine bits of shmflg would not be granted. See
Section 2.6 on page 36.

[EEXIST] A shared memory identifier exists for the argument key but
(shmflg & IPC_CREAT) && (shmflg & IPC_EXCL) is non-zero.

[EINVAL] The value of size is less than the system-imposed minimum or greater than the
system-imposed maximum, or a shared memory identifier exists for the
argument key but the size of the segment associated with it is less than size and
size is not 0.

[ENOENT] A shared memory identifier does not exist for the argument key and
(shmflg & IPC_CREAT) is 0.

[ENOMEM] A shared memory identifier and associated shared memory segment are to be
created but the amount of available physical memory is not sufficient to fill
the request.

804 CAE Specification (1997)

System Interfaces shmget()

[ENOSPC] A shared memory identifier is to be created but the system-imposed limit on
the maximum number of allowed shared memory identifiers system-wide
would be exceeded.

EXAMPLES
None.

APPLICATION USAGE
The POSIX Realtime Extension defines alternative interfaces for interprocess communication.
Application developers who need to use IPC should design their applications so that modules
using the IPC routines described in Section 2.6 on page 36 can be easily modified to use the
alternative interfaces.

FUTURE DIRECTIONS
None.

SEE ALSO
shmat(), shmctl(), shmdt(), shm_open(), shm_unlink(), <sys/shm.h>, Section 2.6 on page 36.

CHANGE HISTORY
First released in Issue 2.

Derived from Issue 2 of the SVID.

Issue 4
The following changes are incorporated in this issue:

• The interface is no longer marked as OPTIONAL FUNCTIONALITY.

• Inclusion of the <sys/types.h> and <sys/ipc.h> headers is removed from the SYNOPSIS
section.

• The [ENOSYS] error is removed from the ERRORS section.

• A FUTURE DIRECTIONS section is added warning application developers about migration
to IEEE 1003.4 interfaces for interprocess communication.

Issue 5
Moved from SHARED MEMORY to BASE.

The note about use of POSIX Realtime Extension IPC routines has been moved from FUTURE
DIRECTIONS to a new APPLICATION USAGE section.

System Interfaces and Headers, Issue 5: Volume 2 805

sigaction() System Interfaces

NAME
sigaction — examine and change signal action

SYNOPSIS
#include <signal.h>

int sigaction(int sig , const struct sigaction * act ,
struct sigaction * oact);

DESCRIPTION
The sigaction () function allows the calling process to examine and/or specify the action to be
associated with a specific signal. The argument sig specifies the signal; acceptable values are
defined in <signal.h>.

The structure sigaction, used to describe an action to be taken, is defined in the header
<signal.h> to include at least the following members:

Member Type Member Name Description
void(*) (int) sa_handler SIG_DFL, SIG_IGN or pointer to a function.

Additional set of signals to be blocked
during execution of signal-catching
function.

sigset_t sa_mask

int sa_flags Special flags to affect behaviour of signal.
void(*) (int,

siginfo_t *, void *) sa_sigaction Signal-catching function.

If the argument act is not a null pointer, it points to a structure specifying the action to be
associated with the specified signal. If the argument oact is not a null pointer, the action
previously associated with the signal is stored in the location pointed to by the argument oact . If
the argument act is a null pointer, signal handling is unchanged; thus, the call can be used to
enquire about the current handling of a given signal. The sa_handler field of the sigaction
structure identifies the action to be associated with the specified signal. If the sa_handler field
specifies a signal-catching function, the sa_mask field identifies a set of signals that will be added
to the process’ signal mask before the signal-catching function is invoked. The SIGKILL and
SIGSTOP signals will not be added to the signal mask using this mechanism; this restriction will
be enforced by the system without causing an error to be indicated.

If the SA_SIGINFO flag (see below) is cleared in the sa_flags field of the sigaction structure, the
sa_handler field identifies the action to be associated with the specified signal. If the
SA_SIGINFO flag is set in the sa_flags field, the sa_sigaction field specifies a signal-catching
function. If the SA_SIGINFO bit is cleared and the sa_handler field specifies a signal-catching
function, or if the SA_SIGINFO bit is set, the sa_mask field identifies a set of signals that will be
added to the signal mask of the thread before the signal-catching function is invoked.

The sa_flags field can be used to modify the behaviour of the specified signal.

The following flags, defined in the header <signal.h>, can be set in sa_flags :

SA_NOCLDSTOP Do not generate SIGCHLD when children stop.

EX SA_ONSTACK If set and an alternate signal stack has been declared with sigaltstack () or
sigstack (), the signal will be delivered to the calling process on that stack.
Otherwise, the signal will be delivered on the current stack.

SA_RESETHAND If set, the disposition of the signal will be reset to SIG_DFL and the
SA_SIGINFO flag will be cleared on entry to the signal handler.

806 CAE Specification (1997)

System Interfaces sigaction()

Note: SIGILL and SIGTRAP cannot be automatically reset when
delivered; the system silently enforces this restriction.

Otherwise, the disposition of the signal will not be modified on entry to
the signal handler.

In addition, if this flag is set, sigaction () behaves as if the SA_NODEFER
flag were also set.

SA_RESTART This flag affects the behaviour of interruptible functions; that is, those
specified to fail with errno set to [EINTR]. If set, and a function specified
as interruptible is interrupted by this signal, the function will restart and
will not fail with [EINTR] unless otherwise specified. If the flag is not set,
interruptible functions interrupted by this signal will fail with errno set to
[EINTR].

SA_SIGINFO If cleared and the signal is caught, the signal-catching function will be
entered as:

void func(int signo);

where signo is the only argument to the signal catching function. In this
case the sa_handler member must be used to describe the signal catching
function and the application must not modify the sa_sigaction member.

If SA_SIGINFO is set and the signal is caught, the signal-catching
function will be entered as:

void func(int signo , siginfo_t * info , void * context);

where two additional arguments are passed to the signal catching
function. The second argument will point to an object of type siginfo_t
explaining the reason why the signal was generated; the third argument
can be cast to a pointer to an object of type ucontext_t to refer to the
receiving process’ context that was interrupted when the signal was
delivered. In this case the sa_sigaction member must be used to describe
the signal catching function and the application must not modify the
sa_handler member.

The si_signo member contains the system-generated signal number.

The si_errno member may contain implementation-dependent additional
error information; if non-zero, it contains an error number identifying the
condition that caused the signal to be generated.

The si_code member contains a code identifying the cause of the signal.
If the value of si_code is less than or equal to 0, then the signal was
generated by a process and si_pid and si_uid respectively indicate the
process ID and the real user ID of the sender. The <signal.h> header
description contains information about the signal specific contents of the
elements of the siginfo_t type.

SA_NOCLDWAIT If set, and sig equals SIGCHLD, child processes of the calling processes
will not be transformed into zombie processes when they terminate. If
the calling process subsequently waits for its children, and the process
has no unwaited for children that were transformed into zombie
processes, it will block until all of its children terminate, and wait(),
wait3(), waitid () and waitpid () will fail and set errno to [ECHILD].
Otherwise, terminating child processes will be transformed into zombie

System Interfaces and Headers, Issue 5: Volume 2 807

sigaction() System Interfaces

processes, unless SIGCHLD is set to SIG_IGN.

EX SA_NODEFER If set and sig is caught, sig will not be added to the process’ signal mask
on entry to the signal handler unless it is included in sa_mask.
Otherwise, sig will always be added to the process’ signal mask on entry
to the signal handler.

If sig is SIGCHLD and the SA_NOCLDSTOP flag is not set in sa_flags , and the implementation
supports the SIGCHLD signal, then a SIGCHLD signal will be generated for the calling process
whenever any of its child processes stop. If sig is SIGCHLD and the SA_NOCLDSTOP flag is set
in sa_flags , then the implementation will not generate a SIGCHLD signal in this way.

When a signal is caught by a signal-catching function installed by sigaction (), a new signal mask
is calculated and installed for the duration of the signal-catching function (or until a call to either
sigprocmask () or sigsuspend() is made). This mask is formed by taking the union of the current

EX signal mask and the value of the sa_mask for the signal being delivered unless SA_NODEFER or
SA_RESETHAND is set, and then including the signal being delivered. If and when the user’s
signal handler returns normally, the original signal mask is restored.

Once an action is installed for a specific signal, it remains installed until another action is
EX explicitly requested (by another call to sigaction ()), until the SA_RESETHAND flag causes

resetting of the handler,or until one of the exec functions is called.

If the previous action for sig had been established by signal(), the values of the fields returned in
the structure pointed to by oact are unspecified, and in particular oact->sa_handler is not
necessarily the same value passed to signal(). However, if a pointer to the same structure or a
copy thereof is passed to a subsequent call to sigaction () via the act argument, handling of the
signal will be as if the original call to signal() were repeated.

If sigaction () fails, no new signal handler is installed.

It is unspecified whether an attempt to set the action for a signal that cannot be caught or
ignored to SIG_DFL is ignored or causes an error to be returned with errno set to [EINVAL].

If SA_SIGINFO is not set in sa_flags , then the disposition of subsequent occurrences of sig when
it is already pending is implementation-dependent; the signal-catching function will be invoked

RT with a single argument. If the implementation supports the Realtime Signals Extension option,
and if SA_SIGINFO is set in sa_flags, then subsequent occurrences of sig generated by sigqueue()
or as a result of any signal-generating function that supports the specification of an application-
defined value (when sig is already pending) will be queued in FIFO order until delivered or
accepted; the signal-catching function will be invoked with three arguments. The application
specified value is passed to the signal-catching function as the si_value member of the siginfo_t
structure.

Signal Generation and Delivery

A signal is said to be generated for (or sent to) a process or thread when the event that causes the
signal first occurs. Examples of such events include detection of hardware faults, timer

RT expiration, signals generated via the sigevent structure and terminal activity, as well as
RT invocations of kill () and sigqueue() functions. In some circumstances, the same event generates

signals for multiple processes.

At the time of generation, a determination is made whether the signal has been generated for the
process or for a specific thread within the process. Signals which are generated by some action
attributable to a particular thread, such as a hardware fault, are generated for the thread that
caused the signal to be generated. Signals that are generated in association with a process ID or
process group ID or an asynchronous event such as terminal activity are generated for the

808 CAE Specification (1997)

System Interfaces sigaction()

process.

Each process has an action to be taken in response to each signal defined by the system (see
Signal Actions on page 811). A signal is said to be delivered to a process when the appropriate
action for the process and signal is taken. A signal is said to be accepted by a process when the
signal is selected and returned by one of the sigwait () functions.

During the time between the generation of a signal and its delivery or acceptance, the signal is
said to be pending . Ordinarily, this interval cannot be detected by an application. However, a
signal can be blocked from delivery to a thread If the action associated with a blocked signal is
anything other than to ignore the signal, and if that signal is generated for the thread the signal
will remain pending until it is unblocked, it is accepted when it is selected and returned by a call
to the sigwait () function, or the action associated with it is set to ignore the signal. Signals
generated for the process will be delivered to exactly one of those threads within the process
which is in a call to a sigwait () function selecting that signal or has not blocked delivery of the
signal. If there are no threads in a call to a sigwait () function selecting that signal, and if all
threads within the process block delivery of the signal, the signal will remain pending on the
process until a thread calls a sigwait () function selecting that signal, a thread unblocks delivery
of the signal, or the action associated with the signal is set to ignore the signal. If the action
associated with a blocked signal is to ignore the signal and if that signal is generated for the
process, it is unspecified whether the signal is discarded immediately upon generation or
remains pending.

Each thread has a signal mask that defines the set of signals currently blocked from delivery to it.
The signal mask for a thread is initialised from that of its parent or creating thread, or from the
corresponding thread in the parent process if the thread was created as the result of a call to
fork (). The sigaction (), sigprocmask () and sigsuspend() functions control the manipulation of the
signal mask.

The determination of which action is taken in response to a signal is made at the time the signal
is delivered, allowing for any changes since the time of generation. This determination is
independent of the means by which the signal was originally generated. If a subsequent
occurrence of a pending signal is generated, it is implementation-dependent as to whether the

RT signal is delivered or accepted more than once in circumstances other than those in which
queueing is required under the Realtime Signals Extension option. The order in which multiple,
simultaneously pending signals outside the range SIGRTMIN to SIGRTMAX are delivered to or
accepted by a process is unspecified.

When any stop signal (SIGSTOP, SIGTSTP, SIGTTIN, SIGTTOU) is generated for a process, any
pending SIGCONT signals for that process will be discarded. Conversely, when SIGCONT is
generated for a process, all pending stop signals for that process will be discarded. When
SIGCONT is generated for a process that is stopped, the process will be continued, even if the
SIGCONT signal is blocked or ignored. If SIGCONT is blocked and not ignored, it will remain
pending until it is either unblocked or a stop signal is generated for the process.

An implementation will document any condition not specified by this document under which
the implementation generates signals.

RT Some signal-generating functions, such as high-resolution timer expiration, asynchronous I/O
completion, interprocess message arrival, and the sigqueue() function, support the specification
of an application-defined value, either explicitly as a parameter to the function or in a sigevent
structure parameter. The sigevent structure is defined in <signal.h> and contains at least the
following members:

System Interfaces and Headers, Issue 5: Volume 2 809

sigaction() System Interfaces

Member Type Member Name Description
int sigev_notify Notification type
int sigev_signo Signal number
union sigval sigev_value Signal value
void(*)(unsigned sigval) sigev_notify_function Notification function
(pthread_attr_t*) sigev_notify_attributes Notification attributes

RT The sigev_notify member specifies the notification mechanism to use when an asynchronous
event occurs. This document defines the following values for the sigev_notify member:

SIGEV_NONE No asynchronous notification will be delivered when the event of interest
occurs.

SIGEV_SIGNAL The signal specified in sigev_signo will be generated for the process when
the event of interest occurs. If the implementation supports the Realtime
Signals Extension option and if the SA_SIGINFO flag is set for that signal
number, then the signal will be queued to the process and the value
specified in sigev_value will be the si_value component of the generated
signal. If SA_SIGINFO is not set for that signal number, it is unspecified
whether the signal is queued and what value, if any, is sent.

SIGEV_THREAD A notification function will be called to perform notification.

An implementation may define additional notification mechanisms.

The sigev_signo member specifies the signal to be generated. The sigev_value member is the
application-defined value to be passed to the signal-catching function at the time of the signal
delivery or to be returned at signal acceptance as the si_value member of the siginfo_t structure.

The sigval union is defined in <signal.h> and contains at least the following members:

Member Type Member Name Description
int sival_int Integer signal value
void* sival_ptr Pointer signal value

The sival_int member is used when the application-defined value is of type int; the sival_ptr
member is used when the application-defined value is a pointer.

If the Realtime Signals Extension option is supported:

When a signal is generated by the sigqueue() function or any signal-generating function that
supports the specification of an application-defined value, the signal will be marked pending
and, if the SA_SIGINFO flag is set for that signal, the signal will be queued to the process
along with the application-specified signal value. Multiple occurrences of signals so
generated are queued in FIFO order. It is unspecified whether signals so generated are
queued when the SA_SIGINFO flag is not set for that signal.

Signals generated by the kill () function or other events that cause signals to occur, such as
detection of hardware faults, alarm() timer expiration, or terminal activity, and for which the
implementation does not support queuing, have no effect on signals already queued for the
same signal number.

810 CAE Specification (1997)

System Interfaces sigaction()

When multiple unblocked signals, all in the range SIGRTMIN to SIGRTMAX, are pending,
the behaviour will be as if the implementation delivers the pending unblocked signal with
the lowest signal number within that range. No other ordering of signal delivery is specified.

If, when a pending signal is delivered, there are additional signals queued to that signal
number, the signal remains pending. Otherwise, the pending indication is reset.

Multi-threaded programs can use an alternate event notification mechanism:

When a notification is processed, and the sigev_notify member of the sigevent structure has
the value SIGEV_THREAD, the function sigev_notify_function is called with parameter
sigev_value .

The function will be executed in an environment as if it were the start_routine for a newly
created thread with thread attributes specified by sigev_notify_attributes . If
sigev_notify_attributes is NULL, the behaviour will as if the thread were created with the
detachstate attribute set to PTHREAD_CREATE_DETACHED. Supplying an attributes
structure with a detachstate attribute of PTHREAD_CREATE_JOINABLE results in undefined
behaviour. The signal mask of this thread is implementation-dependent.

Signal Actions

There are three types of action that can be associated with a signal: SIG_DFL, SIG_IGN or a
pointer to a function . Initially, all signals will be set to SIG_DFL or SIG_IGN prior to entry of the
main() routine (see the exec functions). The actions prescribed by these values are as follows:

SIG_DFL — signal-specific default action

• The default actions for the signals defined in this specification are specified under
RT <signal.h>. If the Realtime Signals Extension option is supported, the default actions for

the realtime signals in the range SIGRTMIN to SIGRTMAX are to terminate the process
abnormally.

• If the default action is to stop the process, the execution of that process is temporarily
suspended. When a process stops, a SIGCHLD signal will be generated for its parent
process, unless the parent process has set the SA_NOCLDSTOP flag. While a process is
stopped, any additional signals that are sent to the process will not be delivered until the
process is continued, except SIGKILL which always terminates the receiving process. A
process that is a member of an orphaned process group will not be allowed to stop in
response to the SIGTSTP, SIGTTIN or SIGTTOU signals. In cases where delivery of one
of these signals would stop such a process, the signal will be discarded.

• Setting a signal action to SIG_DFL for a signal that is pending, and whose default action
is to ignore the signal (for example, SIGCHLD), will cause the pending signal to be

RT discarded, whether or not it is blocked. If the Realtime Signals Extension option is
supported, any queued values pending will be discarded and the resources used to
queue them will be released and made available to queue other signals.

SIG_IGN — ignore signal

• Delivery of the signal will have no effect on the process. The behaviour of a process is
RT undefined after it ignores a SIGFPE, SIGILL, SIGSEGV or SIGBUS signal that was not
RT generated by kill (),sigqueue()or raise().

• The system will not allow the action for the signals SIGKILL or SIGSTOP to be set to
SIG_IGN.

System Interfaces and Headers, Issue 5: Volume 2 811

sigaction() System Interfaces

• Setting a signal action to SIG_IGN for a signal that is pending will cause the pending
signal to be discarded, whether or not it is blocked.

• If a process sets the action for the SIGCHLD signal to SIG_IGN, the behaviour is
EX unspecified,except as specified below.

If the action for the SIGCHLD signal is set to SIG_IGN, child processes of the calling
processes will not be transformed into zombie processes when they terminate. If the
calling process subsequently waits for its children, and the process has no unwaited for
children that were transformed into zombie processes, it will block until all of its
children terminate, and wait(), wait3(), waitid () and waitpid () will fail and set errno to
[ECHILD].

RT If the Realtime Signals Extension option is supported, any queued values pending will
be discarded and the resources used to queue them will be released and made available
to queue other signals.

pointer to a function — catch signal

• On delivery of the signal, the receiving process is to execute the signal-catching function
at the specified address. After returning from the signal-catching function, the receiving
process will resume execution at the point at which it was interrupted.

If the SA_SIGINFO flag for the signal is cleared, the signal-catching function will be
entered as a C language function call as follows:

void func (int signo);

If the SA_SIGINFO flag for the signal is set, the signal-catching function will be entered
as a C language function call as follows:

void func (int signo , siginfo_t * info , void * context);

where func is the specified signal-catching function, signo is the signal number of the
signal being delivered, and info is a pointer to a siginfo_t structure defined in <signal.h>
containing at least the following member(s):

Member Type Member Name Description
int si_signo Signal number
int si_code Cause of the signal

RT union sigval si_value Signal value

The si_signo member contains the signal number. This is the same as the signo
parameter. The si_code member contains a code identifying the cause of the signal. The
following values are defined for si_code :

SI_USER The signal was sent by the kill () function. The implementation may
set si_code to SI_USER if the signal was sent by the raise() or abort()
functions or any similar functions provided as implementation
extensions.

RT SI_QUEUE The signal was sent by the sigqueue() function.

SI_TIMER The signal was generated by the expiration of a timer set by
timer_settime().

SI_ASYNCIO The signal was generated by the completion of an asynchronous I/O
request.

812 CAE Specification (1997)

System Interfaces sigaction()

SI_MESGQ The signal was generated by the arrival of a message on an empty
message queue.

If the signal was not generated by one of the functions or events listed above, the si_code
will be set to an implementation-dependent value that is not equal to any of the values
defined above.

RT If the Realtime Signals Extension is supported, and si_code is one of SI_QUEUE,
SI_TIMER, SI_ASYNCIO, or SI_MESGQ, then si_value contains the application-specified
signal value. Otherwise, the contents of si_value are undefined.

• The behaviour of a process is undefined after it returns normally from a signal-catching
EX function for a SIGBUS, SIGFPE, SIGILL or SIGSEGV signal that was not generated by
RT kill (),sigqueue()or raise().

• The system will not allow a process to catch the signals SIGKILL and SIGSTOP.

• If a process establishes a signal-catching function for the SIGCHLD signal while it has a
terminated child process for which it has not waited, it is unspecified whether a
SIGCHLD signal is generated to indicate that child process.

• When signal-catching functions are invoked asynchronously with process execution, the
behaviour of some of the functions defined by this document is unspecified if they are
called from a signal-catching function.

The following table defines a set of interfaces that are either reentrant or not
interruptible by signals and are async-signal safe. Therefore applications may invoke
them, without restriction, from signal-catching functions:

Base Interfaces

_exit()
access()
alarm()
cfgetispeed()
cfgetospeed()
cfsetispeed()
cfsetospeed()
chdir()
chmod()
chown()
close()
creat()
dup()
dup2()
execle()
execve()
fcntl()
fork ()
fpathconf ()

fstat()
fsync()
getegid()
geteuid()
getgid()
getgroups()
getpgrp()
getpid()
getppid()
getuid()
kill ()
link ()
lseek()
mkdir()
mkfifo()
open()
pathconf ()
pause()
pipe()

raise()
read()
rename()
rmdir()
setgid()
setpgid()
setsid()
setuid()
sigaction ()
sigaddset()
sigdelset()
sigemptyset()
sigfillset()
sigismember()
signal()
sigpending()
sigprocmask ()
sigsuspend()
sleep()

stat()
sysconf()
tcdrain()
tcflow()
tcflush()
tcgetattr()
tcgetpgrp()
tcsendbreak()
tcsetattr()
tcsetpgrp()
time()
times()
umask()
uname()
unlink()
utime()
wait()
waitpid ()
write()

System Interfaces and Headers, Issue 5: Volume 2 813

sigaction() System Interfaces

Realtime Interfaces

RT aio_error () clock_gettime () sigpause() timer_getoverrun()
aio_return() fdatasync () sigqueue() timer_gettime()
aio_suspend() sem_post() sigset() timer_settime()

All functions not in the above table are considered to be unsafe with respect to signals.
In the presence of signals, all functions defined by this specification will behave as
defined when called from or interrupted by a signal-catching function, with a single
exception: when a signal interrupts an unsafe function and the signal-catching function
calls an unsafe function, the behaviour is undefined.

When a signal is delivered to a thread, if the action of that signal specifies termination, stop, or
continue, the entire process will be terminated, stopped, or continued, respectively.

Signal Effects on Other Functions

Signals affect the behaviour of certain functions defined by this specification if delivered to a
process while it is executing such a function. If the action of the signal is to terminate the
process, the process will be terminated and the function will not return. If the action of the
signal is to stop the process, the process will stop until continued or terminated. Generation of a
SIGCONT signal for the process causes the process to be continued, and the original function
will continue at the point the process was stopped. If the action of the signal is to invoke a
signal-catching function, the signal-catching function will be invoked; in this case the original
function is said to be interrupted by the signal. If the signal-catching function executes a return
statement, the behaviour of the interrupted function will be as described individually for that
function. Signals that are ignored will not affect the behaviour of any function; signals that are
blocked will not affect the behaviour of any function until they are unblocked and then
delivered, except as specified for and the sigwait () functions.

The result of the use of sigaction () and a sigwait () function concurrently within a process on the
same signal is unspecified.

RETURN VALUE
Upon successful completion, sigaction () returns 0. Otherwise −1 is returned, errno is set to
indicate the error and no new signal-catching function will be installed.

ERRORS
The sigaction () function will fail if:

[EINVAL] The sig argument is not a valid signal number or an attempt is made to catch a
signal that cannot be caught or ignore a signal that cannot be ignored.

The sigaction () function may fail if:

[EINVAL] An attempt was made to set the action to SIG_DFL for a signal that cannot be
caught or ignored (or both).

EXAMPLES
None.

APPLICATION USAGE
The sigaction () function supersedes the signal() interface, and should be used in preference. In
particular, sigaction () and signal() should not be used in the same process to control the same
signal. The behaviour of reentrant interfaces, as defined in the description, is as specified by this
specification, regardless of invocation from a signal-catching function. This is the only intended
meaning of the statement that reentrant interfaces may be used in signal-catching functions

814 CAE Specification (1997)

System Interfaces sigaction()

without restrictions. Applications must still consider all effects of such functions on such things
as data structures, files and process state. In particular, application writers need to consider the
restrictions on interactions when interrupting sleep() and interactions among multiple handles
for a file description. The fact that any specific interface is listed as reentrant does not
necessarily mean that invocation of that interface from a signal-catching function is
recommended.

In order to prevent errors arising from interrupting non-reentrant function calls, applications
should protect calls to these functions either by blocking the appropriate signals or through the
use of some programmatic semaphore (see semget(), sem_init(), sem_open(), and so on). Note in
particular that even the ‘‘safe’’ functions may modify errno; the signal-catching function, if not
executing as an independent thread, may want to save and restore its value. Naturally, the same
principles apply to the reentrancy of application routines and asynchronous data access. Note
that longjmp() and siglongjmp () are not in the list of reentrant interfaces. This is because the
code executing after longjmp() and siglongjmp () can call any unsafe functions with the same
danger as calling those unsafe functions directly from the signal handler. Applications that use
longjmp() and siglongjmp () from within signal handlers require rigorous protection in order to be
portable. Many of the other functions that are excluded from the list are traditionally
implemented using either malloc () or free() functions or the standard I/O library, both of which
traditionally use data structures in a non-reentrant manner. Because any combination of
different functions using a common data structure can cause reentrancy problems, this
document does not define the behaviour when any unsafe function is called in a signal handler
that interrupts an unsafe function.

If the signal occurs other than as the result of calling abort(), kill () or raise(), the behaviour is
undefined if the signal handler calls any function in the standard library other than one of the
functions listed in the table above or refers to any object with static storage duration other than
by assigning a value to a static storage duration variable of type volatile sig_atomic_t.
Furthermore, if such a call fails, the value of errno is indeterminate.

Usually, the signal is executed on the stack that was in effect before the signal was delivered. An
alternate stack may be specified to receive a subset of the signals being caught.

When the signal handler returns, the receiving process will resume execution at the point it was
interrupted unless the signal handler makes other arrangements. If longjmp() or _longjmp () is
used to leave the signal handler, then the signal mask must be explicitly restored by the process.

The ISO POSIX-1 standard defines the third argument of a signal handling function when
SA_SIGINFO is set as a void * instead of a ucontext_t *, but without requiring type checking.
New applications should explicitly cast the third argument of the signal handling function to
ucontext_t *.

The BSD optional four argument signal handling function is not supported by this specification.
The BSD declaration would be:

void handler(int sig , int code , struct sigcontext * scp ,
char * addr);

where sig is the signal number, code is additional information on certain signals, scp is a pointer
to the sigcontext structure, and addr is additional address information. Much the same
information is available in the objects pointed to by the second argument of the signal handler
specified when SA_SIGINFO is set.

FUTURE DIRECTIONS
The fpathconf () function is marked as an extension in the list of safe functions because it is not
included in the corresponding list in the ISO POSIX-1 standard, but it is expected to be added in
a future revision of that standard.

System Interfaces and Headers, Issue 5: Volume 2 815

sigaction() System Interfaces

SEE ALSO
bsd_signal(), kill (), _longjmp (), longjmp(), raise(), semget(), sem_init(), sem_open(), sigaddset(),
sigaltstack (), sigdelset(), sigemptyset(), sigfillset(), sigismember(), signal(), sigprocmask (),
sigsuspend(), wait(), wait3(), waitid (), waitpid (), <signal.h>, <ucontext.h>.

CHANGE HISTORY
First released in Issue 3.

Entry included for alignment with the POSIX.1-1988 standard.

Issue 4
The following changes are incorporated for alignment with the ISO POSIX-1 standard:

• The type of argument act is changed from struct sigaction * to const struct sigaction *.

• A statement is added to the DESCRIPTION indicating that the consequence of attempting to
set SIG_DFL for a signal that cannot be caught or ignored is unspecified. The [EINVAL]
error, describing one possible reaction to this condition, is added to the ERRORS section.

Other changes are incorporated as follows:

• The raise() and signal() functions are added to the list of interfaces that are either reentrant or
not interruptible by signals; fpathconf () is also added to this list and marked as an extension;
ustat() is removed from the list, as this function is withdrawn from the interface definition. It
is no longer specified whether abort(), exit() and longjmp() also fall into this category of
functions.

• The APPLICATION USAGE section is added. Most of this text is moved from the
DESCRIPTION in Issue 3.

• The FUTURE DIRECTIONS section is added.

Issue 4, Version 2
The following changes are incorporated for X/OPEN UNIX conformance:

• The DESCRIPTION describes sa_sigaction, the member of the sigaction structure that is the
signal-catching function.

• The DESCRIPTION describes the SA_ONSTACK, SA_RESETHAND, SA_RESTART,
SA_SIGINFO, SA_NOCLDWAIT and SA_NODEFER settings of sa_flags. The text describes
the implications of the use of SA_SIGINFO for the number of arguments passed to the
signal-catching function. The text also describes the effects of the SA_NODEFER and
SA_RESETHAND flags on the delivery of a signal and on the permanence of an installed
action.

• The DESCRIPTION specifies the effect if the action for the SIGCHLD signal is set to
SIG_IGN.

• In the DESCRIPTION, additional text describes the effect if the action is a pointer to a
function. A new bullet covers the case where SA_SIGINFO is set. SIGBUS is given as an
additional signal for which the behaviour of a process is undefined following a normal return
from the signal-catching function.

• The APPLICATION USAGE section is updated to describe use of an alternate signal stack;
resumption of the process receiving the signal; coding for compatibility with POSIX.4-1993;
and implementation of signal-handling functions in BSD.

Issue 5
The DESCRIPTION is updated for alignment with the POSIX Realtime Extension and POSIX
Threads Extension.

816 CAE Specification (1997)

System Interfaces sigaction()

In the DESCRIPTION, the second argument to func when SA_SIGINFO is set is no longer
permitted to be NULL, and the description of permitted siginfo_t contents is expanded by
reference to <signal.h>.

Because the X/OPEN UNIX Extension functionality is now folded into the BASE, the
[ENOTSUP] error is deleted.

System Interfaces and Headers, Issue 5: Volume 2 817

sigaddset() System Interfaces

NAME
sigaddset — add a signal to a signal set

SYNOPSIS
#include <signal.h>

int sigaddset(sigset_t * set , int signo);

DESCRIPTION
The sigaddset() function adds the individual signal specified by the signo to the signal set pointed
to by set.

Applications must call either sigemptyset() or sigfillset() at least once for each object of type
sigset_t prior to any other use of that object. If such an object is not initialised in this way, but is
nonetheless supplied as an argument to any of sigaction (), sigaddset(), sigdelset(), sigismember(),
sigpending() or sigprocmask (), the results are undefined.

RETURN VALUE
Upon successful completion, sigaddset() returns 0. Otherwise, it returns −1 and sets errno to
indicate the error.

ERRORS
The sigaddset() function may fail if:

[EINVAL] The value of the signo argument is an invalid or unsupported signal number.

EXAMPLES
None.

APPLICATION USAGE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
sigaction (), sigdelset(), sigemptyset(), sigfillset(), sigismember(), sigpending(), sigprocmask (),
sigsuspend(), <signal.h>.

CHANGE HISTORY
First released in Issue 3.

Entry included for alignment with the POSIX.1-1988 standard.

Issue 4
The following change is incorporated in this issue:

• The word ‘‘will’’ is replaced by the word ‘‘may’’ in the ERRORS section.

Issue 5
The last paragraph of the DESCRIPTION was included as an APPLICATION USAGE note in
previous issues.

818 CAE Specification (1997)

System Interfaces sigaltstack()

NAME
sigaltstack — set and/or get signal alternate stack context.

SYNOPSIS
EX #include <signal.h>

int sigaltstack(const stack_t * ss , stack_t * oss);

DESCRIPTION
The sigaltstack () function allows a process to define and examine the state of an alternate stack
for signal handlers. Signals that have been explicitly declared to execute on the alternate stack
will be delivered on the alternate stack.

If ss is not a null pointer, it points to a stack_t structure that specifies the alternate signal stack
that will take effect upon return from sigaltstack (). The ss_flags member specifies the new stack
state. If it is set to SS_DISABLE, the stack is disabled and ss_sp and ss_size are ignored.
Otherwise the stack will be enabled, and the ss_sp and ss_size members specify the new
address and size of the stack.

The range of addresses starting at ss_sp, up to but not including ss_sp + ss_size, is available to
the implementation for use as the stack. This interface makes no assumptions regarding which
end is the stack base and in which direction the stack grows as items are pushed.

If oss is not a null pointer, on successful completion it will point to a stack_t structure that
specifies the alternate signal stack that was in effect prior to the call to sigaltstack (). The ss_sp
and ss_size members specify the address and size of that stack. The ss_flags member specifies
the stack’s state, and may contain one of the following values:

SS_ONSTACK The process is currently executing on the alternate signal stack. Attempts to
modify the alternate signal stack while the process is executing on it fails.
This flag must not be modified by processes.

SS_DISABLE The alternate signal stack is currently disabled.

The value SIGSTKSZ is a system default specifying the number of bytes that would be used to
cover the usual case when manually allocating an alternate stack area. The value
MINSIGSTKSZ is defined to be the minimum stack size for a signal handler. In computing an
alternate stack size, a program should add that amount to its stack requirements to allow for the
system implementation overhead. The constants SS_ONSTACK, SS_DISABLE, SIGSTKSZ, and
MINSIGSTKSZ are defined in <signal.h>.

After a successful call to one of the exec functions, there are no alternate signal stacks in the new
process image.

In some implementations, a signal (whether or not indicated to execute on the alternate stack)
will always execute on the alternate stack if it is delivered while another signal is being caught
using the alternate stack.

Use of this function by library threads that are not bound to kernel-scheduled entities results in
undefined behaviour.

RETURN VALUE
Upon successful completion, sigaltstack () returns 0. Otherwise, it returns −1 and sets errno to
indicate the error.

System Interfaces and Headers, Issue 5: Volume 2 819

sigaltstack() System Interfaces

ERRORS
The sigaltstack () function will fail if:

[EINVAL] The ss argument is not a null pointer, and the ss_flags member pointed to by
ss contains flags other than SS_DISABLE.

[ENOMEM] The size of the alternate stack area is less than MINSIGSTKSZ.

[EPERM] An attempt was made to modify an active stack.

EXAMPLES
None.

APPLICATION USAGE
The following code fragment illustrates a method for allocating memory for an alternate stack:

if ((sigstk.ss_sp = malloc(SIGSTKSZ)) == NULL)
/* error return */

sigstk.ss_size = SIGSTKSZ;
sigstk.ss_flags = 0;
if (sigaltstack(&sigstk,(stack_t *)0) < 0)

perror("sigaltstack");

On some implementations, stack space is automatically extended as needed. On those
implementations, automatic extension is typically not available for an alternate stack. If the
stack overflows, the behaviour is undefined.

FUTURE DIRECTIONS
None.

SEE ALSO
sigaction (), sigsetjmp(), <signal.h>.

CHANGE HISTORY
First released in Issue 4, Version 2.

Issue 5
Moved from X/OPEN UNIX extension to BASE.

The last sentence of the DESCRIPTION was included as an APPLICATION USAGE note in
previous issues.

820 CAE Specification (1997)

System Interfaces sigdelset()

NAME
sigdelset — delete a signal from a signal set

SYNOPSIS
#include <signal.h>

int sigdelset(sigset_t * set , int signo);

DESCRIPTION
The sigdelset() function deletes the individual signal specified by signo from the signal set
pointed to by set.

Applications should call either sigemptyset() or sigfillset() at least once for each object of type
sigset_t prior to any other use of that object. If such an object is not initialised in this way, but is
nonetheless supplied as an argument to any of sigaction (), sigaddset(), sigdelset(), sigismember(),
sigpending() or sigprocmask (), the results are undefined.

RETURN VALUE
Upon successful completion, sigdelset() returns 0. Otherwise, it returns −1 and sets errno to
indicate the error.

ERRORS
The sigdelset() function may fail if:

[EINVAL] The signo argument is not a valid signal number, or is an unsupported signal
number.

EXAMPLES
None.

APPLICATION USAGE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
sigaction (), sigaddset(), sigemptyset(), sigfillset(), sigismember(), sigpending(), sigprocmask (),
sigsuspend(), <signal.h>.

CHANGE HISTORY
First released in Issue 3.

Entry included for alignment with the POSIX.1-1988 standard.

Issue 4
The following change is incorporated in this issue:

• The word ‘‘will’’ is replaced by the word ‘‘may’’ in the ERRORS section.

Issue 5
The last paragraph of the DESCRIPTION was included as an APPLICATION USAGE note in
previous issues.

System Interfaces and Headers, Issue 5: Volume 2 821

sigemptyset() System Interfaces

NAME
sigemptyset — initialise and empty a signal set

SYNOPSIS
#include <signal.h>

int sigemptyset(sigset_t * set);

DESCRIPTION
The sigemptyset() function initialises the signal set pointed to by set, such that all signals defined
in this document are excluded.

RETURN VALUE
Upon successful completion, sigemptyset() returns 0. Otherwise, it returns −1 and sets errno to
indicate the error.

ERRORS
No errors are defined.

EXAMPLES
None.

APPLICATION USAGE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
sigaction (), sigaddset(), sigdelset(), sigfillset(), sigismember(), sigpending(), sigprocmask (),
sigsuspend(), <signal.h>.

CHANGE HISTORY
First released in Issue 3.

Entry included for alignment with the POSIX.1-1988 standard.

822 CAE Specification (1997)

System Interfaces sigfillset()

NAME
sigfillset — initialise and fill a signal set

SYNOPSIS
#include <signal.h>

int sigfillset(sigset_t * set);

DESCRIPTION
The sigfillset() function initialises the signal set pointed to by set, such that all signals defined in
this document are included.

RETURN VALUE
Upon successful completion, sigfillset() returns 0. Otherwise, it returns −1 and sets errno to
indicate the error.

ERRORS
No errors are defined.

EXAMPLES
None.

APPLICATION USAGE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
sigaction (), sigaddset(), sigdelset(), sigemptyset(), sigismember(), sigpending(), sigprocmask (),
sigsuspend(), <signal.h>.

CHANGE HISTORY
First released in Issue 3.

Entry included for alignment with the POSIX.1-1988 standard.

System Interfaces and Headers, Issue 5: Volume 2 823

sighold() System Interfaces

NAME
sighold, sigignore — add a signal to the signal mask or set a signal disposition to be ignored

SYNOPSIS
EX #include <signal.h>

int sighold(int sig);
int sigignore(int sig);

DESCRIPTION
Refer to signal().

CHANGE HISTORY
First released in Issue 4, Version 2.

Issue 5
Moved from X/OPEN UNIX extension to BASE.

824 CAE Specification (1997)

System Interfaces siginterrupt()

NAME
siginterrupt — allow signals to interrupt functions

SYNOPSIS
EX #include <signal.h>

int siginterrupt(int sig , int flag);

DESCRIPTION
The siginterrupt() function is used to change the restart behaviour when a function is interrupted
by the specified signal. The function siginterrupt(sig, flag) has an effect as if implemented as:

siginterrupt(int sig, int flag) {
int ret;
struct sigaction act;

(void) sigaction(sig, NULL, &act);
if (flag)

act.sa_flags &= ˜SA_RESTART;
else

act.sa_flags |= SA_RESTART;
ret = sigaction(sig, &act, NULL);
return ret;

}

RETURN VALUE
Upon successful completion, siginterrupt() returns 0. Otherwise −1 is returned and errno is set to
indicate the error.

ERRORS
The siginterrupt() function will fail if:

[EINVAL] The sig argument is not a valid signal number.

EXAMPLES
None.

APPLICATION USAGE
The siginterrupt() function supports programs written to historical system interfaces. A portable
application, when being written or rewritten, should use sigaction () with the SA_RESTART flag
instead of siginterrupt().

FUTURE DIRECTIONS
None.

SEE ALSO
sigaction (), <signal.h>.

CHANGE HISTORY
First released in Issue 4, Version 2.

Issue 5
Moved from X/OPEN UNIX extension to BASE.

System Interfaces and Headers, Issue 5: Volume 2 825

sigismember() System Interfaces

NAME
sigismember — test for a signal in a signal set

SYNOPSIS
#include <signal.h>

int sigismember(const sigset_t * set , int signo);

DESCRIPTION
The sigismember() function tests whether the signal specified by signo is a member of the set
pointed to by set.

Applications should call either sigemptyset() or sigfillset() at least once for each object of type
sigset_t prior to any other use of that object. If such an object is not initialised in this way, but is
nonetheless supplied as an argument to any of sigaction (), sigaddset(), sigdelset(), sigismember(),
sigpending() or sigprocmask (), the results are undefined.

RETURN VALUE
Upon successful completion, sigismember() returns 1 if the specified signal is a member of the
specified set, or 0 if it is not. Otherwise, it returns −1 and sets errno to indicate the error.

ERRORS
The sigismember() function may fail if:

[EINVAL] The signo argument is not a valid signal number, or is an unsupported signal
number.

EXAMPLES
None.

APPLICATION USAGE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
sigaction (), sigaddset(), sigdelset(), sigfillset(), sigemptyset(), sigpending(), sigprocmask (),
sigsuspend(), <signal.h>.

CHANGE HISTORY
First released in Issue 3.

Entry included for alignment with the POSIX.1-1988 standard.

Issue 4
The following changes are incorporated for alignment with the ISO C standard:

• The type of the argument set is changed from sigset_t* to type const sigset_t*.

• The word ‘‘will’’ is replaced by the word ‘‘may’’ in the ERRORS section.

Issue 5
The last paragraph of the DESCRIPTION was included as an APPLICATION USAGE note in
previous issues.

826 CAE Specification (1997)

System Interfaces siglongjmp()

NAME
siglongjmp — non-local goto with signal handling

SYNOPSIS
#include <setjmp.h>

void siglongjmp(sigjmp_buf env , int val);

DESCRIPTION
The siglongjmp () function restores the environment saved by the most recent invocation of
sigsetjmp() in the same thread, with the corresponding sigjmp_buf argument. If there is no such
invocation, or if the function containing the invocation of sigsetjmp() has terminated execution in
the interim, the behaviour is undefined.

All accessible objects have values as of the time sigsetjmp() was called, except that the values of
objects of automatic storage duration which are local to the function containing the invocation of
the corresponding sigsetjmp() which do not have volatile-qualified type and which are changed
between the sigsetjmp() invocation and siglongjmp () call are indeterminate.

As it bypasses the usual function call and return mechanisms, siglongjmp () will execute correctly
in contexts of interrupts, signals and any of their associated functions. However, if siglongjmp ()
is invoked from a nested signal handler (that is, from a function invoked as a result of a signal
raised during the handling of another signal), the behaviour is undefined.

The siglongjmp () function will restore the saved signal mask if and only if the env argument was
initialised by a call to sigsetjmp() with a non-zero savemask argument.

The effect of a call to siglongjmp () where initialisation of the jmp_buf structure was not
performed in the calling thread is undefined.

RETURN VALUE
After siglongjmp () is completed, program execution continues as if the corresponding invocation
of sigsetjmp() had just returned the value specified by val . The siglongjmp () function cannot
cause sigsetjmp() to return 0; if val is 0, sigsetjmp() returns the value 1.

ERRORS
No errors are defined.

EXAMPLES
None.

APPLICATION USAGE
The distinction between setjmp() or longjmp() and sigsetjmp() or siglongjmp () is only significant
for programs which use sigaction (), sigprocmask () or sigsuspend().

FUTURE DIRECTIONS
None.

SEE ALSO
longjmp(), setjmp(), sigprocmask (), sigsetjmp(), sigsuspend(), <setjmp.h>.

CHANGE HISTORY
First released in Issue 3.

Entry included for alignment with the ISO POSIX-1 standard.

Issue 4
The following changes are incorporated in this issue:

• The APPLICATION USAGE section is amended.

System Interfaces and Headers, Issue 5: Volume 2 827

siglongjmp() System Interfaces

• An ERRORS section is added.

Issue 5
The DESCRIPTION is updated for alignment with the POSIX Threads Extension.

828 CAE Specification (1997)

System Interfaces signal()

NAME
signal, sigset, sighold, sigrelse, sigignore, sigpause — signal management

SYNOPSIS
#include <signal.h>

void (*signal(int sig , void (* func)(int)))(int);
EX int sighold(int sig);

int sigignore(int sig);
int sigpause(int sig);
int sigrelse(int sig);
void (*sigset(int sig , void (* disp)(int)))(int);

DESCRIPTION
Use of any of these functions is unspecified in a multi-threaded process.

The signal() function chooses one of three ways in which receipt of the signal number sig is to be
subsequently handled. If the value of func is SIG_DFL, default handling for that signal will
occur. If the value of func is SIG_IGN, the signal will be ignored. Otherwise, func must point to
a function to be called when that signal occurs. Such a function is called a signal handler .

When a signal occurs, if func points to a function, first the equivalent of a:

signal(sig , SIG_DFL);

is executed or an implementation-dependent blocking of the signal is performed. (If the value of
sig is SIGILL, whether the reset to SIG_DFL occurs is implementation-dependent.) Next the
equivalent of:

(*func)(sig);

is executed. The func function may terminate by executing a return statement or by calling
abort(), exit(), or longjmp(). If func executes a return statement and the value of sig was SIGFPE
or any other implementation-dependent value corresponding to a computational exception, the
behaviour is undefined. Otherwise, the program will resume execution at the point it was
interrupted.

If the signal occurs other than as the result of calling abort(), kill () or raise(), the behaviour is
undefined if the signal handler calls any function in the standard library other than one of the
functions listed on the sigaction () page or refers to any object with static storage duration other
than by assigning a value to a static storage duration variable of type volatile sig_atomic_t.
Furthermore, if such a call fails, the value of errno is indeterminate.

At program startup, the equivalent of:

signal(sig , SIG_IGN);

is executed for some signals, and the equivalent of:

signal(sig , SIG_DFL);

is executed for all other signals (see exec).

EX The sigset(), sighold (), sigignore(), sigpause() and segrelse() functions provide simplified signal
management.

The sigset() function is used to modify signal dispositions. The sig argument specifies the signal,
which may be any signal except SIGKILL and SIGSTOP. The disp argument specifies the signal’s
disposition, which may be SIG_DFL, SIG_IGN or the address of a signal handler. If sigset() is
used, and disp is the address of a signal handler, the system will add sig to the calling process’

System Interfaces and Headers, Issue 5: Volume 2 829

signal() System Interfaces

signal mask before executing the signal handler; when the signal handler returns, the system will
restore the calling process’ signal mask to its state prior the delivery of the signal. In addition, if
sigset() is used, and disp is equal to SIG_HOLD, sig will be added to the calling process’ signal
mask and sig’s disposition will remain unchanged. If sigset() is used, and disp is not equal to
SIG_HOLD, sig will be removed from the calling process’ signal mask.

The sighold () function adds sig to the calling process’ signal mask.

The sigrelse() function removes sig from the calling process’ signal mask.

The sigignore() function sets the disposition of sig to SIG_IGN.

The sigpause() function removes sig from the calling process’ signal mask and suspends the
calling process until a signal is received. The sigpause() function restores the process’ signal
mask to its original state before returning.

If the action for the SIGCHLD signal is set to SIG_IGN, child processes of the calling processes
will not be transformed into zombie processes when they terminate. If the calling process
subsequently waits for its children, and the process has no unwaited for children that were
transformed into zombie processes, it will block until all of its children terminate, and wait(),
wait3(), waitid () and waitpid () will fail and set errno to [ECHILD].

RETURN VALUE
If the request can be honoured, signal() returns the value of func for the most recent call to
signal() for the specified signal sig . Otherwise, SIG_ERR is returned and a positive value is
stored in errno.

EX Upon successful completion, sigset() returns SIG_HOLD if the signal had been blocked and the
signal’s previous disposition if it had not been blocked. Otherwise, SIG_ERR is returned and
errno is set to indicate the error.

The sigpause() function suspends execution of the thread until a signal is received, whereupon it
returns −1 and sets errno to [EINTR].

For all other functions, upon successful completion, 0 is returned. Otherwise, −1 is returned and
errno is set to indicate the error.

ERRORS
The signal() function will fail if:

[EINVAL] The sig argument is not a valid signal number or an attempt is made to catch a
signal that cannot be caught or ignore a signal that cannot be ignored.

The signal() function may fail if:

[EINVAL] An attempt was made to set the action to SIG_DFL for a signal that cannot be
caught or ignored (or both).

EX The sigset(), sighold (), sigrelse(), sigignore() and sigpause() functions will fail if:

[EINVAL] The sig argument is an illegal signal number.

The sigset(), and sigignore() functions will fail if:

[EINVAL] An attempt is made to catch a signal that cannot be caught, or to ignore a
signal that cannot be ignored.

EXAMPLES
None.

830 CAE Specification (1997)

System Interfaces signal()

APPLICATION USAGE
The sigaction () function provides a more comprehensive and reliable mechanism for controlling
signals; new applications should use sigaction () rather than signal().

The sighold () function, in conjunction with sigrelse() or sigpause(), may be used to establish
critical regions of code that require the delivery of a signal to be temporarily deferred.

The sigsuspend() function should be used in preference to sigpause() for broader portability.

FUTURE DIRECTIONS
None.

SEE ALSO
exec, pause(), sigaction (), sigsuspend(), waitid (), <signal.h>.

CHANGE HISTORY
First released in Issue 1.

Derived from Issue 1 of the SVID.

Issue 4
The following changes are incorporated for alignment with the ISO C standard:

• The function is no longer marked as an extension.

• The argument int is added to the definition of func in the SYNOPSIS section.

• In Issue 3, this interface cross-referred to sigaction (). This issue provides a complete
description of the function as defined in ISO C standard.

Another change is incorporated as follows:

• The APPLICATION USAGE section is added.

Issue 4, Version 2
The following changes are incorporated for X/OPEN UNIX conformance:

• The sighold(), sigignore(), sigpause(), sigrelse() and sigset() functions are added to the
SYNOPSIS.

• The DESCRIPTION is updated to describe semantics of the above interfaces.

• Additional text is added to the RETURN VALUE section to describe possible returns from
the sigset() function specifically, and all of the above functions in general.

• The ERRORS section is restructured to describe possible error returns from each of the above
functions individually.

• The APPLICATION USAGE section is updated to describe certain programming
considerations associated with the X/OPEN UNIX functions.

Issue 5
The DESCRIPTION is updated to indicate that the sigpause() function restores the process’
signal mask to its original state before returning.

The RETURN VALUE section is updated to indicate that the sigpause() function suspends
execution of the process until a signal is received, whereupon it returns −1 and sets errno to
EINTR.

System Interfaces and Headers, Issue 5: Volume 2 831

signgam System Interfaces

NAME
signgam — storage for sign of lgamma()

SYNOPSIS
EX #include <math.h>

extern int signgam;

DESCRIPTION
Refer to lgamma().

CHANGE HISTORY
First released in Issue 1.

Derived from Issue 1 of the SVID.

Issue 4
The following change is incorporated in this issue:

• The <math.h> header is added to the SYNOPSIS section.

832 CAE Specification (1997)

System Interfaces sigpause()

NAME
sigpause — remove a signal from the signal mask and suspend the thread

SYNOPSIS
EX #include <signal.h>

int sigpause(int sig);

DESCRIPTION
Refer to signal().

CHANGE HISTORY
First released in Issue 4, Version 2.

Issue 5
Moved from X/OPEN UNIX extension to BASE.

System Interfaces and Headers, Issue 5: Volume 2 833

sigpending() System Interfaces

NAME
sigpending — examine pending signals

SYNOPSIS
#include <signal.h>

int sigpending(sigset_t * set);

DESCRIPTION
The sigpending() function stores, in the location referenced by the set argument, the set of signals
that are blocked from delivery to the calling thread and that are pending on the process or the
calling thread.

RETURN VALUE
Upon successful completion, sigpending() returns 0. Otherwise −1 is returned and errno is set to
indicate the error.

ERRORS
No errors are defined.

EXAMPLES
None.

APPLICATION USAGE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
sigaddset(), sigdelset(), sigemptyset(), sigfillset(), sigismember(), sigprocmask (), <signal.h>.

CHANGE HISTORY
First released in Issue 3.

Issue 5
The DESCRIPTION is updated for alignment with the POSIX Threads Extension.

834 CAE Specification (1997)

System Interfaces sigprocmask()

NAME
sigprocmask, pthread_sigmask — examine and change blocked signals

SYNOPSIS
#include <signal.h>

int sigprocmask(int how, const sigset_t * set , sigset_t * oset);
int pthread_sigmask(int how, const sigset_t * set , sigset_t * oset);

DESCRIPTION
In a single-threaded process, the sigprocmask () function allows the calling process to examine or
change (or both) the signal mask of the calling thread.

If the argument set is not a null pointer, it points to a set of signals to be used to change the
currently blocked set.

The argument how indicates the way in which the set is changed, and consists of one of the
following values:

SIG_BLOCK The resulting set will be the union of the current set and the signal set pointed
to by set.

SIG_SETMASK The resulting set will be the signal set pointed to by set.

SIG_UNBLOCK The resulting set will be the intersection of the current set and the complement
of the signal set pointed to by set.

If the argument oset is not a null pointer, the previous mask is stored in the location pointed to
by oset. If set is a null pointer, the value of the argument how is not significant and the process’
signal mask is unchanged; thus the call can be used to enquire about currently blocked signals.

If there are any pending unblocked signals after the call to sigprocmask (), at least one of those
signals will be delivered before the call to sigprocmask () returns.

It is not possible to block those signals which cannot be ignored. This is enforced by the system
without causing an error to be indicated.

If any of the SIGFPE, SIGILL, SIGSEGV or SIGBUS signals are generated while they are blocked,
the result is undefined, unless the signal was generated by a function capable of sending a signal
to a specific process or thread.

If sigprocmask () fails, the thread’s signal mask is not changed.

The use of the sigprocmask () function is unspecified in a multi-threaded process.

The pthread_sigmask () function is used to examine or change (or both) the calling thread’s signal
mask, regardless of the number of threads in the process. The effect is the same as described for
sigprocmask (), without the restriction that the call be made in a single-threaded process.

RETURN VALUE
Upon successful completion, sigprocmask () returns 0. Otherwise −1 is returned, errno is set to
indicate the error and the process’ signal mask will be unchanged.

Upon successful completion pthread_sigmask () returns 0; otherwise it returns the corresponding
error number.

ERRORS
The sigprocmask () and pthread_sigmask () functions will fail if:

[EINVAL] The value of the how argument is not equal to one of the defined values.

System Interfaces and Headers, Issue 5: Volume 2 835

sigprocmask() System Interfaces

The pthread_sigmask () function will not return an error code of [EINTR].

EXAMPLES
None.

APPLICATION USAGE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
sigaction (), sigaddset(), sigdelset(), sigemptyset(), sigfillset(), sigismember(), sigpending(), siqueue(),
sigsuspend(), <signal.h>.

CHANGE HISTORY
First released in Issue 3.

Entry included for alignment with the POSIX.1-1988 standard.

Issue 4
The following change is incorporated for alignment with the ISO POSIX-1 standard:

• The type of the arguments set and oset are changed from sigset_t* to const sigset_t*.

Another change is incorporated as follows:

• The DESCRIPTION is changed to indicate that signals can also be generated by raise().

Issue 5
The DESCRIPTION is updated for alignment with the POSIX Threads Extension.

836 CAE Specification (1997)

System Interfaces sigqueue()

NAME
sigqueue — queue a signal to a process (REALTIME)

SYNOPSIS
RT #include <sys/types.h>

#include <signal.h>

int sigqueue(pid_t pid , int signo , const union sigval value);

DESCRIPTION
The sigqueue() function causes the signal specified by signo to be sent with the value specified by
value to the process specified by pid. If signo is zero (the null signal), error checking is performed
but no signal is actually sent. The null signal can be used to check the validity of pid .

The conditions required for a process to have permission to queue a signal to another process
are the same as for the kill () function.

The sigqueue() function returns immediately. If SA_SIGINFO is set for signo and if the resources
were available to queue the signal, the signal is queued and sent to the receiving process. If
SA_SIGINFO is not set for signo , then signo is sent at least once to the receiving process; it is
unspecified whether value will be sent to the receiving process as a result of this call.

If the value of pid causes signo to be generated for the sending process, and if signo is not blocked
for the calling thread and if no other thread has signo unblocked or is waiting in a sigwait ()
function for signo , either signo or at least the pending, unblocked signal will be delivered to the
calling thread before the sigqueue() function returns. Should any of multiple pending signals in
the range SIGRTMIN to SIGRTMAX be selected for delivery, it will be the lowest numbered one.
The selection order between realtime and non-realtime signals, or between multiple pending
non-realtime signals, is unspecified.

RETURN VALUE
Upon successful completion, the specified signal will have been queued, and the sigqueue()
function returns a value of zero. Otherwise, the function returns a value of −1 and sets errno to
indicate the error.

ERRORS
The sigqueue() function will fail if:

[EAGAIN] No resources available to queue the signal. The process has already queued
SIGQUEUE_MAX signals that are still pending at the receiver(s), or a system-
wide resource limit has been exceeded.

[EINVAL] The value of the signo argument is an invalid or unsupported signal number.

[ENOSYS] The function sigqueue() is not supported by this implementation.

[EPERM] The process does not have the appropriate privilege to send the signal to the
receiving process.

[ESRCH] The process pid does not exist.

EXAMPLES
None.

APPLICATION USAGE
None.

FUTURE DIRECTIONS
None.

System Interfaces and Headers, Issue 5: Volume 2 837

sigqueue() System Interfaces

SEE ALSO
<signal.h>.

CHANGE HISTORY
First released in Issue 5.

Included for alignment with the POSIX Realtime Extension and the POSIX Threads Extension.

838 CAE Specification (1997)

System Interfaces sigrelse()

NAME
sigrelse, sigset — remove a signal from signal mask or modify signal disposition

SYNOPSIS
EX #include <signal.h>

int sigrelse(int sig);
void (*sigset(int sig , void (* disp)(int)))(int);

DESCRIPTION
Refer to signal().

CHANGE HISTORY
First released in Issue 4, Version 2.

Issue 5
Moved from X/OPEN UNIX extension to BASE.

System Interfaces and Headers, Issue 5: Volume 2 839

sigsetjmp() System Interfaces

NAME
sigsetjmp — set jump point for a non-local goto

SYNOPSIS
#include <setjmp.h>

int sigsetjmp(sigjmp_buf env , int savemask);

DESCRIPTION
A call to sigsetjmp() saves the calling environment in its env argument for later use by
siglongjmp (). It is unspecified whether sigsetjmp() is a macro or a function. If a macro definition
is suppressed in order to access an actual function, or a program defines an external identifier
with the name sigsetjmp the behaviour is undefined.

If the value of the savemask argument is not 0, sigsetjmp() will also save the current signal mask
of the calling thread as part of the calling environment.

All accessible objects have values as of the time siglongjmp () was called, except that the values of
objects of automatic storage duration which are local to the function containing the invocation of
the corresponding sigsetjmp() which do not have volatile-qualified type and which are changed
between the sigsetjmp() invocation and siglongjmp () call are indeterminate.

An invocation of sigsetjmp() must appear in one of the following contexts only:

• the entire controlling expression of a selection or iteration statement

• one operand of a relational or equality operator with the other operand an integral constant
expression, with the resulting expression being the entire controlling expression of a
selection or iteration statement

• the operand of a unary (!) operator with the resulting expression being the entire controlling
expression of a selection or iteration

• the entire expression of an expression statement (possibly cast to void).

RETURN VALUE
If the return is from a successful direct invocation, sigsetjmp() returns 0. If the return is from a
call to siglongjmp (), sigsetjmp() returns a non-zero value.

ERRORS
No errors are defined.

EXAMPLES
None.

APPLICATION USAGE
The distinction between setjmp()/longjmp() and sigsetjmp()/siglongjmp () is only significant for
programs which use sigaction (), sigprocmask () or sigsuspend().

FUTURE DIRECTIONS
None.

SEE ALSO
siglongjmp (), signal(), sigprocmask (), sigsuspend(), <setjmp.h>.

CHANGE HISTORY
First released in Issue 3.

Entry included for alignment with the POSIX.1-1988 standard.

840 CAE Specification (1997)

System Interfaces sigsetjmp()

Issue 4
The following changes are incorporated in this issue:

• The DESCRIPTION states that sigsetjmp() is a macro or a function. Issue 3 states that it is a
macro. Warnings are also added about the suppression of a sigsetjmp() macro definition.

• A statement is added to the DESCRIPTION about the accessibility of objects after a
siglongjmp () call.

• Text is added to the DESCRIPTION describing the contexts in which calls to sigsetjmp() are
valid.

Issue 5
The DESCRIPTION is updated for alignment with the POSIX Threads Extension.

System Interfaces and Headers, Issue 5: Volume 2 841

sigstack() System Interfaces

NAME
sigstack — set and/or get alternate signal stack context (LEGACY)

SYNOPSIS
EX #include <signal.h>

int sigstack(struct sigstack * ss , struct sigstack * oss);

DESCRIPTION
The sigstack () function allows the calling process to indicate to the system an area of its address
space to be used for processing signals received by the process.

If the ss argument is not a null pointer, it must point to a sigstack structure. The length of the
application-supplied stack must be at least SIGSTKSZ bytes. If the alternate signal stack
overflows, the resulting behaviour is undefined. (See APPLICATION USAGE below.)

• The value of the ss_onstack member indicates whether the process wants the system to use
an alternate signal stack when delivering signals.

• The value of the ss_sp member indicates the desired location of the alternate signal stack
area in the process’ address space.

• If the ss argument is a null pointer, the current alternate signal stack context is not changed.

If the oss argument is not a null pointer, it points to a sigstack structure in which the current
alternate signal stack context is placed. The value stored in the ss_onstack member of oss will be
non-zero if the process is currently executing on the alternate signal stack. If the oss argument is
a null pointer, the current alternate signal stack context is not returned.

When a signal’s action indicates its handler should execute on the alternate signal stack
(specified by calling sigaction ()), the implementation checks to see if the process is currently
executing on that stack. If the process is not currently executing on the alternate signal stack, the
system arranges a switch to the alternate signal stack for the duration of the signal handler’s
execution.

After a successful call to one of the exec functions, there are no alternate signal stacks in the new
process image.

This interface need not be reentrant.

RETURN VALUE
Upon successful completion, sigstack () returns 0. Otherwise, it returns −1 and sets errno to
indicate the error.

ERRORS
The sigstack () function will fail if:

[EPERM] An attempt was made to modify an active stack.

EXAMPLES
None.

APPLICATION USAGE
A portable application, when being written or rewritten, should use sigaltstack () instead of
sigstack ().

On some implementations, stack space is automatically extended as needed. On those
implementations, automatic extension is typically not available for an alternate stack. If a signal
stack overflows, the resulting behaviour of the process is undefined.

842 CAE Specification (1997)

System Interfaces sigstack()

The direction of stack growth is not indicated in the historical definition of struct sigstack. The
only way to portably establish a stack pointer is for the application to determine stack growth
direction, or to allocate a block of storage and set the stack pointer to the middle. The
implementation may assume that the size of the signal stack is SIGSTKSZ as found in
<signal.h>. An implementation that would like to specify a signal stack size other than
SIGSTKSZ should use sigaltstack ().

Programs should not use longjmp() to leave a signal handler that is running on a stack
established with sigstack (). Doing so may disable future use of the signal stack. For abnormal
exit from a signal handler, siglongjmp (), setcontext() or swapcontext() may be used. These
functions fully support switching from one stack to another.

The sigstack () function requires the application to have knowledge of the underlying system’s
stack architecture. For this reason, sigaltstack () is recommended over this function.

FUTURE DIRECTIONS
None.

SEE ALSO
exec, fork (), _longjmp (), longjmp(), setjmp(), sigaltstack (), siglongjmp (), sigsetjmp(), <signal.h>.

CHANGE HISTORY
First released in Issue 4, Version 2.

Issue 5
Marked LEGACY.

A note indicating that this interface need not be reentrant is added to the DESCRIPTION.

System Interfaces and Headers, Issue 5: Volume 2 843

sigsuspend() System Interfaces

NAME
sigsuspend — wait for a signal

SYNOPSIS
#include <signal.h>

int sigsuspend(const sigset_t * sigmask);

DESCRIPTION
The sigsuspend() function replaces the current signal mask of the calling thread with the set of
signals pointed to by sigmask and then suspends the thread until delivery of a signal whose
action is either to execute a signal-catching function or to terminate the process. This will not
cause any other signals that may have been pending on the process to become pending on the
thread.

If the action is to terminate the process then sigsuspend() will never return. If the action is to
execute a signal-catching function, then sigsuspend() will return after the signal-catching
function returns, with the signal mask restored to the set that existed prior to the sigsuspend()
call.

It is not possible to block signals that cannot be ignored. This is enforced by the system without
causing an error to be indicated.

RETURN VALUE
Since sigsuspend() suspends process execution indefinitely, there is no successful completion
return value. If a return occurs, −1 is returned and errno is set to indicate the error.

ERRORS
The sigsuspend() function will fail if:

[EINTR] A signal is caught by the calling process and control is returned from the
signal-catching function.

EXAMPLES
None.

APPLICATION USAGE
An interpretation request has been filed with IEEE PASC concerning whether sigsuspend()
suspends process execution or suspends thread execution. The wording here matches the
description of this interface specified by the ISO POSIX-1 standard.

FUTURE DIRECTIONS
None.

SEE ALSO
pause(), sigaction (), sigaddset(), sigdelset(), sigemptyset(), sigfillset(), <signal.h>.

CHANGE HISTORY
First released in Issue 3.

Entry included for alignment with the POSIX.1-1988 standard.

Issue 4
The following change is incorporated for alignment with the ISO POSIX-1 standard:

• The type of the argument sigmask is changed from sigset_t* to type const sigset_t*.

Another change is incorporated as follows:

• The term ‘‘signal handler’’ is changed to ‘‘signal-catching function’’.

844 CAE Specification (1997)

System Interfaces sigsuspend()

Issue 5
The DESCRIPTION is updated for alignment with the POSIX Threads Extension.

System Interfaces and Headers, Issue 5: Volume 2 845

sigwait() System Interfaces

NAME
sigwait — wait for queued signals

SYNOPSIS
#include <signal.h>

int sigwait(const sigset_t * set , int * sig);

DESCRIPTION
The sigwait () function selects a pending signal from set, atomically clears it from the system’s set
of pending signals, and returns that signal number in the location referenced by sig . If prior to
the call to sigwait () there are multiple pending instances of a single signal number, it is
implementation-dependent whether upon successful return there are any remaining pending

RT signals for that signal number. If the implementation supports queued signals and there are
multiple signals queued for the signal number selected, the first such queued signal causes a
return from sigwait () and the remainder remain queued. If no signal in set is pending at the time
of the call, the thread is suspended until one or more becomes pending. The signals defined by
set will been blocked at the time of the call to sigwait (); otherwise the behaviour is undefined.
The effect of sigwait () on the signal actions for the signals in set is unspecified.

If more than one thread is using sigwait () to wait for the same signal, no more than one of these
threads will return from sigwait () with the signal number. Which thread returns from sigwait ()
if more than a single thread is waiting is unspecified.

Should any of the multiple pending signals in the range SIGRTMIN to SIGRTMAX be selected, it
shall be the lowest numbered one. The selection order between realtime and non-realtime
signals, or between multiple pending non-realtime signals, is unspecified.

RETURN VALUE
Upon successful completion, sigwait () stores the signal number of the received signal at the
location referenced by sig and returns zero. Otherwise, an error number is returned to indicate
the error.

ERRORS
The sigwait () function may fail if:

[EINVAL] The set argument contains an invalid or unsupported signal number.

EXAMPLES
None.

APPLICATION USAGE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
pause(), pthread_sigmask (), sigaction (), <signal.h>, sigpending(), sigsuspend(), sigwaitinfo (),
<time.h>.

CHANGE HISTORY
First released in Issue 5.

Included for alignment with the POSIX Realtime Extension and the POSIX Threads Extension.

846 CAE Specification (1997)

System Interfaces sigwaitinfo()

NAME
sigwaitinfo, sigtimedwait — wait for queued signals (REALTIME)

SYNOPSIS
RT #include <signal.h>

int sigwaitinfo(const sigset_t * set , siginfo * info);
int sigtimedwait(const sigset_t * set , siginfo_t * info ,

const struct timespec * timeout);

DESCRIPTION
The function sigwaitinfo () selects the pending signal from the set specified by set. Should any of
multiple pending signals in the range SIGRTMIN to SIGRTMAX be selected, it will be the lowest
numbered one. The selection order between realtime and non-realtime signals, or between
multiple pending non-realtime signals, is unspecified. If no signal in set is pending at the time of
the call, the calling thread is suspended until one or more signals in set become pending or until
it is interrupted by an unblocked, caught signal.

The function sigwaitinfo () behaves the same as the sigwait () function if the info argument is
NULL. If the info argument is non-NULL, the sigwaitinfo () function behaves the same as
sigwait,() except that the selected signal number is stored in the si_signo member, and the cause
of the signal is stored in the si_code member. If any value is queued to the selected signal, the
first such queued value is dequeued and, if the info argument is non-NULL, the value is stored in
the si_value member of info . The system resource used to queue the signal will be released and
made available to queue other signals. If no value is queued, the content of the si_value member
is undefined. If no further signals are queued for the selected signal, the pending indication for
that signal will be reset.

The function sigtimedwait () behaves the same as sigwaitinfo () except that if none of the signals
specified by set are pending, sigtimedwait () waits for the time interval specified in the timespec
structure referenced by timeout . If the timespec structure pointed to by timeout is zero-valued
and if none of the signals specified by set are pending, then sigtimedwait () returns immediately
with an error. If timeout is the NULL pointer, the behaviour is unspecified.

RETURN VALUE
Upon successful completion (that is, one of the signals specified by set is pending or is
generated) sigwaitinfo () and sigtimedwait () will return the selected signal number. Otherwise,
the function returns a value of −1 and sets errno to indicate the error.

ERRORS
The sigwaitinfo () and sigtimedwait () functions will fail if:

[ENOSYS] The functions sigwaitinfo () and sigtimedwait () are not supported by this
implementation.

The sigtimedwait () function will also fail if:

[EAGAIN] No signal specified by set was generated within the specified timeout period.

The sigwaitinfo () and sigtimedwait () functions may fail if:

[EINTR] The wait was interrupted by an unblocked, caught signal. It will be
documented in system documentation whether this error will cause these
functions to fail.

System Interfaces and Headers, Issue 5: Volume 2 847

sigwaitinfo() System Interfaces

The sigtimedwait () function may also fail if:

[EINVAL] The timeout argument specified a tv_nsec value less than zero or greater than
or equal to 1000 million.

An implementation only checks for this error if no signal is pending in set and it is necessary to
wait.

EXAMPLES
None.

APPLICATION USAGE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
pause(), pthread_sigmask (), sigaction (), <signal.h>, sigpending(), sigsuspend(), sigwait (), <time.h>.

CHANGE HISTORY
First released in Issue 5.

Included for alignment with the POSIX Realtime Extension and the POSIX Threads Extension.

848 CAE Specification (1997)

System Interfaces sin()

NAME
sin — sine function

SYNOPSIS
#include <math.h>

double sin(double x);

DESCRIPTION
The sin() function computes the sine of its argument x, measured in radians.

An application wishing to check for error situations should set errno to 0 before calling sin(). If
errno is non-zero on return, or the return value is NaN, an error has occurred.

The sin() function may lose accuracy when its argument is far from 0.0 .

RETURN VALUE
Upon successful completion, sin() returns the sine of x .

EX If x is NaN, NaN is returned and errno may be set to [EDOM].

EX If x is ±Inf, either 0.0 is returned and errno is set to [EDOM], or NaN is returned and errno may be
set to [EDOM].

If the correct result would cause underflow, 0.0 is returned and errno may be set to [ERANGE].

ERRORS
The sin() function may fail if:

EX [EDOM] The value of x is NaN, or x is ±Inf.

[ERANGE] The result underflows.

EX No other errors will occur.

EXAMPLES
None.

APPLICATION USAGE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
asin(), isnan(), <math.h>.

CHANGE HISTORY
First released in Issue 1.

Derived from Issue 1 of the SVID.

Issue 4
The following changes are incorporated in this issue:

• Removed references to matherr().

• The RETURN VALUE and ERRORS sections are substantially rewritten for alignment with
the ISO C standard and to rationalise error handling in the mathematics functions.

• The return value specified for [EDOM] is marked as an extension.

System Interfaces and Headers, Issue 5: Volume 2 849

sin() System Interfaces

Issue 5
The last two paragraphs of the DESCRIPTION were included as APPLICATION USAGE notes
in previous issues.

850 CAE Specification (1997)

System Interfaces sinh()

NAME
sinh — hyperbolic sine function

SYNOPSIS
#include <math.h>

double sinh(double x);

DESCRIPTION
The sinh() function computes the hyperbolic sine of x .

An application wishing to check for error situations should set errno to 0 before calling sinh(). If
errno is non-zero on return, or the return value is NaN, an error has occurred.

RETURN VALUE
Upon successful completion, sinh() returns the hyperbolic sine of x .

If the result would cause an overflow, ±HUGE_VAL is returned and errno is set to [ERANGE].

If the result would cause underflow, 0.0 is returned and errno may be set to [ERANGE].

EX If x is NaN, NaN is returned and errno may be set to [EDOM].

ERRORS
The sinh() function will fail if:

[ERANGE] The result would cause overflow.

The sinh() function may fail if:

EX [EDOM] The value of x is NaN.

[ERANGE] The result would cause underflow.

EX No other errors will occur.

EXAMPLES
None.

APPLICATION USAGE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
asinh(), cosh(), isnan(), tanh(), <math.h>.

CHANGE HISTORY
First released in Issue 1.

Derived from Issue 1 of the SVID.

Issue 4
The following changes are incorporated in this issue:

• Removed references to matherr().

• The RETURN VALUE and ERRORS sections are substantially rewritten for alignment with
the ISO C standard and to rationalise error handling in the mathematics functions.

• The return value specified for [EDOM] is marked as an extension.

System Interfaces and Headers, Issue 5: Volume 2 851

sinh() System Interfaces

Issue 5
The DESCRIPTION is updated to indicate how an application should check for an error. This
text was previously published in the APPLICATION USAGE section.

852 CAE Specification (1997)

System Interfaces sleep()

NAME
sleep — suspend execution for an interval of time

SYNOPSIS
#include <unistd.h>

unsigned int sleep(unsigned int seconds);

DESCRIPTION
The sleep() function will cause the calling thread to be suspended from execution until either the
number of real-time seconds specified by the argument seconds has elapsed or a signal is
delivered to the calling thread and its action is to invoke a signal-catching function or to
terminate the process. The suspension time may be longer than requested due to the scheduling
of other activity by the system.

If a SIGALRM signal is generated for the calling process during execution of sleep() and if the
SIGALRM signal is being ignored or blocked from delivery, it is unspecified whether sleep()
returns when the SIGALRM signal is scheduled. If the signal is being blocked, it is also
unspecified whether it remains pending after sleep() returns or it is discarded.

If a SIGALRM signal is generated for the calling process during execution of sleep(), except as a
result of a prior call to alarm(), and if the SIGALRM signal is not being ignored or blocked from
delivery, it is unspecified whether that signal has any effect other than causing sleep() to return.

If a signal-catching function interrupts sleep() and examines or changes either the time a
SIGALRM is scheduled to be generated, the action associated with the SIGALRM signal, or
whether the SIGALRM signal is blocked from delivery, the results are unspecified.

If a signal-catching function interrupts sleep() and calls siglongjmp () or longjmp() to restore an
environment saved prior to the sleep() call, the action associated with the SIGALRM signal and
the time at which a SIGALRM signal is scheduled to be generated are unspecified. It is also
unspecified whether the SIGALRM signal is blocked, unless the process’ signal mask is restored
as part of the environment.

EX Interactions between sleep() and any of setitimer(), ualarm() or usleep() are unspecified.

RETURN VALUE
If sleep() returns because the requested time has elapsed, the value returned will be 0. If sleep()
returns because of premature arousal due to delivery of a signal, the return value will be the
‘‘unslept’’ amount (the requested time minus the time actually slept) in seconds.

ERRORS
No errors are defined.

EXAMPLES
None.

APPLICATION USAGE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
alarm(), getitimer(), nanosleep(), pause(), sigaction (), sigsetjmp(), ualarm(), usleep(), <unistd.h>.

CHANGE HISTORY
First released in Issue 1.

System Interfaces and Headers, Issue 5: Volume 2 853

sleep() System Interfaces

Derived from Issue 1 of the SVID.

Issue 4
The following change is incorporated in this issue:

• The <unistd.h> header is added to the SYNOPSIS section.

Issue 4, Version 2
The DESCRIPTION is updated to indicate possible interactions with the setitimer(), ualarm() and
usleep() functions.

Issue 5
The DESCRIPTION is updated for alignment with the POSIX Threads Extension.

854 CAE Specification (1997)

System Interfaces sprintf()

NAME
sprintf, snprintf — print formatted output

SYNOPSIS
#include <stdio.h>

EX int snprintf(char *s, size_t n, const char * format , /* args */ . . .);
int sprintf(char * s, const char * format , ...);

DESCRIPTION
Refer to fprintf ().

CHANGE HISTORY
First released in Issue 1.

Derived from Issue 1 of the SVID.

Issue 4
The following change is incorporated for alignment with the ISO C standard:

• The type of argument format is changed from char * to const char *.

Another change is incorporated as follows:

• The detail for this function is now in fprintf () instead of printf().

Issue 5
The snprintf() function is new in Issue 5.

System Interfaces and Headers, Issue 5: Volume 2 855

sqrt() System Interfaces

NAME
sqrt — square root function

SYNOPSIS
#include <math.h>

double sqrt(double x);

DESCRIPTION
The sqrt() function computes the square root of x , √MMx .

An application wishing to check for error situations should set errno to 0 before calling sqrt(). If
errno is non-zero on return, or the return value is NaN, an error has occurred.

RETURN VALUE
Upon successful completion, sqrt() returns the square root of x.

EX If x is NaN, NaN is returned and errno may be set to [EDOM].

EX If x is negative, 0.0 or NaN is returnedand errno is set to [EDOM].

ERRORS
The sqrt() function will fail if:

[EDOM] The value of x is negative.

The sqrt() function may fail if:

EX [EDOM] The value of x is NaN.

EX No other errors will occur.

EXAMPLES
None.

APPLICATION USAGE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
isnan(), <math.h>, <stdio.h>.

CHANGE HISTORY
First released in Issue 1.

Derived from Issue 1 of the SVID.

Issue 4
The following changes are incorporated in this issue:

• Removed references to matherr().

• The RETURN VALUE and ERRORS sections are substantially rewritten for alignment with
the ISO C standard and to rationalise error handling in the mathematics functions.

• The return value specified for [EDOM] is marked as an extension.

Issue 5
The DESCRIPTION is updated to indicate how an application should check for an error. This
text was previously published in the APPLICATION USAGE section.

856 CAE Specification (1997)

System Interfaces srand()

NAME
srand — seed simple pseudo-random number generator

SYNOPSIS
#include <stdlib.h>

void srand(unsigned int seed);

DESCRIPTION
Refer to rand().

CHANGE HISTORY
First released in Issue 1.

Derived from Issue 1 of the SVID.

Issue 4
The following change is incorporated for alignment with the ISO C standard:

• The argument seed is explicitly defined as unsigned int.

System Interfaces and Headers, Issue 5: Volume 2 857

srand48() System Interfaces

NAME
srand48 — seed uniformly distributed double-precision pseudo-random number generator

SYNOPSIS
EX #include <stdlib.h>

void srand48(long int seedval);

DESCRIPTION
Refer to drand48().

CHANGE HISTORY
First released in Issue 1.

Derived from Issue 1 of the SVID.

Issue 4
The following change is incorporated in this issue:

• The header <stdlib.h> is added to the SYNOPSIS section.

858 CAE Specification (1997)

System Interfaces srandom()

NAME
srandom — seed pseudorandom number generator

SYNOPSIS
EX #include <stdlib.h>

void srandom(unsigned int seed);

DESCRIPTION
Refer to initstate().

CHANGE HISTORY
First released in Issue 4, Version 2.

Issue 5
Moved from X/OPEN UNIX extension to BASE.

System Interfaces and Headers, Issue 5: Volume 2 859

sscanf() System Interfaces

NAME
sscanf — convert formatted input

SYNOPSIS
#include <stdio.h>

int sscanf(const char * s, const char * format , . . .);

DESCRIPTION
Refer to fscanf().

CHANGE HISTORY
First released in Issue 1.

Derived from Issue 1 of the SVID.

Issue 4
The following change is incorporated for alignment with the ISO C standard:

• The type of arguments s and format is changed from char * to const char *.

Another change is incorporated as follows:

• The detail for this function is now in fscanf() instead of scanf().

860 CAE Specification (1997)

System Interfaces stat()

NAME
stat — get file status

SYNOPSIS
OH #include <sys/types.h>

#include <sys/stat.h>

int stat(const char * path , struct stat * buf);

DESCRIPTION
The stat() function obtains information about the named file and writes it to the area pointed to
by the buf argument. The path argument points to a pathname naming a file. Read, write or
execute permission of the named file is not required, but all directories listed in the pathname
leading to the file must be searchable. An implementation that provides additional or alternate
file access control mechanisms may, under implementation-dependent conditions, cause stat()
to fail. In particular, the system may deny the existence of the file specified by path .

The buf argument is a pointer to a stat structure, as defined in the header <sys/stat.h>, into which
information is placed concerning the file.

The stat() function updates any time-related fields (as described in the definition of File Times
Update in the XBD specification), before writing into the stat structure.

