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on Contracts for the International Sale of Goods is hereby expressly excluded. In the event any 
provision of this Agreement shall be deemed unenforceable, void or invalid, such provision shall be 
modified to make it valid and enforceable, and as so modified the entire Agreement shall remain in full 
force and effect. No decision, action or inaction by LICENSOR shall be construed to be a waiver of any 
rights or remedies available to it. 

i. Abstract 

The documents in this series named "Features and Geometry" describes how geographic information is 
stored as data using a "Feature Model" are structured, accessed, and manipulated. The most important 
property is "location" which is represented as geometry in the coordinates of a CRS associated to a 
datum. The basis for the coordinates is a datum surface which is usually represented as an oblate 
ellipsoid. The most likely datum is the one is associated to GPS location systems which are derived 
from the ellipsoid WGS84 (https://gisgeography.com/wgs84-world-geodetic-system/). All numeric 
examples in this document use WGS84, but the technology is not specific, and the values for the semi-
minor axis, semi-major axis and eccentricity can be adjusted for any reference ellipsoid. 

This volume investigates accurate measurements of length and surface area on an ellipsoid. A metric is 
a function, system or standard of measurement. The curved nature of the ellipsoid does not support a 
simple "function-based metric" such as the Pythagorean metric on the plane nor the spherical metric 
on a sphere based on the central angle between two points.  

On an ellipsoid, the curvatures of the surface changes with latitude (φ), and the nature of latitude and 
longitude (λ) differ also, so homogeneous functions such as used in the plane and the sphere do not 
work.  

Spherical trigonometry is a rough approximation for the ellipsoid but in general do not take 
consideration scale which is dependent on latitude. Ellipsoidal geometry requires a Riemannian metric.  

On an ellipsoid, the nature of the curvature at a point varies based on its relative position, and in the 
direction of the measurement. The Pythagorean metric on the plane, does work on the ellipsoid in 
small enough areas. The ellipsoidal metric takes (in a sense) both Pythagorean and spherical metric 
functions in small areas, and then calculate series of local measures and then combines them in 
summations (numeric integration).  

ii. Keywords 

The following are keywords to be used by search engines and document catalogues.  

cartography coordinate reference 

systems 

curvature radian 

datum differential geodesy differential geometry radius of curvature 

ellipsoidal geometry ellipsoidal metrics first fundamental form spherical geometry 

geodesy geographic database geographic information systems 

(GIS) 

location 

geography geometry measure, measurement, metric numeric integration 
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iii. Preface 

This document "Features and their geometry: Part 2 Measure" deals with metrics for geometry 
associated to a curved surface, ellipsoid, that approximates the earth’s surface. The theory of the 
mathematics dates to Isaac Newton (calculus, circa 1670), Gauss and Riemann (differential geometry, 
circa 1826-1855). It is doubtful that any of the procedures applied here are currently under patents.  

Recipients of this document are requested to submit, with their comments, notification of any relevant 
patent claims or other intellectual property rights of which they may be aware that might be infringed 
by any implementation of the standard set forth in this document, and to provide supporting 
documentation. 

iv. Submitting organizations 

The organizations and individual members of the Simple Features SWG (standards working group) 
reviewed and commented to produce this Document to the Open Geospatial Consortium (OGC). 

The following are voting members of the OGC Simple Feature Standards Working Group. 
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Features and Geometry – Part 2: Measure 
1 Scope 

This document describes how to measure length in meters and area in square meters of any curve or 
area on an ellipsoid (e.g. WGS84). Other ellipsoids may be used by adjusting the valued of the 
equatorial radius "a" and the polar radius "b" as appropriate. Ellipsoidal constants are kept in 
equations as variables; and can be used for any ellipsoid. Numeric examples use WGS84. 

The only concept needed are numeric integration (4.13), radian (4.14) and radius of curvature (4.15). 

The informative mathematics is in Annex A, and Annex B. The examples of the techniques for length 
and area are in Annex C. 

1.1 Why this document is not a standard 

This document describes the mathematics of the geometry described here as equations. This document 
informs anyone who implements these algorithms to measure geometries on the ellipsoid. The 
examples in the paper represented as tables were set up in spread sheets that would be simple loops in 
C++ or any programming language. Once a reasonable set of implementations are created; standards 
can then propose efficient interfaces to support the measured data. 

1.2 Purpose 

This document describes how measures of geometric objects on any ellipsoid (e.g. World Geodetic 
System 1984) are calculated, such as curves for length (in meters) and polygons for area (square 
meters). The WGS84 ellipsoid uses parameters in meters or ratios. 

The measurements are not tied to a simplified representation as on a globe (a sphere) or on a map (a 
plane), but to the source of the data, e.g. the ellipsoidal coordinates of latitude (φ) and longitude (λ).  

The equations and algorithms in this document work for any ellipsoid, but the numeric examples use 
WGS84 parameters. Angles (latitude and longitude) in calculations are in radians, because they easily 
convert angles in radians to arc distances in meters using the local radii of curvature Angles in 
examples, will normally be listed in both decimal degrees and radians, but calculations are in radians.  

There are two type of radii that are required for measures.  

• The radius of curvature of a parallel ( ( ) ( )
0.5

2 2( ) cos cos 1 sinN a e     
−

= = − ) is in the plane 

of the parallel. The curvature is defined by the distance from the parallel to the polar axis. 
Because a parallel is a circle, the radius is constant along the parallel associated to its latitude, 
and only changes as the latitude changes. The radius at the equator is "a". The radius goes to 0 
as the parallel nears the poles. See Figure 1 and Table 1. 

• The radius of curvature of a meridian ( 2 2 2 1.5( ) (1 )(1 sin )M a e e  −= − − ) is a function of latitude 

and varies from the equator (where the equatorial radius is "a") and decreases as the meridian 
approaches the pole (where the polar radius is "b"). The length of an arc (fixed as a angle) of 
latitude is longer in meters as the meridian approaches the poles. See Table 2. 

The original definition of the Riemannian metric calculated these radii but used a different but valid 
method of calculating the radii of curvature. The equations in a Riemannian metric (A.3) are more 
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complex than the radius of curvature (4.1 and 4.15). The Riemannian calculations are more complex 
but numerically identical. Figure 1 gives a direct geometric picture of the curvature along a parallel, 

( ) ( )cosN   = . 

If points on a map are input, then the inverse projection from the map (x,y) to the ellipsoid's latitude, 
longitude (φ,λ) surface should be used [18]. Small map areas, as in an engineering drawing, where x 
and y are really a local Euclidean survey and probably not projected from (φ, λ), then the usual 
Pythagorean metric suffices, and it does not require the formulae or methods here. The global metric 
needs the Pythagorean metric to be accurate "in small areas" (square kilometer, hectare) so that the 
summations (numeric integrals) presented below make that assumption. The local calculation to be 
"near-Euclidean" which require values of Δφ and Δλ be less than a degree to retain reasonable locally 
flat surface.   

In addition to the 2D surface metric there is a 3D metric for a "near earth" use including latitude, 
longitude and elevation (φ, λ, h) with respect to the ellipsoid (mean-sea level). This "near surface" has 
an advantage over the ECEF (X,Y,Z) which would have to have the ability to keep curves directly 
associated to the "(φ, λ, h)" latitude, longitude and elevation point references involved, see [3], [4] and 
[19]. The algorithms for "(φ, λ, h)" extend "(φ, λ)" by adding elevation above the ellipsoid. 

The numeric examples in this document will always follow the ellipsoidal surface (h=0). The extensions 
to the 2.5 D metrics in general use simple extensions to the 2D examples. 

The circumference of a circle of radius "r" is "2πr", any arc along a circle whose length equals the radius 
"r" is called a radian (approximately 57.295779513… ̊). The arc length of a 1 radian angle is "r" and the 
arc length of 1 ̊ is r/57.295779513 or 0.017453292519968 r. A radian is a ratio of arc length to arc 
length and represented in equations as unitless measures (a ratio).  

1.3 The importance of numeric integration 

The formulae for calculating distances and areas on an ellipsoid would seem to require some integral 
calculus (see Annex B). The problem is that almost all the integrals do not have simple solutions. For 
this reason, in an application environment where the length or area of a feature is required to support 
some accuracy (we try for centimeter level accuracy in our examples). Annex B shows some simple 
numeric approximations to the needed values. Isaac Newton (1643-1727) or Leibniz (1646-1716) use 
a similar approximation technique to what he called the integral of a function: 

Eq 1. ( ) ( ) ( )

( ) ( )

0 1 1

1

0
1

0
1

 ... ;   

  *** Trapdezoid Rule
2

                       *** Newton's definition 

n i i i

b n

i i
i

x
ia n

nb

i i
a x

in

a x x x b x x x

f x f x
f x dx lim x

f x dx lim f x x

−

−

 →
=→

 →
=→

=    =  = −

+ 
=  

 

= 





 

The first technique represented above for the formulae above is called the "trapezoid rule" or 
"trapezium rule" for numeric integration which converges faster than the second approach 
"rectangular" which is the original form from Newton’s definition. It is the purpose of this document is 
to use numeric integration while preserving accuracy in the answers while keeping the programs (a 
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loop for the summation) simple and sufficiently accurate for GIS use, with the value of the area under 
the function approximated with smaller and smaller polygonal sides.  