The structure members st_mode, st_ino , st_dev , st_uid , st_gid , st_atime , st_ctime and st_mtime will
have meaningful values for all file types defined in this document. The value of the member
st_nlink will be set to the number of links to the file.

RETURN VALUE
Upon successful completion, 0 is returned. Otherwise, −1 is returned and errno is set to indicate
the error.

ERRORS
The stat() function will fail if:

[EACCES] Search permission is denied for a component of the path prefix.

EX [EIO] An error occurred while reading from the file system.

EX [ELOOP] Too many symbolic links were encountered in resolving path.

FIPS [ENAMETOOLONG]
The length of the path argument exceeds {PATH_MAX} or a pathname
component is longer than {NAME_MAX}.

[ENOENT] A component of path does not name an existing file or path is an empty string.

[ENOTDIR] A component of the path prefix is not a directory.

EX [EOVERFLOW] The file size in bytes or the number of blocks allocated to the file or the file
serial number cannot be represented correctly in the structure pointed to by
buf.

EX The stat() function may fail if:

EX [ENAMETOOLONG]
Pathname resolution of a symbolic link produced an intermediate result
whose length exceeds {PATH_MAX}.

[EOVERFLOW] A value to be stored would overflow one of the members of the stat structure.

System Interfaces and Headers, Issue 5: Volume 2 861

stat() System Interfaces

EXAMPLES
None.

APPLICATION USAGE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
fstat(), lstat(), <sys/stat.h>, <sys/types.h>.

CHANGE HISTORY
First released in Issue 1.

Derived from Issue 1 of the SVID.

Issue 4
The following changes are incorporated for alignment with the ISO POSIX-1 standard:

• The type of argument path is changed from char * to const char *.

• In the DESCRIPTION (a) statements indicating the purpose of this interface and a paragraph
defining the contents of stat structure members are added, and (b) the words ‘‘extended
security controls’’ are replaced by ‘‘additional or alternate file access control mechanisms’’.

The following change is incorporated for alignment with the FIPS requirements:

• In the ERRORS section, the condition whereby [ENAMETOOLONG] will be returned if a
pathname component is larger that {NAME_MAX} is now defined as mandatory and marked
as an extension.

Another change is incorporated as follows:

• The <sys/types.h> header is now marked as optional (OH); this header need not be included
on XSI-conformant systems.

Issue 4, Version 2
The ERRORS section is updated for X/OPEN UNIX conformance as follows:

• In the mandatory section, [EIO] is added to indicate that a physical I/O error has occurred,
and [ELOOP] to indicate that too many symbolic links were encountered during pathname
resolution.

• In the optional section, a second [ENAMETOOLONG] condition is defined that may report
excessive length of an intermediate result of pathname resolution of a symbolic link.

• In the optional section, [EOVERFLOW] is added to indicate that a value to be stored in a
member of the stat structure would cause overflow.

Issue 5
Large File Summit extensions added.

862 CAE Specification (1997)

System Interfaces statvfs()

NAME
statvfs — get file system information

SYNOPSIS
EX #include <sys/statvfs.h>

int statvfs(const char * path , struct statvfs * buf);

DESCRIPTION
Refer to fstatvfs ().

CHANGE HISTORY
First released in Issue 4, Version 2.

Issue 5
Moved from X/OPEN UNIX extension to BASE.

System Interfaces and Headers, Issue 5: Volume 2 863

stdin System Interfaces

NAME
stderr, stdin, stdout — standard I/O streams

SYNOPSIS
#include <stdio.h>

extern FILE * stderr , * stdin , * stdout ;

DESCRIPTION
A file with associated buffering is called a stream and is declared to be a pointer to a defined type
FILE. The fopen() function creates certain descriptive data for a stream and returns a pointer to
designate the stream in all further transactions. Normally, there are three open streams with
constant pointers declared in the <stdio.h> header and associated with the standard open files.

At program startup, three streams are predefined and need not be opened explicitly: standard
input (for reading conventional input), standard output (for writing conventional output) and
standard error (for writing diagnostic output). When opened, the standard error stream is not
fully buffered; the standard input and standard output streams are fully buffered if and only if
the stream can be determined not to refer to an interactive device.

The following symbolic values in <unistd.h> define the file descriptors that will be associated
with the C-language stdin , stdout and stderr when the application is started:

STDIN_FILENO Standard input value, stdin. Its value is 0.

STDOUT_FILENO Standard output value, stdout. Its value is 1.

STDERR_FILENO Standard error value, stderr. Its value is 2.

RETURN VALUE
None.

ERRORS
No errors are defined.

EXAMPLES
None.

APPLICATION USAGE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
fclose(), feof(), ferror(), fileno(), fopen(), fread(), fseek(), getc(), gets(), popen(), printf(), putc(),
puts(), read(), scanf(), setbuf(), setvbuf(), tmpfile(), ungetc(), vprintf(), <stdio.h>, <unistd.h>.

CHANGE HISTORY
First released in Issue 1.

864 CAE Specification (1997)

System Interfaces step()

NAME
step — pattern match with regular expressions (LEGACY)

SYNOPSIS
EX #include <regexp.h>

int step(const char * string , const char * expbuf);

DESCRIPTION
Refer to regexp().

CHANGE HISTORY
First released in Issue 2.

Derived from Issue 2 of the SVID.

Issue 4
The following changes are incorporated in this issue:

• The <regexp.h> header is added to the SYNOPSIS section.

• The type of arguments string and expbuf are changed from char * to const char *.

• The interface is marked TO BE WITHDRAWN, because improved functionality is now
provided by interfaces introduced for alignment with the ISO POSIX-2 standard.

Issue 5
Marked LEGACY.

System Interfaces and Headers, Issue 5: Volume 2 865

strcasecmp() System Interfaces

NAME
strcasecmp, strncasecmp — case-insensitive string comparisons

SYNOPSIS
EX #include <strings.h>

int strcasecmp(const char * s1 , const char * s2);
int strncasecmp(const char * s1 , const char * s2 , size_t n);

DESCRIPTION
The strcasecmp() function compares, while ignoring differences in case, the string pointed to by
s1 to the string pointed to by s2. The strncasecmp() function compares, while ignoring
differences in case, not more than n bytes from the string pointed to by s1 to the string pointed to
by s2.

In the POSIX locale, strcasecmp() and strncasecmp() do upper to lower conversions, then a byte
comparison. The results are unspecified in other locales.

RETURN VALUE
Upon completion, strcasecmp() returns an integer greater than, equal to or less than 0, if the
string pointed to by s1 is, ignoring case, greater than, equal to or less than the string pointed to
by s2 respectively.

Upon successful completion, strncasecmp() returns an integer greater than, equal to or less than
0, if the possibly null-terminated array pointed to by s1 is, ignoring case, greater than, equal to or
less than the possibly null-terminated array pointed to by s2 respectively.

ERRORS
No errors are defined.

EXAMPLES
None.

APPLICATION USAGE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
<strings.h>.

CHANGE HISTORY
First released in Issue 4, Version 2.

Issue 5
Moved from X/OPEN UNIX extension to BASE.

866 CAE Specification (1997)

System Interfaces strcat()

NAME
strcat — concatenate two strings

SYNOPSIS
#include <string.h>

char *strcat(char * s1 , const char * s2);

DESCRIPTION
The strcat() function appends a copy of the string pointed to by s2 (including the terminating
null byte) to the end of the string pointed to by s1. The initial byte of s2 overwrites the null byte
at the end of s1. If copying takes place between objects that overlap, the behaviour is undefined.

RETURN VALUE
The strcat() function returns s1; no return value is reserved to indicate an error.

ERRORS
No errors are defined.

EXAMPLES
None.

APPLICATION USAGE
This issue is aligned with the ISO C standard; this does not affect compatibility with XPG3
applications. Reliable error detection by this function was never guaranteed.

FUTURE DIRECTIONS
None.

SEE ALSO
strncat(), <string.h>.

CHANGE HISTORY
First released in Issue 1.

Derived from Issue 1 of the SVID.

Issue 4
The following change is incorporated for alignment with the ISO C standard:

• The type of argument s2 is changed from char * to const char *.

Other changes are incorporated as follows:

• The DESCRIPTION is changed to make it clear that the function manipulates bytes rather
than (possibly multi-byte) characters.

System Interfaces and Headers, Issue 5: Volume 2 867

strchr() System Interfaces

NAME
strchr — string scanning operation

SYNOPSIS
#include <string.h>

char *strchr(const char * s, int c);

DESCRIPTION
The strchr() function locates the first occurrence of c (converted to an unsigned char) in the
string pointed to by s. The terminating null byte is considered to be part of the string.

RETURN VALUE
Upon completion, strchr() returns a pointer to the byte, or a null pointer if the byte was not
found.

ERRORS
No errors are defined.

EXAMPLES
None.

APPLICATION USAGE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
strrchr(), <string.h>.

CHANGE HISTORY
First released in Issue 1.

Derived from Issue 1 of the SVID.

Issue 4
The following change is incorporated for alignment with the ISO C standard:

• The type of argument s is changed from char * to const char *.

Other changes are incorporated as follows:

• The DESCRIPTION and RETURN VALUE sections are changed to make it clear that the
function manipulates bytes rather than (possibly multi-byte) characters.

• The APPLICATION USAGE section is removed.

868 CAE Specification (1997)

System Interfaces strcmp()

NAME
strcmp — compare two strings

SYNOPSIS
#include <string.h>

int strcmp(const char * s1 , const char * s2);

DESCRIPTION
The strcmp() function compares the string pointed to by s1 to the string pointed to by s2.

The sign of a non-zero return value is determined by the sign of the difference between the
values of the first pair of bytes (both interpreted as type unsigned char) that differ in the strings
being compared.

RETURN VALUE
Upon completion, strcmp() returns an integer greater than, equal to or less than 0, if the string
pointed to by s1 is greater than, equal to or less than the string pointed to by s2 respectively.

ERRORS
No errors are defined.

EXAMPLES
None.

APPLICATION USAGE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
strncmp(), <string.h>.

CHANGE HISTORY
First released in Issue 1.

Derived from Issue 1 of the SVID.

Issue 4
The following change is incorporated for alignment with the ISO C standard:

• The type of arguments s1 and s2 is changed from char * to const char *.

Another change is incorporated as follows:

• The DESCRIPTION is changed to make it clear that strcmp() compares bytes rather than
(possibly multi-byte) characters.

System Interfaces and Headers, Issue 5: Volume 2 869

strcoll() System Interfaces

NAME
strcoll — string comparison using collating information

SYNOPSIS
#include <string.h>

int strcoll(const char * s1 , const char * s2);

DESCRIPTION
The strcoll() function compares the string pointed to by s1 to the string pointed to by s2, both
interpreted as appropriate to the LC_COLLATE category of the current locale.

The strcoll() function will not change the setting of errno if successful.

Because no return value is reserved to indicate an error, an application wishing to check for error
situations should set errno to 0, then call strcoll(), then check errno.

RETURN VALUE
Upon successful completion, strcoll() returns an integer greater than, equal to or less than 0,
according to whether the string pointed to by s1 is greater than, equal to or less than the string
pointed to by s2 when both are interpreted as appropriate to the current locale. On error,
strcoll() may set errno, but no return value is reserved to indicate an error.

ERRORS
The strcoll() function may fail if:

EX [EINVAL] The s1 or s2 arguments contain characters outside the domain of the collating
sequence.

EXAMPLES
None.

APPLICATION USAGE
The strxfrm() and strcmp() functions should be used for sorting large lists.

FUTURE DIRECTIONS
None.

SEE ALSO
strcmp(), strxfrm(), <string.h>.

CHANGE HISTORY
First released in Issue 3.

Issue 4
The following changes are incorporated for alignment with the ISO C standard:

• The function is no longer marked as an extension.

• The type of arguments s1 and s2 are changed from char * to const char *.

Other changes are incorporated as follows:

• A paragraph describing how the sign of the return value should be determined is removed
from the DESCRIPTION.

• The [EINVAL] error is marked as an extension.

Issue 5
The DESCRIPTION is updated to indicate that errno will not be changed if the function is
successful.

870 CAE Specification (1997)

System Interfaces strcpy()

NAME
strcpy — copy a string

SYNOPSIS
#include <string.h>

char *strcpy(char * s1 , const char * s2);

DESCRIPTION
The strcpy() function copies the string pointed to by s2 (including the terminating null byte) into
the array pointed to by s1. If copying takes place between objects that overlap, the behaviour is
undefined.

RETURN VALUE
The strcpy() function returns s1; no return value is reserved to indicate an error.

ERRORS
No errors are defined.

EXAMPLES
None.

APPLICATION USAGE
Character movement is performed differently in different implementations. Thus overlapping
moves may yield surprises.

This issue is aligned with the ISO C standard; this does not affect compatibility with XPG3
applications. Reliable error detection by this function was never guaranteed.

FUTURE DIRECTIONS
None.

SEE ALSO
strncpy(), <string.h>.

CHANGE HISTORY
First released in Issue 1.

Derived from Issue 1 of the SVID.

Issue 4
The following change is incorporated for alignment with the ISO C standard:

• The type of argument s2 is changed from char * to const char *.

Other changes are incorporated as follows:

• The DESCRIPTION is changed to make it clear that the function manipulates bytes rather
than (possibly multi-byte) characters.

System Interfaces and Headers, Issue 5: Volume 2 871

strcspn() System Interfaces

NAME
strcspn — get length of a complementary substring

SYNOPSIS
#include <string.h>

size_t strcspn(const char * s1 , const char * s2);

DESCRIPTION
The strcspn() function computes the length of the maximum initial segment of the string pointed
to by s1 which consists entirely of bytes not from the string pointed to by s2.

RETURN VALUE
The strcspn() function returns the length of s1; no return value is reserved to indicate an error.

ERRORS
No errors are defined.

EXAMPLES
None.

APPLICATION USAGE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
strspn(), <string.h>.

CHANGE HISTORY
First released in Issue 1.

Derived from Issue 1 of the SVID.

Issue 4
The following change is incorporated for alignment with the ISO C standard:

• The type of arguments s1 and s2 is changed from char * to const char *.

Another change is incorporated as follows:

• The DESCRIPTION is changed to make it clear that the function manipulates bytes rather
than (possibly multi-byte) characters.

Issue 5
The RETURN VALUE section is updated to indicated that strcspn() returns the length of s1, and
not s1 itself as was previously stated.

872 CAE Specification (1997)

System Interfaces strdup()

NAME
strdup — duplicate a string

SYNOPSIS
EX #include <string.h>

char *strdup(const char * s1);

DESCRIPTION
The strdup() function returns a pointer to a new string, which is a duplicate of the string pointed
to by s1. The returned pointer can be passed to free(). A null pointer is returned if the new
string cannot be created.

RETURN VALUE
The strdup() function returns a pointer to a new string on success. Otherwise it returns a null
pointer and sets errno to indicate the error.

ERRORS
The strdup() function may fail if:

[ENOMEM] Storage space available is insufficient.

EXAMPLES
None.

APPLICATION USAGE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
malloc (), free(), <string.h>.

CHANGE HISTORY
First released in Issue 4, Version 2.

Issue 5
Moved from X/OPEN UNIX extension to BASE.

System Interfaces and Headers, Issue 5: Volume 2 873

strerror() System Interfaces

NAME
strerror — get error message string

SYNOPSIS
#include <string.h>

char *strerror(int errnum);

DESCRIPTION
The strerror() function maps the error number in errnum to a locale-dependent error message
string and returns a pointer thereto. The string pointed to must not be modified by the program,
but may be overwritten by a subsequent call to strerror() or perror().

EX The contents of the error message strings returned by strerror() should be determined by the
setting of the LC_MESSAGES category in the current locale.

The implementation will behave as if no function defined in this specification calls strerror().

The strerror() function will not change the setting of errno if successful.

Because no return value is reserved to indicate an error, an application wishing to check for error
situations should set errno to 0, then call strerror(), then check errno.

This interface need not be reentrant.

RETURN VALUE
EX Upon successful completion, strerror() returns a pointer to the generated message string. On

error errno may be set, but no return value is reserved to indicate an error.

ERRORS
The strerror() function may fail if:

EX [EINVAL] The value of errnum is not a valid error number.

EXAMPLES
None.

APPLICATION USAGE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
perror(), <string.h>.

CHANGE HISTORY
First released in Issue 3.

Issue 4
The following change is incorporated for alignment with the ISO C standard:

• The function is no longer marked as an extension.

874 CAE Specification (1997)

System Interfaces strerror()

Other changes are incorporated as follows:

• In the DESCRIPTION (a) the term ‘‘language-dependent’’ is replaced by ‘‘locale-dependent’’,
and (b) a statement about the use of the LC_MESSAGES category for determining the
language of error messages is added and marked as an extension.

• The fact that strerror() can return a null pointer on failure and set errno is marked as an
extension.

• The [EINVAL] error is marked as an extension.

• The FUTURE DIRECTIONS section is removed.

Issue 5
The DESCRIPTION is updated to indicate that errno will not be changed if the function is
successful.

A note indicating that this interface need not be reentrant is added to the DESCRIPTION.

System Interfaces and Headers, Issue 5: Volume 2 875

strfmon() System Interfaces

NAME
strfmon — convert monetary value to a string

SYNOPSIS
EX #include <monetary.h>

ssize_t strfmon(char * s, size_t maxsize , const char * format , ...);

DESCRIPTION
The strfmon() function places characters into the array pointed to by s as controlled by the string
pointed to by format . No more than maxsize bytes are placed into the array.

The format is a character string that contains two types of objects: plain characters, which are
simply copied to the output stream, and conversion specifications, each of which results in the
fetching of zero or more arguments which are converted and formatted. The results are
undefined if there are insufficient arguments for the format. If the format is exhausted while
arguments remain, the excess arguments are simply ignored.

A conversion specification consists of the following sequence:

• a % character

• optional flags

• optional field width

• optional left precision

• optional right precision

• a required conversion character that determines the conversion to be performed.

Flags

One or more of the following optional flags can be specified to control the conversion:

=f An = followed by a single character f which is used as the numeric fill character. The
fill character must be representable in a single byte in order to work with precision and
width counts. The default numeric fill character is the space character. This flag does
not affect field width filling which always uses the space character. This flag is ignored
unless a left precision (see below) is specified.

ˆ Do not format the currency amount with grouping characters. The default is to insert
the grouping characters if defined for the current locale.

+ or (Specify the style of representing positive and negative currency amounts. Only one of
+ or (may be specified. If + is specified, the locale’s equivalent of + and − are used (for
example, in the U.S.A.: the empty string if positive and − if negative). If (is specified,
negative amounts are enclosed within parentheses. If neither flag is specified, the +
style is used.

! Suppress the currency symbol from the output conversion.

− Specify the alignment. If this flag is present all fields are left-justified (padded to the
right) rather than right-justified.

876 CAE Specification (1997)

System Interfaces strfmon()

Field Width

w A decimal digit string w specifying a minimum field width in bytes in which the result
of the conversion is right-justified (or left-justified if the flag − is specified). The default
is 0.

Left Precision

#n A # followed by a decimal digit string n specifying a maximum number of digits
expected to be formatted to the left of the radix character. This option can be used to
keep the formatted output from multiple calls to the strfmon() aligned in the same
columns. It can also be used to fill unused positions with a special character as in
$***123.45 . This option causes an amount to be formatted as if it has the number of
digits specified by n. If more than n digit positions are required, this conversion
specification is ignored. Digit positions in excess of those actually required are filled
with the numeric fill character (see the =f flag above).

If grouping has not been suppressed with the ˆ flag, and it is defined for the current
locale, grouping separators are inserted before the fill characters (if any) are added.
Grouping separators are not applied to fill characters even if the fill character is a digit.

To ensure alignment, any characters appearing before or after the number in the
formatted output such as currency or sign symbols are padded as necessary with space
characters to make their positive and negative formats an equal length.

Right Precision

.p A period followed by a decimal digit string p specifying the number of digits after the
radix character. If the value of the right precision p is 0, no radix character appears. If a
right precision is not included, a default specified by the current locale is used. The
amount being formatted is rounded to the specified number of digits prior to
formatting.

Conversion Characters

The conversion characters and their meanings are:

i The double argument is formatted according to the locale’s international currency
format (for example, in the U.S.A.: USD 1,234.56).

n The double argument is formatted according to the locale’s national currency format
(for example, in the U.S.A.: $1,234.56).

% Convert to a %; no argument is converted. The entire conversion specification must be
%%.

Locale Information

The LC_MONETARY category of the program’s locale affects the behaviour of this function
including the monetary radix character (which may be different from the numeric radix
character affected by the LC_NUMERIC category), the grouping separator, the currency symbols
and formats. The international currency symbol should be conformant with the ISO 4217: 1987
standard.

If the value of maxsize is greater than {SSIZE_MAX}, the result is implementation-dependent.

System Interfaces and Headers, Issue 5: Volume 2 877

strfmon() System Interfaces

RETURN VALUE
If the total number of resulting bytes including the terminating null byte is not more than
maxsize , strfmon() returns the number of bytes placed into the array pointed to by s, not
including the terminating null byte. Otherwise, −1 is returned, the contents of the array are
indeterminate, and errno is set to indicate the error.

ERRORS
The strfmon() function will fail if:

[E2BIG] Conversion stopped due to lack of space in the buffer.

EXAMPLES
Given a locale for the U.S.A. and the values 123.45, −123.45 and 3456.781:

Conversion
Specification Output Comments
%n $123.45 default formatting

-$123.45
$3,456.78

%11n $123.45 right align within an 11 character field
-$123.45

$3,456.78

%#5n $ 123.45 aligned columns for values up to 99,999
-$ 123.45

$ 3,456.78

%=*#5n $***123.45 specify a fill character
-$***123.45

$*3,456.78

%=0#5n $000123.45 fill characters do not use grouping
-$000123.45 even if the fill character is a digit

$03,456.78

%ˆ#5n $ 123.45 disable the grouping separator
-$ 123.45

$ 3456.78

%ˆ#5.0n $ 123 round off to whole units
-$ 123

$ 3457

%ˆ#5.4n $ 123.4500 increase the precision
-$ 123.4500

$ 3456.7810

%(#5n 123.45 use an alternative pos/neg style
($ 123.45)

$ 3,456.78

% (#5n 123.45
(123.45)

3,456.78

APPLICATION USAGE
None.

FUTURE DIRECTIONS
Lower-case conversion characters are reserved for future standards use and upper-case for
implementation-dependent use.

878 CAE Specification (1997)

System Interfaces strfmon()

SEE ALSO
localeconv (), <monetary.h>.

CHANGE HISTORY
First released in Issue 4.

Issue 5
Moved from ENHANCED I18N to BASE and the [ENOSYS] error is removed.

A sentence is added to the DESCRIPTION warning about values of maxsize that are greater than
{SSIZE_MAX}.

System Interfaces and Headers, Issue 5: Volume 2 879

strftime() System Interfaces

NAME
strftime — convert date and time to a string

SYNOPSIS
#include <time.h>

size_t strftime(char * s, size_t maxsize , const char * format ,
const struct tm * timptr);

DESCRIPTION
The strftime() function places bytes into the array pointed to by s as controlled by the string
pointed to by format . The format string consists of zero or more conversion specifications and
ordinary characters. A conversion specification consists of a % character and a terminating
conversion character that determines the conversion specification’s behaviour. All ordinary
characters (including the terminating null byte) are copied unchanged into the array. If copying
takes place between objects that overlap, the behaviour is undefined. No more than maxsize
bytes are placed into the array. Each conversion specification is replaced by appropriate
characters as described in the following list. The appropriate characters are determined by the
program’s locale and by the values contained in the structure pointed to by timptr .

Local timezone information is used as though strftime() called tzset().

%a is replaced by the locale’s abbreviated weekday name.
%A is replaced by the locale’s full weekday name.
%b is replaced by the locale’s abbreviated month name.
%B is replaced by the locale’s full month name.
%c is replaced by the locale’s appropriate date and time representation.

EX %C is replaced by the century number (the year divided by 100 and truncated to an integer)
as a decimal number [00-99].

%d is replaced by the day of the month as a decimal number [01,31].
EX %D same as %m/%d/%y.

%e is replaced by the day of the month as a decimal number [1,31]; a single digit is
preceded by a space.

%h same as %b.
%H is replaced by the hour (24-hour clock) as a decimal number [00,23].
%I is replaced by the hour (12-hour clock) as a decimal number [01,12].
%j is replaced by the day of the year as a decimal number [001,366].
%m is replaced by the month as a decimal number [01,12].
%M is replaced by the minute as a decimal number [00,59].

EX %n is replaced by a newline character.
%p is replaced by the locale’s equivalent of either a.m. or p.m.

EX %r is replaced by the time in a.m. and p.m. notation; in the POSIX locale this is equivalent
to %I:%M:%S %p.

%R is replaced by the time in 24 hour notation (%H:%M).
%S is replaced by the second as a decimal number [00,61].

EX %t is replaced by a tab character.
%T is replaced by the time (%H:%M:%S).
%u is replaced by the weekday as a decimal number [1,7], with 1 representing Monday.
%U is replaced by the week number of the year (Sunday as the first day of the week) as a

decimal number [00,53].
%V is replaced by the week number of the year (Monday as the first day of the week) as a

decimal number [01,53]. If the week containing 1 January has four or more days in the
new year, then it is considered week 1. Otherwise, it is week 53 of the previous year,
and the next week is week 1.

%w is replaced by the weekday as a decimal number [0,6], with 0 representing Sunday.

880 CAE Specification (1997)

System Interfaces strftime()

%W is replaced by the week number of the year (Monday as the first day of the week) as a
decimal number [00,53]. All days in a new year preceding the first Monday are
considered to be in week 0.

%x is replaced by the locale’s appropriate date representation.
%X is replaced by the locale’s appropriate time representation.
%y is replaced by the year without century as a decimal number [00,99].
%Y is replaced by the year with century as a decimal number.
%Z is replaced by the timezone name or abbreviation, or by no bytes if no timezone

information exists.
%% is replaced by %.

If a conversion specification does not correspond to any of the above, the behaviour is
undefined.

Modified Conversion Specifiers

EX Some conversion specifiers can be modified by the E or O modifier characters to indicate that an
alternative format or specification should be used rather than the one normally used by the
unmodified conversion specifier. If the alternative format or specification does not exist for the
current locale, (see ERA in the XBD specification, Section 5.3.5) the behaviour will be as if the
unmodified conversion specification were used.

%Ec is replaced by the locale’s alternative appropriate date and time representation.
%EC is replaced by the name of the base year (period) in the locale’s alternative

representation.
%Ex is replaced by the locale’s alternative date representation.
%EX is replaced by the locale’ alternative time representation.
%Ey is replaced by the offset from %EC (year only) in the locale’s alternative representation.
%EY is replaced by the full alternative year representation.
%Od is replaced by the day of the month, using the locale’s alternative numeric symbols,

filled as needed with leading zeros if there is any alternative symbol for zero, otherwise
with leading spaces.

%Oe is replaced by the day of month, using the locale’s alternative numeric symbols, filled as
needed with leading spaces.

%OH is replaced by the hour (24-hour clock) using the locale’s alternative numeric symbols.
%OI is replaced by the hour (12-hour clock) using the locale’s alternative numeric symbols.
%Om is replaced by the month using the locale’s alternative numeric symbols.
%OM is replaced by the minutes using the locale’s alternative numeric symbols.
%OS is replaced by the seconds using the locale’s alternative numeric symbols.
%Ou is replaced by the weekday as a number in the locale’s alternative representation

(Monday=1).
%OU is replaced by the week number of the year (Sunday as the first day of the week, rules

corresponding to %U) using the locale’s alternative numeric symbols.
%OV is replaced by the week number of the year (Monday as the first day of the week, rules

corresponding to %V) using the locale’s alternative numeric symbols.
%Ow is replaced by the number of the weekday (Sunday=0) using the locale’s alternative

numeric symbols.
%OW is replaced by the week number of the year (Monday as the first day of the week) using

the locale’s alternative numeric symbols.
%Oy is replaced by the year (offset from %C) using the locale’s alternative numeric symbols.

RETURN VALUE
If the total number of resulting bytes including the terminating null byte is not more than

System Interfaces and Headers, Issue 5: Volume 2 881

strftime() System Interfaces

maxsize , strftime() returns the number of bytes placed into the array pointed to by s, not
including the terminating null byte. Otherwise, 0 is returned and the contents of the array are
indeterminate.

ERRORS
No errors are defined.

EXAMPLES
None.

APPLICATION USAGE
The range of values for %S is [00,61] rather than [00,59] to allow for the occasional leap second
and even more infrequent double leap second.

Some of the conversion specifications marked EX are duplicates of others. They are included for
compatibility with nl_cxtime() and nl_ascxtime(), which were published in Issue 2.

Applications should use %Y (4-digit years) in preference to %y (2-digit years).

FUTURE DIRECTIONS
None.

SEE ALSO
asctime(), clock (), ctime(), difftime(), gmtime(), localtime (), mktime(), strptime(), time(), utime(),
<time.h>.

CHANGE HISTORY
First released in Issue 3.

Issue 4
The following changes are incorporated for alignment with the ISO C standard:

• The type of argument format is changed from char * to const char *, and the type of argument
timptr is changed from struct tm* to const struct tm*.

• In the description of the %Z conversion specification, the words ‘‘or abbreviation’’ are added
to indicate that strftime() does not necessarily return a full timezone name.

Other changes are incorporated as follows:

• The DESCRIPTION is expanded to describe modified conversion specifiers.

• %C, %e, %R, %u and %V are added to the list of valid conversion specifications.

• The DESCRIPTION and RETURN VALUE sections are changed to make it clear when the
function uses byte values rather than (possibly multi-byte) character values.

Issue 5
The description of %OV is changed to be consistent with %V and defines Monday as the first
day of the week.

The description of %Oy is clarified.

882 CAE Specification (1997)

System Interfaces strlen()

NAME
strlen — get string length

SYNOPSIS
#include <string.h>

size_t strlen(const char * s);

DESCRIPTION
The strlen() function computes the number of bytes in the string to which s points, not including
the terminating null byte.

RETURN VALUE
The strlen() function returns the length of s; no return value is reserved to indicate an error.

ERRORS
No errors are defined.

EXAMPLES
None.

APPLICATION USAGE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
<string.h>.

CHANGE HISTORY
First released in Issue 1.

Derived from Issue 1 of the SVID.

Issue 4
The following change is incorporated for alignment with the ISO C standard:

• The type of argument s is changed from char * to const char *.

Another change is incorporated as follows:

• The DESCRIPTION is changed to make it clear that the function works in units of bytes
rather than (possibly multi-byte) characters.

Issue 5
The RETURN VALUE section is updated to indicate that strlen() returns the length of s, and not
s itself as was previously stated.

System Interfaces and Headers, Issue 5: Volume 2 883

strncasecmp() System Interfaces

NAME
strncasecmp — case-insensitive string comparison

SYNOPSIS
EX #include <strings.h>

int strncasecmp(const char * s1 , const char * s2 , size_t n);

DESCRIPTION
Refer to strcasecmp().

CHANGE HISTORY
First released in Issue 4, Version 2.

Issue 5
Moved from X/OPEN UNIX extension to BASE.

884 CAE Specification (1997)

System Interfaces strncat()

NAME
strncat — concatenate part of two strings

SYNOPSIS
#include <string.h>

char *strncat(char * s1 , const char * s2 , size_t n);

DESCRIPTION
The strncat() function appends not more than n bytes (a null byte and bytes that follow it are not
appended) from the array pointed to by s2 to the end of the string pointed to by s1. The initial
byte of s2 overwrites the null byte at the end of s1. A terminating null byte is always appended
to the result. If copying takes place between objects that overlap, the behaviour is undefined.

RETURN VALUE
The strncat() function returns s1; no return value is reserved to indicate an error.

ERRORS
No errors are defined.

EXAMPLES
None.

APPLICATION USAGE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
strcat(), <string.h>.

CHANGE HISTORY
First released in Issue 1.

Derived from Issue 1 of the SVID.

Issue 4
The following change is incorporated for alignment with the ISO C standard:

• The type of argument s2 is changed from char * to const char *.

Another change is incorporated as follows:

• The DESCRIPTION is changed to make it clear that the function manipulates bytes rather
than (possibly multi-byte) characters.

System Interfaces and Headers, Issue 5: Volume 2 885

strncmp() System Interfaces

NAME
strncmp — compare part of two strings

SYNOPSIS
#include <string.h>

int strncmp(const char * s1 , const char * s2 , size_t n);

DESCRIPTION
The strncmp() function compares not more than n bytes (bytes that follow a null byte are not
compared) from the array pointed to by s1 to the array pointed to by s2.

The sign of a non-zero return value is determined by the sign of the difference between the
values of the first pair of bytes (both interpreted as type unsigned char) that differ in the strings
being compared.

RETURN VALUE
Upon successful completion, strncmp() returns an integer greater than, equal to or less than 0, if
the possibly null-terminated array pointed to by s1 is greater than, equal to or less than the
possibly null-terminated array pointed to by s2 respectively.

ERRORS
No errors are defined.

EXAMPLES
None.

APPLICATION USAGE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
strcmp(), <string.h>.

CHANGE HISTORY
First released in Issue 1.

Derived from Issue 1 of the SVID.

Issue 4
The following change is incorporated for alignment with the ISO C standard:

• The type of arguments s1 and s2 are changed from char * to const char *.

Another change is incorporated as follows:

• The DESCRIPTION is changed to make it clear that the function manipulates bytes rather
than (possibly multi-byte) characters.

886 CAE Specification (1997)

System Interfaces strncpy()

NAME
strncpy — copy part of a string

SYNOPSIS
#include <string.h>

char *strncpy(char * s1 , const char * s2 , size_t n);

DESCRIPTION
The strncpy() function copies not more than n bytes (bytes that follow a null byte are not copied)
from the array pointed to by s2 to the array pointed to by s1. If copying takes place between
objects that overlap, the behaviour is undefined.

If the array pointed to by s2 is a string that is shorter than n bytes, null bytes are appended to the
copy in the array pointed to by s1, until n bytes in all are written.

RETURN VALUE
The strncpy() function returns s1; no return value is reserved to indicate an error.

ERRORS
No errors are defined.

EXAMPLES
None.

APPLICATION USAGE
Character movement is performed differently in different implementations. Thus overlapping
moves may yield surprises.

If there is no null byte in the first n bytes of the array pointed to by s2, the result will not be null-
terminated.

FUTURE DIRECTIONS
None.

SEE ALSO
strcpy(), <string.h>.

CHANGE HISTORY
First released in Issue 1.

Derived from Issue 1 of the SVID.

Issue 4
The following change is incorporated for alignment with the ISO C standard:

• The type of argument s2 is changed from char * to const char *.

Another change is incorporated as follows:

• The DESCRIPTION is changed to make it clear that the function manipulates bytes rather
than (possibly multi-byte) characters.

System Interfaces and Headers, Issue 5: Volume 2 887

strpbrk() System Interfaces

NAME
strpbrk — scan string for byte

SYNOPSIS
#include <string.h>

char *strpbrk(const char * s1 , const char * s2);

DESCRIPTION
The strpbrk() function locates the first occurrence in the string pointed to by s1 of any byte from
the string pointed to by s2.

RETURN VALUE
Upon successful completion, strpbrk() returns a pointer to the byte or a null pointer if no byte
from s2 occurs in s1.

ERRORS
No errors are defined.

EXAMPLES
None.

APPLICATION USAGE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
strchr(), strrchr(), <string.h>.

CHANGE HISTORY
First released in Issue 1.

Derived from Issue 1 of the SVID.

Issue 4
The following change is incorporated for alignment with the ISO C standard:

• The type of arguments s1 and s2 is changed from char * to const char *.

Another change is incorporated as follows:

• The DESCRIPTION and RETURN VALUE sections are changed to make it clear that the
function works in units of bytes rather than (possibly multi-byte) characters.

888 CAE Specification (1997)

System Interfaces strptime()

NAME
strptime — date and time conversion

SYNOPSIS
EX #include <time.h>

char *strptime(const char * buf , const char * format , struct tm * tm);

DESCRIPTION
The strptime() function converts the character string pointed to by buf to values which are stored
in the tm structure pointed to by tm, using the format specified by format .

The format is composed of zero or more directives. Each directive is composed of one of the
following: one or more white-space characters (as specified by isspace(); an ordinary character
(neither % nor a white-space character); or a conversion specification. Each conversion
specification is composed of a % character followed by a conversion character which specifies
the replacement required. There must be white-space or other non-alphanumeric characters
between any two conversion specifications. The following conversion specifications are
supported:

%a is the day of week, using the locale’s weekday names; either the abbreviated or full
name may be specified.

%A is the same as %a.
%b is the month, using the locale’s month names; either the abbreviated or full name may

be specified.
%B is the same as %b.
%c is replaced by the locale’s appropriate date and time representation.
%C is the century number [0,99]; leading zeros are permitted but not required.
%d is the day of month [1,31]; leading zeros are permitted but not required.
%D is the date as %m/%d/%y.
%e is the same as %d.
%h is the same as %b.
%H is the hour (24-hour clock) [0,23]; leading zeros are permitted but not required.
%I is the hour (12-hour clock) [1,12]; leading zeros are permitted but not required.
%j is the day number of the year [1,366]; leading zeros are permitted but not required.
%m is the month number [1,12]; leading zeros are permitted but not required.
%M is the minute [0-59]; leading zeros are permitted but not required.
%n is any white space.
%p is the locale’s equivalent of a.m or p.m.
%r is the time as %I:%M:%S %p.
%R is the time as %H:%M.
%S is the seconds [0,61]; leading zeros are permitted but not required.
%t is any white space.
%T is the time as %H:%M:%S.
%U is the week number of the year (Sunday as the first day of the week) as a decimal

number [00,53]; leading zeros are permitted but not required.
%w is the weekday as a decimal number [0,6], with 0 representing Sunday; leading zeros

are permitted but not required.
%W is the the week number of the year (Monday as the first day of the week) as a decimal

number [00,53]; leading zeros are permitted but not required.
%x is the date, using the locale’s date format.
%X is the time, using the locale’s time format.

System Interfaces and Headers, Issue 5: Volume 2 889

strptime() System Interfaces

%y is the year within century. When a century is not otherwise specified, values in the
range 69-99 refer to years in the twentieth century (1969 to 1999 inclusive); values in the
range 00-68 refer to years in the twenty-first century (2000 to 2068 inclusive). Leading
zeros are permitted but not required.

%Y is the year, including the century (for example, 1988).
%% is replaced by %.

Modified Directives

Some directives can be modified by the E and O modifier characters to indicate that an
alternative format or specification should be used rather than the one normally used by the
unmodified directive. If the alternative format or specification does not exist in the current
locale, the behaviour will be as if the unmodified directive were used.

%Ec is the locale’s alternative appropriate date and time representation.
%EC is the name of the base year (period) in the locale’s alternative representation.
%Ex is the locale’s alternative date representation.
%EX is the locale’s alternative time representation.
%Ey is the offset from %EC (year only) in the locale’s alternative representation.
%EY is the full alternative year representation.
%Od is the day of the month using the locale’s alternative numeric symbols; leading zeros

are permitted but not required.
%Oe is the same as %Od.
%OH is the hour (24-hour clock) using the locale’s alternative numeric symbols.
%OI is the hour (12-hour clock) using the locale’s alternative numeric symbols.
%Om is the month using the locale’s alternative numeric symbols.
%OM is the minutes using the locale’s alternative numeric symbols.
%OS is the seconds using the locale’s alternative numeric symbols.
%OU is the week number of the year (Sunday as the first day of the week) using the locale’s

alternative numeric symbols.
%Ow is the number of the weekday (Sunday=0) using the locale’s alternative numeric

symbols.
%OW is the week number of the year (Monday as the first day of the week) using the locale’s

alternative numeric symbols.
%Oy is the year (offset from %C) using the locale’s alternative numeric symbols.

A directive composed of white-space characters is executed by scanning input up to the first
character that is not white-space (which remains unscanned), or until no more characters can be
scanned.

A directive that is an ordinary character is executed by scanning the next character from the
buffer. If the character scanned from the buffer differs from the one comprising the directive, the
directive fails, and the differing and subsequent characters remain unscanned.

A series of directives composed of %n, %t, white-space characters or any combination is
executed by scanning up to the first character that is not white space (which remains
unscanned), or until no more characters can be scanned.

Any other conversion specification is executed by scanning characters until a character matching
the next directive is scanned, or until no more characters can be scanned. These characters,
except the one matching the next directive, are then compared to the locale values associated
with the conversion specifier. If a match is found, values for the appropriate tm structure
members are set to values corresponding to the locale information. Case is ignored when
matching items in buf such as month or weekday names. If no match is found, strptime() fails
and no more characters are scanned.

890 CAE Specification (1997)

System Interfaces strptime()

RETURN VALUE
Upon successful completion, strptime() returns a pointer to the character following the last
character parsed. Otherwise, a null pointer is returned.

ERRORS
No errors are defined.

EXAMPLES
None.

APPLICATION USAGE
Several ‘‘same as’’ formats, and the special processing of white-space characters are provided in
order to ease the use of identical format strings for strftime() and strptime().

Applications should use %Y (4-digit years) in preference to %y (2-digit years).

FUTURE DIRECTIONS
This function is expected to be mandatory in the next issue of this specification.

SEE ALSO
scanf(), strftime(), time(), <time.h>.

CHANGE HISTORY
First released in Issue 4.

Issue 5
Moved from ENHANCED I18N to BASE and the [ENOSYS] error is removed.

The exact meaning of the %y and %Oy specifiers are clarified in the DESCRIPTION.

System Interfaces and Headers, Issue 5: Volume 2 891

strrchr() System Interfaces

NAME
strrchr — string scanning operation

SYNOPSIS
#include <string.h>

char *strrchr(const char * s, int c);

DESCRIPTION
The strrchr() function locates the last occurrence of c (converted to a char) in the string pointed
to by s. The terminating null byte is considered to be part of the string.

RETURN VALUE
Upon successful completion, strrchr() returns a pointer to the byte or a null pointer if c does not
occur in the string.

ERRORS
No errors are defined.

EXAMPLES
None.

APPLICATION USAGE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
strchr(), <string.h>.

CHANGE HISTORY
First released in Issue 1.

Derived from Issue 1 of the SVID.

Issue 4
The following change is incorporated for alignment with the ISO C standard:

• The type of argument s is changed from char * to const char *.

Another change is incorporated as follows:

• The DESCRIPTION and RETURN VALUE sections are changed to make it clear that the
function works in units of bytes rather than (possibly multi-byte) characters.

892 CAE Specification (1997)

System Interfaces strspn()

NAME
strspn — get length of a substring

SYNOPSIS
#include <string.h>

size_t strspn(const char * s1 , const char * s2);

DESCRIPTION
The strspn() function computes the length of the maximum initial segment of the string pointed
to by s1 which consists entirely of bytes from the string pointed to by s2.

RETURN VALUE
The strspn() function returns the length of s1; no return value is reserved to indicate an error.

ERRORS
No errors are defined.

EXAMPLES
None.

APPLICATION USAGE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
strcspn(), <string.h>.

CHANGE HISTORY
First released in Issue 1.

Derived from Issue 1 of the SVID.

Issue 4
The following change is incorporated for alignment with the ISO C standard:

• The type of arguments s1 and s2 are changed from char * to const char *.

Another change is incorporated as follows:

• The DESCRIPTION is changed to make it clear that the function works in units of bytes
rather than (possibly multi-byte) characters.

Issue 5
The RETURN VALUE section is updated to indicate that strspn() returns the length of s, and not
s itself as was previously stated.

System Interfaces and Headers, Issue 5: Volume 2 893

strstr() System Interfaces

NAME
strstr — find a substring

SYNOPSIS
#include <string.h>

char *strstr(const char * s1 , const char * s2);

DESCRIPTION
The strstr() function locates the first occurrence in the string pointed to by s1 of the sequence of
bytes (excluding the terminating null byte) in the string pointed to by s2.

RETURN VALUE
Upon successful completion, strstr() returns a pointer to the located string or a null pointer if the
string is not found.

If s2 points to a string with zero length, the function returns s1.

ERRORS
No errors are defined.

EXAMPLES
None.

APPLICATION USAGE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
strchr(), <string.h>.

CHANGE HISTORY
First released in Issue 3.

Entry included for alignment with the ANSI C standard.

Issue 4
The following change is incorporated for alignment with the ISO C standard:

• The type of arguments s1 and s2 are changed from char * to const char *.

Another change is incorporated as follows:

• The DESCRIPTION is changed to make it clear that the function works in units of bytes
rather than (possibly multi-byte) characters.

894 CAE Specification (1997)

System Interfaces strtod()

NAME
strtod — convert string to a double-precision number

SYNOPSIS
#include <stdlib.h>

double strtod(const char * str , char ** endptr);

DESCRIPTION
The strtod() function converts the initial portion of the string pointed to by str to type double
representation. First it decomposes the input string into three parts: an initial, possibly empty,
sequence of white-space characters (as specified by isspace()); a subject sequence interpreted as a
floating-point constant; and a final string of one or more unrecognised characters, including the
terminating null byte of the input string. Then it attempts to convert the subject sequence to a
floating-point number, and returns the result.

The expected form of the subject sequence is an optional + or − sign, then a non-empty sequence
of digits optionally containing a radix character, then an optional exponent part. An exponent
part consists of e or E, followed by an optional sign, followed by one or more decimal digits.
The subject sequence is defined as the longest initial subsequence of the input string, starting
with the first non-white-space character, that is of the expected form. The subject sequence is
empty if the input string is empty or consists entirely of white-space characters, or if the first
character that is not white space is other than a sign, a digit or a radix character.

If the subject sequence has the expected form, the sequence starting with the first digit or the
radix character (whichever occurs first) is interpreted as a floating constant of the C language,
except that the radix character is used in place of a period, and that if neither an exponent part
nor a radix character appears, a radix character is assumed to follow the last digit in the string.
If the subject sequence begins with a minus sign, the value resulting from the conversion is
negated. A pointer to the final string is stored in the object pointed to by endptr, provided that
endptr is not a null pointer.

The radix character is defined in the program’s locale (category LC_NUMERIC). In the POSIX
locale, or in a locale where the radix character is not defined, the radix character defaults to a
period (.).

In other than the POSIX locale, other implementation-dependent subject sequence forms may be
accepted.

If the subject sequence is empty or does not have the expected form, no conversion is performed;
the value of str is stored in the object pointed to by endptr, provided that endptr is not a null
pointer.

The strtod() function will not change the setting of errno if successful.

Because 0 is returned on error and is also a valid return on success, an application wishing to
check for error situations should set errno to 0, then call strtod(), then check errno.

RETURN VALUE
Upon successful completion, strtod() returns the converted value. If no conversion could be

EX performed, 0 is returned, and errno may be set to [EINVAL].

If the correct value is outside the range of representable values, ±HUGE_VAL is returned
(according to the sign of the value), and errno is set to [ERANGE].

If the correct value would cause an underflow, 0 is returned and errno is set to [ERANGE].

System Interfaces and Headers, Issue 5: Volume 2 895

strtod() System Interfaces

ERRORS
The strtod() function will fail if:

[ERANGE] The value to be returned would cause overflow or underflow.

The strtod() function may fail if:

EX [EINVAL] No conversion could be performed.

EXAMPLES
None.

APPLICATION USAGE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
isspace(), localeconv (), scanf(), setlocale (), strtol(), <stdlib.h>, the XBD specification, Chapter 5,
Locale.

CHANGE HISTORY
First released in Issue 1.

Derived from Issue 1 of the SVID.

Issue 4
The following changes are incorporated for alignment with the ISO C standard:

• The function is no longer marked as an extension.

• The type of argument str is changed from char * to const char *.

• The name of the second argument is changed from ptr to endptr.

• The precise conditions under which the [ERANGE] error can be set have been defined in the
RETURN VALUE section.

Other changes are incorporated as follows:

• The DESCRIPTION is changed to make it clear when the function manipulates bytes and
when it manipulates characters.

• The [EINVAL] error is added to the ERRORS section and marked as an extension.

Issue 5
The DESCRIPTION is updated to indicate that errno will not be changed if the function is
successful.

896 CAE Specification (1997)

System Interfaces strtok()

NAME
strtok, strtok_r — split string into tokens

SYNOPSIS
#include <string.h>

char *strtok(char * s1 , const char * s2);
char *strtok_r(char * s, const char * sep , char ** lasts);

DESCRIPTION
A sequence of calls to strtok() breaks the string pointed to by s1 into a sequence of tokens, each
of which is delimited by a byte from the string pointed to by s2. The first call in the sequence has
s1 as its first argument, and is followed by calls with a null pointer as their first argument. The
separator string pointed to by s2 may be different from call to call.

The first call in the sequence searches the string pointed to by s1 for the first byte that is not
contained in the current separator string pointed to by s2. If no such byte is found, then there
are no tokens in the string pointed to by s1 and strtok() returns a null pointer. If such a byte is
found, it is the start of the first token.

The strtok() function then searches from there for a byte that is contained in the current
separator string. If no such byte is found, the current token extends to the end of the string
pointed to by s1, and subsequent searches for a token will return a null pointer. If such a byte is
found, it is overwritten by a null byte, which terminates the current token. The strtok() function
saves a pointer to the following byte, from which the next search for a token will start.

Each subsequent call, with a null pointer as the value of the first argument, starts searching from
the saved pointer and behaves as described above.

The implementation will behave as if no function defined in this document calls strtok().

The strtok() interface need not be reentrant.

The function strtok_r() considers the null-terminated string s as a sequence of zero or more text
tokens separated by spans of one or more characters from the separator string sep. The
argument lasts points to a user-provided pointer which points to stored information necessary
for strtok_r() to continue scanning the same string.

In the first call to strtok_r(), s points to a null-terminated string, sep to a null-terminated string of
separator characters and the value pointed to by lasts is ignored. The function strtok_r() returns
a pointer to the first character of the first token, writes a null character into s immediately
following the returned token, and updates the pointer to which lasts points.

In subsequent calls, s is a NULL pointer and lasts will be unchanged from the previous call so
that subsequent calls will move through the string s, returning successive tokens until no tokens
remain. The separator string sep may be different from call to call. When no token remains in s,
a NULL pointer is returned.

RETURN VALUE
Upon successful completion, strtok() returns a pointer to the first byte of a token. Otherwise, if
there is no token, strtok() returns a null pointer.

The function strtok_r() returns a pointer to the token found, or a NULL pointer when no token is
found.

ERRORS
No errors are defined.

System Interfaces and Headers, Issue 5: Volume 2 897

strtok() System Interfaces

EXAMPLES
None.

APPLICATION USAGE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
<string.h>.

CHANGE HISTORY
First released in Issue 1.

Derived from Issue 1 of the SVID.

Issue 4
The following changes are incorporated for alignment with the ISO C standard:

• The function is no longer marked as an extension.

• The type of argument s2 is changed from char * to const char *.

Another change is incorporated as follows:

• The DESCRIPTION is changed to make it clear that the function manipulates bytes rather
than (possibly multi-byte) characters.

Issue 5
The strtok_r() function is included for alignment with the POSIX Threads Extension.

A note indicating that the strtok() interface need not be reentrant is added to the DESCRIPTION.

898 CAE Specification (1997)

System Interfaces strtol()

NAME
strtol — convert string to a long integer

SYNOPSIS
#include <stdlib.h>

long int strtol(const char * str , char * *endptr , int base);

DESCRIPTION
The strtol() function converts the initial portion of the string pointed to by str to a type long int
representation. First it decomposes the input string into three parts: an initial, possibly empty,
sequence of white-space characters (as specified by isspace()); a subject sequence interpreted as
an integer represented in some radix determined by the value of base; and a final string of one or
more unrecognised characters, including the terminating null byte of the input string. Then it
attempts to convert the subject sequence to an integer, and returns the result.

If the value of base is 0, the expected form of the subject sequence is that of a decimal constant,
octal constant or hexadecimal constant, any of which may be preceded by a + or − sign. A
decimal constant begins with a non-zero digit, and consists of a sequence of decimal digits. An
octal constant consists of the prefix 0 optionally followed by a sequence of the digits 0 to 7 only.
A hexadecimal constant consists of the prefix 0x or 0X followed by a sequence of the decimal
digits and letters a (or A) to f (or F) with values 10 to 15 respectively.

If the value of base is between 2 and 36, the expected form of the subject sequence is a sequence
of letters and digits representing an integer with the radix specified by base, optionally preceded
by a + or − sign. The letters from a (or A) to z (or Z) inclusive are ascribed the values 10 to 35;
only letters whose ascribed values are less than that of base are permitted. If the value of base is
16, the characters 0x or 0X may optionally precede the sequence of letters and digits, following
the sign if present.

The subject sequence is defined as the longest initial subsequence of the input string, starting
with the first non-white-space character, that is of the expected form. The subject sequence
contains no characters if the input string is empty or consists entirely of white-space characters,
or if the first non-white-space character is other than a sign or a permissible letter or digit.

If the subject sequence has the expected form and the value of base is 0, the sequence of
characters starting with the first digit is interpreted as an integer constant. If the subject
sequence has the expected form and the value of base is between 2 and 36, it is used as the base
for conversion, ascribing to each letter its value as given above. If the subject sequence begins
with a minus sign, the value resulting from the conversion is negated. A pointer to the final
string is stored in the object pointed to by endptr, provided that endptr is not a null pointer.

In other than the POSIX locale, additional implementation-dependent subject sequence forms
may be accepted.

If the subject sequence is empty or does not have the expected form, no conversion is performed;
the value of str is stored in the object pointed to by endptr, provided that endptr is not a null
pointer.

The strtol() function will not change the setting of errno if successful.

Because 0, LONG_MIN and LONG_MAX are returned on error and are also valid returns on
success, an application wishing to check for error situations should set errno to 0, then call
strtol(), then check errno.

RETURN VALUE
Upon successful completion strtol() returns the converted value, if any. If no conversion could

EX

System Interfaces and Headers, Issue 5: Volume 2 899

strtol() System Interfaces

be performed, 0 is returned and errno may be set to [EINVAL].

If the correct value is outside the range of representable values, LONG_MAX or LONG_MIN is
returned (according to the sign of the value), and errno is set to [ERANGE].

ERRORS
The strtol() function will fail if:

[ERANGE] The value to be returned is not representable.

The strtol() function may fail if:

EX [EINVAL] The value of base is not supported.

EXAMPLES
None.

APPLICATION USAGE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
isalpha (), scanf(), strtod(), <stdlib.h>.

CHANGE HISTORY
First released in Issue 1.

Derived from Issue 1 of the SVID.

Issue 4
The following changes are incorporated for alignment with the ISO C standard:

• The function is no longer marked as an extension.

• The type of argument str is changed from char * to const char *.

• The name of the second argument is changed from ptr to endptr.

• The DESCRIPTION is changed to indicate permitted forms of the subject sequence when base
is 0.

• The RETURN VALUE section is changed to indicate that LONG_MAX or LONG_MIN will
be returned if the converted value is too large or too small.

Other changes are incorporated as follows:

• The DESCRIPTION is changed to make it clear when the function manipulates bytes and
when it manipulates characters.

• In the RETURN VALUE section, text indicating that errno will be set when 0 is returned is
marked as an extension.

• The ERRORS section is updated in line with the RETURN VALUE section.

Issue 5
The DESCRIPTION is updated to indicate that errno will not be changed if the function is
successful.

900 CAE Specification (1997)

System Interfaces strtoul()

NAME
strtoul — convert string to an unsigned long

SYNOPSIS
#include <stdlib.h>

unsigned long int strtoul(const char * str , char * *endptr , int base);

DESCRIPTION
The strtoul() function converts the initial portion of the string pointed to by str to a type
unsigned long int representation. First it decomposes the input string into three parts: an initial,
possibly empty, sequence of white-space characters (as specified by isspace()); a subject sequence
interpreted as an integer represented in some radix determined by the value of base; and a final
string of one or more unrecognised characters, including the terminating null byte of the input
string. Then it attempts to convert the subject sequence to an unsigned integer, and returns the
result.

If the value of base is 0, the expected form of the subject sequence is that of a decimal constant,
octal constant or hexadecimal constant, any of which may be preceded by a + or − sign. A
decimal constant begins with a non-zero digit, and consists of a sequence of decimal digits. An
octal constant consists of the prefix 0 optionally followed by a sequence of the digits 0 to 7 only.
A hexadecimal constant consists of the prefix 0x or 0X followed by a sequence of the decimal
digits and letters a (or A) to f (or F) with values 10 to 15 respectively.

If the value of base is between 2 and 36, the expected form of the subject sequence is a sequence
of letters and digits representing an integer with the radix specified by base, optionally preceded
by a + or − sign. The letters from a (or A) to z (or Z) inclusive are ascribed the values 10 to 35;
only letters whose ascribed values are less than that of base are permitted. If the value of base is
16, the characters 0x or 0X may optionally precede the sequence of letters and digits, following
the sign if present.

The subject sequence is defined as the longest initial subsequence of the input string, starting
with the first non-white-space character, that is of the expected form. The subject sequence
contains no characters if the input string is empty or consists entirely of white-space characters,
or if the first non-white-space character is other than a sign or a permissible letter or digit.

If the subject sequence has the expected form and the value of base is 0, the sequence of
characters starting with the first digit is interpreted as an integer constant. If the subject
sequence has the expected form and the value of base is between 2 and 36, it is used as the base
for conversion, ascribing to each letter its value as given above. If the subject sequence begins
with a minus sign, the value resulting from the conversion is negated. A pointer to the final
string is stored in the object pointed to by endptr, provided that endptr is not a null pointer.

In other than the POSIX locale, additional implementation-dependent subject sequence forms
may be accepted.

If the subject sequence is empty or does not have the expected form, no conversion is performed;
the value of str is stored in the object pointed to by endptr, provided that endptr is not a null
pointer.

The strtoul() function will not change the setting of errno if successful.

Because 0 and ULONG_MAX are returned on error and are also valid returns on success, an
application wishing to check for error situations should set errno to 0, then call strtoul(), then
check errno.

RETURN VALUE
Upon successful completion strtoul() returns the converted value, if any. If no conversion could

System Interfaces and Headers, Issue 5: Volume 2 901

strtoul() System Interfaces

EX be performed, 0 is returned and errno may be set to [EINVAL]. If the correct value is outside the
range of representable values, ULONG_MAX is returned and errno is set to [ERANGE].

ERRORS
The strtoul() function will fail if:

EX [EINVAL] The value of base is not supported.

[ERANGE] The value to be returned is not representable.

The strtoul() function may fail if:

EX [EINVAL] No conversion could be performed.

EXAMPLES
None.

APPLICATION USAGE
Unlike strtod() and strtol(), strtoul() must always return a non-negative number; so, using the
return value of strtoul() for out-of-range numbers with strtoul() could cause more severe
problems than just loss of precision if those numbers can ever be negative.

FUTURE DIRECTIONS
None.

SEE ALSO
isalpha (), scanf(), strtod(), strtol(), <stdlib.h>.

CHANGE HISTORY
First released in Issue 4.

Derived from the ANSI C standard.

Issue 5
The DESCRIPTION is updated to indicate that errno will not be changed if the function is
successful.

902 CAE Specification (1997)

System Interfaces strxfrm()

NAME
strxfrm — string transformation

SYNOPSIS
#include <string.h>

size_t strxfrm(char * s1 , const char * s2 , size_t n);

DESCRIPTION
The strxfrm() function transforms the string pointed to by s2 and places the resulting string into
the array pointed to by s1. The transformation is such that if strcmp() is applied to two
transformed strings, it returns a value greater than, equal to or less than 0, corresponding to the
result of strcoll() applied to the same two original strings. No more than n bytes are placed into
the resulting array pointed to by s1, including the terminating null byte. If n is 0, s1 is permitted
to be a null pointer. If copying takes place between objects that overlap, the behaviour is
undefined.

The strxfrm() function will not change the setting of errno if successful.

Because no return value is reserved to indicate an error, an application wishing to check for error
situations should set errno to 0, then call strcoll(), then check errno.

RETURN VALUE
Upon successful completion, strxfrm() returns the length of the transformed string (not
including the terminating null byte). If the value returned is n or more, the contents of the array
pointed to by s1 are indeterminate.

EX On error, strxfrm() may set errno but no return value is reserved to indicate an error.

ERRORS
The strxfrm() function may fail if:

EX [EINVAL] The string pointed to by the s2 argument contains characters outside the
domain of the collating sequence.

EXAMPLES
None.

APPLICATION USAGE
The transformation function is such that two transformed strings can be ordered by strcmp() as
appropriate to collating sequence information in the program’s locale (category LC_COLLATE).

The fact that when n is 0, s1 is permitted to be a null pointer, is useful to determine the size of the
s1 array prior to making the transformation.

FUTURE DIRECTIONS
None.

SEE ALSO
strcmp(), strcoll(), <string.h>.

CHANGE HISTORY
First released in Issue 3.

Entry included for alignment with the ISO C standard.

Issue 4
The following changes are incorporated for alignment with the ISO C standard:

• The function is no longer marked as an extension.

System Interfaces and Headers, Issue 5: Volume 2 903

strxfrm() System Interfaces

• The type of argument s2 is changed from char * to const char *.

Other changes are incorporated as follows:

• The DESCRIPTION is changed to make it clear when the function manipulates byte values
and when it manipulates characters.

• The sentence describing error returns in the RETURN VALUE section is marked as an
extension, as is the [EINVAL] error.

• The APPLICATION USAGE section is expanded.

Issue 5
The DESCRIPTION is updated to indicate that errno will not be changed if the function is
successful.

904 CAE Specification (1997)

System Interfaces swab()

NAME
swab — swap bytes

SYNOPSIS
EX #include <unistd.h>

void swab(const void * src , void * dest , ssize_t nbytes);

DESCRIPTION
The swab() function copies nbytes bytes, which are pointed to by src, to the object pointed to by
dest, exchanging adjacent bytes. The nbytes argument should be even. If nbytes is odd swab()
copies and exchanges nbytes−1 bytes and the disposition of the last byte is unspecified. If
copying takes place between objects that overlap, the behaviour is undefined. If nbytes is
negative, swab() does nothing.

RETURN VALUE
None.

ERRORS
No errors are defined.

EXAMPLES
None.

APPLICATION USAGE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
<unistd.h>.

CHANGE HISTORY
First released in Issue 1.

Derived from Issue 1 of the SVID.

Issue 4
The following changes are incorporated in this issue:

• The <unistd.h> header is added to the SYNOPSIS section.

• The type of argument src is changed from char * to const void*, dest is changed from char * to
void*, and nbytes is changed from int to ssize_t.

• The DESCRIPTION now states explicitly that copying between overlapping objects results in
undefined behaviour. is changed to take account of the type change to nbyte; that is,
previously it was defined as int and could be positive or negative, whereas now it is defined
as an unsigned type. Also a statement about overlapping objects is added to the
DESCRIPTION.

• The APPLICATION USAGE section is removed.

System Interfaces and Headers, Issue 5: Volume 2 905

swapcontext() System Interfaces

NAME
swapcontext — swap user context

SYNOPSIS
EX #include <ucontext.h>

int swapcontext(ucontext_t * oucp , const ucontext_t * ucp);

DESCRIPTION
Refer to makecontext().

CHANGE HISTORY
First released in Issue 4, Version 2.

Issue 5
Moved from X/OPEN UNIX extension to BASE.

906 CAE Specification (1997)

System Interfaces swprintf()

NAME
swprintf — print formatted wide-character output

SYNOPSIS
#include <stdio.h>
#include <wchar.h>

int swprintf(wchar_t *s, size_t n, const wchar_t * format , . . .);

DESCRIPTION
Refer to fwprintf().

CHANGE HISTORY
First released in Issue 5.

Include for alignment with the ISO/IEC 9899:1990/Amendment 1:1994 (E).

System Interfaces and Headers, Issue 5: Volume 2 907

swscanf() System Interfaces

NAME
swscanf — convert formatted wide-character input

SYNOPSIS
#include <stdio.h>
#include <wchar.h>

int swscanf(const wchar_t * s, const wchar_t * format , ...);

DESCRIPTION
Refer to fwscanf().

CHANGE HISTORY
First released in Issue 5.

Included for alignment with the ISO/IEC 9899:1990/Amendment 1:1994 (E).

908 CAE Specification (1997)

System Interfaces symlink()

NAME
symlink — make symbolic link to a file

SYNOPSIS
EX #include <unistd.h>

int symlink(const char * path1 , const char * path2);

DESCRIPTION
The symlink() function creates a symbolic link. Its name is the pathname pointed to by path2,
which must be a pathname that does not name an existing file or symbolic link. The contents of
the symbolic link are the string pointed to by path1.

RETURN VALUE
Upon successful completion, symlink() returns 0. Otherwise, it returns −1 and sets errno to
indicate the error.

ERRORS
The symlink() function will fail if:

[EACCES] Write permission is denied in the directory where the symbolic link is being
created, or search permission is denied for a component of the path prefix of
path2.

[EEXIST] The path2 argument names an existing file or symbolic link.

[EIO] An I/O error occurs while reading from or writing to the file system.

[ELOOP] Too many symbolic links were encountered in resolving path2.

[ENAMETOOLONG]
The length of the path2 argument exceeds {PATH_MAX}, or a pathname
component is longer than {NAME_MAX}.

[ENOENT] A component of path2 does not name an existing file or path2 is an empty
string.

[ENOSPC] The directory in which the entry for the new symbolic link is being placed
cannot be extended because no space is left on the file system containing the
directory, or the new symbolic link cannot be created because no space is left
on the file system which will contain the link, or the file system is out of file-
allocation resources.

[ENOTDIR] A component of the path prefix of path2 is not a directory.

[EROFS] The new symbolic link would reside on a read-only file system.

The symlink() function may fail if:

[ENAMETOOLONG]
Pathname resolution of a symbolic link produced an intermediate result
whose length exceeds {PATH_MAX}.

EXAMPLES
None.

APPLICATION USAGE
Like a hard link, a symbolic link allows a file to have multiple logical names. The presence of a
hard link guarantees the existence of a file, even after the original name has been removed. A
symbolic link provides no such assurance; in fact, the file named by the path1 argument need not

System Interfaces and Headers, Issue 5: Volume 2 909

symlink() System Interfaces

exist when the link is created. A symbolic link can cross file system boundaries.

Normal permission checks are made on each component of the symbolic link pathname during
its resolution.

FUTURE DIRECTIONS
None.

SEE ALSO
lchown(), link (), lstat(), open(), readlink (), <unistd.h>.

CHANGE HISTORY
First released in Issue 4, Version 2.

Issue 5
Moved from X/OPEN UNIX extension to BASE.

910 CAE Specification (1997)

System Interfaces sync()

NAME
sync — schedule filesystem updates

SYNOPSIS
EX #include <unistd.h>

void sync(void);

DESCRIPTION
The sync() function causes all information in memory that updates file systems to be scheduled
for writing out to all file systems.

The writing, although scheduled, is not necessarily complete upon return from sync().

RETURN VALUE
The sync() function returns no value.

ERRORS
No errors are defined.

EXAMPLES
None.

APPLICATION USAGE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
fsync(), <unistd.h>.

CHANGE HISTORY
First released in Issue 4, Version 2.

Issue 5
Moved from X/OPEN UNIX extension to BASE.

System Interfaces and Headers, Issue 5: Volume 2 911

sysconf() System Interfaces

NAME
sysconf — get configurable system variables

SYNOPSIS
#include <unistd.h>

long int sysconf(int name);

DESCRIPTION
The sysconf() function provides a method for the application to determine the current value of a
configurable system limit or option (variable) .

The name argument represents the system variable to be queried. The following table lists the
minimal set of system variables from <limits.h>, <unistd.h> or <time.h> (for CLK_TCK) that
can be returned by sysconf(), and the symbolic constants, defined in <unistd.h> that are the
corresponding values used for name:

Variable Value of Name
ARG_MAX _SC_ARG_MAX
BC_BASE_MAX _SC_BC_BASE_MAX
BC_DIM_MAX _SC_BC_DIM_MAX
BC_SCALE_MAX _SC_BC_SCALE_MAX
BC_STRING_MAX _SC_BC_STRING_MAX
CHILD_MAX _SC_CHILD_MAX
CLK_TCK _SC_CLK_TCK
COLL_WEIGHTS_MAX _SC_COLL_WEIGHTS_MAX
EXPR_NEST_MAX _SC_EXPR_NEST_MAX
LINE_MAX _SC_LINE_MAX
NGROUPS_MAX _SC_NGROUPS_MAX
OPEN_MAX _SC_OPEN_MAX

EX PASS_MAX _SC_PASS_MAX (LEGACY)
_POSIX2_C_BIND _SC_2_C_BIND
_POSIX2_C_DEV _SC_2_C_DEV
_POSIX2_C_VERSION _SC_2_C_VERSION
_POSIX2_CHAR_TERM _SC_2_CHAR_TERM
_POSIX2_FORT_DEV _SC_2_FORT_DEV
_POSIX2_FORT_RUN _SC_2_FORT_RUN
_POSIX2_LOCALEDEF _SC_2_LOCALEDEF
_POSIX2_SW_DEV _SC_2_SW_DEV
_POSIX2_UPE _SC_2_UPE
_POSIX2_VERSION _SC_2_VERSION
_POSIX_JOB_CONTROL _SC_JOB_CONTROL
_POSIX_SAVED_IDS _SC_SAVED_IDS
_POSIX_VERSION _SC_VERSION
RE_DUP_MAX _SC_RE_DUP_MAX
STREAM_MAX _SC_STREAM_MAX
TZNAME_MAX _SC_TZNAME_MAX

EX _XOPEN_CRYPT _SC_XOPEN_CRYPT
_XOPEN_ENH_I18N _SC_XOPEN_ENH_I18N
_XOPEN_SHM _SC_XOPEN_SHM

912 CAE Specification (1997)

System Interfaces sysconf()

Variable Value of Name
EX _XOPEN_VERSION _SC_XOPEN_VERSION

_XOPEN_XCU_VERSION _SC_XOPEN_XCU_VERSION
_XOPEN_REALTIME _SC_XOPEN_REALTIME
_XOPEN_REALTIME_THREADS _SC_XOPEN_REALTIME_THREADS
_XOPEN_LEGACY _SC_XOPEN_LEGACY
ATEXIT_MAX _SC_ATEXIT_MAX
IOV_MAX _SC_IOV_MAX
PAGESIZE _SC_PAGESIZE
PAGE_SIZE _SC_PAGE_SIZE
_XOPEN_UNIX _SC_XOPEN_UNIX
_XBS5_ILP32_OFF32 _SC_XBS5_ILP32_OFF32
_XBS5_ILP32_OFFBIG _SC_XBS5_ILP32_OFFBIG
_XBS5_LP64_OFF64 _SC_XBS5_LP64_OFF64
_XBS5_LPBIG_OFFBIG _SC_XBS5_LPBIG_OFFBIG

RT AIO_LISTIO_MAX _SC_AIO_LISTIO_MAX
AIO_MAX _SC_AIO_MAX
AIO_PRIO_DELTA_MAX _SC_AIO_PRIO_DELTA_MAX
DELAYTIMER_MAX _SC_DELAYTIMER_MAX
MQ_OPEN_MAX _SC_MQ_OPEN_MAX
MQ_PRIO_MAX _SC_MQ_PRIO_MAX
RTSIG_MAX _SC_RTSIG_MAX
SEM_NSEMS_MAX _SC_SEM_NSEMS_MAX
SEM_VALUE_MAX _SC_SEM_VALUE_MAX
SIGQUEUE_MAX _SC_SIGQUEUE_MAX
TIMER_MAX _SC_TIMER_MAX
_POSIX_ASYNCHRONOUS_IO _SC_ASYNCHRONOUS_IO
_POSIX_FSYNC _SC_FSYNC
_POSIX_MAPPED_FILES _SC_MAPPED_FILES

RT _POSIX_MEMLOCK _SC_MEMLOCK
_POSIX_MEMLOCK_RANGE _SC_MEMLOCK_RANGE
_POSIX_MEMORY_PROTECTION _SC_MEMORY_PROTECTION

RT _POSIX_MESSAGE_PASSING _SC_MESSAGE_PASSING
_POSIX_PRIORITIZED_IO _SC_PRIORITIZED_IO
_POSIX_PRIORITY_SCHEDULING _SC_PRIORITY_SCHEDULING
_POSIX_REALTIME_SIGNALS _SC_REALTIME_SIGNALS
_POSIX_SEMAPHORES _SC_SEMAPHORES
_POSIX_SHARED_MEMORY_OBJECTS _SC_SHARED_MEMORY_OBJECTS
_POSIX_SYNCHRONIZED_IO _SC_SYNCHRONIZED_IO
_POSIX_TIMERS _SC_TIMERS
Maximum size of getgrgid_r() and
getgrnam_r() data buffers

_SC_GETGR_R_SIZE_MAX

Maximum size of getpwuid_r() and
getpwnam_r() data buffers

_SC_GETPW_R_SIZE_MAX

LOGIN_NAME_MAX _SC_LOGIN_NAME_MAX
PTHREAD_DESTRUCTOR_ITERATIONS _SC_THREAD_DESTRUCTOR_ITERATIONS
PTHREAD_KEYS_MAX _SC_THREAD_KEYS_MAX
PTHREAD_STACK_MIN _SC_THREAD_STACK_MIN

System Interfaces and Headers, Issue 5: Volume 2 913

sysconf() System Interfaces

Variable Value of Name
PTHREAD_THREADS_MAX _SC_THREAD_THREADS_MAX
TTY_NAME_MAX _SC_TTY_NAME_MAX
_POSIX_THREADS _SC_THREADS
_POSIX_THREAD_ATTR_STACKADDR _SC_THREAD_ATTR_STACKADDR
_POSIX_THREAD_ATTR_STACKSIZE _SC_THREAD_ATTR_STACKSIZE
_POSIX_THREAD_PRIORITY_SCHEDULING _SC_THREAD_PRIORITY_SCHEDULING
_POSIX_THREAD_PRIO_INHERIT _SC_THREAD_PRIO_INHERIT
_POSIX_THREAD_PRIO_PROTECT _SC_THREAD_PRIO_PROTECT
_POSIX_THREAD_PROCESS_SHARED _SC_THREAD_PROCESS_SHARED
_POSIX_THREAD_SAFE_FUNCTIONS _SC_THREAD_SAFE_FUNCTIONS

RETURN VALUE
If name is an invalid value, sysconf() returns −1 and sets errno to indicate the error. If the variable
corresponding to name is associated with functionality that is not supported by the system,
sysconf() returns −1 without changing the value of errno.

Otherwise, sysconf() returns the current variable value on the system. The value returned will
not be more restrictive than the corresponding value described to the application when it was
compiled with the implementation’s <limits.h>, <unistd.h> or <time.h>. The value will not
change during the lifetime of the calling process.

ERRORS
The sysconf() function will fail if:

[EINVAL] The value of the name argument is invalid.

EXAMPLES
None.

APPLICATION USAGE
As −1 is a permissible return value in a successful situation, an application wishing to check for
error situations should set errno to 0, then call sysconf(), and, if it returns −1, check to see if errno
is non-zero.

If the value of:

sysconf(_SC_2_VERSION)

is not equal to the value of the {_POSIX2_VERSION} symbolic constant, the utilities available via
system() or popen() might not behave as described in the XCU specification. This would mean
that the application is not running in an environment that conforms to the XCU specification.
Some applications might be able to deal with this, others might not. However, the interfaces
defined in this specification will continue to operate as specified, even if:

sysconf(_SC_2_VERSION)

reports that the utilities no longer perform as specified.

FUTURE DIRECTIONS
None.

SEE ALSO
confstr(), pathconf (), <limits.h>, <time.h>, <unistd.h>, the XCU specification of getconf.

CHANGE HISTORY
First released in Issue 3.

914 CAE Specification (1997)

System Interfaces sysconf()

Entry included for alignment with the POSIX.1-1988 standard.

Issue 4
The following change is incorporated for alignment with the ISO POSIX-1 standard:

• The variables {STREAM_MAX} and {TZNAME_MAX} are added to the table of variables in
the DESCRIPTION.

The following change is incorporated for alignment with the ISO POSIX-2 standard:

• The following variables are added to the table of configurable system limits in the
DESCRIPTION:

BC_BASE_MAX _POSIX2_C_BIND _POSIX2_SW_DEV
BC_DIM_MAX _POSIX2_C_DEV _POSIX2_VERSION
BC_SCALE_MAX _POSIX2_C_VERSION RE_DUP_MAX
BC_STRING_MAX _POSIX2_CHAR_TERM
COLL_WEIGHTS_MAX _POSIX2_FORT_DEV
EXPR_NEST_MAX _POSIX2_FORT_RUN
LINE_MAX _POSIX2_LOCALEDEF

Other changes are incorporated as follows:

• The type of the function return value is expanded to long int.

• _XOPEN_VERSION is added to the table of configurable system limits; this should have
been included in Issue 3.

• The following variables are added to the table of configurable system limits in the
DESCRIPTION and marked as extensions:

_XOPEN_CRYPT
_XOPEN_ENH_I18N
_XOPEN_SHM
_XOPEN_UNIX

• In the RETURN VALUE section the header <time.h> is given as an alternative to <limits.h>
and <unistd.h>.

• The second paragraph is added to the APPLICATION USAGE section.

Issue 4, Version 2
For X/OPEN UNIX conformance, the ATEXIT_MAX, IOV_MAX, PAGESIZE, PAGE_SIZE and
_XOPEN_UNIX variables are added to the list of configurable system values that can be
determined by calling sysconf().

Issue 5
The DESCRIPTION is updated for alignment with the POSIX Realtime Extension and the POSIX
Threads Extension.

Added the _XBS_ variables and name values to the table of system variables in the
DESCRIPTION. These are all marked EX.

System Interfaces and Headers, Issue 5: Volume 2 915

syslog() System Interfaces

NAME
syslog — log a message

SYNOPSIS
EX #include <syslog.h>

void syslog(int priority , const char * message , ... /* argument */);

DESCRIPTION
Refer to closelog ().

CHANGE HISTORY
First released in Issue 4, Version 2.

Issue 5
Moved from X/OPEN UNIX extension to BASE.

916 CAE Specification (1997)

System Interfaces system()

NAME
system — issue a command

SYNOPSIS
#include <stdlib.h>

int system(const char * command);

DESCRIPTION
The system() function passes the string pointed to by command to the host environment to be
executed by a command processor in an implementation-dependent manner. If the
implementation supports the XCU specification commands, the environment of the executed
command will be as if a child process were created using fork (), and the child process invoked
the sh utility (see sh in the XCU specification) using execl() as follows:

execl(< shell path >, "sh", "-c", command, (char *)0);

where <shell path> is an unspecified pathname for the sh utility.

The system() function ignores the SIGINT and SIGQUIT signals, and blocks the SIGCHLD
signal, while waiting for the command to terminate. If this might cause the application to miss a
signal that would have killed it, then the application should examine the return value from
system() and take whatever action is appropriate to the application if the command terminated
due to receipt of a signal.

The system() function will not affect the termination status of any child of the calling processes
other than the process or processes it itself creates.

The system() function will not return until the child process has terminated.

RETURN VALUE
If command is a null pointer, system() returns non-zero only if a command processor is available.

If command is not a null pointer, system() returns the termination status of the command
language interpreter in the format specified by waitpid (). The termination status of the
command language interpreter is as specified for the sh utility, except that if some error prevents
the command language interpreter from executing after the child process is created, the return
value from system() will be as if the command language interpreter had terminated using
exit(127) or _exit(127). If a child process cannot be created, or if the termination status for the
command language interpreter cannot be obtained, system() returns −1 and sets errno to indicate
the error.

ERRORS
The system() function may set errno values as described by fork ().

In addition, system() may fail if:

[ECHILD] The status of the child process created by system() is no longer available.

EXAMPLES
None.

APPLICATION USAGE
If the return value of system() is not −1, its value can be decoded through the use of the macros
described in <sys/wait.h>. For convenience, these macros are also provided in <stdlib.h>.

To determine whether or not the XCU specification’s environment is present, use:

sysconf(_SC_2_VERSION)

System Interfaces and Headers, Issue 5: Volume 2 917

system() System Interfaces

Note that, while system() must ignore SIGINT and SIGQUIT and block SIGCHLD while waiting
for the child to terminate, the handling of signals in the executed command is as specified by
fork () and exec. For example, if SIGINT is being caught or is set to SIG_DFL when system() is
called, then the child will be started with SIGINT handling set to SIG_DFL.

Ignoring SIGINT and SIGQUIT in the parent process prevents coordination problems (two
processes reading from the same terminal, for example) when the executed command ignores or
catches one of the signals. It is also usually the correct action when the user has given a
command to the application to be executed synchronously (as in the "!" command in many
interactive applications). In either case, the signal should be delivered only to the child process,
not to the application itself. There is one situation where ignoring the signals might have less
than the desired effect. This is when the application uses system() to perform some task invisible
to the user. If the user typed the interrupt character (ˆC , for example) while system() is being
used in this way, one would expect the application to be killed, but only the executed command
will be killed. Applications that use system() in this way should carefully check the return status
from system() to see if the executed command was successful, and should take appropriate
action when the command fails.

Blocking SIGCHLD while waiting for the child to terminate prevents the application from
catching the signal and obtaining status from system()’s child process before system() can get the
status itself.

The context in which the utility is ultimately executed may differ from that in which system()
was called. For example, file descriptors that have the FD_CLOEXEC flag set will be closed, and
the process ID and parent process ID will be different. Also, if the executed utility changes its
environment variables or its current working directory, that change will not be reflected in the
caller’s context.

There is no defined way for an application to find the specific path for the shell. However,
confstr() can provide a value for PATH that is guaranteed to find the sh utility.

FUTURE DIRECTIONS
None.

SEE ALSO
exec, pipe(), waitpid (), <limits.h>, <signal.h>, <stdlib.h>, the XCU specification.

CHANGE HISTORY
First released in Issue 1.

Derived from Issue 1 of the SVID.

Issue 4
The following changes are incorporated for alignment with the ISO POSIX-2 standard:

• The function is no longer marked as an extension.

• The name of the argument is changed from string to command, and its type is changed from
char * to const char *.

• The DESCRIPTION and RETURN VALUE sections are completely replaced to bring them in
line with ISO POSIX-2 standard. They still describe essentially the same functionality, albeit
that the definition is more complete.

• The ERRORS section is changed to indicate that system() may return error values described
for fork ().

• The APPLICATION USAGE section is added.

918 CAE Specification (1997)

System Interfaces tan()

NAME
tan — tangent function

SYNOPSIS
#include <math.h>

double tan(double x);

DESCRIPTION
The tan() function computes the tangent of its argument x, measured in radians.