Another technique called "Simpson’s Rule" can be more accurate for a set of ( )ix , uses a parabolic 

approximation. In both techniques, as the maximum 1i i ix x x − = − tends to zero, the numeric 

approximation to the integral ( ) ( )
0

1

 
nb

i i
a x

in

f x dx lim f x x
 →

=→

=  . See Table 2 

The integrals we use comes from Gauss (1775-1855) and Reimann (1826-1866) in the 1850’s to use 
integrals on ellipsoidal surfaces for geometry lengths and area (see Annex B). The key to accuracy of 
these summation loops is knowing how Δφ and Δλ measures are locally scaled to meters, by use of 
angles in radians and the appropriate radii of curvatures for meridians and parallels. 

β 

ψ φ

ρ(ϕ) = N(ϕ) cos ϕ 

N
(ϕ

) 
si

n
 ϕ

 

 

Figure 1 – Reduced latitude "β", geocentric latitude "ψ", and geodetic latitude "φ". 

(larger eccentricity for emphasis) 
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1.4 The importance of the radius of curvature for calculating arc length 

Each point "α" on a curve has a radius of curvature "rα" which defines the best fitting circle tangent to 
the curve at that point. Along that fitted circle, the arc length of an arc segment of a small local angle 
"Δα" (expressed in radians) starting at the point has a length along the full circle of "2πrα" and a local 
distance along the curve of "Δαrα". The "small arc" length of the arc and the length of the curve are very 
close. So much so that if the arc is "circle-like" such as a parallel (a circle of constant latitude φ, good for 
the entire curve) or an ellipsoid meridian (an ellipsoid, very near a circle) which works quite accurately 
for an angle of less than a degree.  

Eq 2. Length of the normal: ( )
2 21 sin

a
N

e



=

−
 

Eq 3. Radius of the parallel: ( )
2 2

cos
( ) cos

1 sin

a
N

e


   


= =

−
 

Eq 4. Radius of the meridian: 
3

2

2

2 2

(1 )
( )

(1 sin )

a e
M

e




−
=

−
 

In the figure below, the radius of the parallel is "N(φ)cos φ", and the length of the line that defines 
latitude "φ" from the surface of the ellipsoid to the polar axis is "N(φ)". The general equation for such a 
radius of curvature is in definition 4.1. Clynch [9] has a full description of these radii. 

Eq 5. Meridian Distance = ( ) M d





 



  

Eq 6. Parallel Distance = ( ) ( )  (if φ is constant, e.g. along a parallel)d





     


=   

Eq 7. Length of a curve: 

( )

( ) ( )( )

( ) ( )( ) ( ) ( )( )
2 2

( ) ( ( ), )

,

( ) ( )
t

t

f t t t

dist p f t p f t

dtM t t t t

 

    


= 

== =

+ 

 

Eq 8. Area in a polygon ( ) ( )( )  
A

Area A M d d    =   

The formulae for radii above are all that is needed to measure the length of short segments of arc of 
latitude and longitudes on the ellipsoid. The examples later imply use of arcs of length in of degrees 
0.10° to 0.25°. 
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The integrals in Eq 8 and Eq 9 are difficult to solve in any closed form, and so the best was to calculate in a 
computer is the use of numeric integration as shown below in Eq 9 and Eq 10. 

Eq 9. Length of a curve:

( ) ( )

  ( ) ( )

( )

0

1 1

0 1 0 0

22

1 1

1

 ( :[ , ] ;     ,

  ;      ;     

 , ,..., , ,..., ,   

( ) ( ) ( )
( , )

2 2

n

i i i i i i

n n n

n

i i i i
i i

i

dist c t tt

t t t

M M
dist p p

 

     

   

     
 

− −

− −

=

→

 = −  = −

=   

  +  +     +      
      



 

Eq 10. Area of polygon: 

 

( ) ( )

( ) ( )

0... 1

0... 1

8

11

1

8

1

1

0

8

1

1

0

in area

{ }; ; 1, ...,

( )( ) ( )

2 2

( ) ( )

2

, ..., ;  ; 1,..., ;

( )

2

,...,

i i i i

j r j

ji i

i j

i

i i

i

i

i

c c

j

j

ii

r j j

i

j r

M M

M M

i c

A



    

    



   
 

 






  






= −

= −

−−

=

−

=

=

−



=  = −

=  = − =

 =

++
 

+


=



+
 



  
    

 
 
 









( )

1

1

( ) ( )
Height of strip in radians

2

( )
Length of strip

2

,   

   ,  in radians

i i

ii

ii

jj

M M 


  
 

−

−

+


+


 
  

 
 
 

 
 

 

 

The final summation works best for Δφ and Δλ shorter that 0.25  ̊(0.004363323 radians). The 
calculation in tables 1, 2, 3, and 4, result in errors of less than a millimeter.  

1.5 The importance of the radius of curvature for calculating lengths and areas 

The length of coordinate axes in the ellipsoidal coordinates (e.g. latitude (φ), and longitude (λ) are 
measured as angles, such as degrees, or radians, are not directly connected to the length of the arcs 
involved in meters. This requires us to convert angular arcs to the length in meters. The key is that an 
angle in radians is a function of the local radius of curvature. On a circle, it would be perfect, but 
meridians are ellipsoids, and the radius of curvature changes slowly getting longer as the latitude 
approaches the equator. This is the general idea for the use of Riemannian metrics. Riemannian metrics 
can produce exact measures by using integrals. Since there are not closed forms for these metrics, it is 
easier to use numeric approximation which derives from the original definitions for integrals stated by 
Newton. Taking significantly small arcs and applying the "trapezoid rule for numeric integration", gives 
us highly accurate and easily programmed numeric integration. This works because locally the Earth is 
"nearly flat", and the radii of curvature changes locally very closely, e.g. 0.25 ̊ arcs are nearly "a linear" 
rate of change in the local radius of curvature, both for latitude and longitudes. Which means the 
"trapezoid rule for numeric integration" is highly accurate in this sort of small areas. Examples in the 
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annexes show that our application works for long arcs, one case is 0 ̊to 90  ̊gives us accuracy on the 
general error budget of a millimeter or less. Once the length algorithms, the area ones are similarly 
accurate.  

1.6 Geometry and describing the position of features 

The positions of features are represented as geometry, stored mostly as collections of algebraic curves, 
either as points, curvilinear features or boundaries of areas because these are things a computer can 
process. All of the integrals in this paper and in differential geometry in general, result in loops that 
aggregates the lengths of short curves or areas of small polygons that are then combined to create very 
accurate length or area of features, by using the scale factors in the information in Annex A and Annex 
B in the integrals in B.1. These integrals mimic classical Euclidean geometry, with the understanding 
that even for a curved surface, an area almost infinitesimally small works as Euclid and Pythagoras 
thought they would and change only with a near infinitely large numbers of infinitesimals are summed. 
It works when we get to Δφ and Δλ values less that a degree or 0.0174532925 radians e.g.  π 180⁄  
radians, a radian is (180/π) ̊=57.29577951308232  ̊or 57  ̊17' 44.80624"). 

These integrals are not directly "solvable" using integral calculus, so we back-up to the "summation" 
approximations of numeric integration. Within a 1 φ̊ by 1 ̊λ square the scale for both latitude and 
longitude vary slowly, see Table 1 and Table 2. In general, a 1 φ̊ by 1 λ̊ square can only nearly be 
considered "planar", especially away from the poles. 

In all the numeric calculations in this document, the requirements of the mathematics are geodetic 
coordinates, (φ,λ), expressed in radians as required for the definitions, for the Δφ and Δλ, which use the 
local radius of curvature (in meters) M(φ) (along a meridian treated as a curve) and ρ(φ) along a 
parallel treated as a curve. These can be used to scale angles to meters: M(φ)Δφ along meridians and 
ρ(φ)Δλ along parallels.  

Note that both scaling factors depend solely on latitude(φ). These factors derive from the concept of 
the radius of curvature discussed in clause 1.4 below, which is the basis for spherical metrics, but can 
be used in small areas on the ellipsoid by using the local radii. First, think locally (using spherical 
metric based on the radii of curvature for the φ and λ axes (parallels and meridians). The elements of 
the Riemannian metric in Annex A and Annex B calculate local radii of curvature as defined in 4.1 and 
4.15, but use different methods that approach them directly. Although the two approaches derive 
different formulae which are identical in value but different in form.  

These curves and areas inherit their properties from both the coordinate space (an ellipsoid) from 
which they are collected and the underlying geometry of that space. In these processes, the 
implementors generally deal with one or more of 3 coordinate systems and their underlying spaces. 