An application wishing to check for error situations should set errno to 0 before calling tan(). If
errno is non-zero on return, or the return value is NaN, an error has occurred.

The tan() function may lose accuracy when its argument is far from 0.0 .

RETURN VALUE
Upon successful completion, tan() returns the tangent of x .

EX If x is NaN, NaN is returned and errno may be set to [EDOM].

EX If x is ±Inf, either 0.0 is returned and errno is set to [EDOM], or NaN is returned and errno may be
set to [EDOM].

If the correct value would cause overflow, ±HUGE_VAL is returned and errno is set to
[ERANGE].

If the correct value would cause underflow, 0.0 is returned and errno may be set to [ERANGE].

ERRORS
The tan() function will fail if:

[ERANGE] The value to be returned would cause overflow.

The tan() function may fail if:

EX [EDOM] The value x is NaN or ±Inf.

[ERANGE] The value to be returned would cause underflow.

EX No other errors will occur.

EXAMPLES
None.

APPLICATION USAGE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
atan(), isnan(), <math.h>.

CHANGE HISTORY
First released in Issue 1.

Derived from Issue 1 of the SVID.

Issue 4
The following changes are incorporated in this issue:

• Removed references to matherr().

System Interfaces and Headers, Issue 5: Volume 2 919

tan() System Interfaces

• The RETURN VALUE and ERRORS sections are substantially rewritten for alignment with
the ISO C standard and to rationalise error handling in the mathematics functions.

• The return value specified for [EDOM] is marked as an extension.

Issue 5
The last two paragraphs of the DESCRIPTION were included as APPLICATION USAGE notes
in previous issues.

920 CAE Specification (1997)

System Interfaces tanh()

NAME
tanh — hyperbolic tangent function

SYNOPSIS
#include <math.h>

double tanh(double x);

DESCRIPTION
The tanh() function computes the hyperbolic tangent of x .

An application wishing to check for error situations should set errno to 0 before calling tanh(). If
errno is non-zero on return, or the return value is NaN, an error has occurred.

RETURN VALUE
Upon successful completion, tanh() returns the hyperbolic tangent of x.

EX If x is NaN, NaN is returned and errno may be set to [EDOM].

If the correct value would cause underflow, 0.0 is returned and errno may be set to [ERANGE].

ERRORS
The tanh() function may fail if:

EX [EDOM] The value of x is NaN.

[ERANGE] The correct result would cause underflow.

EX No other errors will occur.

EXAMPLES
None.

APPLICATION USAGE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
atanh(), isnan(), tan(), <math.h>.

CHANGE HISTORY
First released in Issue 1.

Derived from Issue 1 of the SVID.

Issue 4
The following changes are incorporated in this issue:

• Removed references to matherr().

• The RETURN VALUE and ERRORS sections are substantially rewritten for alignment with
the ISO C standard and to rationalise error handling in the mathematics functions.

• The return value specified for [EDOM] is marked as an extension.

Issue 5
The DESCRIPTION is updated to indicate how an application should check for an error. This
text was previously published in the APPLICATION USAGE section.

System Interfaces and Headers, Issue 5: Volume 2 921

tcdrain() System Interfaces

NAME
tcdrain — wait for transmission of output

SYNOPSIS
#include <termios.h>

int tcdrain(int fildes);

DESCRIPTION
The tcdrain() function waits until all output written to the object referred to by fildes is
transmitted. The fildes argument is an open file descriptor associated with a terminal.

Any attempts to use tcdrain() from a process which is a member of a background process group
on a fildes associated with its controlling terminal, will cause the process group to be sent a
SIGTTOU signal. If the calling process is blocking or ignoring SIGTTOU signals, the process is
allowed to perform the operation, and no signal is sent.

RETURN VALUE
Upon successful completion, 0 is returned. Otherwise, −1 is returned and errno is set to indicate
the error.

ERRORS
The tcdrain() function will fail if:

[EBADF] The fildes argument is not a valid file descriptor.

[EINTR] A signal interrupted tcdrain().

[ENOTTY] The file associated with fildes is not a terminal.

The tcdrain() function may fail if:

EX [EIO] The process group of the writing process is orphaned, and the writing process
is not ignoring or blocking SIGTTOU.

EXAMPLES
None.

APPLICATION USAGE
None.

FUTURE DIRECTIONS
In the ISO POSIX-1 standard, the possibility of an [EIO] error occurring is described in , Section
9.1.4, Terminal Access Control, but it is not mentioned in the tcdrain() interface definition. It
has become clear that this omission was unintended, so it is likely that the [EIO] error will be
reclassified as a ‘‘will fail’’ in a future issue of the POSIX standard.

SEE ALSO
tcflush(), <termios.h>, <unistd.h>, the XBD specification, Chapter 9, General Terminal
Interface.

CHANGE HISTORY
First released in Issue 3.

Entry included for alignment with the POSIX.1-1988 standard.

922 CAE Specification (1997)

System Interfaces tcdrain()

Issue 4
The following change is incorporated for alignment with the FIPS requirements:

• The words ‘‘If _POSIX_JOB_CONTROL is defined’’ are removed from the start of the second
paragraph in the DESCRIPTION. This is because job control is defined as mandatory for
Issue 4 conforming implementations.

Other changes are incorporated as follows:

• The [EIO] error is added to the ERRORS section.

• The FUTURE DIRECTIONS section is added.

System Interfaces and Headers, Issue 5: Volume 2 923

tcflow() System Interfaces

NAME
tcflow — suspend or restart the transmission or reception of data

SYNOPSIS
#include <termios.h>

int tcflow(int fildes , int action);

DESCRIPTION
The tcflow() function suspends transmission or reception of data on the object referred to by
fildes , depending on the value of action . The fildes argument is an open file descriptor associated
with a terminal.

• If action is TCOOFF, output is suspended.

• If action is TCOON, suspended output is restarted.

• If action is TCIOFF, the system transmits a STOP character, which is intended to cause the
terminal device to stop transmitting data to the system.

• If action is TCION, the system transmits a START character, which is intended to cause the
terminal device to start transmitting data to the system.

The default on the opening of a terminal file is that neither its input nor its output are
suspended.

Attempts to use tcflow() from a process which is a member of a background process group on a
fildes associated with its controlling terminal, will cause the process group to be sent a SIGTTOU
signal. If the calling process is blocking or ignoring SIGTTOU signals, the process is allowed to
perform the operation, and no signal is sent.

RETURN VALUE
Upon successful completion, 0 is returned. Otherwise, −1 is returned and errno is set to indicate
the error.

ERRORS
The tcflow() function will fail if:

[EBADF] The fildes argument is not a valid file descriptor.

[EINVAL] The action argument is not a supported value.

[ENOTTY] The file associated with fildes is not a terminal.

The tcflow() function may fail if:

EX [EIO] The process group of the writing process is orphaned, and the writing process
is not ignoring or blocking SIGTTOU.

EXAMPLES
None.

APPLICATION USAGE
None.

FUTURE DIRECTIONS
In the ISO POSIX-1 standard, the possibility of an [EIO] error occurring is described in , Section
9.1.4, Terminal Access Control, but it is not mentioned in the tcflow() interface definition. It has
become clear that this omission was unintended, so it is likely that the [EIO] error will be re-
classified as a ‘‘will fail’’ in a future issue of the POSIX standard.

924 CAE Specification (1997)

System Interfaces tcflow()

SEE ALSO
tcsendbreak(), <termios.h>, <unistd.h>, the XBD specification, Chapter 9, General Terminal
Interface.

CHANGE HISTORY
First released in Issue 3.

Entry included for alignment with the POSIX.1-1988 standard.

Issue 4
The following change is incorporated for alignment with the FIPS requirements:

• The words ‘‘If _POSIX_JOB_CONTROL is defined’’ are removed from the start of the second
paragraph in the DESCRIPTION. This is because job control is defined as mandatory for
Issue 4 conforming implementations.

Other changes are incorporated as follows:

• The descriptions of TCIOFF and TCION are reworded, indicating the intended consequences
of transmitting stop and start characters. Issue 3 implied that these consequences were
guaranteed.

• The [EIO] error is added to the ERRORS section.

• The FUTURE DIRECTIONS section is added.

System Interfaces and Headers, Issue 5: Volume 2 925

tcflush() System Interfaces

NAME
tcflush — flush non-transmitted output data, non-read input data or both

SYNOPSIS
#include <termios.h>

int tcflush(int fildes , int queue_selector);

DESCRIPTION
Upon successful completion, tcflush() discards data written to the object referred to by fildes (an
open file descriptor associated with a terminal) but not transmitted, or data received but not
read, depending on the value of queue_selector:

• If queue_selector is TCIFLUSH it flushes data received but not read.

• If queue_selector is TCOFLUSH it flushes data written but not transmitted.

• If queue_selector is TCIOFLUSH it flushes both data received but not read and data written
but not transmitted.

FIPS Attempts to use tcflush() from a process which is a member of a background process group on a
fildes associated with its controlling terminal, will cause the process group to be sent a SIGTTOU
signal. If the calling process is blocking or ignoring SIGTTOU signals, the process is allowed to
perform the operation, and no signal is sent.

RETURN VALUE
Upon successful completion, 0 is returned. Otherwise, −1 is returned and errno is set to indicate
the error.

ERRORS
The tcflush() function will fail if:

[EBADF] The fildes argument is not a valid file descriptor.

[EINVAL] The queue_selector argument is not a supported value.

[ENOTTY] The file associated with fildes is not a terminal.

The tcflow() function may fail if:

EX [EIO] The process group of the writing process is orphaned, and the writing process
is not ignoring or blocking SIGTTOU.

EXAMPLES
None.

APPLICATION USAGE
None.

FUTURE DIRECTIONS
In the ISO POSIX-1 standard, the possibility of an [EIO] error occurring is described in , Section
9.1.4, Terminal Access Control, but it is not mentioned in the tcflow() interface definition. It has
become clear that this omission was unintended, so it is likely that the [EIO] error will be
reclassified as a ‘‘will fail’’ in a future issue of the POSIX standard.

SEE ALSO
tcdrain(), <termios.h>, <unistd.h>, the XBD specification, Chapter 9, General Terminal
Interface.

CHANGE HISTORY
First released in Issue 3.

926 CAE Specification (1997)

System Interfaces tcflush()

Entry included for alignment with the POSIX.1-1988 standard.

Issue 4
The following change is incorporated for alignment with the FIPS requirements:

• The words ‘‘If _POSIX_JOB_CONTROL is defined’’ are removed from the start of the second
paragraph in the DESCRIPTION. This is because job control is defined as mandatory for
Issue 4 conforming implementations.

Other changes are incorporated as follows:

• The DESCRIPTION is modified to indicate that the flush operation will only result if the call
to tcflush() is successful.

• The [EIO] error is added to the ERRORS section.

• The FUTURE DIRECTIONS section is added.

System Interfaces and Headers, Issue 5: Volume 2 927

tcgetattr() System Interfaces

NAME
tcgetattr — get the parameters associated with the terminal

SYNOPSIS
#include <termios.h>

int tcgetattr(int fildes , struct termios * termios_p);

DESCRIPTION
The tcgetattr() function gets the parameters associated with the terminal referred to by fildes and
stores them in the termios structure referenced by termios_p . The fildes argument is an open file
descriptor associated with a terminal.

The termios_p argument is a pointer to a termios structure.

The tcgetattr() operation is allowed from any process.

If the terminal device supports different input and output baud rates, the baud rates stored in
the termios structure returned by tcgetattr() reflect the actual baud rates, even if they are equal.
If differing baud rates are not supported, the rate returned as the output baud rate is the actual

EX baud rate. If the terminal device does not support split baud rates, the input baud rate stored in
the termios structure will be 0.

RETURN VALUE
Upon successful completion, 0 is returned. Otherwise, −1 is returned and errno is set to indicate
the error.

ERRORS
The tcgetattr() function will fail if:

[EBADF] The fildes argument is not a valid file descriptor.

[ENOTTY] The file associated with fildes is not a terminal.

EXAMPLES
None.

APPLICATION USAGE
None.

FUTURE DIRECTIONS
In a future issue of this document, implementations which do not support differing baud rates
will be prohibited from returning 0 as the input baud rate.

SEE ALSO
tcsetattr(), <termios.h>, the XBD specification, Chapter 9, General Terminal Interface.

CHANGE HISTORY
First released in Issue 3.

Entry included for alignment with the POSIX.1-1988 standard.

Issue 4
The following change is incorporated in this issue:

• The FUTURE DIRECTIONS section is added to allow for alignment with the ISO POSIX-1
standard.

928 CAE Specification (1997)

System Interfaces tcgetpgrp()

NAME
tcgetpgrp — get the foreground process group ID

SYNOPSIS
OH #include <sys/types.h>

#include <unistd.h>

pid_t tcgetpgrp(int fildes);

DESCRIPTION
FIPS The tcgetpgrp() function will return the value of the process group ID of the foreground process

group associated with the terminal.

If there is no foreground process group, tcgetpgrp() returns a value greater than 1 that does not
match the process group ID of any existing process group.

The tcgetpgrp() function is allowed from a process that is a member of a background process
group; however, the information may be subsequently changed by a process that is a member of
a foreground process group.

RETURN VALUE
Upon successful completion, tcgetpgrp() returns the value of the process group ID of the
foreground process associated with the terminal. Otherwise, −1 is returned and errno is set to
indicate the error.

ERRORS
The tcgetpgrp() function will fail if:

[EBADF] The fildes argument is not a valid file descriptor.

[ENOTTY] The calling process does not have a controlling terminal, or the file is not the
controlling terminal.

EXAMPLES
None.

APPLICATION USAGE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
setsid(), setpgid(), tcsetpgrp(), <sys/types.h>, <unistd.h>.

CHANGE HISTORY
First released in Issue 3.

Entry included for alignment with the POSIX.1-1988 standard.

Issue 4
The following change is incorporated for alignment with the FIPS requirements:

• The DESCRIPTION is clarified and the phrase ‘‘If _POSIX_JOB_CONTROL is defined’’ is
removed because job control is now mandatory on all XSI-conformant systems.

System Interfaces and Headers, Issue 5: Volume 2 929

tcgetpgrp() System Interfaces

Other changes are incorporated as follows:

• The <sys/types.h> header is now marked as optional (OH); this header need not be included
on XSI-conformant systems.

• The <unistd.h> header is added to the SYNOPSIS section.

930 CAE Specification (1997)

System Interfaces tcgetsid()

NAME
tcgetsid — get process group ID for session leader for controlling terminal

SYNOPSIS
EX #include <termios.h>

pid_t tcgetsid(int fildes);

DESCRIPTION
The tcgetsid() function obtains the process group ID of the session for which the terminal
specified by fildes is the controlling terminal.

RETURN VALUE
Upon successful completion, tcgetsid() returns the process group ID associated with the
terminal. Otherwise, a value of (pid_t)−1 is returned and errno is set to indicate the error.

ERRORS
The tcgetsid() function will fail if:

[EBADF] The fildes argument is not a valid file descriptor.

[ENOTTY] The calling process does not have a controlling terminal, or the file is not the
controlling terminal.

EXAMPLES
None.

APPLICATION USAGE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
<termios.h>.

CHANGE HISTORY
First released in Issue 4, Version 2.

Issue 5
Moved from X/OPEN UNIX extension to BASE.

The [EACCES] error has been removed from the list of mandatory errors, and the description of
[ENOTTY] has been reworded.

System Interfaces and Headers, Issue 5: Volume 2 931

tcsendbreak() System Interfaces

NAME
tcsendbreak — send a ‘‘break’’ for a specific duration

SYNOPSIS
#include <termios.h>

int tcsendbreak(int fildes , int duration);

DESCRIPTION
The fildes argument is an open file descriptor associated with a terminal.

If the terminal is using asynchronous serial data transmission, tcsendbreak() will cause
transmission of a continuous stream of zero-valued bits for a specific duration. If duration is 0, it
will cause transmission of zero-valued bits for at least 0.25 seconds, and not more than 0.5
seconds. If duration is not 0, it will send zero-valued bits for an implementation-dependent
period of time.

If the terminal is not using asynchronous serial data transmission, it is implementation-
dependent whether tcsendbreak() sends data to generate a break condition or returns without
taking any action.

FIPS Attempts to use tcsendbreak() from a process which is a member of a background process group
on a fildes associated with its controlling terminal, will cause the process group to be sent a
SIGTTOU signal. If the calling process is blocking or ignoring SIGTTOU signals, the process is
allowed to perform the operation, and no signal is sent.

RETURN VALUE
Upon successful completion, 0 is returned. Otherwise, −1 is returned and errno is set to indicate
the error.

ERRORS
The tcsendbreak() function will fail if:

[EBADF] The fildes argument is not a valid file descriptor.

[ENOTTY] The file associated with fildes is not a terminal.

The tcsendbreak() function may fail if:

EX [EIO] The process group of the writing process is orphaned, and the writing process
is not ignoring or blocking SIGTTOU.

EXAMPLES
None.

APPLICATION USAGE
None.

FUTURE DIRECTIONS
In the ISO POSIX-1 standard, the possibility of an [EIO] error occurring is described in , Section
9.1.4, Terminal Access Control, but it is not mentioned in the tcsendbreak() interface definition.
It has become clear that this omission was unintended, so it is likely that the [EIO] error will be
reclassified as a ‘‘will fail’’ in a future issue of the POSIX standard.

SEE ALSO
<termios.h>, <unistd.h>, the XBD specification, Chapter 9, General Terminal Interface.

CHANGE HISTORY
First released in Issue 3.

932 CAE Specification (1997)

System Interfaces tcsendbreak()

Entry included for alignment with the POSIX.1-1988 standard.

Issue 4
The following change is incorporated for alignment with the FIPS requirements:

• In the DESCRIPTION the phrase ‘‘If _POSIX_JOB_CONTROL is defined’’ is removed
because job control is now mandatory on all XSI-conformant systems.

Another change is incorporated as follows:

• The [EIO] error is added to the ERRORS section.

System Interfaces and Headers, Issue 5: Volume 2 933

tcsetattr() System Interfaces

NAME
tcsetattr — set the parameters associated with the terminal

SYNOPSIS
#include <termios.h>

int tcsetattr(int fildes , int optional_actions ,
const struct termios * termios_p);

DESCRIPTION
The tcsetattr() function sets the parameters associated with the terminal referred to by the open
file descriptor fildes (an open file descriptor associated with a terminal) from the termios
structure referenced by termios_p as follows:

• If optional_actions is TCSANOW, the change will occur immediately.

• If optional_actions is TCSADRAIN, the change will occur after all output written to fildes is
transmitted. This function should be used when changing parameters that affect output.

• If optional_actions is TCSAFLUSH, the change will occur after all output written to fildes is
transmitted, and all input so far received but not read will be discarded before the change is
made.

If the output baud rate stored in the termios structure pointed to by termios_p is the zero baud
rate, B0, the modem control lines will no longer be asserted. Normally, this will disconnect the
line.

If the input baud rate stored in the termios structure pointed to by termios_p is 0, the input baud
rate given to the hardware will be the same as the output baud rate stored in the termios
structure.

The tcsetattr() function will return successfully if it was able to perform any of the requested
actions, even if some of the requested actions could not be performed. It will set all the attributes
that implementation supports as requested and leave all the attributes not supported by the
implementation unchanged. If no part of the request can be honoured, it will return −1 and set
errno to [EINVAL]. If the input and output baud rates differ and are a combination that is not
supported, neither baud rate is changed. A subsequent call to tcgetattr() will return the actual
state of the terminal device (reflecting both the changes made and not made in the previous
tcsetattr() call). The tcsetattr() function will not change the values in the termios structure
whether or not it actually accepts them.

The effect of tcsetattr() is undefined if the value of the termios structure pointed to by termios_p
was not derived from the result of a call to tcgetattr() on fildes ; an application should modify
only fields and flags defined by this specification between the call to tcgetattr() and tcsetattr(),
leaving all other fields and flags unmodified.

No actions defined by this specification, other than a call to tcsetattr() or a close of the last file
descriptor in the system associated with this terminal device, will cause any of the terminal
attributes defined by this specification to change.

FIPS Attempts to use tcsetattr() from a process which is a member of a background process group on
a fildes associated with its controlling terminal, will cause the process group to be sent a
SIGTTOU signal. If the calling process is blocking or ignoring SIGTTOU signals, the process is
allowed to perform the operation, and no signal is sent.

RETURN VALUE
Upon successful completion, 0 is returned. Otherwise, −1 is returned and errno is set to indicate
the error.

934 CAE Specification (1997)

System Interfaces tcsetattr()

ERRORS
The tcsetattr() function will fail if:

[EBADF] The fildes argument is not a valid file descriptor.

[EINTR] A signal interrupted tcsettattr().

[EINVAL] The optional_actions argument is not a supported value, or an attempt was
made to change an attribute represented in the termios structure to an
unsupported value.

[ENOTTY] The file associated with fildes is not a terminal.

The tcsetattr() function may fail if:

EX [EIO] The process group of the writing process is orphaned, and the writing process
is not ignoring or blocking SIGTTOU.

EXAMPLES
None.

APPLICATION USAGE
If trying to change baud rates, applications should call tcsetattr() then call tcgetattr() in order to
determine what baud rates were actually selected.

FUTURE DIRECTIONS
Using an input baud rate of 0 to set the input rate equal to the output rate will not necessarily be
supported in future issues of this document.

In the ISO POSIX-1 standard, the possibility of an [EIO] error occurring is described in , Section
9.1.4, Terminal Access Control, but it is not mentioned in the tcsetattr() interface definition. It
has become clear that this omission was unintended, so it is likely that the [EIO] error will be
reclassified as a ‘‘will fail’’ in a future issue of the POSIX standard.

SEE ALSO
cfgetispeed(), tcgetattr(), <termios.h>, <unistd.h>, the XBD specification, Chapter 9, General
Terminal Interface.

CHANGE HISTORY
First released in Issue 3.

Entry included for alignment with the POSIX.1-1988 standard.

Issue 4
The following change is incorporated for alignment with the ISO POSIX-1 standard:

• The argument termios_p is changed from type struct termios * to const struct termios *.

The following change is incorporated for alignment with the FIPS requirements:

• In the DESCRIPTION the phrase ‘‘If _POSIX_JOB_CONTROL is defined’’ is removed
because job control is now mandatory on all XSI-conformant systems.

Other changes are incorporated as follows:

• The words ‘‘and stores them in’’ are changed to ‘‘from’’ in the first paragraph of the
DESCRIPTION.

• The [EINTR] and [EIO] errors are added to the ERRORS section.

• The FUTURE DIRECTIONS section is added to allow for alignment with the ISO POSIX-1
standard.

System Interfaces and Headers, Issue 5: Volume 2 935

tcsetpgrp() System Interfaces

NAME
tcsetpgrp — set the foreground process group ID

SYNOPSIS
OH #include <sys/types.h>

#include <unistd.h>

int tcsetpgrp(int fildes , pid_t pgid_id);

DESCRIPTION
FIPS If the process has a controlling terminal, tcsetpgrp() will set the foreground process group ID

associated with the terminal to pgid_id . The file associated with fildes must be the controlling
terminal of the calling process and the controlling terminal must be currently associated with the
session of the calling process. The value of pgid_id must match a process group ID of a process
in the same session as the calling process.

RETURN VALUE
Upon successful completion, 0 is returned. Otherwise, −1 is returned and errno is set to indicate
the error.

ERRORS
The tcsetpgrp() function will fail if:

[EBADF] The fildes argument is not a valid file descriptor.

[EINVAL] This implementation does not support the value in the pgid_id argument.

[ENOTTY] The calling process does not have a controlling terminal, or the file is not the
controlling terminal, or the controlling terminal is no longer associated with
the session of the calling process.

FIPS [EPERM] The value of pgid_id does not match the process group ID of a process in the
same session as the calling process.

EXAMPLES
None.

APPLICATION USAGE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
tcgetpgrp(), <sys/types.h>, <unistd.h>.

CHANGE HISTORY
First released in Issue 3.

Entry included for alignment with the POSIX.1-1988 standard.

Issue 4
The following change is incorporated for alignment with the FIPS requirements:

• In the DESCRIPTION the phrase ‘‘If _POSIX_JOB_CONTROL is defined’’ is removed
because job control is now mandatory on all XSI-conformant systems.

Other changes are incorporated as follows:

• The <sys/types.h> header is now marked as optional (OH); this header need not be included
on XSI-conformant systems.

936 CAE Specification (1997)

System Interfaces tcsetpgrp()

• The header <unistd.h> is added to the SYNOPSIS section.

• The [ENOSYS] error is removed from the ERRORS section.

System Interfaces and Headers, Issue 5: Volume 2 937

tdelete() System Interfaces

NAME
tdelete — delete node from binary search tree

SYNOPSIS
EX #include <search.h>

void *tdelete(const void * key , void * *rootp ,
int (* compar)(const void *, const void *));

DESCRIPTION
Refer to tsearch().

CHANGE HISTORY
First released in Issue 1.

Derived from Issue 1 of the SVID.

Issue 4
The following change is incorporated in this issue:

• The function return value is changed from char * to void*, the type of argument key is
changed from char * to const void*, rootp is changed from char ** to void**, and arguments
to compar() are formally defined.

938 CAE Specification (1997)

System Interfaces telldir()

NAME
telldir — current location of a named directory stream

SYNOPSIS
EX #include <dirent.h>

long int telldir(DIR * dirp);

DESCRIPTION
The telldir() function obtains the current location associated with the directory stream specified
by dirp.

If the most recent operation on the directory stream was a seekdir(), the directory position
returned from the telldir() is the same as that supplied as a loc argument for seekdir().

RETURN VALUE
Upon successful completion, telldir() returns the current location of the specified directory
stream.

ERRORS
No errors are defined.

EXAMPLES
None.

APPLICATION USAGE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
opendir(), readdir(), seekdir(), <dirent.h>.

CHANGE HISTORY
First released in Issue 2.

Issue 4
The following changes are incorporated in this issue:

• The <sys/types.h> header is removed from the SYNOPSIS section.

• The function return value is expanded to long int.

Issue 4, Version 2
The DESCRIPTION is updated for X/OPEN UNIX conformance to indicate that a call to telldir()
immediately following a call to seekdir(), returns the loc value passed to the seekdir() call.

System Interfaces and Headers, Issue 5: Volume 2 939

tempnam() System Interfaces

NAME
tempnam — create a name for a temporary file

SYNOPSIS
EX #include <stdio.h>

char *tempnam(const char * dir , const char * pfx);

DESCRIPTION
The tempnam() function generates a pathname that may be used for a temporary file.

The tempnam() function allows the user to control the choice of a directory. The dir argument
points to the name of the directory in which the file is to be created. If dir is a null pointer or
points to a string which is not a name for an appropriate directory, the path prefix defined as
{P_tmpdir} in the <stdio.h> header is used. If that directory is not accessible, an
implementation-dependent directory may be used.

Many applications prefer their temporary files to have certain initial letter sequences in their
names. The pfx argument should be used for this. This argument may be a null pointer or point
to a string of up to five bytes to be used as the beginning of the filename.

Some implementations of tempnam() may use tmpnam() internally. On such implementations, if
called more than {TMP_MAX} times in a single process, the behaviour is implementation-
dependent.

RETURN VALUE
Upon successful completion, tempnam() allocates space for a string, puts the generated
pathname in that space and returns a pointer to it. The pointer is suitable for use in a
subsequent call to free(). Otherwise it returns a null pointer and sets errno to indicate the error.

ERRORS
The tempnam() function will fail if:

[ENOMEM] Insufficient storage space is available.

EXAMPLES
None.

APPLICATION USAGE
This function only creates pathnames. It is the application’s responsibility to create and remove
the files. Between the time a pathname is created and the file is opened, it is possible for some
other process to create a file with the same name. Applications may find tmpfile() more useful.

FUTURE DIRECTIONS
None.

SEE ALSO
fopen(), free(), open(), tmpfile(), tmpnam(), unlink(), <stdio.h>.

CHANGE HISTORY
First released in Issue 1.

Derived from Issue 1 of the SVID.

Issue 4
The following changes are incorporated in this issue:

• The type of arguments dir and pfx is changed from char * to const char *.

940 CAE Specification (1997)

System Interfaces tempnam()

• The DESCRIPTION is changed to indicate that pfx is treated as a string of bytes and not as a
string of (possibly multi-byte) characters.

• The second paragraph of the APPLICATION USAGE section is expanded.

Issue 5
The last paragraph of the DESCRIPTION was included as an APPLICATION USAGE note in
previous issues.

System Interfaces and Headers, Issue 5: Volume 2 941

tfind() System Interfaces

NAME
tfind — search binary search tree

SYNOPSIS
EX #include <search.h>

void *tfind(const void * key , void *const * rootp ,
int (* compar)(const void *, const void *));

DESCRIPTION
Refer to tsearch().

CHANGE HISTORY
First released in Issue 1.

Derived from Issue 1 of the SVID.

Issue 4
The following changes are incorporated in this issue:

• The function return value is changed from char * to void*.

• The type of argument key is changed from char * to const void*; the type of argument rootp is
changed from char ** to void* const*.

• Arguments to compar() are formally defined.

942 CAE Specification (1997)

System Interfaces time()

NAME
time — get time

SYNOPSIS
#include <time.h>

time_t time(time_t * tloc);

DESCRIPTION
The time() function returns the value of time in seconds since the Epoch.

The tloc argument points to an area where the return value is also stored. If tloc is a null pointer,
no value is stored.

RETURN VALUE
Upon successful completion, time() returns the value of time. Otherwise, (time_t)−1 is returned.

ERRORS
No errors are defined.

EXAMPLES
None.

APPLICATION USAGE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
asctime(), clock (), ctime(), difftime(), gmtime(), localtime (), mktime(), strftime(), strptime(), utime(),
<time.h>.

CHANGE HISTORY
First released in Issue 1.

Derived from Issue 1 of the SVID.

Issue 4
The following change is incorporated for alignment with the ISO POSIX-1 standard:

• The RETURN VALUE section is updated to indicate that (time_t)−1 will be returned on error.

System Interfaces and Headers, Issue 5: Volume 2 943

timer_create() System Interfaces

NAME
timer_create — create a per-process timer (REALTIME)

SYNOPSIS
RT #include <time.h>

#include <signal.h>

int timer_create(clockid_t clockid , struct sigevent * evp ,
timer_t * timerid);

DESCRIPTION
The timer_create() function creates a per-process timer using the specified clock, clock_id , as the
timing base. The timer_create() function returns, in the location referenced by timerid , a timer ID
of type timer_t used to identify the timer in timer requests. This timer ID will be unique within
the calling process until the timer is deleted. The particular clock, clock_id , is defined in
<time.h>. The timer whose ID is returned will be in a disarmed state upon return from
timer_create().

The evp argument, if non-NULL, points to a sigevent structure. This structure, allocated by the
application, defines the asynchronous notification to occur as specified in Signal Generation
and Delivery on page 808 when the timer expires. If the evp argument is NULL, the effect is as if
the evp argument pointed to a sigevent structure with the sigev_notify member having the value
SIGEV_SIGNAL, the sigev_signo having a default signal number, and the sigev_value member
having the value of the timer ID.

Each implementation defines a set of clocks that can be used as timing bases for per-process
timers. All implementations support a clock_id of CLOCK_REALTIME.

Per-process timers are not inherited by a child process across a fork () and are disarmed and
deleted by an exec.

RETURN VALUE
If the call succeeds, timer_create() returns zero and updates the location referenced by timerid to a
timer_t, which can be passed to the per-process timer calls. If an error occurs, the function
returns a value of −1 and sets errno to indicate the error. The value of timerid is undefined if an
error occurs.

ERRORS
The timer_create() function will fail if:

[EAGAIN] The system lacks sufficient signal queuing resources to honour the request.

[EAGAIN] The calling process has already created all of the timers it is allowed by this
implementation.

[EINVAL] The specified clock ID is not defined.

[ENOSYS] The function timer_create() is not supported by this implementation.

EXAMPLES
None.

APPLICATION USAGE
None.

FUTURE DIRECTIONS
None.

944 CAE Specification (1997)

System Interfaces timer_create()

SEE ALSO
timer_delete(), clock_gettime (), clock_settime (), clock_getres(), timer_gettime(), timer_settime(),
<time.h>.

CHANGE HISTORY
First released in Issue 5.

Included for alignment with the POSIX Realtime Extension.

System Interfaces and Headers, Issue 5: Volume 2 945

timer_delete() System Interfaces

NAME
timer_delete — delete a per-process timer (REALTIME)

SYNOPSIS
RT #include <time.h>

int timer_delete(timer_t timerid);

DESCRIPTION
The timer_delete() function deletes the specified timer, timerid , previously created by the
timer_create() function. If the timer is armed when timer_delete() is called, the behaviour will be
as if the timer is automatically disarmed before removal. The disposition of pending signals for
the deleted timer is unspecified.

RETURN VALUE
If successful, the function returns a value of zero. Otherwise, the function returns a value of −1
and sets errno to indicate the error.

ERRORS
The timer_delete() function will fail if:

[EINVAL] The timer ID specified by timerid is not a valid timer ID.

[ENOSYS] The function timer_delete() is not supported by this implementation.

EXAMPLES
None.

APPLICATION USAGE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
timer_create(), <time.h>.

CHANGE HISTORY
First released in Issue 5.

Included for alignment with the POSIX Realtime Extension.

946 CAE Specification (1997)

System Interfaces timer_settime()

NAME
timer_settime, timer_gettime, timer_getoverrun — per-process timers (REALTIME)

SYNOPSIS
RT #include <time.h>

int timer_settime(timer_t timerid , int flags ,
const struct itimerspec * value , struct itimerspec * ovalue);

int timer_gettime(timer_t timerid , struct itimerspec * value);
int timer_getoverrun(timer_t timerid);

DESCRIPTION
The timer_settime() function sets the time until the next expiration of the timer specified by
timerid from the it_value member of the value argument and arm the timer if the it_value member
of value is non-zero. If the specified timer was already armed when timer_settime() is called, this
call resets the time until next expiration to the value specified. If the it_value member of value is
zero, the timer is disarmed. The effect of disarming or resetting a timer on pending expiration
notifications is unspecified.

If the flag TIMER_ABSTIME is not set in the argument flags , timer_settime() behaves as if the
time until next expiration is set to be equal to the interval specified by the it_value member of
value . That is, the timer expires in it_value nanoseconds from when the call is made. If the flag
TIMER_ABSTIME is set in the argument flags , timer_settime() behaves as if the time until next
expiration is set to be equal to the difference between the absolute time specified by the it_value
member of value and the current value of the clock associated with timerid . That is, the timer
expires when the clock reaches the value specified by the it_value member of value . If the
specified time has already passed, the function succeeds and the expiration notification is made.

The reload value of the timer is set to the value specified by the it_interval member of value .
When a timer is armed with a non-zero it_interval , a periodic (or repetitive) timer is specified.

Time values that are between two consecutive non-negative integer multiples of the resolution
of the specified timer will be rounded up to the larger multiple of the resolution. Quantization
error will not cause the timer to expire earlier than the rounded time value.

If the argument ovalue is not NULL, the function timer_settime() stores, in the location referenced
by ovalue , a value representing the previous amount of time before the timer would have
expired or zero if the timer was disarmed, together with the previous timer reload value. The
members of ovalue are subject to the resolution of the timer, and they are the same values that
would be returned by a timer_gettime() call at that point in time.

The timer_gettime() function stores the amount of time until the specified timer, timerid , expires
and the reload value of the timer into the space pointed to by the value argument. The it_value
member of this structure contains the amount of time before the timer expires, or zero if the
timer is disarmed. This value is returned as the interval until timer expiration, even if the timer
was armed with absolute time. The it_interval member of value contains the reload value last set
by timer_settime().

Only a single signal will be queued to the process for a given timer at any point in time. When a
timer for which a signal is still pending expires, no signal will be queued, and a timer overrun
occurs. When a timer expiration signal is delivered to or accepted by a process, if the
implementation supports the Realtime Signals Extension, the timer_getoverrun() function returns
the timer expiration overrun count for the specified timer. The overrun count returned contains
the number of extra timer expirations that occurred between the time the signal was generated
(queued) and when it was delivered or accepted, up to but not including an implementation-
dependent maximum of {DELAYTIMER_MAX}. If the number of such extra expirations is

System Interfaces and Headers, Issue 5: Volume 2 947

timer_settime() System Interfaces

greater than or equal to {DELAYTIMER_MAX}, then the overrun count will be set to
{DELAYTIMER_MAX}. The value returned by timer_getoverrun() applies to the most recent
expiration signal delivery or acceptance for the timer. If no expiration signal has been delivered
for the timer, or if the Realtime Signals Extension is not supported, the meaning of the overrun
count returned is undefined.

RETURN VALUE
If the timer_settime() or timer_gettime() functions succeed, a value of 0 is returned. If an error
occurs for either of these functions, the value −1 is returned, and errno is set to indicate the error.
If the timer_getoverrun() function succeeds, it returns the timer expiration overrun count as
explained above.

ERRORS
The timer_settime(), timer_gettime() and timer_getoverrun() functions will fail if:

[EINVAL] The timerid argument does not correspond to an id returned by timer_create()
but not yet deleted by timer_delete().

[ENOSYS] The functions timer_settime(), timer_gettime(), and timer_getoverrun() are not
supported by this implementation.

The timer_settime() function will fail if:

[EINVAL] A value structure specified a nanosecond value less than zero or greater than
or equal to 1000 million.

EXAMPLES
None.

APPLICATION USAGE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
clock_gettime (), timer_create(), <time.h>.

CHANGE HISTORY
First released in Issue 5.

Included for alignment with the POSIX Realtime Extension.

948 CAE Specification (1997)

System Interfaces times()

NAME
times — get process and waited-for child process times

SYNOPSIS
#include <sys/times.h>

clock_t times(struct tms * buffer);

DESCRIPTION
The times() function fills the tms structure pointed to by buffer with time-accounting
information. The structure tms is defined in <sys/times.h>.

All times are measured in terms of the number of clock ticks used.

The times of a terminated child process are included in the tms_cutime and tms_cstime
elements of the parent when wait() or waitpid () returns the process ID of this terminated child.
If a child process has not waited for its children, their times will not be included in its times.

• The tms_utime structure member is the CPU time charged for the execution of user
instructions of the calling process.

• The tms_stime structure member is the CPU time charged for execution by the system on
behalf of the calling process.

• The tms_cutime structure member is the sum of the tms_utime and tms_cutime times of the
child processes.

• The tms_cstime structure member is the sum of the tms_stime and tms_cstime times of the
child processes.

RETURN VALUE
Upon successful completion, times() returns the elapsed real time, in clock ticks, since an
arbitrary point in the past (for example, system start-up time). This point does not change from
one invocation of times() within the process to another. The return value may overflow the
possible range of type clock_t. If times() fails, (clock_t)−1 is returned and errno is set to indicate
the error.

ERRORS
No errors are defined.

EXAMPLES
None.

APPLICATION USAGE
Applications should use sysconf(_SC_CLK_TCK) to determine the number of clock ticks per
second as it may vary from system to system.

FUTURE DIRECTIONS
None.

SEE ALSO
exec, fork (), sysconf(), time(), wait(), <sys/times.h>.

CHANGE HISTORY
First released in Issue 1.

Derived from Issue 1 of the SVID.

System Interfaces and Headers, Issue 5: Volume 2 949

times() System Interfaces

Issue 4
The following changes are incorporated for alignment with the ISO POSIX-1 standard:

• All references to the constant {CLK_TCK} are removed.

• The RETURN VALUE section is updated to indicate that (clock_t)−1 will be returned on
error.

950 CAE Specification (1997)

System Interfaces timezone

NAME
timezone — difference from UTC and local standard time

SYNOPSIS
EX #include <time.h>

extern long int timezone;

DESCRIPTION
Refer to tzset().

CHANGE HISTORY
First released in Issue 1.

Derived from Issue 1 of the SVID.

Issue 4
The following changes are incorporated in this issue:

• In the NAME section, ‘‘GMT’’ is changed to ‘‘UTC’’.

• The interface is marked as an extension.

• The type of timezone is expanded to extern long int.

System Interfaces and Headers, Issue 5: Volume 2 951

tmpfile() System Interfaces

NAME
tmpfile — create a temporary file

SYNOPSIS
#include <stdio.h>

FILE *tmpfile(void);

DESCRIPTION
The tmpfile() function creates a temporary file and opens a corresponding stream. The file will
automatically be deleted when all references to the file are closed. The file is opened as in
fopen() for update (w+).

EX The largest value that can be represented correctly in an object of type off_t will be established
as the offset maximum in the open file description.

If the process is killed in the period between file creation and unlinking, a permanent file may be
left behind.

An error message may be written to standard error if the stream cannot be opened.

RETURN VALUE
Upon successful completion, tmpfile() returns a pointer to the stream of the file that is created.
Otherwise, it returns a null pointer and sets errno to indicate the error.

ERRORS
The tmpfile() function will fail if:

[EINTR] A signal was caught during tmpfile().

[EMFILE] {OPEN_MAX} file descriptors are currently open in the calling process.

[ENFILE] The maximum allowable number of files is currently open in the system.

[ENOSPC] The directory or file system which would contain the new file cannot be
expanded.

EX [EOVERFLOW] The file is a regular file and the size of the file cannot be represented correctly
in an object of type off_t.

The tmpfile() function may fail if:

EX [EMFILE] {FOPEN_MAX} streams are currently open in the calling process.

[ENOMEM] Insufficient storage space is available.

EXAMPLES
None.

APPLICATION USAGE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
fopen(), tmpnam(), unlink(), <stdio.h>.

CHANGE HISTORY
First released in Issue 1.

Derived from Issue 1 of the SVID.

952 CAE Specification (1997)

System Interfaces tmpfile()

Issue 4
The following changes are incorporated in this issue:

• The argument list is explicitly defined as void.

• The [EINTR] error is moved to the ‘‘will fail’’ part of the ERRORS section; [EMFILE],
[ENFILE] and [ENOSPC] are no longer marked as extensions; [EACCES], [ENOTDIR] and
[EROFS] are removed; and the [EMFILE] error in the ‘‘may fail’’ part is marked as an
extension.

Issue 5
Large File Summit extensions added.

The last two paragraphs of the DESCRIPTION were included as APPLICATION USAGE notes
in previous issues.

System Interfaces and Headers, Issue 5: Volume 2 953

tmpnam() System Interfaces

NAME
tmpnam — create a name for a temporary file

SYNOPSIS
#include <stdio.h>

char *tmpnam(char * s);

DESCRIPTION
The tmpnam() function generates a string that is a valid filename and that is not the same as the
name of an existing file.

The tmpnam() function generates a different string each time it is called from the same process,
up to {TMP_MAX} times. If it is called more than {TMP_MAX} times, the behaviour is
implementation-dependent.

The implementation will behave as if no function defined in this document calls tmpnam().

If the application uses any of the interfaces guaranteed to be available if either
_POSIX_THREAD_SAFE_FUNCTIONS or _POSIX_THREADS is defined, the tmpnam() function
must be called with a non-NULL parameter.

RETURN VALUE
Upon successful completion, tmpnam() returns a pointer to a string.

If the argument s is a null pointer, tmpnam() leaves its result in an internal static object and
returns a pointer to that object. Subsequent calls to tmpnam() may modify the same object. If
the argument s is not a null pointer, it is presumed to point to an array of at least {L_tmpnam}
chars; tmpnam() writes its result in that array and returns the argument as its value.

ERRORS
No errors are defined.

EXAMPLES
None.

APPLICATION USAGE
This function only creates filenames. It is the application’s responsibility to create and remove
the files.

Between the time a pathname is created and the file is opened, it is possible for some other
process to create a file with the same name. Applications may find tmpfile() more useful.

FUTURE DIRECTIONS
None.

SEE ALSO
fopen(), open(), tempnam(), tmpfile(), unlink(), <stdio.h>.

CHANGE HISTORY
First released in Issue 1.

Derived from Issue 1 of the SVID.

Issue 5
The DESCRIPTION is updated for alignment with the POSIX Threads Extension.

954 CAE Specification (1997)

System Interfaces toascii()

NAME
toascii — translate integer to a 7-bit ASCII character

SYNOPSIS
EX #include <ctype.h>

int toascii(int c);

DESCRIPTION
The toascii () function converts its argument into a 7-bit ASCII character.

RETURN VALUE
The toascii () function returns the value (c & 0x7f).

ERRORS
No errors are returned.

EXAMPLES
None.

APPLICATION USAGE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
isascii (), <ctype.h>.

CHANGE HISTORY
First released in Issue 1.

Derived from Issue 1 of the SVID.

System Interfaces and Headers, Issue 5: Volume 2 955

_tolower() System Interfaces

NAME
_tolower — transliterate upper-case characters to lower-case

SYNOPSIS
EX #include <ctype.h>

int _tolower(int c);

DESCRIPTION
The _tolower () macro is equivalent to tolower(c) except that the argument c must be an upper-
case letter.

RETURN VALUE
On successful completion, _tolower () returns the lower-case letter corresponding to the
argument passed.

ERRORS
No errors are defined.

EXAMPLES
None.

APPLICATION USAGE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
tolower(), isupper(), <ctype.h>, the XBD specification, Chapter 5, Locale.

CHANGE HISTORY
First released in Issue 1.

Derived from Issue 1 of the SVID.

Issue 4
The following change is incorporated in this issue:

• The RETURN VALUE section is expanded.

956 CAE Specification (1997)

System Interfaces tolower()

NAME
tolower — transliterate upper-case characters to lower-case

SYNOPSIS
#include <ctype.h>

int tolower(int c);

DESCRIPTION
The tolower() function has as a domain a type int, the value of which is representable as an
unsigned char or the value of EOF. If the argument has any other value, the behaviour is
undefined. If the argument of tolower() represents an upper-case letter, and there exists a
corresponding lower-case letter (as defined by character type information in the program locale
category LC_CTYPE), the result is the corresponding lower-case letter. All other arguments in
the domain are returned unchanged.

RETURN VALUE
On successful completion, tolower() returns the lower-case letter corresponding to the argument
passed; otherwise it returns the argument unchanged.

ERRORS
No errors are defined.

EXAMPLES
None.

APPLICATION USAGE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
setlocale (), <ctype.h>, the XBD specification, Chapter 5, Locale.

CHANGE HISTORY
First released in Issue 1.

Derived from Issue 1 of the SVID.

Issue 4
The following changes are incorporated in this issue:

• Reference to ‘‘shift information’’ is replaced by ‘‘character type information’’.

• The RETURN VALUE section is added.

System Interfaces and Headers, Issue 5: Volume 2 957

_toupper() System Interfaces

NAME
_toupper — transliterate lower-case characters to upper-case

SYNOPSIS
EX #include <ctype.h>

int _toupper(int c);

DESCRIPTION
The _toupper() macro is equivalent to toupper() except that the argument c must be a lower-case
letter.

RETURN VALUE
On successful completion, _toupper() returns the upper-case letter corresponding to the
argument passed.

ERRORS
No errors are defined.

EXAMPLES
None.

APPLICATION USAGE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
islower(), toupper(), <ctype.h>, the XBD specification, Chapter 5, Locale.

CHANGE HISTORY
First released in Issue 1.

Derived from Issue 1 of the SVID.

Issue 4
The following change is incorporated in this issue:

• The RETURN VALUE section is expanded.

958 CAE Specification (1997)

System Interfaces toupper()

NAME
toupper — transliterate lower-case characters to upper-case

SYNOPSIS
#include <ctype.h>

int toupper(int c);

DESCRIPTION
The toupper() function has as a domain a type int, the value of which is representable as an
unsigned char or the value of EOF. If the argument has any other value, the behaviour is
undefined. If the argument of toupper() represents a lower-case letter, and there exists a
corresponding upper-case letter (as defined by character type information in the program locale
category LC_CTYPE), the result is the corresponding upper-case letter. All other arguments in
the domain are returned unchanged.

RETURN VALUE
On successful completion, toupper() returns the upper-case letter corresponding to the argument
passed.

ERRORS
No errors are defined.

EXAMPLES
None.

APPLICATION USAGE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
setlocale (), <ctype.h>, the XBD specification, Chapter 5, Locale.

CHANGE HISTORY
First released in Issue 1.

Derived from Issue 1 of the SVID.

Issue 4
The following changes are incorporated in this issue:

• Reference to ‘‘shift information’’ is replaced by ‘‘character type information’’.

• The RETURN VALUE section is added.

System Interfaces and Headers, Issue 5: Volume 2 959

towctrans() System Interfaces

NAME
towctrans — character transliteration

SYNOPSIS
#include <wctype.h>

wint_t towctrans(wint_t wc, wctrans_t desc);

DESCRIPTION
The towctrans() function transliterates the wide-character code wc using the mapping described
by desc. The current setting of the LC_CTYPE category should be the same as during the call to
wctrans() that returned the value desc. If the value of desc is invalid (that is, not obtained by a
call to wctrans() or desc is invalidated by a subsequent call to setlocale () that has affected category
LC_CTYPE) the result is implementation-dependent.

RETURN VALUE
If successful, the towctrans() function returns the mapped value of wc using the mapping
described by desc. Otherwise it returns wc unchanged.

ERRORS
The towctrans() function may fail if:

[EINVAL] desc contains an invalid transliteration descriptor.

EXAMPLES
None.

APPLICATION USAGE
The strings — "tolower" and "toupper" — are reserved for the standard mapping names. In the
table below, the functions in the left column are equivalent to the functions in the right column.

towlower(wc) towctrans(wc, wctrans("tolower"))
towupper(wc) towctrans(wc, wctrans("toupper"))

FUTURE DIRECTIONS
None.

SEE ALSO
towlower(), towupper(), wctrans(), <wctype.h>.

CHANGE HISTORY
First released in Issue 5.

Derived from ISO/IEC 9899:1990/Amendment 1:1994 (E).

960 CAE Specification (1997)

System Interfaces towlower()

NAME
towlower — transliterate upper-case wide-character code to lower-case

SYNOPSIS
#include <wctype.h>

wint_t towlower(wint_t wc);

DESCRIPTION
The towlower() function has as a domain a type wint_t, the value of which must be a character
representable as a wchar_t, and must be a wide-character code corresponding to a valid
character in the current locale or the value of WEOF. If the argument has any other value, the
behaviour is undefined. If the argument of towlower() represents an upper-case wide-character
code, and there exists a corresponding lower-case wide-character code (as defined by character
type information in the program locale category LC_CTYPE), the result is the corresponding
lower-case wide-character code. All other arguments in the domain are returned unchanged.

RETURN VALUE
On successful completion, towlower() returns the lower-case letter corresponding to the
argument passed; otherwise it returns the argument unchanged.

ERRORS
No errors are defined.

EXAMPLES
None.

APPLICATION USAGE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
setlocale (), <wctype.h>, <wchar.h>, the XBD specification, Chapter 5, Locale.

CHANGE HISTORY
First released in Issue 4.

Issue 5
The following change has been made in this issue for alignment with ISO/IEC
9899:1990/Amendment 1:1994 (E).

• The SYNOPSIS has been changed to indicate that this function and associated data types are
now made visible by inclusion of the header <wctype.h> rather than <wchar.h>.

System Interfaces and Headers, Issue 5: Volume 2 961

towupper() System Interfaces

NAME
towupper — transliterate lower-case wide-character code to upper-case

SYNOPSIS
#include <wctype.h>

wint_t towupper(wint_t wc);

DESCRIPTION
The towupper() function has as a domain a type wint_t, the value of which must be a character
representable as a wchar_t, and must be a wide-character code corresponding to a valid
character in the current locale or the value of WEOF. If the argument has any other value, the
behaviour is undefined. If the argument of towupper() represents a lower-case wide-character
code, and there exists a corresponding upper-case wide-character code (as defined by character
type information in the program locale category LC_CTYPE), the result is the corresponding
upper-case wide-character code. All other arguments in the domain are returned unchanged.

RETURN VALUE
Upon successful completion, towupper() returns the upper-case letter corresponding to the
argument passed. Otherwise it returns the argument unchanged.

ERRORS
No errors are defined.

EXAMPLES
None.

APPLICATION USAGE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
setlocale (), <wctype.h>, <wchar.h>, the XBD specification, Chapter 5, Locale.

CHANGE HISTORY
First released in Issue 4.

Issue 5
The following change has been made in this issue for alignment with ISO/IEC
9899:1990/Amendment 1:1994 (E).

• The SYNOPSIS has been changed to indicate that this function and associated data types are
now made visible by inclusion of the header <wctype.h> rather than <wchar.h>.

962 CAE Specification (1997)

System Interfaces truncate()

NAME
truncate — truncate a file to a specified length

SYNOPSIS
EX #include <unistd.h>

int truncate(const char * path , off_t length);

DESCRIPTION
Refer to ftruncate().

CHANGE HISTORY
First released in Issue 4, Version 2.

Issue 5
Moved from X/OPEN UNIX extension to BASE.

System Interfaces and Headers, Issue 5: Volume 2 963

tsearch() System Interfaces

NAME
tdelete, tfind, tsearch, twalk — manage a binary search tree

SYNOPSIS
EX #include <search.h>

void *tsearch(const void * key , void ** rootp ,
int (* compar)(const void *, const void *));

void *tfind(const void * key , void *const * rootp ,
int(* compar)(const void *, const void *));

void *tdelete(const void * key , void ** rootp ,
int(* compar)(const void *, const void *));

void twalk(const void * root ,
void (* action)(const void *, VISIT, int));

DESCRIPTION
The tsearch(), tfind(), tdelete() and twalk () functions manipulate binary search trees.
Comparisons are made with a user-supplied routine, the address of which is passed as the
compar argument. This routine is called with two arguments, the pointers to the elements being
compared. The user-supplied routine must return an integer less than, equal to or greater than 0,
according to whether the first argument is to be considered less than, equal to or greater than the
second argument. The comparison function need not compare every byte, so arbitrary data may
be contained in the elements in addition to the values being compared.

The tsearch() function is used to build and access the tree. The key argument is a pointer to an
element to be accessed or stored. If there is a node in the tree whose element is equal to the
value pointed to by key, a pointer to this found node is returned. Otherwise, the value pointed to
by key is inserted (that is, a new node is created and the value of key is copied to this node), and a
pointer to this node returned. Only pointers are copied, so the calling routine must store the
data. The rootp argument points to a variable that points to the root node of the tree. A null
pointer value for the variable pointed to by rootp denotes an empty tree; in this case, the variable
will be set to point to the node which will be at the root of the new tree.

Like tsearch(), tfind() will search for a node in the tree, returning a pointer to it if found.
However, if it is not found, tfind() will return a null pointer. The arguments for tfind() are the
same as for tsearch().

The tdelete() function deletes a node from a binary search tree. The arguments are the same as
for tsearch(). The variable pointed to by rootp will be changed if the deleted node was the root of
the tree. The tdelete() function returns a pointer to the parent of the deleted node, or a null
pointer if the node is not found.

The twalk () function traverses a binary search tree. The root argument is a pointer to the root
node of the tree to be traversed. (Any node in a tree may be used as the root for a walk below
that node.) The argument action is the name of a routine to be invoked at each node. This
routine is, in turn, called with three arguments. The first argument is the address of the node
being visited. The structure pointed to by this argument is unspecified and must not be
modified by the application, but it is guaranteed that a pointer-to-node can be converted to
pointer-to-pointer-to-element to access the element stored in the node. The second argument is
a value from an enumeration data type:

typedef enum { preorder, postorder, endorder, leaf } VISIT;

(defined in <search.h>), depending on whether this is the first, second or third time that the
node is visited (during a depth-first, left-to-right traversal of the tree), or whether the node is a
leaf. The third argument is the level of the node in the tree, with the root being level 0.

964 CAE Specification (1997)

System Interfaces tsearch()

If the calling function alters the pointer to the root, the result is undefined.

RETURN VALUE
If the node is found, both tsearch() and tfind() return a pointer to it. If not, tfind() returns a null
pointer, and tsearch() returns a pointer to the inserted item.

A null pointer is returned by tsearch() if there is not enough space available to create a new node.

A null pointer is returned by tsearch(), tfind() and tdelete() if rootp is a null pointer on entry.

The tdelete() function returns a pointer to the parent of the deleted node, or a null pointer if the
node is not found.

The twalk () function returns no value.

ERRORS
No errors are defined.

EXAMPLES
The following code reads in strings and stores structures containing a pointer to each string and
a count of its length. It then walks the tree, printing out the stored strings and their lengths in
alphabetical order.

#include <search.h>
#include <string.h>
#include <stdio.h>

#define STRSZ 10000
#define NODSZ 500

struct node { /* pointers to these are stored in the tree */
char *string;
int length;

};

char string_space[STRSZ]; /* space to store strings */
struct node nodes[NODSZ]; /* nodes to store */
void *root = NULL; /* this points to the root */

int main(int argc, char *argv[])
{

char *strptr = string_space;
struct node *nodeptr = nodes;
void print_node(const void *, VISIT, int);
int i = 0, node_compare(const void *, const void *);

while (gets(strptr) != NULL && i++ < NODSZ) {
/* set node */
nodeptr −>string = strptr;
nodeptr −>length = strlen(strptr);
/* put node into the tree */
(void) tsearch((void *)nodeptr, (void **)&root,

node_compare);
/* adjust pointers, so we do not overwrite tree */
strptr += nodeptr −>length + 1;
nodeptr++;

System Interfaces and Headers, Issue 5: Volume 2 965

tsearch() System Interfaces

}
twalk(root, print_node);
return 0;

}

/*
* This routine compares two nodes, based on an
* alphabetical ordering of the string field.
*/

int
node_compare(const void *node1, const void *node2)
{

return strcmp(((const struct node *) node1) −>string,
((const struct node *) node2) −>string);

}

/*
* This routine prints out a node, the second time
* twalk encounters it or if it is a leaf.
*/

void
print_node(const void *ptr, VISIT order, int level)
{

const struct node *p = *(const struct node **) ptr;

if (order == postorder  order == leaf) {
(void) printf("string = %s, length = %d\n",

p->string, p->length);
}

}

APPLICATION USAGE
The root argument to twalk () is one level of indirection less than the rootp arguments to tsearch()
and tdelete().

There are two nomenclatures used to refer to the order in which tree nodes are visited. The
tsearch() function uses preorder, postorder and endorder to refer respectively to visiting a node
before any of its children, after its left child and before its right, and after both its children. The
alternative nomenclature uses preorder, inorder and postorder to refer to the same visits, which
could result in some confusion over the meaning of postorder.

FUTURE DIRECTIONS
None.

SEE ALSO
bsearch(), hsearch(), lsearch(), <search.h>.

CHANGE HISTORY
First released in Issue 1.

Derived from Issue 1 of the SVID.

966 CAE Specification (1997)

System Interfaces tsearch()

Issue 4
The following changes are incorporated in this issue:

• The type of argument key in the definition of tsearch() is changed from void* to const void*.
The definitions of other functions are changed as indicated on their respective entries.

• Various minor wording changes are made in the DESCRIPTION to improve clarity and
accuracy. In particular, additional notes are added about constraints on the first argument to
twalk ().

• The sample code in the EXAMPLES section is updated to use ISO C syntax. Also the
definition of the root and argv items is changed.

• The paragraph in the APPLICATION USAGE section about casts is removed.

Issue 5
The last paragraph of the DESCRIPTION was included as an APPLICATION USAGE note in
previous issues.

System Interfaces and Headers, Issue 5: Volume 2 967

ttyname() System Interfaces

NAME
ttyname, ttyname_r — find pathname of a terminal

SYNOPSIS
#include <unistd.h>

char *ttyname(int fildes);
int ttyname_r(int fildes , char * name, size_t namesize);

DESCRIPTION
The ttyname() function returns a pointer to a string containing a null-terminated pathname of
the terminal associated with file descriptor fildes . The return value may point to static data
whose content is overwritten by each call.

The ttyname() interface need not be reentrant.

The ttyname_r() function stores the null-terminated pathname of the terminal associated with
the file descriptor fildes in the character array referenced by name. The array is namesize
characters long and should have space for the name and the terminating null character. The
maximum length of the terminal name is {TTY_NAME_MAX}.

RETURN VALUE
Upon successful completion, ttyname() returns a pointer to a string. Otherwise, a null pointer is

EX returnedand errno is set to indicate the error.

If successful, the ttyname_r() function returns zero. Otherwise, an error number is returned to
indicate the error.

ERRORS
The ttyname() function may fail if:

EX [EBADF] The fildes argument is not a valid file descriptor.

EX [ENOTTY] The fildes argument does not refer to a terminal device.

The ttyname_r() function may fail if:

[EBADF] The fildes argument is not a valid file descriptor.

[ENOTTY] The fildes argument does not refer to a tty.

[ERANGE] The value of namesize is smaller than the length of the string to be returned
including the terminating null character.

EXAMPLES
None.

APPLICATION USAGE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
<unistd.h>.

CHANGE HISTORY
First released in Issue 1.

Derived from Issue 1 of the SVID.

968 CAE Specification (1997)

System Interfaces ttyname()

Issue 4
The following changes are incorporated in this issue:

• The <unistd.h> header is added to the SYNOPSIS.

• The statement indicating that errno will be set on error in the RETURN VALUE section, and
the errors [EBADF] and [ENOTTY], are marked as extensions.

Issue 5
The ttyname_r() function is included for alignment with the POSIX Threads Extension.

A note indicating that the ttyname() interface need not be reentrant is added to the
DESCRIPTION.

System Interfaces and Headers, Issue 5: Volume 2 969

ttyslot() System Interfaces

NAME
ttyslot — find the slot of the current user in the user accounting database (LEGACY)

SYNOPSIS
EX #include <stdlib.h>

int ttyslot(void);

DESCRIPTION
The ttyslot () function returns the index of the current user’s entry in the user accounting
database. The current user’s entry is an entry for which the utline member matches the name of
a terminal device associated with any of the process’ file descriptors 0, 1 or 2. The index is an
ordinal number representing the record number in the database of the current user’s entry. The
first entry in the database is represented by the return value 0.

This interface need not be reentrant.

RETURN VALUE
Upon successful completion, ttyslot () returns the index of the current user’s entry in the user
accounting database. The ttyslot () function returns −1 if an error was encountered while
searching the database or if none of file descriptors 0, 1 or 2 is associated with a terminal device.

ERRORS
No errors are defined.

EXAMPLES
None.

APPLICATION USAGE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
endutxent(), ttyname(), <stdlib.h>.

CHANGE HISTORY
First released in Issue 4, Version 2.

Issue 5
Marked LEGACY.

A note indicating that this interface need not be reentrant is added to the DESCRIPTION.

970 CAE Specification (1997)

System Interfaces twalk()

NAME
twalk — traverse a binary search tree

SYNOPSIS
EX #include <search.h>

void twalk(const void * root ,
void (* action)(const void *, VISIT, int));

DESCRIPTION
Refer to tsearch().

CHANGE HISTORY
First released in Issue 3.

Derived from Issue 1 of the SVID.

Issue 4
The following changes are incorporated in this issue:

• The type of argument root is changed from char * to const void*, and the argument list to
action () is formally defined.

System Interfaces and Headers, Issue 5: Volume 2 971

tzname System Interfaces

NAME
tzname — timezone strings

SYNOPSIS
#include <time.h>

extern char *tzname[];

DESCRIPTION
Refer to tzset().

CHANGE HISTORY
First released in Issue 1.

Derived from Issue 1 of the SVID.

Issue 4
The following change is incorporated in this issue:

• The <time.h> header is added to the SYNOPSIS section.

972 CAE Specification (1997)

System Interfaces tzset()

NAME
tzset — set time zone conversion information

SYNOPSIS
#include <time.h>

void tzset (void);
extern char *tzname[];

EX extern long int timezone;
extern int daylight;

DESCRIPTION
The tzset() function uses the value of the environment variable TZ to set time conversion
information used by localtime (), ctime(), strftime() and mktime(). If TZ is absent from the
environment, implementation-dependent default time zone information is used.

The tzset() function sets the external variable tzname as follows:

tzname[0] = "std";
tzname[1] = "dst";

where std and dst are as described in the XBD specification, Chapter 6, Environment Variables.

EX The tzset() function also sets the external variable daylight to 0 if Daylight Savings Time
conversions should never be applied for the time zone in use; otherwise non-zero. The external
variable timezone is set to the difference, in seconds, between Coordinated Universal Time (UTC)
and local standard time, for example:

TZ timezone
EST 5*60*60
GMT 0*60*60
JST −9*60*60
MET −1*60*60
MST 7*60*60
PST 8*60*60

RETURN VALUE
The tzset() function returns no value.

ERRORS
No errors are defined.

EXAMPLES
None.

APPLICATION USAGE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
ctime(), localtime (), mktime(), strftime(), <time.h>.

System Interfaces and Headers, Issue 5: Volume 2 973

tzset() System Interfaces

CHANGE HISTORY
First released in Issue 1.

Derived from Issue 1 of the SVID.

Issue 4
The following change is incorporated for alignment with the ISO POSIX-1 standard:

• The argument list is explicitly defined as void.

Another change is incorporated as follows:

• The reference to timezone in the SYNOPSIS section is marked as an extension.

974 CAE Specification (1997)

System Interfaces ualarm()

NAME
ualarm — set the interval timer

SYNOPSIS
EX #include <unistd.h>

useconds_t ualarm(useconds_t useconds , useconds_t interval);

DESCRIPTION
The ualarm() function causes the SIGALRM signal to be generated for the calling process after
the number of real-time microseconds specified by the useconds argument has elapsed. When
the interval argument is non-zero, repeated timeout notification occurs with a period in
microseconds specified by the interval argument. If the notification signal, SIGALRM, is not
caught or ignored, the calling process is terminated.

Implementations may place limitations on the granularity of timer values. For each interval
timer, if the requested timer value requires a finer granularity than the implementation supports,
the actual timer value will be rounded up to the next supported value.

Interactions between ualarm() and any of the following are unspecified:

alarm()
RT nanosleep()

setitimer()
RT timer_create()

timer_delete()
timer_getoverrun()
timer_gettime()
timer_settime()
sleep()

RETURN VALUE
The ualarm() function returns the number of microseconds remaining from the previous
ualarm() call. If no timeouts are pending or if ualarm() has not previously been called, ualarm()
returns 0.

ERRORS
No errors are defined.

EXAMPLES
None.

APPLICATION USAGE
The ualarm() function is a simplified interface to setitimer(), and uses the ITIMER_REAL interval
timer.

FUTURE DIRECTIONS
None.

SEE ALSO
alarm(), nanosleep(), setitimer(), sleep(), timer_create(), timer_delete(), timer_getoverrun(),
timer_gettime(), timer_settime() <unistd.h>.

CHANGE HISTORY
First released in Issue 4, Version 2.

System Interfaces and Headers, Issue 5: Volume 2 975

ualarm() System Interfaces

Issue 5
Moved from X/OPEN UNIX extension to BASE.

976 CAE Specification (1997)

System Interfaces ulimit()

NAME
ulimit — get and set process limits

SYNOPSIS
EX #include <ulimit.h>

long int ulimit(int cmd, . . .);

DESCRIPTION
The ulimit() function provides for control over process limits. The cmd values, defined in
<ulimit.h> include:

UL_GETFSIZE Return the soft file size limit of the process. The limit is in units of 512-byte
blocks and is inherited by child processes. Files of any size can be read. The
return value is the integer part of the soft file size limit divided by 512. If the
result cannot be represented as a long int, the result is unspecified.

UL_SETFSIZE Set the hard and soft file size limits for output operations of the process to the
value of the second argument, taken as a long int. Any process may decrease
its own hard limit, but only a process with appropriate privileges may
increase the limit. The new file size limit is returned. The hard and soft file
size limits are set to the specified value multiplied by 512. If the result would
overflow an rlim_t, the actual value set is unspecified.

The ulimit() function will not change the setting of errno if successful.

RETURN VALUE
Upon successful completion, ulimit() returns the value of the requested limit. Otherwise −1 is
returned and errno is set to indicate the error.

ERRORS
The ulimit() function will fail and the limit will be unchanged if:

[EINVAL] The cmd argument is not valid.

[EPERM] A process not having appropriate privileges attempts to increase its file size
limit.

EXAMPLES
None.

APPLICATION USAGE
As all return values are permissible in a successful situation, an application wishing to check for
error situations should set errno to 0, then call ulimit(), and, if it returns −1, check to see if errno is
non-zero.

FUTURE DIRECTIONS
None.

SEE ALSO
getrlimit(), setrlimit(), write(), <ulimit.h>.

CHANGE HISTORY
First released in Issue 1.

Derived from Issue 1 of the SVID.

Issue 4
The following change is incorporated in this issue:

System Interfaces and Headers, Issue 5: Volume 2 977

ulimit() System Interfaces

• The use of long is replaced by long int in the SYNOPSIS and the DESCRIPTION sections.

Issue 4, Version 2
In the DESCRIPTION, the discussion of UL_GETFSIZE and UL_SETFSIZE is revised generally to
distinguish between the soft and the hard file size limit of the process. For UL_GETFSIZE, the
return value is defined more precisely. For UL_SETFSIZE, the effect on both file size limits is
specified, as is the effect if the result would overflow an rlim_t.

Issue 5
In the description of UL_SETFSIZE, the text is corrected to refer to rlim_t rather than the
spurious rlimit_t.

The DESCRIPTION is updated to indicate that errno will not be changed if the function is
successful.

978 CAE Specification (1997)

System Interfaces umask()

NAME
umask — set and get file mode creation mask

SYNOPSIS
OH #include <sys/types.h>

#include <sys/stat.h>

mode_t umask(mode_t cmask);

DESCRIPTION
The umask() function sets the process’ file mode creation mask to cmask and returns the previous
value of the mask. Only the file permission bits of cmask (see <sys/stat.h>) are used; the meaning
of the other bits is implementation-dependent.

The process’ file mode creation mask is used during open(), creat(), mkdir() and mkfifo() to turn
off permission bits in the mode argument supplied. Bit positions that are set in cmask are cleared
in the mode of the created file.

RETURN VALUE
The file permission bits in the value returned by umask() will be the previous value of the file
mode creation mask. The state of any other bits in that value is unspecified, except that a
subsequent call to umask() with the returned value as cmask will leave the state of the mask the
same as its state before the first call, including any unspecified use of those bits.

ERRORS
No errors are defined.

EXAMPLES
None.

APPLICATION USAGE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
creat(), mkdir(), mkfifo(), open(), <sys/stat.h>, <sys/types.h>.

CHANGE HISTORY
First released in Issue 1.

Derived from Issue 1 of the SVID.

Issue 4
The following changes are incorporated in this issue:

• The <sys/types.h> header is now marked as optional (OH); this header need not be included
on XSI-conformant systems.

• The RETURN VALUE section is expanded, in line with the ISO POSIX-1 standard, to describe
the situation with regard to additional bits in the file mode creation mask.

System Interfaces and Headers, Issue 5: Volume 2 979

uname() System Interfaces

NAME
uname — get name of current system

SYNOPSIS
#include <sys/utsname.h>

int uname(struct utsname * name);

DESCRIPTION
The uname() function stores information identifying the current system in the structure pointed
to by name.

The uname() function uses the utsname structure defined in <sys/utsname.h>.

The uname() function returns a string naming the current system in the character array sysname.
Similarly, nodename contains the name that the system is known by on a communications
network. The arrays release and version further identify the operating system. The array machine
contains a name that identifies the hardware that the system is running on.

The format of each member is implementation-dependent.

RETURN VALUE
Upon successful completion, a non-negative value is returned. Otherwise, −1 is returned and
errno is set to indicate the error.

ERRORS
No errors are defined.

EXAMPLES
None.

APPLICATION USAGE
The inclusion of the nodename member in this structure does not imply that it is sufficient
information for interfacing to communications networks.

FUTURE DIRECTIONS
None.

SEE ALSO
<sys/utsname.h>.

CHANGE HISTORY
First released in Issue 1.

Derived from Issue 1 of the SVID.

Issue 4
The following changes are incorporated for alignment with the ISO POSIX-1 standard:

• The DESCRIPTION is changed to indicate that the format of members in the utsname
structure is implementation-dependent.

• The RETURN VALUE section is updated to indicate that −1 will be returned and errno set to
indicate an error.

980 CAE Specification (1997)

System Interfaces ungetc()

NAME
ungetc — push byte back into input stream

SYNOPSIS
#include <stdio.h>

int ungetc(int c, FILE * stream);

DESCRIPTION
The ungetc() function pushes the byte specified by c (converted to an unsigned char) back onto
the input stream pointed to by stream. The pushed-back bytes will be returned by subsequent
reads on that stream in the reverse order of their pushing. A successful intervening call (with
the stream pointed to by stream) to a file-positioning function (fseek(), fsetpos() or rewind())
discards any pushed-back bytes for the stream. The external storage corresponding to the
stream is unchanged.

One byte of push-back is guaranteed. If ungetc() is called too many times on the same stream
without an intervening read or file-positioning operation on that stream, the operation may fail.

If the value of c equals that of the macro EOF, the operation fails and the input stream is
unchanged.

A successful call to ungetc() clears the end-of-file indicator for the stream. The value of the file-
position indicator for the stream after reading or discarding all pushed-back bytes will be the
same as it was before the bytes were pushed back. The file-position indicator is decremented by
each successful call to ungetc(); if its value was 0 before a call, its value is indeterminate after the
call.

RETURN VALUE
Upon successful completion, ungetc() returns the byte pushed back after conversion. Otherwise
it returns EOF.

ERRORS
No errors are defined.

EXAMPLES
None.

APPLICATION USAGE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
fseek(), getc(), fsetpos(), read(), rewind(), setbuf(), <stdio.h>.

CHANGE HISTORY
First released in Issue 1.

Derived from Issue 1 of the SVID.

Issue 4
The following changes are incorporated for alignment with the ISO C standard:

• The fsetpos() function is added to the list of file-positioning functions in the DESCRIPTION.

• Also this issue states that the file-position indicator is decremented by each successful call to
ungetc(), although note that XSI-conformant systems do not distinguish between text and
binary streams. Previous issues state that the disposition of this indicator is unspecified.

System Interfaces and Headers, Issue 5: Volume 2 981

ungetc() System Interfaces

Other changes are incorporated as follows:

• The DESCRIPTION is changed to make it clear that ungetc() manipulates bytes rather than
(possibly multi-byte) characters.

• The APPLICATION USAGE section is removed.

982 CAE Specification (1997)

System Interfaces ungetwc()

NAME
ungetwc — push wide-character code back into input stream

SYNOPSIS
#include <stdio.h>
#include <wchar.h>

wint_t ungetwc(wint_t wc, FILE * stream);

DESCRIPTION
The ungetwc() function pushes the character corresponding to the wide-character code specified
by wc back onto the input stream pointed to by stream. The pushed-back characters will be
returned by subsequent reads on that stream in the reverse order of their pushing. A successful
intervening call (with the stream pointed to by stream) to a file-positioning function (fseek(),
fsetpos() or rewind()) discards any pushed-back characters for the stream. The external storage
corresponding to the stream is unchanged.

One character of push-back is guaranteed. If ungetwc() is called too many times on the same
stream without an intervening read or file-positioning operation on that stream, the operation
may fail.

If the value of wc equals that of the macro WEOF, the operation fails and the input stream is
unchanged.

A successful call to ungetwc() clears the end-of-file indicator for the stream. The value of the
file-position indicator for the stream after reading or discarding all pushed-back characters will
be the same as it was before the characters were pushed back. The file-position indicator is
decremented (by one or more) by each successful call to ungetwc(); if its value was 0 before a
call, its value is indeterminate after the call.

RETURN VALUE
Upon successful completion, ungetwc() returns the wide-character code corresponding to the
pushed-back character. Otherwise it returns WEOF.

ERRORS
The ungetwc() function may fail if:

[EILSEQ] An invalid character sequence is detected, or a wide-character code does not
correspond to a valid character.

EXAMPLES
None.

APPLICATION USAGE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
fseek(), fsetpos(), read(), rewind(), setbuf(), <stdio.h>, <wchar.h>.

CHANGE HISTORY
First released in Issue 4.

Derived from the MSE working draft.

Issue 5
The Optional Header (OH) marking is removed from <stdio.h>.

System Interfaces and Headers, Issue 5: Volume 2 983

unlink() System Interfaces

NAME
unlink — remove a directory entry

SYNOPSIS
#include <unistd.h>

int unlink(const char * path);

DESCRIPTION
EX The unlink() function removes a link to a file. If path names a symbolic link, unlink() removes the

symbolic link named by path and does not affect any file or directory named by the contents of
the symbolic link. Otherwise, unlink() removes the link named by the pathname pointed to by
path and decrements the link count of the file referenced by the link.

When the file’s link count becomes 0 and no process has the file open, the space occupied by the
file will be freed and the file will no longer be accessible. If one or more processes have the file
open when the last link is removed, the link will be removed before unlink() returns, but the
removal of the file contents will be postponed until all references to the file are closed.

The path argument must not name a directory unless the process has appropriate privileges and
the implementation supports using unlink() on directories.

Upon successful completion, unlink() will mark for update the st_ctime and st_mtime fields of the
parent directory. Also, if the file’s link count is not 0, the st_ctime field of the file will be marked
for update.

RETURN VALUE
Upon successful completion, 0 is returned. Otherwise, −1 is returned and errno is set to indicate
the error. If −1 is returned, the named file will not be changed.

ERRORS
The unlink() function will fail and not unlink the file if:

[EACCES] Search permission is denied for a component of the path prefix, or write
permission is denied on the directory containing the directory entry to be
removed.

[EBUSY] The file named by the path argument cannot be unlinked because it is being
used by the system or another process and the implementation considers this
an error.

EX [ELOOP] Too many symbolic links were encountered in resolving path.

FIPS [ENAMETOOLONG]
The length of the path argument exceeds {PATH_MAX} or a pathname
component is longer than {NAME_MAX}.

[ENOENT] A component of path does not name an existing file or path is an empty string.

[ENOTDIR] A component of the path prefix is not a directory.

[EPERM] The file named by path is a directory, and either the calling process does not
have appropriate privileges, or the implementation prohibits using unlink()
on directories.

EX [EPERM] or [EACCES]
The S_ISVTX flag is set on the directory containing the file referred to by the
path argument and the caller is not the file owner, nor is the caller the directory
owner, nor does the caller have appropriate privileges.

984 CAE Specification (1997)

System Interfaces unlink()

[EROFS] The directory entry to be unlinked is part of a read-only file system.

The unlink() function may fail and not unlink the file if:

EX [EBUSY] The file named by path is a named STREAM.

[ENAMETOOLONG]
Pathname resolution of a symbolic link produced an intermediate result
whose length exceeds {PATH_MAX}.

[ETXTBSY] The entry to be unlinked is the last directory entry to a pure procedure (shared
text) file that is being executed.

EXAMPLES
None.

APPLICATION USAGE
Applications should use rmdir() to remove a directory.

FUTURE DIRECTIONS
None.

SEE ALSO
close(), link (), remove(), rmdir(), <unistd.h>.

CHANGE HISTORY
First released in Issue 1.

Derived from Issue 1 of the SVID.

Issue 4
The following change is incorporated for alignment with the ISO POSIX-1 standard:

• The type of argument path is changed from char * to const char *.

The following change is incorporated for alignment with the FIPS requirements:

• In the ERRORS section, the condition whereby [ENAMETOOLONG] will be returned if a
pathname component is larger that {NAME_MAX} is now defined as mandatory and marked
as an extension.

Other changes are incorporated as follows:

• The <unistd.h> header is added to the SYNOPSIS section.

• The error [ETXTBSY] is marked as an extension.

Issue 4, Version 2
The entry is updated for X/OPEN UNIX conformance as follows:

• In the DESCRIPTION, the effect is specified if path specifies a symbolic link.

• In the ERRORS section, [ELOOP] is added to indicate that too many symbolic links were
encountered during pathname resolution

• In the ERRORS section, [EPERM] or [EACCES] are added to indicate a permission check
failure when operating on directories with S_ISVTX set.

• In the ERRORS section, a second [ENAMETOOLONG] condition is defined that may report
excessive length of an intermediate result of pathname resolution of a symbolic link.

Issue 5
The [EBUSY] error is added to the ‘‘may fail’’ part of the ERRORS section.

System Interfaces and Headers, Issue 5: Volume 2 985

unlockpt() System Interfaces

NAME
unlockpt — unlock a pseudo-terminal master/slave pair

SYNOPSIS
EX #include <stdlib.h>

int unlockpt(int fildes);

DESCRIPTION
The unlockpt () function unlocks the slave pseudo-terminal device associated with the master to
which fildes refers.

Portable applications must call unlockpt () before opening the slave side of a pseudo-terminal
device.

RETURN VALUE
Upon successful completion, unlockpt () returns 0. Otherwise, it returns −1 and sets errno to
indicate the error.

ERRORS
The unlockpt () function may fail if:

[EBADF] The fildes argument is not a file descriptor open for writing.

[EINVAL] The fildes argument is not associated with a master pseudo-terminal device.

EXAMPLES
None.

APPLICATION USAGE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
grantpt(), open(), ptsname(), <stdlib.h>.

CHANGE HISTORY
First released in Issue 4, Version 2.

Issue 5
Moved from X/OPEN UNIX extension to BASE.

986 CAE Specification (1997)

System Interfaces usleep()

NAME
usleep — suspend execution for an interval

SYNOPSIS
EX #include <unistd.h>

int usleep(useconds_t useconds);

DESCRIPTION
The usleep() function will cause the calling thread to be suspended from execution until either
the number of real-time microseconds specified by the argument useconds has elapsed or a signal
is delivered to the calling thread and its action is to invoke a signal-catching function or to
terminate the process. The suspension time may be longer than requested due to the scheduling
of other activity by the system.

The useconds argument must be less than 1,000,000. If the value of useconds is 0, then the call has
no effect.

If a SIGALRM signal is generated for the calling process during execution of usleep() and if the
SIGALRM signal is being ignored or blocked from delivery, it is unspecified whether usleep()
returns when the SIGALRM signal is scheduled. If the signal is being blocked, it is also
unspecified whether it remains pending after usleep() returns or it is discarded.

If a SIGALRM signal is generated for the calling process during execution of usleep(), except as a
result of a prior call to alarm(), and if the SIGALRM signal is not being ignored or blocked from
delivery, it is unspecified whether that signal has any effect other than causing usleep() to return.

If a signal-catching function interrupts usleep() and examines or changes either the time a
SIGALRM is scheduled to be generated, the action associated with the SIGALRM signal, or
whether the SIGALRM signal is blocked from delivery, the results are unspecified.

If a signal-catching function interrupts usleep() and calls siglongjmp () or longjmp() to restore an
environment saved prior to the usleep() call, the action associated with the SIGALRM signal and
the time at which a SIGALRM signal is scheduled to be generated are unspecified. It is also
unspecified whether the SIGALRM signal is blocked, unless the process’ signal mask is restored
as part of the environment.

Implementations may place limitations on the granularity of timer values. For each interval
timer, if the requested timer value requires a finer granularity than the implementation supports,
the actual timer value will be rounded up to the next supported value.

Interactions between usleep() and any of the following are unspecified:

RT nanosleep()
setitimer()

RT timer_create()
timer_delete()
timer_getoverrun()
timer_gettime()
timer_settime()
ualarm()
sleep()

RETURN VALUE
On successful completion, usleep() returns 0. Otherwise, it returns −1 and sets errno to indicate
the error.

System Interfaces and Headers, Issue 5: Volume 2 987

usleep() System Interfaces

ERRORS
The usleep() function may fail if:

[EINVAL] The time interval specified 1,000,000 or more microseconds.

EXAMPLES
None.

APPLICATION USAGE
Applications are recommended to use setitimer(), timer_create(), timer_delete(),
timer_getoverrun(), timer_gettime() or timer_settime() instead of this interface.

FUTURE DIRECTIONS
None.

SEE ALSO
alarm(), getitimer(), nanosleep(), sigaction (), sleep(), timer_create(), timer_delete(),
timer_getoverrun(), timer_gettime(), timer_settime(), <unistd.h>.

CHANGE HISTORY
First released in Issue 4, Version 2.

Issue 5
Moved from X/OPEN UNIX extension to BASE.

The DESCRIPTION is changed to indicate that timers are now thread-based rather than
process-based.

988 CAE Specification (1997)

System Interfaces utime()

NAME
utime — set file access and modification times

SYNOPSIS
OH #include <sys/types.h>

#include <utime.h>

int utime(const char * path , const struct utimbuf * times);

DESCRIPTION
The utime() function sets the access and modification times of the file named by the path
argument.

If times is a null pointer, the access and modification times of the file are set to the current time.
The effective user ID of the process must match the owner of the file, or the process must have
write permission to the file or have appropriate privileges, to use utime() in this manner.

If times is not a null pointer, times is interpreted as a pointer to a utimbuf structure and the
access and modification times are set to the values contained in the designated structure. Only a
process with effective user ID equal to the user ID of the file or a process with appropriate
privileges may use utime() this way.

The utimbuf structure is defined by the header <utime.h>. The times in the structure utimbuf
are measured in seconds since the Epoch.

Upon successful completion, utime() will mark the time of the last file status change, st_ctime, to
be updated, see <sys/stat.h>.

RETURN VALUE
Upon successful completion, 0 is returned. Otherwise, −1 is returned and errno is set to indicate
the error, and the file times will not be affected.

ERRORS
The utime() function will fail if:

[EACCES] Search permission is denied by a component of the path prefix; or the times
argument is a null pointer and the effective user ID of the process does not
match the owner of the file and write access is denied.

EX [ELOOP] Too many symbolic links were encountered in resolving path.

FIPS [ENAMETOOLONG]
The length of the path argument exceeds {PATH_MAX} or a pathname
component is longer than {NAME_MAX}.

[ENOENT] A component of path does not name an existing file or path is an empty string.

[ENOTDIR] A component of the path prefix is not a directory.

[EPERM] The times argument is not a null pointer and the calling process’ effective user
ID has write access to the file but does not match the owner of the file and the
calling process does not have the appropriate privileges.

[EROFS] The file system containing the file is read-only.

The utime() function may fail if:

EX [ENAMETOOLONG]
Pathname resolution of a symbolic link produced an intermediate result
whose length exceeds {PATH_MAX}.

System Interfaces and Headers, Issue 5: Volume 2 989

utime() System Interfaces

EXAMPLES
None.

APPLICATION USAGE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
<sys/types.h>, <utime.h>.

CHANGE HISTORY
First released in Issue 1.

Derived from Issue 1 of the SVID.

Issue 4
The following change is incorporated for alignment with the ISO POSIX-1 standard:

• The type of argument path is changed from char * to const char *, and times is changed from
struct utimbuf* to const struct utimbuf*.

The following change is incorporated for alignment with the FIPS requirements:

• In the ERRORS section, the condition whereby [ENAMETOOLONG] will be returned if a
pathname component is larger that {NAME_MAX} is now defined as mandatory and marked
as an extension.

Another change is incorporated as follows:

• The <sys/types.h> header is now marked as optional (OH); this header need not be included
on XSI-conformant systems.

Issue 4, Version 2
The ERRORS section is updated for X/OPEN UNIX conformance as follows:

• It states that [ELOOP] will be returned if too many symbolic links are encountered during
pathname resolution.

• A second [ENAMETOOLONG] condition is defined that may report excessive length of an
intermediate result of pathname resolution of a symbolic link.

990 CAE Specification (1997)

System Interfaces utimes()

NAME
utimes — set file access and modification times

SYNOPSIS
EX #include <sys/time.h>

int utimes(const char * path , const struct timeval times[2]);

DESCRIPTION
The utimes() function sets the access and modification times of the file pointed to by the path
argument to the value of the times argument. The utimes() function allows time specifications
accurate to the microsecond.

For utimes(), the times argument is an array of timeval structures. The first array member
represents the date and time of last access, and the second member represents the date and time
of last modification. The times in the timeval structure are measured in seconds and
microseconds since the Epoch, although rounding toward the nearest second may occur.

If the times argument is a null pointer, the access and modification times of the file are set to the
current time. The effective user ID of the process must be the same as the owner of the file, or
must have write access to the file or appropriate privileges to use this call in this manner. Upon
completion, utimes() will mark the time of the last file status change, st_ctime, for update.

RETURN VALUE
Upon successful completion, 0 is returned. Otherwise, −1 is returned and errno is set to indicate
the error, and the file times will not be affected.

ERRORS
The utimes() function will fail if:

[EACCES] Search permission is denied by a component of the path prefix; or the times
argument is a null pointer and the effective user ID of the process does not
match the owner of the file and write access is denied.

[ELOOP] Too many symbolic links were encountered in resolving path.

[ENAMETOOLONG]
The length of the path argument exceeds {PATH_MAX} or a pathname
component is longer than {NAME_MAX}.

[ENOENT] A component of path does not name an existing file or path is an empty string.

[ENOTDIR] A component of the path prefix is not a directory.

[EPERM] The times argument is not a null pointer and the calling process’ effective user
ID has write access to the file but does not match the owner of the file and the
calling process does not have the appropriate privileges.

[EROFS] The file system containing the file is read-only.

The utimes() function may fail if:

[ENAMETOOLONG]
Pathname resolution of a symbolic link produced an intermediate result
whose length exceeds {PATH_MAX}.

EXAMPLES
None.

System Interfaces and Headers, Issue 5: Volume 2 991

utimes() System Interfaces

APPLICATION USAGE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
<sys/time.h>.

CHANGE HISTORY
First released in Issue 4, Version 2.

Issue 5
Moved from X/OPEN UNIX extension to BASE.

992 CAE Specification (1997)

System Interfaces valloc()

NAME
valloc — page-aligned memory allocator (LEGACY)

SYNOPSIS
EX #include <stdlib.h>

void *valloc(size_t size);

DESCRIPTION
The valloc () function has the same effect as malloc (), except that the allocated memory will be
aligned to a multiple of the value returned by sysconf(_SC_PAGESIZE).

This interface need not be reentrant.

RETURN VALUE
Upon successful completion, valloc () returns a pointer to the allocated memory. Otherwise,
valloc () returns a null pointer and sets errno to indicate the error.

If size is 0, the behaviour is implementation-dependent; the value returned will be either a null
pointer or a unique pointer. When size is 0 and valloc () returns a null pointer, errno is not
modified.

ERRORS
The valloc () function will fail if:

[ENOMEM] Storage space available is insufficient.

EXAMPLES
None.

APPLICATION USAGE
Applications should avoid using valloc () but should use malloc () or mmap() instead. On systems
with a large page size, the number of successful valloc () operations may be zero.

FUTURE DIRECTIONS
None.

SEE ALSO
malloc (), sysconf(), <stdlib.h>.

CHANGE HISTORY
First released in Issue 4, Version 2.

Issue 5
Marked LEGACY.

A note indicating that this interface need not be reentrant is added to the DESCRIPTION.

System Interfaces and Headers, Issue 5: Volume 2 993

va_arg() System Interfaces

NAME
va_arg, va_end, va_start — handle variable argument list

SYNOPSIS
#include <stdarg.h>

type va_arg(va_list ap, type);
void va_end(va_list ap);
void va_start(va_list ap, argN);

DESCRIPTION
Refer to <stdarg.h>.

CHANGE HISTORY
First released in Issue 4.

Derived from the ANSI C standard.

994 CAE Specification (1997)

System Interfaces vfork()

NAME
vfork — create new process; share virtual memory

SYNOPSIS
EX #include <unistd.h>

pid_t vfork(void);

DESCRIPTION
The vfork () function has the same effect as fork (), except that the behaviour is undefined if the
process created by vfork () either modifies any data other than a variable of type pid_t used to
store the return value from vfork (), or returns from the function in which vfork () was called, or
calls any other function before successfully calling _exit() or one of the exec family of functions.

RETURN VALUE
Upon successful completion, vfork () returns 0 to the child process and returns the process ID of
the child process to the parent process. Otherwise, −1 is returned to the parent, no child process
is created, and errno is set to indicate the error.

ERRORS
The vfork () function will fail if:

[EAGAIN] The system-wide limit on the total number of processes under execution
would be exceeded, or the system-imposed limit on the total number of
processes under execution by a single user would be exceeded.

[ENOMEM] There is insufficient swap space for the new process.

EXAMPLES
None.

APPLICATION USAGE
On some systems, vfork () is the same as fork ().

The vfork () function differs from fork () only in that the child process can share code and data
with the calling process (parent process). This speeds cloning activity significantly at a risk to
the integrity of the parent process if vfork () is misused.

The use of vfork () for any purpose except as a prelude to an immediate call to a function from
the exec family, or to _exit(), is not advised.

The vfork () function can be used to create new processes without fully copying the address
space of the old process. If a forked process is simply going to call exec, the data space copied
from the parent to the child by fork () is not used. This is particularly inefficient in a paged
environment, making vfork () particularly useful. Depending upon the size of the parent’s data
space, vfork () can give a significant performance improvement over fork ().

The vfork () function can normally be used just like fork (). It does not work, however, to return
while running in the child’s context from the caller of vfork () since the eventual return from
vfork () would then return to a no longer existent stack frame. Be careful, also, to call _exit()
rather than exit() if you cannot exec, since exit() flushes and closes standard I/O channels,
thereby damaging the parent process’ standard I/O data structures. (Even with fork (), it is
wrong to call exit(), since buffered data would then be flushed twice.)

If signal handlers are invoked in the child process after vfork (), they must follow the same rules
as other code in the child process.

System Interfaces and Headers, Issue 5: Volume 2 995

vfork() System Interfaces

FUTURE DIRECTIONS
None.

SEE ALSO
exec, exit(), fork (), wait(), <unistd.h>.

CHANGE HISTORY
First released in Issue 4, Version 2.

Issue 5
Moved from X/OPEN UNIX extension to BASE.

996 CAE Specification (1997)

System Interfaces vfprintf()

NAME
vfprintf, vprintf, vsnprintf, vsprintf — format output of a stdarg argument list

SYNOPSIS
#include <stdarg.h>
#include <stdio.h>

int vfprintf(FILE * stream , const char * format , va_list ap);
int vprintf(const char * format , va_list ap);

EX int vsnprintf(char * s, size_t n, const char * format , va_list ap);
int vsprintf(char * s, const char * format , va_list ap);

DESCRIPTION
EXEX The vprintf(), vfprintf (), vsnprintf() and vsprintf() functions are the same as printf(), fprintf (),

snprintf()and sprintf() respectively, except that instead of being called with a variable number of
arguments, they are called with an argument list as defined by <stdarg.h>.

These functions do not invoke the va_end macro. As these functions invoke the va_arg macro,
the value of ap after the return is indeterminate.

RETURN VALUE
Refer to printf().

ERRORS
Refer to printf().

EXAMPLES
None.

APPLICATION USAGE
Applications using these functions should call va_end(ap) afterwards to clean up.

FUTURE DIRECTIONS
None.

SEE ALSO
printf(), <stdarg.h>, <stdio.h>.

CHANGE HISTORY
First released in Issue 1.

Derived from Issue 1 of the SVID.

Issue 4
The following changes are incorporated for alignment with the ISO C standard:

• These functions are no longer marked as extensions.

• The type of argument format is changed from char * to const char *.

• Reference to the <varargs.h> header in the DESCRIPTION is replaced by <stdarg.h>. The
last paragraph has also been added to indicate interactions with the va_arg and va_end
macros.

Other changes are incorporated as follows:

• The APPLICATION USAGE section is added.

• The FUTURE DIRECTIONS section is removed.

System Interfaces and Headers, Issue 5: Volume 2 997

vfprintf() System Interfaces

Issue 5
The vsnprintf() function is added.

998 CAE Specification (1997)

System Interfaces vfwprintf()

NAME
vfwprintf, vwprintf, vswprintf — wide-character formatted output of a stdarg argument list

SYNOPSIS
#include <stdarg.h>
#include <stdio.h>
#include <wchar.h>

int vwprintf(const wchar_t * format , va_list arg);
int vfwprintf(FILE * stream , const wchar_t * format , va_list arg);
int vswprintf(wchar_t * s, size_t n, const wchar_t * format ,

va_list arg);

DESCRIPTION
The vwprintf(), vfwprintf () and vswprintf() functions are the same as wprintf(), fwprintf() and
swprintf() respectively, except that instead of being called with a variable number of arguments,
they are called with an argument list as defined by <stdarg.h>.

These functions do not invoke the va_end macro. However, as these functions do invoke the
va_arg macro, the value of ap after the return is indeterminate.

RETURN VALUE
Refer to fwprintf().

ERRORS
Refer to fwprintf().

EXAMPLES
None.

APPLICATION USAGE
Applications using these functions should call va_end(ap) afterwards to clean up.

FUTURE DIRECTIONS
None.

SEE ALSO
fwprintf(), <stdarg.h>, <stdio.h>, <wchar.h>.

CHANGE HISTORY
First released in Issue 5.

Included for alignment with the ISO/IEC 9899:1990/Amendment 1:1994 (E).

System Interfaces and Headers, Issue 5: Volume 2 999

vsprintf() System Interfaces

NAME
vsprintf, vsnprintf — print formatted output

SYNOPSIS
#include <stdarg.h>
#include <stdio.h>

int vsprintf(char * s, const char * format , va_list ap);
EX int vsnprintf(char * s, size_t n, const char * format , va_list ap);

DESCRIPTION
Refer to vfprintf ().

CHANGE HISTORY
First released in Issue 5.

1000 CAE Specification (1997)

System Interfaces wait()

NAME
wait, waitpid — wait for a child process to stop or terminate

SYNOPSIS
OH #include <sys/types.h>

#include <sys/wait.h>

pid_t wait(int * stat_loc);
pid_t waitpid(pid_t pid , int * stat_loc , int options);

DESCRIPTION
The wait() and waitpid () functions allow the calling process to obtain status information
pertaining to one of its child processes. Various options permit status information to be
obtained for child processes that have terminated or stopped. If status information is available
for two or more child processes, the order in which their status is reported is unspecified.

The wait() function will suspend execution of the calling thread until status information for one
of its terminated child processes is available, or until delivery of a signal whose action is either
to execute a signal-catching function or to terminate the process. If more than one thread is
suspended in wait() or waitpid () awaiting termination of the same process, exactly one thread
will return the process status at the time of the target process termination. If status information
is available prior to the call to wait(), return will be immediate.

The waitpid () function will behave identically to wait(), if the pid argument is (pid_t)−1 and the
options argument is 0. Otherwise, its behaviour will be modified by the values of the pid and
options arguments.

The pid argument specifies a set of child processes for which status is requested. The waitpid ()
function will only return the status of a child process from this set:

• If pid is equal to (pid_t)−1, status is requested for any child process. In this respect, waitpid ()
is then equivalent to wait().

• If pid is greater than 0, it specifies the process ID of a single child process for which status is
requested.

• If pid is 0, status is requested for any child process whose process group ID is equal to that of
the calling process.

• If pid is less than (pid_t)−1, status is requested for any child process whose process group ID
is equal to the absolute value of pid .

The options argument is constructed from the bitwise-inclusive OR of zero or more of the
following flags, defined in the header <sys/wait.h>.

EX WCONTINUED The waitpid () function will report the status of any continued child process
specified by pid whose status has not been reported since it continued from a
job control stop.

WNOHANG The waitpid () function will not suspend execution of the calling thread if
status is not immediately available for one of the child processes specified by
pid .

WUNTRACED The status of any child processes specified by pid that are stopped, and whose
status has not yet been reported since they stopped, will also be reported to
the requesting process.

EX If the calling process has SA_NOCLDWAIT set or has SIGCHLD set to SIG_IGN, and the
process has no unwaited for children that were transformed into zombie processes, the calling
thread will block until all of the children of the process containing the calling thread terminate,

System Interfaces and Headers, Issue 5: Volume 2 1001

wait() System Interfaces

and wait() and waitpid () will fail and set errno to [ECHILD].

If wait() or waitpid () return because the status of a child process is available, these functions will
return a value equal to the process ID of the child process. In this case, if the value of the
argument stat_loc is not a null pointer, information will be stored in the location pointed to by
stat_loc . If and only if the status returned is from a terminated child process that returned 0 from
main() or passed 0 as the status argument to _exit() or exit(), the value stored at the location
pointed to by stat_loc will be 0. Regardless of its value, this information may be interpreted
using the following macros, which are defined in <sys/wait.h> and evaluate to integral
expressions; the stat_val argument is the integer value pointed to by stat_loc.

WIFEXITED(stat_val) Evaluates to a non-zero value if status was returned for a child
process that terminated normally.

WEXITSTATUS(stat_val) If the value of WIFEXITED(stat_val) is non-zero, this macro evaluates
to the low-order 8 bits of the status argument that the child process
passed to _exit() or exit(), or the value the child process returned
from main().

WIFSIGNALED(stat_val) Evaluates to non-zero value if status was returned for a child process
that terminated due to the receipt of a signal that was not caught (see
<signal.h>).

WTERMSIG(stat_val) If the value of WIFSIGNALED(stat_val) is non-zero, this macro
evaluates to the number of the signal that caused the termination of
the child process.

WIFSTOPPED(stat_val) Evaluates to a non-zero value if status was returned for a child
process that is currently stopped.

WSTOPSIG(stat_val) If the value of WIFSTOPPED(stat_val) is non-zero, this macro
evaluates to the number of the signal that caused the child process to
stop.

EX WIFCONTINUED(stat_val)
Evaluates to a non-zero value if status was returned for a child
process that has continued from a job control stop.

If the information pointed to by stat_loc was stored by a call to waitpid () that specified the
EX WUNTRACED flag and did not specify the WCONTINUED flag, exactly one of the macros

WIFEXITED(*stat_loc), WIFSIGNALED(*stat_loc), and WIFSTOPPED(*stat_loc), will evaluate to a
non-zero value.

If the information pointed to by stat_loc was stored by a call to waitpid () that specified the
EX WUNTRACED and WCONTINUED flags, exactly one of the macros WIFEXITED(*stat_loc),
EX WIFSIGNALED(*stat_loc), WIFSTOPPED(*stat_loc), and WIFCONTINUED(*stat_loc), will

evaluate to a non-zero value.

If the information pointed to by stat_loc was stored by a call to waitpid () that did not specify the
EX WUNTRACED or WCONTINUED flags, or by a call to the wait() function, exactly one of the

macros WIFEXITED(*stat_loc) and WIFSIGNALED(*stat_loc) will evaluate to a non-zero value.

If the information pointed to by stat_loc was stored by a call to waitpid () that did not specify the
EX WUNTRACED flag and specified the WCONTINUED flag, or by a call to the wait() function,
EX exactly one of the macros WIFEXITED(*stat_loc), WIFSIGNALED(*stat_loc), and

WIFCONTINUED(*stat_loc), will evaluate to a non-zero value.

There may be additional implementation-dependent circumstances under which wait() or
waitpid () report status. This will not occur unless the calling process or one of its child processes

1002 CAE Specification (1997)

System Interfaces wait()

explicitly makes use of a non-standard extension. In these cases the interpretation of the
reported status is implementation-dependent.

If a parent process terminates without waiting for all of its child processes to terminate, the
remaining child processes will be assigned a new parent process ID corresponding to an
implementation-dependent system process.

RETURN VALUE
If wait() or waitpid () returns because the status of a child process is available, these functions
will return a value equal to the process ID of the child process for which status is reported. If
wait() or waitpid () returns due to the delivery of a signal to the calling process, −1 will be
returned and errno will be set to [EINTR]. If waitpid () was invoked with WNOHANG set in
options , it has at least one child process specified by pid for which status is not available, and
status is not available for any process specified by pid , 0 will be returned. Otherwise, (pid_t)−1
will be returned, and errno will be set to indicate the error.

ERRORS
The wait() function will fail if:

[ECHILD] The calling process has no existing unwaited-for child processes.

[EINTR] The function was interrupted by a signal. The value of the location pointed to
by stat_loc is undefined.

The waitpid () function will fail if:

[ECHILD] The process or process group specified by pid does not exist or is not a child of
the calling process.

[EINTR] The function was interrupted by a signal. The value of the location pointed to
by stat_loc is undefined.

[EINVAL] The options argument is not valid.

EXAMPLES
None.

APPLICATION USAGE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
exec, exit(), fork (), wait3(), waitid (), <sys/types.h>, <sys/wait.h>.

CHANGE HISTORY
First released in Issue 1.

Derived from Issue 1 of the SVID.

Issue 4
The following change is incorporated for alignment with the ISO POSIX-1 standard:

• Text describing conditions under which 0 will be returned when WNOHUNG is set in options
is added to the RETURN VALUE section.

System Interfaces and Headers, Issue 5: Volume 2 1003

wait() System Interfaces

Other changes are incorporated as follows:

• The <sys/types.h> header is now marked as optional (OH); this header need not be included
on XSI-conformant systems.

• Error return values throughout the DESCRIPTION and RETURN VALUE sections are
changed to show the proper casting (that is, (pid_t) −1).

• The words ‘‘If the implementation supports job control’’ are removed from the description of
WUNTRACED. This is because job control is defined as mandatory for Issue 4 conforming
implementations.

Issue 4, Version 2
The following changes are incorporated in the DESCRIPTION for X/OPEN UNIX conformance:

• The WCONTINUED options flag and the WIFCONTINUED(stat_val) macro are added.

• Text following the list of options flags explains the implications of setting the
SA_NOCLDWAIT signal flag, or setting SIGCHLD to SIG_IGN.

• Text following the list of macros, which explains what macros return non-zero values in
certain cases, is expanded and the value of the WCONTINUED flag on the previous call to
waitpid () is taken into account.

Issue 5
The DESCRIPTION is updated for alignment with the POSIX Threads Extension.

1004 CAE Specification (1997)

System Interfaces wait3()

NAME
wait3 — wait for a child process to change state (LEGACY)

SYNOPSIS
EX #include <sys/wait.h>

pid_t wait3 (int * stat_loc , int options , struct rusage * resource_usage);

DESCRIPTION
The wait3() function allows the calling thread to obtain status information for specified child
processes.

The following call:

wait3(stat_loc, options, resource_usage);

is equivalent to the call:

waitpid((pid_t)-1, stat_loc, options);

except that on successful completion, if the resource_usage argument to wait3() is not a null
pointer, the rusage structure that the third argument points to is filled in for the child process
identified by the return value.

This interface need not be reentrant.

RETURN VALUE
See waitpid ().

ERRORS
In addition to the error conditions specified on waitpid (), under the following conditions, wait3()
may fail and set errno to:

[ECHILD] The calling process has no existing unwaited-for child processes, or if the set
of processes specified by the argument pid can never be in the states specified
by the argument options.

[ENOSYS] The wait3() function is not supported on this implementation.

EXAMPLES
None.

APPLICATION USAGE
New applications should use waitpid ().

FUTURE DIRECTIONS
None.

SEE ALSO
exec, exit(), fork (), pause(), waitpid (), <sys/wait.h>.

CHANGE HISTORY
First released in Issue 4, Version 2.

Issue 5
Moved from X/OPEN UNIX extension to BASE.

A note indicating that this interface need not be reentrant is added to the DESCRIPTION.

Marked LEGACY.

System Interfaces and Headers, Issue 5: Volume 2 1005

waitid() System Interfaces

NAME
waitid — wait for a child process to change state

SYNOPSIS
EX #include <sys/wait.h>

int waitid(idtype_t idtype , id_t id , siginfo_t * infop , int options);

DESCRIPTION
The waitid () function suspends the calling thread until one child of the process containing the
calling thread changes state. It records the current state of a child in the structure pointed to by
infop. If a child process changed state prior to the call to waitid (), waitid () returns immediately.
If more than one thread is suspended in wait() or waitpid () waiting termination of the same
process, exactly one thread will return the process status at the time of the target process
termination

The idtype and id arguments are used to specify which children waitid () will wait for.

If idtype is P_PID, waitid () will wait for the child with a process ID equal to (pid_t)id.

If idtype is P_PGID, waitid () will wait for any child with a process group ID equal to (pid_t)id.

If idtype is P_ALL, waitid () will wait for any children and id is ignored.

The options argument is used to specify which state changes waitid () will wait for. It is formed
by OR-ing together one or more of the following flags:

WEXITED Wait for processes that have exited.

WSTOPPED Status will be returned for any child that has stopped upon receipt of a signal.

WCONTINUED Status will be returned for any child that was stopped and has been continued.

WNOHANG Return immediately if there are no children to wait for.

WNOWAIT Keep the process whose status is returned in infop in a waitable state. This
will not affect the state of the process; the process may be waited for again
after this call completes.

The infop argument must point to a siginfo_t structure. If waitid () returns because a child
process was found that satisfied the conditions indicated by the arguments idtype and options,
then the structure pointed to by infop will be filled in by the system with the status of the
process. The si_signo member will always be equal to SIGCHLD.

RETURN VALUE
If waitid () returns due to the change of state of one of its children, 0 is returned. Otherwise, −1 is
returned and errno is set to indicate the error.

ERRORS
The waitid () function will fail if:

[ECHILD] The calling process has no existing unwaited-for child processes.

[EINTR] The waitid () function was interrupted by a signal.

[EINVAL] An invalid value was specified for options, or idtype and id specify an invalid
set of processes.

1006 CAE Specification (1997)

System Interfaces waitid()

EXAMPLES
None.

APPLICATION USAGE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
exec, exit(), wait(), <sys/wait.h>.

CHANGE HISTORY
First released in Issue 4, Version 2.

Issue 5
Moved from X/OPEN UNIX extension to BASE.

The DESCRIPTION is updated for alignment with the POSIX Threads Extension.

System Interfaces and Headers, Issue 5: Volume 2 1007

waitpid() System Interfaces

NAME
waitpid — wait for a child process to stop or terminate

SYNOPSIS
OH #include <sys/types.h>

#include <sys/wait.h>

pid_t waitpid(pid_t pid , int * stat_loc , int options);

DESCRIPTION
Refer to wait().

CHANGE HISTORY
First released in Issue 4, Version 2.

1008 CAE Specification (1997)

System Interfaces wcrtomb()

NAME
wcrtomb — convert a wide-character code to a character (restartable)

SYNOPSIS
#include <stdio.h>

size_t wcrtomb(char * s, wchar_t wc, mbstate_t * ps);

DESCRIPTION
If s is a null pointer, the wcrtomb() function is equivalent to the call:

wcrtomb(buf, L’\0’, ps)

where buf is an internal buffer.

If s is not a null pointer, the wcrtomb() function determines the number of bytes needed to
represent the character that corresponds to the wide-character given by wc (including any shift
sequences), and stores the resulting bytes in the array whose first element is pointed to by s. At
most MB_CUR_MAX bytes are stored. If wc is a null wide-character, a null byte is stored,
preceded by any shift sequence needed to restore the initial shift state. The resulting state
described is the initial conversion state.

If ps is a null pointer, the wcrtomb() function uses its own internal mbstate_t object, which is
initialised at program startup to the initial conversion state. Otherwise, the mbstate_t object
pointed to by ps is used to completely describe the current conversion state of the associated
character sequence. The implementation will behave as if no function defined in this
specification calls wcrtomb().

The behaviour of this function is affected by the LC_CTYPE category of the current locale.

RETURN VALUE
The wcrtomb() function returns the number of bytes stored in the array object (including any
shift sequences). When wc is not a valid wide-character, an encoding error occurs. In this case,
the function stores the value of the macros EILSEQ in errno and returns (size_t)−1; the
conversion state is undefined.

ERRORS
The wcrtomb() function may fail if:

[EINVAL] ps points to an object that contains an invalid conversion state.

[EILSEQ] Invalid wide-character code is detected.

EXAMPLES
None.

APPLICATION USAGE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
mbsinit(), <wchar.h>.

CHANGE HISTORY
First released in Issue 5.

Included for alignment with the ISO/IEC 9899:1990/Amendment 1:1994 (E).

System Interfaces and Headers, Issue 5: Volume 2 1009

wcscat() System Interfaces

NAME
wcscat — concatenate two wide-character strings

SYNOPSIS
#include <wchar.h>

wchar_t *wcscat(wchar_t * ws1, const wchar_t * ws2);

DESCRIPTION
The wcscat() function appends a copy of the wide-character string pointed to by ws2 (including
the terminating null wide-character code) to the end of the wide-character string pointed to by
ws1. The initial wide-character code of ws2 overwrites the null wide-character code at the end of
ws1. If copying takes place between objects that overlap, the behaviour is undefined.

RETURN VALUE
The wcscat() function returns s1; no return value is reserved to indicate an error.

ERRORS
No errors are defined.

EXAMPLES
None.

APPLICATION USAGE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
wcsncat(), <wchar.h>.

CHANGE HISTORY
First released in Issue 4.

Derived from the MSE working draft.

1010 CAE Specification (1997)

System Interfaces wcschr()

NAME
wcschr — wide-character string scanning operation

SYNOPSIS
#include <wchar.h>

wchar_t *wcschr(const wchar_t * ws, wchar_t wc);

DESCRIPTION
The wcschr() function locates the first occurrence of wc in the wide-character string pointed to by
ws. The value of wc must be a character representable as a type wchar_t and must be a wide-
character code corresponding to a valid character in the current locale. The terminating null
wide-character code is considered to be part of the wide-character string.

RETURN VALUE
Upon completion, wcschr() returns a pointer to the wide-character code, or a null pointer if the
wide-character code is not found.

ERRORS
No errors are defined.

EXAMPLES
None.

APPLICATION USAGE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
wcsrchr(), <wchar.h>.

CHANGE HISTORY
First released in Issue 4.

Derived from the MSE working draft.

System Interfaces and Headers, Issue 5: Volume 2 1011

wcscmp() System Interfaces

NAME
wcscmp — compare two wide-character strings

SYNOPSIS
#include <wchar.h>

int wcscmp(const wchar_t * ws1, const wchar_t * ws2);

DESCRIPTION
The wcscmp() function compares the wide-character string pointed to by ws1 to the wide-
character string pointed to by ws2.

The sign of a non-zero return value is determined by the sign of the difference between the
values of the first pair of wide-character codes that differ in the objects being compared.

RETURN VALUE
Upon completion, wcscmp() returns an integer greater than, equal to or less than 0, if the wide-
character string pointed to by ws1 is greater than, equal to or less than the wide-character string
pointed to by ws2 respectively.

ERRORS
No errors are defined.

EXAMPLES
None.

APPLICATION USAGE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
wcsncmp(), <wchar.h>.

CHANGE HISTORY
First released in Issue 4.

Derived from the MSE working draft.

1012 CAE Specification (1997)

System Interfaces wcscoll()

NAME
wcscoll — wide-character string comparison using collating information

SYNOPSIS
#include <wchar.h>

int wcscoll(const wchar_t * ws1, const wchar_t * ws2);

DESCRIPTION
The wcscoll() function compares the wide-character string pointed to by ws1 to the wide-
character string pointed to by ws2, both interpreted as appropriate to the LC_COLLATE
category of the current locale.

The wcscoll() function will not change the setting of errno if successful.

An application wishing to check for error situations should set errno to 0 before calling wcscoll().
If errno is non-zero on return, an error has occurred.

RETURN VALUE
Upon successful completion, wcscoll() returns an integer greater than, equal to or less than 0,
according to whether the wide-character string pointed to by ws1 is greater than, equal to or less
than the wide-character string pointed to by ws2, when both are interpreted as appropriate to
the current locale. On error, wcscoll() may set errno, but no return value is reserved to indicate
an error.

ERRORS
The wcscoll() function may fail if:

[EINVAL] The ws1 or ws2 arguments contain wide-character codes outside the domain of
the collating sequence.

EXAMPLES
None.

APPLICATION USAGE
The wcsxfrm() and wcscmp() functions should be used for sorting large lists.

FUTURE DIRECTIONS
None.

SEE ALSO
wcscmp(), wcsxfrm(), <wchar.h>.

CHANGE HISTORY
First released in Issue 4.

Derived from the MSE working draft.

Issue 5
Moved from ENHANCED I18N to BASE and the [ENOSYS] error is removed.

The DESCRIPTION is updated to indicate that errno will not be changed if the function is
successful.

System Interfaces and Headers, Issue 5: Volume 2 1013

wcscpy() System Interfaces

NAME
wcscpy — copy a wide-character string

SYNOPSIS
#include <wchar.h>

wchar_t *wcscpy(wchar_t * ws1, const wchar_t * ws2);

DESCRIPTION
The wcscpy() function copies the wide-character string pointed to by ws2 (including the
terminating null wide-character code) into the array pointed to by ws1. If copying takes place
between objects that overlap, the behaviour is undefined.

RETURN VALUE
The wcscpy() function returns ws1; no return value is reserved to indicate an error.

ERRORS
No errors are defined.

EXAMPLES
None.

APPLICATION USAGE
Wide-character code movement is performed differently in different implementations. Thus
overlapping moves may yield surprises.

FUTURE DIRECTIONS
None.

SEE ALSO
wcsncpy(), <wchar.h>.

CHANGE HISTORY
First released in Issue 4.

Derived from the MSE working draft.

1014 CAE Specification (1997)

System Interfaces wcscspn()

NAME
wcscspn — get length of a complementary wide substring

SYNOPSIS
#include <wchar.h>

size_t wcscspn(const wchar_t * ws1, const wchar_t * ws2);

DESCRIPTION
The wcscspn() function computes the length of the maximum initial segment of the wide-
character string pointed to by ws1 which consists entirely of wide-character codes not from the
wide-character string pointed to by ws2.

RETURN VALUE
The wcscspn() function returns the length of the initial substring of ws1; no return value is
reserved to indicate an error.

ERRORS
No errors are defined.

EXAMPLES
None.

APPLICATION USAGE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
wcsspn(), <wchar.h>.

CHANGE HISTORY
First released in Issue 4.

Derived from the MSE working draft.

Issue 5
The RETURN VALUE section is updated to indicate that wcscspn() returns the length of ws1,
rather than ws1 itself.

System Interfaces and Headers, Issue 5: Volume 2 1015

wcsftime() System Interfaces

NAME
wcsftime — convert date and time to a wide-character string

SYNOPSIS
#include <wchar.h>

size_t wcsftime(wchar_t * wcs, size_t maxsize , const wchar_t * format ,
const struct tm * timptr);

DESCRIPTION
The wcsftime() function is equivalent to the strftime() function, except that:

• The argument wcs points to the initial element of an array of wide-characters into which the
generated output is to be placed.

• The argument maxsize indicates the maximum number of wide-characters to be placed in the
output array.

• The argument format is a wide-character string and the conversion specifications are replaced
by corresponding sequences of wide-characters.

• The return value indicates the number of wide-characters placed in the output array.

If copying takes place between objects that overlap, the behaviour is undefined.

RETURN VALUE
If the total number of resulting wide-character codes including the terminating null wide-
character code is no more than maxsize , wcsftime() returns the number of wide-character codes
placed into the array pointed to by wcs, not including the terminating null wide-character code.
Otherwise 0 is returned and the contents of the array are indeterminate. If the function is not
implemented, errno will be set to indicate the error.

ERRORS
No errors are defined.

EXAMPLES
None.

APPLICATION USAGE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
strftime(), <wchar.h>.

CHANGE HISTORY
First released in Issue 4.

Issue 5
Moved from ENHANCED I18N to BASE and the [ENOSYS] error is removed.

Aligned with ISO/IEC 9899:1990/Amendment 1:1994 (E). Specifically, the type of the format
argument is changed from const char* to const wchar_t*.

1016 CAE Specification (1997)

System Interfaces wcslen()

NAME
wcslen — get wide-character string length

SYNOPSIS
#include <wchar.h>

size_t wcslen(const wchar_t * ws);

DESCRIPTION
The wcslen() function computes the number of wide-character codes in the wide-character string
to which ws points, not including the terminating null wide-character code.

RETURN VALUE
The wcslen() function returns the length of ws; no return value is reserved to indicate an error.

ERRORS
No errors are defined.

EXAMPLES
None.

APPLICATION USAGE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
<wchar.h>.

CHANGE HISTORY
First released in Issue 4.

Derived from the MSE working draft.

System Interfaces and Headers, Issue 5: Volume 2 1017

wcsncat() System Interfaces

NAME
wcsncat — concatenate part of two wide-character strings

SYNOPSIS
#include <wchar.h>

wchar_t *wcsncat(wchar_t * ws1, const wchar_t * ws2, size_t n);

DESCRIPTION
The wcsncat() function appends not more than n wide-character codes (a null wide-character
code and wide-character codes that follow it are not appended) from the array pointed to by ws2
to the end of the wide-character string pointed to by ws1. The initial wide-character code of ws2
overwrites the null wide-character code at the end of ws1. A terminating null wide-character
code is always appended to the result. If copying takes place between objects that overlap, the
behaviour is undefined.

RETURN VALUE
The wcsncat() function returns ws1; no return value is reserved to indicate an error.

ERRORS
No errors are defined.

EXAMPLES
None.

APPLICATION USAGE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
wcscat(), <wchar.h>.

CHANGE HISTORY
First released in Issue 4.

Derived from the MSE working draft.

1018 CAE Specification (1997)

System Interfaces wcsncmp()

NAME
wcsncmp — compare part of two wide-character strings

SYNOPSIS
#include <wchar.h>

int wcsncmp(const wchar_t * ws1, const wchar_t * ws2, size_t n);

DESCRIPTION
The wcsncmp() function compares not more than n wide-character codes (wide-character codes
that follow a null wide-character code are not compared) from the array pointed to by ws1 to the
array pointed to by ws2.

The sign of a non-zero return value is determined by the sign of the difference between the
values of the first pair of wide-character codes that differ in the objects being compared.

RETURN VALUE
Upon successful completion, wcsncmp() returns an integer greater than, equal to or less than 0, if
the possibly null-terminated array pointed to by ws1 is greater than, equal to or less than the
possibly null-terminated array pointed to by ws2 respectively.

ERRORS
No errors are defined.

EXAMPLES
None.

APPLICATION USAGE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
wcscmp(), <wchar.h>.

CHANGE HISTORY
First released in Issue 4.

Derived from the MSE working draft.

System Interfaces and Headers, Issue 5: Volume 2 1019

wcsncpy() System Interfaces

NAME
wcsncpy — copy part of a wide-character string

SYNOPSIS
#include <wchar.h>

wchar_t *wcsncpy(wchar_t * ws1, const wchar_t * ws2, size_t n);

DESCRIPTION
The wcsncpy() function copies not more than n wide-character codes (wide-character codes that
follow a null wide-character code are not copied) from the array pointed to by ws2 to the array
pointed to by ws1. If copying takes place between objects that overlap, the behaviour is
undefined.

If the array pointed to by ws2 is a wide-character string that is shorter than n wide-character
codes, null wide-character codes are appended to the copy in the array pointed to by ws1, until n
wide-character codes in all are written.

RETURN VALUE
The wcsncpy() function returns ws1; no return value is reserved to indicate an error.

ERRORS
No errors are defined.

EXAMPLES
None.

APPLICATION USAGE
Wide-character code movement is performed differently in different implementations. Thus
overlapping moves may yield surprises.

If there is no null wide-character code in the first n wide-character codes of the array pointed to
by ws2, the result will not be null-terminated.

FUTURE DIRECTIONS
None.

SEE ALSO
wcscpy(), <wchar.h>.

CHANGE HISTORY
First released in Issue 4.

Derived from the MSE working draft.

1020 CAE Specification (1997)

System Interfaces wcspbrk()

NAME
wcspbrk — scan wide-character string for a wide-character code

SYNOPSIS
#include <wchar.h>

wchar_t *wcspbrk(const wchar_t * ws1, const wchar_t * ws2);

DESCRIPTION
The wcspbrk() function locates the first occurrence in the wide-character string pointed to by ws1
of any wide-character code from the wide-character string pointed to by ws2.

RETURN VALUE
Upon successful completion, wcspbrk() returns a pointer to the wide-character code or a null
pointer if no wide-character code from ws2 occurs in ws1.

ERRORS
No errors are defined.

EXAMPLES
None.

APPLICATION USAGE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
wcschr(), wcsrchr(), <wchar.h>.

CHANGE HISTORY
First released in Issue 4.

Derived from the MSE working draft.

System Interfaces and Headers, Issue 5: Volume 2 1021

wcsrchr() System Interfaces

NAME
wcsrchr — wide-character string scanning operation

SYNOPSIS
#include <wchar.h>

wchar_t *wcsrchr(const wchar_t * ws, wchar_t wc);

DESCRIPTION
The wcsrchr() function locates the last occurrence of wc in the wide-character string pointed to
by ws. The value of wc must be a character representable as a type wchar_t and must be a wide-
character code corresponding to a valid character in the current locale. The terminating null
wide-character code is considered to be part of the wide-character string.

RETURN VALUE
Upon successful completion, wcsrchr() returns a pointer to the wide-character code or a null
pointer if wc does not occur in the wide-character string.

ERRORS
No errors are defined.

EXAMPLES
None.

APPLICATION USAGE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
wcschr(), <wchar.h>.

CHANGE HISTORY
First released in Issue 4.

Derived from the MSE working draft.

1022 CAE Specification (1997)

System Interfaces wcsrtombs()

NAME
wcsrtombs — convert a wide-character string to a character string (restartable)

SYNOPSIS
#include <wchar.h>

size_t wcsrtombs(char * dst , const wchar_t ** src , size_t len ,
mbstate_t * ps);

DESCRIPTION
The wcsrtombs() function converts a sequence of wide-characters from the array indirectly
pointed to by src into a sequence of corresponding characters, beginning in the conversion state
described by the object pointed to by ps. If dst is not a null pointer, the converted characters are
then stored into the array pointed to by dst. Conversion continues up to and including a
terminating null wide-character, which is also stored. Conversion stops earlier in the following
cases:

• When a code is reached that does not correspond to a valid character.

• When the next character would exceed the limit of len total bytes to be stored in the array
pointed to by dst (and dst is not a null pointer).

Each conversion takes place as if by a call to the wcrtomb() function.

If dst is not a null pointer, the pointer object pointed to by src is assigned either a null pointer (if
conversion stopped due to reaching a terminating null wide-character) or the address just past
the last wide-character converted (if any). If conversion stopped due to reaching a terminating
null wide-character, the resulting state described is the initial conversion state.

If ps is a null pointer, the wcsrtombs() function uses its own internal mbstate_t object, which is
initialised at program startup to the initial conversion state. Otherwise, the mbstate_t object
pointed to by ps is used to completely describe the current conversion state of the associated
character sequence. The implementation will behave as if no function defined in this
specification calls wcsrtombs().

The behaviour of this function is affected by the LC_CTYPE category of the current locale.

RETURN VALUE
If conversion stops because a code is reached that does not correspond to a valid character, an
encoding error occurs. In this case, the wcsrtombs() function stores the value of the macro
EILSEQ in errno and returns (size_t)−1; the conversion state is undefined. Otherwise, it returns
the number of bytes in the resulting character sequence, not including the terminating null (if
any).

ERRORS
The wcsrtombs() function may fail if:

[EINVAL] ps points to an object that contains an invalid conversion state.

[EILSEQ] A wide-character code does not correspond to a valid character.

EXAMPLES
None.

APPLICATION USAGE
None.

FUTURE DIRECTIONS
None.

System Interfaces and Headers, Issue 5: Volume 2 1023

wcsrtombs() System Interfaces

SEE ALSO
mbsinit(), wcrtomb(), <wchar.h>.

CHANGE HISTORY
First released in Issue 5.

Included for alignment with the ISO/IEC 9899:1990/Amendment 1:1994 (E).

1024 CAE Specification (1997)

System Interfaces wcsspn()

NAME
wcsspn — get length of a wide substring

SYNOPSIS
#include <wchar.h>

size_t wcsspn(const wchar_t * ws1, const wchar_t * ws2);

DESCRIPTION
The wcsspn() function computes the length of the maximum initial segment of the wide-
character string pointed to by ws1 which consists entirely of wide-character codes from the
wide-character string pointed to by ws2.

RETURN VALUE
The wcsspn() function returns the length ws1; no return value is reserved to indicate an error.

ERRORS
No errors are defined.

EXAMPLES
None.

APPLICATION USAGE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
wcscspn(), <wchar.h>.

CHANGE HISTORY
First released in Issue 4.

Derived from the MSE working draft.

Issue 5
The RETURN VALUE section is updated to indicate that wcsspn() returns the length of ws1
rather that ws1 itself.

System Interfaces and Headers, Issue 5: Volume 2 1025

wcsstr() System Interfaces

NAME
wcsstr — find a wide-character substring

SYNOPSIS
#include <wchar.h>

wchar_t *wcsstr(const wchar_t * ws1, const wchar_t * ws2);

DESCRIPTION
The wcsstr() function locates the first occurrence in the wide-character string pointed to by ws1
of the sequence of wide-characters (excluding the terminating null wide-character) in the wide-
character string pointed to by ws2.

RETURN VALUE
On successful completion, wcsstr() returns a pointer to the located wide-character string, or a
null pointer if the wide-character string is not found.

If ws2 points to a wide-character string with zero length, the function returns ws1.

ERRORS
No errors are defined.

EXAMPLES
None.

APPLICATION USAGE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
wschr(), <wchar.h>.

CHANGE HISTORY
First released in Issue 5.

Included for alignment with the ISO/IEC 9899:1990/Amendment 1:1994 (E).

1026 CAE Specification (1997)

System Interfaces wcstod()

NAME
wcstod — convert a wide-character string to a double-precision number

SYNOPSIS
#include <wchar.h>

double wcstod(const wchar_t * nptr , wchar_t ** endptr);

DESCRIPTION
The wcstod() function converts the initial portion of the wide-character string pointed to by nptr
to double representation. First it decomposes the input wide-character string into three parts:
an initial, possibly empty, sequence of white-space wide-character codes (as specified by
iswspace()); a subject sequence interpreted as a floating-point constant; and a final wide-
character string of one or more unrecognised wide-character codes, including the terminating
null wide-character code of the input wide-character string. Then it attempts to convert the
subject sequence to a floating-point number, and returns the result.

The expected form of the subject sequence is an optional + or − sign, then a non-empty sequence
of digits optionally containing a radix, then an optional exponent part. An exponent part
consists of e or E, followed by an optional sign, followed by one or more decimal digits. The
subject sequence is defined as the longest initial subsequence of the input wide-character string,
starting with the first non-white-space wide-character code, that is of the expected form. The
subject sequence contains no wide-character codes if the input wide-character string is empty or
consists entirely of white-space wide-character codes, or if the first wide-character code that is
not white space other than a sign, a digit or a radix.

If the subject sequence has the expected form, the sequence of wide-character codes starting
with the first digit or the radix (whichever occurs first) is interpreted as a floating constant as
defined in the C language, except that the radix is used in place of a period, and that if neither an
exponent part nor a radix appears, a radix is assumed to follow the last digit in the wide-
character string. If the subject sequence begins with a minus sign, the value resulting from the
conversion is negated. A pointer to the final wide-character string is stored in the object pointed
to by endptr, provided that endptr is not a null pointer.

The radix is defined in the program’s locale (category LC_NUMERIC). In the POSIX locale, or in
a locale where the radix is not defined, the radix defaults to a period (.).

In other than the POSIX locale, other implementation-dependent subject sequence forms may be
accepted.

If the subject sequence is empty or does not have the expected form, no conversion is performed;
the value of nptr is stored in the object pointed to by endptr, provided that endptr is not a null
pointer.

The wcstod() function will not change the setting of errno if successful.

Because 0 is returned on error and is also a valid return on success, an application wishing to
check for error situations should set errno to 0, then call wcstod(), then check errno.

RETURN VALUE
The wcstod() function returns the converted value, if any. If no conversion could be performed,

EX 0 is returned and errno may be set to [EINVAL].

If the correct value is outside the range of representable values, ±HUGE_VAL is returned
(according to the sign of the value), and errno is set to [ERANGE] .

If the correct value would cause underflow, 0 is returned and errno is set to [ERANGE] .

System Interfaces and Headers, Issue 5: Volume 2 1027

wcstod() System Interfaces

ERRORS
The wcstod() function will fail if:

[ERANGE] The value to be returned would cause overflow or underflow.

The wcstod() function may fail if:

EX [EINVAL] No conversion could be performed.

EXAMPLES
None.

APPLICATION USAGE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
iswspace(), localeconv (), scanf(), setlocale (), wcstol(), <wchar.h>, the XBD specification, Chapter
5, Locale.

CHANGE HISTORY
First released in Issue 4.

Derived from the MSE working draft.

Issue 5
The DESCRIPTION is updated to indicate that errno will not be changed if the function is
successful.

1028 CAE Specification (1997)

System Interfaces wcstok()

NAME
wcstok — split wide-character string into tokens

SYNOPSIS
#include <wchar.h>

wchar_t *wcstok(wchar_t * ws1, const wchar_t * ws2, wchar_t **ptr);

DESCRIPTION
A sequence of calls to wcstok() breaks the wide-character string pointed to by ws1 into a
sequence of tokens, each of which is delimited by a wide-character code from the wide-character
string pointed to by ws2. The third argument points to a caller-provided wchar_t pointer into
which the wcstok() function stores information necessary for it to continue scanning the same
wide-character string.

The first call in the sequence has ws1 as its first argument, and is followed by calls with a null
pointer as their first argument. The separator string pointed to by ws2 may be different from call
to call.

The first call in the sequence searches the wide-character string pointed to by ws1 for the first
wide-character code that is not contained in the current separator string pointed to by ws2. If no
such wide-character code is found, then there are no tokens in the wide-character string pointed
to by ws1 and wcstok() returns a null pointer. If such a wide-character code is found, it is the
start of the first token.

The wcstok() function then searches from there for a wide-character code that is contained in the
current separator string. If no such wide-character code is found, the current token extends to
the end of the wide-character string pointed to by ws1, and subsequent searches for a token will
return a null pointer. If such a wide-character code is found, it is overwritten by a null wide-
character, which terminates the current token. The wcstok() function saves a pointer to the
following wide-character code, from which the next search for a token will start.

Each subsequent call, with a null pointer as the value of the first argument, starts searching from
the saved pointer and behaves as described above.

The implementation will behave as if no function calls wcstok().

RETURN VALUE
Upon successful completion, the wcstok() function returns a pointer to the first wide-character
code of a token. Otherwise, if there is no token, wcstok() returns a null pointer.

ERRORS
No errors are defined.

EXAMPLES
None.

APPLICATION USAGE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
<wchar.h>.

CHANGE HISTORY
First released in Issue 4.

System Interfaces and Headers, Issue 5: Volume 2 1029

wcstok() System Interfaces

Issue 5
Aligned with ISO/IEC 9899:1990/Amendment 1:1994 (E). Specifically, a third argument is
added to the definition of this function in the SYNOPSIS.

1030 CAE Specification (1997)

System Interfaces wcstol()

NAME
wcstol — convert a wide-character string to a long integer

SYNOPSIS
#include <wchar.h>

long int wcstol(const wchar_t * nptr , wchar_t * *endptr , int base);

DESCRIPTION
The wcstol() function converts the initial portion of the wide-character string pointed to by nptr
to long int representation. First it decomposes the input wide-character string into three parts:
an initial, possibly empty, sequence of white-space wide-character codes (as specified by
iswspace()), a subject sequence interpreted as an integer represented in some radix determined
by the value of base; and a final wide-character string of one or more unrecognised wide-
character codes, including the terminating null wide-character code of the input wide-character
string. Then it attempts to convert the subject sequence to an integer, and returns the result.

If base is 0, the expected form of the subject sequence is that of a decimal constant, octal constant
or hexadecimal constant, any of which may be preceded by a + or − sign. A decimal constant
begins with a non-zero digit, and consists of a sequence of decimal digits. An octal constant
consists of the prefix 0 optionally followed by a sequence of the digits 0 to 7 only. A
hexadecimal constant consists of the prefix 0x or 0X followed by a sequence of the decimal digits
and letters a (or A) to f (or F) with values 10 to 15 respectively.

If the value of base is between 2 and 36, the expected form of the subject sequence is a sequence
of letters and digits representing an integer with the radix specified by base, optionally preceded
by a + or − sign, but not including an integer suffix. The letters from a (or A) to z (or Z) inclusive
are ascribed the values 10 to 35; only letters whose ascribed values are less than that of base are
permitted. If the value of base is 16, the wide-character code representations of 0x or 0X may
optionally precede the sequence of letters and digits, following the sign if present.

The subject sequence is defined as the longest initial subsequence of the input wide-character
string, starting with the first non-white-space wide-character code, that is of the expected form.
The subject sequence contains no wide-character codes if the input wide-character string is
empty or consists entirely of white-space wide-character code, or if the first non-white-space
wide-character code is other than a sign or a permissible letter or digit.

If the subject sequence has the expected form and base is 0, the sequence of wide-character codes
starting with the first digit is interpreted as an integer constant. If the subject sequence has the
expected form and the value of base is between 2 and 36, it is used as the base for conversion,
ascribing to each letter its value as given above. If the subject sequence begins with a minus
sign, the value resulting from the conversion is negated. A pointer to the final wide-character
string is stored in the object pointed to by endptr, provided that endptr is not a null pointer.

In other than the POSIX locale, additional implementation-dependent subject sequence forms
may be accepted.

If the subject sequence is empty or does not have the expected form, no conversion is performed;
the value of nptr is stored in the object pointed to by endptr, provided that endptr is not a null
pointer.

The wcstol() function will not change the setting of errno if successful.

Because 0, {LONG_MIN} and {LONG_MAX} are returned on error and are also valid returns on
success, an application wishing to check for error situations should set errno to 0, then call
wcstol(), then check errno.

System Interfaces and Headers, Issue 5: Volume 2 1031

wcstol() System Interfaces

RETURN VALUE
Upon successful completion, wcstol() returns the converted value, if any. If no conversion could
be performed, 0 is returned and errno may be set to indicate the error. If the correct value is
outside the range of representable values, {LONG_MAX} or {LONG_MIN} is returned
(according to the sign of the value), and errno is set to [ERANGE] .

ERRORS
The wcstol() function will fail if:

[EINVAL] The value of base is not supported.

[ERANGE] The value to be returned is not representable.

The wcstol() function may fail if:

[EINVAL] No conversion could be performed.

EXAMPLES
None.

APPLICATION USAGE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
iswalpha (), scanf(), wcstod(), <wchar.h>.

CHANGE HISTORY
First released in Issue 4.

Derived from the MSE working draft.

Issue 5
The DESCRIPTION is updated to indicate that errno will not be changed if the function is
successful.

1032 CAE Specification (1997)

System Interfaces wcstombs()

NAME
wcstombs — convert a wide-character string to a character string

SYNOPSIS
#include <stdlib.h>

size_t wcstombs(char * s, const wchar_t * pwcs , size_t n);

DESCRIPTION
The wcstombs() function converts the sequence of wide-character codes that are in the array
pointed to by pwcs into a sequence of characters that begins in the initial shift state and stores
these characters into the array pointed to by s, stopping if a character would exceed the limit of n
total bytes or if a null byte is stored. Each wide-character code is converted as if by a call to
wctomb(), except that the shift state of wctomb() is not affected.

The behaviour of this function is affected by the LC_CTYPE category of the current locale.

No more than n bytes will be modified in the array pointed to by s. If copying takes place
EX between objects that overlap, the behaviour is undefined. If s is a null pointer, wcstombs() returns

the length required to convert the entire array regardless of the value of n, but no values are
stored. function returns the number of bytes required for the character array.

RETURN VALUE
If a wide-character code is encountered that does not correspond to a valid character (of one or
more bytes each), wcstombs() returns (size_t)−1. Otherwise, wcstombs() returns the number of
bytes stored in the character array, not including any terminating null byte. The array will not
be null-terminated if the value returned is n.

ERRORS
The wcstombs() function may fail if:

EX [EILSEQ] A wide-character code does not correspond to a valid character.

EXAMPLES
None.

APPLICATION USAGE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
mblen(), mbtowc(), mbstowcs(), wctomb(), <stdlib.h>.

CHANGE HISTORY
First released in Issue 4.

Derived from the ISO C standard.

System Interfaces and Headers, Issue 5: Volume 2 1033

wcstoul() System Interfaces

NAME
wcstoul — convert a wide-character string to an unsigned long

SYNOPSIS
#include <wchar.h>

unsigned long int wcstoul(const wchar_t * nptr , wchar_t * *endptr ,
int base);

DESCRIPTION
The wcstoul() function converts the initial portion of the wide-character string pointed to by nptr
to unsigned long int representation. First it decomposes the input wide-character string into
three parts: an initial, possibly empty, sequence of white-space wide-character codes (as
specified by iswspace()); a subject sequence interpreted as an integer represented in some radix
determined by the value of base; and a final wide-character string of one or more unrecognised
wide-character codes, including the terminating null wide-character code of the input wide-
character string. Then it attempts to convert the subject sequence to an unsigned integer, and
returns the result.

If base is 0, the expected form of the subject sequence is that of a decimal constant, octal constant
or hexadecimal constant, any of which may be preceded by a + or − sign. A decimal constant
begins with a non-zero digit, and consists of a sequence of decimal digits. An octal constant
consists of the prefix 0 optionally followed by a sequence of the digits 0 to 7 only. A
hexadecimal constant consists of the prefix 0x or 0X followed by a sequence of the decimal digits
and letters a (or A) to f (or F) with values 10 to 15 respectively.

If the value of base is between 2 and 36, the expected form of the subject sequence is a sequence
of letters and digits representing an integer with the radix specified by base, optionally preceded
by a + or − sign, but not including an integer suffix. The letters from a (or A) to z (or Z) inclusive
are ascribed the values 10 to 35; only letters whose ascribed values are less than that of base are
permitted. If the value of base is 16, the wide-character codes 0x or 0X may optionally precede
the sequence of letters and digits, following the sign if present.

The subject sequence is defined as the longest initial subsequence of the input wide-character
string, starting with the first wide-character code that is not white space and is of the expected
form. The subject sequence contains no wide-character codes if the input wide-character string
is empty or consists entirely of white-space wide-character codes, or if the first wide-character
code that is not white space is other than a sign or a permissible letter or digit.

If the subject sequence has the expected form and base is 0, the sequence of wide-character codes
starting with the first digit is interpreted as an integer constant. If the subject sequence has the
expected form and the value of base is between 2 and 36, it is used as the base for conversion,
ascribing to each letter its value as given above. If the subject sequence begins with a minus
sign, the value resulting from the conversion is negated. A pointer to the final wide-character
string is stored in the object pointed to by endptr, provided that endptr is not a null pointer.

In other than the POSIX locale, additional implementation-dependent subject sequence forms
may be accepted.

If the subject sequence is empty or does not have the expected form, no conversion is performed;
the value of nptr is stored in the object pointed to by endptr, provided that endptr is not a null
pointer.

The wcstoul() function will not change the setting of errno if successful.

Because 0 and {ULONG_MAX} are returned on error and 0 is also a valid return on success, an
application wishing to check for error situations should set errno to 0, then call wcstoul(), then
check errno.

1034 CAE Specification (1997)

System Interfaces wcstoul()

RETURN VALUE
Upon successful completion, wcstoul() returns the converted value, if any. If no conversion
could be performed, 0 is returned and errno may be set to indicate the error. If the correct value
is outside the range of representable values, {ULONG_MAX} is returned and errno is set to
[ERANGE] .

ERRORS
The wcstoul() function will fail if:

[EINVAL] The value of base is not supported.

[ERANGE] The value to be returned is not representable.

The wcstoul() function may fail if:

[EINVAL] No conversion could be performed.

EXAMPLES
None.

APPLICATION USAGE
Unlike wcstod() and wcstol(), wcstoul() must always return a non-negative number; so, using the
return value of wcstoul() for out-of-range numbers with wcstoul() could cause more severe
problems than just loss of precision if those numbers can ever be negative.

FUTURE DIRECTIONS
None.

SEE ALSO
iswalpha (), scanf(), wcstod(), wcstol(), <wchar.h>.

CHANGE HISTORY
First released in Issue 4.

Derived from the MSE working draft.

Issue 5
The DESCRIPTION is updated to indicate that errno will not be changed if the function is
successful.

System Interfaces and Headers, Issue 5: Volume 2 1035

wcswcs() System Interfaces

NAME
wcswcs — find a wide substring

SYNOPSIS
EX #include <wchar.h>

wchar_t *wcswcs(const wchar_t * ws1, const wchar_t * ws2);

DESCRIPTION
The wcswcs() function locates the first occurrence in the wide-character string pointed to by ws1
of the sequence of wide-character codes (excluding the terminating null wide-character code) in
the wide-character string pointed to by ws2.

RETURN VALUE
Upon successful completion, wcswcs() returns a pointer to the located wide-character string or a
null pointer if the wide-character string is not found.

If ws2 points to a wide-character string with zero length, the function returns ws1.

ERRORS
No errors are defined.

EXAMPLES
None.

APPLICATION USAGE
This function was not included in the final ISO/IEC 9899:1990/Amendment 1:1994 (E).
Application developers are strongly encouraged to use the wcsstr() function instead.

FUTURE DIRECTIONS
None.

SEE ALSO
wcschr(), wcsstr(), <wchar.h>.

CHANGE HISTORY
First released in Issue 4.

Derived from the MSE working draft.

Issue 5
Marked EX.

1036 CAE Specification (1997)

System Interfaces wcswidth()

NAME
wcswidth — number of column positions of a wide-character string

SYNOPSIS
#include <wchar.h>

int wcswidth(const wchar_t * pwcs , size_t n);

DESCRIPTION
The wcswidth() function determines the number of column positions required for n wide-
character codes (or fewer than n wide-character codes if a null wide-character code is
encountered before n wide-character codes are exhausted) in the string pointed to by pwcs.

RETURN VALUE
The wcswidth() function either returns 0 (if pwcs points to a null wide-character code), or returns
the number of column positions to be occupied by the wide-character string pointed to by pwcs,
or returns −1 (if any of the first n wide-character codes in the wide-character string pointed to by
pwcs is not a printing wide-character code).

ERRORS
No errors are defined.

EXAMPLES
None.

APPLICATION USAGE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
wcwidth(), <wchar.h>, the definition of Column Position in the XBD specification, Chapter 2,
Glossary.

CHANGE HISTORY
First released in Issue 4.

Derived from the MSE working draft.

System Interfaces and Headers, Issue 5: Volume 2 1037

wcsxfrm() System Interfaces

NAME
wcsxfrm — wide-character string transformation

SYNOPSIS
#include <wchar.h>

size_t wcsxfrm(wchar_t * ws1, const wchar_t * ws2, size_t n);

DESCRIPTION
The wcsxfrm() function transforms the wide-character string pointed to by ws2 and places the
resulting wide-character string into the array pointed to by ws1. The transformation is such that
if wcscmp() is applied to two transformed wide strings, it returns a value greater than, equal to
or less than 0, corresponding to the result of wcscoll() applied to the same two original wide-
character strings. No more than n wide-character codes are placed into the resulting array
pointed to by ws1, including the terminating null wide-character code. If n is 0, ws1 is permitted
to be a null pointer. If copying takes place between objects that overlap, the behaviour is
undefined.

The wcsxfrm() function will not change the setting of errno if successful.

RETURN VALUE
The wcsxfrm() function returns the length of the transformed wide-character string (not
including the terminating null wide-character code). If the value returned is n or more, the
contents of the array pointed to by ws1 are indeterminate.

On error, the wcsxfrm() function returns (size_t)−1, and sets errno to indicate the error.

ERRORS
The wcsxfrm() function may fail if:

[EINVAL] The wide-character string pointed to by ws2 contains wide-character codes
outside the domain of the collating sequence.

EXAMPLES
None.

APPLICATION USAGE
The transformation function is such that two transformed wide-character strings can be ordered
by wcscmp() as appropriate to collating sequence information in the program’s locale (category
LC_COLLATE).

The fact that when n is 0, ws1 is permitted to be a null pointer, is useful to determine the size of
the ws1 array prior to making the transformation.

Because no return value is reserved to indicate an error, an application wishing to check for error
situations should set errno to 0, then call wcsxfrm(), then check errno.

FUTURE DIRECTIONS
None.

SEE ALSO
wcscmp(), wcscoll(), <wchar.h>.

CHANGE HISTORY
First released in Issue 4.

Derived from the MSE working draft.

1038 CAE Specification (1997)

System Interfaces wcsxfrm()

Issue 5
Moved from ENHANCED I18N to BASE and the [ENOSYS] error is removed.

The DESCRIPTION is updated to indicate that errno will not be changed if the function is
successful.

System Interfaces and Headers, Issue 5: Volume 2 1039

wctob() System Interfaces

NAME
wctob — wide-character to single-byte conversion

SYNOPSIS
#include <stdio.h>
#include <wchar.h>

int wctob(wint_t c);

DESCRIPTION
The wctob() function determines whether c corresponds to a member of the extended character
set whose character representation is a single byte when in the initial shift state.

The behaviour of this function is affected by the LC_CTYPE category of the current locale.

RETURN VALUE
The wctob() function returns EOF if c does not correspond to a character with length one in the
initial shift state. Otherwise, it returns the single-byte representation of that character.

ERRORS
No errors are defined.

EXAMPLES
None.

APPLICATION USAGE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
btowc(), <wchar.h>.

CHANGE HISTORY
First released in Issue 5.

Included for alignment with the ISO/IEC 9899:1990/Amendment 1:1994 (E).

1040 CAE Specification (1997)

System Interfaces wctomb()

NAME
wctomb — convert a wide-character code to a character

SYNOPSIS
#include <stdlib.h>

int wctomb(char * s, wchar_t wchar);

DESCRIPTION
The wctomb() function determines the number of bytes needed to represent the character
corresponding to the wide-character code whose value is wchar (including any change in the
shift state). It stores the character representation (possibly multiple bytes and any special bytes
to change shift state) in the array object pointed to by s (if s is not a null pointer). At most
{MB_CUR_MAX} bytes are stored. If wchar is 0, wctomb() is left in the initial shift state.

The behaviour of this function is affected by the LC_CTYPE category of the current locale. For a
state-dependent encoding, this function is placed into its initial state by a call for which its
character pointer argument, s, is a null pointer. Subsequent calls with s as other than a null
pointer cause the internal state of the function to be altered as necessary. A call with s as a null
pointer causes this function to return a non-zero value if encodings have state dependency, and
0 otherwise. Changing the LC_CTYPE category causes the shift state of this function to be
indeterminate.

The implementation will behave as if no function defined in this document calls wctomb().

RETURN VALUE
If s is a null pointer, wctomb() returns a non-zero or 0 value, if character encodings, respectively,
do or do not have state-dependent encodings. If s is not a null pointer, wctomb() returns −1 if the
value of wchar does not correspond to a valid character, or returns the number of bytes that
constitute the character corresponding to the value of wchar .

In no case will the value returned be greater than the value of the MB_CUR_MAX macro.

ERRORS
No errors are defined.

EXAMPLES
None.

APPLICATION USAGE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
mblen(), mbtowc(), mbstowcs(), wcstombs(), <stdlib.h>.

CHANGE HISTORY
First released in Issue 4.

Derived from the ANSI C standard.

System Interfaces and Headers, Issue 5: Volume 2 1041

wctrans() System Interfaces

NAME
wctrans — define character mapping

SYNOPSIS
#include <wctype.h>

wctrans_t wctrans(const char * charclass);

DESCRIPTION
The wctrans() function is defined for valid character mapping names identified in the current
locale. The charclass is a string identifying a generic character mapping name for which codeset-
specific information is required. The following character mapping names are defined in all
locales — "tolower" and "toupper".

The function returns a value of type wctrans_t, which can be used as the second argument to
subsequent calls of towctrans(). The wctrans() function determines values of wctrans_t
according to the rules of the coded character set defined by character mapping information in
the program’s locale (category LC_CTYPE). The values returned by wctrans() are valid until a
call to setlocale () that modifies the category LC_CTYPE.

RETURN VALUE
The wctrans() function returns 0 if the given character mapping name is not valid for the current
locale (category LC_CTYPE), otherwise it returns a non-zero object of type wctrans_t that can be
used in calls to towctrans().

ERRORS
The wctrans() function may fail if:

[EINVAL] The character mapping name pointed to by charclass is not valid in the current
locale.

EXAMPLES
None.

APPLICATION USAGE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
towctrans(), <wctype.h>.

CHANGE HISTORY
First released in Issue 5.

Derived from ISO/IEC 9899:1990/Amendment 1:1994 (E).

1042 CAE Specification (1997)

System Interfaces wctype()

NAME
wctype — define character class

SYNOPSIS
#include <wctype.h>

wctype_t wctype(const char * property);

DESCRIPTION
The wctype() function is defined for valid character class names as defined in the current locale.
The property is a string identifying a generic character class for which codeset-specific type
information is required. The following character class names are defined in all locales —
"alnum", "alpha", "blank" "cntrl", "digit", "graph", "lower", "print", "punct", "space", "upper" and
"xdigit".

Additional character class names defined in the locale definition file (category LC_CTYPE) can
also be specified.

The function returns a value of type wctype_t, which can be used as the second argument to
subsequent calls of iswctype(). The wctype() function determines values of wctype_t according
to the rules of the coded character set defined by character type information in the program’s
locale (category LC_CTYPE). The values returned by wctype() are valid until a call to setlocale ()
that modifies the category LC_CTYPE.

RETURN VALUE
The wctype() function returns 0 if the given character class name is not valid for the current
locale (category LC_CTYPE), otherwise it returns an object of type wctype_t that can be used in
calls to iswctype().

ERRORS
No errors are defined.

EXAMPLES
None.

APPLICATION USAGE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
iswctype(), <wctype.h>, <wchar.h>.

CHANGE HISTORY
First released in Issue 4.

Issue 5
The following change has been made in this issue for alignment with ISO/IEC
9899:1990/Amendment 1:1994 (E).

• The SYNOPSIS has been changed to indicate that this function and associated data types are
now made visible by inclusion of the header <wctype.h> rather than <wchar.h>.

System Interfaces and Headers, Issue 5: Volume 2 1043

wcwidth() System Interfaces

NAME
wcwidth — number of column positions of a wide-character code

SYNOPSIS
#include <wchar.h>

int wcwidth(wchar_t wc);

DESCRIPTION
The wcwidth() function determines the number of column positions required for the wide
character wc. The value of wc must be a character representable as a wchar_t, and must be a
wide-character code corresponding to a valid character in the current locale.

RETURN VALUE
The wcwidth() function either returns 0 (if wc is a null wide-character code), or returns the
number of column positions to be occupied by the wide-character code wc, or returns −1 (if wc
does not correspond to a printing wide-character code).

ERRORS
No errors are defined.

EXAMPLES
None.

APPLICATION USAGE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
wcswidth(), <wchar.h>.

CHANGE HISTORY
First released as a World-wide Portability Interface in Issue 4.

Derived from MSE working draft.

1044 CAE Specification (1997)

System Interfaces wmemchr()

NAME
wmemchr — find a wide-character in memory

SYNOPSIS
#include <wchar.h>

wchar_t *wmemchr(const wchar_t * ws, wchar_t wc, size_t n);

DESCRIPTION
The wmemchr() function locates the first occurrence of wc in the initial n wide-characters of the
object pointed to be ws. This function is not affected by locale and all wchar_t values are treated
identically. The null wide-character and wchar_t values not corresponding to valid characters
are not treated specially.

If n is zero, ws must be a valid pointer and the function behaves as if no valid occurrence of wc is
found.

RETURN VALUE
The wmemchr() function returns a pointer to the located wide-character, or a null pointer if the
wide-character does not occur in the object.

ERRORS
No errors are defined.

EXAMPLES
None.

APPLICATION USAGE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
<wchar.h>, wmemcmp(), wmemcpy(), wmemmove(), wmemset().

CHANGE HISTORY
First released in Issue 5.

Included for alignment with the ISO/IEC 9899:1990/Amendment 1:1994 (E).

System Interfaces and Headers, Issue 5: Volume 2 1045

wmemcmp() System Interfaces

NAME
wmemcmp — compare wide-characters in memory

SYNOPSIS
#include <wchar.h>

int wmemcmp(const wchar_t * ws1, const wchar_t * ws2, size_t n);

DESCRIPTION
The wmemcmp() function compares the first n wide-characters of the object pointed to by ws1 to
the first n wide-characters of the object pointed to by ws2. This function is not affected by locale
and all wchar_t values are treated identically. The null wide-character and wchar_t values not
corresponding to valid characters are not treated specially.

If n is zero, ws1 and ws2 must be a valid pointers and the function behaves as if the two objects
compare equal.

RETURN VALUE
The wmemcmp() function returns an integer greater than, equal to, or less than zero, accordingly
as the object pointed to by ws1 is greater than, equal to, or less than the object pointed to by ws2.

ERRORS
No errors are defined.

EXAMPLES
None.

APPLICATION USAGE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
<wchar.h>, wmemchr(), wmemcpy(), wmemmove(), wmemset().

CHANGE HISTORY
First released in Issue 5.

Included for alignment with the ISO/IEC 9899:1990/Amendment 1:1994 (E).

1046 CAE Specification (1997)

System Interfaces wmemcpy()

NAME
wmemcpy — copy wide-characters in memory

SYNOPSIS
#include <wchar.h>

wchar_t *wmemcpy(wchar_t * ws1, const wchar_t * ws2, size_t n);

DESCRIPTION
The wmemcpy() function copies n wide-characters from the object pointed to by ws2 to the object
pointed to be ws1. This function is not affected by locale and all wchar_t values are treated
identically. The null wide-character and wchar_t values not corresponding to valid characters
are not treated specially.

If n is zero, ws1 and ws2 must be a valid pointers, and the function copies zero wide-characters.

RETURN VALUE
The wmemcpy() function returns the value of ws1.

ERRORS
No errors are defined.

EXAMPLES
None.

APPLICATION USAGE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
<wchar.h>, wmemchr(), wmemcmp(), wmemmove(), wmemset().

CHANGE HISTORY
First released in Issue 5.

Included for alignment with the ISO/IEC 9899:1990/Amendment 1:1994 (E).

System Interfaces and Headers, Issue 5: Volume 2 1047

wmemmove() System Interfaces

NAME
wmemmove — copy wide-characters in memory with overlapping areas

SYNOPSIS
#include <wchar.h>

wchar_t *wmemmove(wchar_t * ws1, const wchar_t * ws2, size_t n);

DESCRIPTION
The wmemmove() function copies n wide-characters from the object pointed to by ws2 to the
object pointed to by ws1. Copying takes place as if the n wide-characters from the object pointed
to by ws2 are first copied into a temporary array of n wide-characters that does not overlap the
objects pointed to by ws1 or ws2, and then the n wide-characters from the temporary array are
copied into the object pointed to by ws1.

This function is not affected by locale and all wchar_t values are treated identically. The null
wide-character and wchar_t values not corresponding to valid characters are not treated
specially.

If n is zero, ws1 and ws2 must be a valid pointers, and the function copies zero wide-characters.

RETURN VALUE
The wmemmove function returns the value of ws1.

ERRORS
No errors are defined

EXAMPLES
None.

APPLICATION USAGE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
<wchar.h>, wmemchr(), wmemcmp(), wmemcpy(), wmemset().

CHANGE HISTORY
First released in Issue 5.

Included for alignment with the ISO/IEC 9899:1990/Amendment 1:1994 (E).

1048 CAE Specification (1997)

System Interfaces wmemset()

NAME
wmemset — set wide-characters in memory

SYNOPSIS
#include <wchar.h>

wchar_t *wmemset(wchar_t * ws, wchar_t wc, size_t n);

DESCRIPTION
The wmemset() function copies the value of wc into each of the first n wide-characters of the
object pointed to by ws. This function is not affected by locale and all wchar_t values are treated
identically. The null wide-character and wchar_t values not corresponding to valid characters
are not treated specially.

If n is zero, ws must be a valid pointer and the function copies zero wide-characters.

RETURN VALUE
The wmemset() functions returns the value of ws.

ERRORS
No errors are defined.

EXAMPLES
None.

APPLICATION USAGE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
<wchar.h>, wmemchr(), wmemcmp(), wmemcpy(), wmemmove().

CHANGE HISTORY
First released in Issue 5.

Included for alignment with the ISO/IEC 9899:1990/Amendment 1:1994 (E).

System Interfaces and Headers, Issue 5: Volume 2 1049

wordexp() System Interfaces

NAME
wordexp, wordfree — perform word expansions

SYNOPSIS
#include <wordexp.h>

int wordexp(const char * words , wordexp_t * pwordexp , int flags);
void wordfree(wordexp_t * pwordexp);

DESCRIPTION
The wordexp() function performs word expansions as described in the XCU specification,
Section 2.6, Word Expansions, subject to quoting as in the XCU specification, Section 2.2,
Quoting, and places the list of expanded words into the structure pointed to by pwordexp.

The words argument is a pointer to a string containing one or more words to be expanded. The
expansions will be the same as would be performed by the shell if words were the part of a
command line representing the arguments to a utility. Therefore, words must not contain an
unquoted newline or any of the unquoted shell special characters:

| & ; < >

except in the context of command substitution as specified in the XCU specification, Section
2.6.3, Command Substitution. It also must not contain unquoted parentheses or braces, except
in the context of command or variable substitution. If the argument words contains an unquoted
comment character (number sign) that is the beginning of a token, wordexp() may treat the
comment character as a regular character, or may interpret it as a comment indicator and ignore
the remainder of words.

The structure type wordexp_t is defined in the header <wordexp.h> and includes at least the
following members:

Member Type Member Name Description
size_t we_wordc Count of words matched by words.
char ** we_wordv Pointer to list of expanded words.
size_t we_offs Slots to reserve at the beginning of pwordexp->we_wordv.

The wordexp() function stores the number of generated words into pwordexp−>we_wordc and a
pointer to a list of pointers to words in pwordexp−>we_wordv. Each individual field created
during field splitting (see the XCU specification, Section 2.6.5, Field Splitting) or pathname
expansion (see the XCU specification, Section 2.6.6, Pathname Expansion) is a separate word in
the pwordexp−>we_wordv list. The words are in order as described in the XCU specification,
Section 2.6, Word Expansions. The first pointer after the last word pointer will be a null pointer.
The expansion of special parameters described in the XCU specification, Section 2.5.2, Special
Parameters is unspecified.

It is the caller’s responsibility to allocate the storage pointed to by pwordexp. The wordexp()
function allocates other space as needed, including memory pointed to by
pwordexp−>we_wordv. The wordfree() function frees any memory associated with pwordexp
from a previous call to wordexp().

The flags argument is used to control the behaviour of wordexp(). The value of flags is the bitwise
inclusive OR of zero or more of the following constants, which are defined in <wordexp.h>:

WRDE_APPEND Append words generated to the ones from a previous call to wordexp().

WRDE_DOOFFS Make use of pwordexp−>we_offs. If this flag is set, pwordexp−>we_offs is
used to specify how many null pointers to add to the beginning of

1050 CAE Specification (1997)

System Interfaces wordexp()

pwordexp−>we_wordv. In other words, pwordexp−>we_wordv will point
to pwordexp−>we_offs null pointers, followed by pwordexp−>we_wordc
word pointers, followed by a null pointer.

WRDE_NOCMD Fail if command substitution, as specified in the XCU specification,
Section 2.6.3, Command Substitution, is requested.

WRDE_REUSE The pwordexp argument was passed to a previous successful call to
wordexp(), and has not been passed to wordfree(). The result will be the
same as if the application had called wordfree() and then called wordexp()
without WRDE_REUSE.

WRDE_SHOWERR Do not redirect stderr to /dev/null.

WRDE_UNDEF Report error on an attempt to expand an undefined shell variable.

The WRDE_APPEND flag can be used to append a new set of words to those generated by a
previous call to wordexp(). The following rules apply when two or more calls to wordexp() are
made with the same value of pwordexp and without intervening calls to wordfree():

1. The first such call must not set WRDE_APPEND. All subsequent calls must set it.

2. All of the calls must set WRDE_DOOFFS, or all must not set it.

3. After the second and each subsequent call, pwordexp−>we_wordv will point to a list
containing the following:

a. zero or more null pointers, as specified by WRDE_DOOFFS and pwordexp−>we_offs

b. pointers to the words that were in the pwordexp−>we_wordv list before the call, in
the same order as before

c. pointers to the new words generated by the latest call, in the specified order

4. The count returned in pwordexp−>we_wordc will be the total number of words from all of
the calls.

5. The application can change any of the fields after a call to wordexp(), but if it does it must
reset them to the original value before a subsequent call, using the same pwordexp value, to
wordfree() or wordexp() with the WRDE_APPEND or WRDE_REUSE flag.

If words contains an unquoted:

<newline > | & ; < > () { }

in an inappropriate context, wordexp() will fail, and the number of expanded words will be 0.

Unless WRDE_SHOWERR is set in flags, wordexp() will redirect stderr to /dev/null for any
utilities executed as a result of command substitution while expanding words. If
WRDE_SHOWERR is set, wordexp() may write messages to stderr if syntax errors are detected
while expanding words.

If WRDE_DOOFFS is set, then pwordexp−>we_offs must have the same value for each wordexp()
call and wordfree() call using a given pwordexp.

The following constants are defined as error return values:

WRDE_BADCHAR One of the unquoted characters:

<newline > | & ; < > () { }

appears in words in an inappropriate context.