• E 3 (ECEF Earth-Centered Earth Fix Cartesian, (X, Y, Z) or (Xi, i=1, 2, 3) ⇄ 

• S2: (spheroid, ellipsoid, sphere), geodetic (φ, λ) or geocentric (ψ, λ) ⇄ 

• E2: map (x, y) or (xi, i=1,2) 

Of these systems, only the first (which is used in GPS systems) uses "standard Euclidean geometry" 

which implies a Pythagorean metric (𝑑 = √∑ 𝛥𝑥𝑖
2), the square root of the sum of the delta-coordinates 

squared. The last two systems have metrics that differ in form from the Cartesian distance based on 
Pythagoras. There is no universal "equation-based" metric spheroidal distance or map distances with 
the corresponding scale, which represent real distances until the projection is mapped back to the 
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spheroid. For example, a north-south circumnavigation along a meridian is 40,007.862 km (see Table 
2), and an east-west circumnavigation along the equator is 40,075.016 km, (see Table 1) 

Spherical trigonometry works well on a "sphere”, but even the small eccentricity of reference ellipsoids 
will alter both the distance and area measurements. In the example above of circumnavigations can 
differs by about 70 kilometers. To a lesser extent, a degree of latitude will vary slightly along a 
meridian because of the eccentricity and because the differences in curvatures (both along the parallel 
and the meridians) is dependent on latitude. Because of the same flattening, the degree of latitude also 
varies but only slightly (1.121 km); 110.574 km at the equator and 111.694 km at the pole for a 
distance difference between the equator and the pole of only about 1%. 

Some maps can often use the standard Pythagorean metric for relatively small areas, such as 
engineering drawings over relatively small areas. The smaller area maps can get away with it because 
at that size the micro-geometry works as Euclid visualized it. These engineering drawings are not 
projection and therefore not really a topic for this paper. 

Metrics on curved surfaces (such as an ellipsoid) embedded in 𝔼3 inherit a Riemannian metric from 
that embedding. Distance on a curved surface between two points P1 and P2 is the length of the shortest 
curve (the geodesic) on the surface that begins at P1 and ends at P2. If the surface is a plane, the derived 
metric is Euclidean. However, if the surface is curved, such as the ellipsoid, to get an accurate distance 
along the geodesic there are two options, both involving the curves that link the two points. The length 
of the shortest curve on the surface is the "distance" between the points. Once this curve is identified, 
the length of the curve is an integral, either in 𝔼3(X, Y, Z) or on the spheroid S2(φ, λ). As long as the 
representation of the 𝔼3 version of the curve fits the S2 version of that same curve, the result will be the 
same (possibly with slightly different round-off errors). 

The Earth-Centered Earth-Fixed Cartesian coordinate space (𝔼3) places the center of the ellipsoid or 
spheroid at the origin (X, Y, Z)=(0, 0, 0), where the Greenwich Meridian (λ=0; longitude) as a curve on 
the spheroid that passes through the positive X-axis and is contained in the half plane where Y=0. The 
Y-axis plane is 90 ͦ East and the Z-axis is the rotational axis, and the positive Z+-axis passes through the 
north pole. 

This means the spheroid S2 is a topological sphere, with its center at the 𝔼3 origin, rotating about the Z-
axis. Some systems ignore the eccentricity and use a sphere (mimicking a globe). This eccentricity was 
first hypothesized by Isaac Newton and was verified by measuring the distances between latitudes that 
would be equal on a sphere but different on an ellipsoid, further near the poles than near the equator. A 
grade measurement expedition (1735-1738) by the French Academy of Science to Lapland and Peru 
verified the oblateness. Later efforts by F. G. W. von Struve and Bessel in 1814 were used for the Bessel 
Ellipsoid (1841) with an inverse flattening of 299.1528 (WGS 1984 ellipsoid uses 298.2572). 

A linear curve called a "line" taking it name from the formulae that in Euclidean (Cartesian) spaces is 
Euclid's line. But the algebra of the "line" segment between points 𝑝⃗ = (𝜑𝑝, 𝜆𝑝)and 𝑞⃗ = (𝜑𝑞 , 𝜆𝑞) on a 

spheroid is simply a "linear" equation, using vector forms of 𝑝⃗ and 𝑞⃗, 𝑐(𝑡) :[ 0,1] → 𝑆2 :[𝑐(𝑡) =
(1 − 𝑡)𝑝 + 𝑡𝑞⃗]; the underlying surface gives lines a curvature. The geometry follows the surface of the 
coordinate space. The properties of the curve depend on both its algebra, and the way the coordinates 
are used to be associated to the Earth's surface. Flat maps tend to be used as if they were Cartesian (as 
defined by René Descartes (1596-1650)) and therefore aligned to Euclidean geometry. However, 
globes aren't Euclidean, they are either spheres modeled by spherical trigonometry or ellipsoids which 
are close to sphere, but not easily modeled until Gauss (1777-1855) and Riemann (1826-1866) used 



14 

Newton’s (1642-1726) or Leibniz’s (1646-1716) calculus to define "metrics" for other surfaces, not by 
equations but by integrals. 

This standard enumerates the various mechanisms for representing feature positions as geometry on a 
curved surface spatially embedded in 𝔼3 or derived from such surfaces (e.g. map projections). The core 
difference between these geometries is the calculation of distances and associated lengths. Classical 
computer programs using coordinates work in Cartesian (and thereby Euclidean) coordinate spaces 𝔼2 
and 𝔼3 which use a Pythagorean metric. Modern geodesy does its calculation generally in one of two 
manners: intrinsic or extrinsic metrics. 

The intrinsic methods are based on operations on the surface being used, which usually involve 
differential geometry developed by Gauss and Riemann (most important the vector product) for 
curved space, usually creating integrals and not formulae for the calculation of lengths and areas (see 
Bomford [3] and Zund [38]). An example of a purely intrinsic method are the multiple measures of 
lengths of degrees of latitude and longitude which implied first spherical models and later with more 
data and more accurate data implied a spheroidal model (oblate spheroid). 

The extrinsic methods take measures in a larger space and then interpret information about a surface 
embedded in this larger space (S3). The best example is the GNSS satellite systems which interpret 
transmission time to multiple distance measures to calculate a position on the ellipsoid. In this later 
approach, the integrals can use the 𝔼3 coordinates (X, Y, Z) and transform to geodetic coordinates (ϕ, ) 
i.e. latitude, longitude. 

1.7 The importance of geodesy 

Geodesy is the science of the shape and gravity of the Earth, specifically for the geospatial community, 
this has implications for the types of geometry embedded in geographic coordinate reference systems 
based on geographic datums and their reference ellipsoid. These coordinates expressed as positions on 
the ellipsoid, geoid or surface of the Earth involve positions defined with respect to the equator1, and 
the Prime Meridian (Greenwich) and "local vertical" offsets from that surface (elevation or depth). 
Once the coordinate system is defined, the geometry is expressed in that coordinate system, see ISO 
19111 for the coordinate reference systems (CRS) and ISO 19107 for representing geometry in any 
coordinate systems. For example, the Euclidean line with all its properties cannot exist on a curved 
closed surface like a spheroid because the properties of such a surface prevent the fundamental 
infinities embedded in the concept of a line. A curve may seem to be a line in a small area, but the 
infinity of its length in Euclid’s geometry cannot exist in a closed finite surface like a globe or an 
ellipsoid. 

If a geographic representation system uses Euclidean geometry in 2D (𝔼 2 such as extrapolating from 
maps) or 3D (𝔼3 either addition of elevation to an 𝔼 2 system or embedding a 2D "Earth-like" (geoid) 
surface in an earth centered earth fixed coordinate system, ECEF), then they are engineering 
coordinate reference system (𝔼2 or 𝔼3)and should not to be confused with a projection where the 

 

1 The nominal measure of position with respect to these lines are expressed in angles, for latitude measured by the angular direction 
of the local surface vertical as it crosses the equatorial plane. For longitude this is the central angle for the reference ellipsoid, as a 
rotation parallel to the equatorial plane with respect to the prime meridian. If the ellipsoid is a not a sphere the latitude "φ" is not the 
same as the central angle "ψ". 
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target coordinate space does not represent a surface with Cartesian, Euclidean and Pythagorean 
functions. 

Because the Earth is not flat, the geometry of a geoid surface is non-Euclidean and all formulae on the 
plane that depend on Euclidean geometry, such as the Pythagorean Theorem, are usually invalid. There 
are several mechanisms that can be used to work around this, in differing order of functionality and 
software performance. 

1.8 The importance of geometry on the ellipsoid 

By our own common experience, if we are close enough to the earth's surface, Pythagorean metrics 
work. This is because that "close enough" looks like and works like a flat plane. So locally, the geometry 
is what we already know how it works. What differential geometry does is to "integrate" these small 
pieces into continuous realization of aggregating all the short parts with accurate where we add them 
to realize the length or areas, by aggregating all the little parts. 

This leads to two problems: how do we convert latitude "φ" and longitude "λ" to meters (or feet). At 
the equator, we have almost 25,000 miles of longitude and at the poles we can stand on all the 
longitudes at 89 ̊ 59' 59.999" (N) latitude, is about 30cm. The "parallel" radius of curvature the earth at 
90 ̊-.001"= 89 ̊ 59' 59.999" is r=6,356,752.314245m; changing .001" converted to radians, multiplied by 
r to convert to meters is 30cm. Geometry gives you the scales (local radius of curvature) that allow you 
to measure angles (latitude along meridians and longitude along parallels) in radians to meters rφΔφ 
and rλΔλ, in the direction of latitude or longitude; see clause 1.4. 

2 Conformance Classes 

A feature is a representation of a real-world object. For spatial applications, the most important 
properties of a feature are its location and shape. The most technically difficult part of geospatial 
application is dealing with the geometry that represents that location, usually on a map, ellipsoid or 
geoid. In small areas, Euclidean geometry work fine. However, the larger the area the greater the need 
to compensate for the Earth's curvature which can be dealt only with a non-Euclidean geometry 
engine. 