System Interfaces and Headers, Issue 5: Volume 2 1051

wordexp() System Interfaces

WRDE_BADVAL Reference to undefined shell variable when WRDE_UNDEF is set in flags.

WRDE_CMDSUB Command substitution requested when WRDE_NOCMD was set in flags.

WRDE_NOSPACE Attempt to allocate memory failed.

WRDE_SYNTAX Shell syntax error, such as unbalanced parentheses or unterminated
string.

RETURN VALUE
On successful completion, wordexp() returns 0.

Otherwise, a non-zero value as described in <wordexp.h> is returned to indicate an error. If
wordexp() returns the value WRDE_NOSPACE, then pwordexp−>we_wordc and
pwordexp−>we_wordv will be updated to reflect any words that were successfully expanded. In
other cases, they will not be modified.

The wordfree() function returns no value.

ERRORS
No errors are defined.

EXAMPLES
None.

APPLICATION USAGE
This function is intended to be used by an application that wants to do all of the shell’s
expansions on a word or words obtained from a user. For example, if the application prompts
for a filename (or list of filenames) and then uses wordexp() to process the input, the user could
respond with anything that would be valid as input to the shell.

The WRDE_NOCMD flag is provided for applications that, for security or other reasons, want to
prevent a user from executing shell commands. Disallowing unquoted shell special characters
also prevents unwanted side effects such as executing a command or writing a file.

FUTURE DIRECTIONS
None.

SEE ALSO
fnmatch(), glob(), <wordexp.h>, the XCU specification.

CHANGE HISTORY
First released in Issue 4.

Derived from the ISO POSIX-2 standard.

Issue 5
Moved from POSIX2 C-language Binding to BASE.

1052 CAE Specification (1997)

System Interfaces wprintf()

NAME
wprintf — print formatted wide-character output

SYNOPSIS
#include <stdio.h>
#include <wchar.h>

int wprintf(const wchar_t * format , . . .);

DESCRIPTION
Refer to fwprintf().

CHANGE HISTORY
First released in Issue 5.

Include for alignment with the ISO/IEC 9899:1990/Amendment 1:1994 (E).

System Interfaces and Headers, Issue 5: Volume 2 1053

write() System Interfaces

NAME
write, writev, pwrite — write on a file

SYNOPSIS
#include <unistd.h>

ssize_t write(int fildes , const void * buf , size_t nbyte);
EX ssize_t pwrite(int fildes , const void * buf , size_t nbyte ,

off_t offset);

#include <sys/uio.h>

ssize_t writev(int fildes , const struct iovec * iov , int iovcnt);

DESCRIPTION
The write() function attempts to write nbyte bytes from the buffer pointed to by buf to the file
associated with the open file descriptor, fildes .

If nbyte is 0, write() will return 0 and have no other results if the file is a regular file; otherwise,
the results are unspecified.

On a regular file or other file capable of seeking, the actual writing of data proceeds from the
position in the file indicated by the file offset associated with fildes . Before successful return
from write(), the file offset is incremented by the number of bytes actually written. On a regular
file, if this incremented file offset is greater than the length of the file, the length of the file will be
set to this file offset.

On a file not capable of seeking, writing always takes place starting at the current position. The
value of a file offset associated with such a device is undefined.

If the O_APPEND flag of the file status flags is set, the file offset will be set to the end of the file
prior to each write and no intervening file modification operation will occur between changing
the file offset and the write operation.

EX If a write() requests that more bytes be written than there is room for (for example, the ulimit or
the physical end of a medium), only as many bytes as there is room for will be written. For
example, suppose there is space for 20 bytes more in a file before reaching a limit. A write of 512
bytes will return 20. The next write of a non-zero number of bytes will give a failure return

EX (except as noted below) and the implementation will generate a SIGXFSZ signal for the thread.

If write() is interrupted by a signal before it writes any data, it will return −1 with errno set to
[EINTR].

FIPS If write() is interrupted by a signal after it successfully writes some data, it will return the
number of bytes written.

If the value of nbyte is greater than {SSIZE_MAX}, the result is implementation-dependent.

After a write() to a regular file has successfully returned:

• Any successful read() from each byte position in the file that was modified by that write will
return the data specified by the write() for that position until such byte positions are again
modified.

• Any subsequent successful write() to the same byte position in the file will overwrite that file
data.

Write requests to a pipe or FIFO will be handled the same as a regular file with the following
exceptions:

1054 CAE Specification (1997)

System Interfaces write()

• There is no file offset associated with a pipe, hence each write request will append to the end
of the pipe.

• Write requests of {PIPE_BUF} bytes or less will not be interleaved with data from other
processes doing writes on the same pipe. Writes of greater than {PIPE_BUF} bytes may have
data interleaved, on arbitrary boundaries, with writes by other processes, whether or not the
O_NONBLOCK flag of the file status flags is set.

• If the O_NONBLOCK flag is clear, a write request may cause the thread to block, but on
normal completion it will return nbyte.

• If the O_NONBLOCK flag is set, write() requests will be handled differently, in the following
ways:

— The write() function will not block the thread.

— A write request for {PIPE_BUF} or fewer bytes will have the following effect: If there is
sufficient space available in the pipe, write() will transfer all the data and return the
number of bytes requested. Otherwise, write() will transfer no data and return −1 with
errno set to [EAGAIN].

— A write request for more than {PIPE_BUF} bytes will case one of the following:

a. When at least one byte can be written, transfer what it can and return the number of
bytes written. When all data previously written to the pipe is read, it will transfer at
least {PIPE_BUF} bytes.

b. When no data can be written, transfer no data and return −1 with errno set to
[EAGAIN].

When attempting to write to a file descriptor (other than a pipe or FIFO) that supports non-
blocking writes and cannot accept the data immediately:

• If the O_NONBLOCK flag is clear, write() will block the calling thread until the data can be
accepted.

• If the O_NONBLOCK flag is set, write() will not block the process. If some data can be
written without blocking the process, write() will write what it can and return the number of
bytes written. Otherwise, it will return −1 and errno will be set to [EAGAIN].

Upon successful completion, where nbyte is greater than 0, write() will mark for update the
st_ctime and st_mtime fields of the file, and if the file is a regular file, the S_ISUID and S_ISGID
bits of the file mode may be cleared.

EX If fildes refers to a STREAM, the operation of write() is determined by the values of the minimum
and maximum nbyte range ("packet size") accepted by the STREAM. These values are
determined by the topmost STREAM module. If nbyte falls within the packet size range, nbyte
bytes will be written. If nbyte does not fall within the range and the minimum packet size value
is 0, write() will break the buffer into maximum packet size segments prior to sending the data
downstream (the last segment may contain less than the maximum packet size). If nbyte does
not fall within the range and the minimum value is non-zero, write() will fail with errno set to
[ERANGE]. Writing a zero-length buffer (nbyte is 0) to a STREAMS device sends 0 bytes with 0
returned. However, writing a zero-length buffer to a STREAMS-based pipe or FIFO sends no
message and 0 is returned. The process may issue I_SWROPT ioctl () to enable zero-length
messages to be sent across the pipe or FIFO.

When writing to a STREAM, data messages are created with a priority band of 0. When writing
to a STREAM that is not a pipe or FIFO:

System Interfaces and Headers, Issue 5: Volume 2 1055

write() System Interfaces

• If O_NONBLOCK is clear, and the STREAM cannot accept data (the STREAM write queue is
full due to internal flow control conditions), write() will block until data can be accepted.

• If O_NONBLOCK is set and the STREAM cannot accept data, write() will return −1 and set
errno to [EAGAIN].

• If O_NONBLOCK is set and part of the buffer has been written while a condition in which
the STREAM cannot accept additional data occurs, write() will terminate and return the
number of bytes written.

In addition, write() and writev() will fail if the STREAM head had processed an asynchronous
error before the call. In this case, the value of errno does not reflect the result of write() or
writev() but reflects the prior error.

The writev() function is equivalent to write(), but gathers the output data from the iovcnt buffers
specified by the members of the iov array: iov[0], iov[1], ..., iov[iovcnt - 1]. iovcnt is valid if greater
than 0 and less than or equal to {IOV_MAX}, defined in <limits.h>.

Each iovec entry specifies the base address and length of an area in memory from which data
should be written. The writev() function will always write a complete area before proceeding to
the next.

If fildes refers to a regular file and all of the iov_len members in the array pointed to by iov are 0,
writev() will return 0 and have no other effect. For other file types, the behaviour is unspecified.

If the sum of the iov_len values is greater than SSIZE_MAX, the operation fails and no data is
transferred.

RT If the Synchronized Input and Output option is supported:

If the O_DSYNC bit has been set, write I/O operations on the file descriptor complete as
defined by synchronised I/O data integrity completion.

If the O_SYNC bit has been set, write I/O operations on the file descriptor complete as defined
by synchronised I/O file integrity completion.

RT If the Shared Memory Objects option is supported:

If fildes refers to a shared memory object, the result of the write() function is unspecified.

EX For regular files, no data transfer will occur past the offset maximum established in the open file
description associated with fildes .

The pwrite() function performs the same action as write(), except that it writes into a given
position without changing the file pointer. The first three arguments to pwrite() are the same as
write() with the addition of a fourth argument offset for the desired position inside the file.

RETURN VALUE
EX Upon successful completion, write()and pwrite()will return the number of bytes actually written

to the file associated with fildes . This number will never be greater than nbyte. Otherwise, −1 is
returned and errno is set to indicate the error.

EX Upon successful completion, writev() returns the number of bytes actually written. Otherwise, it
returns a value of −1, the file-pointer remains unchanged, and errno is set to indicate an error.

ERRORS
EX The write(),writev() and pwrite()functions will fail if:

[EAGAIN] The O_NONBLOCK flag is set for the file descriptor and the thread would be
delayed in the write() operation.

1056 CAE Specification (1997)

System Interfaces write()

[EBADF] The fildes argument is not a valid file descriptor open for writing.

[EFBIG] An attempt was made to write a file that exceeds the implementation-
EX dependent maximum file size or the process’ file size limit.

EX [EFBIG] The file is a regular file, nbyte is greater than 0 and the starting position is
greater than or equal to the offset maximum established in the open file
description associated with fildes .

[EINTR] The write operation was terminated due to the receipt of a signal, and no data
was transferred.

EX [EIO] A physical I/O error has occurred.

[EIO] The process is a member of a background process group attempting to write
to its controlling terminal, TOSTOP is set, the process is neither ignoring nor
blocking SIGTTOU and the process group of the process is orphaned. This
error may also be returned under implementation-dependent conditions.

[ENOSPC] There was no free space remaining on the device containing the file.

[EPIPE] An attempt is made to write to a pipe or FIFO that is not open for reading by
EX any process, or that only has one end open. A SIGPIPE signal will also be sent

to the thread.

EX [ERANGE] The transfer request size was outside the range supported by the STREAMS
file associated with fildes.

The writev() function will fail if:

[EINVAL] The sum of the iov_len values in the iov array would overflow an ssize_t.

EX The write(),writev() and pwrite()functions may fail if:

EX [EINVAL] The STREAM or multiplexer referenced by fildes is linked (directly or
indirectly) downstream from a multiplexer.

EX [ENXIO] A request was made of a non-existent device, or the request was outside the
capabilities of the device.

EX [ENXIO] A hangup occurred on the STREAM being written to.

EX A write to a STREAMS file may fail if an error message has been received at the STREAM head.
In this case, errno is set to the value included in the error message.

The writev() function may fail and set errno to:

[EINVAL] The iovcnt argument was less than or equal to 0, or greater than {IOV_MAX}.

The pwrite() function fails and the file pointer remains unchanged if:

[EINVAL] The offset argument is invalid. The value is negative.

[ESPIPE] fildes is associated with a pipe or FIFO.

EXAMPLES
None.

APPLICATION USAGE
None.

System Interfaces and Headers, Issue 5: Volume 2 1057

write() System Interfaces

FUTURE DIRECTIONS
None.

SEE ALSO
chmod(), creat(), dup(), fcntl(), getrlimit(), lseek(), open(), pipe(), ulimit(), <limits.h>,
<stropts.h>, <sys/uio.h>, <unistd.h>.

CHANGE HISTORY
First released in Issue 1.

Derived from Issue 1 of the SVID.

Issue 4
The following changes are incorporated for alignment with the ISO POSIX-1 standard:

• The type of the argument buf is changed from char * to const void*, and the type of the
argument nbyte is changed from unsigned to size_t.

• The DESCRIPTION is changed:

— to indicate that writing at end-of-file is atomic

— to identify that {SSIZE_MAX} is now used to determine the maximum value of nbyte

— to indicate the consequences of activities after a call to the write() function

— To improve clarity, the text describing operations on pipes or FIFOs when
O_NONBLOCK is set is restructured.

Other changes are incorporated as follows:

• The <unistd.h> header is added to the SYNOPSIS section.

• Reference to ulimit in the DESCRIPTION is marked as an extension.

• Reference to the process’ file size limit and the ulimit() function are marked as extensions in
the description of the [EFBIG] error.

• The [ENXIO] error is marked as an extension.

• The APPLICATION USAGE section is removed.

• The description of [EINTR] is amended.

Issue 4, Version 2
The following changes are incorporated for X/OPEN UNIX conformance:

• The writev() function is added to the SYNOPSIS.

• The DESCRIPTION is updated to describe the writing of data to STREAMS files, an
operational description of the writev() function is included, and a statement is added
indicating that SIGXFSZ will be generated if an attempted write operation would cause the
maximum file size to be exceeded.

• The RETURN VALUE section is updated to describe values returned by the writev() function.

• The ERRORS section has been restructured to describe errors that apply to both write() and
writev() apart from those that apply to writev() specifically. The [EIO], [ERANGE] and
[EINVAL] errors are also added.

1058 CAE Specification (1997)

System Interfaces write()

Issue 5
The DESCRIPTION is updated for alignment with the POSIX Realtime Extension and the POSIX
Threads Extension.

Large File Summit extensions added.

The pwrite() function is added.

System Interfaces and Headers, Issue 5: Volume 2 1059

wscanf() System Interfaces

NAME
wscanf — convert formatted wide-character input

SYNOPSIS
#include <stdio.h>
#include <wchar.h>

int wscanf(const wchar_t * format , ...);

DESCRIPTION
Refer to fwscanf().

CHANGE HISTORY
First released in Issue 5.

Included for alignment with the ISO/IEC 9899:1990/Amendment 1:1994 (E).

1060 CAE Specification (1997)

System Interfaces y0()

NAME
y0, y1, yn — Bessel functions of the second kind

SYNOPSIS
EX #include <math.h>

double y0(double x);
double y1 (double x);
double yn (int n, double x);

DESCRIPTION
The y0(), y1() and yn() functions compute Bessel functions of x of the second kind of orders 0, 1
and n respectively. The value of x must be positive.

An application wishing to check for error situations should set errno to 0 before calling y0(), y1()
or yn(). If errno is non-zero on return, or the return value is NaN, an error has occurred.

RETURN VALUE
Upon successful completion, y0(), y1() and yn() will return the relevant Bessel value of x of the
second kind.

If x is NaN, NaN is returned and errno may be set to [EDOM].

If the x argument to y0(), y1() or yn() is negative, −HUGE_VAL or NaN is returned, and errno
may be set to [EDOM].

If x is 0.0, −HUGE_VAL is returned and errno may be set to [ERANGE] or [EDOM].

If the correct result would cause underflow, 0.0 is returned and errno may be set to [ERANGE].

If the correct result would cause overflow, −HUGE_VAL or 0.0 is returned and errno may be set
to [ERANGE].

ERRORS
The y0(), y1() and yn() functions may fail if:

[EDOM] The value of x is negative or NaN.

[ERANGE] The value of x is too large in magnitude, or x is 0.0, or the correct result would
cause overflow or underflow.

No other errors will occur.

EXAMPLES
None.

APPLICATION USAGE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
isnan(), j0(), <math.h>.

CHANGE HISTORY
First released in Issue 1.

Derived from Issue 1 of the SVID.

System Interfaces and Headers, Issue 5: Volume 2 1061

y0() System Interfaces

Issue 4
The following changes are incorporated in this issue:

• Removed references to matherr().

• The RETURN VALUE and ERRORS sections are substantially rewritten to rationalise error
handling in the mathematics functions.

Issue 5
The DESCRIPTION is updated to indicate how an application should check for an error. This
text was previously published in the APPLICATION USAGE section.

1062 CAE Specification (1997)

Chapter 4

Headers

This chapter describes the contents of headers used by the X/Open functions, macros and
external variables.

Headers contain function prototypes, the definition of symbolic constants, common structures,
preprocessor macros and defined types. Each function in Chapter 3 specifies the headers that an
application must include in order to use that function. In most cases only one header is required.
These headers are present on an application development system; they do not have to be present
on the target execution system.

System Interfaces and Headers, Issue 5: Volume 2 1063

<aio.h> Headers

NAME
aio.h — asynchronous input and output (REALTIME)

SYNOPSIS
RT #include <aio.h>

DESCRIPTION
The <aio.h> header defines the aiocb structure which includes at least the following members:

int aio_fildes file descriptor
off_t aio_offset file offset
volatile void* aio_buf location of buffer
size_t aio_nbytes length of transfer
int aio_reqprio request priority offset
struct sigevent aio_sigevent signal number and value
int aio_lio_opcode operation to be performed

This header also includes the following constants:

AIO_CANCELED
AIO_NOTCANCELED
AIO_ALLDONE
LIO_WAIT
LIO_NOWAIT
LIO_READ
LIO_WRITE
LIO_NOP

The following are declared as functions and may also be declared as macros. Function
prototypes must be provided for use with an ISO C compiler.

int aio_cancel(int, struct aiocb *);
int aio_error(const struct aiocb *);
int aio_fsync(int, struct aiocb *);
int aio_read(struct aiocb *);
ssize_t aio_return(struct aiocb *);
int aio_suspend(const struct aiocb *const[], int,

const struct timespec *);
int aio_write(struct aiocb *);
int lio_listio(int, struct aiocb *const[], int,

struct sigevent *);

Inclusion of the <aio.h> header may make visible symbols defined in the headers <fcntl.h>,
<signal.h>, <sys/types.h> and <time.h>.

APPLICATION USAGE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
fsync(), lseek(), read(), write(), <fcntl.h>, <signal.h>, <sys/types.h>, <time.h>.

1064 CAE Specification (1997)

Headers <aio.h>

CHANGE HISTORY
First released in Issue 5.

Included for alignment with the POSIX Realtime Extension.

System Interfaces and Headers, Issue 5: Volume 2 1065

<assert.h> Headers

NAME
assert.h — verify program assertion

SYNOPSIS
#include <assert.h>

DESCRIPTION
The <assert.h> header defines the assert() macro. It refers to the macro NDEBUG which is not
defined in the header. If NDEBUG is defined as a macro name before the inclusion of this
header, the assert() macro is defined simply as:

#define assert(ignore)((void) 0)

otherwise the macro behaves as described in assert().

The assert() macro is implemented as a macro, not as a function. If the macro definition is
suppressed in order to access an actual function, the behaviour is undefined.

APPLICATION USAGE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
assert().

CHANGE HISTORY
First released in Issue 1.

Derived from Issue 1 of the SVID.

1066 CAE Specification (1997)

Headers <cpio.h>

NAME
cpio.h — cpio archive values

SYNOPSIS
EX #include <cpio.h>

DESCRIPTION
Values needed by the c_mode field of the cpio archive format are described by:

Name Description Value (octal)
C_IRUSR read by owner 0000400
C_IWUSR write by owner 0000200
C_IXUSR execute by owner 0000100
C_IRGRP read by group 0000040
C_IWGRP write by group 0000020
C_IXGRP execute by group 0000010
C_IROTH read by others 0000004
C_IWOTH write by others 0000002
C_IXOTH execute by others 0000001
C_ISUID set user ID 0004000
C_ISGID set group ID 0002000
C_ISVTX on directories, restricted deletion flag 0001000
C_ISDIR directory 0040000
C_ISFIFO FIFO 0010000
C_ISREG regular file 0100000
C_ISBLK block special 0060000
C_ISCHR character special 0020000
C_ISCTG reserved 0110000

EX C_ISLNK symbolic link 0120000
C_ISSOCK socket 0140000

The header defines the symbolic constant:

MAGIC "070707"

APPLICATION USAGE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
cpio , the XCU specification.

CHANGE HISTORY
First released in Issue 3 of the referenced Headers specification.

Derived from the POSIX.1-1988 standard.

Issue 4, Version 2
Descriptions for C_ISLNK and C_ISSOCK are provided; formerly, these were listed as
‘‘Reserved’’.

System Interfaces and Headers, Issue 5: Volume 2 1067

<ctype.h> Headers

NAME
ctype.h — character types

SYNOPSIS
#include <ctype.h>

DESCRIPTION
The <ctype.h> header declares the following as functions and may also define them as macros.
Function prototypes must be provided for use with an ISO C compiler.

int isalnum(int);
int isalpha(int);

EX int isascii(int);
int iscntrl(int);
int isdigit(int);
int isgraph(int);
int islower(int);
int isprint(int);
int ispunct(int);
int isspace(int);
int isupper(int);
int isxdigit(int);

EX int toascii(int);
int tolower(int);
int toupper(int);

The following are defined as macros:

EX int _toupper(int);
int _tolower(int);

APPLICATION USAGE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
isalnum(), isalpha (), isascii (), iscntrl(), isdigit (), isgraph(), islower(), isprint(), ispunct(), isspace(),
isupper(), isxdigit (), mblen(), mbstowcs(), mbtowc(), setlocale (), toascii (), tolower(), _tolower (),
toupper(), _toupper(), wcstombs(), wctomb(), <locale.h>.

CHANGE HISTORY
First released in Issue 1.

Derived from Issue 1 of the SVID.

Issue 4
The following change is incorporated for alignment with the ISO POSIX-1 standard:

• The function declarations in this header are expanded to full ISO C prototypes.

1068 CAE Specification (1997)

Headers <dirent.h>

NAME
dirent.h — format of directory entries

SYNOPSIS
#include <dirent.h>

DESCRIPTION
The internal format of directories is unspecified.

The <dirent.h> header defines the following data type through typedef:

DIR A type representing a directory stream.

It also defines the structure dirent which includes the following members:

EX ino_t d_ino file serial number
char d_name[] name of entry

EX The type ino_t is defined as described in <sys/types.h>.

The character array d_name is of unspecified size, but the number of bytes preceding the
terminating null byte will not exceed {NAME_MAX}.

The following are declared as functions and may also be defined as macros. Function prototypes
must be provided for use with an ISO C compiler.

int closedir(DIR *);
DIR *opendir(const char *);
struct dirent *readdir(DIR *);
int readdir_r(DIR *, struct direct *, struct dirent **);
void rewinddir(DIR *);

EX void seekdir(DIR *, long int);
long int telldir(DIR *);

APPLICATION USAGE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
closedir(), opendir(), readdir(), rewinddir(), seekdir(), telldir(), <sys/types.h>.

CHANGE HISTORY
First released in Issue 2.

Issue 4

The following changes are incorporated for alignment with the ISO POSIX-1 standard:

• The function declarations in this header are expanded to full ISO C prototypes.

• A statement is added to the DESCRIPTION indicating that the internal format of directories
is unspecified. Also in the description of the d_name field, the text is changed to indicate
‘‘bytes’’ rather than (possibly multi-byte) ‘‘characters’’.

Another change is incorporated as follows:

• Reference to type ino_t is marked as an extension, as are references to the seekdir() and
telldir() functions.

System Interfaces and Headers, Issue 5: Volume 2 1069

<dirent.h> Headers

Issue 5
The DESCRIPTION is updated for alignment with the POSIX Threads Extension.

1070 CAE Specification (1997)

Headers <dlfcn.h>

NAME
dlfcn.h — dynamic linking

SYNOPSIS
EX #include <dlfcn.h>

DESCRIPTION
The <dlfcn.h> header defines at least the following macros for use in the construction of a
dlopen() mode argument:

RTLD_LAZY Relocations are performed at an implementation-dependent time.
RTLD_NOW Relocations are performed when the object is loaded.
RTLD_GLOBAL All symbols are available for relocation processing of other modules.
RTLD_LOCAL All symbols are not made available for relocation processing by other

modules.

The header <dlfcn.h> declares the following functions which may also be defined as macros.
Function prototypes must be provided for use with an ISO C compiler.

void *dlopen(const char *, int);
void *dlsym(void *, const char *);
int dlclose(void *);
char *dlerror(void);

APPLICATION USAGE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
dlopen(), dlclose(), dlsym(), dlerror().

CHANGE HISTORY
First released in Issue 5.

System Interfaces and Headers, Issue 5: Volume 2 1071

<errno.h> Headers

NAME
errno.h — system error numbers

SYNOPSIS
#include <errno.h>

DESCRIPTION
The <errno.h> header provides a declaration for errno and gives non-zero values for the

EX following symbolic constants. Their values are unique except as noted below:

E2BIG Argument list too long.
EACCES Permission denied.

EX EADDRINUSE Address in use.
EADDRNOTAVAIL Address not available.
EAFNOSUPPORT Address family not supported.

EX EAGAIN Resource unavailable, try again (may be the same value as
EWOULDBLOCK).

EX EALREADY Connection already in progress.
EBADF Bad file descriptor.

EX EBADMSG Bad message.
EBUSY Device or resource busy.

RT ECANCELED Operation canceled.
ECHILD No child processes.

EX ECONNABORTED Connection aborted.
ECONNREFUSED Connection refused.
ECONNRESET Connection reset.
EDEADLK Resource deadlock would occur.

EX EDESTADDRREQ Destination address required.
EDOM Mathematics argument out of domain of function.

EX EDQUOT Reserved.
EEXIST File exists.
EFAULT Bad address.
EFBIG File too large.

EX EHOSTUNREACH Host is unreachable.
EIDRM Identifier removed.
EILSEQ Illegal byte sequence.
EINPROGRESS Operation in progress.
EINTR Interrupted function.
EINVAL Invalid argument.
EIO I/O error.

EX EISCONN Socket is connected.
EISDIR Is a directory.

EX ELOOP Too many levels of symbolic links.
EMFILE Too many open files.
EMLINK Too many links.

EX EMSGSIZE Message too large.
EMULTIHOP Reserved.
ENAMETOOLONG Filename too long.

EX ENETDOWN Network is down.
ENETUNREACH Network unreachable.
ENFILE Too many files open in system.

EX ENOBUFS No buffer space available.
ENODATA No message is available on the STREAM head read queue.
ENODEV No such device.

1072 CAE Specification (1997)

Headers <errno.h>

ENOENT No such file or directory.
ENOEXEC Executable file format error.
ENOLCK No locks available.

EX ENOLINK Reserved.
ENOMEM Not enough space.

EX ENOMSG No message of the desired type.
ENOPROTOOPT Protocol not available.
ENOSPC No space left on device.

EX ENOSR No STREAM resources.
ENOSTR Not a STREAM.
ENOSYS Function not supported.

EX ENOTCONN The socket is not connected.
ENOTDIR Not a directory.
ENOTEMPTY Directory not empty.

EX ENOTSOCK Not a socket.
ENOTSUP Not supported.
ENOTTY Inappropriate I/O control operation.
ENXIO No such device or address.

EX EOPNOTSUPP Operation not supported on socket.
EOVERFLOW Value too large to be stored in data type.

FIPS EPERM Operation not permitted.
EPIPE Broken pipe.

EX EPROTO Protocol error.
EPROTONOSUPPORT Protocol not supported.
EPROTOTYPE Socket type not supported.
ERANGE Result too large.
EROFS Read-only file system.
ESPIPE Invalid seek.
ESRCH No such process.

EX ESTALE Reserved.
ETIME Stream ioctl () timeout.
ETIMEDOUT Connection timed out.
ETXTBSY Text file busy.
EWOULDBLOCK Operation would block (may be the same value as [EAGAIN]).
EXDEV Cross-device link.

APPLICATION USAGE
Additional error numbers may be defined on XSI-conformant systems. See Section 2.3.1 on page
29.

FUTURE DIRECTIONS
None.

SEE ALSO
Section 2.3 on page 22.

CHANGE HISTORY
First released in Issue 1.

Derived from Issue 1 of the SVID.

Issue 4
The following changes are incorporated in this issue:

• The [EILSEQ] error is added and marked as an EX interface.

System Interfaces and Headers, Issue 5: Volume 2 1073

<errno.h> Headers

• The [ENOTBLK] error is withdrawn.

Issue 4, Version 2
The EADDRINUSE, EADDRNOTAVAIL, EAFNOSUPPORT, EALREADY, EBADMSG,
ECONNABORTED, ECONNREFUSED, ECONNRESET, EDESTADDRREQ, EDQUOT,
EHOSTUNREACH, EINPROGRESS, EISCONN, ELOOP, EMSGSIZE, EMULTIHOP,
ENETDOWN, ENETUNREACH, ENOBUFS, ENODATA, ENOLINK, ENOPROTOOPT, ENOSR,
ENOSTR, ENOTCONN, ENOTSOCK, EOPNOTSUPP, EOVERFLOW, EPROTO,
EPROTONOSUPPORT, EPROTOTYPE, ESTALE, ETIME, ETIMEDOUT and EWOULDBLOCK
errors are added in the UX context.

Issue 5
Updated for alignment with the POSIX Realtime Extension.

1074 CAE Specification (1997)

Headers <fcntl.h>

NAME
fcntl.h — file control options

SYNOPSIS
#include <fcntl.h>

DESCRIPTION
The <fcntl.h> header defines the following requests and arguments for use by the functions
fcntl() and open().

Values for cmd used by fcntl() (the following values are unique):

F_DUPFD Duplicate file descriptor.
F_GETFD Get file descriptor flags.
F_SETFD Set file descriptor flags.
F_GETFL Get file status flags and file access modes.
F_SETFL Set file status flags.
F_GETLK Get record locking information.
F_SETLK Set record locking information.
F_SETLKW Set record locking information; wait if blocked.

File descriptor flags used for fcntl():

FD_CLOEXEC Close the file descriptor upon execution of an exec family function.

Values for l_type used for record locking with fcntl() (the following values are unique):

F_RDLCK Shared or read lock.
F_UNLCK Unlock.
F_WRLCK Exclusive or write lock.

EX The values used for l_whence, SEEK_SET, SEEK_CUR and SEEK_END are defined as described in
<unistd.h>.

The following four sets of values for oflag used by open() are bitwise distinct:

O_CREAT Create file if it does not exist.
O_EXCL Exclusive use flag.
O_NOCTTY Do not assign controlling terminal.
O_TRUNC Truncate flag.

File status flags used for open() and fcntl():

O_APPEND Set append mode.
RT O_DSYNC Write according to synchronised I/O data integrity completion.

O_NONBLOCK Non-blocking mode.
RT O_RSYNC Synchronised read I/O operations.

O_SYNC Write according to synchronised I/O file integrity completion.

Mask for use with file access modes:

O_ACCMODE Mask for file access modes.

File access modes used for open() and fcntl():

O_RDONLY Open for reading only.
O_RDWR Open for reading and writing.
O_WRONLY Open for writing only.

EX The symbolic names for file modes for use as values of mode_t are defined as described in
<sys/stat.h>.

System Interfaces and Headers, Issue 5: Volume 2 1075

<fcntl.h> Headers

The structure flock describes a file lock. It includes the following members:

short l_type type of lock; F_RDLCK, F_WRLCK, F_UNLCK
short l_whence flag for starting offset
off_t l_start relative offset in bytes
off_t l_len size; if 0 then until EOF
pid_t l_pid process ID of the process holding the lock; returned with F_GETLK

EX The mode_t, off_t and pid_t types are defined as described in <sys/types.h>.

The following are declared as functions and may also be defined as macros. Function prototypes
must be provided for use with an ISO C compiler.

int creat(const char *, mode_t);
int fcntl(int, int, . . .);
int open(const char *, int, . . .);

EX Inclusion of the <fcntl.h> header may also make visible all symbols from <sys/stat.h> and
<unistd.h>.

APPLICATION USAGE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
creat(), exec, fcntl(), open(), <sys/stat.h>, <sys/types.h>, <unistd.h>.

CHANGE HISTORY
First released in Issue 1.

Derived from Issue 1 of the SVID.

Issue 4
The following change is incorporated for alignment with the ISO POSIX-1 standard:

• The function declarations in this header are expanded to full ISO C prototypes.

Other changes are incorporated as follows:

• A reference to <unistd.h> is added for the definition of l_whence, SEEK_SET, SEEK_CUR and
SEEK_END, and marked as an extension.

• A reference to <sys/stat.h> is added for the symbolic names of file modes used as values of
mode_t, and marked as an extension.

• A reference to <sys/types.h> is added for the definition of mode_t, off_t and pid_t, and
marked as an extension.

• A warning is added indicating that inclusion of <fcntl.h> may also make visible all symbols
from <sys/stat.h> and <unistd.h>. This is marked as an extension.

Issue 5
The DESCRIPTION is updated for alignment with POSIX Realtime Extension.

1076 CAE Specification (1997)

Headers <float.h>

NAME
float.h — floating types

SYNOPSIS
#include <float.h>

DESCRIPTION
The characteristics of floating types are defined in terms of a model that describes a
representation of floating-point numbers and values that provide information about an
implementation’s floating-point arithmetic.

The following parameters are used to define the model for each floating-point type:

s sign (± 1)
b base or radix of exponent representation (an integer > 1)
e exponent (an integer between a minimum emin and a maximum emax)
p precision (the number of base-b digits in the significand)
fk non-negative integers less than b (the significand digits)

A normalised floating-point number x (f 1 > 0 if x ≠ 0) is defined by the following model:

x = s × be ×
k=1
Σ
p

fk × b−k, emin ≤ e ≤ emax

FLT_RADIX will be a constant expression suitable for use in the #if preprocessing directives. All
except FLT_RADIX and FLT_ROUNDS have separate names for all three floating-point types.
The floating-point model representation is provided for all macro names except FLT_ROUNDS.

The rounding mode for floating-point addition is characterised by the value of FLT_ROUNDS:

−1 indeterminable
0 toward 0.0
1 to nearest
2 toward positive infinity
3 toward negative infinity

All other values for FLT_ROUNDS characterise implementation-dependent rounding behaviour.

The macro names given in the following list will be defined as expressions with values that are
equal or greater in magnitude (absolute value) to those shown, with the same sign.

System Interfaces and Headers, Issue 5: Volume 2 1077

<float.h> Headers

Name Description Value
FLT_RADIX radix of exponent representation, b 2

number of base-FLT_RADIX digits in the floating-point
significand, p

FLT_MANT_DIG

DBL_MANT_DIG
LDBL_MANT_DIG

number of decimal digits, q, such that any floating-point
number with q decimal digits can be rounded into a
floating-point number with p radix b digits and back again
without change to the q decimal digits,

A
I (p−1) × log10b A

K +
B
C
D 0

1
otherwise
if b is a power of 10

FLT_DIG 6

DBL_DIG 10
LDBL_DIG 10
FLT_MIN_EXP
DBL_MIN_EXP

minimum negative integer such that FLT_RADIX raised to
that power minus 1 is a normalised floating-point number,
eminLDBL_MIN_EXP

minimum negative integer such that 10 raised to that power
is in the range of normalised floating point numbers,
H
A log10bemin

−1 J
A

FLT_MIN_10_EXP −37

DBL_MIN_10_EXP −37
LDBL_MIN_10_EXP −37
FLT_MAX_EXP
DBL_MAX_EXP

maximum integer such that FLT_RADIX raised to that
power minus 1 is a representable finite floating-point
number, emaxLDBL_MAX_EXP

maximum integer such that 10 raised to that power is in the
range of representable finite floating-point numbers,
A
I log10((1 − b−p) × bemax) A

K

FLT_MAX_10_EXP 37

DBL_MAX_10_EXP 37
LDBL_MAX_10_EXP 37

The macro names given in the following list will be defined as expressions with values that will
be equal to or greater than those shown.

FLT_MAX 1E+37
DBL_MAX 1E+37

maximum representable finite floating-point number,
(1 − b−p) × bemax

LDBL_MAX 1E+37

The macro names given in the following list will be defined as expressions with values that will
be equal to or less than those shown.

1078 CAE Specification (1997)

Headers <float.h>

FLT_EPSILON 1E−5
DBL_EPSILON 1E−9

the difference between 1.0 and the least value greater that
1.0 that is representable in the given floating-point type,
b (1 − p)LDBL_EPSILON 1E−9

FLT_MIN 1E−37
DBL_MIN 1E−37

minimum normalised positive floating-point number,

b (emin −1)
LDBL_MIN 1E−37

APPLICATION USAGE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
None.

CHANGE HISTORY
First released in Issue 4.

Derived from the ISO C standard.

System Interfaces and Headers, Issue 5: Volume 2 1079

<fmtmsg.h> Headers

NAME
fmtmsg.h — message display structures

SYNOPSIS
EX #include <fmtmsg.h>

DESCRIPTION
The <fmtmsg.h> header defines the following macros, which expand to constant integral
expressions:

MM_HARD Source of the condition is hardware.
MM_SOFT Source of the condition is software.
MM_FIRM Source of the condition is firmware.
MM_APPL Condition detected by application.
MM_UTIL Condition detected by utility.
MM_OPSYS Condition detected by operating system.
MM_RECOVER Recoverable error.
MM_NRECOV Non-recoverable error.
MM_HALT Error causing application to halt.
MM_ERROR Application has encountered a non-fatal fault.
MM_WARNING Application has detected unusual non-error condition.
MM_INFO Informative message.
MM_NOSEV No severity level provided for the message.
MM_PRINT Display message on standard error.
MM_CONSOLE Display message on system console.

The table below indicates the null values and identifiers for fmtmsg() arguments. The
<fmtmsg.h> header defines the macros in the Identifier column, which expand to constant
expressions that expand to expressions of the type indicated in the Type column:

Argument Type Null-Value Identifier
label char* (char*)0 MM_NULLLBL
severity int 0 MM_NULLSEV
class long int 0L MM_NULLMC
text char* (char*)0 MM_NULLTXT
action char* (char*)0 MM_NULLACT
tag char* (char*)0 MM_NULLTAG

The <fmtmsg.h> header also defines the following macros for use as return values for fmtmsg():

MM_OK The function succeeded.
MM_NOTOK The function failed completely.
MM_NOMSG The function was unable to generate a message on standard error, but

otherwise succeeded.
MM_NOCON The function was unable to generate a console message, but otherwise

succeeded.

The following is declared as a function and may also be defined as a macro. A function
prototype must be provided for use with an ISO C compiler.

int fmtmsg(long, const char*, int,
const char*, const char*, const char*);

1080 CAE Specification (1997)

Headers <fmtmsg.h>

APPLICATION USAGE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
fmtmsg().

CHANGE HISTORY
First released in Issue 4, Version 2.

System Interfaces and Headers, Issue 5: Volume 2 1081

<fnmatch.h> Headers

NAME
fnmatch.h — filename-matching types

SYNOPSIS
#include <fnmatch.h>

DESCRIPTION
The <fnmatch.h> header defines the flags and return value used by the fnmatch() function. The
following constants are defined:

FNM_NOMATCH The string does not match the specified pattern.
FNM_PATHNAME Slash in string only matches slash in pattern.
FNM_PERIOD Leading period in string must be exactly matched by period in pattern.
FNM_NOESCAPE Disable backslash escaping.
FNM_NOSYS The implementation does not support this function.

The following is declared as a function and may also be declared as a macro. Function
prototypes must be provided for use with an ISO C compiler.

int fnmatch(const char *, const char *, int);

APPLICATION USAGE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
fnmatch(), the XCU specification.

CHANGE HISTORY
First released in Issue 4.

Derived from the ISO POSIX-2 standard.

1082 CAE Specification (1997)

Headers <ftw.h>

NAME
ftw.h — file tree traversal

SYNOPSIS
EX #include <ftw.h>

DESCRIPTION
The <ftw.h> header defines the FTW structure that includes at least the following members:

int base
int level

The <ftw.h> header defines macros for use as values of the third argument to the application-
supplied function that is passed as the second argument to ftw() and nftw:()

FTW_F File.
FTW_D Directory.
FTW_DNR Directory without read permission.
FTW_DP Directory with subdirectories visited.
FTW_NS Unknown type, stat () failed.
FTW_SL Symbolic link.
FTW_SLN Symbolic link that names a non-existent file.

The <ftw.h> header defines macros for use as values of the fourth argument to nftw():

FTW_PHYS Physical walk, does not follow symbolic links. Otherwise, nftw() will
follow links but will not walk down any path that crosses itself.

FTW_MOUNT The walk will not cross a mount point.
FTW_DEPTH All subdirectories will be visited before the directory itself.
FTW_CHDIR The walk will change to each directory before reading it.

The following are declared as functions and may also be defined as macros. Function prototypes
must be provided for use with an ISO C compiler.

int ftw(const char *,
int (*)(const char *, const struct stat *, int), int);

int nftw(const char *, int (*)
(const char *, const struct stat *, int, struct FTW*),
int, int);

The <ftw.h> header defines the stat structure and the symbolic names for st_mode and the file
type test macros as described in <sys/stat.h>.

Inclusion of the <ftw.h> header may also make visible all symbols from <sys/stat.h>.

APPLICATION USAGE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
ftw(), nftw(), <sys/stat.h>.

CHANGE HISTORY
First released in Issue 1.

Derived from Issue 1 of the SVID.

System Interfaces and Headers, Issue 5: Volume 2 1083

<ftw.h> Headers

Issue 4
The following changes are incorporated in this issue:

• The function declarations in this header are expanded to full ISO C prototypes.

• A reference to <sys/stat.h> is added for the definition of the stat structure, the symbolic
names for st_mode and the file type test macros.

• A warning is added indicating that inclusion of <ftw.h> may also make visible all symbols
from <sys/stat.h>.

Issue 4, Version 2
The following changes are incorporated in the DESCRIPTION for X/OPEN UNIX conformance:

• The FTW structure is defined.

• The nftw() function is declared by the header and is mentioned as one of the functions to
which the first list of macros applies.

• FTW_SL and FTW_SLN are added to the first list of macros to handle symbolic links.

• Macros for use as values of the fourth argument to nftw() are defined.

Issue 5
A description of FTW_DP is added.

1084 CAE Specification (1997)

Headers <glob.h>

NAME
glob.h — pathname pattern-matching types

SYNOPSIS
#include <glob.h>

DESCRIPTION
The <glob.h> header defines the structures and symbolic constants used by the glob() function.

The structure type glob_t contains at least the following members:

size_t gl_pathc count of paths matched by pattern
char **gl_pathv pointer to a list of matched pathnames
size_t gl_offs slots to reserve at the beginning of gl_pathv

The following constants are provided as values for the flags argument:

GLOB_APPEND Append generated pathnames to those previously obtained.
GLOB_DOOFFS Specify how many null pointers to add to the beginning of

pglob−>gl_pathv.
GLOB_ERR Cause glob() to return on error.
GLOB_MARK Each pathname that is a directory that matches pattern has a slash

appended.
GLOB_NOCHECK If pattern does not match any pathname, then return a list consisting of

only pattern.
GLOB_NOESCAPE Disable backslash escaping.
GLOB_NOSORT Do not sort the pathnames returned.

The following constants are defined as error return values:

GLOB_ABORTED The scan was stopped because GLOB_ERR was set or (*errfunc)()
returned non-zero.

GLOB_NOMATCH The pattern does not match any existing pathname, and
GLOB_NOCHECK was not set in flags.

GLOB_NOSPACE An attempt to allocate memory failed.
GLOB_NOSYS The implementation does not support this function.

The following are declared as functions and may also be declared as macros. Function
prototypes must be provided for use with an ISO C compiler.

int glob(const char *, int,
int (*)(const char *, int), glob_t *);

void globfree (glob_t *);

The implementation may define additional macros or constants using names beginning with
GLOB_.

APPLICATION USAGE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
glob(), the XCU specification.

System Interfaces and Headers, Issue 5: Volume 2 1085

<glob.h> Headers

CHANGE HISTORY
First released in Issue 4.

Derived from the ISO POSIX-2 standard.

1086 CAE Specification (1997)

Headers <grp.h>

NAME
grp.h — group structure

SYNOPSIS
#include <grp.h>

DESCRIPTION
The <grp.h> header declares the structure group which includes the following members:

char *gr_name the name of the group
gid_t gr_gid numerical group ID
char **gr_mem pointer to a null-terminated array of character

pointers to member names

EX The gid_t type is defined as described in <sys/types.h>.

The following are declared as functions and may also be defined as macros. Function prototypes
must be provided for use with an ISO C compiler.

struct group *getgrgid(gid_t);
struct group *getgrnam(const char *);
int getgrgid_r(gid_t, struct group *, char *,

size_t, struct group **);
int getgrnam_r(const char *, struct group *, char *,

size_t , struct group **);
EX struct group *getgrent(void);

void endgrent(void);
void setgrent(void);

APPLICATION USAGE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
endgrent(), getgrgid(), getgrgid_r(), getgrnam(), <sys/types.h>.

CHANGE HISTORY
First released in Issue 1.

Issue 4
The following change is incorporated for alignment with the ISO POSIX-1 standard:

• The function declarations in this header are expanded to full ISO C prototypes.

Another change is incorporated as follows:

• A reference to <sys/types.h> is added for the definition of gid_t and marked as an extension.

Issue 4, Version 2
For X/OPEN UNIX conformance, the getgrent(), endgrent() and setgrent() functions are added to
the list of functions declared in this header.

Issue 5
The DESCRIPTION is updated for alignment with the POSIX Threads Extension.

System Interfaces and Headers, Issue 5: Volume 2 1087

<iconv.h> Headers

NAME
iconv.h — codeset conversion facility

SYNOPSIS
EX #include <iconv.h>

DESCRIPTION
The <iconv.h> header defines the following data type through typedef:

iconv_t Identifies the conversion from one codeset to another.

The following are declared as functions and may also be declared as macros. Function
prototypes must be provided for use with an ISO C compiler.

iconv_t iconv_open(const char *, const char *);
size_t iconv(iconv_t, char **, size_t *, char **, size_t *);
int iconv_close(iconv_t);

APPLICATION USAGE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
iconv_open (), iconv(), iconv_close ().

CHANGE HISTORY
First released in Issue 4.

1088 CAE Specification (1997)

Headers <inttypes.h>

NAME
inttypes.h — fixed size integral types

SYNOPSIS
EX #include <inttypes.h>

DESCRIPTION
The <inttypes.h> header includes definitions of at least the following types:

int8_t 8-bit signed integral type.
int16_t 16-bit signed integral type.
int32_t 32-bit signed integral type.
int64_t 64-bit signed integral type.
uint8_t 8-bit unsigned integral type.
uint16_t 16-bit unsigned integral type.
uint32_t 32-bit unsigned integral type.
uint64_t 64-bit unsigned integral type.
intptr_t Signed integral type large enough to hold any pointer.
uintptr_t Unsigned integral type large enough to hold any pointer.

APPLICATION USAGE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
None.

CHANGE HISTORY
First released in Issue 5.

System Interfaces and Headers, Issue 5: Volume 2 1089

<iso646.h> Headers

NAME
iso646.h — alternative spellings

SYNOPSIS
#include <iso646.h>

DESCRIPTION
The <iso646.h> header defines the following eleven macros (on the left) that expand to the
corresponding tokens (on the right):

and &&
and_eq &=
bitand &
bitor |
compl ˜
not !
not_eq !=
or ||
or_eq |=
xor ˆ
xor_eq ˆ=

APPLICATION USAGE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
None.

CHANGE HISTORY
First released in Issue 5.

Derived from ISO/IEC 9899:1990/Amendment 1:1994 (E).

1090 CAE Specification (1997)

Headers <langinfo.h>

NAME
langinfo.h — language information constants

SYNOPSIS
EX #include <langinfo.h>

DESCRIPTION
The <langinfo.h> header contains the constants used to identify items of langinfo data (see
nl_langinfo ()). The type of the constants, nl_item, is defined as described in <nl_types.h>. The
following constants are defined on all XSI-conformant systems.

The entries under Category indicate in which setlocale () category each item is defined.

Constant Category Meaning
CODESET LC_CTYPE codeset name
D_T_FMT LC_TIME string for formatting date and time
D_FMT LC_TIME date format string
T_FMT LC_TIME time format string
T_FMT_AMPM LC_TIME a.m. or p.m. time format string
AM_STR LC_TIME Ante Meridian affix
PM_STR LC_TIME Post Meridian affix
DAY_1 LC_TIME name of the first day of the week (for example, Sunday)
DAY_2 LC_TIME name of the second day of the week (for example, Monday)
DAY_3 LC_TIME name of the third day of the week (for example, Tuesday)
DAY_4 LC_TIME name of the fourth day of the week

(for example, Wednesday)
DAY_5 LC_TIME name of the fifth day of the week (for example, Thursday)
DAY_6 LC_TIME name of the sixth day of the week (for example, Friday)
DAY_7 LC_TIME name of the seventh day of the week

(for example, Saturday)
ABDAY_1 LC_TIME abbreviated name of the first day of the week
ABDAY_2 LC_TIME abbreviated name of the second day of the week
ABDAY_3 LC_TIME abbreviated name of the third day of the week
ABDAY_4 LC_TIME abbreviated name of the fourth day of the week
ABDAY_5 LC_TIME abbreviated name of the fifth day of the week
ABDAY_6 LC_TIME abbreviated name of the sixth day of the week
ABDAY_7 LC_TIME abbreviated name of the seventh day of the week
MON_1 LC_TIME name of the first month of the year
MON_2 LC_TIME name of the second month
MON_3 LC_TIME name of the third month
MON_4 LC_TIME name of the fourth month
MON_5 LC_TIME name of the fifth month
MON_6 LC_TIME name of the sixth month
MON_7 LC_TIME name of the seventh month
MON_8 LC_TIME name of the eighth month
MON_9 LC_TIME name of the ninth month
MON_10 LC_TIME name of the tenth month
MON_11 LC_TIME name of the eleventh month
MON_12 LC_TIME name of the twelfth month

System Interfaces and Headers, Issue 5: Volume 2 1091

<langinfo.h> Headers

Constant Category Meaning
ABMON_1 LC_TIME abbreviated name of the first month
ABMON_2 LC_TIME abbreviated name of the second month
ABMON_3 LC_TIME abbreviated name of the third month
ABMON_4 LC_TIME abbreviated name of the fourth month
ABMON_5 LC_TIME abbreviated name of the fifth month
ABMON_6 LC_TIME abbreviated name of the sixth month
ABMON_7 LC_TIME abbreviated name of the seventh month
ABMON_8 LC_TIME abbreviated name of the eighth month
ABMON_9 LC_TIME abbreviated name of the ninth month
ABMON_10 LC_TIME abbreviated name of the tenth month
ABMON_11 LC_TIME abbreviated name of the eleventh month
ABMON_12 LC_TIME abbreviated name of the twelfth month
ERA LC_TIME era description segments
ERA_D_FMT LC_TIME era date format string
ERA_D_T_FMT LC_TIME era date and time format string
ERA_T_FMT LC_TIME era time format string
ALT_DIGITS LC_TIME alternative symbols for digits
RADIXCHAR LC_NUMERIC radix character
THOUSEP LC_NUMERIC separator for thousands
YESEXPR LC_MESSAGES affirmative response expression
NOEXPR LC_MESSAGES negative response expression
YESSTR LC_MESSAGES affirmative response for yes/no queries

(LEGACY)
NOSTR LC_MESSAGES negative response for yes/no queries

(LEGACY)
currency symbol, preceded by − if the symbol should
appear before the value, + if the symbol should appear
after the value, or . if the symbol should replace the radix
character

CRNCYSTR LC_MONETARY

If the locale’s value for p_cs_precedes and n_cs_precedes do not match, the value of
nl_langinfo (CRNCYSTR) is unspecified.

The <langinfo.h> header declares the following as a function:

char *nl_langinfo(nl_item);

Inclusion of the <langinfo.h> header may also make visible all symbols from <nl_types.h>.

APPLICATION USAGE
Wherever possible, users are advised to use functions compatible with those in the ISO C
standard to access items of langinfo data. In particular, the strftime() function should be used to
access date and time information defined in category LC_TIME. The localeconv () function
should be used to access information corresponding to RADIXCHAR, THOUSEP and
CRNCYSTR.

FUTURE DIRECTIONS
None.

SEE ALSO
nl_langinfo (), localeconv (), strfmon(), strftime(), the XBD specification, Chapter 5, Locale.

CHANGE HISTORY
First released in Issue 2.

1092 CAE Specification (1997)

Headers <langinfo.h>

Issue 4
The following changes are incorporated in this issue:

• The function declarations in this header are expanded to full ISO C prototypes.

• The constants CODESET, T_FMT_AMPM, ERA, ERA_D_FMT, ALT_DIGITS, YESEXPR and
NOEXPR are added.

• The constants YESSTR and NOSTR are marked TO BE WITHDRAWN.

• Reference to the Gregorian calendar is removed.

• Constants YESSTR and NOSTR are now defined as belonging to category LC_MESSAGES.
Previously they were defined as constants in category LC_ALL.

• A warning is added indicating that inclusion of <langinfo.h> may also make visible all
symbols from <nl_types.h>.

• The APPLICATION USAGE section is expanded to recommend use of the localeconv()
function.

Issue 5
The constants YESSTR and NOSTR are marked LEGACY.

System Interfaces and Headers, Issue 5: Volume 2 1093

<libgen.h> Headers

NAME
libgen.h — definitions for pattern matching functions

SYNOPSIS
EX #include <libgen.h>

DESCRIPTION
The <libgen.h> header declares the following external variable:

extern char* __loc1 (LEGACY)

(Used by regex() to report pattern location.)

The following are declared as functions and may also be defined as macros. Function prototypes
must be provided for use with an ISO C compiler.

char *basename(char *);
char *dirname(char *);
char *regcmp(const char *, . . .);
char *regex(const char *, const char *, . . .);

APPLICATION USAGE
The function prototypes for regcmp() and regex() are included in this header for historical
reasons. New applications should use the regcomp(), regexec(), regerror() and regfree() functions,
and the <regex.h> header, which provide full internationalised regular expression functionality
compatible with the ISO POSIX-2 standard, as described in the XBD specification, Chapter 7,
Regular Expressions.

FUTURE DIRECTIONS
None.

SEE ALSO
basename(), dirname().

CHANGE HISTORY
First released in Issue 4, Version 2.

Issue 5
The function prototypes for basename() and dirname() are changed to indicate that the first
argument is of type char* rather than const char*.

1094 CAE Specification (1997)

Headers <limits.h>

NAME
limits.h — implementation-dependent constants

SYNOPSIS
#include <limits.h>

DESCRIPTION
The <limits.h> header defines various symbolic names. Different categories of names are
described below.

The names represent various limits on resources that the system imposes on applications.

Implementations may choose any appropriate value for each limit, provided it is not more
restrictive than the Minimum Acceptable Values listed below. Symbolic constant names
beginning with _POSIX may be found in <unistd.h>.

Applications should not assume any particular value for a limit. To achieve maximum
portability, an application should not require more resource than the Minimum Acceptable
Value quantity. However, an application wishing to avail itself of the full amount of a resource
available on an implementation may make use of the value given in <limits.h> on that
particular system, by using the symbolic names listed below. It should be noted, however, that
many of the listed limits are not invariant, and at run time, the value of the limit may differ from
those given in this header, for the following reasons:

• The limit is pathname-dependent.

• The limit differs between the compile and run-time machines.

For these reasons, an application may use the fpathconf (), pathconf () and sysconf() functions to
determine the actual value of a limit at run time.

The items in the list ending in _MIN give the most negative values that the mathematical types
are guaranteed to be capable of representing. Numbers of a more negative value may be
supported on some systems, as indicated by the <limits.h> header on the system, but
applications requiring such numbers are not guaranteed to be portable to all systems.

The Minimum Acceptable Value symbol * indicates that there is no guaranteed value across all
XSI-conformant systems.

Run-time Invariant Values (Possibly Indeterminate)

A definition of one of the symbolic names in the following list will be omitted from <limits.h>
on specific implementations where the corresponding value is equal to or greater than the stated
minimum, but is indeterminate.

This might depend on the amount of available memory space on a specific instance of a specific
implementation. The actual value supported by a specific instance will be provided by the
sysconf() function.

RT AIO_LISTIO_MAX
Maximum number of I/O operations in a single list I/O call supported by the
implementation.
Minimum Acceptable Value: _POSIX_AIO_LISTIO_MAX

AIO_MAX
Maximum number of outstanding asynchronous I/O operations supported by the
implementation.
Minimum Acceptable Value: _POSIX_AIO_MAX

System Interfaces and Headers, Issue 5: Volume 2 1095

<limits.h> Headers

AIO_PRIO_DELTA_MAX
The maximum amount by which a process can decrease its asynchronous I/O priority level
from its own scheduling priority.
Minimum Acceptable Value: 0

ARG_MAX
Maximum length of argument to the exec functions including environment data.
Minimum Acceptable Value: _POSIX_ARG_MAX

EX ATEXIT_MAX
Maximum number of functions that may be registered with atexit().
Minimum Acceptable Value: 32

CHILD_MAX
Maximum number of simultaneous processes per real user ID.

FIPS Minimum Acceptable Value: 25

RT DELAYTIMER_MAX
Maximum number of timer expiration overruns.
Minimum Acceptable Value: _POSIX_DELAYTIMER_MAX

EX IOV_MAX
Maximum number of iovec structures that one process has available for use with readv() or
writev().
Minimum Acceptable Value: _XOPEN_IOV_MAX

LOGIN_NAME_MAX
Maximum length of a login name.
Minimum Acceptable Value: _POSIX_LOGIN_NAME_MAX

RT MQ_OPEN_MAX
The maximum number of open message queue descriptors a process may hold.
Minimum Acceptable Value: _POSIX_MQ_OPEN_MAX

MQ_PRIO_MAX
The maximum number of message priorities supported by the implementation.
Minimum Acceptable Value: _POSIX_MQ_PRIO_MAX

OPEN_MAX
Maximum number of files that one process can have open at any one time.

FIPS Minimum Acceptable Value: 20

EX PAGESIZE
Size in bytes of a page.
Minimum Acceptable Value: 1

PAGE_SIZE
Same as PAGESIZE. If either PAGESIZE or PAGE_SIZE is defined, the other will be defined
with the same value.

PASS_MAX
Maximum number of significant bytes in a password (not including terminating null).
(LEGACY)
Minimum Acceptable Value: 8

PTHREAD_DESTRUCTOR_ITERATIONS
Maximum number of attempts made to destroy a thread’s thread-specific data values on
thread exit.
Minimum Acceptable Value: _POSIX_THREAD_DESTRUCTOR_ITERATIONS

1096 CAE Specification (1997)

Headers <limits.h>

PTHREAD_KEYS_MAX
Maximum number of data keys that can be created by a process.
Minimum Acceptable Value: _POSIX_THREAD_KEYS_MAX

PTHREAD_STACK_MIN
Minimum size in bytes of thread stack storage.
Minimum Acceptable Value: 0

PTHREAD_THREADS_MAX
Maximum number of threads that that can be created per process.
Minimum Acceptable Value: _POSIX_THREAD_THREADS_MAX

RT RTSIG_MAX
Maximum number of realtime signals reserved for application use in this implementation.
Minimum Acceptable Value: _POSIX_RTSIG_MAX

SEM_NSEMS_MAX
Maximum number of semaphores that a process may have.
Minimum Acceptable Value: _POSIX_SEM_NSEMS_MAX

SEM_VALUE_MAX
The maximum value a semaphore may have.
Minimum Acceptable Value: _POSIX_SEM_VALUE_MAX

SIGQUEUE_MAX
Maximum number of queued signals that a process may send and have pending at the
receiver(s) at any time.
Minimum Acceptable Value: _POSIX_SIGQUEUE_MAX

STREAM_MAX
The number of streams that one process can have open at one time. If defined, it has the
same value as {FOPEN_MAX} (see <stdio.h>).
Minimum Acceptable Value: _POSIX_STREAM_MAX

RT TIMER_MAX
Maximum number of timers per-process supported by the implementation.
Minimum Acceptable Value: _POSIX_TIMER_MAX

TTY_NAME_MAX
Maximum length of terminal device name.
Minimum Acceptable Value: _POSIX_TTY_NAME_MAX

TZNAME_MAX
Maximum number of bytes supported for the name of a time zone (not of the TZ variable).
Minimum Acceptable Value: _POSIX_TZNAME_MAX

Pathname Variable Values

The values in the following list may be constants within an implementation or may vary from
one pathname to another. For example, file systems or directories may have different
characteristics.

A definition of one of the values will be omitted from the <limits.h> header on specific
implementations where the corresponding value is equal to or greater than the stated minimum,
but where the value can vary depending on the file to which it is applied. The actual value
supported for a specific pathname will be provided by the pathconf () function.

EX FILESIZEBITS
Minimum number of bits needed to represent, as a signed integer value, the maximum size

System Interfaces and Headers, Issue 5: Volume 2 1097

<limits.h> Headers

of a regular file allowed in the specified directory.
Minimum Acceptable Value: 32

LINK_MAX
Maximum number of links to a single file.
Minimum Acceptable Value: _POSIX_LINK_MAX

MAX_CANON
Maximum number of bytes in a terminal canonical input line.
Minimum Acceptable Value: _POSIX_MAX_CANON

MAX_INPUT
Minimum number of bytes for which space will be available in a terminal input queue;
therefore, the maximum number of bytes a portable application may require to be typed as
input before reading them.
Minimum Acceptable Value: _POSIX_MAX_INPUT

NAME_MAX
Maximum number of bytes in a filename (not including terminating null).
Minimum Acceptable Value: _POSIX_NAME_MAX

PATH_MAX
Maximum number of bytes in a pathname, including the terminating null character.
Minimum Acceptable Value: _POSIX_PATH_MAX

PIPE_BUF
Maximum number of bytes that is guaranteed to be atomic when writing to a pipe.
Minimum Acceptable Value: _POSIX_PIPE_BUF

Run-time Increasable Values

The magnitude limitations in the following list will be fixed by specific implementations. An
application should assume that the value supplied by <limits.h> in a specific implementation is
the minimum that pertains whenever the application is run under that implementation. A
specific instance of a specific implementation may increase the value relative to that supplied by
<limits.h> for that implementation. The actual value supported by a specific instance will be
provided by the sysconf() function.

BC_BASE_MAX
Maximum obase values allowed by the bc utility.
Minimum Acceptable Value: _POSIX2_BC_BASE_MAX

BC_DIM_MAX
Maximum number of elements permitted in an array by the bc utility.
Minimum Acceptable Value: _POSIX2_BC_DIM_MAX

BC_SCALE_MAX
Maximum scale value allowed by the bc utility.
Minimum Acceptable Value: _POSIX2_BC_SCALE_MAX

BC_STRING_MAX
Maximum length of a string constant accepted by the bc utility.
Minimum Acceptable Value: _POSIX2_BC_STRING_MAX

COLL_WEIGHTS_MAX
Maximum number of weights that can be assigned to an entry of the LC_COLLATE order
keyword in the locale definition file; see the XBD specification, Chapter 5, Locale.
Minimum Acceptable Value: _POSIX2_COLL_WEIGHTS_MAX

1098 CAE Specification (1997)

Headers <limits.h>

EXPR_NEST_MAX
Maximum number of expressions that can be nested within parentheses by the expr utility.
Minimum Acceptable Value: _POSIX2_EXPR_NEST_MAX

LINE_MAX
Unless otherwise noted, the maximum length, in bytes, of a utility’s input line (either
standard input or another file), when the utility is described as processing text files. The
length includes room for the trailing newline.
Minimum Acceptable Value: _POSIX2_LINE_MAX

FIPS NGROUPS_MAX
Maximum number of simultaneous supplementary group IDs per process.
Minimum Acceptable Value: 8

RE_DUP_MAX
Maximum number of repeated occurrences of a regular expression permitted when using
the interval notation \{ m, n\} ; see the XBD specification, Chapter 7, Regular Expressions.
Minimum Acceptable Value: _POSIX2_RE_DUP_MAX

Maximum Values

RT The symbolic constants in the following list are defined in <limits.h> with the values shown.
These are symbolic names for the most restrictive value for certain features on a system
supporting the Realtime Feature Group. A conforming implementation will provide values no
larger than these values. A portable application will not require a smaller value for correct
operation.

_POSIX_CLOCKRES_MIN
The CLOCK_REALTIME clock resolution, in nanoseconds
Value: 20 000 000

Minimum Values

The symbolic constants in the following list are defined in <limits.h> with the values shown.
These are symbolic names for the most restrictive value for certain features on a system
conforming to this specification. Related symbolic constants are defined elsewhere in this
specification which reflect the actual implementation and which need not be as restrictive. A
conforming implementation will provide values at least this large. A portable application must
not require a larger value for correct operation.

RT _POSIX_AIO_LISTIO_MAX
The number of I/O operations that can be specified in a list I/O call.
Value: 2

_POSIX_AIO_MAX
The number of outstanding asynchronous I/O operations.
Value: 1

_POSIX_ARG_MAX
Maximum length of argument to the exec functions including environment data.
Value: 4 096

_POSIX_CHILD_MAX
Maximum number of simultaneous processes per real user ID.
Value: 6

System Interfaces and Headers, Issue 5: Volume 2 1099

<limits.h> Headers

RT _POSIX_DELAYTIMER_MAX
The number of timer expiration overruns.
Value: 32

_POSIX_LINK_MAX
Maximum number of links to a single file.
Value: 8

_POSIX_LOGIN_NAME_MAX
The size of the storage required for a login name, in bytes, including the terminating null.
Value: 9

_POSIX_MAX_CANON
Maximum number of bytes in a terminal canonical input queue.
Value: 255

_POSIX_MAX_INPUT
Maximum number of bytes allowed in a terminal input queue.
Value: 255

RT _POSIX_MQ_OPEN_MAX
The number of message queues that can be open for a single process.
Value: 8

_POSIX_MQ_PRIO_MAX
The maximum number of message priorities supported by the implementation.
Value: 32

_POSIX_NAME_MAX
Maximum number of bytes in a filename (not including terminating null).
Value: 14

_POSIX_NGROUPS_MAX
Maximum number of simultaneous supplementary group IDs per process.
Value: 0

_POSIX_OPEN_MAX
Maximum number of files that one process can have open at any one time.
Value: 16

_POSIX_PATH_MAX
Maximum number of bytes in a pathname.
Value: 255

_POSIX_PIPE_BUF
Maximum number of bytes that is guaranteed to be atomic when writing to a pipe.
Value: 512

RT _POSIX_RTSIG_MAX
The number of realtime signal numbers reserved for application use.
Value: 8

_POSIX_SEM_NSEMS_MAX
The number of semaphores that a process may have.
Value: 256

_POSIX_SEM_VALUE_MAX
The maximum value a semaphore may have.
Value: 32 767

1100 CAE Specification (1997)

Headers <limits.h>

_POSIX_SIGQUEUE_MAX
The number of queued signals that a process may send and have pending at the receiver(s)
at any time.
Value: 32

_POSIX_SSIZE_MAX
The value that can be stored in an object of type ssize_t.
Value: 32 767

_POSIX_STREAM_MAX
The number of streams that one process can have open at one time.
Value: 8

_POSIX_THREAD_DESTRUCTOR_ITERATIONS
The number of attempts made to destroy a thread’s thread-specific data values on thread
exit.
Value: 4

_POSIX_THREAD_KEYS_MAX
The number of data keys per process.
Value: 128

_POSIX_THREAD_THREADS_MAX
The number of threads per process.
Value: 64

RT _POSIX_TIMER_MAX
The per process number of timers.
Value: 32

_POSIX_TTY_NAME_MAX
The size of the storage required for a terminal device name, in bytes, including the
terminating null.
Value: 9

_POSIX_TZNAME_MAX
Maximum number of bytes supported for the name of a time zone (not of TZ variable).
Value: 3

_POSIX2_BC_BASE_MAX
Maximum obase values allowed by the bc utility.
Value: 99

_POSIX2_BC_DIM_MAX
Maximum number of elements permitted in an array by the bc utility.
Value: 2 048

_POSIX2_BC_SCALE_MAX
Maximum scale value allowed by the bc utility.
Value: 99

_POSIX2_BC_STRING_MAX
Maximum length of a string constant accepted by the bc utility.
Value: 1 000

_POSIX2_COLL_WEIGHTS_MAX
Maximum number of weights that can be assigned to an entry of the LC_COLLATE order
keyword in the locale definition file; see the XBD specification, Chapter 5, Locale.
Value: 2

System Interfaces and Headers, Issue 5: Volume 2 1101

<limits.h> Headers

_POSIX2_EXPR_NEST_MAX
Maximum number of expressions that can be nested within parentheses by the expr utility.
Value: 32

_POSIX2_LINE_MAX
Unless otherwise noted, the maximum length, in bytes, of a utility’s input line (either
standard input or another file), when the utility is described as processing text files. The
length includes room for the trailing newline.
Value: 2 048

_POSIX2_RE_DUP_MAX
Maximum number of repeated occurrences of a regular expression permitted when using
the interval notation \{ m, n\} ; see the XBD specification, Chapter 7, Regular Expressions.
Value: 255

EX _XOPEN_IOV_MAX
Maximum number of iovec structures that one process has available for use with readv() or
writev().
Value: 16

Numerical Limits

The values in the following lists are defined in <limits.h> and will be constant expressions
EX suitable for use in #if preprocessing directives. Moreover, except for CHAR_BIT, DBL_DIG,

DBL_MAX, FLT_DIG, FLT_MAX, LONG_BIT, WORD_BIT and MB_LEN_MAX, the symbolic
names will be defined as expressions of the correct type.

If the value of an object of type char is treated as a signed integer when used in an expression,
the value of CHAR_MIN is the same as that of SCHAR_MIN and the value of CHAR_MAX is
the same as that of SCHAR_MAX. Otherwise, the value of CHAR_MIN is 0 and the value of
CHAR_MAX is the same as that of UCHAR_MAX.

CHAR_BIT
Number of bits in a type char.
Minimum Acceptable Value: 8

CHAR_MAX
Maximum value of a type char.
Minimum Acceptable Value: UCHAR_MAX or SCHAR_MAX

EX DBL_DIG
Digits of precision of a type double. (LEGACY)
Minimum Acceptable Value: 10

DBL_MAX
Maximum value of a type double. (LEGACY)
Minimum Acceptable Value: 1E +37

FLT_DIG
Digits of precision of a type float. (LEGACY)
Minimum Acceptable Value: 6

FLT_MAX
Maximum value of a float. (LEGACY)
Minimum Acceptable Value: 1E+37

1102 CAE Specification (1997)

Headers <limits.h>

INT_MAX
Maximum value of an int.
Minimum Acceptable Value: 2 147 483 647

EX LONG_BIT
Number of bits in a long int.
Minimum Acceptable Value: 32

LONG_MAX
Maximum value of a long int.
Minimum Acceptable Value: +2 147 483 647

MB_LEN_MAX
Maximum number of bytes in a character, for any supported locale.
Minimum Acceptable Value: 1

SCHAR_MAX
Maximum value of a type signed char.
Minimum Acceptable Value: +127

SHRT_MAX
Maximum value of a type short.
Minimum Acceptable Value: +32 767

SSIZE_MAX
Maximum value of an object of type ssize_t.
Minimum Acceptable Value: _POSIX_SSIZE_MAX

UCHAR_MAX
Maximum value of a type unsigned char.
Minimum Acceptable Value: 255

UINT_MAX
Maximum value of a type unsigned int.
Minimum Acceptable Value: 4 294 967 295

ULONG_MAX
Maximum value of a type unsigned long int.
Minimum Acceptable Value: 4 294 967 295

USHRT_MAX
Maximum value for a type unsigned short int.
Minimum Acceptable Value: 65 535

EX WORD_BIT
Number of bits in a word or type int.
Minimum Acceptable Value: 16

CHAR_MIN
Minimum value of a type char.
Minimum Acceptable Value: SCHAR_MIN or 0

INT_MIN
Minimum value of a type int.
Minimum Acceptable Value: −2 147 483 647

LONG_MIN
Minimum value of a type long int.
Minimum Acceptable Value: −2 147 483 647

System Interfaces and Headers, Issue 5: Volume 2 1103

<limits.h> Headers

SCHAR_MIN
Minimum value of a type signed char.
Minimum Acceptable Value: −127

SHRT_MIN
Minimum value of a type short.
Minimum Acceptable Value: −32 767

Other Invariant Values

The following constants are defined on all systems in <limits.h>.

EX CHARCLASS_NAME_MAX
Maximum number of bytes in a character class name.
Minimum Acceptable Value: 14

NL_ARGMAX
Maximum value of digit in calls to the printf() and scanf() functions.
Minimum Acceptable Value: 9

NL_LANGMAX
Maximum number of bytes in a LANG name.
Minimum Acceptable Value: 14

NL_MSGMAX
Maximum message number.
Minimum Acceptable Value: 32 767

NL_NMAX
Maximum number of bytes in an N-to-1 collation mapping.
Minimum Acceptable Value: *

NL_SETMAX
Maximum set number.
Minimum Acceptable Value: 255

NL_TEXTMAX
Maximum number of bytes in a message string.
Minimum Acceptable Value: _POSIX2_LINE_MAX

NZERO
Default process priority.
Minimum Acceptable Value: 20

TMP_MAX
Minimum number of unique pathnames generated by tmpnam(). Maximum number of
times an application can call tmpnam() reliably. (LEGACY)
Minimum Acceptable Value: 10 000

APPLICATION USAGE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
fpathconf (), pathconf (), sysconf().

1104 CAE Specification (1997)

Headers <limits.h>

CHANGE HISTORY
First released in Issue 1.

Issue 4
This entry is largely restructured to improve symbol grouping. A great many symbols, too
numerous to mention, have also been added for alignment with the ISO POSIX-2 standard.

The following changes are incorporated for alignment with the ISO C standard:

• The constants INT_MIN, LONG_MIN and SHRT_MIN are changed from values ending in 8
to ones ending in 7.

• The DBL_DIG, DBL_MAX, FLT_DIG and FLT_MAX symbols are marked both as extensions
and LEGACY.

• The LONG_BIT and WORD_BIT symbols are marked as extensions.

• The DBL_MIN and FLT_MIN symbols are withdrawn.

• Text introducing numerical limits now indicates that they will be constant expressions
suitable for use in #if preprocessing directives.

The following change is incorporated for alignment with the FIPS requirements:

• The minimum acceptable value for NGROUPS_MAX is changed from
_POSIX_NGROUPS_MAX to 8. This is marked as as extension.

Other changes are incorporated as follows:

• A sentence is added to the DESCRIPTION indicating that names beginning with _POSIX can
be found in <unistd.h>.

• The PASS_MAX and TMP_MAX symbols are marked LEGACY.

• Use of the terms ‘‘bytes’’ and ‘‘characters’’ is rationalised to make it clear when the
description is referring to either single-byte values or possibly multi-byte characters.

• CHARCLASS_NAME_MAX is added to the list of Other Invariant Values and marked as an
extension.

Issue 4, Version 2
The DESCRIPTION is revised for X/OPEN UNIX conformance as follows:

• Under Run-time Invariant Values, ATEXIT_MAX, IOV_MAX, PAGESIZE and PAGE_SIZE
are added.

• Under Minimum Values, _XOPEN_IOV_MAX is added.

Issue 5
The DESCRIPTION is updated for alignment with the POSIX Realtime Extension and the POSIX
Threads Extension.

FILESIZEBITS added for the Large File Summit extensions.

The minimum acceptable values for INT_MAX, INT_MIN and UINT_MAX are changed to make
32-bit values the minimum requirement.

The entry is restructured to improve readability.

System Interfaces and Headers, Issue 5: Volume 2 1105

<locale.h> Headers

NAME
locale.h — category macros

SYNOPSIS
#include <locale.h>

DESCRIPTION
The <locale.h> header provides a definition for structure lconv, which includes at least the
following members. (See the definitions of LC_MONETARY in the XBD specification, Section
5.3.3, LC_MONETARY, and the XBD specification, Section 5.3.4, LC_NUMERIC.)

char *currency_symbol
char *decimal_point
char frac_digits
char *grouping
char *int_curr_symbol
char int_frac_digits
char *mon_decimal_point
char *mon_grouping
char *mon_thousands_sep
char *negative_sign
char n_cs_precedes
char n_sep_by_space
char n_sign_posn
char *positive_sign
char p_cs_precedes
char p_sep_by_space
char p_sign_posn
char *thousands_sep

The <locale.h> header defines NULL (as defined in <stddef.h>) and at least the following as
macros:

LC_ALL
LC_COLLATE
LC_CTYPE
LC_MESSAGES
LC_MONETARY
LC_NUMERIC
LC_TIME

which expand to distinct integral-constant expressions, for use as the first argument to the
setlocale () function.

Additional macro definitions, beginning with the characters LC_ and an upper-case letter, may
also be given here.

The following are declared as functions and may also be defined as macros. Function prototypes
must be provided for use with an ISO C compiler.

struct lconv *localeconv (void);
char setlocale(int, const char *);

APPLICATION USAGE
None.

1106 CAE Specification (1997)

Headers <locale.h>

FUTURE DIRECTIONS
None.

SEE ALSO
localeconv (), setlocale (), the XBD specification, Chapter 6, Environment Variables.

CHANGE HISTORY
First released in Issue 3.

Entry included for alignment with the ISO C standard.

Issue 4
The following changes are incorporated for alignment with the ISO C standard:

• The function declarations in this header are expanded to full ISO C prototypes.

• The definition of struct lconv is added.

• A reference to <stddef.h> is added for the definition of NULL.

System Interfaces and Headers, Issue 5: Volume 2 1107

<math.h> Headers

NAME
math.h — mathematical declarations

SYNOPSIS
#include <math.h>

DESCRIPTION
The <math.h> header provides for the following constants. The values are of type double and
are accurate within the precision of the double type.

EX M_E Value of e
M_LOG2E Value of log2e
M_LOG10E Value of log10e
M_LN2 Value of loge2
M_LN10 Value of loge10
M_PI Value of π
M_PI_2 Value of π/2
M_PI_4 Value of π/4
M_1_PI Value of 1/π
M_2_PI Value of 2/π
M_2_SQRTPI Value of 2/√MMπ
M_SQRT2 Value of √MM2
M_SQRT1_2 Value of 1/√MM2

The header defines the following symbolic constants:

EX MAXFLOAT Value of maximum non-infinite single-precision floating point number.
HUGE_VAL A positive double expression, not necessarily representable as a float. Used as

an error value returned by the mathematics library. HUGE_VAL evaluates to
+∞ on systems supporting the ANSI/IEEE Std 754:1985 standard.

The following are declared as functions and may also be defined as macros. Function prototypes
must be provided for use with an ISO C compiler.

double acos(double);
double asin(double);
double atan(double);
double atan2(double, double);
double ceil(double);
double cos(double);
double cosh(double);
double exp(double);
double fabs(double);
double floor(double);
double fmod(double, double);
double frexp(double, int *);
double ldexp(double, int);
double log(double);
double log10(double);
double modf(double, double *);
double pow(double, double);
double sin(double);
double sinh(double);
double sqrt(double);
double tan(double);
double tanh(double);

1108 CAE Specification (1997)

Headers <math.h>

EX double erf(double);
double erfc(double);
double gamma(double);
double hypot(double, double);
double j0(double);
double j1(double);
double jn(int, double);
double lgamma(double);
double y0(double);
double y1(double);
double yn(int, double);
int isnan(double);
double acosh(double);
double asinh(double);
double atanh(double);
double cbrt(double);
double expm1(double);
int ilogb(double);
double log1p(double);
double logb(double);
double nextafter(double, double);
double remainder(double, double);
double rint(double);
double scalb(double, double);

The following external variable is defined:

EX extern int signgam;

APPLICATION USAGE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
acos(), acosh(), asin(), atan(), atan2(), cbrt(), ceil(), cos(), cosh(), erf(), exp(), expm1(), fabs(),
floor(), fmod(), frexp(), hypot(), ilogb (), isnan(), j0(), ldexp(), lgamma(), log(), log10 (), log1p (),
logb(), modf(), nextafter(), pow(), remainder(), rint(), scalb(), sin(), sinh(), sqrt(), tan(), tanh(),
y0().

CHANGE HISTORY
First released in Issue 1.

Issue 4
The following changes are incorporated for alignment with the ISO C standard:

• The description of HUGE_VAL is changed to indicate that this value is not necessarily
representable as a float.

• The function declarations in this header are expanded to full ISO C prototypes.

Other changes are incorporated as follows:

• The constants M_E and MAXFLOAT are marked as extensions.

System Interfaces and Headers, Issue 5: Volume 2 1109

<math.h> Headers

• The functions declared in this header are subdivided into those defined in the ISO C
standard, and those defined only by X/Open. Functions in the latter group are marked as
extensions, as is the external variable signgam.

Issue 4, Version 2
The following change is incorporated for X/OPEN UNIX conformance:

• The acosh(), asinh(), atanh(), cbrt(), expm1(), ilogb (), log1p (), logb(), nextafter(), remainder(),
rint() and scalb() functions are added to the list of functions declared in this header.

1110 CAE Specification (1997)

Headers <monetary.h>

NAME
monetary.h — monetary types

SYNOPSIS
EX #include <monetary.h>

DESCRIPTION
The <monetary.h> header defines the following data types through typedef:

size_t As described in <stddef.h>.
ssize_t As described in <sys/types.h>.

The following is declared as a function and may also be defined as a macro. Function prototypes
must be provided for use with an ISO C compiler.

ssize_t strfmon(char *, size_t, const char *, ...);

APPLICATION USAGE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
strfmon().

CHANGE HISTORY
First released in Issue 4.

System Interfaces and Headers, Issue 5: Volume 2 1111

<mqueue.h> Headers

NAME
mqueue.h — message queues (REALTIME)

SYNOPSIS
RT #include <mqueue.h>

DESCRIPTION
The <mqueue.h> header defines the mqd_t type, which is used for message queue descriptors.
This will not be an array type. A message queue descriptor may be implemented using a file
descriptor, in which case applications can open up to at least {OPEN_MAX} file and message
queues.

The <mqueue.h> header defines the sigevent structure (as described in <signal.h>) and the
mq_attr structure, which is used in getting and setting the attributes of a message queue.
Attributes are initially set when the message queue is created. A mq_attr structure will have at
least the following fields:

long mq_flags message queue flags
long mq_maxmsg maximum number of messages
long mq_msgsize maximum message size
long mq_curmsgs number of messages currently queued

The following are declared as functions and may also be declared as macros. Function
prototypes must be provided for use with an ISO C compiler.

int mq_close(mqd_t);
int mq_getattr(mqd_t, struct mq_attr *);
int mq_notify(mqd_t, const struct sigevent *);
mqd_t mq_open(const char *, int, ...);
ssize_t mq_receive(mqd_t, char *, size_t, unsigned int *);
int mq_send(mqd_t, const char *, size_t, unsigned int);
int mq_setattr(mqd_t, const struct mq_attr *, struct mq_attr *);
int mq_unlink(const char *);

Inclusion of the <mqueue.h> header may make visible symbols defined in the headers <fcntl.h>,
<signal.h>, <sys/types.h> and <time.h>.

APPLICATION USAGE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
<fcntl.h>, <signal.h>, <sys/types.h>, <time.h>.

CHANGE HISTORY
First released in Issue 5.

Included for alignment with the POSIX Realtime Extension.

1112 CAE Specification (1997)

Headers <ndbm.h>

NAME
ndbm.h — definitions for ndbm database operations

SYNOPSIS
EX #include <ndbm.h>

DESCRIPTION
The <ndbm.h> header defines the datum type as a structure that includes at least the following
members:

void *dptr A pointer to the application’s data
size_t dsize The size of the object pointed to by dptr

The size_t type is defined through typedef as described in <stddef.h>.

The <ndbm.h> header defines the DBM type through typedef.

The following constants are defined as possible values for the store_mode argument to
dbm_store():

DBM_INSERT Insertion of new entries only
DBM_REPLACE Allow replacing existing entries

The following are declared as functions and may also be defined as macros. Function prototypes
must be provided for use with an ISO C compiler.

int dbm_clearerr(DBM *);
void dbm_close(DBM *);
int dbm_delete(DBM *, datum);
int dbm_error(DBM *);
datum dbm_fetch(DBM *, datum);
datum dbm_firstkey(DBM *);
datum dbm_nextkey(DBM *);
DBM *dbm_open(const char *, int, mode_t);
int dbm_store(DBM *, datum, datum, int);

The mode_t type is defined through typedef as described in <sys/types.h>.

APPLICATION USAGE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
dbm_clearerr().

CHANGE HISTORY
First released in Issue 4, Version 2.

Issue 5
References to the definitions of size_t and mode_t are added to the DESCRIPTION.

System Interfaces and Headers, Issue 5: Volume 2 1113

<nl_types.h> Headers

NAME
nl_types.h — data types

SYNOPSIS
EX #include <nl_types.h>

DESCRIPTION
The <nl_types.h> header contains definitions of at least the following types:

nl_catd Used by the message catalogue functions catopen(), catgets() and
catclose () to identify a catalogue descriptor.

nl_item Used by nl_langinfo () to identify items of langinfo data. Values of objects
of type nl_item are defined in <langinfo.h>.

The <nl_types.h> header contains definitions of at least the following constants:

NL_SETD Used by gencat when no $set directive is specified in a message text source
file, see the Internationalisation Guide, Chapter 3, The Message System.
This constant can be passed as the value of set_id on subsequent calls to
catgets() (that is, to retrieve messages from the default message set). The
value of NL_SETD is implementation-dependent.

NL_CAT_LOCALE Value that must be passed as the oflag argument to catopen() to ensure
that message catalogue selection depends on the LC_MESSAGES locale
category, rather than directly on the LANG environment variable.

The following are declared as functions and may also be defined as macros. Function prototypes
must be provided for use with an ISO C compiler.

int catclose(nl_catd);
char *catgets(nl_catd, int, int, const char *);
nl_catd catopen(const char *, int);

APPLICATION USAGE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
catclose (), catgets(), catopen(), nl_langinfo (), <langinfo.h>, the XCU specification, gencat .

CHANGE HISTORY
First released in Issue 2.

Issue 4
The following change is incorporated for alignment with the ISO C standard:

• The function declarations in this header are expanded to full ISO C prototypes.

1114 CAE Specification (1997)

Headers <poll.h>

NAME
poll.h — definitions for the poll() function

SYNOPSIS
EX #include <poll.h>

DESCRIPTION
The <poll.h> header defines the pollfd structure that includes at least the following member:

int fd the following descriptor being polled
short int events the input event flags (see below)
short int revents the output event flags (see below)

The <poll.h> header defines the following type through typedef:

nfds_t An unsigned integral type used for the number of file descriptors.

The following symbolic constants are defined, zero or more of which may be OR-ed together to
form the events or revents members in the pollfd structure:

POLLIN Same effect as POLLRDNORM | POLLRDBAND.
POLLRDNORM Data on priority band 0 may be read.
POLLRDBAND Data on priority bands greater than 0 may be read.
POLLPRI High priority data may be read.
POLLOUT Same value as POLLWRNORM.
POLLWRNORM Data on priority band 0 may be written.
POLLWRBAND Data on priority bands greater than 0 may be written. This event only

examines bands that have been written to at least once.
POLLERR An error has occurred (revents only).
POLLHUP Device has been disconnected (revents only).
POLLNVAL Invalid fd member (revents only).

The <poll.h> header declares the following function which may also be defined as a macro.
Function prototypes must be provided for use with an ISO C compiler.

int poll(struct pollfd[], nfds_t, int);

APPLICATION USAGE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
poll ().

CHANGE HISTORY
First released in Issue 4, Version 2.

System Interfaces and Headers, Issue 5: Volume 2 1115

<pthread.h> Headers

NAME
pthread.h — threads

SYNOPSIS
#include <pthread.h>

DESCRIPTION
The <pthread.h> header defines the following symbols:

PTHREAD_CANCEL_ASYNCHRONOUS
PTHREAD_CANCEL_ENABLE
PTHREAD_CANCEL_DEFERRED
PTHREAD_CANCEL_DISABLE
PTHREAD_CANCELED
PTHREAD_COND_INITIALIZER
PTHREAD_CREATE_DETACHED
PTHREAD_CREATE_JOINABLE
PTHREAD_EXPLICIT_SCHED
PTHREAD_INHERIT_SCHED

EX PTHREAD_MUTEX_DEFAULT
PTHREAD_MUTEX_ERRORCHECK
PTHREAD_MUTEX_NORMAL
PTHREAD_MUTEX_INITIALIZER
PTHREAD_MUTEX_RECURSIVE
PTHREAD_ONCE_INIT

RTT PTHREAD_PRIO_INHERIT
PTHREAD_PRIO_NONE
PTHREAD_PRIO_PROTECT
PTHREAD_PROCESS_SHARED
PTHREAD_PROCESS_PRIVATE

EX PTHREAD_RWLOCK_INITIALIZER
RTT PTHREAD_SCOPE_PROCESS

PTHREAD_SCOPE_SYSTEM

EX The pthread_attr_t, pthread_cond_t, pthread_condattr_t, pthread_key_t, pthread_mutex_t,
pthread_mutexattr_t, pthread_once_t, pthread_rwlock_t, pthread_rwlockattr_t and pthread_t
types are defined as described in <sys/types.h>.

The following are declared as functions and may also be declared as macros. Function
prototypes must be provided for use with an ISO C compiler.

int pthread_attr_destroy(pthread_attr_t *);
int pthread_attr_getdetachstate(const pthread_attr_t *, int *);

EX int pthread_attr_getguardsize(const pthread_attr_t *, size_t *);
RTT int pthread_attr_getinheritsched(const pthread_attr_t *, int *);

int pthread_attr_getschedparam(const pthread_attr_t *,
struct sched_param *);

RTT int pthread_attr_getschedpolicy(const pthread_attr_t *, int *);
RTT int pthread_attr_getscope(const pthread_attr_t *, int *);

int pthread_attr_getstackaddr(const pthread_attr_t *, void **);
int pthread_attr_getstacksize(const pthread_attr_t *, size_t *);
int pthread_attr_init(pthread_attr_t *);
int pthread_attr_setdetachstate(pthread_attr_t *, int);

EX

1116 CAE Specification (1997)

Headers <pthread.h>

int pthread_attr_setguardsize(pthread_attr_t *, size_t);
RTT int pthread_attr_setinheritsched(pthread_attr_t *, int);

int pthread_attr_setschedparam(pthread_attr_t *,
const struct sched_param *);

RTT int pthread_attr_setschedpolicy(pthread_attr_t *, int);
int pthread_attr_setscope(pthread_attr_t *, int);
int pthread_attr_setstackaddr(pthread_attr_t *, void *);
int pthread_attr_setstacksize(pthread_attr_t *, size_t);
int pthread_cancel(pthread_t);
void pthread_cleanup_push(void (*)(void*), void *);
void pthread_cleanup_pop(int);
int pthread_cond_broadcast(pthread_cond_t *);
int pthread_cond_destroy(pthread_cond_t *);
int pthread_cond_init(pthread_cond_t *, const pthread_condattr_t *);
int pthread_cond_signal(pthread_cond_t *);
int pthread_cond_timedwait(pthread_cond_t *,

pthread_mutex_t *, const struct timespec *);
int pthread_cond_wait(pthread_cond_t *);
int pthread_condattr_destroy(pthread_condattr_t *);
int pthread_condattr_getpshared(const pthread_condattr_t *, int *);
int pthread_condattr_init(pthread_condattr_t *);
int pthread_condattr_setpshared(pthread_condattr_t *, int);
int pthread_create(pthread_t *, const pthread_attr_t *,

void *(*)(void*), void *);
int pthread_detach(pthread_t);
int pthread_equal(pthread_t, pthread_t);
void pthread_exit(void *);

EX int pthread_getconcurrency(void);
RTT int pthread_getschedparam(pthread_t, int *, struct sched_param *);

void *pthread_getspecific(pthread_key_t);
int pthread_join(pthread_t, void **);
int pthread_key_create(pthread_key_t *, void (*)(void*));
int pthread_key_delete(pthread_key_t);
int pthread_mutex_destroy(pthread_mutex_t *);

RTT int pthread_mutex_getprioceiling(const pthread_mutex_t *, int *);
int pthread_mutex_init(pthread_mutex_t *, const pthread_mutexattr_t *);
int pthread_mutex_lock(pthread_mutex_t *);

RTT int pthread_mutex_setprioceiling(pthread_mutex_t *, int, int *);
int pthread_mutex_trylock(pthread_mutex_t *);
int pthread_mutex_unlock(pthread_mutex_t *);
int pthread_mutexattr_destroy(pthread_mutexattr_t *);

RTT int pthread_mutexattr_getprioceiling(const pthread_mutexattr_t *,
int *);

int pthread_mutexattr_getprotocol(const pthread_mutexattr_t *, int *);
int pthread_mutexattr_getpshared(const pthread_mutexattr_t *, int *);

EX int pthread_mutexattr_gettype(pthread_mutexattr_t *, int *);
int pthread_mutexattr_init(pthread_mutexattr_t *);

RTT int pthread_mutexattr_setprioceiling(pthread_mutexattr_t *, int);
int pthread_mutexattr_setprotocol(pthread_mutexattr_t *, int);
int pthread_mutexattr_setpshared(pthread_mutexattr_t *, int);

EX int pthread_mutexattr_settype(pthread_mutexattr_t *, int);
int pthread_once(pthread_once_t *, void (*)(void));

System Interfaces and Headers, Issue 5: Volume 2 1117

<pthread.h> Headers

EX int pthread_rwlock_destroy(pthread_rwlock_t *);
int pthread_rwlock_init(pthread_rwlock_t *,

const pthread_rwlockattr_t *);
int pthread_rwlock_rdlock(pthread_rwlock_t *);
int pthread_rwlock_tryrdlock(pthread_rwlock_t *);
int pthread_rwlock_trywrlock(pthread_rwlock_t *);
int pthread_rwlock_unlock(pthread_rwlock_t *);
int pthread_rwlock_wrlock(pthread_rwlock_t *);
int pthread_rwlockattr_destroy(pthread_rwlockattr_t *);
int pthread_rwlockattr_getpshared(const pthread_rwlockattr_t *,

int *);
int pthread_rwlockattr_init(pthread_rwlockattr_t *);
int pthread_rwlockattr_setpshared(pthread_rwlockattr_t *, int);
pthread_t

pthread_self(void);
int pthread_setcancelstate(int, int *);
int pthread_setcanceltype(int, int *);

EX int pthread_setconcurrency(int);
RTT int pthread_setschedparam(pthread_t, int *,

const struct sched_param *);
int pthread_setspecific(pthread_key_t, const void *);
void pthread_testcancel(void);

EX Inclusion of the <pthread.h> header will make visible symbols defined in the headers <sched.h>
and <time.h>.

APPLICATION USAGE
An interpretation request has been filed with IEEE PASC concerning requirements for visibility
of symbols in this header.

FUTURE DIRECTIONS
None.

SEE ALSO
pthread_attr_init (), pthread_attr_getguardsize (), pthread_attr_setscope (), pthread_cancel (),
pthread_cleanup_push (), pthread_cond_init (), pthread_cond_signal (), pthread_cond_wait (),
pthread_condattr_init (), pthread_create(), pthread_detach (), pthread_equal(), pthread_exit (),
pthread_getconcurrency(), pthread_getschedparam (), pthread_join (), pthread_key_create (),
pthread_key_delete (), pthread_mutex_init (), pthread_mutex_lock (), pthread_mutex_setprioceiling (),
pthread_mutexattr_init (), pthread_mutexattr_gettype (), pthread_mutexattr_setprotocol (),
pthread_once(), pthread_self (), pthread_setcancelstate (), pthread_setspecific(), pthread_rwlock_init (),
pthread_rwlock_rdlock (), pthread_rwlock_unlock (), pthread_rwlock_wrlock (),
pthread_rwlockattr_init (), <sched.h>, <time.h>.

CHANGE HISTORY
First released in Issue 5.

Included for alignment with the POSIX Threads Extension.

1118 CAE Specification (1997)

Headers <pwd.h>

NAME
pwd.h — password structure

SYNOPSIS
#include <pwd.h>

DESCRIPTION
The <pwd.h> header provides a definition for struct passwd, which includes at least the
following members:

char *pw_name user’s login name
uid_t pw_uid numerical user ID
gid_t pw_gid numerical group ID
char *pw_dir initial working directory
char *pw_shell program to use as shell

EX The gid_t and uid_t types are defined as described in <sys/types.h>.

The following are declared as functions and may also be defined as macros. Function prototypes
must be provided for use with an ISO C compiler.

struct passwd *getpwnam(const char *);
struct passwd *getpwuid(uid_t);

int getpwnam_r(const char *, struct passwd *, char *,
size_t, struct passwd **);

int getpwuid_r(uid_t, struct passwd *, char *,
size_t, struct passwd **);

EX void endpwent(void);
struct passwd *getpwent(void);
void setpwent(void);

APPLICATION USAGE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
endpwent(), getpwnam(), getpwuid(), getpwuid_r(), <sys/types.h>.

CHANGE HISTORY
First released in Issue 1.

Issue 4
The following change is incorporated for alignment with the ISO POSIX-1 standard:

• The function declarations in this header are expanded to full ISO C prototypes.

Another change is incorporated as follows:

• Reference to the <sys/types.h> header is added for the definitions of gid_t and uid_t. This is
marked as an extension.

Issue 4, Version 2
For X/OPEN UNIX conformance, the getpwent(), endpwent() and setpwent() functions are added
to the list of functions declared in this header.

System Interfaces and Headers, Issue 5: Volume 2 1119

<pwd.h> Headers

Issue 5
The DESCRIPTION is updated for alignment with the POSIX Threads Extension.

1120 CAE Specification (1997)

Headers <regex.h>

NAME
regex.h — regular-expression-matching types

SYNOPSIS
#include <regex.h>

DESCRIPTION
The <regex.h> header defines the structures and symbolic constants used by the regcomp(),
regexec(), regerror() and regfree() functions.

The structure type regex_t contains at least the following member:

size_t re_nsub number of parenthesised subexpressions

The type regoff_t is defined as a signed arithmetic type that can hold the largest value that can
be stored in either a type off_t or type ssize_t. The structure type regmatch_t contains at least
the following members:

regoff_t rm_so byte offset from start of string
to start of substring

regoff_t rm_eo byte offset from start of string
of the first character after the end of substring

Values for the cflags parameter to the regcomp() function:

REG_EXTENDED Use Extended Regular Expressions.
REG_ICASE Ignore case in match.
REG_NOSUB Report only success or fail in regexec().
REG_NEWLINE Change the handling of newline.

Values for the eflags parameter to the regexec() function:

REG_NOTBOL The circumflex character (ˆ), when taken as a special character, will not
match the beginning of string.

REG_NOTEOL The dollar sign ($), when taken as a special character, will not match the
end of string.

The following constants are defined as error return values:

REG_NOMATCH regexec() failed to match.
REG_BADPAT Invalid regular expression.
REG_ECOLLATE Invalid collating element referenced.
REG_ECTYPE Invalid character class type referenced.
REG_EESCAPE Trailing \ in pattern.
REG_ESUBREG Number in \digit invalid or in error.
REG_EBRACK [] imbalance.
REG_EPAREN \(\) or () imbalance.
REG_EBRACE \{ \} imbalance.
REG_BADBR Content of \{ \} invalid: not a number, number too large, more than two

numbers, first larger than second.
REG_ERANGE Invalid endpoint in range expression.
REG_ESPACE Out of memory.
REG_BADRPT ?, * or + not preceded by valid regular expression.
REG_ENOSYS The implementation does not support the function.

System Interfaces and Headers, Issue 5: Volume 2 1121

<regex.h> Headers

The following are declared as functions and may also be declared as macros. Function
prototypes must be provided for use with an ISO C compiler.

int regcomp(regex_t *, const char *, int);
int regexec(const regex_t *, const char *, size_t, regmatch_t[], int);
size_t regerror(int, const regex_t *, char *, size_t);
void regfree(regex_t *);

The implementation may define additional macros or constants using names beginning with
REG_.

APPLICATION USAGE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
regcomp(), the XCU specification.

CHANGE HISTORY
First released in Issue 4.

Originally derived from the ISO POSIX-2 standard.

1122 CAE Specification (1997)

Headers <re_comp.h>

NAME
re_comp.h — regular-expression-matching functions for re_comp() (LEGACY)

SYNOPSIS
EX #include <re_comp.h>

DESCRIPTION
The following are declared as functions and may also be declared as macros:

char *re_comp(const char * string);
int re_exec(const char * string);

APPLICATION USAGE
This header is kept for historical reasons. New applications should use the regcomp(), regexec(),
regerror() and regfree() functions, and the <regex.h> header, which provide full internationalised
regular expression functionality compatible with the ISO POSIX-2 standard and the XBD
specification, Chapter 7, Regular Expressions.

FUTURE DIRECTIONS
None.

SEE ALSO
re_comp(), <regex.h>.

CHANGE HISTORY
First released in Issue 4, Version 2.

Issue 5
Marked LEGACY.

System Interfaces and Headers, Issue 5: Volume 2 1123

<regexp.h> Headers

NAME
regexp.h — regular-expression declarations (LEGACY)

SYNOPSIS
EX #include <regexp.h>

DESCRIPTION
In the <regexp.h> header, each of the following is declared as a function, or defined as a macro,
or both:

int advance(const char * string , const char * expbuf);
char *compile(char * instring , char * expbuf , const char * endbuf ,

int eof);
int step(const char * string , const char * expbuf);

and the following are declared as external variables:

extern char *loc1;
extern char *loc2;
extern char *locs;

APPLICATION USAGE
This header is kept for historical reasons. New applications should use the regcomp(), regexec(),
regerror() and regfree() functions, and the <regex.h> header, which provide full internationalised
regular expression functionality compatible with the ISO POSIX-2 standard and the XBD
specification, Chapter 7, Regular Expressions.

FUTURE DIRECTIONS
None.

SEE ALSO
regexp(), <regex.h>.

CHANGE HISTORY
First released in Issue 3.

Entry derived from System V Release 2.0.

Issue 4
The following changes are incorporated in this issue:

• The function declarations in this header are expanded to full ISO C prototypes.

• The interface is marked TO BE WITHDRAWN.

Issue 5
Marked LEGACY.

1124 CAE Specification (1997)

Headers <sched.h>

NAME
sched.h — execution scheduling (REALTIME)

SYNOPSIS
RT #include <sched.h>

DESCRIPTION
The <sched.h> header defines the sched_param structure, which contains the scheduling
parameters required for implementation of each supported scheduling policy. This structure
contains at least the following member:

int sched_priority process execution scheduling priority

Each process is controlled by an associated scheduling policy and priority. Associated with each
policy is a priority range. Each policy definition specifies the minimum priority range for that
policy. The priority ranges for each policy may overlap the priority ranges of other policies.

Three scheduling policies are defined; others may be defined by the implementation. The three
standard policies are indicated by the values of the following symbolic constants:

SCHED_FIFO First in-first out (FIFO) scheduling policy.
SCHED_RR Round robin scheduling policy.
SCHED_OTHER Another scheduling policy.

The values of these constants are distinct.

The following are declared as functions and may also be declared as macros. Function
prototypes must be provided for use with an ISO C compiler.

int sched_get_priority_max(int);
int sched_get_priority_min(int);
int sched_getparam(pid_t, struct sched_param *);
int sched_getscheduler(pid_t);
int sched_rr_get_interval(pid_t, struct timespec *);
int sched_setparam(pid_t, const struct sched_param *);
int sched_setscheduler(pid_t, int, const struct sched_param *);
int sched_yield(void);

Inclusion of the <sched.h> header will make visible symbols defined in the header <time.h>.

APPLICATION USAGE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
<time.h>.

CHANGE HISTORY
First released in Issue 5.

Included for alignment with the POSIX Realtime Extension.

System Interfaces and Headers, Issue 5: Volume 2 1125

<search.h> Headers

NAME
search.h — search tables

SYNOPSIS
EX #include <search.h>

DESCRIPTION
The <search.h> header provides a type definition, ENTRY, for structure entry which includes
the following members:

char *key
void *data

and defines ACTION and VISIT as enumeration data types through type definitions as follows:

enum { FIND, ENTER } ACTION;
enum { preorder, postorder, endorder, leaf } VISIT;

The size_t type is defined as described in <sys/types.h>.

Each of the following is declared as a function, or defined as a macro, or both. Function
prototypes must be provided for use with an ISO C compiler.

int hcreate(size_t);
void hdestroy(void);
ENTRY *hsearch(ENTRY, ACTION);
void insque(void *, void *);
void *lfind(const void *, const void *, size_t *,

size_t, int (*)(const void *, const void *));
void *lsearch(const void *, void *, size_t *,

size_t, int (*)(const void *, const void *));
void remque(void *);
void *tdelete(const void *, void *,

int(*)(const void *, const void *));
void *tfind(const void *, void *const *,

int(*)(const void *, const void *));
void *tsearch(const void *, void *,

int(*)(const void *, const void *));
void twalk(const void *,

void (*)(const void *, VISIT, int));

APPLICATION USAGE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
hsearch(), insque(), lsearch(), remque(), tsearch(), <sys/types.h>.

CHANGE HISTORY
First released in Issue 1.

Derived from Issue 1 of the SVID.

1126 CAE Specification (1997)

Headers <search.h>

Issue 4
The following changes are incorporated in this issue:

• The function declarations in this header are expanded to full ISO C prototypes.

• Reference to the <sys/types.h> header is added for the definition of size_t.

Issue 4, Version 2
For X/OPEN UNIX conformance, the insque() and remque() functions are added to the list of
functions declared in this header.

System Interfaces and Headers, Issue 5: Volume 2 1127

<semaphore.h> Headers

NAME
semaphore.h — semaphores (REALTIME)

SYNOPSIS
RT #include <semaphore.h>

DESCRIPTION
The <semaphore.h> header defines the sem_t type, used in performing semaphore operations.
The semaphore may be implemented using a file descriptor, in which case applications are able
to open up at least a total of OPEN_MAX files and semaphores.

The following are declared as functions and may also be declared as macros. Function
prototypes must be provided for use with an ISO C compiler.

int sem_close(sem_t *);
int sem_destroy(sem_t *);
int sem_getvalue(sem_t *, int *);
int sem_init(sem_t *, int, unsigned int);
sem_t *sem_open(const char *, int, ...);
int sem_post(sem_t *);
int sem_trywait(sem_t *);
int sem_unlink(const char *);
int sem_wait(sem_t *);

Inclusion of the <semaphore.h> header may make visible symbols defined in the headers
<fcntl.h> and <sys/types.h>.

APPLICATION USAGE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
<fcntl.h>, <sys/types.h>.

CHANGE HISTORY
First released in Issue 5.

Included for alignment with the POSIX Realtime Extension.

1128 CAE Specification (1997)

Headers <setjmp.h>

NAME
setjmp.h — stack environment declarations

SYNOPSIS
#include <setjmp.h>

DESCRIPTION
The <setjmp.h> header contains the type definitions for array types jmp_buf and sigjmp_buf.

The following are declared as functions and may also be defined as macros. Function prototypes
must be provided for use with an ISO C compiler.

void longjmp(jmp_buf, int);
void siglongjmp(sigjmp_buf, int);

EX void _longjmp(jmp_buf, int);

Each of the following may be declared as a function, or defined as a macro, or both. Function
prototypes must be provided for use with an ISO C compiler.

int setjmp(jmp_buf);
int sigsetjmp(sigjmp_buf, int);

EX int _setjmp(jmp_buf);

APPLICATION USAGE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
longjmp(), _longjmp (), setjmp(), siglongjmp (), sigsetjmp().

CHANGE HISTORY
First released in Issue 1.

Issue 4
The following changes are incorporated for alignment with the ISO C standard:

• The function declarations in this header are expanded to full ISO C prototypes.

• The DESCRIPTION is changed to indicate that all functions in this header can also be
declared as macros.

• The arguments jmp_buf and sigjmp_buf are specified as array types.

Issue 4, Version 2
For X/OPEN UNIX conformance, the _longjmp () and _setjmp() functions are added to the list of
functions declared in this header.

System Interfaces and Headers, Issue 5: Volume 2 1129

<signal.h> Headers

NAME
signal.h — signals

SYNOPSIS
#include <signal.h>

DESCRIPTION
The <signal.h> header defines the following symbolic constants, each of which expands to a
distinct constant expression of the type:

void (*)(int)

whose value matches no declarable function.

SIG_DFL Request for default signal handling.
SIG_ERR Return value from signal() in case of error.
SIG_HOLD Request that signal be held.
SIG_IGN Request that signal be ignored.

The following data types are defined through typedef:

sig_atomic_t Integral type of an object that can be accessed as an atomic entity, even in the
presence of asynchronous interrupts

sigset_t Integral or structure type of an object used to represent sets of signals.
EX pid_t As described in <sys/types.h>.

RT The <signal.h> header defines the sigevent structure, which has at least the following members:

int sigev_notify notification type
int sigev_signo signal number
union sigval sigev_value signal value
void(*)(unsigned sigval) sigev_notify_function notification function
(pthread_attr_t*) sigev_notify_attributes notification attributes

The following values of sigev_notify are defined:

SIGEV_NONE No asynchronous notification will be delivered when the event of interest
occurs.

SIGEV_SIGNAL A queued signal, with an application-defined value, will be generated
when the event of interest occurs.

SIGEV_THREAD A notification function will be called to perform notification.

The sigval union is defined as:

int sival_int integer signal value
void* sival_ptr pointer signal value

This header also declares the macros SIGRTMIN and SIGRTMAX, which evaluate to integral
expressions and, if the Realtime Signals Extension option is supported, specify a range of signal
numbers that are reserved for application use and for which the realtime signal behaviour
specified in this specification is supported. The signal numbers in this range do not overlap any
of the signals specified in the following table.

The range SIGRTMIN through SIGRTMAX inclusive includes at least RTSIG_MAX signal
numbers.

It is implementation-dependent whether realtime signal behaviour is supported for other
signals.

This header also declares the constants that are used to refer to the signals that occur in the
system. Signals defined here begin with the letters SIG. Each of the signals have distinct

1130 CAE Specification (1997)

Headers <signal.h>

positive integral values. The value 0 is reserved for use as the null signal (see kill ()). Additional
implementation-dependent signals may occur in the system.

The following signals are supported on all implementations (default actions are explained below
the table):

Signal Default Action Description
SIGABRT ii Process abort signal.
SIGALRM i Alarm clock.
SIGFPE ii Erroneous arithmetic operation.
SIGHUP i Hangup.
SIGILL ii Illegal instruction.
SIGINT i Terminal interrupt signal.
SIGKILL i Kill (cannot be caught or ignored).
SIGPIPE i Write on a pipe with no one to read it.
SIGQUIT ii Terminal quit signal.
SIGSEGV ii Invalid memory reference.
SIGTERM i Termination signal.
SIGUSR1 i User-defined signal 1.
SIGUSR2 i User-defined signal 2.

FIPS SIGCHLD iii Child process terminated or stopped.
SIGCONT v Continue executing, if stopped.
SIGSTOP iv Stop executing (cannot be caught or ignored).
SIGTSTP iv Terminal stop signal.
SIGTTIN iv Background process attempting read.
SIGTTOU iv Background process attempting write.
SIGBUS ii Access to an undefined portion of a memory object.

EX SIGPOLL i Pollable event.
SIGPROF i Profiling timer expired.
SIGSYS ii Bad system call.
SIGTRAP ii Trace/breakpoint trap.
SIGURG iii High bandwidth data is available at a socket.
SIGVTALRM i Virtual timer expired.
SIGXCPU ii CPU time limit exceeded.
SIGXFSZ ii File size limit exceeded.

The default actions are as follows:

i Abnormal termination of the process. The process is terminated with all the consequences
of _exit() except that the status is made available to wait() and waitpid () indicates abnormal
termination by the specified signal.

ii Abnormal termination of the process.

EX Additionally, implementation-dependent abnormal termination actions, such as creation of
a core file, may occur.

iii Ignore the signal.
iv Stop the process.
v Continue the process, if it is stopped; otherwise ignore the signal.

System Interfaces and Headers, Issue 5: Volume 2 1131

<signal.h> Headers

The header provides a declaration of struct sigaction, including at least the following members:

void (*sa_handler)(int) what to do on receipt of signal
sigset_t sa_mask set of signals to be blocked during execution

of the signal handling function
int sa_flags special flags
void (*)(int, siginfo_t *, void *) sa_sigaction

pointer to signal handler function or one
of the macros SIG_IGN or SIG_DFL

EX The storage occupied by sa_handler and sa_sigaction may overlap, and a portable program
must not use both simultaneously.

The following are declared as constants:

SA_NOCLDSTOP Do not generate SIGCHLD when children stop.
SIG_BLOCK The resulting set is the union of the current set and the signal set pointed

to by the argument set.
SIG_UNBLOCK The resulting set is the intersection of the current set and the complement

of the signal set pointed to by the argument set.
SIG_SETMASK The resulting set is the signal set pointed to by the argument set.

EX SA_ONSTACK Causes signal delivery to occur on an alternate stack.
SA_RESETHAND Causes signal dispositions to be set to SIG_DFL on entry to signal

handlers.
SA_RESTART Causes certain functions to become restartable.
SA_SIGINFO Causes extra information to be passed to signal handlers at the time of

receipt of a signal.
SA_NOCLDWAIT Causes implementations not to create zombie processes on child death.
SA_NODEFER Causes signal not to be automatically blocked on entry to signal handler.
SS_ONSTACK Process is executing on an alternate signal stack.
SS_DISABLE Alternate signal stack is disabled.
MINSIGSTKSZ Minimum stack size for a signal handler.
SIGSTKSZ Default size in bytes for the alternate signal stack.

The ucontext_t structure is defined through typedef as described in <ucontext.h>.

The <signal.h> header defines the stack_t type as a structure that includes at least the following
members:

void *ss_sp stack base or pointer
size_t ss_size stack size
int ss_flags flags

The <signal.h> header defines the sigstack structure that includes at least the following
members:

int ss_onstack non-zero when signal stack is in use
void *ss_sp signal stack pointer

The <signal.h> header defines the siginfo_t type as a structure that includes at least the
following members:

int si_signo signal number
int si_errno if non-zero, an errno value associated with

this signal, as defined in <errno.h>
int si_code signal code
pid_t si_pid sending process ID
uid_t si_uid real user ID of sending process

1132 CAE Specification (1997)

Headers <signal.h>

void *si_addr address of faulting instruction
int si_status exit value or signal
long si_band band event for SIGPOLL

RT union sigval si_value signal value

EX The macros specified in the Code column of the following table are defined for use as values of
si_code that are signal-specific reasons why the signal was generated.

System Interfaces and Headers, Issue 5: Volume 2 1133

<signal.h> Headers

Signal Code Reason
SIGILL ILL_ILLOPC illegal opcode

ILL_ILLOPN illegal operand
ILL_ILLADR illegal addressing mode
ILL_ILLTRP illegal trap
ILL_PRVOPC privileged opcode
ILL_PRVREG privileged register
ILL_COPROC coprocessor error
ILL_BADSTK internal stack error

SIGFPE FPE_INTDIV integer divide by zero
FPE_INTOVF integer overflow
FPE_FLTDIV floating point divide by zero
FPE_FLTOVF floating point overflow
FPE_FLTUND floating point underflow
FPE_FLTRES floating point inexact result
FPE_FLTINV invalid floating point operation
FPE_FLTSUB subscript out of range

SIGSEGV SEGV_MAPERR address not mapped to object
SEGV_ACCERR invalid permissions for mapped object

SIGBUS BUS_ADRALN invalid address alignment
BUS_ADRERR non-existent physical address
BUS_OBJERR object specific hardware error

SIGTRAP TRAP_BRKPT process breakpoint
TRAP_TRACE process trace trap

SIGCHLD CLD_EXITED child has exited
CLD_KILLED child has terminated abnormally and did not create a core file
CLD_DUMPED child has terminated abnormally and created a core file
CLD_TRAPPED traced child has trapped
CLD_STOPPED child has stopped
CLD_CONTINUED stopped child has continued

SIGPOLL POLL_IN data input available
POLL_OUT output buffers available
POLL_MSG input message available
POLL_ERR I/O error
POLL_PRI high priority input available
POLL_HUP device disconnected
SI_USER signal sent by kill()
SI_QUEUE signal sent by the sigqueue()
SI_TIMER signal generated by expiration of a timer set by timer_settime)
SI_ASYNCIO signal generated by completion of an asynchronous I/O

request
SI_MESGQ signal generated by arrival of a message on an empty message

queue

1134 CAE Specification (1997)

Headers <signal.h>

EX Implementations may support additional si_code values not included in this list, may generate
values included in this list under circumstances other than those described in this list, and may
contain extensions or limitations that prevent some values from being generated.
Implementations will not generate a different value from the ones described in this list for
circumstances described in this list.

Signal Member Value
SIGILL void * si_addr address of faulting instruction
SIGFPE
SIGSEGV void * si_addr address of faulting memory reference
SIGBUS
SIGCHLD pid_t si_pid child process ID

int si_status exit value or signal
uid_t si_uid real user ID of the process that sent the signal

SIGPOLL long si_band band event for POLL_IN, POLL_OUT or POLL_MSG

In addition, the following signal-specific information will be available:

For some implementations, the value of si_addr may be inaccurate.

The following are declared as functions and may also be defined as macros.

EX void (*bsd_signal(int, void (*)(int)))(int);
int kill(pid_t, int);

EX int killpg(pid_t, int);
int pthread_kill(pthread_t, int);
int pthread_sigmask(int, const sigset_t *, sigset_t *);
int raise(int);
int sigaction(int, const struct sigaction *, struct sigaction *);
int sigaddset(sigset_t *, int);

EX int sigaltstack(const stack_t *, stack_t *);
int sigdelset(sigset_t *, int);
int sigemptyset(sigset_t *);
int sigfillset(sigset_t *);

EX int sighold(int);
int sigignore(int);
int siginterrupt(int, int);
int sigismember(const sigset_t *, int);
void (*signal(int, void (*)(int)))(int);

EX int sigpause(int);
int sigpending(sigset_t *);
int sigprocmask(int, const sigset_t *, sigset_t *);

RT int sigqueue(pid_t, int, const union sigval);
EX int sigrelse(int);

void *sigset(int, void (*)(int)))(int);
int sigstack(struct sigstack * ss ,

struct sigstack * oss); (LEGACY)
int sigsuspend(const sigset_t *);

RT int sigtimedwait(const sigset_t *, siginfo_t *,
const struct timespec *);

int sigwait(const sigset_t * set , int * sig);
RT int sigwaitinfo(const sigset_t *, siginfo_t *);

System Interfaces and Headers, Issue 5: Volume 2 1135

<signal.h> Headers

APPLICATION USAGE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
alarm(), bsd_signal(), ioctl (), kill (), killpg (), raise(), sigaction (), sigaddset(), sigaltstack (),
sigdelset(), sigemptyset(), sigfillset(), siginterrupt(), sigismember(), signal(), sigpending(),
sigprocmask (), sigqueue(), sigsuspend(), sigwaitinfo (), wait(), waitid (), <errno.h>, <streams.h>,
<sys/types.h>, <ucontext.h>.

CHANGE HISTORY
First released in Issue 1.

Issue 4
The following changes are incorporated for alignment with the ISO POSIX-1 standard:

• The function declarations in this header are expanded to full ISO C prototypes.

• The DESCRIPTION is changed:

— to define the type sig_atomic_t

— to define the syntax of signal names and functions

— to combine the two tables of constants

— SIGFPE is no longer limited to floating-point exceptions, but covers all erroneous
arithmetic operations.

The following change is incorporated for alignment with the ISO C standard:

• The raise() function is added to the list of functions declared in this header.

Other changes are incorporated as follows:

• A reference to <sys/types.h> is added for the definition of pid_t. This is marked as an
extension.

• In the list of signals starting with SIGCHLD, the statement ‘‘but a system not supporting the
job control option is not obliged to support the functionality of these signals’’ is removed.
This is because job control is defined as mandatory on Issue 4 conforming implementations.

• Reference to implementation-dependent abnormal termination routines, such as creation of a
core file, in item ii in the defaults action list is marked as an extension.

Issue 4, Version 2
The following changes are incorporated for X/OPEN UNIX conformance:

• The SIGTRAP, SIGBUS, SIGSYS, SIGPOLL, SIGPROF, SIGXCPU, SIGXFSZ, SIGURG and
SIGVTALRM signals are added to the list of signals that will be supported on all conforming
implementations.

• The sa_sigaction member is added to the sigaction structure, and a note is added that the
storage used by sa_handler and sa_sigaction may overlap.

• The SA_ONSTACK, SA_RESETHAND, SA_RESTART, SA_SIGINFO, SA_NOCLDWAIT,
SS_ONSTACK, SS_DISABLE, MINSIGSTKSZ and SIGSTKSZ constants are defined. The
stack_t, sigstack and siginfo structures are defined.

• Definitions are given for the ucontext_t, stack_t, sigstack and siginfo_t types.

1136 CAE Specification (1997)

Headers <signal.h>

• A table is provided listing macros that are defined as signal-specific reasons why a signal
was generated. Signal-specific additional information is specified.

• The bsd_signal(), killpg(), _longjmp(), _setjmp(), sigaltstack(), sighold(), sigignore(),
siginterrupt(), sigpause(), sigrelse(), sigset() and sigstack() functions are added to the list of
functions declared in this header.

Issue 5
The DESCRIPTION is updated for alignment with POSIX Realtime Extension and the POSIX
Threads Extension.

The default action for SIGURG is changed for i to iii. The function prototype for sigmask() is
removed.

System Interfaces and Headers, Issue 5: Volume 2 1137

<stdarg.h> Headers

NAME
stdarg.h — handle variable argument list

SYNOPSIS
#include <stdarg.h>

void va_start(va_list ap, argN);
type va_arg(va_list ap, type);
void va_end(va_list ap);

DESCRIPTION
The <stdarg.h> header contains a set of macros which allows portable functions that accept
variable argument lists to be written. Functions that have variable argument lists (such as
printf ()) but do not use these macros are inherently non-portable, as different systems use
different argument-passing conventions.

The type va_list is defined for variables used to traverse the list.

The va_start () macro is invoked to initialise ap to the beginning of the list before any calls to
va_arg ().

The object ap may be passed as an argument to another function; if that function invokes the
va_arg () macro with parameter ap , the value of ap in the calling function is indeterminate and
must be passed to the va_end() macro prior to any further reference to ap . The parameter argN is
the identifier of the rightmost parameter in the variable parameter list in the function definition
(the one just before the , . . .). If the parameter argN is declared with the register storage class,
with a function type or array type, or with a type that is not compatible with the type that results
after application of the default argument promotions, the behaviour is undefined.

The va_arg () macro will return the next argument in the list pointed to by ap. Each invocation of
va_arg () modifies ap so that the values of successive arguments are returned in turn. The type
parameter is the type the argument is expected to be. This is the type name specified such that
the type of a pointer to an object that has the specified type can be obtained simply by suffixing a
* to type. Different types can be mixed, but it is up to the routine to know what type of
argument is expected.

The va_end() macro is used to clean up; it invalidates ap for use (unless va_start () is invoked
again).

Multiple traversals, each bracketed by va_start () ... va_end(), are possible.

EXAMPLES
This example is a possible implementation of execl().

#include <stdarg.h>

#define MAXARGS 31

/*
* execl is called by
* execl(file, arg1, arg2, . . . , (char *)(0));
*/

int execl (const char *file, const char *args, . . .)
{

va_list ap;
char *array[MAXARGS];
int argno = 0;

va_start(ap, args);

1138 CAE Specification (1997)

Headers <stdarg.h>

while (args != 0) {
array[argno++] = args;
args = va_arg(ap, const char *);

}
va_end(ap);
return execv(file, array);
}

APPLICATION USAGE
It is up to the calling routine to communicate to the called routine how many arguments there
are, since it is not always possible for the called routine to determine this in any other way. For
example, execl() is passed a null pointer to signal the end of the list. The printf() function can tell
how many arguments are there by the format argument.

FUTURE DIRECTIONS
None.

SEE ALSO
exec, printf ().

CHANGE HISTORY
First released in Issue 4.

Derived from the ANSI C standard.

System Interfaces and Headers, Issue 5: Volume 2 1139

<stddef.h> Headers

NAME
stddef.h — standard type definitions

SYNOPSIS
#include <stddef.h>

DESCRIPTION
The <stddef.h> header defines the following:

NULL Null pointer constant.
offsetof(type , member-designator)

Integral constant expression of type size_t, the value of which is the offset in
bytes to the structure member (member-designator), from the beginning of its
structure (type).

The <stddef.h> header defines through typedef:

ptrdiff_t Signed integral type of the result of subtracting two pointers.
wchar_t Integral type whose range of values can represent distinct wide-character

codes for all members of the largest character set specified among the locales
supported by the compilation environment: the null character has the code
value 0 and each member of the Portable Character Set has a code value equal
to its value when used as the lone character in an integer character constant.

size_t Unsigned integral type of the result of the sizeof operator.

APPLICATION USAGE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
<wchar.h>, <sys/types.h>.

CHANGE HISTORY
First released in Issue 4.

Derived from the ANSI C standard.

1140 CAE Specification (1997)

Headers <stdio.h>

NAME
stdio.h — standard buffered input/output

SYNOPSIS
#include <stdio.h>

DESCRIPTION
The <stdio.h> header defines the following macro names as positive integral constant
expressions:

BUFSIZ Size of <stdio.h> buffers.
FILENAME_MAX Maximum size in bytes of the longest filename string that the

implementation guarantees can be opened.
FOPEN_MAX Number of streams which the implementation guarantees can be open

simultaneously. The value will be at least eight.
_IOFBF Input/output fully buffered.
_IOLBF Input/output line buffered.
_IONBF Input/output unbuffered.
L_ctermid Maximum size of character array to hold ctermid() output.
L_tmpnam Maximum size of character array to hold tmpnam() output.
SEEK_CUR Seek relative to current position.
SEEK_END Seek relative to end-of-file.
SEEK_SET Seek relative to start-of-file.
TMP_MAX Minimum number of unique filenames generated by tmpnam().

EX Maximum number of times an application can call tmpnam() reliably. The
value of TMP_MAX will be at least 10,000.

The following macro name is defined as a negative integral constant expression:

EOF End-of-file return value.

The following macro name is defined as a null pointer constant:

NULL Null pointer.

The following macro name is defined as a string constant:

EX P_tmpdir default directory prefix for tempnam().

The following macro names are defined as expressions of type pointer to FILE:

stderr Standard error output stream.
stdin Standard input stream.
stdout Standard output stream.

The following data types are defined through typedef:

FILE A structure containing information about a file.
fpos_t Type containing all information needed to specify uniquely every

position within a file.
EX va_list As described in <stdarg.h>.

size_t As described in <stddef.h>.

System Interfaces and Headers, Issue 5: Volume 2 1141

<stdio.h> Headers

The following are declared as functions and may also be defined as macros. Function prototypes
must be provided for use with an ISO C compiler.

void clearerr(FILE *);
char *ctermid(char *);
int fclose(FILE *);
FILE *fdopen(int, const char *);
int feof(FILE *);
int ferror(FILE *);
int fflush(FILE *);
int fgetc(FILE *);
int fgetpos(FILE *, fpos_t *);
char *fgets(char *, int, FILE *);
int fileno(FILE *);
void flockfile(FILE *);
FILE *fopen(const char *, const char *);
int fprintf(FILE *, const char *, . . .);
int fputc(int, FILE *);
int fputs(const char *, FILE *);
size_t fread(void *, size_t, size_t, FILE *);
FILE *freopen(const char *, const char *, FILE *);
int fscanf(FILE *, const char *, . . .);
int fseek(FILE *, long int, int);

EX int fseeko(FILE *, off_t, int);
int fsetpos(FILE *, const fpos_t *);
long int ftell(FILE *);

EX off_t ftello(FILE *);
int ftrylockfile(FILE *);
void funlockfile(FILE *);
size_t fwrite(const void *, size_t, size_t, FILE *);
int getc(FILE *);
int getchar(void);
int getc_unlocked(FILE *);
int getchar_unlocked(void);

EX int getopt(int, char * const[], const char); (LEGACY)
char *gets(char *);

EX int getw(FILE *);
int pclose(FILE *);
void perror(const char *);
FILE *popen(const char *, const char *);
int printf(const char *, . . .);
int putc(int, FILE *);
int putchar(int);
int putc_unlocked(int, FILE *);
int putchar_unlocked(int);
int puts(const char *);

EX int putw(int, FILE *);
int remove(const char *);
int rename(const char *, const char *);
void rewind(FILE *);
int scanf(const char *, . . .);
void setbuf(FILE *, char *);
int setvbuf(FILE *, char *, int, size_t);

1142 CAE Specification (1997)

Headers <stdio.h>

EX int snprintf(char *, size_t, const char *, . . .);
int sprintf(char *, const char *, . . .);
int sscanf(const char *, const char *, int . . .);

EX char *tempnam(const char *, const char *);
FILE *tmpfile(void);
char *tmpnam(char *);
int ungetc(int, FILE *);
int vfprintf(FILE *, const char *, va_list);
int vprintf(const char *, va_list);

EX int vsnprintf(char *, size_t, const char *, va_list;
int vsprintf(char *, const char *, va_list);

The following external variables are defined:

EX extern char *optarg;)
extern int opterr;)
extern int optind;) (LEGACY)
extern int optopt;)

EX Inclusion of the <stdio.h> header may also make visible all symbols from <stddef.h>.

APPLICATION USAGE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
clearerr(), ctermid(), fclose(), fdopen(), fgetc(), fgetpos(), ferror(), feof(), fflush(), fgets(), fileno(),
fopen(), fputc(), fputs(), fread(), freopen(), fseek(), fsetpos(), ftell (), fwrite(), getc(), getc_unlocked (),
getwchar(), getws(), getchar(), getopt(), gets(), pclose(), perror(), popen(), printf(), putc(),
putchar(), puts(), putwchar(), remove(), rename(), rewind(), scanf(), setbuf(), setvbuf(), sscanf(),
stdin , system(), tempnam(), tmpfile(), tmpnam(), ungetc(), vprintf(), <sys/types.h>.

CHANGE HISTORY
First released in Issue 1.

Derived from Issue 1 of the SVID.

Issue 4
The following changes are incorporated for alignment with the ISO C standard:

• The function declarations in this header are expanded to full ISO C prototypes.

• The DESCRIPTION is restructured to group lists of macro names according to how they will
be defined by an implementation (for example, whether they are integral constant
expressions, pointer constants or string constants).

• The constant FILENAME_MAX is added to the list of integral constant expressions. The text
of FOPEN_MAX has also been changed for consistency with the ISO C standard.

• The data type fpos_t is moved from the APPLICATION USAGE section to the
DESCRIPTION.

• The functions fgetpos() and fsetpos() are added to the list of functions declared in this header.

System Interfaces and Headers, Issue 5: Volume 2 1143

<stdio.h> Headers

Other changes are incorporated as follows:

• The constant L_cuserid and the external variables optarg, opterr, optind and optopt are marked
as extensions and TO BE WITHDRAWN.

• The minimum allowable value of TMP_MAX, 10,000 on XSI-conformant systems, has been
marked as an extension.

• The P_tmpdir constant is moved from the APPLICATION USAGE section to the
DESCRIPTION and marked as an extension. The remainder of the APPLICATION USAGE
section is removed.

• References to the va_list and size_t types are added to the DESCRIPTION.

• Function declarations of the cuserid(), getopt(), getw(), putw() and tempnam() functions, and
the va_list type are marked as extensions.

• The cuserid() and getopt() functions are marked TO BE WITHDRAWN.

• A warning is added indicating that inclusion of <stdio.h> may also make visible all symbols
from <stddef.h>.

Issue 5
The DESCRIPTION is updated for alignment with the POSIX Threads Extension.

Large File System extensions added.

The constant L_cuserid and the external variables optarg, opterr, optind and optopt are marked as
extensions and LEGACY.

The cuserid() and getopt() functions are marked LEGACY.

1144 CAE Specification (1997)

Headers <stdlib.h>

NAME
stdlib.h — standard library definitions

SYNOPSIS
#include <stdlib.h>

DESCRIPTION
The <stdlib.h> header defines the following macro names:

EXIT_FAILURE Unsuccessful termination for exit(), evaluates to a non-zero value.
EXIT_SUCCESS Successful termination for exit(), evaluates to 0.
NULL Null pointer.
RAND_MAX Maximum value returned by rand (), at least 32,767.
MB_CUR_MAX Integer expression whose value is the maximum number of bytes in a

character specified by the current locale.

The following data types are defined through typedef:

div_t Structure type returned by div() function.
ldiv_t Structure type returned by ldiv () function.
size_t As described in <stddef.h>.
wchar_t As described in <stddef.h>.

In addition, the following symbolic names and macros are defined as in <sys/wait.h>, for use in
decoding the return value from system():

EX WNOHANG
WUNTRACED
WEXITSTATUS()
WIFEXITED()
WIFSIGNALED()
WIFSTOPPED()
WSTOPSIG()
WTERMSIG()

The following are declared as functions and may also be defined as macros. Function prototypes
must be provided for use with an ISO C compiler.

EX long a64l(const char *);
void abort(void);
int abs(int);
int atexit(void (*)(void));
double atof(const char *);
int atoi(const char *);
long int atol(const char *);
void *bsearch(const void *, const void *, size_t, size_t,

int (*)(const void *, const void *));
void *calloc(size_t, size_t);
div_t div(int, int);

EX double drand48(void);
char *ecvt (double, int, int *, int *);
double erand48(unsigned short int[3]);
void exit(int);

EX char *fcvt (double, int, int *, int *);
void free(void *);

System Interfaces and Headers, Issue 5: Volume 2 1145

<stdlib.h> Headers

EX char *gcvt (double, int, char *);
char *getenv(const char *);

EX int getsubopt(char **, char *const *, char **);
int grantpt(int);
char *initstate(unsigned int, char *, size_t);
long int jrand48 (unsigned short int[3]);
char *l64a(long);
long int labs(long int);

EX void lcong48(unsigned short int[7]);
ldiv_t ldiv(long int, long int);

EX long int lrand48 (void);
void *malloc(size_t);
int mblen (const char *, size_t);
size_t mbstowcs (wchar_t *, const char *, size_t);
int mbtowc (wchar_t *, const char *, size_t);

EX char *mktemp(char *);
int mkstemp(char *);
long int mrand48 (void);
long int nrand48 (unsigned short int [3]);
char *ptsname(int);
int putenv(const char *);
void qsort(void *, size_t, size_t, int (*)(const void *,

const void *));
int rand(void);
int rand_r(unsigned int *);

EX long random(void);
void realloc(void *, size_t);

EX char realpath(const char *, char *);
unsigned short int seed48 (unsigned short int[3]);
void setkey(const char *);
char *setstate(const char *);
void srand(unsigned int);

EX void srand48(long int);
void srandom(unsigned);
double strtod(const char *, char **);
long int strtol(const char *, char **, int);
unsigned long int

strtoul(const char *, char **, int);
int system(const char *);

EX int ttyslot(void); (LEGACY)
int unlockpt(int);
void *valloc(size_t); (LEGACY)
size_t wcstombs(char *, const wchar_t *, size_t);
int wctomb(char *, wchar_t);

EX Inclusion of the <stdlib.h> header may also make visible all symbols from <stddef.h>,
<limits.h>, <math.h> and <sys/wait.h>.

APPLICATION USAGE
None.

FUTURE DIRECTIONS
None.

1146 CAE Specification (1997)

Headers <stdlib.h>

SEE ALSO
a64l (), abort(), abs(), atexit(), atof (), atoi (), atol (), bsearch(), calloc (), div(), drand48(), ecvt(),
erand48(), exit(), fcvt(), free(), gcvt(), getenv(), getsubopt(), grantpt(), initstate(), jrand48(), l64a (),
labs(), lcong48 (), ldiv (), lrand48(), malloc (), mblen(), mbstowcs(), mbtowc(), mktemp(), mkstemp(),
mrand48(), nrand48(), ptsname(), putenv(), qsort(), rand(), rand_r(), realloc (), realpath (), setstate(),
srand(), srand48(), srandom(), strtod(), strtol(), strtoul(), unlockpt (), wcstombs(), wctomb(),
<sys/types.h>.

CHANGE HISTORY
First released in Issue 3.

Issue 4
The following changes are incorporated for alignment with the ISO C standard:

• The function declarations in this header are expanded to full ISO C prototypes.

• The maximum value of RAND_MAX is defined.

• The name MB_CUR_MAX is added to the list of macro names defined in this header, while
div_t and ldiv_t are added to the list of defined types.

• The names atexit(), div(), labs(), ldiv (), mblen(), mbstowcs(), mbtowc(), strtoul(), wcstombs()
and wctomb() are added to the list of functions declared in this header.

Other changes are incorporated as follows:

• A reference is added to <stddef.h> and <wchar.h> for the definition of size_t.

• A reference is added to <sys/wait.h> for definitions of the symbolic names and macros
defined for decoding the return value from the system() function. This reference and the
symbolic names and macros are marked as an extension.

• The names drand48(), erand48(), jrand48(), lcong48 (), lrand48(), mrand48(), nrand48(),
putenv(), seed48(), setkey() and srand48() are added to the list of functions declared in this
header and marked as extensions.

• A warning is added indicating that inclusion of <stdlib.h> may also make visible all symbols
from <stddef.h>, <limits.h>, <math.h> and <sys/wait.h>.

• The APPLICATION USAGE section is removed.

Issue 4, Version 2
For X/OPEN UNIX conformance, the a64l(), ecvt(), fcvt(), gcvt(), getsubopt(), grantpt(),
initstate(), l64a(), mktemp(), mkstemp(), ptsname(), random(), realpath(), setstate(), srandom(),
ttyslot(), unlockpt() and valloc() functions are added to the list of functions declared in this
header.

Issue 5
The DESCRIPTION is updated for alignment with the POSIX Threads Extension.

The ttyslot () and valloc () functions are marked LEGACY.

The type of the third argument to initstate() is changed from int to size_t. The type of the return
value from setstate() is changed from char to char*, and the type of the first argument is changed
from char* to const char*.

System Interfaces and Headers, Issue 5: Volume 2 1147

<string.h> Headers

NAME
string.h — string operations

SYNOPSIS
#include <string.h>

DESCRIPTION
The <string.h> header defines the following:

NULL Null pointer constant.
size_t As described in <stddef.h>.

The following are declared as functions and may also be defined as macros. Function prototypes
must be provided for use with an ISO C compiler.

EX void *memccpy(void *, const void *, int, size_t);
void *memchr(const void *, int, size_t);
int memcmp(const void *, const void *, size_t);
void *memcpy(void *, const void *, size_t);
void *memmove(void *, const void *, size_t);
void *memset(void *, int, size_t);
char *strcat(char *, const char *);
char *strchr(const char *, int);
int strcmp(const char *, const char *);
int strcoll(const char *, const char *);
char *strcpy(char *, const char *);
size_t strcspn(const char *, const char *);

EX char *strdup(const char *);
char *strerror(int);
size_t strlen(const char *);
char *strncat(char *, const char *, size_t);
int strncmp(const char *, const char *, size_t);
char *strncpy(char *, const char *, size_t);
char *strpbrk(const char *, const char *);
char *strrchr(const char *, int);
size_t strspn(const char *, const char *);
char *strstr(const char *, const char *);
char *strtok(char *, const char *);
char *strtok_r(char *, const char *, char **);
size_t strxfrm(char *, const char *, size_t);

EX Inclusion of the <string.h> header may also make visible all symbols from <stddef.h>.

APPLICATION USAGE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
memccpy(), memchr(), memcmp(), memcpy(), memmove(), memset(), strcat(), strchr(), strcmp(),
strcoll(), strcpy(), strcspn(), strdup(), strerror(), strlen(), strncat(), strncmp(), strncpy(), strpbrk(),
strrchr(), strspn(), strstr(), strtok(), strxfrm(), <sys/types.h>.

CHANGE HISTORY
First released in Issue 1.

1148 CAE Specification (1997)

Headers <string.h>

Derived from Issue 1 of the SVID.

Issue 4
The following changes are incorporated for alignment with the ISO C standard:

• The function declarations in this header are expanded to full ISO C prototypes.

• The name memmove() is added to the list of functions declared in this header.

Other changes are incorporated as follows:

• A reference is added to <stddef.h> for the definition of size_t.

• The memccpy() function is marked as an extension.

• A warning is added indicating that inclusion of <string.h> may also make visible all symbols
from <stddef.h>.

• The APPLICATION USAGE section is removed.

Issue 4, Version 2
For X/OPEN UNIX conformance, the strdup() function is added to the list of functions declared
in this header.

Issue 5
The DESCRIPTION is updated for alignment with the POSIX Threads Extension.

System Interfaces and Headers, Issue 5: Volume 2 1149

<strings.h> Headers

NAME
strings — string operations

SYNOPSIS
EX #include <strings.h>

DESCRIPTION
The following are declared as functions and may also be defined as macros. Function prototypes
must be provided for use with an ISO C compiler.

int bcmp(const void *, const void *, size_t);
void bcopy(const void *, void *, size_t);
void bzero(void *, size_t);
int ffs(int);
char *index(const char *);
char *rindex(const char *, int);
int strcasecmp(const char *, const char *);
int strncasecmp(const char *, const char *, size_t);

The size_t type is defined through typedef as described in <stddef.h>.

APPLICATION USAGE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
bcmp(), bcopy(), bzero(), ffs(), index(), rindex(), strcasecmp().

CHANGE HISTORY
First released in Issue 4, Version 2.

1150 CAE Specification (1997)

Headers <stropts.h>

NAME
stropts.h — STREAMS interface

SYNOPSIS
EX #include <stropts.h>

DESCRIPTION
The <stropts.h> header defines the bandinfo structure that includes at least the following
members:

unsigned char bi_pri
int bi_flag

The <stropts.h> header defines the strpeek structure that includes at least the following
members:

struct strbuf ctlbuf
struct strbuf databuf
t_uscalar_t flags

The <stropts.h> header defines the strbuf structure that includes at least the following members:

int maxlen maximum buffer length
int len length of data
char *buf ptr to buffer

The <stropts.h> header defines the strfdinsert structure that includes at least the following
members:

struct strbuf ctlbuf
struct strbuf databuf
t_uscalar_t flags
int fildes
int offset

The <stropts.h> header defines the strioctl structure that includes at least the following
members:

int ic_cmd
int ic_timout
int ic_len
char *ic_dp

The <stropts.h> header defines the strrecvfd structure that includes at least the following
members:

int fd
uid_t uid
gid_t gid

The uid_t and gid_t types are defined through typedef as described in <sys/types.h>.

The t_uscalar_t type is defined as described in <xti.h> in the referenced Networking Services,
Issue 5 specification.

The <stropts.h> header defines the str_list structure that includes at least the following
members:

int sl_nmods
struct str_mlist *sl_modlist

System Interfaces and Headers, Issue 5: Volume 2 1151

<stropts.h> Headers

The <stropts.h> header defines the str_mlist structure that includes at least the following
member:

char l_name[FMNAMESZ+1]

At least the following macros are defined for use as the request argument to ioctl ():

I_PUSH Push STREAMS module onto the top of the current STREAM, just below the
STREAM head.

I_POP Remove STREAMS module from just below the STREAM head.
I_LOOK Retrieve the name of the module just below the STREAM head and place it in

a character string. At least the following macros are defined for use as the arg
argument:

FMNAMESZ The minimum size in bytes of the buffer referred to by the
arg argument.

I_FLUSH This request flushes all input and/or output queues, depending on the value
of the arg argument. At least the following macros are defined for use as the
arg argument:

FLUSHR Flush read queues.
FLUSHW Flush write queues.
FLUSHRW Flush read and write queues.

I_FLUSHBAND Flush only band specified.
I_SETSIG Informs the STREAM head that the process wants the SIGPOLL signal issued

(see signal() and sigset()) when a particular event has occurred on the
STREAM.

The header <stropts.h> defines these possible values for arg when I_SETSIG is
specified:

S_RDNORM A normal (priority band set to 0) message has arrived at the
head of a STREAM head read queue.

S_RDBAND A message with a non-zero priority band has arrived at the
head of a STREAM head read queue.

S_INPUT A message, other than a high-priority message, has arrived
at the head of a STREAM head read queue.

S_HIPRI A high-priority message is present on a STREAM head read
queue.

S_OUTPUT The write queue for normal data (priority band 0) just
below the STREAM head is no longer full. This notifies the
process that there is room on the queue for sending (or
writing) normal data downstream.

S_WRNORM Same as S_OUTPUT.
S_WRBAND The write queue for a non-zero priority band just below the

STREAM head is no longer full.
S_MSG A STREAMS signal message that contains the SIGPOLL

signal reaches the front of the STREAM head read queue.
S_ERROR Notification of an error condition reaches the STREAM

head.
S_HANGUP Notification of a hangup reaches the STREAM head.
S_BANDURG When used in conjunction with S_RDBAND, SIGURG is

generated instead of SIGPOLL when a priority message
reaches the front of the STREAM head read queue.

1152 CAE Specification (1997)

Headers <stropts.h>

I_GETSIG Returns the events for which the calling process is currently registered to be
sent a SIGPOLL signal.

I_FIND Compares the names of all modules currently present in the STREAM to the
name pointed to by arg.

I_PEEK Allows a process to retrieve the information in the first message on the
STREAM head read queue without taking the message off the queue. At least
the following macros are defined for use as the arg argument:

RS_HIPRI Only look for high-priority messages.
I_SRDOPT Sets the read mode. At least the following macros are defined for use as the

arg argument:

RNORM Byte-STREAM mode, the default.
RMSGD Message-discard mode.
RMSGN Message-nondiscard mode.
RPROTNORM Fail read() with [EBADMSG] if a message containing a

control part is at the front of the STREAM head read queue.
RPROTDAT Deliver the control part of a message as data when a

process issues a read().
RPROTDIS Discard the control part of a message, delivering any data

part, when a process issues a read().

I_GRDOPT Returns the current read mode setting.
I_NREAD Counts the number of data bytes in data blocks in the first message on the

STREAM head read queue.
I_FDINSERT Creates a message from the specified buffer(s), adds information about

another STREAM, and sends the message downstream.
I_STR Constructs an internal STREAMS ioctl () message and sends that message

downstream.
I_SWROPT Sets the write mode. At least the following macros are defined for use as the

arg argument:

SNDZERO Send a zero-length message downstream when a write() of
0 bytes occurs.

I_GWROPT Returns the current write mode setting.
I_SENDFD Requests the STREAM associated with fildes to send a message, containing a

file pointer, to the STREAM head at the other end of a STREAMS pipe.
I_RECVFD Retrieves the file descriptor associated with the message sent by an

I_SENDFD ioctl () over a STREAMS pipe.
I_LIST This request allows the process to list all the module names on the STREAM,

up to and including the topmost driver name.
I_ATMARK This request allows the process to see if the current message on the STREAM

head read queue is "marked" by some module downstream. At least the
following macros are defined for use as the arg argument:

ANYMARK Check if the message is marked.
LASTMARK Check if the message is the last one marked on the queue.

I_CKBAND Check if the message of a given priority band exists on the STREAM head
read queue.

I_GETBAND Return the priority band of the first message on the STREAM head read
queue.

I_CANPUT Check if a certain band is writable.
I_SETCLTIME Allows the process to set the time the STREAM head will delay when a

STREAM is closing and there is data on the write queues.

System Interfaces and Headers, Issue 5: Volume 2 1153

<stropts.h> Headers

I_GETCLTIME Returns the close time delay.
I_LINK Connects two STREAMs.
I_UNLINK Disconnects the two STREAMs. The header defines at least the following

value for arg:

MUXID_ALL Unlink all STREAMs linked to the STREAM associated with
fildes.

I_PLINK Connects two STREAMs with a persistent link.
I_PUNLINK Disconnects the two STREAMs that were connected with a persistent link.

The following macros are defined for getmsg(), getpmsg(), putmsg() and putpmsg():

MSG_ANY Receive any message.
MSG_BAND Receive message from specified band.
MSG_HIPRI Send/Receive high priority message.
MORECTL More control information is left in message.
MOREDATA More data is left in message.

The header <stropts.h> may make visible all of the symbols from <unistd.h>.

The following are declared as functions in the <stropts.h> header and may also be defined as
macros. Function prototypes must be provided for use with an ISO C compiler.

int isastream(int);
int getmsg(int, struct strbuf *, struct strbuf *, int *);
int getpmsg(int, struct strbuf *, struct strbuf *, int *, int *);
int ioctl(int, int, ...);
int putmsg(int, const struct strbuf *, const struct strbuf *, int);
int putpmsg(int, const struct strbuf *, const struct strbuf *, int,

int);
int fattach(int, const char *);
int fdetach(const char *);

APPLICATION USAGE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
close(), fcntl(), getmsg(), ioctl (), open(), pipe(), read(), poll (), putmsg(), signal(), sigset(), write(),
<xti.h>.

CHANGE HISTORY
First released in Issue 4, Version 2.

Issue 5
The flags member of the strpeek and strfdinsert structures are changed from type long to
t_uscalar_t.

1154 CAE Specification (1997)

Headers <syslog.h>

NAME
syslog — definitions for system error logging

SYNOPSIS
EX #include <syslog.h>

DESCRIPTION
The <syslog.h> header defines the following symbolic constants, zero or more of which may be
OR-ed together to form the logopt option of openlog ():

LOG_PID Log the process ID with each message.
LOG_CONS Log to the system console on error.
LOG_NDELAY Connect to syslog daemon immediately.
LOG_ODELAY Delay open until syslog() is called.
LOG_NOWAIT Don’t wait for child processes.

The following symbolic constants are defined as possible values of the facility argument to
openlog ():

LOG_KERN Reserved for message generated by the system.
LOG_USER Message generated by a process.
LOG_MAIL Reserved for message generated by mail system.
LOG_NEWS Reserved for message generated by news system.
LOG_UUCP Reserved for message generated by UUCP system.
LOG_DAEMON Reserved for message generated by system daemon.
LOG_AUTH Reserved for message generated by authorisation daemon.
LOG_CRON Reserved for message generated by the clock daemon.
LOG_LPR Reserved for message generated by printer system.
LOG_LOCAL0 Reserved for local use.
LOG_LOCAL1 Reserved for local use.
LOG_LOCAL2 Reserved for local use.
LOG_LOCAL3 Reserved for local use.
LOG_LOCAL4 Reserved for local use.
LOG_LOCAL5 Reserved for local use.
LOG_LOCAL6 Reserved for local use.
LOG_LOCAL7 Reserved for local use.

The following are declared as macros for constructing the maskpri argument to setlogmask (). The
following macros expand to an expression of type int when the argument pri is an expression of
type int:

LOG_MASK(pri) A mask for priority pri.

The following constants are defined as possible values for the priority argument of syslog():

LOG_EMERG A panic condition was reported to all processes.
LOG_ALERT A condition that should be corrected immediately.
LOG_CRIT A critical condition.
LOG_ERR An error message.
LOG_WARNING A warning message.
LOG_NOTICE A condition requiring special handling.
LOG_INFO A general information message.
LOG_DEBUG A message useful for debugging programs.

System Interfaces and Headers, Issue 5: Volume 2 1155

<syslog.h> Headers

The following are declared as functions and may also be defined as macros. Function prototypes
must be provided for use with an ISO C compiler.

void closelog(void);
void openlog(const char *, int, int);
int setlogmask(int);
void syslog(int, const char *, ...);

APPLICATION USAGE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
closelog ().

CHANGE HISTORY
First released in Issue 4, Version 2.

Issue 5
Moved to X/Open UNIX to Base.

1156 CAE Specification (1997)

Headers <sys/ipc.h>

NAME
sys/ipc.h — interprocess communication access structure

SYNOPSIS
EX #include <sys/ipc.h>

DESCRIPTION
The <sys/ipc.h> header is used by three mechanisms for interprocess communication (IPC):
messages, semaphores and shared memory. All use a common structure type, ipc_perm to pass
information used in determining permission to perform an IPC operation.

The structure ipc_perm contains the following members:

uid_t uid owner’s user ID
gid_t gid owner’s group ID
uid_t cuid creator’s user ID
gid_t cgid creator’s group ID
mode_t mode read/write permission

The uid_t, gid_t, mode_t and key_t types are defined as described in <sys/types.h>.

Definitions are given for the following constants:

Mode bits:

IPC_CREAT Create entry if key does not exist.
IPC_EXCL Fail if key exists.
IPC_NOWAIT Error if request must wait.

Keys:

IPC_PRIVATE Private key.

Control commands:

IPC_RMID Remove identifier.
IPC_SET Set options.
IPC_STAT Get options.

The following is declared as a function and may also be defined as a macro. Function prototypes
must be provided for use with an ISO C compiler.

key_t ftok(const char *, int);

APPLICATION USAGE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
ftok (), <sys/types.h>.

CHANGE HISTORY
First released in Issue 2.

Derived from System V Release 2.0.

System Interfaces and Headers, Issue 5: Volume 2 1157

<sys/ipc.h> Headers

Issue 4
The following changes are incorporated in this issue:

• The DESCRIPTION is corrected to say that the header ‘‘is used by three mechanisms . . .’’.

• Reference to the header <sys/types.h> is added for the definitions of uid_t, gid_t and
mode_t.

Issue 4, Version 2
For X/OPEN UNIX conformance, the ftok () function is added to the list of functions declared in
this header.

1158 CAE Specification (1997)

Headers <sys/mman.h>

NAME
sys/mman.h — memory management declarations

SYNOPSIS
EX #include <sys/mman.h>

DESCRIPTION
The following protection options are defined:

PROT_READ Page can be read.
PROT_WRITE Page can be written.
PROT_EXEC Page can be executed.
PROT_NONE Page can not be accessed.

The following flag options are defined:

MAP_SHARED Share changes.
MAP_PRIVATE Changes are private.
MAP_FIXED Interpret addr exactly.

The following flags are defined for msync():

MS_ASYNC Perform asynchronous writes.
MS_SYNC Perform synchronous writes.
MS_INVALIDATE Invalidate mappings.

RT The following symbolic constants are defined for the mlockall () function:

MCL_CURRENT Lock currently mapped pages.
MCL_FUTURE Lock pages that become mapped.

The symbolic constant MAP_FAILED is defined to indicate a failure from the mmap() function.

The size_t and off_t types are defined as described in <sys/types.h>.

The following are declared in <sys/mman.h> as functions and may also be defined as macros.
Function prototypes must be provided for use with an ISO C compiler.

RT int mlock(const void *, size_t);
int mlockall(int);
void *mmap(void *, size_t, int, int, int, off_t);
int mprotect(void *, size_t, int);
int msync(void *, size_t, int);

RT int munlock(const void *, size_t);
int munlockall(void);
int munmap(void *, size_t);

RT int shm_open(const char *, int, mode_t);
int shm_unlink(const char *);

APPLICATION USAGE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
mlock(), mlockall (), mmap(), mprotect(), msync(), munmap(), shm_open(), shm_unlink().

System Interfaces and Headers, Issue 5: Volume 2 1159

<sys/mman.h> Headers

CHANGE HISTORY
First released in Issue 4, Version 2.

Issue 5
Updated for alignment with the POSIX Realtime Extension.

1160 CAE Specification (1997)

Headers <sys/msg.h>

NAME
sys/msg.h — message queue structures

SYNOPSIS
EX #include <sys/msg.h>

DESCRIPTION
The <sys/msg.h> header defines the following constant and members of the structure msqid_ds.

The following data types are defined through typedef:

msgqnum_t Used for the number of messages in the message queue.
msglen_t Used for the number of bytes allowed in a message queue.

These types are unsigned integer types that are able to store values at least as large as a type
unsigned short.

Message operation flag:

MSG_NOERROR No error if big message.

The structure msqid_ds contains the following members:

struct ipc_perm msg_perm operation permission structure
msgqnum_t msg_qnum number of messages currently on queue
msglen_t msg_qbytes maximum number of bytes allowed on queue
pid_t msg_lspid process ID of last msgsnd()
pid_t msg_lrpid process ID of last msgrcv()
time_t msg_stime time of last msgsnd()
time_t msg_rtime time of last msgrcv()
time_t msg_ctime time of last change

The pid_t, time_t, key_t and size_t types are defined as described in <sys/types.h>.

The following are declared as functions and may also be defined as macros. Function prototypes
must be provided for use with an ISO C compiler.

int msgctl(int, int, struct msqid_ds *);
int msgget(key_t, int);
ssize_t msgrcv(int, void *, size_t, long int, int);
int msgsnd(int, const void *, size_t, int);

In addition, all of the symbols from <sys/ipc.h> will be defined when this header is included.

APPLICATION USAGE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
msgctl(), msgget(), msgrcv(), msgsnd(), <sys/types.h>.

CHANGE HISTORY
First released in Issue 2.

Derived from System V Release 2.0.

System Interfaces and Headers, Issue 5: Volume 2 1161

<sys/msg.h> Headers

Issue 4
The following changes are incorporated in this issue:

• The function declarations in this header are expanded to full ISO C prototypes.

• Reference to the header <sys/types.h> is added for the definitions of pid_t, time_t, key_t and
size_t.

• A statement is added indicating that all symbols in <sys/ipc.h> will be defined when this
header is included.

1162 CAE Specification (1997)

Headers <sys/resource.h>

NAME
sys/resource.h — definitions for XSI resource operations

SYNOPSIS
EX #include <sys/resource.h>

DESCRIPTION
The <sys/resource.h> header defines the following symbolic constants as possible values of the
which argument of getpriority () and setpriority():

PRIO_PROCESS Identifies who argument as a process ID.
PRIO_PGRP Identifies who argument as a process group ID.
PRIO_USER Identifies who argument as a user ID.

The following type is defined through typedef:

rlim_t Unsigned integral type used for limit values.

The following symbolic constants are defined:

RLIM_INFINITY A value of rlim_t indicating no limit.
RLIM_SAVED_MAX A value of type rlim_t indicating an unrepresentable saved hard

limit.
RLIM_SAVED_CUR A value of type rlim_t indicating an unrepresentable saved soft limit.

On implementations where all resource limits are representable in an object of type rlim_t,
RLIM_SAVED_MAX and RLIM_SAVED_CUR need not be distinct from RLIM_INFINITY.

The following symbolic constants are defined as possible values of the who parameter of
getrusage():

RUSAGE_SELF Returns information about the current process.
RUSAGE_CHILDREN Returns information about children of the current process.

The <sys/resource.h> header defines the rlimit structure that includes at least the following
members:

rlim_t rlim_cur the current (soft) limit
rlim_t rlim_max the hard limit

The <sys/resource.h> header defines the rusage structure that includes at least the following
members:

struct timeval ru_utime user time used
struct timeval ru_stime system time used

The timeval structure is defined as described in <sys/time.h>.

The following symbolic constants are defined as possible values for the resource argument of
getrlimit() and setrlimit():

RLIMIT_CORE Limit on size of core dump file.
RLIMIT_CPU Limit on CPU time per process.
RLIMIT_DATA Limit on data segment size.
RLIMIT_FSIZE Limit on file size.
RLIMIT_NOFILE Limit on number of open files.
RLIMIT_STACK Limit on stack size.
RLIMIT_AS Limit on address space size.

System Interfaces and Headers, Issue 5: Volume 2 1163

<sys/resource.h> Headers

The following are declared as functions and may also be defined as macros. Function prototypes
must be provided for use with an ISO C compiler.

int getpriority(int, id_t);
int getrlimit(int, struct rlimit *);
int getrusage(int, struct rusage *);
int setpriority(int, id_t, int);
int setrlimit(int, const struct rlimit *);

The id_t type is defined through typedef as described in <sys/types.h>.

Inclusion of the <sys/resource.h> header may also make visible all symbols from <sys/time.h>.

APPLICATION USAGE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
getpriority (), getrusage(), getrlimit().

CHANGE HISTORY
First released in Issue 4, Version 2.

Issue 5
Large File System extensions added.

1164 CAE Specification (1997)

Headers <sys/sem.h>

NAME
sys/sem.h — semaphore facility

SYNOPSIS
EX #include <sys/sem.h>

DESCRIPTION
The <sys/sem.h> header defines the following constants and structures.

Semaphore operation flags:

SEM_UNDO Set up adjust on exit entry.

Command definitions for the function semctl():

GETNCNT Get semncnt.
GETPID Get sempid.
GETVAL Get semval.
GETALL Get all cases of semval.
GETZCNT Get semzcnt.
SETVAL Set semval.
SETALL Set all cases of semval.

The structure semid_ds contains the following members:

struct ipc_perm sem_perm operation permission structure
unsigned short int sem_nsems number of semaphores in set
time_t sem_otime last semop ˆ) time
time_t sem_ctime last time changed by semctl()

The pid_t, time_t, key_t and size_t types are defined as described in <sys/types.h>.

A semaphore is represented by an anonymous structure containing the following members:

unsigned short int semval semaphore value
pid_t sempid process ID of last operation
unsigned short int semncnt number of processes waiting for semval

to become greater than current value
unsigned short int semzcnt number of processes waiting for semval

to become 0

The structure sembuf contains the following members:

unsigned short int sem_num semaphore number
short int sem_op semaphore operation
short int sem_flg operation flags

The following are declared as functions and may also be defined as macros. Function prototypes
must be provided for use with an ISO C compiler.

int semctl(int, int, int, ...);
int semget(key_t, int, int);
int semop(int, struct sembuf *, size_t);

In addition, all of the symbols from <sys/ipc.h> will be defined when this header is included.

APPLICATION USAGE
None.

System Interfaces and Headers, Issue 5: Volume 2 1165

<sys/sem.h> Headers

FUTURE DIRECTIONS
None.

SEE ALSO
semctl(), semget(), semop(), <sys/types.h>.

CHANGE HISTORY
First released in Issue 2.

Derived from System V Release 2.0.

Issue 4
The following changes are incorporated in this issue:

• The function declarations in this header are expanded to full ISO C prototypes.

• Reference to the header <sys/types.h> is added for the definitions of pid_t, time_t, key_t and
size_t.

• A statement is added indicating that all symbols in <sys/ipc.h> will be defined when this
header is included.

1166 CAE Specification (1997)

Headers <sys/shm.h>

NAME
sys/shm.h — shared memory facility

SYNOPSIS
EX #include <sys/shm.h>

DESCRIPTION
The <sys/shm.h> header defines the following symbolic constants and structure:

Symbolic constants:

SHM_RDONLY Attach read-only (else read-write).
SHMLBA Segment low boundary address multiple.
SHM_RND Round attach address to SHMLBA.

The following data types are defined through typedef:

shmatt_t Unsigned integer used for the number of current attaches that must be able to
store values at least as large as a type unsigned short.

The structure shmid_ds contains the following members:

struct ipc_perm shm_perm operation permission structure
size_t shm_segsz size of segment in bytes
pid_t shm_lpid process ID of last shared memory operation
pid_t shm_cpid process ID of creator
shmatt_t shm_nattch number of current attaches
time_t shm_atime time of last shmat()
time_t shm_dtime time of last shmdt()
time_t shm_ctime time of last change by shmctl()

The pid_t, time_t, key_t and size_t types are defined as described in <sys/types.h>. The
following are declared as functions and may also be defined as macros. Function prototypes
must be provided for use with an ISO C compiler.

void *shmat(int, const void *, int);
int shmctl(int, int, struct shmid_ds *);
int shmdt(const void *);
int shmget(key_t, size_t, int);

In addition, all of the symbols from <sys/ipc.h> will be defined when this header is included.

APPLICATION USAGE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
shmat(), shmctl(), shmdt(), shmget(), <sys/types.h>.

CHANGE HISTORY
First released in Issue 2.

Derived from System V Release 2.0.

System Interfaces and Headers, Issue 5: Volume 2 1167

<sys/shm.h> Headers

Issue 4
The following changes are incorporated in this issue:

• The function declarations in this header are expanded to full ISO C prototypes.

• Reference to the header <sys/types.h> is added for the definitions of pid_t, time_t, key_t and
size_t.

• A statement is added indicating that all symbols in <sys/ipc.h> will be defined when this
header is included.

Issue 5
The type of shm_segsz is changed from int to size_t.

1168 CAE Specification (1997)

Headers <sys/stat.h>

NAME
sys/stat.h — data returned by the stat() function

SYNOPSIS
#include <sys/stat.h>

DESCRIPTION
EX The <sys/stat.h> header defines the structure of the data returned by the functions fstat(), lstat(),

and stat().

The structure stat contains at least the following members:

dev_t st_dev ID of device containing file
ino_t st_ino file serial number
mode_t st_mode mode of file (see below)
nlink_t st_nlink number of links to the file
uid_t st_uid user ID of file
gid_t st_gid group ID of file

EX dev_t st_rdev device ID (if file is character or block special)
off_t st_size file size in bytes (if file is a regular file)
time_t st_atime time of last access
time_t st_mtime time of last data modification
time_t st_ctime time of last status change

EX blksize_t st_blksize a filesystem-specific preferred I/O block size for
this object. In some filesystem types, this may
vary from file to file

blkcnt_t st_blocks number of blocks allocated for this object

EX File serial number and device ID taken together uniquely identify the file within the system. The
dev_t, ino_t, mode_t, nlink_t, uid_t, gid_t, off_t and time_t types are defined as described in
<sys/types.h>. Times are given in seconds since the Epoch.