The conformance classes in this document depend on the methods used for operations for geometry 
objects used for the spatial extents of features. 

3D ECEF: 3D Earth Centered Earth Fixed: Use an appropriate ellipsoid and convert all coordinates to 𝔼3 
and use integration and differential equations to make calculations in 𝔼3. See Burkholder [4]. An ECEF 
coordinates system is a right-handed X, Y, Z coordinate system. The geometry of features must be 
contained on the reference ellipsoid. 

Ellipsoidal Geometry: Use an oblate ellipsoid having a fixed equatorial radius "re" or "a", a slightly 
smaller polar radius "rp" or "b" and use an ellipsoidal metric from differential geometry consistent with 
the geoid's radii. See Ligas, Panou [27], Eisenhart [13], Hotine [16], Lund [24], Struik [29], Zund [38], 
and more specifically differential geometry. 
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3 References 

The following normative publications in their most recent form contain information important to this 
document. 

OGC-17-087r10 Geographic information — Features and geometry – Part 1: Feature models 
ISO 19101-1 Geographic information — Reference model 
ISO 19103 Geographic information — Conceptual schema language 
ISO 19107 Geographic information — Spatial schema 
ISO 19108 Geographic information — Temporal Schema 
ISO 19111 Geographic information — Spatial referencing by coordinates 
ISO 19126: Geographic information — Feature concept dictionaries and registers 
ISO/IEC 13249-3 - Information technology — SQL Multimedia and Application Packages - Part 3: Spatial 
ISO 19162: Geographic information — Well-known text for coordinate reference systems 

4 Definitions 

In addition to the list below, any definition in any normative reference will be acceptable. All Standard 
English words are in either in the Oxford or Webster's dictionary, usually both, sometimes with 
variants in spelling. The better dictionaries of the English tend to list all allowable alternate spellings 
based on national usages and custom. 

4.1 curvature (of a curve) 

<differential geometry> second derivative of a curve parameterized by arc length, , at a point 

Note to term: The curvature is the reciprocal of the radius of curvature (4.15) 

Note to term: The radius of curvature of an arc is the radius of the best fitting circle of the curve  at 
that point.  

Eq 11. curvature of curve "c": 

( )( )
3

2 2

"

1 '

c

c

 =

+

 

See: Concise Dictionary of Mathematics, "curvature" [5] 

4.2 ellipsoid 
reference ellipsoid 

<geodesy> geometric reference surface represented by an ellipsoid of revolution, that is a surface 

of rotation around the polar axis so that the equatorial radii are all equal 

4.3 ellipsoidal (geodetic) coordinate system 

<geodesy> coordinate system in which position is specified by geodetic latitude, longitude and (in 

the three-dimensional case) ellipsoidal height 

Note to term: Geodetic latitude is measured by the angular direction of the local normal to the 
equatorial plane. See Figure 1 

[ISO 19111] 
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4.4 ellipsoidal geocentric coordinate system 

<geodesy> coordinate system in which position is specified by geocentric latitude and longitude 

Note to term: Geocentric latitude is measured by the direction of the line from the center (0, 0, 0) in 
(X, Y, Z) of the ellipsoid to the surface. 

4.5 ellipsoidal height, "h" 

<geodesy> distance above the reference ellipsoid along the local ellipsoidal principal normal 

Krakiwsky [21], Clynch[8] 

4.6 engineering coordinate reference system 

coordinate reference system based on a local reference describing the relationship of points to a 

Euclidean coordinate system  

Note to term: Any engineering coordinate system use a Euclidean metric, i.e. a subset of 𝔼n usually 
at most 3 spatial and, optionally, 1 temporal.  

4.7 first fundamental form (in differential geometry) 

inner, dot or vector product on the tangent space of a surface in three-dimensional Euclidean space 

𝔼3 which is derived canonically from the dot product (inner product) on the tangent space of a 

surface derived from the "vector dot product" in three- dimensional Euclidean space (𝔼3) 

Note to term: The first fundamental form is a Riemannian metric tensor usually derived from the 
embedding of the surface in 𝔼3. See [1] for tensors. The same mechanism can be used 
if the embedding is replaced with an isometry (a mapping which preserves distance). 
It is not necessary to change the extent of the metric. For example, the first 
fundament form for 3D polar coordinates should be functionally equivalent to 
standard polar coordinates used in physics (ρ,θ,ϕ), where ρ is the distance from the 
origin, ϕ is rotation from the x-axis towards the y-axis, and θ is rotation from the x-y 
plane towards the z-axis. 

Note to term: Alternatively, the first fundamental form can be derived by calculating the radius of 
curvature, (see 4.15) 

See Annex B. 

4.8 geodesy 

scientific and technical discipline addressing the fundamental basis of positioning and localization 

of geographical information science that studies dimensions, shape and the gravity field of the 

Earth 

Note to term: Both definitions above derived from IGN (translated from French). These definitions 
reflect both the purpose and the practice of geodesy. The purpose is to rationally 
locate positions on the earth which requires the practice of investigation of the shape 
and gravity of the planet (in this document, the Earth). 

IGN [17] 

4.9 geocentric latitude, ψ, φ', φc, and sometimes, ϕ or φ 

〈geodesy〉 angle to the equatorial plane of the line from the center of the ellipsoid to the surface of 
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the ellipsoid at the point referenced, positive north, negative south (in radians for the calculations 

in this document) 

Note to term: Unlike geodetic latitude, the line that determines geocentric latitude passes through 
the geometric center of the ellipsoid but is not always perpendicular to the reference 
ellipsoid surface. 

Krakiwsky [21] 

4.10 geodetic latitude, φ, φg, and sometimes φ 

〈geodesy, astronomy〉 angle that the normal at a point on the reference ellipsoid makes with the 

plane of the equator, positive north, negative south (in radians for the calculations in this 

document) 

Note to term: The line that determines geodetic latitude is perpendicular to the reference ellipsoid 
and usually does not pass through the center of the ellipsoid, except along the 
equator or at the poles. The following are valid for the surface of the ellipsoid, where 
geodetic "φ=φg" and geocentric "ψ=φc" latitudes and "λ" longitude. 

Eq 12. Geodetic latitude: ( )
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Eq 13. Geodetic longitude: ( )
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Note to term: If ψ= φ then they are 0°, or ±90°. The tangent at these angles has value of either 0 or 
±∞. 

Krakiwsky [21] 

4.11 geoid 

〈geodesy〉 equipotential reference surface of the Earth's gravity field which is everywhere 

perpendicular to the direction of gravity and which best fits a mean sea level either locally or 

globally 

Note to term: Geoids are usually represented as differences from a reference See: Concise 
Dictionary of Mathematics, "curvature" [5] 

ellipsoid. 

4.12 metric, measure 

function, system or set of algorithms that returns a numeric measure of some notional property 

such as distance or surface area, or any measured property possessed by an entity or set of entities 

Note to term: In this document, the metric will speak to the measure of the length of curves or to 
the area of a surface. The basic units of measure in this paper will be the meter and 
square meter or aggreges of these such as kilometer or hectare (10,000 square 
meters). 
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4.13 numerical integration 

numeric methods to approximate values for definite integrals  

Note to term: It may be that there is no analytical method of finding an antiderivative of the 
integrand. Among the elementary methods of numerical integration are the trapezoid 
rule or Simpson’s rule.  

See: Concise Dictionary of Mathematics, "numeric integration" [5] 

4.14 radian (rad) 

<mathematics> measure of an angle base on a portion of a circle, a full circle being 2π radians, 

Note to term: 1°=0.01745329252 radian= π/180°; 1 radian=180°/π=57.29577951°. So, an angle in 
degrees times π/180°is converted to the same angle in radians. 

Note to term: All integrals in this standard use radians as a measure of angle. The most important 
issue is the use of numeric integration where Δφ and Δλ will be expressed in radians, 
not in degrees. If the curve for Δφ has a local radius of curvature of "rφ" and similarly 
for Δλ, and a radius of curvature of the local λ-axis is "rλ" then the lengths of the arcs 
are approximately ( )r arclength   =   and ( )r arclength   =  dependent on the 

variations of the variance of the radius of curvature along the arcs of Δφ and Δλ. If Δφ 
and Δλ are small enough (at least smaller than a degree), then the total length is: 

Note to term: Tables may use two columns one for each angle; in degree ( o ) and in radian (no unit 
of measure). Radians are considered a ratio, between a circular arc length and the 
corresponding radius of that circle. Since the "a" and "b" (the two axes length of the 
ellipsoid in meters) the result of any of the numeric integrals below will be in meters 
or squared meters. 

Note to term: The radian appears in mathematical literature in 1871, but the concept derives from 
the middle ages, from Arabian mathematics.  

4.15 radius of curvature 

radius of the circle which best fits a curve at a point 

Note to term: The radius of curvature is the reciprocal of the curvature (of a curve)4.1). 

Eq 14. Radius of curvature: 
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Note to term: If Δφ and Δλ are both less than 0.0043633231 radian (.25 degree), the accuracy of the 
combined distances can have sub-meter or better accuracy (see radian (4.12) and 
Annex C). Zooming into smaller and smaller Δφ and Δλ will eventually produce better 
accuracy for the calculated arc length. The radius of curvature function along a 

parallel is ( ) ( )cosN   = and along a meridian is 
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, see Eq 9 

for the integral Eq 5 above, and the numeric integration in Table 2 below. Using 
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integral equations, the distance between longitudes in meters along the same latitude 

(φ), the length of the interval (λ0, λ1) is ( )
1

0

d





   . The distance between latitudes 

along the same longitude (λ), the interval (φ0, φ1) is
1

0

( )M d





  . 

Note to term: If Δλn=|λn−λn−1| were the two points are on the same parallel, i.e. are both the same 
"φ", then ρ(φn) Δλn is the exact arc distance value in meters on the ellipsoid. If φn and 
φn-1 are not equal, then a reasonable approximation between the two λ’s is 

[
ρ(φn)+ρ(φn−1)

2
] Δλn. The M(φ)Δφ with a non-zero arc length for Δφn=|φn-φn-1|, then a 

reasonable approximation of the arc length for φ is [
M(φn)+M(φn−1)

2
] Δφn. (see [32]). 

Eq 15. Delta Distance: ( ) ( )
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Eq 16. Radius of Meridian: 
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Eq 17. Radius of Parallel: ( ) ( )cosr N   = =  

See: "curvature" 

4.16 reduced latitude (of a point of latitude φ) 
parametric latitude 
β 

angle from the reference ellipsoid center to the point directly above the equator on the same line 

parallel to the polar axis of the point of latitude φ on the reference ellipsoid to the point on the 

surrounding sphere. 

Eq 18. Reduced latitude: 
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Note to term: Figure 1 shows the differences between both geodetic and geocentric latitude "φ, ψ" 
and the corresponding reduced latitude "β". The figure uses a larger eccentricity that 
would normally be seen on a reference ellipsoid 

4.17 Riemannian metric ( , )g u v u v=    

smooth function on a manifold M (e.g. surface) that defined a continuous inner product 

( , )g u v u v=  (sometimes called the "dot product") at each point "x" on the manifold on the tangent 
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spaces Tx(M) at each point on M 

Note to term: On an ellipsoid, dϕ·dϕ=M2(ϕ)and dλ·dλ=(N(ϕ)cosϕ)𝟐 and dϕ·dλ =0. The values of M(ϕ) 
is the radius of curvature for the meridian at the latitude ϕ, and N(ϕ)cosϕ is the 
radius of curvature for the parallel of latitude.  

4.18 surrounding sphere (of the reference ellipsoid) 

sphere centered at the origin of the reference ellipsoid with a radius equal to the ellipsoid's 

equatorial radius (semi-major axis "a"). 

5 Measure for an ellipsoidal (φ, λ) coordinate systems and geometry 

A radian has arclength "r" on a circle of radius "r". The circumference is 2 π r= π d. All angles are 
expressed in radians. 

1 radian= 57 ̊.295779513…= (180 ̊/π) 

Circle=2π= 6.283185307… 

1 radian=1/6.283185307… of the circle 

1 degree=π/180= .017453292519943…  

The applications work with geometry in the standard geodetic coordinate system geodetic latitude (φ), 
longitude (λ), and ellipsoidal height, if needed, (φ, λ, h). The following example deal with two corners of 
a latitude-longitude rectangle, with sides of two meridians and two parallels with two corners 

( ) ( )1 1,  and ,o o     with NS and EW distances are generally less than a quarter degree. 

All angle in the equation for φ, λ, Δφ and Δλ are used in calculations in radians. All distance expressions 
along curves in (ϕ, λ) are in meters.  

The north-south distance between 2 points, 0 0( , )   and 1 1( , )   projected on the same meridian (φ) 

has a north-south distance of approximately: 

Eq 19. NS distance: 0 1
1 0 =  where .
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The east-west distance between 2 points, 0 0( , )   and 1 1( , )   projected on the parallel (λ) has an east-

west distance of approximately: 

Eq 20. EW distance: 0 1
1 0 =  where .
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The distance between 2 points and the area of bounded rectangle  0 0 1 1( , ), ( , )    ( 
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Eq 21. Combined distance: ( ) ( ) ( )( )
2 2

   ;  and  r rdist r area r  
   = +  =   

Are expressed in meters where
( ) ( )0 1

2

M M
r

 +
=  and 

( ) ( )0 1

2
r

   +
= . The length of a curve is 

calculated by Eq 104. The rectangle with the diagonal 0 0 1 1[( , ), ( , )]    has ( )( )rarea r 
 =  in 

square meters. The area of a surface shall be calculated by equation Eq 96. The radii of curvature for 
latitude and longitude are functions of φ, where " a " is the equatorial radius and "e" is eccentricity; see 
4.1. 

Eq 22. Length of normal: ( )
2 21 sin

a
N

e



=

−
 

Eq 23. Radii of longitude: ( ) ( )cosN r  = =  

Eq 24. Radii of latitude: 
3

2

2

2 2

(1 )
( )

(1 sin )

a e
M r

e





−
= =

−
 

These radii can be taken to 14 significant digits, based on the lengths of the two radii of the ellipsoid, 
for the equatorial axis and polar axis. The flattening is also an algebraic function of the two ellipsoidal 
radii.  

Eq 25. Ellipsoid radii:  
6,378,137.0 m                      equator by definit

 6,356,752.314245180 m      polar by calculation (1 )

iona

bb a f=

=

= −
 

The radii of curvature here depend on the two radii of the ellipsoid, which are defined by “exact values" 
means if the functions are taken as double precisions valid digits, the values of the above functions can 
be as many as 14 to 17 decimals digits. This class uses an 𝔼3, an Earth Centered Earth Fixed coordinate 
system where the reference ellipsoid is centered at the (0,0,0) with the Z-axis containing the polar 
access, and the X-Y plane containing the equator, and the intersection with the Greenwich "0 ̊ meridian" 
and the equator is on the X and Y-axis. Theses following lay out how geometry should be done on a 
reference ellipsoid, usually embedded in 𝔼3, in general the types of analytic surfaces use within a 
Datum.  

Eq 26. Point:  ( , )point  =  

Eq 27. Curve:    0 0 0 1 1 1 2 2 2( , ) ( , ), ( , ), ( , ),..., ( , )i i i n n ncurve p p p p p         = = = = = = =  
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Eq 28. Surface: 

( )
,

, ,,
0,0

0,0 0,1 0,2 0,3 0, 1 0,

1,0 1,1 1,2 1,3 1, 1 1,

2,0 2,1 2,2 2,3 2, 1 2,

3,0 3,1 3,2 3,3 3, 1 3,

4,0 4,1 4,2 4,3 4, 1 4,

,

...

...

...

...

...

... ... ... ... ... ... ...

m n

i j i ji j

n n

n n

n n

n n

n n

surface p

p p p p p p

p p p p p p

p p p p p p

p p p p p p

p p p p p p

p

 

−

−

−

−

−

 = = 

=

3,0 3,1 3,2 3,3 3, 1 3,

2,0 2,1 2,2 2,3 2, 1 2,

1,0 1,1 1,2 1,3 1, 1 1,

,0 ,1 ,2 ,,3 , 1 ,

...

...

...

...

m m m m m n m n

m m m m m n m n

m m m m m n m n

m m m m m n m n

p p p p p

p p p p p p

p p p p p p

p p p p p p

− − − − − − −

− − − − − − −

− − − − − − −

−

 
 
 
 
 
 
 
 
 
 
 
 
 
 
  

 

The simplest geometry figure is a point, a set of one position. Since within a point, there can be no 
motion without leaving, the point has zero-degrees of freedom (of motion) and is therefore referred to 
as a 0-dimensional geometry. The next geometry up the scale of dimension is a curve. On a curve, 
motion along the curve has one degree of freedom and is therefore a 1-dimensional geometry figure. 
Following this pattern, surfaces are 2-dimensional, and solids are 3 dimensional. All geometry objects 
are sets of position and so every implementation of a geometry must have a manner to represent 
positions. 

Measuring geometry, the array of (φ, λ) pairs should coincide with the dimension of the geometry. In 
dealing with a point, only one control point is involved. In dealing with a curve, the sample points will 
be a sequential array of sample control points,  

A geometry representation shall use a single coordinate reference system (CRS) to express position(s) 
in space. The CRS shall be consistent throughout any primitive object (point, curve, surface or solid). 
The geometry objects or datatypes shall contain an identifier for the CRS in use or inherit one from a 
container. 

If the datum is dynamic, the CRS reference shall contain the epoch for which the coordinates are valid. 
The authority for a dynamic datum should be considered as the primary source of information 
concerning adjustment between epochs of the datum. 

The application should be able to calculate the length and areas of feature geometries in the ellipsoidal 
coordinate system (φ, λ) or (φ, λ, h) based on integration either in 𝔼3 or on the ellipsoid using a first 
fundamental form for that ellipsoid. If the reference ellipsoid is a sphere, the application can use 
spherical trigonometry to calculate distances without using integration techniques. Using a sphere is 
inconsistent with the actual geometry, which is an ellipsoidal. Any geometric representation of feature 
position requires an understanding of the "rules" of the space where this geometry is created. 
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6 Geometry on a curved datum reference surface  

This set of requirements lays out the requirements of doing geometry on a curved surface embedded in 
𝔼3, in general the types of analytic surfaces use within a Datum, e.g. the reference surface or ellipsoid. 
See Burkholder [4]. 