The following symbolic names for the values of st_mode are also defined:

File type:

EX S_IFMT type of file
S_IFBLK block special
S_IFCHR character special
S_IFIFO FIFO special
S_IFREG regular
S_IFDIR directory
S_IFLNK symbolic link

File mode bits:

S_IRWXU read, write, execute/search by owner
S_IRUSR read permission, owner
S_IWUSR write permission, owner
S_IXUSR execute/search permission, owner

S_IRWXG read, write, execute/search by group
S_IRGRP read permission, group
S_IWGRP write permission, group
S_IXGRP execute/search permission, group

S_IRWXO read, write, execute/search by others
S_IROTH read permission, others

System Interfaces and Headers, Issue 5: Volume 2 1169

<sys/stat.h> Headers

S_IWOTH write permission, others
S_IXOTH execute/search permission, others

S_ISUID set-user-ID on execution
S_ISGID set-group-ID on execution

EX S_ISVTX on directories, restricted deletion flag

The bits defined by S_IRUSR, S_IWUSR, S_IXUSR, S_IRGRP, S_IWGRP, S_IXGRP, S_IROTH,
EX S_IWOTH, S_IXOTH, S_ISUID, S_ISGID and S_ISVTXare unique.

S_IRWXU is the bitwise OR of S_IRUSR, S_IWUSR and S_IXUSR.

S_IRWXG is the bitwise OR of S_IRGRP, S_IWGRP and S_IXGRP.

S_IRWXO is the bitwise OR of S_IROTH, S_IWOTH and S_IXOTH.

Implementations may OR other implementation-dependent bits into S_IRWXU, S_IRWXG and
S_IRWXO, but they will not overlap any of the other bits defined in this document. The file
permission bits are defined to be those corresponding to the bitwise inclusive OR of S_IRWXU,
S_IRWXG and S_IRWXO.

The following macros will test whether a file is of the specified type. The value m supplied to
the macros is the value of st_mode from a stat structure. The macro evaluates to a non-zero
value if the test is true, 0 if the test is false.

S_ISBLK (m) Test for a block special file.
S_ISCHR (m) Test for a character special file.
S_ISDIR (m) Test for a directory.
S_ISFIFO (m) Test for a pipe or FIFO special file.
S_ISREG (m) Test for a regular file.

EX S_ISLNK (m) Test for a symbolic link.

RT The implementation may implement message queues, semaphores, or shared memory objects as
distinct file types. The following macros test whether a file is of the specified type. The value of
the buf argument supplied to the macros is a pointer to a stat structure. The macro evaluates to a
non-zero value if the specified object is implemented as a distinct file type and the specified file
type is contained in the stat structure referenced by buf. Otherwise, the macro evaluates to zero.

S_TYPEISMQ (buf) Test for a message queue
S_TYPEISSEM (buf) Test for a semaphore
S_TYPEISSHM (buf) Test for a shared memory object

The following are declared as functions and may also be defined as macros. Function prototypes
must be provided for use with an ISO C compiler.

int chmod(const char *, mode_t);
EX int fchmod(int, mode_t);

int fstat(int, struct stat *);
EX int lstat(const char *, struct stat *);

int mkdir(const char *, mode_t);
int mkfifo(const char *, mode_t);

EX int mknod(const char *, mode_t, dev_t);
int stat(const char *, struct stat *);
mode_t umask(mode_t);

APPLICATION USAGE
Use of the macros is recommended for determining the type of a file.

1170 CAE Specification (1997)

Headers <sys/stat.h>

FUTURE DIRECTIONS
None.

SEE ALSO
chmod(), fchmod(), fstat(), lstat(), mkdir(), mkfifo(), mknod(), stat(), umask(), <sys/types.h>.

CHANGE HISTORY
First released in Issue 1.

Derived from Issue 1 of the SVID.

Issue 4
The following changes are incorporated for alignment with the ISO POSIX-1 standard:

• The function declarations in this header are expanded to full ISO C prototypes.

• The DESCRIPTION is expanded to indicate (a) how files are uniquely identified within the
system, (b) that times are given in units of seconds since the Epoch, (c) rules governing the
definition and use of the file mode bits, and (d) usage of the file type test macros.

Other changes are incorporated as follows:

• Reference to the <sys/types.h> header is added for the definitions of dev_t, ino_t, mode_t,
nlink_t, uid_t, gid_t, off_t and time_t. This has been marked as an extension.

• References to the S_IREAD, S_IWRITE, S_IEXEC file and S_ISVTX modes are removed.

• The descriptions of the members of the stat structure in the DESCRIPTION are corrected.

Issue 4, Version 2
The following changes are incorporated for X/OPEN UNIX conformance:

• The st_blksize and st_blocks members are added to the stat structure.

• The S_IFLINK value of S_IFMT is defined.

• The S_ISVTX file mode bit and the S_ISLNK file type test macro is defined.

• The fchmod(), lstat() and mknod() functions are added to the list of functions declared in this
header.

Issue 5
The DESCRIPTION is updated for alignment with POSIX Realtime Extension.

The type of st_blksize is changed from long to blksize_t;thetypeof st_blocks is changed from long
to blkcnt_t.

System Interfaces and Headers, Issue 5: Volume 2 1171

<sys/statvfs.h> Headers

NAME
sys/statvfs.h — VFS Filesystem information structure

SYNOPSIS
EX #include <sys/statvfs.h>

DESCRIPTION
The <sys/statvfs.h> header defines the statvfs structure that includes at least the following
members:

unsigned long f_bsize file system block size
unsigned long f_frsize fundamental filesystem block size
fsblkcnt_t f_blocks total number of blocks on file system in units of f_frsize
fsblkcnt_t f_bfree total number of free blocks
fsblkcnt_t f_bavail number of free blocks available to

non-privileged process
fsfilcnt_t f_files total number of file serial numbers
fsfilcnt_t f_ffree total number of free file serial numbers
fsfilcnt_t f_favail number of file serial numbers available to

non-privileged process
unsigned long f_fsid file system id
unsigned long f_flag bit mask of f_flag values
unsigned long f_namemax maximum filename length

The following flags for the f_flag member are defined:

ST_RDONLY read-only file system
ST_NOSUID does not support setuid/setgid semantics

The header <sys/statvfs.h> declares the following functions which may also be defined as
macros. Function prototypes must be provided for use with an ISO C compiler.

int statvfs(const char *, struct statvfs *);
int fstatvfs(int, struct statvfs *);

APPLICATION USAGE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
fstatvfs (), statvfs().

CHANGE HISTORY
First released in Issue 4, Version 2.

Issue 5
The type of f_blocks , f_bfree and f_bavail is changed from unsigned long to fsblkcnt_t; the type of
f_files, f_ffree and f_favail is changed from unsigned long to fsfilcnt_t.

1172 CAE Specification (1997)

Headers <sys/time.h>

NAME
sys/time.h — time types

SYNOPSIS
EX #include <sys/time.h>

DESCRIPTION
The <sys/time.h> header defines the timeval structure that includes at least the following
members:

time_t tv_sec seconds
suseconds_t tv_usec microseconds

The <sys/time.h> header defines the itimerval structure that includes at least the following
members:

struct timeval it_interval timer interval
struct timeval it_value current value

The time_t and suseconds_t types are defined as described in <sys/types.h>.

The <sys/time.h> header defines the fd_set type as a structure that includes at least the
following member:

long fds_bits[] bit mask for open file descriptions

The <sys/time.h> header defines the following values for the which argument of getitimer() and
setitimer():

ITIMER_REAL Decrements in real time.
ITIMER_VIRTUAL Decrements in process virtual time.
ITIMER_PROF Decrements both in process virtual time and when the system is running

on behalf of the process.

Each of the following may be declared as a function, or defined as a macro, or both:

void FD_CLR(int fd , fd_set * fdset)
Clears the bit for the file descriptor fd in the file descriptor set fdset.

int FD_ISSET(int fd , fd_set * fdset)
Returns a non-zero value if the bit for the file descriptor fd is set in the file descriptor set by
fdset, and 0 otherwise.

void FD_SET(int fd , fd_set * fdset)
Sets the bit for the file descriptor fd in the file descriptor set fdset.

void FD_ZERO(fd_set * fdset)
Initialises the file descriptor set fdset to have zero bits for all file descriptors.

FD_SETSIZE
Maximum number of file descriptors in an fd_set structure.

If implemented as macros, these may evaluate their arguments more than once, so that
arguments must never be expressions with side effects.

The following are declared as functions and may also be defined as macros. Function prototypes
must be provided for use with an ISO C compiler.

int getitimer(int, struct itimerval *);
int setitimer(int, const struct itimerval *, struct itimerval *);
int gettimeofday(struct timeval *, void *);

System Interfaces and Headers, Issue 5: Volume 2 1173

<sys/time.h> Headers

int select(int, fd_set *, fd_set *, fd_set *, struct timeval *);
int utimes(const char *, const struct timeval [2]);

APPLICATION USAGE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
getitimer(), gettimeofday (), select(), setitimer(), utimes().

CHANGE HISTORY
First released in Issue 4, Version 2.

Issue 5
The type of tv_usec is changed from long to suseconds_t.

1174 CAE Specification (1997)

Headers <sys/timeb.h>

NAME
sys/timeb.h — additional definitions for date and time

SYNOPSIS
EX #include <sys/timeb.h>

DESCRIPTION
The <sys/timeb.h> header defines the timeb structure that includes at least the following
members:

time_t time the seconds portion of the current time
unsigned short millitm the milliseconds portion of the current time
short timezone the local timezone in minutes west of Greenwich
short dstflag TRUE if Daylight Savings Time is in effect

The time_t type is defined as described in <sys/types.h>.

The header <sys/timeb.h> declares the following as a function which may also be defined as a
macro. Function prototypes must be provided for use with an ISO C compiler.

int ftime(struct timeb *);

APPLICATION USAGE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
ftime(), <time.h>.

CHANGE HISTORY
First released in Issue 4, Version 2.

System Interfaces and Headers, Issue 5: Volume 2 1175

<sys/times.h> Headers

NAME
sys/times.h — file access and modification times structure

SYNOPSIS
#include <sys/times.h>

DESCRIPTION
The <sys/times.h> header defines the structure tms, which is returned by times() and includes at
least the following members:

clock_t tms_utime user CPU time
clock_t tms_stime system CPU time
clock_t tms_cutime user CPU time of terminated child processes
clock_t tms_cstime system CPU time of terminated child processes

The clock_t type is defined as described in <sys/types.h>.

The following is declared as a function and may also be defined as a macro. Function prototypes
must be provided for use with an ISO C compiler.

clock_t times(struct tms *);

APPLICATION USAGE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
times (), <sys/types.h>.

CHANGE HISTORY
First released in Issue 1.

Derived from Issue 1 of the SVID.

Issue 4
The following change is incorporated for alignment with the ISO POSIX-1 standard:

• The function declarations in this header are expanded to full ISO C prototypes.

Other changes are incorporated as follows:

• Reference to the <sys/types.h> header is added for the definitions of clock_t.

• This issue states that the times() function can also be defined as a macro.

1176 CAE Specification (1997)

Headers <sys/types.h>

NAME
sys/types.h — data types

SYNOPSIS
#include <sys/types.h>

DESCRIPTION
The <sys/types.h> header includes definitions for at least the following types:

blkcnt_t Used for file block counts
blksize_t Used for block sizes

EX clock_t Used for system times in clock ticks or CLOCKS_PER_SEC (see
<time.h>).

RT clockid_t Used for clock ID type in the clock and timer functions.
dev_t Used for device IDs.

EX fsblkcnt_t Used for file system block counts
fsfilcnt_t Used for file system file counts
gid_t Used for group IDs.

EX id_t Used as a general identifier; can be used to contain at least a pid_t,
uid_t or a gid_t.

ino_t Used for file serial numbers.
EX key_t Used for interprocess communication.

mode_t Used for some file attributes.
nlink_t Used for link counts.
off_t Used for file sizes.
pid_t Used for process IDs and process group IDs.
pthread_attr_t Used to identify a thread attribute object.
pthread_cond_t Used for condition variables.
pthread_condattr_t Used to identify a condition attribute object.
pthread_key_t Used for thread-specific data keys.
pthread_mutex_t Used for mutexes.
pthread_mutexattr_t Used to identify a mutex attribute object.
pthread_once_t Used for dynamic package initialisation.

EX pthread_rwlock_t Used for read-write locks.
pthread_rwlockattr_t Used for read-write lock attributes.
pthread_t Used to identify a thread.
size_t Used for sizes of objects.
ssize_t Used for a count of bytes or an error indication.

EX suseconds_t Used for time in microseconds
time_t Used for time in seconds.

RT timer_t Used for timer ID returned by timer_create().
uid_t Used for user IDs.

EX useconds_t Used for time in microseconds.

All of the types are defined as arithmetic types of an appropriate length, with the following
EX exceptions: key_t, pthread_attr_t, pthread_cond_t, pthread_condattr_t, pthread_key_t,
EX pthread_mutex_t, pthread_mutexattr_t, pthread_once_t, pthread_rwlock_t and
EXEX pthread_rwlockattr_t. Additionally, blkcnt_t and off_t are extended signed integral types,
EX fsblkcnt_t, fsfilcnt_t and ino_t are defined as extended unsigned integral types, size_t is an

unsigned integral type, and blksize_t, pid_t and ssize_t are signed integral types. The type
EX ssize_t is capable of storing values at least in the range [−1, SSIZE_MAX]. The type useconds_t

is an unsigned integral type capable of storing values at least in the range [0, 1,000,000]. The
type suseconds_t is a signed integral type capable of storing values at least in the range [−1,
1,000,000].

System Interfaces and Headers, Issue 5: Volume 2 1177

<sys/types.h> Headers

There are no defined comparison or assignment operators for the types pthread_attr_t,
EX pthread_cond_t, pthread_condattr_t, pthread_mutex_t, pthread_mutexattr_t,pthread_rwlock_t

and pthread_rwlockattr_t.

APPLICATION USAGE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
None.

CHANGE HISTORY
First released in Issue 1.

Derived from Issue 1 of the SVID.

Issue 4
The following changes are incorporated for alignment with the ISO POSIX-1 standard:

• The data type ssize_t is added.

• The DESCRIPTION is expanded to indicate the required arithmetic types.

Other changes are incorporated as follows:

• The clock_t type is marked as an extension.

• In the last paragraph of the DESCRIPTION, only the reference to type key_t is now marked
as an extension.

Issue 4, Version 2
The id_t and useconds_t types are defined for X/OPEN UNIX conformance. The capability of
the useconds_t type is described.

Issue 5
The clockid_t and timer_t types are defined for alignment with the POSIX Realtime Extension.

Added the types blkcnt_t, blksize_t, fsblkcnt_t, fsfilcnt_t and suseconds_t.

Large File System extensions added.

Updated for alignment with the POSIX Threads Extension.

1178 CAE Specification (1997)

Headers <sys/uio.h>

NAME
sys/uio.h — definitions for vector I/O operations

SYNOPSIS
EX #include <sys/uio.h>

DESCRIPTION
The <sys/uio.h> header defines the iovec structure that includes at least the following members:

void *iov_base base address of a memory region for input or output
size_t iov_len the size of the memory pointed to by iov_base

The following are declared as functions and may also be defined as macros. Function prototypes
must be provided for use with an ISO C compiler.

ssize_t readv(int, const struct iovec *, int);
ssize_t writev(int, const struct iovec *, int);

APPLICATION USAGE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
read(), write().

CHANGE HISTORY
First released in Issue 4, Version 2.

System Interfaces and Headers, Issue 5: Volume 2 1179

<sys/utsname.h> Headers

NAME
sys/utsname.h — system name structure

SYNOPSIS
#include <sys/utsname.h>

DESCRIPTION
The <sys/utsname.h> header defines structure utsname, which includes at least the following
members:

char sysname[] name of this implementation of the operating system
char nodename[] name of this node within an implementation-dependent

communications network
char release[] current release level of this implementation
char version[] current version level of this release
char machine[] name of the hardware type on which the system is running

The character arrays are of unspecified size, but the data stored in them is terminated by a null
byte.

The following is declared as a function and may also be defined as a macro.

int uname (struct utsname *);

APPLICATION USAGE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
uname().

CHANGE HISTORY
First released in Issue 1.

Derived from Issue 1 of the SVID.

Issue 4
The following change is incorporated for alignment with the ISO C standard:

• The function declarations in this header are expanded to full ISO C prototypes.

Other changes are incorporated as follows:

• The word ‘‘character’’ is replaced with the word ‘‘byte’’ in the DESCRIPTION.

• The function in this header can now also be defined as a macro.

1180 CAE Specification (1997)

Headers <sys/wait.h>

NAME
sys/wait.h — declarations for waiting

SYNOPSIS
#include <sys/wait.h>

DESCRIPTION
The <sys/wait.h> header defines the following symbolic constants for use with waitpid ():

WNOHANG Do not hang if no status is available, return immediately.
WUNTRACED Report status of stopped child process.

and the following macros for analysis of process status values:

WEXITSTATUS () Return exit status.
EX WIFCONTINUED () True if child has been continued

WIFEXITED () True if child exited normally.
WIFSIGNALED () True if child exited due to uncaught signal.
WIFSTOPPED () True if child is currently stopped.
WSTOPSIG () Return signal number that caused process to stop.
WTERMSIG () Return signal number that caused process to terminate.

EX The following symbolic constants are defined as possible values for the options argument to
waitid ():

WEXITED Wait for processes that have exited.
WSTOPPED Status will be returned for any child that has stopped upon receipt of a

signal.
WCONTINUED Status will be returned for any child that was stopped and has been

continued.
WNOHANG Return immediately if there are no children to wait for.
WNOWAIT Keep the process whose status is returned in infop in a waitable state.

The type idtype_t is defined as an enumeration type whose possible values include at least the
following:

P_ALL
P_PID
P_PGID

The id_t type is defined as described in <sys/types.h>.

The siginfo_t type is defined as described in <signal.h>.

The rusage structure is defined as described in <sys/resource.h>.

The pid_t type is defined as described in <sys/types.h>.

Inclusion of the <sys/wait.h> header may also make visible all symbols from <signal.h> and
<sys/resource.h>.

The following are declared as functions and may also be defined as macros. Function prototypes
must be provided for use with an ISO C compiler.

pid_t wait(int *);
EX pid_t wait3(int *, int, struct rusage *);

int waitid(idtype_t, id_t, siginfo_t *, int);
pid_t waitpid(pid_t, int *, int);

System Interfaces and Headers, Issue 5: Volume 2 1181

<sys/wait.h> Headers

APPLICATION USAGE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
wait(), waitid (). <sys/resource.h>, <sys/types.h>.

CHANGE HISTORY
First released in Issue 3.

Entry included for alignment with the POSIX.1-1988 standard.

Issue 4
The following change is incorporated for alignment with the ISO POSIX-1 standard:

• The function declarations in this header are expanded to full ISO C prototypes.

Another change is incorporated as follows:

• Reference to the <sys/types.h> header is added for the definition of pid_t and marked as an
extension.

Issue 4, Version 2
The following changes are incorporated for X/OPEN UNIX conformance:

• The WIFCONTINUED macro, the list of symbolic constants for the options argument to
waitid (), and the description of the idtype_t enumeration type are added.

• A statement is added indicated that inclusion of this header may also make visible constants
from <signal.h> and <sys/resource.h>.

• The wait3() and waitid () functions are added to the list of functions declared in this header.

1182 CAE Specification (1997)

Headers <tar.h>

NAME
tar.h — extended tar definitions

SYNOPSIS
#include <tar.h>

DESCRIPTION
Header block definitions are:

General definitions:

Name Description Value
TMAGIC "ustar" ustar plus null byte.
TMAGLEN 6 Length of the above.
TVERSION "00" 00 without a null byte.
TVERSLEN 2 Length of the above.

Typeflag field definitions:

Name Description Value
REGTYPE ’0’ Regular file.
AREGTYPE ’ \0’ Regular file.
LNKTYPE ’1’ Link.

EX SYMTYPE ’2’ Symbolic link.
CHRTYPE ’3’ Character special.
BLKTYPE ’4’ Block special.
DIRTYPE ’5’ Directory.
FIFOTYPE ’6’ FIFO special.
CONTTYPE ’7’ Reserved.

Mode field bit definitions (octal):

Name Description Value
TSUID 04000 Set UID on execution.
TSGID 02000 Set GID on execution.

EX TSVTX 01000 On directories, restricted deletion flag.
TUREAD 00400 Read by owner.
TUWRITE 00200 Write by owner special.
TUEXEC 00100 Execute/search by owner.
TGREAD 00040 Read by group.
TGWRITE 00020 Write by group.
TGEXEC 00010 Execute/search by group.
TOREAD 00004 Read by other.
TOWRITE 00002 Write by other.
TOEXEC 00001 Execute/search by other.

APPLICATION USAGE
None.

FUTURE DIRECTIONS
None.

System Interfaces and Headers, Issue 5: Volume 2 1183

<tar.h> Headers

SEE ALSO
The XCU specification, tar.

CHANGE HISTORY
First released in Issue 3.

Derived from the entry in the POSIX.1-1988 standard.

Issue 4
This entry is moved from the referenced Headers specification.

Issue 4, Version 2
The following changes are incorporated for X/OPEN UNIX conformance:

• The significance of SYMTYPE as the value of the typeflag field is explained.

• The value of TSVTX as the value of the mode field is explained.

1184 CAE Specification (1997)

Headers <termios.h>

NAME
termios.h — define values for termios

SYNOPSIS
#include <termios.h>

DESCRIPTION
The <termios.h> header contains the definitions used by the terminal I/O interfaces (see the
XBD specification, Chapter 9, General Terminal Interface for the structures and names defined).

The termios Structure

The following data types are defined through typedef:

cc_t Used for terminal special characters.
speed_t Used for terminal baud rates.
tcflag_t Used for terminal modes.

The above types are all unsigned integral types.

The termios structure is defined, and includes at least the following members:

tcflag_t c_iflag input modes
tcflag_t c_oflag output modes
tcflag_t c_cflag control modes
tcflag_t c_lflag local modes
cc_t c_cc[NCCS] control chars

A definition is given for:

NCCS Size of the array c_cc for control characters.

The following subscript names for the array c_cc are defined:

Subscript Usage
Canonical Mode Non-canonical Mode Description
VEOF EOF character
VEOL EOL character
VERASE ERASE character
VINTR VINTR INTR character
VKILL KILL character

VMIN MIN value
VQUIT VQUIT QUIT character
VSTART VSTART START character
VSTOP VSTOP STOP character
VSUSP VSUSP SUSP character

VTIME TIME value

The subscript values are unique, except that the VMIN and VTIME subscripts may have the
same values as the VEOF and VEOL subscripts, respectively.

System Interfaces and Headers, Issue 5: Volume 2 1185

<termios.h> Headers

Input Modes

The c_iflag field describes the basic terminal input control:

BRKINT Signal interrupt on break.
ICRNL Map CR to NL on input.
IGNBRK Ignore break condition.
IGNCR Ignore CR
IGNPAR Ignore characters with parity errors.
INLCR Map NL to CR on input.
INPCK Enable input parity check.
ISTRIP Strip character

EX IUCLC Map upper-case to lower-case on input (LEGACY).
IXANY Enable any character to restart output.
IXOFF Enable start/stop input control.
IXON Enable start/stop output control.
PARMRK Mark parity errors.

Output Modes

The c_oflag field specifies the system treatment of output:

OPOST Post-process output
EX OLCUC Map lower-case to upper-case on output (LEGACY).

ONLCR Map NL to CR-NL on output.
OCRNL Map CR to NL on output.
ONOCR No CR output at column 0.
ONLRET NL performs CR function.
OFILL Use fill characters for delay.
NLDLY Select newline delays:

NL0 Newline character type 0.
NL1 Newline character type 1.

CRDLY Select carriage-return delays:

CR0 Carriage-return delay type 0.
CR1 Carriage-return delay type 1.
CR2 Carriage-return delay type 2.
CR3 Carriage-return delay type 3.

TABDLY Select horizontal-tab delays:

TAB0 Horizontal-tab delay type 0.
TAB1 Horizontal-tab delay type 1.
TAB2 Horizontal-tab delay type 2.
TAB3 Expand tabs to spaces.

BSDLY Select backspace delays:

BS0 Backspace-delay type 0.
BS1 Backspace-delay type 1.

VTDLY Select vertical-tab delays:

VT0 Vertical-tab delay type 0.
VT1 Vertical-tab delay type 1.

1186 CAE Specification (1997)

Headers <termios.h>

FFDLY Select form-feed delays:

FF0 Form-feed delay type 0.
FF1 Form-feed delay type 1.

Baud Rate Selection

The input and output baud rates are stored in the termios structure. These are the valid values
for objects of type speed_t. The following values are defined, but not all baud rates need be
supported by the underlying hardware.

B0 Hang up
B50 50 baud
B75 75 baud
B110 110 baud
B134 134.5 baud
B150 150 baud
B200 200 baud
B300 300 baud
B600 600 baud
B1200 1200 baud
B1800 1800 baud
B2400 2400 baud
B4800 4800 baud
B9600 9600 baud
B19200 19200 baud
B38400 38400 baud

Control Modes

The c_cflag field describes the hardware control of the terminal; not all values specified are
required to be supported by the underlying hardware:

CSIZE Character size:

CS5 5 bits.
CS6 6 bits.
CS7 7 bits.
CS8 8 bits.

CSTOPB Send two stop bits, else one.
CREAD Enable receiver.
PARENB Parity enable.
PARODD Odd parity, else even.
HUPCL Hang up on last close.
CLOCAL Ignore modem status lines.

Local Modes

The c_lflag field of the argument structure is used to control various terminal functions:

ECHO Enable echo.
ECHOE Echo erase character as error-correcting backspace.
ECHOK Echo KILL.
ECHONL Echo NL.
ICANON Canonical input (erase and kill processing).
IEXTEN Enable extended input character processing.

System Interfaces and Headers, Issue 5: Volume 2 1187

<termios.h> Headers

ISIG Enable signals.
NOFLSH Disable flush after interrupt or quit.
TOSTOP Send SIGTTOU for background output.

EX XCASE Canonical upper/lower presentation (LEGACY).

Attribute Selection

The following symbolic constants for use with tcsetattr() are defined:

TCSANOW Change attributes immediately.
TCSADRAIN Change attributes when output has drained.
TCSAFLUSH Change attributes when output has drained; also flush pending input.

Line Control

The following symbolic constants for use with tcflush() are defined:

TCIFLUSH Flush pending input. Flush untransmitted output.
TCIOFLUSH Flush both pending input and untransmitted output.

The following symbolic constants for use with tcflow() are defined:

TCIOFF Transmit a STOP character, intended to suspend input data.
TCION Transmit a START character, intended to restart input data.
TCOOFF Suspend output.
TCOON Restart output.

The following are declared as functions and may also be defined as macros. Function prototypes
must be provided for use with an ISO C compiler.

speed_t cfgetispeed(const struct termios *);
speed_t cfgetospeed(const struct termios *);
int cfsetispeed(struct termios *, speed_t);
int cfsetospeed(struct termios *, speed_t);
int tcdrain(int);
int tcflow(int, int);
int tcflush(int, int);
int tcgetattr(int, struct termios *);

EX pid_t tcgetsid(int);
int tcsendbreak(int, int);
int tcsetattr(int, int, struct termios *);

APPLICATION USAGE
The following names are commonly used as extensions to the above, therefore portable
applications must not use them:

CBAUD EXTB VDSUSP
DEFECHO FLUSHO VLNEXT
ECHOCTL LOBLK VREPRINT
ECHOKE PENDIN VSTATUS
ECHOPRT SWTCH VWERASE
EXTA VDISCARD

FUTURE DIRECTIONS
None.

1188 CAE Specification (1997)

Headers <termios.h>

SEE ALSO
cfgetispeed(), cfgetospeed(), cfsetispeed(), cfsetospeed(), tcdrain(), tcflow(), tcflush(), tcgetattr(),
tcgetsid(), tcsendbreak(), tcsetattr(), the XBD specification, Chapter 9, General Terminal
Interface.

CHANGE HISTORY
First released in Issue 3.

Entry included for alignment with the ISO POSIX-1 standard.

Issue 4
The following changes are incorporated for alignment with the ISO POSIX-1 standard:

• The function declarations in this header are expanded to full ISO C prototypes.

• Some minor rewording of the DESCRIPTION is done to align the text more exactly with the
ISO POSIX-1 standard. No functional differences are implied by these changes.

• The list of mask name symbols for the c_oflag field have all been marked as extensions, with
the exception of OPOST.

Other changes are incorporated as follows:

• The following words are removed from the description of the c_cc array:

‘‘Implementations that do not support the job control option, may ignore the SUSP character
value in the c_cc array indexed by the VSUSP subscript.’’

This is because job control is defined as mandatory for Issue 4 conforming implementations.

• The mask name symbols IUCLC and OLCUC are marked LEGACY.

Issue 4, Version 2
For X/OPEN UNIX conformance, the tcgetsid() function is added to the list of functions declared
in this header.

System Interfaces and Headers, Issue 5: Volume 2 1189

<time.h> Headers

NAME
time.h — time types

SYNOPSIS
#include <time.h>

DESCRIPTION
The <time.h> header declares the structure tm, which includes at least the following members:

int tm_sec seconds [0,61]
int tm_min minutes [0,59]
int tm_hour hour [0,23]
int tm_mday day of month [1,31]
int tm_mon month of year [0,11]
int tm_year years since 1900
int tm_wday day of week [0,6] (Sunday = 0)
int tm_yday day of year [0,365]
int tm_isdst daylight savings flag

The value of tm_isdst is positive if Daylight Saving Time is in effect, 0 if Daylight Saving Time is
not in effect, and negative if the information is not available.

This header defines the following symbolic names:

NULL Null pointer constant.
CLK_TCK Number of clock ticks per second returned by the times() function

(LEGACY).
CLOCKS_PER_SEC A number used to convert the value returned by the clock () function into

seconds.

RT The <time.h> header declares the structure timespec, which has at least the following members:

time_t tv_sec seconds
long tv_nsec nanoseconds

This header also declares the itimerspec structure, which has at least the following members:

struct timespec it_interval timer period
struct timespec it_value timer expiration

The following manifest constants are defined:

CLOCK_REALTIME The identifier of the systemwide realtime clock.
TIMER_ABSTIME Flag indicating time is absolute with respect to the clock associated with a

timer.

The clock_t, size_t and time_t types are defined as described in <sys/types.h>.

EX Although the value of CLOCKS_PER_SEC is required to be 1 million on all XSI-conformant
systems, it may be variable on other systems and it should not be assumed that
CLOCKS_PER_SEC is a compile-time constant.

The value of CLK_TCK is currently the same as the value of sysconf(_SC_CLK_TCK); however,
new applications should call sysconf() because the CLK_TCK macro may be withdrawn in a
future issue.

EX The <time.h> header provides a declaration for getdate_err .

The following are declared as functions and may also be defined as macros. Function prototypes
must be provided for use with an ISO C compiler.

1190 CAE Specification (1997)

Headers <time.h>

char *asctime(const struct tm *);
char *asctime_r(const struct tm *, char *);
clock_t clock(void);

RT int clock_getres(clockid_t, struct timespec *);
int clock_gettime(clockid_t, struct timespec *);
int clock_settime(clockid_t, const struct timespec *);
char *ctime(const time_t *);
char *ctime_r(const time_t *, char *);
double difftime(time_t, time_t);

EX struct tm *getdate(const char *);
struct tm *gmtime(const time_t *);
struct tm *gmtime_r(const time_t *, struct tm *);
struct tm *localtime(const time_t *);
struct tm *localtime_r(const time_t *, struct tm *);
time_t mktime(struct tm *);

RT int nanosleep(const struct timespec *, struct timespec *);
size_t strftime(char *, size_t, const char *, const struct tm *);

EX char *strptime(const char *, const char *, struct tm *);
time_t time(time_t *);

RT int timer_create(clockid_t, struct sigevent *, timer_t *);
int timer_delete(timer_t);
int timer_gettime(timer_t, struct itimerspec *);
int timer_getoverrun(timer_t);
int timer_settime(timer_t, int, const struct itimerspec *,

struct itimerspec *);
void tzset(void);

The following are declared as variables:

EX extern int daylight;
extern long int timezone;
extern char *tzname[];

APPLICATION USAGE
The range [0,61] for tm_sec allows for the occasional leap second or double leap second.

tm_year is a signed value, therefore years before 1900 may be represented.

FUTURE DIRECTIONS
None.

SEE ALSO
asctime(), asctime_r(), clock (), clock_settime (), ctime(), ctime_r(), daylight , difftime(), getdate(),
gmtime(), gmtime_r(), localtime (), localtime_r (), mktime(), nanosleep(), strftime(), strptime(),
sysconf(), time(), timer_create(), timer_delete(), timer_settime(), timezone , tzname(), tzset(), utime().

CHANGE HISTORY
First released in Issue 1.

Derived from Issue 1 of the SVID.

Issue 4
The following changes are incorporated for alignment with the ISO C standard:

• The function declarations in this header are expanded to full ISO C prototypes.

• The range of tm_min is changed from [0,61] to [0,59].

System Interfaces and Headers, Issue 5: Volume 2 1191

<time.h> Headers

• Possible settings of tm_isdst and their meanings are added.

• The functions clock () and difftime() are added to the list of functions declared in this header.

Other changes are incorporated as follows:

• The symbolic name CLK_TCK is marked as an extension and LEGACY. Warnings about its
use are also added to the DESCRIPTION.

• Reference to the header <sys/types.h> is added for the definitions of clock_t, size_t and
time_t.

• References to CLK_TCK are changed to CLOCKS_PER_SEC in part of the DESCRIPTION.
The fact that CLOCKS_PER_SEC is always one millionth of a second on XSI-conformant
systems is also marked as an extension.

• External declarations for daylight, timezone and tzname are added. The first two are marked as
extensions.

• The function strptime() is added to the list of functions declared in this header.

• A note about the settings of tm_sec is added to the APPLICATION USAGE section.

Issue 4, Version 2
The following changes are incorporated for X/OPEN UNIX conformance:

• The <time.h> header provides a declaration for getdate_err .

• The getdate() function is added to the list of functions declared in this header.

Issue 5
The DESCRIPTION is updated for alignment with the POSIX Realtime Extension and the POSIX
Threads Extension.

1192 CAE Specification (1997)

Headers <ucontext.h>

NAME
ucontext — user context

SYNOPSIS
EX #include <ucontext.h>

DESCRIPTION
The <ucontext.h> header defines the mcontext_t type through typedef.

The <ucontext.h> header defines the ucontext_t type as a structure that includes at least the
following members:

ucontext_t *uc_link pointer to the context that will be resumed
when this context returns

sigset_t uc_sigmask the set of signals that are blocked when this
context is active

stack_t uc_stack the stack used by this context
mcontext_t uc_mcontext a machine-specific representation of the saved

context

The types sigset_t and stack_t are defined as in <signal.h>.

The following are declared as functions and may also be defined as macros, Function prototypes
must be provided for use with an ISO C compiler.

int getcontext(ucontext_t *);
int setcontext(const ucontext_t *);
void makecontext(ucontext_t *, (void *)(), int, ...);
int swapcontext(ucontext_t *, const ucontext_t *);

APPLICATION USAGE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
getcontext(), makecontext(), sigaction (), sigprocmask (), sigaltstack (), <signal.h>.

CHANGE HISTORY
First released in Issue 4, Version 2.

System Interfaces and Headers, Issue 5: Volume 2 1193

<ulimit.h> Headers

NAME
ulimit.h — ulimit commands

SYNOPSIS
EX #include <ulimit.h>

DESCRIPTION
The <ulimit.h> header defines the symbolic constants used in the ulimit() function.

Symbolic constants:

UL_GETFSIZE Get maximum file size.
UL_SETFSIZE Set maximum file size.

The following is declared as a function and may also be defined as a macro. Function prototypes
must be provided for use with an ISO C compiler.

long int ulimit (int, ...);

APPLICATION USAGE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
ulimit().

CHANGE HISTORY
First released in Issue 3.

Issue 4
The following change is incorporated in this issue:

• The function declarations in this header are expanded to full ISO C prototypes.

1194 CAE Specification (1997)

Headers <unistd.h>

NAME
unistd.h — standard symbolic constants and types

SYNOPSIS
#include <unistd.h>

DESCRIPTION
The <unistd.h> header defines miscellaneous symbolic constants and types, and declares
miscellaneous functions. The contents of this header are shown below.

Version Test Macros

The following symbolic constants are defined:

_POSIX_VERSION
Integer value indicating version of the ISO POSIX-1 standard (C language binding).

_POSIX2_VERSION
Integer value indicating version of the ISO POSIX-2 standard (Commands).

_POSIX2_C_VERSION
Integer value indicating version of the ISO POSIX-2 standard (C language binding).

EX _XOPEN_VERSION
Integer value indicating version of the X/Open Portability Guide to which the
implementation conforms.

_POSIX_VERSION is defined in the ISO POSIX-1 standard. It changes with each new version of
the ISO POSIX-1 standard.

_POSIX2_VERSION is defined in the ISO POSIX-2 standard. It changes with each new version
of the ISO POSIX-2 standard.

_POSIX2_C_VERSION is defined in the ISO POSIX-2 standard. It changes with each new
EX version of the ISO POSIX-2 standard. When the C language binding option of the ISO POSIX-2

standard and therefore the X/Open POSIX2 C-language Binding Feature Group is not
supported, _POSIX2_C_VERSION will be set to −1.

_XOPEN_VERSION is defined as an integer value equal to 500.

_XOPEN_XCU_VERSION is defined as an integer value indicating the version of the XCU
specification to which the implementation conforms. If the value is −1, no commands and
utilities are provided on the implementation. If the value is greater than or equal to 4, the
functionality associated with the following symbols is also supported (see Mandatory Symbolic
Constants on page 1196 and Constants for Options and Feature Groups on page 1197):

_POSIX2_C_BIND
_POSIX2_C_VERSION
_POSIX2_CHAR_TERM
_POSIX2_LOCALEDEF
_POSIX2_UPE
_POSIX2_VERSION

If this constant is not defined use the sysconf() function to determine which features are
supported.

System Interfaces and Headers, Issue 5: Volume 2 1195

<unistd.h> Headers

Each of the following symbolic constants is defined only if the implementation supports the
indicated issue of the X/Open Portability Guide:

_XOPEN_XPG2
EX X/Open Portability Guide, Volume 2, January 1987, XVS System Calls and Libraries

(ISBN: 0-444-70175-3).

_XOPEN_XPG3
X/Open Specification, February 1992, System Interfaces and Headers, Issue 3
(ISBN: 1-872630-37-5, C212); this specification was formerly X/Open Portability Guide,
Issue 3, Volume 2, January 1989, XSI System Interface and Headers (ISBN: 0-13-685843-0,
XO/XPG/89/003).

_XOPEN_XPG4
X/Open CAE Specification, July 1992, System Interfaces and Headers, Issue 4
(ISBN: 1-872630-47-2, C202).

_XOPEN_UNIX
X/Open CAE Specification, January 1997, System Interfaces and Headers, Issue 5
(ISBN: 1-85912-181-0, C606).

Mandatory Symbolic Constants

FIPS Although all implementations conforming to this specification support all of the FIPS features
described below, there may be system-dependent or file-system-dependent configuration
procedures that can remove or modify any or all of these features. Such configurations should
not be made if strict FIPS compliance is required.

The following symbolic constants are either undefined or defined with a value other than −1. If a
constant is undefined, an application should use the sysconf(), pathconf () or fpathconf () functions
to determine which features are present on the system at that time or for the particular
pathname in question.

_POSIX_CHOWN_RESTRICTED
The use of chown() is restricted to a process with appropriate privileges, and to changing
the group ID of a file only to the effective group ID of the process or to one of its
supplementary group IDs.

_POSIX_NO_TRUNC
Pathname components longer than {NAME_MAX} generate an error.

_POSIX_VDISABLE
Terminal special characters defined in <termios.h> can be disabled using this character
value.

_POSIX_SAVED_IDS
Each process has a saved set-user-ID and a saved set-group-ID.

_POSIX_JOB_CONTROL
Implementation supports job control.

_POSIX_CHOWN_RESTRICTED, _POSIX_NO_TRUNC and _POSIX_VDISABLE will have
values other than −1.

1196 CAE Specification (1997)

Headers <unistd.h>

The following symbolic constants are always defined to unspecified values to indicate that this
functionality from the POSIX Threads Extension is always present on XSI-conformant systems:

_POSIX_THREADS
The implementation supports the threads option.

_POSIX_THREAD_ATTR_STACKADDR
The implementation supports the thread stack address attribute option.

_POSIX_THREAD_ATTR_STACKSIZE
The implementation supports the thread stack size attribute option.

_POSIX_THREAD_PROCESS_SHARED
The implementation supports the process-shared synchronisation option.

_POSIX_THREAD_SAFE_FUNCTIONS
The implementation supports the thread-safe functions option.

Constants for Options and Feature Groups

The following symbolic constants are defined to have the value −1 if the implementation will
never provide the feature, and to have a value other than −1 if the implementation always
provides the feature. If these are undefined, the sysconf() function can be used to determine
whether the feature is provided for a particular invocation of the application.

_POSIX2_C_BIND
Implementation supports the C Language Binding option. This will always have a value
other than −1.

_POSIX2_C_DEV
Implementation supports the C Language Development Utilities option.

_POSIX2_CHAR_TERM
Implementation supports at least one terminal type.

_POSIX2_FORT_DEV
Implementation supports the FORTRAN Development Utilities option.

_POSIX2_FORT_RUN
Implementation supports the FORTRAN Run-time Utilities option.

EX _POSIX2_LOCALEDEF
Implementation supports the creation of locales by the localedef utility.

_POSIX2_SW_DEV
Implementation supports the Software Development Utilities option.

_POSIX2_UPE
The implementation supports the User Portability Utilities option.

EX _XOPEN_CRYPT
The implementation supports the X/Open Encryption Feature Group.

_XOPEN_ENH_I18N
The implementation supports the Issue 4, Version 2 Enhanced Internationalisation Feature
Group. This is always set to a value other than −1.

_XOPEN_LEGACY
The implementation supports the Legacy Feature Group.

System Interfaces and Headers, Issue 5: Volume 2 1197

<unistd.h> Headers

_XOPEN_REALTIME
The implementation supports the X/Open Realtime Feature Group.

_XOPEN_REALTIME_THREADS
The implementation supports the X/Open Realtime Threads Feature Group.

_XOPEN_SHM
The implementation supports the Issue 4, Version 2 Shared Memory Feature Group. This is
always set to a value other than −1.

_XBS5_ILP32_OFF32
Implementation provides a C-language compilation environment with 32-bit int, long,
pointer and off_t types.

_XBS5_ILP32_OFFBIG
Implementation provides a C-language compilation environment with 32-bit int, long and
pointer types and an off_t type using at least 64 bits.

_XBS5_LP64_OFF64
Implementation provides a C-language compilation environment with 32-bit int and 64-bit
long, pointer and off_t types.

_XBS5_LPBIG_OFFBIG
Implementation provides a C-language compilation environment with an int type using at
least 32 bits and long, pointer and off_t types using at least 64 bits.

RT If _XOPEN_REALTIME is defined to have a value other than −1, then the following symbolic
constants will be defined to an unspecified value to indicate that the features are supported.

_POSIX_ASYNCHRONOUS_IO
Implementation supports the Asynchronous Input and Output option.

_POSIX_MEMLOCK
Implementation supports the Process Memory Locking option.

_POSIX_MEMLOCK_RANGE
Implementation supports the Range Memory Locking option.

_POSIX_MESSAGE_PASSING
Implementation supports the Message Passing option.

_POSIX_PRIORITY_SCHEDULING
Implementation supports the Process Scheduling option.

_POSIX_REALTIME_SIGNALS
Implementation supports the Realtime Signals Extension option.

_POSIX_SEMAPHORES
Implementation supports the Semaphores option.

_POSIX_SHARED_MEMORY_OBJECTS
Implementation supports the Shared Memory Objects option.

_POSIX_SYNCHRONIZED_IO
Implementation supports the Synchronised Input and Output option.

_POSIX_TIMERS
Implementation supports the Timers option.

1198 CAE Specification (1997)

Headers <unistd.h>

The following symbolic constants are always defined to unspecified values to indicate that the
functionality is always present on XSI-conformant systems.

_POSIX_FSYNC
Implementation supports the File Synchronisation option.

_POSIX_MAPPED_FILES
Implementation supports the Memory Mapped Files option.

_POSIX_MEMORY_PROTECTION
Implementation supports the Memory Protection option.

The following symbolic constant will be defined if the option is supported; otherwise, it will be
undefined:

_POSIX_PRIORITIZED_IO
Implementation supports the Prioritized Input and Output option.

RTT If _XOPEN_REALTIME_THREADS is defined to have a value other than −1, then the following
symbolic constants will be defined to an unspecified value to indicate that the features are
supported:

_POSIX_THREAD_PRIORITY_SCHEDULING
The implementation supports the thread execution scheduling option.

_POSIX_THREAD_PRIO_INHERIT
The implementation supports the priority inheritance option.

_POSIX_THREAD_PRIO_PROTECT
The implementation supports the priority protection option.

Execution-time Symbolic Constants

RT If any of the following constants are not defined in the header <unistd.h>, the value varies
depending on the file to which it is applied.

If any of the following constants are defined to have value −1 in the header <unistd.h>, the
implementation will not provide the option on any file; if any are defined to have a value other
than −1 in the header <unistd.h>, the implementation will provide the option on all applicable
files.

All of the following constants, whether defined in <unistd.h> or not, may be queried with
respect to a specific file using the pathconf () or fpathconf () functions.

_POSIX_ASYNC_IO
Asynchronous input or output operations may be performed for the associated file.

_POSIX_PRIO_IO
Prioritized input or output operations may be performed for the associated file.

_POSIX_SYNC_IO
Synchronised input or output operations may be performed for the associated file.

System Interfaces and Headers, Issue 5: Volume 2 1199

<unistd.h> Headers

Constants for Functions

The following symbolic constant is defined:

NULL Null pointer

The following symbolic constants are defined for the access() function:

R_OK Test for read permission.
W_OK Test for write permission.
X_OK Test for execute (search) permission.
F_OK Test for existence of file.

The constants F_OK, R_OK, W_OK and X_OK and the expressions R_OK | W_OK,
R_OK | X_OK and R_OK | W_OK | X_OK all have distinct values.

The following symbolic constants are defined for the confstr() function:

_CS_PATH
If the ISO POSIX-2 standard is supported, this is the value for the PATH environment
variable that finds all standard utilities. Otherwise the meaning of this value is unspecified.

EX _CS_XBS5_ILP32_OFF32_CFLAGS
If sysconf(_SC_XBS5_ILP32_OFF32) returns −1, the meaning of this value is unspecified.
Otherwise, this value is the set of initial options to be given to the cc and c89 utilities to
build an application using a programming model with 32-bit int, long, pointer, and off_t
types.

_CS_XBS5_ILP32_OFF32_LDFLAGS
If sysconf(_SC_XBS5_ILP32_OFF32) returns −1, the meaning of this value is unspecified.
Otherwise, this value is the set of final options to be given to the cc and c89 utilities to build
an application using a programming model with 32-bit int, long, pointer, and off_t types.

_CS_XBS5_ILP32_OFF32_LIBS
If sysconf(_SC_XBS5_ILP32_OFF32) returns −1, the meaning of this value is unspecified.
Otherwise, this value is the set of libraries to be given to the cc and c89 utilities to build an
application using a programming model with 32-bit int, long, pointer, and off_t types.

_CS_XBS5_ILP32_OFF32_LINTFLAGS
If sysconf(_SC_XBS5_ILP32_OFF32) returns −1, the meaning of this value is unspecified.
Otherwise, this value is the set of options to be given to the lint utility to check application
source using a programming model with 32-bit int, long, pointer, and off_t types.

_CS_XBS5_ILP32_OFFBIG_CFLAGS
If sysconf(_SC_XBS5_ILP32_OFFBIG) returns −1, the meaning of this value is unspecified.
Otherwise, this value is the set of initial options to be given to the cc and c89 utilities to
build an application using a programming model with 32-bit int, long, and pointer types,
and an off_t type using at least 64 bits.

_CS_XBS5_ILP32_OFFBIG_LDFLAGS
If sysconf(_SC_XBS5_ILP32_OFFBIG) returns −1, the meaning of this value is unspecified.
Otherwise, this value is the set of final options to be given to the cc and c89 utilities to build
an application using a programming model with 32-bit int, long, and pointer types, and an
off_t type using at least 64 bits.

_CS_XBS5_ILP32_OFFBIG_LIBS
If sysconf(_SC_XBS5_ILP32_OFFBIG) returns −1, the meaning of this value is unspecified.
Otherwise, this value is the set of libraries to be given to the cc and c89 utilities to build an
application using a programming model with 32-bit int, long, and pointer types, and an

1200 CAE Specification (1997)

Headers <unistd.h>

off_t type using at least 64 bits.

_CS_XBS5_ILP32_OFFBIG_LINTFLAGS
If sysconf(_SC_XBS5_ILP32_OFFBIG) returns −1, the meaning of this value is unspecified.
Otherwise, this value is the set of options to be given to the lint utility to check an
application using a programming model with 32-bit int, long, and pointer types, and an
off_t type using at least 64 bits.

_CS_XBS5_LP64_OFF64_CFLAGS
If sysconf(_SC_XBS5_LP64_OFF64) returns −1, the meaning of this value is unspecified.
Otherwise, this value is the set of initial options to be given to the cc and c89 utilities to
build an application using a programming model with 64-bit int, long, pointer, and off_t
types.

_CS_XBS5_LP64_OFF64_LDFLAGS
If sysconf(_SC_XBS5_LP64_OFF64) returns −1, the meaning of this value is unspecified.
Otherwise, this value is the set of final options to be given to the cc and c89 utilities to build
an application using a programming model with 64-bit int, long, pointer, and off_t types.

_CS_XBS5_LP64_OFF64_LIBS
If sysconf(_SC_XBS5_LP64_OFF64) returns −1, the meaning of this value is unspecified.
Otherwise, this value is the set of libraries to be given to the cc and c89 utilities to build an
application using a programming model with 64-bit int, long, pointer, and off_t types.

_CS_XBS5_LP64_OFF64_LINTFLAGS
If sysconf(_SC_XBS5_LP64_OFF64) returns −1, the meaning of this value is unspecified.
Otherwise, this value is the set of options to be given to the lint utility to check application
source using a programming model with 64-bit int, long, pointer, and off_t types.

_CS_XBS5_LPBIG_OFFBIG_CFLAGS
If sysconf(_SC_XBS5_LPBIG_OFFBIG) returns −1, the meaning of this value is unspecified.
Otherwise, this value is the set of initial options to be given to the cc and c89 utilities to
build an application using a programming model with an int type using at least 32 bits and
long, pointer, and off_t types using at least 64 bits.

_CS_XBS5_LPBIG_OFFBIG_LDFLAGS
If sysconf(_SC_XBS5_LPBIG_OFFBIG) returns −1, the meaning of this value is unspecified.
Otherwise, this value is the set of final options to be given to the cc and c89 utilities to build
an application using a programming model with an int type using at least 32 bits and long,
pointer, and off_t types using at least 64 bits.

_CS_XBS5_LPBIG_OFFBIG_LIBS
If sysconf(_SC_XBS5_LPBIG_OFFBIG) returns −1, the meaning of this value is unspecified.
Otherwise, this value is the set of libraries to be given to the cc and c89 utilities to build an
application using a programming model with an int type using at least 32 bits and long,
pointer, and off_t types using at least 64 bits.

_CS_XBS5_LPBIG_OFFBIG_LINTFLAGS
If sysconf(_SC_XBS5_LPBIG_OFFBIG) returns −1, the meaning of this value is unspecified.
Otherwise, this value is the set of options to be given to the lint utility to check application
source using a programming model with an int type using at least 32 bits and long, pointer,
and off_t types using at least 64 bits.

The following symbolic constants are defined for the lseek() and fcntl() functions (they have
distinct values):

SEEK_SET Set file offset to offset.
SEEK_CUR Set file offset to current plus offset.

System Interfaces and Headers, Issue 5: Volume 2 1201

<unistd.h> Headers

SEEK_END Set file offset to EOF plus offset.

The following symbolic constants are defined for sysconf ():

_SC_2_C_BIND
_SC_2_C_DEV
_SC_2_C_VERSION
_SC_2_FORT_DEV
_SC_2_FORT_RUN
_SC_2_LOCALEDEF
_SC_2_SW_DEV
_SC_2_UPE
_SC_2_VERSION
_SC_ARG_MAX

RT _SC_AIO_LISTIO_MAX
_SC_AIO_MAX
_SC_AIO_PRIO_DELTA_MAX
_SC_ASYNCHRONOUS_IO

EX _SC_ATEXIT_MAX
_SC_BC_BASE_MAX
_SC_BC_DIM_MAX
_SC_BC_SCALE_MAX
_SC_BC_STRING_MAX
_SC_CHILD_MAX
_SC_CLK_TCK
_SC_COLL_WEIGHTS_MAX

RT _SC_DELAYTIMER_MAX
_SC_EXPR_NEST_MAX
_SC_FSYNC
_SC_GETGR_R_SIZE_MAX
_SC_GETPW_R_SIZE_MAX

EX _SC_IOV_MAX
_SC_JOB_CONTROL
_SC_LINE_MAX
_SC_LOGIN_NAME_MAX
_SC_MAPPED_FILES

RT _SC_MEMLOCK
_SC_MEMLOCK_RANGE
_SC_MEMORY_PROTECTION

RT _SC_MESSAGE_PASSING
_SC_MQ_OPEN_MAX
_SC_MQ_PRIO_MAX
_SC_NGROUPS_MAX
_SC_OPEN_MAX

EX _SC_PAGESIZE
_SC_PAGE_SIZE
_SC_PASS_MAX (LEGACY)

RT _SC_PRIORITIZED_IO
_SC_PRIORITY_SCHEDULING
_SC_RE_DUP_MAX

RT _SC_REALTIME_SIGNALS
_SC_RTSIG_MAX
_SC_SAVED_IDS

1202 CAE Specification (1997)

Headers <unistd.h>

RT _SC_SEMAPHORES
_SC_SEM_NSEMS_MAX
_SC_SEM_VALUE_MAX
_SC_SHARED_MEMORY_OBJECTS
_SC_SIGQUEUE_MAX
_SC_STREAM_MAX

RT _SC_SYNCHRONIZED_IO
_SC_THREADS
_SC_THREAD_ATTR_STACKADDR
_SC_THREAD_ATTR_STACKSIZE
_SC_THREAD_DESTRUCTOR_ITERATIONS
_SC_THREAD_KEYS_MAX

RTT _SC_THREAD_PRIORITY_SCHEDULING
_SC_THREAD_PRIO_INHERIT
_SC_THREAD_PRIO_PROTECT
_SC_THREAD_PROCESS_SHARED
_SC_THREAD_SAFE_FUNCTIONS
_SC_THREAD_STACK_MIN
_SC_THREAD_THREADS_MAX

RT _SC_TIMERS
_SC_TIMER_MAX
_SC_TTY_NAME_MAX
_SC_TZNAME_MAX
_SC_VERSION

EX _SC_XOPEN_VERSION
_SC_XOPEN_CRYPT
_SC_XOPEN_ENH_I18N
_SC_XOPEN_SHM
_SC_XOPEN_UNIX
_SC_XOPEN_XCU_VERSION
_SC_XBS5_ILP32_OFF32
_SC_XBS5_ILP32_OFFBIG
_SC_XBS5_LP64_OFF64
_SC_XBS5_LPBIG_OFFBIG

The two constants _SC_PAGESIZE and _SC_PAGE_SIZE may be defined to have the same
value.

EX The following symbolic constants are defined as possible values for the function argument to the
lockf () function:

F_LOCK Lock a section for exclusive use.
F_ULOCK Unlock locked sections.
F_TEST Test section for locks by other processes.
F_TLOCK Test and lock a section for exclusive use.

The following symbolic constants are defined for pathconf ():

RT _PC_ASYNC_IO
_PC_CHOWN_RESTRICTED

EX _PC_FILESIZEBITS
_PC_LINK_MAX
_PC_MAX_CANON

System Interfaces and Headers, Issue 5: Volume 2 1203

<unistd.h> Headers

_PC_MAX_INPUT
_PC_NAME_MAX
_PC_NO_TRUNC
_PC_PATH_MAX
_PC_PIPE_BUF

RT _PC_PRIO_IO
_PC_SYNC_IO
_PC_VDISABLE

The following symbolic constants are defined for file streams:

STDIN_FILENO File number of stdin. It is 0.
STDOUT_FILENO File number of stdout. It is 1.
STDERR_FILENO File number of stderr. It is 2.

Type Definitions

EX The size_t, ssize_t, uid_t, gid_t, off_t and pid_ttypes are defined as described in <sys/types.h>.

EX The useconds_t type is defined as described in <sys/types.h>.

The intptr_t type is defined as described in <inttypes.h>.

Declarations

The following are declared as functions and may also be defined as macros. Function prototypes
must be provided for use with an ISO C compiler.

int access(const char *, int);
unsigned int alarm(unsigned int);

EX int brk(void *);
int chdir(const char *);

EX int chroot(const char *); (LEGACY)
int chown(const char *, uid_t, gid_t);
int close(int);
size_t confstr (int, char *, size_t);

EX char *crypt(const char *, const char *);
char *ctermid(char *);

EX char *cuserid(char *s); (LEGACY)
int dup(int);
int dup2(int, int);

EX void encrypt(char[64], int);
int execl(const char *, const char *, . . .);
int execle(const char *, const char *, . . .);
int execlp(const char *, const char *, . . .);
int execv(const char *, char *const []);
int execve(const char *, char *const [], char *const []);
int execvp(const char *, char *const []);
void _exit(int);

EX int fchown(int, uid_t, gid_t);
int fchdir(int);
pid_t fork(void);
long int fpathconf(int, int);
int fsync(int);
int ftruncate(int, off_t);
char *getcwd(char *, size_t);

1204 CAE Specification (1997)

Headers <unistd.h>

EX int getdtablesize(void); (LEGACY)
gid_t getegid(void);
uid_t geteuid(void);
gid_t getgid(void);
int getgroups(int, gid_t []);

EX long gethostid(void);
char *getlogin(void);
int getlogin_r(char *, size_t);
int getopt(int, char * const [], const char *);

EX int getpagesize(void); (LEGACY)
char *getpass(const char *); (LEGACY)
pid_t getpgid(pid_t);
pid_t getpgrp(void);
pid_t getpid(void);
pid_t getppid(void);

EX pid_t getsid(pid_t);
uid_t getuid(void);

EX char *getwd(char *);
int isatty(int);

EX int lchown(const char *, uid_t, gid_t);
int link(const char *, const char *);

EX int lockf(int, int, off_t);
off_t lseek(int, off_t, int);

EX int nice(int);
long int pathconf(const char *, int);
int pause(void);
int pipe(int [2]);

EX ssize_t pread(int, void *, size_t, off_t);
int pthread_atfork(void (*)(void), void (*)(void),

void(*)(void));
EX ssize_t pwrite(int, const void *, size_t, off_t);

ssize_t read(int, void *, size_t);
EX int readlink(const char *, char *, size_t);

int rmdir(const char *);
EX void *sbrk(intptr_t);

int setgid(gid_t);
int setpgid(pid_t, pid_t);

EX pid_t setpgrp(void);
int setregid(gid_t, gid_t);
int setreuid(uid_t, uid_t);
pid_t setsid(void);
int setuid(uid_t);
unsigned int sleep(unsigned int);

EX void swab(const void *, void *, ssize_t);
EX int symlink(const char *, const char *);

void sync(void);
long int sysconf(int);
pid_t tcgetpgrp(int);
int tcsetpgrp(int, pid_t);

EX int truncate(const char *, off_t);
char *ttyname(int);
int ttyname_r(int, char *, size_t);

System Interfaces and Headers, Issue 5: Volume 2 1205

<unistd.h> Headers

EX useconds_t ualarm(useconds_t, useconds_t);
int unlink(const char *);

EX int usleep(useconds_t);
pid_t vfork(void);
ssize_t write(int, const void *, size_t);

The following external variables are declared:

extern char *optarg;
extern int optind, opterr, optopt;

APPLICATION USAGE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
access(), alarm(), chdir(), chown(), close(), crypt(), ctermid(), dup(), encrypt(), environ(), exec,
exit(), fchdir(), fchown(), fcntl(), fork (), fpathconf (), fsync(), ftruncate(), getcwd(), getegid(),
geteuid(), getgid(), getgroups(), gethostid (), getlogin (), getpgid(), getpgrp(), getpid(), getppid(),
getsid(), getuid(), getwd(), isatty(), lchown(), link (), lockf (), lseek(), nice(), pathconf (), pause(),
pipe(), read(), readlink (), rmdir(), setgid(), setpgid(), setpgrp(), setregid(), setreuid(), setsid(),
setuid(), sleep(), swab(), symlink(), sync(), sysconf(), tcgetpgrp(), tcsetpgrp(), truncate(), ttyname(),
ualarm(), unlink(), usleep(), vfork (), write(), <limits.h>, <sys/types.h>, <termios.h>, Section 1.2
on page 1.

CHANGE HISTORY
First released in Issue 1.

Derived from Issue 1 of the SVID.

Issue 4
The following changes are incorporated for alignment with the ISO POSIX-1 standard and the
ISO POSIX-2 standard:

• The function declarations in this header are expanded to full ISO C prototypes.

• A large number of new constants are defined for the sysconf() function, including all those
with prefixes _SC_2 and _SC_BC, plus:

_SC_COLL_WEIGHTS_MAX
_SC_EXPR_NEST_MAX
_SC_LINE_MAX
_SC_RE_DUP_MAX
_SC_STREAM_MAX
_SC_TZNAME_MAX

• The confstr() function is added to the list of functions declared in this header, complete with
a new set of constants for alignment with the ISO POSIX-2 standard.

The following change is incorporated for alignment with the FIPS requirements:

• The following symbolic constants are always defined:

1206 CAE Specification (1997)

Headers <unistd.h>

_POSIX_CHOWN_RESTRICTED
_POSIX_NO_TRUNC
_POSIX_VDISABLE
_POSIX_SAVED_IDS
_POSIX_JOB_CONTROL

In Issue 3, they are only defined if the associated option is present.

Other changes are incorporated as follows:

• The symbolic constants F_ULOCK, F_LOCK, F_TLOCK, F_TEST, GF_PATH, IF_PATH and
PF_PATH are withdrawn.

• The required value of _XOPEN_VERSION is defined and the constant is marked as an
extension.

• The constants _XOPEN_XPG2, _XOPEN_XPG3 and _XOPEN_XPG4 are added.

• The constants _POSIX2_* are added.

• Reference to the header <sys/types.h> is added for the definitions of size_t, ssize_t, uid_t,
gid_t off_t and pid_t. These are marked as extensions.

• The names chroot(), crypt(), encrypt(), fsync(), getopt(), getpass(), nice() and swab() are added
to the list of functions declared in this header. With the exception of getopt(), these are all
marked as extensions.

• The APPLICATION USAGE section is removed.

Issue 4, Version 2
The following changes are incorporated for X/OPEN UNIX conformance:

• The Feature Group constant _XOPEN_UNIX is defined.

• The sysconf() symbolic constants _SC_ATEXIT_MAX, _SC_IOV_MAX, _SC_PAGESIZE and
_SC_PAGE_SIZE are defined.

• The brk(), fchown(), fchdir(), ftruncate(), gethostid(), getpagesize(), getpgid(), getsid(), getwd(),
lchown(), lockf(), readlink(), sbrk(), setpgrp(), setregid(), setreuid(), symlink(), sync(), truncate(),
ualarm(), usleep() and vfork() functions are added to the list of functions declared in this
header.

• The symbolic constants F_ULOCK, F_LOCK, F_TLOCK and F_TEST are added.

Issue 5
The DESCRIPTION is updated for alignment with the POSIX Realtime Extension and the POSIX
Threads Extension.

The symbolic constants _XOPEN_REALTIME and _XOPEN_REALTIME_THREADS are added.
_POSIX2_C_BIND, _XOPEN_ENH_I18N and _XOPEN_SHM must now be set to a value other
than −1 by a conforming implementation.

Large File System extensions added.

The type of the argument to sbrk() is changed from int to intptr_t.

XBS constants are added to the list of Constants for Options and Feature Groups, to the list of
constants for the confstr() function, and to the list of constants to the sysconf() function. These
are all marked EX.

System Interfaces and Headers, Issue 5: Volume 2 1207

<utime.h> Headers

NAME
utime.h — access and modification times structure

SYNOPSIS
#include <utime.h>

DESCRIPTION
The <utime.h> header declares the structure utimbuf, which includes the following members:

time_t actime access time
time_t modtime modification time

The times are measured in seconds since the Epoch.

EX The type time_t is defined as described in <sys/types.h>.

The following is declared as a function and may also be defined as a macro. Function prototypes
must be provided for use with an ISO C compiler.

int utime(const char *, const struct utimbuf *);

APPLICATION USAGE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
utime(), <sys/types.h>.

CHANGE HISTORY
First released in Issue 3.

Issue 4
The following change is incorporated for alignment with the ISO POSIX-1 standard:

• The function declarations in this header are expanded to full ISO C prototypes.

Another change is incorporated as follows:

• Reference to the <sys/types.h> header is added for the definition of time_t. This is marked as
an extension.

1208 CAE Specification (1997)

Headers <utmpx.h>

NAME
utmpx.h — user accounting database definitions

SYNOPSIS
EX #include <utmpx.h>

DESCRIPTION
The <utmpx.h> header defines the utmpx structure that includes at least the following members:

char ut_user[] user login name
char ut_id[] unspecified initialisation process identifier
char ut_line[] device name
pid_t ut_pid process id
short int ut_type type of entry
struct timeval ut_tv time entry was made

The pid_t type is defined through typedef as described in <sys/types.h>.

The timeval structure is defined as described in <sys/time.h>.

Inclusion of the <utmpx.h> header may also make visible all symbols from <sys/time.h>.

The following symbolic constants are defined as possible values for the ut_type member of the
utmpx structure:

EMPTY No valid user accounting information.
BOOT_TIME Identifies time of system boot.
OLD_TIME Identifies time when system clock changed.
NEW_TIME Identifies time after system clock changed.
USER_PROCESS Identifies a process.
INIT_PROCESS Identifies a process spawned by the init process.
LOGIN_PROCESS Identifies the session leader of a logged in user.
DEAD_PROCESS Identifies a session leader who has exited.

The following are declared as functions and may also be defined as macros. Function prototypes
must be provided for use with an ISO C compiler.

void endutxent(void);
struct utmpx *getutxent(void);
struct utmpx *getutxid(const struct utmpx *);
struct utmpx *getutxline(const struct utmpx *);
struct utmpx *pututxline(const struct utmpx *);
void setutxent(void);

APPLICATION USAGE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
endutxent().

CHANGE HISTORY
First released in Issue 4, Version 2.

System Interfaces and Headers, Issue 5: Volume 2 1209

<varargs.h> Headers

NAME
varargs.h — handle variable argument list (LEGACY)

SYNOPSIS
EX #include <varargs.h>

va_alist
va_dcl
void va_start(pvar)
va_list pvar;
type va_arg(pvar, type)
va_list pvar;
void va_end(pvar)
va_list pvar;

DESCRIPTION
The <varargs.h> header contains a set of macros which allows portable procedures that accept
variable argument lists to be written. Routines that have variable argument lists (such as
printf() but do not use <varargs.h> are inherently non-portable, as different machines use
different argument-passing conventions.

va_alist Used as the parameter list in a function header.
va_dcl A declaration for va_alist. No semicolon should follow va_dcl.
va_list A type defined for the variable used to traverse the list.
va_start () Called to initialise pvar to the beginning of the list.
va_arg () Will return the next argument in the list pointed to by pvar . The argument

type is the type the argument is expected to be. Different types can be mixed,
but it is up to the routine to know what type of argument is expected, as it
cannot be determined at run time.

va_end() Used to clean up.

Multiple traversals, each bracketed by va_start () ... va_end(), are possible.

EXAMPLES
This example is a possible implementation of execl().

#include <varargs.h>

#define MAXARGS 100

/* execl is called by
* execl(file, arg1, arg2, ..., (char *)0);
*/

execl(va_alist)
va_dcl
{

va_list ap;
char *file;
char *args[MAXARGS];
int argno = 0;

va_start(ap);
file = va_arg(ap, char *);
while ((args[argno++] = va_arg(ap, char *)) != (char *)0)

;

1210 CAE Specification (1997)

Headers <varargs.h>

va_end(ap);
return execv(file, args);

}

APPLICATION USAGE
It is up to the calling routine to specify how many arguments there are, since it is not always
possible to determine this from the stack frame. For example, execl() is passed a zero pointer to
signal the end of the list. The printf() function can tell how many arguments are there by the
format.

It is non-portable to specify a second argument of char, short or float to va_arg (), since
arguments seen by the called function are not type char, short or float. C language converts type
char and short arguments to int and converts type float arguments to double before passing
them to a function.

For backward compatibility with Issue 3, XSI-conformant systems support <varargs.h> as well
as <stdarg.h>. Use of <varargs.h> is not recommended.

FUTURE DIRECTIONS
None.

SEE ALSO
exec, printf(), <stdarg.h>.

CHANGE HISTORY
First released in Issue 1.

Issue 4
The following changes are incorporated in this issue:

• The interface is marked TO BE WITHDRAWN.

• The APPLICATION USAGE section is added, recommending use of <stdarg.h> in preference
to this header.

• The FUTURE DIRECTIONS section is removed.

Issue 5
Marked LEGACY.

System Interfaces and Headers, Issue 5: Volume 2 1211

<wchar.h> Headers

NAME
wchar.h — wide-character types

SYNOPSIS
#include <wchar.h>

DESCRIPTION
The <wchar.h> header defines the following data types through typedef:

wchar_t As described in <stddef.h>.
wint_t An integral type capable of storing any valid value of wchar_t, or WEOF.
wctype_t A scalar type of a data object that can hold values which represent locale-

specific character classification.
mbstate_t An object type other than an array type that can hold the conversion state

information necessary to convert between sequences of (possibly multibyte)
EX characters and wide-characters. If a codeset is being used such that an

mbstate_t needs to preserve more than 2 levels of reserved state, the results
are unspecified.

EX FILE As described in <stdio.h>.
size_t As described in <stddef.h>.

The <wchar.h> header declares the following as functions and may also define them as macros.
Function prototypes must be provided for use with an ISO C compiler.

wint_t btowc(int);
int fwprintf(FILE *, const wchar_t *, ...);
int fwscanf(FILE *, const wchar_t *, ...);
int iswalnum(wint_t);
int iswalpha(wint_t);
int iswcntrl(wint_t);
int iswdigit(wint_t);
int iswgraph(wint_t);
int iswlower(wint_t);
int iswprint(wint_t);
int iswpunct(wint_t);
int iswspace(wint_t);
int iswupper(wint_t);
int iswxdigit(wint_t);
int iswctype(wint_t, wctype_t);
wint_t fgetwc(FILE *);
wchar_t *fgetws(wchar_t *, int, FILE *);
wint_t fputwc(wchar_t, FILE *);
int fputws(const wchar_t *, FILE *);
int fwide(FILE *, int);
wint_t getwc(FILE *);
wint_t getwchar(void);
size_t mbsinit(const mbstate_t *);
size_t mbrlen(const char *, size_t, mbstate_t *);
size_t mbrtowc(wchar_t *, const char *, size_t,

mbstate_t *);
size_t mbsrtowcs(wchar_t *, const char **, size_t,

mbstate_t *);
wint_t putwc(wchar_t, FILE *);
wint_t putwchar(wchar_t);
int swprintf(wchar_t *, size_t, const wchar_t *, ...);

1212 CAE Specification (1997)

Headers <wchar.h>

int swscanf(const wchar_t *, const wchar_t *, ...);
wint_t towlower(wint_t);
wint_t towupper(wint_t);
wint_t ungetwc(wint_t, FILE *);
int vfwprintf(FILE *, const wchar_t *, va_list);
int vwprintf(const wchar_t *, va_list);
int vswprintf(wchar_t *, size_t, const wchar_t *,

va_list);
size_t wcrtomb(char *, wchar_t, mbstate_t *);
wchar_t *wcscat(wchar_t *, const wchar_t *);
wchar_t *wcschr(const wchar_t *, wchar_t);
int wcscmp(const wchar_t *, const wchar_t *);
int wcscoll(const wchar_t *, const wchar_t *);
wchar_t *wcscpy(wchar_t *, const wchar_t *);
size_t wcscspn(const wchar_t *, const wchar_t *);
size_t wcsftime(wchar_t *, size_t, const wchar_t *,

const struct tm *);
size_t wcslen(const wchar_t *);
wchar_t *wcsncat(wchar_t *, const wchar_t *, size_t);
int wcsncmp(const wchar_t *, const wchar_t *, size_t);
wchar_t *wcsncpy(wchar_t *, const wchar_t *, size_t);
wchar_t *wcspbrk(const wchar_t *, const wchar_t *);
wchar_t *wcsrchr(const wchar_t *, wchar_t);
size_t wcsrtombs(char *, const wchar_t **, size_t,

mbstate_t *);
size_t wcsspn(const wchar_t *, const wchar_t *);
wchar_t *wcsstr(const wchar_t *, const wchar_t *);
double wcstod(const wchar_t *, wchar_t **);
wchar_t *wcstok(wchar_t *, const wchar_t *, wchar_t **);
long int wcstol(const wchar_t *, wchar_t **, int);
unsigned long int wcstoul(const wchar_t *, wchar_t **, int);

EX wchar_t *wcswcs(const wchar_t *, const wchar_t *);
int wcswidth(const wchar_t *, size_t);
size_t wcsxfrm(wchar_t *, const wchar_t *, size_t);
int wctob(wint_t);
wctype_t wctype(const char *);
int wcwidth(wchar_t);
wchar_t *wmemchr(const wchar_t *, wchar_t, size_t);
int wmemcmp(const wchar_t *, const wchar_t *, size_t);
wchar_t *wmemcpy(wchar_t *, const wchar_t *, size_t);
wchar_t *wmemmove(wchar_t *, const wchar_t *, size_t);
wchar_t *wmemset(wchar_t *, wchar_t, size_t);
int wprintf(const wchar_t *, ...);
int wscanf(const wchar_t *, ...);

<wchar.h> defines the following macro names:

WCHAR_MAX The maximum value representable by an object of type wchar_t.
WCHAR_MIN The minimum value representable by an object of type wchar_t.
WEOF Constant expression of type wint_t that is returned by several WP functions

to indicate end-of-file.
NULL As described in <stddef.h>.

System Interfaces and Headers, Issue 5: Volume 2 1213

<wchar.h> Headers

The tag tm is declared as naming an incomplete structure type, the contents of which are
described in the header <time.h>.

Inclusion of the <wchar.h> header may make visible all symbols from the headers <ctype.h>,
<stdio.h>, <stdarg.h>, <stdlib.h>, <string.h>, <stddef.h> and <time.h>.

APPLICATION USAGE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
btowc(), fwprintf(), fwscanf(), iswalnum(), iswalpha (), iswcntrl(), iswdigit (), iswgraph(),
iswlower(), iswprint(), iswpunct(), iswspace(), iswupper(), iswxdigit (), iswctype(), fgetwc(),
fgetws(), fputwc(), fputws(), fwide(), getwc(), getwchar(), getws(), mbsinit(), mbrlen(), mbrtowc(),
mbsrtowcs(), putwc(), putwchar(), putws(), swprintf(), swscanf(), towlower(), towupper(),
ungetwc(), vfwprintf (), vwprintf(), vswprintf(), wcrtomb(), wcsrtombs(), wcscat(), wcschr(),
wcscmp(), wcscoll(), wcscpy(), wcscspn(), wcsftime(), wcslen(), wcsncat(), wcsncmp(), wcsncpy(),
wcspbrk(), wcsrchr(), wcsspn(), wcsstr(), wcstod(), wcstok(), wcstol(), wcstoul(), wcswcs(),
wcswidth(), wcsxfrm(), wctob(), wctype(), wcwidth(), wmemchr(), wmemcmp(), wmemcpy(),
wmemmove(), wmemset(), wprintf(), wscanf(), <ctype.h>, <stdio.h>, <stdarg.h>, <stdlib.h>,
<string.h>, <stddef.h> and <time.h>.

CHANGE HISTORY
First released in Issue 4.

Issue 5
Aligned with the ISO/IEC 9899:1990/Amendment 1:1994 (E).

1214 CAE Specification (1997)

Headers <wctype.h>

NAME
wctype.h — wide-character classification and mapping utilities

SYNOPSIS
#include <wctype.h>

DESCRIPTION
The <wctype.h> header defines the following data types through typedef:

wint_t As described in <wchar.h>.
wctrans_t A scalar type that can hold values which represent locale-specific character

mappings.
wctype_t As described in <wchar.h>.

The <wctype.h> header declares the following as functions and may also define them as macros.
Function prototypes must be provided for use with an ISO C compiler.

int iswalnum(wint_t);
int iswalpha(wint_t);
int iswcntrl(wint_t);
int iswdigit(wint_t);
int iswgraph(wint_t);
int iswlower(wint_t);
int iswprint(wint_t);
int iswpunct(wint_t);
int iswspace(wint_t);
int iswupper(wint_t);
int iswxdigit(wint_t);
int iswctype(wint_t, wctype_t);
wint_t towctrans(wint_t, wctrans_t);
wint_t towlower(wint_t);
wint_t towupper(wint_t);
wctrans_t wctrans(const char *);
wctype_t wctype(const char *);

<wctype.h> defines the following macro name:

WEOF Constant expression of type wint_t that is returned by several MSE functions
to indicate end-of-file.

For all functions described in this header that accept an argument of type wint_t, the value will
be representable as a wchar_t or will equal the value of WEOF. If this argument has any other
value, the behaviour is undefined.

The behaviour of these functions is affected by the LC_CTYPE category of the current locale.

Inclusion of the <wctype.h> header may make visible all symbols from the headers <ctype.h>,
<stdio.h>, <stdarg.h>, <stdlib.h>, <string.h>, <stddef.h> <time.h>. and <wchar.h>.

APPLICATION USAGE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
iswalnum(), iswalpha (), iswcntrl(), iswctype(), iswdigit (), iswgraph(), iswlower(), iswprint(),
iswpunct(), iswspace(), iswupper(), iswxdigit (), setlocale (), towctrans(), towlower(), towupper(),
wctrans(), wctype(), <locale.h>. <wchar.h>.

System Interfaces and Headers, Issue 5: Volume 2 1215

<wctype.h> Headers

CHANGE HISTORY
First released in Issue 5.

Derived from the ISO/IEC 9899:1990/Amendment 1:1994 (E).

1216 CAE Specification (1997)

Headers <wordexp.h>

NAME
wordexp.h — word-expansion types

SYNOPSIS
#include <wordexp.h>

DESCRIPTION
The <wordexp.h> header defines the structures and symbolic constants used by the wordexp()
and wordfree() functions.

The structure type wordexp_t contains at least the following members:

size_t we_wordc count of words matched by words
char **we_wordv pointer to list of expanded words
size_t we_offs slots to reserve at the beginning of we_wordv

The flags argument to the wordexp() function is the bitwise inclusive OR of the following flags:

WRDE_APPEND Append words to those previously generated.
WRDE_DOOFFS Number of null pointers to prepend to we_wordv.
WRDE_NOCMD Fail if command substitution is requested.
WRDE_REUSE The pwordexp argument was passed to a previous successful call to

wordexp(), and has not been passed to wordfree(). The result will be the
same as if the application had called wordfree() and then called wordexp()
without WRDE_REUSE.

WRDE_SHOWERR Do not redirect stderr to /dev/null.
WRDE_UNDEF Report error on an attempt to expand an undefined shell variable.

The following constants are defined as error return values:

WRDE_BADCHAR One of the unquoted characters:

<newline > | & ; < > () { }

appears in words in an inappropriate context.
WRDE_BADVAL Reference to undefined shell variable when WRDE_UNDEF is set in flags.
WRDE_CMDSUB Command substitution requested when WRDE_NOCMD was set in flags.
WRDE_NOSPACE Attempt to allocate memory failed.
WRDE_NOSYS The implementation does not support the function.
WRDE_SYNTAX Shell syntax error, such as unbalanced parentheses or unterminated

string.

The following are declared as functions and may also be declared as macros. Function
prototypes must be provided for use with an ISO C compiler.

int wordexp(const char *, wordexp_t *, int);
void wordfree(wordexp_t *);

The implementation may define additional macros or constants using names beginning with
WRDE_.

APPLICATION USAGE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
wordexp(), the XCU specification.

System Interfaces and Headers, Issue 5: Volume 2 1217

<wordexp.h> Headers

CHANGE HISTORY
First released in Issue 4.

Derived from the ISO POSIX-2 standard.