The issue is that in E3 geometries are in coordinates in (x, y, z) with the restriction stated in the above  

Measurements of distance or length, area or volume shall be equal with those that can be calculated on 
the reference ellipsoid using a Riemannian Metric (first fundamental form) (see 4.17) with a stated 
error budget. The values in the measurements are the local radii of curvature on the meridian and the 
parallel.  

Note:  The Riemannian metrics described Annex A works directly with geodetic coordinates, (𝜑, λ); 
with geocentric coordinates (ψ, λ). The geocentric system (ψ, λ) is simpler, but the geodetic system (φ, 
λ) is more commonly used. Both systems are based on local radii of curvature (see Table 1 and 2 in 
Annex C).  

The simpler geocentric system may be use in place of the more complex geodetic system by 
transforming φ to ψ and back as necessary, λ remains the same in these transformations. 

Geometry dependent on these systems such as geodesics (shortest distance), rhumb lines (constant 
bearing) and any geodesic circle (constant distance from a center point), shall be consistent with 
calculation in the Earth centered, Earth Fixed 𝔼3 coordinate system in which the datum surface is 
defined, with a stated error budget, and shall be consistent with the same geometries using ellipsoidal 
calculations in latitude (ϕ) and longitude (λ). 

7 Geometry in map projection spaces with datum information 

"It is possible to derive a set of formulae to convert geographic coordinates to grid coordinates in 
purely mathematical terms. In general, equations can be derived of the form. see [18] and [28]. 

Eq 29. Map position for (φ,λ): ( )( , ) ,E N f  =  

Eq 30. ( ) ( ),
e

s

s eLength M d





   =   

Eq 31. Lenght of a Merridian between φs to φe:

0 1 2 1

1

1

,..., , , ,..., ;

( ) ( )
( , )

2

s e n i i i

n
i i

m s e i

i

M M
d

        

 
  

−

−

=

=  = −

+ 
  

 


 

Eq 32. Length of a parallel from λs to λe: ( , ) ( )e s s ed        = −     
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In other words, the position in a map space (x, y) = (E, N) → (φ,λ) is mapped to a position on the 
reference ellipsoid. The argument also implies a display or digital map should be associated to the map 
projection and which, a map or map-like display on a screen should be able to map back to geodetic 
coordinates 

8 Numeric Integrals for Ellipsoidal Measures 

8.1 Length of a Meridian Segment 

Along a meridian, the radius of curvature is dependent on φ. See Table 2. 

Eq 33. Exact Integral ( )
0

0( , )
n

nLength M d





   =   

Eq 34. Numeric Integral ( ) ( )

0 1 2

1

0

1

....

( , )
2

n

n
i i

n i

i

M M
Length

   

 
  −

=

   

+ 
  

 


 

8.2 Length of a Parallel Segment 

The radius of curvature for a parallel is dependent on the latitude of the parallel, and constant along 
the parallel.  

Eq 35. ( ) ( )
0

0 0( , ) cos cos
n

n nLength d





          = = −  

8.3 Length of a Curve 

The definition of a curve on an ellipsoid (see ISO 19107 Geographic information — Spatial schema. A 
curve is defined by a set of segments 0 0 1 1 1points { ( , ), ( , )...., ( , )}o n n np p p     = = = =  between each 

pair subject to an interpolation mechanism. For a numeric integral, it is easier to approximations using 
linear segments. If the curve is a line string the original data points can be used, but other curves 
should be densified by the interpolated points will allow to use a linear interpolation. This linear 
approximation even for complex curves works towards the correct measures. 

In general, for two points on curve work better if the Δφ if less than a quarter degree, and the 
difference between the line used in the numeric integration is relatively and is curve is quite small. 

This suggests that a GIS metric system should include a "center point" function for each curve type, so 
that the line approximation can be used to support the accuracy needed for length digital integration. 

For example, if we are dealing with 0 0 1 1 1( , ) and ( , )op p   = = then there is a plane perpendicular to 

the line between
0 1 and p p defines a surface perpendicular to the line between the two points, and the 

point on the curve that is in that surface e.g. 0.5p between the two point that lies on the curve and is 
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approximately half way between 0 1 and p p .Continuing along the curve and introducing new half 

distance points along the curve, the difference between data points become closer to each other on the 
curve. Once the approximate distance between any two sequential points on the curve are within a 
quarter degree in both latitude (φ) and longitude (λ). Which approximates the distance between the 
two points as: 

Eq 36. ( ) ( ) ( ) ( ) ( ) ( )
2 2

2 2
1 1

1

2 2

i i i i
i i i i

M M
p p

     
 + +

+

+ +   
−   +    

   
 

In the equation below, the calculation of a curve length should be  

Eq 37. 

( ) ( ) ( )( )

( ) ( )( ) ( )

( )( ) ( ) ( )( ) ( )

( ) ( ) ( ) ( ) ( )

0 0 1 1 1

2 2

0

0

2 22 2
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2

2
1 1

0

points { ( , ), ( , )...., ( , )}

Curve c ,

Lengtht ,  = ( )

lim
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2 2

o n n n

t

n

n

i i i i
n

i

i i i i
i

n

p p p

s s s

d d
p p M s dss

ds ds

M

M M

     

 

 
  

    

     


→
=→

− −

→
→

= = = =

=

      
+      

      

=  + 

+ +   
=  +  

   





( )
2

2

1

n

i

i


=



 

The two variations use the original Newton’s definition, and the later uses a trapezoid rule that makes a 
better local approximation because the ISO 19107 Geographic information — Spatial schema 

Equations Eq 7 (curves) and Eq 8 (areas) are the integrals, and Eq 9 and Eq 10 are the numeric 
integrations of the integrals. The later approximations can be done to best that can be done in double 
precisions numbers. The tables below demonstrate this. See Table 2, Table 3 and Table 4. 
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Annex A Descriptive values of an oblate ellipsoid 

A.1 Ellipsoidal constants.  

The following equations describe the important information of ellipsoids including geodetic 

coordinates (φ,λ): 
X2

a2
+

Y2

a2
+

Z2

b2
= 1, where "a" is the semi-major axis (equatorial radius=6,378,137.0 m) 

and "b" is the semi-minor axis (the polar radius=6,356,752.314245). The inverse flattening is 
298.257223563. Although all equations are valid for all ellipsoid, the numerical values are WGS84, the 
common spheroid for GPS.  

Eq 38. Ellipsoid S2 (surface) and D3 (solid):

2 2 2
2

2 2 2

2 2 2
3

2 2 2

1

1

X Y Z
S

a a b

X Y Z
D

a a b

 + + =

 + + 

 

Eq 39. Radii: 
6,378,137.0 m                   by definiti

 6,356,752.314245180 m   by calculation (1 )

ona

b a fb =

=

−=
 

Eq 40. First eccentricity: 
2 2

2

2
2

a b
e f f

a

−
= = −  

Eq 41. Second eccentricity: 
2 2

2
'

a b
e

b

−
=  

Eq 42. Flattening: 
1

1 1
298.257223563 =

aa b
f

f a ba

−

− − 
= = =  

− 
 

Eq 43. First flattening: 298.257223563  =
a b

f
a

−
=  

Eq 44. Inverse Flattening: 1 1
= f

f

−  

Eq 45. Second flattening:  '
a b

f
b

−
=  

A.2 Geodetic Ellipsoidal coordinates.  

This clause shows that the standard mapping between geodetic (𝜑, 𝜆) and ECEF (X,Y,Z) are consistent.  
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Eq 46. The ellipsoid surface: 
2 2 2

2 2 2
1

X Y Z

a a b
+ + =  

Eq 47. Length of Normal: ( )
2

2 2 2 2 2 21 sin cos sin

a a
N

e a b


  
= =

− +
) 

Eq 48. Radius of Meridian; 
3

2

2

2 2

(1 )
( )

(1 sin )

a e
M

e




−
=

−
 

Eq 49. X in geodetic: ( )
2

2 2 2 2 2 2

cos cos cos cos
cos cos

1 sin cos sin

a a
X N

e a b

   
  

  
= = =

− +
 

Eq 50. Y in geodetic: ( )
2

2 2 2 2 2 2

cos sin cos sin
cos sin

1 sin cos sin

a a
Y N

e a b

   
  

  
= = =

− +
 

Eq 51. Z in geodetic: ( )( )
( )2 2

2

2 2 2 2 2 2

1- sin sin
1- sin

1 sin cos sin

a e b
Z N e

e a b

 
 

  
= = =

− +
 

Eq 52. Radius of parallel: 

( )

( )

( )

2 2

2 2 2 2

2 2

cos (sin cos )

cos
cos

1 sin

X Y

N

a
N

e

 

  






= +

= +

= =
−

 

Eq 53. Coordinates: 

 

( )

( )

( )

2

2 2 2 2 2 2

2

2 2 2 2 2 2

2 2

2 2 2 2 2 2

cos cos cos cos
cos

cos sin 1 sin

cos sin cos sin
sin

cos sin 1 sin

sin 1- sin

cos sin 1 sin

a a
X

a b e

a a
Y

a b e

b a e
Z

a b e

   
 

  

   
 

  

 
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= = =
+ −

= = =
+ −

= =
+ −

 

Thus, satisfying the ellipsoidal equation: 
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Eq 54.  