1218 CAE Specification (1997)

Index

<aio.h>..1064
<assert.h>...1066
<cpio.h>..1067
<ctype.h>..1068
<dirent.h>...1069
<dlfcn.h> ..1071
<errno.h>..1072
<fcntl.h> ...1075
<float.h> ...1077
<fmtmsg.h> ...1080
<fnmatch.h> ..1082
<ftw.h> ...1083
<glob.h>..1085
<grp.h> ...1087
<iconv.h> ...1088
<inttypes.h>...1089
<iso646.h>..1090
<langinfo.h> ..1091
<libgen.h> ..1094
<limits.h> ...1095
<locale.h>...1106
<math.h>..1108
<monetary.h>..1111
<mqueue.h>...1112
<ndbm.h>...1113
<nl_types.h>..1114
<poll.h> ..1115
<pthread.h>...1116
<pwd.h>...1119
<regex.h>..1121
<regexp.h>...1124
<re_comp.h>..1123
<sched.h>...1125
<search.h>..1126
<semaphore.h> ...1128
<setjmp.h> ...1129
<signal.h>...1130
<stdarg.h>..1138
<stddef.h>..1140
<stdio.h> ..1141
<stdlib.h> ...1145
<string.h>...1148
<strings.h>...1150
<stropts.h>...1151
<sys/ipc.h>..1157
<sys/mman.h>..1159

<sys/msg.h>..1161
<sys/resource.h>..1163
<sys/sem.h>..1165
<sys/shm.h>..1167
<sys/stat.h>...1169
<sys/statvfs.h> ...1172
<sys/time.h>...1173
<sys/timeb.h>...1175
<sys/times.h> ...1176
<sys/types.h> ...1177
<sys/uio.h>..1179
<sys/utsname.h>..1180
<sys/wait.h> ...1181
<syslog.h>..1155
<tar.h>...1183
<termios.h>..1185
<time.h> ...1190
<ucontext.h>..1193
<ulimit.h> ..1194
<unistd.h>..1195
<utime.h>...1208
<utmpx.h> ...1209
<varargs.h>..1210
<wchar.h> ..1212
<wctype.h>..1215
<wordexp.h>...1217
±0 ...237, 239
_CS_PATH ...143, 1200
_CS_XBS5_ILP32_OFF32_CFLAGS143, 1200
_CS_XBS5_ILP32_OFF32_LDFLAGS.......143, 1200
_CS_XBS5_ILP32_OFF32_LIBS143, 1200
_CS_XBS5_ILP32_OFF32_LINTFLAGS ..143, 1200
_CS_XBS5_ILP32_OFFBIG_CFLAGS143, 1200
_CS_XBS5_ILP32_OFFBIG_LDFLAGS....143, 1200
_CS_XBS5_ILP32_OFFBIG_LIBS143, 1200
_CS_XBS5_ILP32_OFFBIG_LINTFLAGS

..143, 1201
_CS_XBS5_LP64_OFF64_CFLAGS...........143, 1201
_CS_XBS5_LP64_OFF64_LDFLAGS........143, 1201
_CS_XBS5_LP64_OFF64_LIBS...................143, 1201
_CS_XBS5_LP64_OFF64_LINTFLAGS....143, 1201
_CS_XBS5_LPBIG_OFFBIG_CFLAGS.....143, 1201
_CS_XBS5_LPBIG_OFFBIG_LDFLAGS ..143, 1201
_CS_XBS5_LPBIG_OFFBIG_LIBS.............143, 1201
_CS_XBS5_LPBIG_OFFBIG_LINTFLAGS...............

..143, 1201

System Interfaces and Headers, Issue 5: Volume 2 1219

Index

_exit()..197
FILE ...86
_IOFBF..767, 792, 1141
_IOLBF..792, 1141
_IONBF ..767, 792, 1141
LINE ..86
_longjmp() ...483
_LVL ..18
_MAX ..18
_MIN ...1095
_PC constants

defined in <unistd.h>......................................1203
used in pathconf()..252

_PC_ASYNC_IO ...252
_PC_CHOWN_RESTRICTED252
_PC_FILESIZEBITS ..252
_PC_LINK_MAX..252
_PC_MAX_CANON ..252
_PC_MAX_INPUT ...252
_PC_NAME_MAX ...252
_PC_NO_TRUNC ..252
_PC_PATH_MAX ...252
_PC_PIPE_BUF ...252
_PC_PRIO_IO..252
_PC_SYNC_IO ..252
_PC_VDISABLE..252
_POSIX..1095
_POSIX maximum values

in <limits.h> ..1099
_POSIX minimum values

in <limits.h> ..1099
_POSIX2 constants in sysconf()912
_POSIX2_BC_BASE_MAX1098, 1101
_POSIX2_BC_DIM_MAX.........................1098, 1101
_POSIX2_BC_SCALE_MAX1098, 1101
_POSIX2_BC_STRING_MAX..................1098, 1101
_POSIX2_CHAR_TERM914, 1195, 1197
_POSIX2_COLL_WEIGHTS_MAX1098, 1101
_POSIX2_C_BIND914, 1195, 1197
_POSIX2_C_DEV ...914, 1197
_POSIX2_C_VERSION914, 1195
_POSIX2_EXPR_NEST_MAX..................1099, 1102
_POSIX2_FORT_DEV914, 1197
_POSIX2_FORT_RUN.................................914, 1197
_POSIX2_LINE_MAX.....................1099, 1102, 1104
_POSIX2_LOCALEDEF....................914, 1195, 1197
_POSIX2_RE_DUP_MAX.........................1099, 1102
_POSIX2_SW_DEV914, 1197
_POSIX2_UPE.....................................914, 1195, 1197
_POSIX2_VERSION.....................................914, 1195
_POSIX_AIO_LISTIO_MAX....................1095, 1099

_POSIX_AIO_MAX1095, 1099
_POSIX_ARG_MAX..................................1096, 1099
_POSIX_ASYNCHRONOUS_IO2-3, 914, 1198
_POSIX_ASYNC_IO....................................252, 1199
_POSIX_CHILD_MAX ..1099
_POSIX_CHOWN_RESTRICTED.......126-127, 252

...1196, 1207
_POSIX_CLOCKRES_MIN45, 1099
_POSIX_C_SOURCE..17
_POSIX_DELAYTIMER_MAX1096, 1100
_POSIX_FSYNC2-3, 914, 1199
_POSIX_JOB_CONTROL.................914, 1196, 1207
_POSIX_LINK_MAX.................................1098, 1100
_POSIX_LOGIN_NAME_MAX1096, 1100
_POSIX_MAPPED_FILES...................2-3, 914, 1199
_POSIX_MAX_CANON...........................1098, 1100
_POSIX_MAX_INPUT1098, 1100
_POSIX_MEMLOCK3, 914, 1198
_POSIX_MEMLOCK_RANGE..............3, 914, 1198
_POSIX_MEMORY_PROTECTION3, 914, 1199
_POSIX_MESSAGE_PASSING3, 914, 1198
_POSIX_MQ_OPEN_MAX1096, 1100
_POSIX_MQ_PRIO_MAX........................1096, 1100
_POSIX_NAME_MAX1098, 1100
_POSIX_NGROUPS_MAX.................................1100
_POSIX_NO_TRUNC25, 252, 538, 545

...754, 795, 1196, 1207
_POSIX_OPEN_MAX..................................368, 1100
_POSIX_PATH_MAX................................1098, 1100
_POSIX_PIPE_BUF1098, 1100
_POSIX_PRIORITIZED_IO3, 40-41, 73

...78, 914, 1199
_POSIX_PRIORITY_SCHEDULING................3, 40

...755, 914, 1198
_POSIX_PRIO_IO...252, 1199
_POSIX_REALTIME_SIGNALS............3, 914, 1198
_POSIX_RTSIG_MAX1097, 1100
_POSIX_SAVED_IDS................448, 914, 1196, 1207
_POSIX_SEMAPHORES.........................3, 914, 1198
_POSIX_SEM_NSEMS_MAX1097, 1100
_POSIX_SEM_VALUE_MAX1097, 1100
_POSIX_SHARED_MEMORY_OBJECTS................

...3, 914, 1198
_POSIX_SIGQUEUE_MAX......................1097, 1101
_POSIX_SOURCE...17
_POSIX_SSIZE_MAX1101, 1103
_POSIX_STREAM_MAX..........................1097, 1101
_POSIX_SYNCHRONIZED_IO3, 73, 78, 914, 1198
_POSIX_SYNC_IO252, 1199
_POSIX_THREADS150, 153, 914, 954, 1197
_POSIX_THREAD_ATTR_STACKADDR...............

1220 CAE Specification (1997)

Index

..914, 1197
_POSIX_THREAD_ATTR_STACKSIZE...................

..914, 1197
_POSIX_THREAD_DESTRUCTOR_........................

ITERATIONS1096, 1101
_POSIX_THREAD_KEYS_MAX.............1097, 1101
_POSIX_THREAD_PRIORITY_SCHEDULING

...........................4, 50, 600, 603-604, 626, 914, 1199
_POSIX_THREAD_PRIO_INHERIT

...4, 644-645, 914, 1199
_POSIX_THREAD_PRIO_PROTECT.......................

...4, 637, 642, 645, 914, 1199
_POSIX_THREAD_PROCESS_SHARED

..914, 1197
_POSIX_THREAD_SAFE_FUNCTIONS.................

...150, 153, 914, 954, 1197
_POSIX_THREAD_THREADS_MAX

...628, 1097, 1101
_POSIX_TIMERS......................................3, 914, 1198
_POSIX_TIMER_MAX..............................1097, 1101
_POSIX_TTY_NAME_MAX1097, 1101
_POSIX_TZNAME_MAX.........................1097, 1101
_POSIX_VDISABLE252, 1196, 1207
_POSIX_VERSION.......................................914, 1195
_PROCESS..18
_SC constants

defined in <unistd.h>......................................1202
in sysconf() ..912

_SC_2_CHAR_TERM ..914
_SC_2_C_BIND...914
_SC_2_C_DEV...914
_SC_2_C_VERSION...914
_SC_2_FORT_DEV...914
_SC_2_FORT_RUN ..914
_SC_2_LOCALEDEF..914
_SC_2_SW_DEV ...914
_SC_2_UPE ..914
_SC_2_VERSION..590, 914
_SC_AIO_LISTIO_MAX914
_SC_AIO_MAX...914
_SC_AIO_PRIO_DELTA_MAX914
_SC_ARG_MAX..914
_SC_ASYNCHRONOUS_IO914
_SC_ATEXIT_MAX..914
_SC_BC_BASE_MAX...914
_SC_BC_DIM_MAX...914
_SC_BC_SCALE_MAX..914
_SC_BC_STRING_MAX914
_SC_CHILD_MAX ...914
_SC_CLK_TCK.....................................914, 949, 1190
_SC_COLL_WEIGHTS_MAX..............................914

_SC_COLL_WIGHTS_MAX1206
_SC_DELAYTIMER_MAX....................................914
_SC_EXPR_NEST_MAX.............................914, 1206
_SC_FSYNC ...914
_SC_GETGR_R_SIZE_MAX334, 336, 914
_SC_GETPW_R_SIZE_MAX363, 365, 914
_SC_IOV_MAX ...914
_SC_JOB_CONTROL ..914
_SC_LINE_MAX ..914, 1206
_SC_LOGIN_NAME_MAX..................................914
_SC_MAPPED_FILES..914
_SC_MEMLOCK...914
_SC_MEMLOCK_RANGE914
_SC_MEMORY_PROTECTION914
_SC_MESSAGE_PASSING...................................914
_SC_MQ_OPEN_MAX..914
_SC_MQ_PRIO_MAX ...914
_SC_NGROUPS_MAX ..914
_SC_OPEN_MAX...914
_SC_PAGESIZE..............................352, 527, 914, 993
_SC_PAGE_SIZE....................................352, 527, 914
_SC_PASS_MAX...914
_SC_PRIORITIZED_IO ...914
_SC_PRIORITY_SCHEDULING.........................914
_SC_REALTIME_SIGNALS914
_SC_RE_DUP_MAX....................................914, 1206
_SC_RTSIG_MAX...914
_SC_SAVED_IDS ..914
_SC_SEMAPHORES ..914
_SC_SEM_NSEMS_MAX......................................914
_SC_SEM_VALUE_MAX......................................914
_SC_SHARED_MEMORY_OBJECTS914
_SC_SIGQUEUE_MAX ...914
_SC_STREAM_MAX914, 1206
_SC_SYNCHRONIZED_IO914
_SC_THREADS...914
_SC_THREAD_ATTR_STACKADDR................914
_SC_THREAD_ATTR_STACKSIZE914
_SC_THREAD_DESTRUCTOR_ITERATIONS......

..914
_SC_THREAD_KEYS_MAX914
_SC_THREAD_PRIORITY_SCHEDULING914
_SC_THREAD_PRIO_INHERIT914
_SC_THREAD_PRIO_PROTECT914
_SC_THREAD_PROCESS_SHARED.................914
_SC_THREAD_SAFE_FUNCTIONS..................914
_SC_THREAD_STACK_MIN914
_SC_THREAD_THREADS_MAX.......................914
_SC_TIMERS ...914
_SC_TIMER_MAX..914
_SC_TTY_NAME_MAX..914

System Interfaces and Headers, Issue 5: Volume 2 1221

Index

_SC_TZNAME_MAX..................................914, 1206
_SC_VERSION ..914
_SC_XBS5_ILP32_OFF32914
_SC_XBS5_ILP32_OFFBIG914
_SC_XBS5_LP64_OFF64..914
_SC_XBS5_LPBIG_OFFBIG..................................914
_SC_XOPEN_CRYPT ..914
_SC_XOPEN_ENH_I18N914
_SC_XOPEN_LEGACY...914
_SC_XOPEN_REALTIME.....................................914
_SC_XOPEN_REALTIME_THREADS...............914
_SC_XOPEN_SHM ..914
_SC_XOPEN_UNIX ...914
_SC_XOPEN_VERSION914
_SC_XOPEN_XCU_VERSION914
_setjmp()..483, 772
_TIME..18
_tolower() ..956
_toupper()..958
_XBS5_ILP32_OFF32914, 1198
_XBS5_ILP32_OFFBIG914, 1198
_XBS5_LP64_OFF64.....................................914, 1198
_XBS5_LPBIG_OFFBIG...............................914, 1198
_XOPEN_CRYPT2, 914, 1197
_XOPEN_ENH_I18N914, 1197
_XOPEN_IOV_MAX1096, 1102
_XOPEN_LEGACY..................................5, 914, 1197
_XOPEN_REALTIME2-3, 192, 213

...217, 285, 914, 1198
_XOPEN_REALTIME_THREADS..................4, 914

..1198-1199
_XOPEN_SHM ...914, 1198
_XOPEN_SOURCE ..17
_XOPEN_UNIX ..914, 1196
_XOPEN_VERSION914, 1195
_XOPEN_XCU_VERSION914, 1195
_XOPEN_XPG2...1196
_XOPEN_XPG3...1196
_XOPEN_XPG4...1196
__loc1 ..706
a64l() ...58
ABDAY_ ...1092
ABDAY_1 ...568
ABMON_..1092
abort() ...60
abs()...62
access() ...63
acos()...65
acosh() ..67
ACTION ...390
advance() ...68, 714

AF_...19
AIO_ ..18
AIO_ALLDONE...69, 1064
aio_cancel()..69
AIO_CANCELED ..69, 1064
aio_error() ..70
aio_fsync() ...71
AIO_LISTIO_MAX..............................465, 914, 1095
AIO_MAX..914, 1095
AIO_NOTCANCELED69, 1064
AIO_PRIO_DELTA_MAX....................40, 914, 1096
aio_read()...73
aio_return()..75
aio_suspend()..76
aio_write() ...78
alarm() ..80
ALT_DIGITS ..1092
AM_STR ...1092
ANSI X3J11.1 (NCEG) ...11
ANYMARK ...412, 1153
AREGTYPE..1183
ARG_MAX..............................22, 192, 194, 914, 1096
asctime()...81
asctime_r() ...81
asin() ...83
asinh()...67, 85
assert()..86, 1066
atan()...87
atan2()...88
atanh() ..67, 90
atexit() ..91
ATEXIT_MAX...91, 914, 1096
atof()..92
atoi()..93
atol()..94
attribute selection ...1188
bandinfo ...1151
BASE

conformance ..1
basename() ..95
baud rate selection ...1187
bcmp() ..96
bcopy() ...97
BC_ constants

in sysconf() ..912
BC_BASE_MAX..914, 1098
BC_DIM_MAX..914, 1098
BC_SCALE_MAX...914, 1098
BC_STRING_MAX914, 1098
blkcnt_t ...1177
blksize_t..1177

1222 CAE Specification (1997)

Index

BLKTYPE..1183
BOOT_TIME..183, 1209
brk()...98
BRKINT ..1186
BSDLY ...1186
bsd_signal() ...100
bsearch()...102
BSn...1186
btowc() ...105
BUFSIZ ...767, 1141
BUS_ ..19
BUS_ADRALN..1135
BUS_ADRERR...1135
BUS_OBJERR...1135
bzero() ..106
calloc() ..107
can..10
catclose() ..109
catgets()..110
catopen() ..112
cbrt() ...114
ceil() ..115
cfgetispeed()..117
cfgetospeed()...118
cfsetispeed() ..119
cfsetospeed() ...120
CHARCLASS_NAME_MAX1104
CHAR_BIT...1102
CHAR_MAX..468-469, 1102
CHAR_MIN...1103
chdir() ...121
CHILD_MAX..250, 914, 1096
chmod()..123
chown() ..126
chroot()...128
CHRTYPE ..1183
CLD_ ...19
CLD_CONTINUED ...1135
CLD_DUMPED...1135
CLD_EXITED ..1135
CLD_KILLED..1135
CLD_STOPPED ..1135
CLD_TRAPPED..1135
clearerr()...130
CLK_TCK ..912, 914, 1190
CLOCAL...1187
clock() ...131
clockid_t ...1177
CLOCKS_PER_SEC...................131-132, 1177, 1190
CLOCK_ ...18
clock_getres()..133

clock_gettime() ...133
CLOCK_REALTIME...45, 133, 562, 944, 1099, 1190
clock_settime() ...133
clock_t ...1177
close() ...135
closedir() ..138
closelog()..139
CODESET...1092
COLL_WEIGHTS_MAX.............................914, 1098
compilation environment17
compile()..142, 714
conformance ..1
confstr()..143
control modes..1187
control-normal ..689
CONTTYPE ...1183
conversion descriptor....................192, 195, 395-398
conversion specification........256-257, 260, 275-278

...............303-304, 306, 309-313, 876-877, 880, 882

..889-890
modified ...881

Coordinated
Universal ..292

cos()...145
cosh() ..146
CPU ...1176
CRDLY..1186
CREAD ...1187
creat()..147
CRn..1186
CRNCYSTR ...1092
CRYPT..2, 148, 177, 775
crypt() ...148
CSIZE ..1187
CSn ..1187
CSTOPB..1187
ctermid() ..150
ctime() ..151
ctime_r()...151
cuserid() ...153
C_ constants in <cpio.h>.....................................1067
C_IRGRP ..1067
C_IROTH ...1067
C_IRUSR...1067
C_ISBLK ...1067
C_ISCHR ..1067
C_ISCTG...1067
C_ISDIR..1067
C_ISFIFO ..1067
C_ISGID..1067
C_ISLNK ..1067

System Interfaces and Headers, Issue 5: Volume 2 1223

Index

C_ISREG...1067
C_ISSOCK..1067
C_ISUID..1067
C_ISVTX ...1067
C_IWGRP...1067
C_IWOTH ..1067
C_IWUSR ...1067
C_IXGRP ..1067
C_IXOTH ...1067
C_IXUSR...1067
data structure

dirent...1069
entry ..1126
group...1087
lconv..1106
msqid_ds..1161
stat ...1169
tms ...1176
utimbuf...1208

data type...55
ACTION...1126
cc_t...1185
DIR ..1069
div_t ..1145
ENTRY..1126
FILE...1141
fpos_t ..1141
glob_t ..1085
ldiv_t ...1145
mbstate_t..1212
msglen_t ...1161
msgqnum_t..1161
nl_catd ..1114
nl_item..1114
ptrdiff_t...1140
regex_t ..1121
regmatch_t ...1121
regoff_t..1121
shmatt_t..1167
sigset_t ..1130
sig_atomic_t ..1130
size_t ...1140
speed_t..1185
tcflag_t ..1185
va_list..1210
VISIT ...1126
wchar_t...1140
wctrans_t..1215
wctype_t...1212
wint_t..1212

data types
defined in <sys/types.h>................................1177

DATEMSK..323
daylight...155
DAY_ ...1092
DBL_ constants

defined in <float.h>..1078
DBL_DIG..1078, 1102
DBL_EPSILON..1079
DBL_MANT_DIG................................115, 237, 1078
DBL_MAX ...1078, 1102
DBL_MAX_10_EXP..1078
DBL_MAX_EXP115, 237, 1078
DBL_MIN...1079
DBL_MIN_10_EXP...1078
DBL_MIN_EXP...1078
DBM ..156-157, 1113
DBM_...19
dbm_clearerr() ..156
dbm_close()...156
dbm_delete() ...156
dbm_error() ...156
dbm_fetch() ...156
dbm_firstkey() ..156
DBM_INSERT...156, 1113
dbm_nextkey() ...156
dbm_open()...156
DBM_REPLACE...156, 1113
dbm_store() ...156
DEAD_PROCESS...183, 1209
DELAYTIMER_MAX914, 947, 1096
DES

decryption algorithm...177
descriptor table

returning size of..328
dev_t..1177
difftime() ..159
DIR...........55, 138, 575-576, 693, 727, 745, 939, 1069
directive............256, 275-276, 303, 309-310, 889-890

modified ...890
dirname() ...160
DIRTYPE ..1183
div()...162
dlclose()..163
dlerror()..164
dlopen()..165
dlsym() ...168
drand48() ...170
dup() ...173
dup2() ...173
D_FMT..1092

1224 CAE Specification (1997)

Index

D_T_FMT ...1092
E2BIG...............22, 194, 395-396, 552, 765, 878, 1072
EACCES22, 63, 112-113, 121, 123, 126, 128

.....194, 204, 206, 213, 218, 247, 253, 270, 287, 293

.....296, 299, 321, 361, 389, 453, 462, 474, 491, 511

.....513, 516, 528, 532, 538, 545, 547, 549, 552, 555

.....565, 572, 575, 696, 701, 724, 730, 754, 756, 760
......762, 765, 780, 795, 797-798, 800, 804, 861, 909
...984, 989, 991, 1072

EADDRINUSE..22, 1072
EADDRNOTAVAIL22, 1072
EAFNOSUPPORT..22, 1072
EAGAIN22, 29, 71, 73, 76, 78, 98, 209, 213

......224, 227, 231, 250, 262, 265, 281, 346, 406-411

......413-415, 465, 474, 522, 525, 528, 532, 540, 542

......555, 573-574, 588, 609, 619, 624, 629, 633, 636
.....649, 651, 675, 690, 757, 765, 837, 847, 944, 995
...1056, 1072

EALREADY...23, 1072
EBADF...............23, 69, 72, 74, 79, 109-110, 136, 138

......173, 204, 206-209, 213, 217, 220, 224, 227, 229

......231, 234, 254, 262, 265, 281, 284-285, 287, 289

......291, 295, 302, 346, 389, 397, 411, 413-415, 420

......421, 474, 489, 528, 534-536, 540, 542, 544, 675

......690, 694, 747, 792, 922, 924, 926, 928-929, 931
...........................932, 935-936, 968, 986, 1057, 1072

EBADMSG..............23, 346, 408, 411, 540, 690, 1072
EBUSY................23, 204, 536, 557, 609-610, 633, 636

.............649-651, 655, 724, 730, 750, 984-985, 1072
ECANCELED.......................23, 69, 74, 79, 465, 1072
ECHILD.............23, 581, 917, 1003, 1005-1006, 1072
ECHO..1187
ECHOE ...1187
ECHOK...1187
ECHONL..1187
ECONNABORTED..23, 1072
ECONNREFUSED ...23, 1072
ECONNRESET ...23, 1072
ecvt() ...175
EDEADLK.................23, 213-214, 474, 636, 651, 655

..757, 1072
EDESTADDRREQ..24, 1072
EDOM...........24, 65, 67, 83, 87-88, 114-116, 145-146

......187, 200, 202-203, 237, 239, 273, 393, 445, 456

......460, 477, 479, 481-482, 530, 563, 591, 720, 729

..................733, 849, 851, 856, 919, 921, 1061, 1072
EDQUOT..24, 1072
EEXIST24, 462, 511, 513, 516, 538, 549, 572

....................724, 730, 754, 762, 795, 804, 909, 1072
EFAULT..24, 1072
EFBIG..........24, 79, 209, 224, 262, 265, 282, 295, 367

...465, 765, 1057, 1072
EHOSTUNREACH ..24, 1072
EIDRM.....................................24, 552, 555, 765, 1072
EILSEQ................24, 33, 231, 260, 266, 279, 307, 313

.............396, 495-496, 498, 501, 503-504, 983, 1009
...1023, 1033, 1072

EINPROGRESS.........24, 41, 70-71, 75-76, 466, 1072
EINTR24, 54, 76, 109-110, 124, 126-127, 135

.......136, 138, 173-174, 179, 206-209, 212-213, 224

.....227, 231, 247, 262, 265, 270, 282, 287, 289, 295

.....334, 336, 346, 353, 363, 365, 415, 453, 465, 474

.....538, 540, 542, 552, 555, 562, 572, 580, 588, 595
........598-599, 602, 605-608, 610-611, 614-615, 617
.......619, 621-623, 628-629, 631-632, 634, 636, 639
......641, 648, 660-661, 664, 675, 690, 747, 754, 757
...........765, 795, 836, 844, 847, 922, 935, 952, 1003
...1006, 1057, 1072

EINVAL..................25, 63, 70, 72, 74-75, 79, 110-111
......119-120, 124, 127, 133, 144, 205, 207-208, 213
......217-218, 220, 247, 253-254, 260, 271, 279, 282
.....289, 295, 299, 307, 313, 321, 338, 341, 346, 355
......360, 368, 370, 389, 396, 398, 405-415, 448, 453
.....465, 474, 489, 496, 498, 501, 516, 522, 525, 528
......532, 538, 542, 547, 552, 555, 558, 561-562, 572
.......573, 588-589, 597, 599-600, 602-604, 606, 609
......611, 614-615, 617, 619, 621, 624, 626, 628, 631
.......634, 636-637, 639, 641-642, 645, 647, 650-651
......653, 655, 657, 659, 661, 664, 675, 684, 690-691
......696, 701, 724, 735, 740, 742, 747, 749-752, 754
......755, 757, 760, 762, 765, 769, 780, 785-786, 790
......795, 798, 800, 802, 804, 814, 818, 820-821, 825
.....826, 830, 835, 837, 846, 848, 870, 874, 896, 900
......902-903, 914, 924, 926, 935-936, 944, 946, 948
...960, 977, 986, 988, 1003, 1006, 1009, 1013, 1023
...............1028, 1032, 1035, 1038, 1042, 1057, 1072

EIO..............25, 126-127, 136, 179, 181, 206, 208-209
.....224, 227, 231, 262, 265, 282, 285, 287, 289, 295
.....334, 336, 353, 363, 365, 415, 453, 465, 491, 516
.....572, 574, 675, 690, 696, 701, 724, 730, 861, 909
..........................922, 924, 926, 932, 935, 1057, 1072

EISCONN ..25, 1072
EISDIR.............25, 247, 270, 296, 572, 690, 724, 1072
ELOOP25, 63, 121-124, 126-129, 194, 196

.....204, 218, 247, 253, 270, 287, 293, 296, 299, 453
......462, 491, 511, 513, 516, 565, 572, 574-576, 696
...........701, 724, 730, 861, 909, 984, 989, 991, 1072

ELSIZE ..487
EMFILE..............25, 112-113, 173, 179, 181, 214, 220

.....247, 270, 334, 336, 343, 353, 363, 365, 367, 398

.....411, 528, 538, 565, 572, 575, 585, 589, 754, 795

...798, 952, 1072

System Interfaces and Headers, Issue 5: Volume 2 1225

Index

EMLINK..................................25, 462, 511, 724, 1072
EMPTY ...183, 1209
EMSGSIZE.......................................25, 540, 542, 1072
EMULTIHOP...25, 1072
ENAMETOOLONG...........25, 63, 112-113, 121-129

.......194-196, 204-205, 218, 247, 253, 270-271, 287

......288, 293, 296, 299, 453, 462-463, 491, 511, 513

......516, 538, 545, 565, 572-576, 696, 701, 724, 730

......731, 754, 756, 795, 797, 861, 909, 984-985, 989
..991, 1072

encrypt()...177
endgrent() ..179
endpwent() ..181
endutxent()..183
ENETDOWN...25, 1072
ENETUNREACH...25, 1072
ENFILE..............26, 112-113, 179, 181, 247, 270, 334

.....336, 343, 353, 363, 365, 398, 538, 565, 572, 575
...585, 754, 795, 952, 1072

ENOBUFS ..26, 1072
ENODATA...26, 412, 1072
ENODEV ...26, 415, 528, 1072
ENOENT.............26, 63, 112-113, 121, 123, 126, 128

.....194, 204, 218, 247, 253, 270, 287, 293, 296, 299

.....453, 462, 491, 511, 513, 516, 538, 545, 549, 565
......572, 575-576, 694, 696, 701, 724, 730, 754, 756
...762, 795, 797, 804, 861, 909, 984, 989, 991, 1073

ENOEXEC..26, 194-195, 1073
ENOLCK ...26, 214, 474, 1073
ENOLINK ..26, 1073
ENOMEM............26, 98, 107-108, 112, 194-195, 220

.....227, 231, 247, 250, 260, 262, 266, 271, 307, 321

......367-368, 390, 398, 493-494, 522, 525, 528, 532
......558, 573-574, 595, 598, 609, 617, 629, 633, 641
.....649, 659, 664, 672, 699, 701, 707, 798, 804, 820
....................................873, 940, 952, 993, 995, 1073

ENOMSG.................................26, 110-111, 552, 1073
ENOPROTOOPT..26, 1073
ENOSPC26, 209, 224, 247, 262, 265, 270, 282

.....462, 511, 513, 516, 538, 549, 572, 724, 752, 754
..................762, 765, 795, 805, 909, 952, 1057, 1073

ENOSR.......26, 406, 409-411, 413-415, 572, 574, 675
..1073

ENOSTR ..27, 346, 675, 1073
ENOSYS................2, 27, 69-70, 72-73, 75-76, 78, 133

......148, 177, 217, 465, 522, 524, 534-536, 538, 540
......542, 544-545, 562, 600, 603-604, 626, 637, 642
.......645, 735-738, 740, 742, 749-752, 754-757, 775
.........795, 797, 837, 847, 944, 946, 948, 1005, 1073

ENOTCONN...27, 1073
ENOTDIR...........27, 63, 113, 121, 123, 126, 128, 194

.....204, 206, 218, 247, 253, 270, 287, 293, 296, 299

.....453, 462, 491, 511, 513, 516, 565, 572, 575, 696

...........701, 724, 730, 861, 909, 984, 989, 991, 1073
ENOTEMPTY27, 724, 730, 1073
ENOTSOCK ..27, 1073
ENOTSUP27, 528, 533, 600, 602-604, 626

..645, 1073
ENOTTY27, 415, 421, 922, 924, 926, 928-929

......................................931-932, 935-936, 968, 1073
ENTRY..390
environ..185
ENXIO...............27, 209, 224, 227, 231, 247, 262, 266

.......270-271, 282, 343, 353, 405-406, 409-411, 413

..........................415, 528, 573, 675, 691, 1057, 1073
EOF..103, 1141
EOPNOTSUPP27, 453, 474, 1073
EOVERFLOW27, 74, 214, 227, 229, 231, 247

.....271, 282, 285, 287, 291, 466, 474, 489, 491, 528

....................573, 690-691, 694, 800, 861, 952, 1073
EPERM.......28, 123, 126-128, 133, 184, 204, 207-208

.....218, 355, 361, 368, 372, 448, 453, 462, 516, 523
......525, 547, 566, 619, 626, 633, 636-637, 642, 645
......649, 653, 724, 730, 736-737, 740, 742, 752, 760
......769, 780, 785-786, 788, 790, 800, 820, 837, 842
....................................936, 977, 984, 989, 991, 1073

EPIPE28, 209, 224, 262, 265, 282, 675, 1057, 1073
EPROTO...28, 1073
EPROTONOSUPPORT28, 1073
EPROTOTYPE ..28, 1073
ERA..1092
erand48()..170, 186
ERANGE............28, 67, 83, 87-88, 115, 145-146, 187

......200, 202-203, 237, 239, 321, 334, 336, 343, 363
.....365, 393, 409, 445, 456, 460, 477, 479, 481, 530
.....563, 591, 675, 733, 760, 766, 849, 851, 896, 900
.............902, 919, 921, 968, 1028, 1032, 1035, 1057
...1061, 1073

ERA_D_FMT ...1092
ERA_D_T_FMT...1092
ERA_T_FMT..1092
erf()..187
erfc()..187
EROFS28, 63, 124, 126, 207-208, 247, 271, 296

.....453, 462, 511, 513, 516, 573, 724, 731, 909, 985

...989, 991, 1073
errno ..189
ERROR..242, 714
error numbers..22

additional ...29
ESPIPE28, 229, 284, 291, 489, 691, 1057, 1073
ESRCH28, 355, 360, 372, 449, 607, 621, 626-628

1226 CAE Specification (1997)

Index

....................632, 736-738, 740, 742, 780, 837, 1073
EST...973
ESTALE...28, 1073
ETIME...............................28, 409-410, 413-414, 1073
ETIMEDOUT.....................................28-29, 614, 1073
ETXTBSY..29, 63, 194, 247, 271, 573, 725, 985, 1073
EVINAL..415
EWOULDBLOCK...29, 1073
EX...12
EXDEV.....................................29, 205, 463, 724, 1073
exec ..191
execl() ...191
execle() ...191
execlp()...191
execv() ..191
execve() ..191
execvp()..191
exit()..197
EXIT_FAILURE...197, 1145
EXIT_SUCCESS ..197, 1145
exp() ..200
expm1() ..202
expressions

regular...703
EXPR_NEST_MAX914, 1099
extension

EX...12
OH ...13

F-LOCK...1203
fabs() ...203
fattach() ..204
fchdir()..206
fchmod() ..207
fchown()...208
fclose() ..209
fcntl() ..211
fcvt() ...175, 215
fdatasync()...217
fdetach() ...218
fdopen()..220
FD_CLOEXBC...31
FD_CLOEXEC112, 192, 211, 398, 570, 585

..794, 1075
FD_CLR..9, 746, 1173
FD_CLR()...216
FD_ISSET...9, 216, 746, 1173
FD_SET ..9, 216, 746, 1173
fd_set...1173
FD_SETSIZE..747, 1173
FD_ZERO ..9, 216, 746, 1173
feof()..222

ferror() ..223
FFDLY ...1187
fflush() ..224
FFn ...1187
ffs() ..226
fgetc()..227
fgetpos() ...229
fgets()..230
fgetwc() ..231
fgetws() ..233
FIFO...513
FIFOTYPE ..1183
FILE55, 130, 209, 220, 222-224, 227, 229-231

.......233-235, 246, 256, 262, 264-265, 267-268, 270
......275, 281, 284, 291, 297, 301-303, 308-309, 316
......318, 378, 380, 581, 589, 668, 670, 679-680, 726
......................767, 792, 864, 952, 981, 983, 997, 999
...1141, 1212
object ...30

FILENAME_MAX..1141
fileno() ..234
FILESIZEBITS ...252, 1097
FIND..390
FIPS ...12, 1196
FIPS 151-2 ...11
flockfile() ..235
floor() ..237
FLT_ constants

defined in <float.h>..1078
FLT_DIG...1077, 1102
FLT_EPSILON...1078
FLT_MANT_DIG..1077
FLT_MAX...1078, 1102
FLT_MAX_10_EXP...1077
FLT_MAX_EXP...1077
FLT_MIN ..1078
FLT_MIN_10_EXP..1077
FLT_MIN_EXP ..1077
FLT_RADIX..1077-1078
FLT_ROUNDS...1077
FLUSH...19
FLUSHR ...406, 1152
FLUSHRW...406, 1152
FLUSHW..406, 1152
FMNAMESZ ...405, 1152
fmod()...239
fmtmsg() ..241
fnmatch() ...244
FNM_ ..19
FNM_ constants

in <fnmatch.h>..1082

System Interfaces and Headers, Issue 5: Volume 2 1227

Index

FNM_NOESCAPE244, 1082
FNM_NOMATCH244, 1082
FNM_NOSYS ..1082
FNM_PATHNAME......................................244, 1082
FNM_PERIOD ..244, 1082
fopen() ..246
FOPEN_MAX220, 247, 589, 952, 1097, 1141
fork() ...249
format of entries..14
fpathconf()...252
FPE_...19
FPE_FLTDIV..1135
FPE_FLTINV..1135
FPE_FLTOVF...1135
FPE_FLTRES ..1135
FPE_FLTSUB..1135
FPE_FLTUND..1135
FPE_INTDIV..1135
FPE_INTOVF...1135
fprintf()...256
fputc() ...262
fputs() ...264
fputwc() ...265
fputws()..267
fread() ...268
free()..269
freopen() ..270
frexp() ...273
fsblkcnt_t ..1177
fscanf()..275
fseek() ...281
fseeko()...281
fsetpos() ...284
fsfilcnt_t ..1177
fstat()...285
fstatvfs() ...287
fsync()...289
ftell() ...291
ftello() ...291
ftime() ...292
ftok() ...293
ftruncate() ..295
ftrylockfile() ..235, 297
FTW ..19, 564, 1083
ftw() ..298
FTW_ constants in <ftw.h>................................1083
FTW_CHDIR...564, 1083
FTW_D ...298, 564, 1083
FTW_DEPTH ..564, 1083
FTW_DNR298, 564-565, 1083
FTW_DP...564, 1083

FTW_F..298, 564, 1083
FTW_MOUNT ..564, 1083
FTW_NS...298, 564-565, 1083
FTW_PHYS..564, 1083
FTW_SL..298, 564, 1083
FTW_SLN ..564, 1083
funlockfile()...235, 301
fwide() ..302
fwprintf() ...303
fwrite()..308
fwscanf() ..309
F_DUPFD.......................173-174, 211, 213-214, 1075
F_GETFD ...211, 213, 1075
F_GETFL..211, 213, 1075
F_GETLK..211-213, 1075
F_LOCK..473
F_OK ...1200
F_RDLCK...213, 1075
F_SETFD ..211, 213, 1075
F_SETFL...211, 213, 1075
F_SETLK...212-213, 1075
F_SETLKW52, 212-213, 1075
F_TEST ...473, 1203
F_TLOCK...473, 1203
F_ULOCK ..473, 1203
F_UNLCK..211, 213, 1075
F_WRLCK..213, 1075
gamma()...314
gcvt() ..175, 315
GETALL..759, 1165
GETC...714
getc() ...316
getchar() ...317
getchar_unlocked()..318
getcontext() ...319
getcwd() ...321
getc_unlocked()..318
getdate() ...323
getdate_err ...323
getdtablesize() ..328
getegid() ...329
getenv() ..330
geteuid()...331
getgid() ...332
getgrent() ...179, 333
getgrgid() ...334
getgrgid_r() ...334
getgrnam()...336
getgrnam_r() ...336
getgroups() ..338
gethostid() ...340

1228 CAE Specification (1997)

Index

getitimer()..341
getlogin()..343
getlogin_r()..343
getmsg() ...345
GETNCNT ...759-760, 1165
getopt()...348
getpagesize() ...352
getpass()...353
getpgid() ..355
getpgrp() ..356
GETPID...759-760, 1165
getpid()...357
getpmsg() ..345, 358
getppid() ..359
getpriority()...360
getpwent()...181, 362
getpwnam()...363
getpwnam_r() ...363
getpwuid()...365
getpwuid_r(|) ...365
getrlimit()...367
getrusage()...370
gets() ...371
getsid() ...372
getsubopt() ..373
gettimeofday() ..375
getuid()...376
getutxent()...183, 377
getutxid()...183, 377
getutxline()..183, 377
GETVAL ...759-760, 1165
getw() ...378
getwc()..380
getwchar() ...381
getwd() ...382
GETZCNT..759-760, 1165
gid_t...1177
glob()...383
globfree()..383
GLOB_...19
GLOB_ constants

defined in <glob.h>..1085
error returns of glob()384
used in glob() ..383

GLOB_ABORTED..384, 1085
GLOB_APPEND...................................383-384, 1085
GLOB_DOOFFS....................................383-384, 1085
GLOB_ERR ..383-384, 1085
GLOB_MARK ...384, 1085
GLOB_NOCHECK384, 1085
GLOB_NOESCAPE384, 1085

GLOB_NOMATCH......................................384, 1085
GLOB_NOSORT ..384, 1085
GLOB_NOSPACE..384, 1085
GLOB_NOSYS ..1085
GMT ..973
gmtime() ..387
gmtime_r()...387
grantpt() ...389
granularity of clock ..292
HALT...242
hcreate() ...390
hdestroy() ..390
headers..1063
HUGE_VAL115, 146, 200, 202, 237, 393, 456

......460, 477, 479, 481-482, 563, 591, 733, 851, 895

...919, 1027, 1061, 1108
HUPCL ...1187
hypot()..393
ICANON ..1187
iconv() ..395
iconv_close() ...397
iconv_open() ...398
ICRNL...1186
idtype_t...1181
id_t...1177
IEEE Std 1003.1-1996 ..12
IEEE Std 754-1985 ...11
IEEE Std 854-1987 ...11
IEXTEN...1187
IGNBRK..1186
IGNCR ..1186
IGNPAR..1186
ILL_..19
ILL_BADSTK...1135
ILL_COPROC..1135
ILL_ILLADR..1135
ILL_ILLOPC ..1135
ILL_ILLOPN..1135
ILL_ILLTRP..1135
ILL_PRVOPC ..1135
ILL_PRVREG...1135
ilogb() ...399
implementation-dependent....................................10
index() ..400
Inf..65, 83, 115, 237, 239
INFO..242
INIT ...714
initstate()..401
INIT_PROCESS ..183, 1209
INLCR...1186
ino_t...1177

System Interfaces and Headers, Issue 5: Volume 2 1229

Index

INPCK...1186
insque() ..403
interfaces ..15

file system ..16
implementation...15
system...57, 1063
use..15

interprocess communication..................................36
INT_MAX ..399, 1103
INT_MIN ...62, 399, 1103
invariant values ..1104
ioctl()...405
iovec ..1179
IOV_ ..19
IOV_MAX689, 691, 914, 1056-1057, 1096
IPC15, 36, 548, 550, 552, 555, 763, 766

...802, 805, 1157
IPC_ ...19
IPC_ constants

defined in <sys/ipc.h>....................................1157
used in semctl() ..759
used in shmctl()..800

IPC_CREAT549, 762, 804, 1157
IPC_EXCL..549, 762, 1157
IPC_NOWAIT...............551-552, 554-555, 764, 1157
IPC_PRIVATE...............................549, 762, 804, 1157
IPC_RMID.....................................547, 760, 800, 1157
IPC_SET...547, 760, 800, 1157
IPC_STAT547, 759, 800, 1157
isalnum()..417
isalpha() ...418
isascii() ...419
isastream()...420
isatty() ..421
iscntrl() ...422
isdigit() ...423
isgraph()...424
ISIG..1188
islower() ...425
isnan()...426
ISO/IEC 9899:1990 ...11
ISO/IEC 9945-1:1996..11
ISO/IEC 9945-2:1993..11
isprint()...427
ispunct() ...428
isspace() ...429
Issue 4

changes from ...6
ISTRIP ...1186
isupper()...430
iswalnum() ..431

iswalpha()..432
iswcntrl()..433
iswctype() ..434
iswdigit()..436
iswgraph() ...437
iswlower()..438
iswprint() ...439
iswpunct() ...440
iswspace()..441
iswupper() ...442
iswxdigit() ...443
isxdigit()...444
itimerval ...1173
ITIMER_PROF ..341, 1173
ITIMER_REAL......................................341, 975, 1173
ITIMER_VIRTUAL341, 1173
IUCLC...1186
IXANY ..1186
IXOFF..1186
IXON ...1186
I_ ..19
I_ATMARK ..411-412, 1153
I_CANPUT ..412, 1153
I_CKBAND..412, 1153
I_FDINSERT..408, 1153
I_FIND..407, 1153
I_FLUSH...405, 1152
I_FLUSHBAND..406, 1152
I_GETBAND..412, 1153
I_GETCLTIME ..412, 1154
I_GETSIG ...407, 1153
I_GRDOPT ..408, 689, 1153
I_GWROPT..410, 1153
I_LINK..413, 1154
I_LIST..411, 1153
I_LOOK ..405, 1152
I_NREAD...408, 1153
I_PEEK..407, 1153
I_PLINK ...414, 1154
I_POP..405, 1152
I_PUNLINK...414, 1154
I_PUSH...405, 1152
I_RECVFD ...23, 411, 1153
I_SENDFD..410-411, 1153
I_SETCLTIME.......................................135, 412, 1153
I_SETSIG ..406-407, 1152
I_SRDOPT......................................407-408, 689, 1153
I_STR...409, 1153
I_SWROPT ..410, 1055, 1153
I_UNLINK ...413, 1154
j0()..445

1230 CAE Specification (1997)

Index

j1()..445
jn() ...445
jrand48()...170, 447
JST..973
key_t ..1177
kill()...448
killpg() ..450
l64a() ...58, 451
labs() ...452
LANG..112
LASTMARK ..412, 1153
lchown() ...453
lcong48() ..170, 455
LC_ALL.................................192, 469, 568, 776, 1106
LC_COLLATE......383-384, 716, 776, 870, 903, 1013

...1038, 1098, 1101, 1106
LC_CTYPE...............105, 434, 495-496, 498, 500-501

...........503-504, 717, 776, 957, 959-962, 1009, 1023
..........................1033, 1040-1043, 1092, 1106, 1215

LC_MESSAGES112-113, 776-777, 874, 1092
...1106, 1114

LC_MONETARY...............469, 776, 877, 1092, 1106
LC_NUMERIC...............175, 256, 275, 303, 309, 469

................................776, 877, 895, 1027, 1092, 1106
LC_TIME.....................................324, 776, 1092, 1106
LDBL_ constants

defined in <float.h>..1078
LDBL_DIG ...1078
LDBL_EPSILON ...1079
LDBL_MANT_DIG..1078
LDBL_MAX ...1078
LDBL_MAX_10_EXP...1078
LDBL_MAX_EXP ...1078
LDBL_MIN ..1079
LDBL_MIN_10_EXP ..1078
LDBL_MIN_EXP...1078
ldexp() ..456
ldiv() ...458
legacy ..10
LEGACY4, 68, 98, 128, 142, 153, 314, 328

......352-353, 378, 467, 476, 679, 703, 706, 713-714
................732, 842, 865, 970, 993, 1005, 1094, 1096
......1102, 1123-1124, 1143, 1146, 1190, 1205, 1210

lfind()..459, 487
lgamma()..460
LIFO...54
limit

numerical ...1102
line control ...1188
LINE_MAX..914, 1099
link()..462

LINK_MAX.............................25, 252, 462, 724, 1098
LIO_...18
lio_listio()...464
LIO_NOP ...464, 1064
LIO_NOWAIT ..464, 1064
LIO_READ...464, 1064
LIO_WAIT ...464, 1064
LIO_WRITE...464, 1064
LNKTYPE...1183
loc1 ..467, 714
loc2 ..467, 714
local modes ..1187
localeconv() ...468
localtime()..471
localtime_r() ..471
lockf()..473
locs...476, 714
log()...477
log10()...479
log1p() ..481
logb()...482
LOGIN_NAME_MAX343, 914, 1096
LOGIN_PROCESS183, 1209
LOG_ ...19
LOG_ constants in syslog()..................................139
LOG_ALERT...139, 1155
LOG_AUTH ..1155
LOG_CONS...140, 1155
LOG_CRIT...139, 1155
LOG_CRON ..1155
LOG_DAEMON ...1155
LOG_DEBUG..139, 1155
LOG_EMERG..139, 1155
LOG_ERR...139, 1155
LOG_INFO ..139, 1155
LOG_KERN ...1155
LOG_LOCAL ..139, 1155
LOG_LPR ...1155
LOG_MAIL..1155
LOG_MASK...1155
LOG_NDELAY ...140, 1155
LOG_NEWS...1155
LOG_NOTICE ..139, 1155
LOG_NOWAIT...140, 1155
LOG_ODELAY..140, 1155
LOG_PID..140, 1155
LOG_USER ..139-140, 1155
LOG_UUCP...1155
LOG_WARNING ...139, 1155
longjmp() ...484
LONG_BIT...172, 1102-1103

System Interfaces and Headers, Issue 5: Volume 2 1231

Index

LONG_MAX.......................................899, 1031, 1103
LONG_MIN..899, 1031, 1103
lrand48() ..170, 486
lsearch()..487
lseek() ...489
lstat()...491
L_ctermid ...1141
L_tmpnam..1141
MAGIC ...1067
makecontext() ...493
malloc() ..494
manual pages

format..14
MAP_...18-19
MAP_FIXED..527, 1159
MAP_PRIVATE....................249, 527, 532, 557, 1159
MAP_SHARED...527, 1159
MAXARGS ..1138, 1210
MAXFLOAT...1108
maximum values ..1099
MAXPATHLEN ..160
MAX_CANON ...252, 1098
MAX_INPUT...252, 1098
may ..10
mblen() ...495
mbrlen() ...496
mbrtowc() ..498
mbsinit()...500
mbsrtowcs() ..501
mbstowcs() ..503
mbtowc()..504
MB_CUR_MAX....................495-496, 498, 504, 1009

...1041, 1145
MB_LEN_MAX ...1102-1103
MCL_...18
MCL_CURRENT..524, 1159
MCL_FUTURE..524, 1159
mcontext_t ...1193
memccpy()...505
memchr() ...506
memcmp() ...507
memcpy()...508
memmove()...509
memset() ..510
message catalogue descriptor192, 195, 197
MET ...973
minimum values...1099
MINSIGSTKSZ ...819, 1132
mkdir() ...511
mkfifo() ..513
mknod() ...515

mkstemp() ...518
mktemp() ...519
mktime() ..520
mlock() ...522
mlockall()...524
mmap()...526
MM_ macros..1080
MM_APPL...241, 1080
MM_CONSOLE..241, 1080
MM_ERROR..242-243, 1080
mm_FIRM ..241
MM_FIRM..1080
MM_HALT ..242, 1080
MM_HARD...241, 1080
MM_INFO ...242, 1080
MM_NOCON ...242, 1080
MM_NOMSG..242, 1080
MM_NOSEV ...242, 1080
MM_NOTOK ..242, 1080
MM_NRECOV..241, 1080
MM_NULLACT..1080
MM_NULLLBL...1080
MM_NULLMC ...241, 1080
MM_NULLSEV...1080
MM_NULLTAG..1080
MM_NULLTXT...1080
MM_OK..242, 1080
MM_OPSYS...241, 1080
MM_PRINT...241, 243, 1080
MM_RECOVER..241, 1080
MM_SOFT ...241, 1080
MM_UTIL..241, 1080
MM_WARNING ..242, 1080
mode_t ..1177
modf()...530
MON_ ...1092
MORECTL ...346, 1154
MOREDATA..346, 1154
mprotect()..532
mq_close() ...534
mq_getattr() ..535
mq_notify()..536
mq_open() ...537
MQ_OPEN_MAX...914, 1096
MQ_PRIO_MAX542, 914, 1096
mq_receive() ...540
mq_send()..542
mq_setattr()...544
mq_unlink()...545
mrand48()..170, 546
MSE..6, 11

1232 CAE Specification (1997)

Index

MSG...19
msgctl() ..547
msgget() ...549
msgrcv() ...551
msgsnd() ..554
MSGVERB ..242-243
MSG_...19
MSG_ANY...345, 1154
MSG_BAND..345, 674, 1154
MSG_HIPRI ..345, 674, 1154
MSG_NOERROR..................................551-552, 1161
MST ...973
msync()...557
MS_ ..18-19
MS_ASYNC...528, 557, 1159
MS_INVALIDATE..557, 1159
MS_SYNC..528, 557, 1159
munlock() ..522, 559
munlockall()..524, 560
munmap()..561
must...10
MUXID_ALL...413-414, 1154
MUXID_R...19
M_..19, 1108
M_E..1108
M_LN..1108
M_LOG10E ..1108
M_LOG2E ..1108
M_PI ..1108
M_SQRT1_2...1108
M_SQRT2 ...1108
name space

X/Open...17
NAME_MAX25, 63, 112, 121, 123, 126, 128

......194-195, 204, 218, 247, 252-253, 270, 287, 293

.....296, 453, 462, 491, 511, 516, 538, 545, 565, 572
......575-576, 693, 696, 701, 724, 730, 754, 756, 795
..................................861, 909, 984, 989, 1069, 1098

NaN65, 83, 87-88, 115, 145-146, 187, 200
......203, 237, 203, 237, 239, 258-259, 273, 305-306
.....393, 426, 445, 456, 460, 477, 479, 530, 563, 591
....................................849, 851, 856, 919, 921, 1061

nanosleep() ..562
NCCS ..1185
NCEG ..11
NDEBUG..21, 86, 1066
NEW_TIME...183, 1209
nextafter() ..563
nftw() ..564
NGROUPS_MAX...914, 1099
nice() ...566

NLDLY..1186
nlink_t ...1177
NLn..1186
NLSPATH...112-113
NL_ARGMAX......................256, 275, 303, 309, 1104
NL_CAT_LOCALE112, 1114
nl_langinfo()..568
NL_LANGMAX..1104
NL_MSGMAX...1104
NL_NMAX...1104
NL_SETD ...1114
NL_SETMAX...1104
NL_TEXTMAX..1104
NOEXPR...1092
NOFLSH...1188
NOSTR..1092
nrand48() ...170, 569
NULL.......144, 158, 164, 168, 1140-1141, 1145, 1148

...1190, 1200
numerical limits ..1102
NUM_EMPL..391
NZERO...360, 566, 1104
OCRNL...1186
off_t..1177
OFILL..1186
OH ...13
OLCUC ...1186
OLD_TIME ..183, 1209
ONLCR...1186
ONLRET...1186
ONOCR ..1186
open() ...570
opendir() ..575
openlog() ...139, 577
OPEN_MAX25, 112, 173, 181, 213-214, 247

.....270, 298, 328, 334, 336, 343, 365, 398, 565, 572
........................575, 585, 914, 952, 1096, 1112, 1128

OPOST ..1186
optarg..578
optarg() ..348
opterr() ...348, 578
optind() ..348, 578
optopt() ..348, 578
O_ constants

defined in <fcntl.h>..1075
used in open()...570

O_ACCMODE ..211, 1075
O_APPEND....................40, 78, 156, 570, 1054, 1075
O_CREAT147, 537-538, 545, 570-572, 749, 753

..794-795, 1075
O_DSYNC71, 570-571, 690, 1056, 1075

System Interfaces and Headers, Issue 5: Volume 2 1233

Index

O_EXCL.........................538, 570, 753, 794-795, 1075
O_NDELAY ...574
O_NOCTTY...571, 1075
O_NONBLOCK...............24, 135, 209, 224, 227, 231

.....262, 265, 281, 346, 408, 411, 538, 540, 542, 544

..................571-573, 585, 588, 675, 688, 1055, 1075
O_RDONLY..................160, 537, 570-571, 794, 1075
O_RDWR.......................473, 537, 570-573, 794, 1075
O_RSYNC..571, 690, 1075
O_SYNC71, 571, 690, 1056, 1075
O_TRUNC147, 571, 573, 795, 1075
O_WRONLY.................147, 473, 537, 570-573, 1075
PAGESIZE..............41, 522, 558, 561, 596, 914, 1096
PAGE_SIZE ...914, 1096
PARENB...1187
PARMRK..1186
PARODD..1187
PASS_MAX ...353, 914, 1096
PATH...144, 194
pathconf..252
pathconf() ..579
pathname variable values...................................1097
PATH_MAX25, 63, 112, 121, 123-124, 126-128

......194, 204, 218, 247, 252-253, 270-271, 287, 293

.....296, 382, 453, 462, 491, 511, 513, 516, 538, 565
......572-573, 575, 696, 701, 724, 730, 754, 795, 861
...909, 984-985, 989, 1098

pause()..580
pclose() ...581
PEEK..714
perror() ...583
persistent connection (I_PLINK).........................414
PF_ ...19
pid_t ..1177
pipe() ..585
PIPE_BUF ..252, 1055, 1098
PM_STR..1092
POLL ...19
poll() ...587
POLLERR...587, 1115
pollfd...1115
POLLHUP..587, 1115
POLLIN..587, 1115
POLLNVAL...587, 1115
POLLOUT..587, 1115
POLLPRI ..587, 1115
POLLRDBAND...587, 1115
POLLRDNORM ...587, 1115
POLLWRBAND..587, 1115
POLLWRNORM...587, 1115
POLL_ ...19

POLL_ERR...1135
POLL_HUP..1135
POLL_IN ..1135
POLL_MSG..1135
POLL_OUT..1135
POLL_PRI ..1135
popen() ...589
portability...12
POSIX..175
POSIX_NO_TRUNC ..756
pow() ..591
pread()..593, 688
printf()..256, 594
PRIO_ ..19
PRIO_ constants

defined in <sys/resource.h>1163
PRIO_PGRP...360, 1163
PRIO_PROCESS ...360, 1163
PRIO_USER...360, 1163
process

descriptor table size ...328
setting real and effective user IDs...................786

PROT_ ...18-19
PROT_EXEC ...526, 532, 1159
PROT_NONE42, 526, 532, 1159
PROT_READ ..526, 532, 1159
PROT_READ constants

in <sys/mman.h>...1159
PROT_WRITE526-527, 532, 1159
PST...973
PTHREAD_..18
pthread_atfork() ...595
pthread_attr_destroy()..598
pthread_attr_getdetachstate().............................599
pthread_attr_getguardsize()................................596
pthread_attr_getinheritsched()600
pthread_attr_getschedparam()602
pthread_attr_getschedpolicy()............................603
pthread_attr_getscope()604
pthread_attr_getstackaddr()................................605
pthread_attr_getstacksize()606
pthread_attr_init() ...598
pthread_attr_setdetachstate()599
pthread_attr_setguardsize()596
pthread_attr_setinheritsched()600
pthread_attr_setschedparam()............................602
pthread_attr_setschedpolicy()603
pthread_attr_setscope()..604
pthread_attr_setstackaddr()605
pthread_attr_setstacksize()..................................606
pthread_cancel()...607

1234 CAE Specification (1997)

Index

PTHREAD_CANCELED..............................54, 1116
PTHREAD_CANCEL_ASYNCHRONOUS............

...51, 661, 1116
PTHREAD_CANCEL_DEFERRED

...51, 613, 661, 1116
PTHREAD_CANCEL_DISABLE........51, 661, 1116
PTHREAD_CANCEL_ENABLE.........51, 661, 1116
pthread_cleanup_pop() ..608
pthread_cleanup_push()608
pthread_condattr_destroy()617
pthread_condattr_getpshared()..........................615
pthread_condattr_init() ..617
pthread_condattr_setpshared()615
pthread_cond_broadcast()...................................611
pthread_cond_destroy()609
pthread_cond_init()...609
PTHREAD_COND_INITIALIZER...........609, 1116
pthread_cond_signal()..611
pthread_cond_timedwait()..................................613
pthread_cond_wait()...613
pthread_create() ...619
PTHREAD_CREATE_DETACHED .599, 811, 1116
PTHREAD_CREATE_JOINABLE599, 811, 1116
PTHREAD_DESTRUCTOR_ITERATIONS.............

...629, 914, 1096
pthread_detach()..621
pthread_equal() ..622
pthread_exit() ...623
PTHREAD_EXPLICIT_SCHED600, 1116
pthread_getconcurrency()....................................624
pthread_getschedparam()....................................626
pthread_getspecific()...664
PTHREAD_INHERIT_SCHED600, 1116
pthread_join() ...628
PTHREAD_KEYS_MAX.....................629, 914, 1097
pthread_key_create() ..629
pthread_key_delete() ..631
pthread_kill() ..632
pthread_mutexattr_destroy()..............................641
pthread_mutexattr_getprioceiling()642
pthread_mutexattr_getprotocol()644
pthread_mutexattr_getpshared()639
pthread_mutexattr_init()641
pthread_mutexattr_setprioceiling()...................642
pthread_mutexattr_setprotocol()644
pthread_mutexattr_setpshared()........................639
pthread_mutexattr_settype()646
PTHREAD_MUTEX_DEFAULT.......635, 646, 1116
pthread_mutex_destroy()633
PTHREAD_MUTEX_ERRORCHECK635

..646, 1116

pthread_mutex_getprioceiling().........................637
pthread_mutex_init() ..633
PTHREAD_MUTEX_INITIALIZER.........633, 1116
pthread_mutex_lock() ..635
PTHREAD_MUTEX_NORMAL.......635, 646, 1116
PTHREAD_MUTEX_RECURSIVE635

..646-647, 1116
pthread_mutex_setprioceiling()637
pthread_mutex_trylock()635
pthread_mutex_unlock()......................................635
pthread_once() ...648
PTHREAD_ONCE_INIT648, 1116
PTHREAD_PRIO_INHERIT......................644, 1116
PTHREAD_PRIO_NONE644, 1116
PTHREAD_PRIO_PROTECT............636, 644, 1116
PTHREAD_PROCESS_PRIVATE................615, 639

..657, 1116
PTHREAD_PROCESS_SHARED615, 639

..657, 1116
pthread_rwlockattr_destroy().............................659
pthread_rwlockattr_getpshared()657
pthread_rwlockattr_init()659
pthread_rwlockattr_setpshared().......................657
pthread_rwlock_destroy()649
pthread_rwlock_init() ...649
PTHREAD_RWLOCK_INITIALIZER.....649, 1116
pthread_rwlock_rdlock()651
pthread_rwlock_tryrdlock()651
pthread_rwlock_trywrlock()655
pthread_rwlock_unlock().....................................653
pthread_rwlock_wrlock()655
PTHREAD_SCOPE_PROCESS49-50, 604, 1116
PTHREAD_SCOPE_SYSTEM........49-50, 604, 1116
pthread_self()..660
pthread_setcancelstate().......................................661
pthread_setcanceltype()661
pthread_setconcurrency()............................624, 663
pthread_setschedparam()626
pthread_setspecific() ...664
pthread_sigmask()...666, 835
PTHREAD_STACK_MIN...........605-606, 914, 1097
pthread_testcancel() ..661
PTHREAD_THREADS_MAX...........619, 914, 1097
ptsname()...667
putc() ..668
putchar() ..669
putchar_unlocked().......................................318, 671
putc_unlocked()...318, 670
putenv() ...672
putmsg() ..674
putpmsg() ..674

System Interfaces and Headers, Issue 5: Volume 2 1235

Index

puts() ..677
pututxline() ...183, 678
putw()...679
putwc()...680
putwchar()...681
pwrite() ...1054
pwrite() ..682
P_ALL...1006, 1181
P_GID..1181
P_PGID ...1006
P_PID..1006, 1181
P_tmpdir...1141
qsort() ...683
RADIXCHAR ..1092
raise() ..684
rand() ..685
random()..401, 687
RAND_MAX...685, 1145
rand_r() ..685
read() ..688
readdir() ...693
readdir_r() ...693
readlink() ...696
readv()..688, 698
realloc() ..699
realpath() ...701
REALTIME...............2, 69-71, 73, 75-76, 78, 133, 217

......464, 522, 524, 534-537, 540, 542, 544-545, 562
.......735-739, 741, 749-753, 755-757, 794, 797, 837
..............847, 944, 946-947, 1064, 1112, 1125, 1128

REALTIME THREADS..............4, 600, 603-604, 626
...637, 642, 644

regcmp()...706
regcomp() ..708
regerror()..708
regex() ..706, 713
regexec()...708
regexp..714
regfree()..708
REGTYPE ...1183
regular expression

simple..703
regular expressions ..703
REG_..19
REG_ constants

defined in <regex.h>..1121
error return values of regcomp()....................710
used in regcomp()708-709

REG_BADBR...710, 1121
REG_BADPAT ..710, 1121
REG_BADRPT ..710, 1121

REG_EBRACE...710, 1121
REG_EBRACK..710, 1121
REG_ECOLLATE ...710, 1121
REG_ECTYPE ...710, 1121
REG_EESCAPE...710, 1121
REG_ENOSYS...710, 1121
REG_EPAREN ..710, 1121
REG_ERANGE ...710, 1121
REG_ESPACE ...710, 1121
REG_ESUBREG ..710, 1121
REG_EXTENDED ..708, 1121
REG_ICASE...708, 1121
REG_NEWLINE...708, 1121
REG_NOMATCH...710, 1121
REG_NOSUB ..708, 1121
REG_NOTBOL ...709, 1121
REG_NOTEOL ...709, 1121
remainder()..720
remove()...721
remque function..403
remque() ..403, 722
rename()...723
requirements

FIPS..12
RETURN...714
rewind() ...726
rewinddir() ..727
re_comp()...703
RE_DUP_MAX ...914, 1099
re_exec()...703
rindex()...728
rint() ..729
rlimit..1163
RLIMIT_..19
RLIMIT_AS..368, 1163
RLIMIT_CORE ...367, 1163
RLIMIT_CPU ..367, 1163
RLIMIT_DATA..367, 1163
RLIMIT_FSIZE..367, 1163
RLIMIT_NOFILE..........................328, 367-368, 1163
RLIMIT_STACK ...367, 1163
RLIM_..19
RLIM_INFINITY367-368, 1163
RLIM_SAVED_CUR368, 1163
RLIM_SAVED_MAX368, 1163
rmdir() ..730
RMSGD ..408, 1153
RMSGN ..408, 1153
RNORM ...408, 1153
RPROTDAT ...408, 1153
RPROTDIS...408, 1153

1236 CAE Specification (1997)

Index

RPROTNORM ..408, 1153
RS_HIPRI345, 407, 674, 1153
RTLD_GLOBAL...................163, 165-166, 168, 1071
RTLD_LAZY...165, 168, 1071
RTLD_LOCAL..166, 1071
RTLD_NEXT..168-169
RTLD_NOW..165-166, 1071
RTSIG_MAX914, 1097, 1130
RTT ..4
run-time values

increasable ...1098
invariant ...1095

rusage..1163
RUSAGE_...19
RUSAGE_CHILDREN370, 1163
RUSAGE_SELF...370, 1163
R_OK...1200
SA_...19
SA_ constants

declared in <signal.h>.....................................1132
SA_NOCLDSTOP........................806, 808, 811, 1132
SA_NOCLDWAIT197, 199, 370, 807, 1001, 1132
SA_NODEFER ..808, 1132
SA_ONSTACK192, 195, 806, 1132
SA_RESETHAND........................100, 806, 808, 1132
SA_RESTART.......................100, 747, 807, 825, 1132
SA_SIGINFO39, 806-807, 815, 837, 1132
sbrk() ..98, 732
scalb() ...733
scanf()...275, 734
SCHAR_MAX..1102-1103
SCHAR_MIN...1103-1104
SCHED_..18
SCHED_FIFO40, 42-43, 51, 193, 249, 360, 566

.............................602-603, 626, 642, 739, 755, 1125
sched_getparam() ..736
sched_getscheduler() ..737
sched_get_priority_max()735
sched_get_priority_min().....................................735
SCHED_OTHER..............42, 44, 603, 626, 739, 1125
SCHED_RR.............40, 42-43, 51, 193, 249, 360, 566

.....................................602-603, 626, 739, 755, 1125
sched_rr_get_interval()...738
sched_setparam()...739
sched_setscheduler()...741
sched_yield()...743
seed48()..170, 744
seekdir() ...745
SEEK_CUR...............212, 281, 489, 1075, 1141, 1201
SEEK_END...............212, 281, 489, 1075, 1141, 1202
SEEK_GET ...281, 726

SEEK_SET...................40, 73, 78, 212, 281, 489, 1075
...1141, 1201

SEGV_ ...19
SEGV_ACCERR..1135
SEGV_MAPERR ...1135
select() ..746
semctl()...759
semget() ...762
semop() ..764
SEM_..18-19
sem_close()..749
sem_destroy() ...750
SEM_FAILED ..754
sem_getvalue() ...751
sem_init()...752
SEM_NSEMS_MAX752, 914, 1097
sem_open()..753
sem_post() ...755
sem_trywait()..757
SEM_UNDO..764, 1165
sem_unlink() ...756
SEM_VALUE_MAX.....................................914, 1097

..752
sem_wait()...757
SETALL ..759, 762, 1165
setbuf() ...767
setcontext()..319, 768
setgid() ...769
setgrent() ...179, 770
setitimer() ..341, 771
setjmp() ..773
setkey()...775
setlocale()...776
setlogmask() ...139, 779
setpgid() ...780
setpgrp()...782
setpriority() ...360, 783
setpwent() ...181, 784
setregid()..785
setreuid()..786
setrlimit()...367, 787
setsid() ..788
setstate() ..401, 789
setuid() ...790
setutxent() ...183, 791
SETVAL..759, 762, 1165
setvbuf()...792
SHM...19
shmat() ...798
shmctl() ..800
shmdt()...802

System Interfaces and Headers, Issue 5: Volume 2 1237

Index

shmget() ...804
SHMLBA..798, 1167
SHM_...19
shm_open() ...794
SHM_RDONLY ..798, 1167
SHM_RND...798, 1167
shm_unlink()...797
should..10
SHRT_MAX...1103
SHRT_MIN ..1104
SIGABRT..60, 1131
sigaction() ..806
sigaddset() ...818
SIGALRM80, 341, 853, 975, 987, 1131
sigaltstack() ...819
SIGBUS..........................42, 295, 527, 835, 1131, 1135
SIGCHLD........................140, 197, 199, 370, 389, 808

..............................830, 917, 1001, 1006, 1131, 1135
SIGCONT198, 448, 814, 1131
sigdelset() ..821
sigemptyset() ..822
SIGEV_..18
SIGEV_NONE39, 41, 810, 1130
SIGEV_SIGNAL.............................39, 810, 944, 1130
SIGEV_THREAD............................39, 810-811, 1130
sigfillset() ...823
SIGFPE...829, 835, 1131, 1135
sighold()...824, 829
SIGHUP..135, 197-198, 1131
sigignore() ...824, 829
SIGILL..829, 835, 1131, 1135
siginfo_t ..1132
SIGINT ...917, 1131
siginterrupt()...825
sigismember() ...826
SIGKILL ...806, 829, 1131
siglongjmp() ..827
Signal Generation and Delivery808
signal()..829
signgam ..832
signgam()...314
sigpause() ..829, 833
sigpending() ..834
SIGPIPE209, 224, 262, 265, 282, 675, 1057, 1131
SIGPOLL135, 406-407, 1131, 1135, 1152
sigprocmask() ...835
SIGPROF ..341, 1131
sigqueue() ..837
SIGQUEUE_MAX................................837, 914, 1097
SIGQUIT ..917, 1131
sigrelse() ..829, 839

SIGRTMAX.............40, 809, 811, 837, 846-847, 1130
SIGRTMIN..............40, 809, 811, 837, 846-847, 1130
SIGSEGV.....................368, 561, 596, 835, 1131, 1135
sigset()..829, 839
sigsetjmp() ...840
sigstack()..842
SIGSTKSZ..819, 842, 1132
SIGSTOP..806, 809, 829, 1131
sigsuspend()..844
SIGSYS ..1131
SIGTERM ...1131
sigtimedwait() ..847
SIGTRAP..1131, 1135
SIGTSTP ...809, 1131
SIGTTIN227, 231, 690, 809, 1131
SIGTTOU209, 224, 262, 265, 282, 809

..........................922, 924, 926, 932, 935, 1057, 1131
SIGURG..407, 1131
SIGUSR1...1131
SIGUSR2...1131
SIGVTALRM ...341, 1131
sigwait() ...846
sigwaitinfo()..847
SIGXCPU ...367, 1131
SIGXFSZ295, 367, 1054, 1131
SIG_..18-19
SIG_BLOCK...835, 1132
SIG_DFL192, 368, 806, 808, 811, 829, 1130
SIG_ERR ..100, 830, 1130
SIG_HOLD ..830, 1130
SIG_IGN.....192, 197, 370, 806, 811, 829, 1001, 1130
SIG_SETMASK ...835, 1132
SIG_UNBLOCK..835, 1132
simple regular expression703, 716
sin() ...849
sinh()...851
size_t ...1148, 1177
SI_...19
SI_ASYNCIO...812, 1135
SI_MESGQ...813, 1135
SI_QUEUE ...812, 1135
SI_TIMER...812, 1135
SI_USER ...812, 1135
sleep() ...853
SND ...19
SNDZERO ...410, 1153
snprintf()..256, 855
SO...19
sprintf() ..256, 855
sqrt()..856
srand() ..857

1238 CAE Specification (1997)

Index

srand48()..170, 858
srandom()..401, 859
SRE...716
sscanf() ...275, 860
SSIZE_MAX551, 688, 877, 1054, 1103, 1177
ssize_t..1177
SSSIZE_MAX...540
SS_..19
SS_DISABLE..819-820, 1132
SS_ONSTACK...819, 1132
stack_t ...1132
stat data structure...1169
stat() ..861
statvfs() ..287, 863
stderr...864, 1141
STDERR_FILENO..864, 1204
stdin ..864, 1141
STDIN_FILENO...................................589, 864, 1204
stdout..864, 1141
STDOUT_FILENO...............................589, 864, 1204
step()...714, 865
STR...19
strbuf ...1151
strcasecmp() ..866
strcat() ..867
strchr() ..868
strcmp()..869
strcoll() ...870
strcpy() ...871
strcspn() ...872
strdup() ..873
STREAM408, 411, 674, 689, 1055, 1073
STREAM head/tail...34
STREAMS...6, 15, 23
streams..30
STREAMS135, 204, 218, 345, 405, 420

...571-573, 587, 746, 1151
access...35

streams
interaction with file descriptors30

STREAMS
multiplexed..413
overview...34

streams
stream orientation ..32

STREAM_MAX....................220, 247, 589, 914, 1097
strerror()...874
strfdinsert...1151
strfmon() ..876
strftime() ..880
strioctl ...1151

strlen() ..883
strncasecmp() ...866, 884
strncat() ..885
strncmp() ...886
strncpy()...887
strpbrk() ...888
strpeek ..1151
strptime() ...889
strrchr() ..892
strrecvfd ...1151
strspn() ...893
strstr() ...894
strtod()..895
strtok()..897
strtok_r() ..897
strtol() ...899
strtoul() ..901
strxfrm() ...903
str_list..1151
str_mlist ..1152
ST_NOSUID192, 195, 287, 1172
ST_RDONLY...287, 1172
suseconds_t..1177
SV_...19
swab() ...905
swapcontext()...493, 906
swprintf()...303, 907
swscanf() ...309, 908
symlink()..909
SYMTYPE...1183
sync() ..911
sysconf()...912
syslog()...139, 916
system interfaces ..57, 1063
system()..917
S_..19
S_ constants

defined in <sys/stat.h>1169-1170
S_ macros

defined in <sys/stat.h>1170
S_BANDURG..407, 1152
S_ERROR ...406, 1152
S_HANGUP ..407, 1152
S_HIPRI..406, 1152
S_IFBLK..515, 1169
S_IFCHR ..515, 1169
S_IFDIR ..515, 1169
S_IFIFO...515, 1169
S_IFLNK...1169
S_IFMT..1169
S_IFREG ...515, 1169

System Interfaces and Headers, Issue 5: Volume 2 1239

Index

S_INPUT ..406, 1152
S_IRGRP ..207, 285, 515, 1169
S_IROTH207, 285, 515, 1169
S_IRUSR ..207, 285, 515, 1169
S_IRWXG ...515, 1169
S_IRWXO...515, 1169
S_IRWXU ...515, 1169
S_ISBLK..1170
S_ISCHR...1170
S_ISDIR...1170
S_ISFIFO...1170
S_ISGID123-124, 126, 295, 515, 1055, 1170
S_ISLNK ...1170
S_ISREG..1170
S_ISUID...............123-124, 126, 295, 515, 1055, 1170
S_ISVTX123, 515, 724, 730, 984, 1170
S_IWGRP.......................................207, 285, 515, 1169
S_IWOTH......................................207, 285, 515, 1170
S_IWUSR207, 285, 515, 1169
S_IXGRP...515, 1169
S_IXOTH..515, 1170
S_IXUSR ...515, 1169
S_MSG ..406, 1152
S_OUTPUT ..406, 1152
S_RDBAND ...406-407, 1152
S_RDNORM..406, 1152
S_TYPEISMQ...1170
S_TYPEISSEM ...1170
S_TYPEISSHM ..1170
S_WRBAND..406, 1152
S_WRNORM...406, 1152
TABDLY..1186
TABn..1186
TABSIZE...102, 487
tan()...919
tanh() ..921
tcdrain()..922
tcflow() ...924
tcflush() ..926
tcgetattr() ...928
tcgetpgrp()...929
tcgetsid() ..931
TCIFLUSH ...926, 1188
TCIOFF...924, 1188
TCIOFLUSH..926, 1188
TCION ..924, 1188
TCOFLUSH ...926, 1188
TCOOFF...924, 1188
TCOON ..924, 1188
TCSADRAIN...934, 1188
TCSAFLUSH...934, 1188

TCSANOW..934, 1188
tcsendbreak() ..932
tcsetattr()..934
tcsetpgrp() ...936
tdelete() ..938
telldir()..939
tempnam()...940
terminology..10
tfind()..942, 964
TGEXEC ...1183
TGREAD...1183
TGWRITE...1183
THOUSEP ..1092
time() ..943
timeb ...1175
TIMER_ ...18-19
TIMER_ABSTIME..................................45, 947, 1190
timer_create()..944
timer_delete()..946
timer_getoverrun() ..947
timer_gettime()...947
TIMER_MAX...914, 1097
timer_settime() ...947
timer_t...1177
times()...949
timeval ..1173
timezone ...951
time_t ..1177
TMAGIC...1183
TMAGLEN...1183
tmpfile() ...952
tmpnam()...954
TMP_MAX..................................940, 954, 1104, 1141
toascii()...955
TOEXEC ...1183
tolower() ..957
TOREAD ..1183
TOSTOP..............209, 224, 262, 265, 282, 1057, 1188
toupper()..959
towctrans() ..960
towlower()...961
TOWRITE...1183
towupper() ..962
TRAP_ ...19
TRAP_BRKPT ...1135
TRAP_TRACE...1135
truncate() ...295, 963
tsearch() ...964
TSGID ...1183
TSUID ...1183
TSVTX...1183

1240 CAE Specification (1997)

Index

ttyname() ...968
ttyname_r()..968
ttyslot()...970
TTY_NAME_MAX914, 968, 1097
TUEXEC ...1183
TUREAD...1183
TUWRITE...1183
TVERSION...1183
TVERSLEN ..1183
twalk()..964, 971
tzname ..972
TZNAME_MAX ...914, 1097
tzset() ..973
T_FMT...1092
T_FMT_AMPM...1092
t_uscalar_t..408, 1151
ualarm() ...975
UCHAR_MAX...1102-1103
ucontext_t ..1193
uid_t ..1177
UINT_MAX ...1103
ulimit() ...977
ULONG_MAX....................................901, 1034, 1103
UL_GETFSIZE.......................................977-978, 1194
UL_SETFSIZE ...977, 1194
umask() ..979
uname() ..980
undefined ...10
UNGETC ..714
ungetc() ..981
ungetwc()...983
UNIX extension...6
unlink()...984
unlockpt() ..986
unspecified...10
US-ASCII ..419
user ID

real and effective...786
setting real and effective786

USER_PROCESS ..183, 1209
USHRT_MAX..1103
usleep()...987
UTC ...292, 973
utime()..989
utimes() ..991
utmpx..1209
valloc()..993
va_arg() ..994
va_end() ...994
va_start()..994
VEOF...1185

VEOL...1185
VERASE..1185
vfork()...995
vfprintf() ..997
VFS...1172
vfwprintf()...999
VINTR...1185
VISIT ...964, 971
VKILL..1185
vprintf()..997
VQUIT...1185
vsnprintf() ...997, 1000
vsprintf()..997, 1000
VSTART..1185
VSTOP ..1185
VSUSP...1185
vswprintf() ..999
VTDLY ..1186
VTn ..1186
vwprintf() ..999
wait() ..1001
wait3() ..1005
waitid()...1006
waitpid()..1001, 1008
WARNING...242
WCHAR_MAX ...1213
WCHAR_MIN ..1213
WCONTINUED...............................1001, 1006, 1181
wcrtomb()..1009
wcscat() ..1010
wcschr() ...1011
wcscmp() ...1012
wcscoll()...1013
wcscpy()...1014
wcscspn()...1015
wcsftime()..1016
wcslen()..1017
wcsncat()..1018
wcsncmp()...1019
wcsncpy() ..1020
wcspbrk()...1021
wcsrchr()..1022
wcsrtombs() ..1023
wcsspn()...1025
wcsstr()...1026
wcstod() ...1027
wcstok() ...1029
wcstol() ..1031
wcstombs()..1033
wcstoul() ..1034
wcswcs() ..1036

System Interfaces and Headers, Issue 5: Volume 2 1241

Index

wcswidth() ..1037
wcsxfrm() ..1038
wctob() ...1040
wctomb() ...1041
wctrans()..1042
wctype() ...1043
wcwidth() ..1044
WEOF..................................55, 381, 431-434, 436-443

.................................961-962, 983, 1212-1213, 1215
WEXITED ..1006, 1181
WEXITSTATUS ...1002
WEXITSTATUS()1145, 1181
WIFCONTINUED..1002
WIFCONTINUED() ..1181
WIFEXITED ...1002
WIFEXITED() ...1145, 1181
WIFSIGNALED ..1002
WIFSIGNALED().......................................1145, 1181
WIFSTOPPED ...1002
WIFSTOPPED() ...1145, 1181
will ...10
wmemchr()..1045
wmemcmp()..1046
wmemcpy() ...1047
wmemmove() ...1048
wmemset() ..1049
WNOHANG1001, 1006, 1145, 1181
WNOWAIT ...1006, 1181
wordexp() ..1050
wordfree()..1050
WORD_BIT ..1102-1103
wprintf() ..303, 1053
WRDE_ ...19
WRDE_APPEND1050, 1217
WRDE_BADCHAR1051, 1217
WRDE_BADVAL..1052, 1217
WRDE_CMDSUB.......................................1052, 1217
WRDE_DOOFFS ..1050, 1217
WRDE_NOCMD..1051, 1217
WRDE_NOSPACE.....................................1052, 1217
WRDE_NOSYS ...1217
WRDE_REUSE..1051, 1217
WRDE_SHOWERR....................................1051, 1217
WRDE_SYNTAX..1052, 1217
WRDE_UNDEF..1051, 1217
write()...1054
writev() ..1054
wscanf() ...309, 1060
WSTOPPED...1006, 1181
WSTOPSIG ..1002
WSTOPSIG()...1145, 1181

WTERMSIG ...1002
WTERMSIG() ...1145, 1181
WUNTRACED1001, 1145, 1181
W_OK ...1200
X/Open name space ..17
XCASE ..1188
XSI..1
X_OK...1200
y0() ..1061
y1() ..1061
YESEXPR..1092
YESSTR...1092
yn()..1061

1242 CAE Specification (1997)

	c606cov.pdf
	Page 1

	blank.pdf
	Page 1