( )2 2 2 4 2 2 2 4 2

2 2 2 2 2 2 2 2 2 2 2 2

2 2 2 2

2 2 2 2 2 2 2 2

2 2 2 2

2 2 2 2

1 cos cos sin 1 sin

cos sin cos sin

cos sin

cos sin cos sin

cos sin

cos sin

1

X Y Z a b

a b a a b b a b

a b

a b a b

a b

a b

   

   

 

   

 

 

   + +
+ = +   

+ +   

   
= +   

+ +   

+
=

+

=

 

Burkholder [4], Bomford [3], Clynch [6], Hotine [16], IOGP[19], Jekeli [20], Krakiwsky and Thomson 
[21], Ligas [22], Panigrahi [26], Torge [31]. 

A.3 Geodetic Metric, Latitude (φ) And Longitude (𝜆) 

Using classical mathematical trigonometry, the above equations can be expressed, using geodetic 
latitude 𝜑 and longitude . Taking the equations X, Y, Z expressed functions in geocentric coordinates, 

( ),  . This is essentially the creation of the matrix of transformations J (
X,Y,Z

φ,λ
). Below, using geodetic 

latitude using the equations in the ECEF (GSDM), we calculate the X,Y, Z coordinates as functions of 

latitude and longitude, ( ),  . Taking derivatives with respect to both φ and λ, we get the radius of 

curvature for the axes for both φ and λ. The values come out squared, because what is derived is the 
dot products of the tangent vector, e.g. the squares of the radii of curvature.  

Eq 55. Ellipsoid surface:  
2 2 2

2 2 2
1

X Y Z

a a b
+ + =  

Eq 56. Length of normal: 

( )

( ) ( )
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3 3
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= =
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Eq 57. Radius of Parallel: ( ) ( )
2 2

cos
cos

1 sin

a
N

e


  


= =

−
 

Eq 58. Radius of Meridian: 
3

2

2

2 2

(1 )
( )

(1 sin )

a e
M

e




−
=

−
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Eq 59. XYZ to elliptical:

( )

( )

( )( )
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cos sin 1 sin

cos sin cos sin
  cos sin   

cos sin 1 sin
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Y N

a b e
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b a e
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   
  

  

   
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 
 
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 
= 

+ − 
   
   = = =
   + −
   

−
= =

+ − 

 





 

This creates the components for the first fundamental form, which is a vector inner product for u  and 
v in the vector space for the coordinates(𝝋, 𝝀) whose vectors spanned by (𝒗⃗⃗⃗, 𝒖⃗⃗⃗)as defined above. In 
other words, these are vectors for the coordinate space of (𝝋, 𝝀) i.e. the reference ellipsoid. The inner 
product also implies that any vectors in the φ-direction at a point is always perpendicular to vectors in 
the λ-direction.  

Geocentric measures are measured along a line from the center of the ellipsoid (origin of the 
coordinate system) to the point. Geodetic latitude makes things a bit more complex. A geocentric 
latitude is slope of the upward normal from the surface of the ellipsoid which is equal to the geocentric 
latitude at the equator and the poles.  

Similar calculations for geodetic latitude are a bit more complicated. The equations for this form has 
been, often with slightly different variable names, around for quite a long time, See Bomford [3] (at 
least in the 3rd and later editions), Burkholder [4], Hotine [16], IOGP[19], Jekeli [20], Krakiwsky and 
Thomson [21], Ligas [22], Panigrahi [26], Torge [31], Clynch [6], [7] and [8]. The differences in the 
various versions of the model were essentially in the choice of variable names, and the details on the 
calculations.  

Eq 60. Reimann metric: 
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Eq 61. Radii φ,λ:  
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: 

First fundamental form for geodetic coordinates (φ, λ): 

Eq 62. E(φ): 
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The equality ( ) 2 ( )E M =  has been checked numerically for 90 . An algebraic proof has been 

difficult to find. In essence, the calculations for ( ) ) and ( E M   are both valid calculations for a 

meridian’s radius of curvature, e.g. 
2 2

1 1 1 (radius of curvature)u u u= = . 

Eq 63. F(φ)      , ,1,2 2,1 ;  0 0;  t

i j i j i ji j i j
a u u au u u ua a = == = = =  

Eq 64. G(φ) ( )( ) ( ) ( ) ( )( ) ( )
2 22 2 2 2 2 2

2,2 N cos sin cos N cos N cosa         = = + = = =  

The Riemannian metric is: 

Eq 65. 
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A.4 Geocentric Metric - Latitude (ψ), Longitude (λ) 

The equation of the surface that uses latitude and longitude as both central angles of the ellipsoid 
would be as follows: 

Eq 66. Ellipsoid: 
2 2 2

2 2
1

X Y Z

a b

+
+ =  

Using classical mathematical trigonometry, the above equations can be expressed, using geocentric 
latitude φc and longitude . Taking the equations X, Y, Z expressed functions in geocentric or geodetic 

coordinates, ( ),  . This is essentially the create the radius of curvature along the φ (meridians) and λ 

(parallels) coordinate lines. The metric uses the squares of the radii of curvature. 

Geocentric ellipsoidal coordinates, 𝑆2(𝜓, 𝜆) ⊂ 𝔼𝟑(𝑋, 𝑌, 𝑍) where: 

Eq 67. Geocentric:  
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Eq 68. Geocentric coordinates: c
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Eq 69.  1 sin cos , sin sin , cos
X

u a a b    



= = − −


 

Eq 70. 2 [ cos sin , cos cos ,0]
X

u a a   



= = −


 

Eq 71. 
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u u G a a

 



• = = = +

• = = = =

• = = =

 



33 

A.5 First Fundamental Form Using Geocentric Latitude "ψ": 

Eq 72. Geocentric Metric  
2 2 2 2

2 2

sin cos 0
[ ]

0 cos
ij

E F a b
a

F G a

 



 + 
= =   
   

 

This creates the pieces for the first fundamental form, which is a vector inner product for u  and v  in 
the vector space for the coordinates(𝜓, 𝜆) whose vectors spanned by (𝑣⃗, 𝑢⃗⃗) as defined above. In other 
words, these are vectors for the coordinate space of (𝜓, 𝜆) i.e. the reference ellipsoid. The inner product 

[𝑔𝑖𝑗]  also implies that any vectors in the ψ-direction at a point is always perpendicular to vectors in 

the λ-direction.  

A.6 Geocentric Metric on a sphere - Latitude (ψ), Longitude (λ) 

If 𝑎 = 𝑏 then the ellipsoid is a sphere (𝑎 = 𝑟 = 𝑏) and the first fundamental of the sphere using 
geocentric latitude "ψ" and longitude "𝜆" is: 

Eq 73. Geocentric Metric on a spherer:  
2

2

0

0 cos
ij

E F r
a

F G r 

  
= =      

   
 

On the sphere, the geocentric "ψ" and geodetic "φ" latitude are the same because the circle’s 
eccentricity in 0. It should be remembered that for a sphere, r=a=b, and any metric will work. For 
example, the next equation can be used to calculate this by doing just that: 

Eq 74.   𝑠𝑖𝑛2 𝜓 + 𝑐𝑜𝑠2 𝜓 = 1 

Geocentric measures are measured along a line from the center of the ellipsoid (origin of the 
coordinate system) to the point. Geodetic latitude makes things a bit more complex. A geocentric 
latitude is the slope of the upward normal from the surface of the ellipsoid which is equal to the 
geocentric latitude at the equator and the poles.  

In all cases, the integral for length of a curve in equation (70) and the area or a region W in equations in 
(74) are valid for each fundamental form for the variables (in these cases "latitude", "ψ" or "φ", and 
longitude "λ") used in the calculation of the form.  

A.7  Three-Dimensional Geodetic Metric (φ, λ, h) 

This clause shows that the standard mapping between geodetic (𝜑, 𝜆) and ECEF (X, Y, Z) are consistent.  

Eq 75. X in geodetic:  ( )( )cos cosX N h  = +  

Eq 76. Y in geodetic:  ( )( )cos sinY N h  = +  
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Eq 77. Z in geodetic:  ( )( )( )2 sin1-Z N e h = +  

Eq 78. Radius of parallel: ( )( ) ( )( )
22 2 2cos cosX Y N h N h   = + = =+ +  

Eq 79. Coordinates:  

( )( )

( )( )

( )( )( )2

cos cos cos ,   

sin cos sin

sin1-

X N h

Y N h

Z N e h

   

   



= = +

= = +

= +

 

Using classical mathematical trigonometry, the above equations can be expressed, using geodetic 
latitude 𝜑 and longitude . Taking the equations X, Y, Z expressed functions in geocentric coordinates, 

( ),  . This is essentially the creation of the Jacobian of the coordinate transformation between ECEF 

(X, Y, Z) and latitude - longitude (φ, λ). 

Eq 80.  
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2

32 2 2 2 2
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( )=        '( )

1 sin 1 sin

a ae
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e e
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Eq 81.   

( )( )

( )( )

( )( )( )2

cos cos   

cos sin    

1 sin

N hX

Y N h

Z eN h

 
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

 + 
  

= +  
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This creates the components for the first fundamental form, which is a vector inner product for u  and 
v in the vector space for the coordinates (φ,λ) whose vectors spanned by (𝒗⃗⃗⃗, 𝒖⃗⃗⃗)as defined above. In 
other words, these are vectors for the coordinate space of (𝝋, 𝝀) i.e. the reference ellipsoid. The inner 
product also implies that any vectors in the φ-direction at a point is always perpendicular to vectors in 
the λ-direction.  

Geocentric measures are measured along a line from the center of the ellipsoid (origin of the 
coordinate system) to the point. Geodetic latitude makes things a bit more complex. A geocentric 
latitude is slope of the upward normal from the surface of the ellipsoid which is equal to the geocentric 
latitude at the equator and the poles.  

Similar calculations for geodetic latitude are a bit more complicated. The equations for this form has 
been, often with slightly different variable names, around for quite a long time, See Bomford [3] (at 
least in the 3rd and later editions), Burkholder [4], Hotine [16], IOGP[19], Jekeli [20], , Ligas [22], 
Panigrahi [26], Torge [31], Clynch [6], [7] and [8]. The differences in the various versions of the model 
were essentially in the choice of variable names, and the details on the calculations.  
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The first step in each case is to determine the local perpendicular and the length of the this principal 
normal as a function of latitude N(𝜑), with respect to the east-west "longitude lines".  

Eq 82. 
, ,

, ,

X Y Z X X X
J d d dh

h h
 
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Eq 83. 
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Eq 84.  
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Eq 85. 
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Eq 86. 
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Eq 87. 
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First fundamental form for geodetic coordinates ( , ):   

Eq 88. 
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Eq 89. 
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Annex B Metric Integrals and Numeric Approximations 

B.1 Length and Area Integrals. 

This section defines the Riemannian metrics, which are integrals derived from Gauss’s work and 
Newton’s calculus. In these cases, the calculus is rather difficult and usually does not lead to simple 
integrations in closed form. This means there are not simple formulas as in the Pythagorean metric. 
This means that the best viable solutions are numeric integrations which are approximations based on 
the simple summations that show-up in the basic definitions of an integral an area under a curve. 

This is quite easy to understand, an integral ∫ 𝑓(𝑡)𝑑𝑡
𝑏

𝑎
 is the area under the curve 𝑓(𝑡) between the axis 

and the curve between 𝑡 = 𝑎 and 𝑡 = 𝑏. These solutions in fairly simple loops that reiterate 
summations that approximate this area. The key to getting a good approximation is to use longer and 
longer summations based on smaller and smaller intervals for latitude and longitude e.g. shorter Δφ’s 
and Δλ’s (see below). 

For geodetic coordinates, the following metric functions apply: 

Eq 90. Meridian radius:
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Eq 91. Parallel radius: 

 
( ) ( ) ( ) ( )
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N
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The relationship between 𝐸(𝜑) = 𝑚2(𝜑) is addressed in Annex B.2. A formal proof is yet to be found, 
but extensive numeric testing indicates E(φ)=m2(φ) are equal for all values of "φ". The most common 
set of parameters are from WGS84: 

B.2 The Curve Length Integral and the Numeric Alternative 

Integration in calculus is inherently difficult, because unlike derivatives, there is often not a fixed 
procedure. In the use of the integrals in the above narrative are a line integral to calculate the length of 
a geometry (curve) (E, F and G are distances in meters, and 𝜑 and 𝜆 are angles represented in radians, 
i.e. no unit (radians are a ratio and inherently unitless, e.g. π=180 ̊,1 =̊π/180=0.0174532925199). In all 
cases in this paper φ and λ lines are orthogonal everywhere, so F≡0. 

To understand what follows, we need to understand the relationship between φ, λ, and t on a curve c: 

𝑐(𝑡) = (𝜑(𝑡), 𝜆(𝑡)); we have 3 sequences for ( ), ,i i it   where 𝑐(𝑡𝑖) = (𝜑(𝑡𝑖), 𝜆(𝑡𝑖)) = (𝜑𝑖, 𝜆𝑖). Assuming 
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the Δφ, and Δλ, are small enough to keep the radii of curvatures within a small area so that they are 
"fairly smooth".  

Eq 92.  Curve 
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Eq 93. Length Integral:  
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As seen above, as the Δφ and Δλ grow smaller and more numerous, the numeric calculations use the 
Pythagorean formula which works best if the square bounded by Δφi, and Δλi is on the order of a 
fraction of degree for both for both latitude and longitude. This works because in small areas the 
classical geometry works in what we refer to as engineering diagrams or plans. In this approximation 
we used the midpoint value for E and G between φi and φi-1. In the examples in 

Each of the possible options do something equivalent, approximating the area of the polygon or 
trapezoid under the function in the integral by multiplying the width of the represented by the values 
of Δφ and Δλ, where the function functions E and G in that supply the "meters per radian" for the 
locality of the arc. 

Annex B also contains the mechanism for these integrals to be calculated using summations. This 
derives directly from the definition of an integral as the limit of longer and longer sums. 

The idea is to divide the subdivisions into smaller and smaller ones, for example, by placing a new 
value for "s" between each existing pair, doubling the number of intervals and halving each interval by 
inserting a midpoint. 

Eq 94. Curve in (φ,λ)  
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Eq 95. Length of curve: 

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

1
2 2 2

2 21 1

1

1 1

1

2 2

lim

2 2

lim

i i i i
i i i

n

c i
n

i

i i i i
c i i

n

c ci
n

i

M M
L

L L

M M
A

A A

     
 

     
 

− −

→
=

− −

→
=

 + +   
 =  +     

    

 
=  

 

 + +   
 =       

    

 
=  

 





 

Each this iterative summation will get closer to the actual Lc if sufficiently accurate number formats are 
used (64-bit double-precision at the least). The usual approach might be using the number of nodes 
used in the digital curve (as defined in ISO 19107 Geographic information — Spatial schema, and half 
each interval length (doubling the count) each time until subsequent difference in subsequent 
iterations are within the desired error budget. 

B.3 The Surface Area Integral 

The surface area integral calculates the area of a subsurface of the reference surface (ellipsoid), which 

is simple product of the length times the width in √𝑬(𝝋)𝑮(𝝋)𝜟𝝋𝜟𝝀. Note that in both cases (√𝑬(𝝋)Δφ 

and √𝑮(𝝋)Δλ) gives you the number of meters in a width in Δφ direction and a length in Δλ direction 

respectively. The two delta-angles are in radians, and the E and G parts just change angles to meters. 

So, in a way the Riemannian measures of length and area depend on the usual Euclidean measures, 
good as long as the values of Δφ or Δλ are sufficiently small for the purpose. In a truly echo of history, 
what we are doing is exactly that which the 3rd century BC Greeks were using to approximate π by 
creating polygons to closely approximate the length or surface of the spheroid or circle. The area 
integral for the geodetic fundamental forms in this paper the area integral is (recall that F=0). 

Eq 96. Area integral 
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The summation approximations for this integral break the area into square using subsets of the φ and λ 
squares. So, if the latitude is between φ0,…φn, and λ0,…λn: 

The difference between the line integral and the area integral is the dimension of the summation 
sections. There are alternatives to what is below, but the same idea may be used with various methods 
of getting to smaller and smaller polygons. 
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1. Start with the minimum bounding rectangle. It is a square box that contains the entire area. 
2. Slice all polygons into smaller polygons; any way that works, rectangles and triangles seem to 

work best. Throw out any that do not overlap the area A. 
3. For each remaining polygon measure the area in degrees in latitude and longitude. This is 

actually a unitless area, the units come from the integrand (the function between the long S "∫" 
and the variable differentials "d𝜑d𝜆", which is in square meters (which is the way the 

derivations were made above, √𝐸(𝜑), and √𝐺(𝜑) are meters, so EG is therefore square meters). 
4. Take the centroid each of the polygons (easy on squares and triangles); call it "p", and calculate 

an integrand at "p" inside the polygon preferably near the center, e.g. √𝐸(𝑝)𝐺(𝑝) and multiply it 

by the "radian area" of the "d𝜑d𝜆" polygon, e.g. √𝐸(𝑝)𝐺(𝑝)𝛥𝜑𝛥𝜆 = 𝑚(𝜑)𝜌(𝜑)𝛥𝜑𝛥𝜆 if it is the 
original still the original angular rectangle. 

5. Sum all of these and keep it as the approximate area (recall, it is a number of square meters). 
6. If the last 2 answers were very close within each other of the intended accuracy limit, stop and 

report the area at the integral value 
7. If you did not stop at the last step, return step 2 and repeat. 

B.4 The Integrals and their Numeric Approximations 

Eq 97. The length integral:  ( ) ( )
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The idea is that the curve in question is written as a function of "t" (think of time moving onward). So, 
our curve "c" is a function of "t" which keeps track or latitude, 𝜑 and longitude 𝜆, so we write: 
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Which basically says that the derivative of a curve is the tangent vector (in physics, it is the velocity 
vector). Therefore, using the equation, the function (for velocity) it the square root of the functions 
from the first fundament form and an approximation of the vectors. In the geometry specification (ISO 
19107) defines curves as a sequence of points: {𝒑⃗⃗⃗𝒊 = (𝝋𝒊, 𝝀𝒊)|𝒊 = 𝟎. , 𝒏} and {interpolation='curve 
type'} such that the curve between 𝒑⃗⃗⃗𝒊−𝟏 and 𝒑⃗⃗⃗𝒊: 

Eq 99. Generic curve 
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Eq 100. Length of curve: 
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In general, both 𝜑 and λ will most often both vary simultaneously. In some of the examples below for 
lines of latitude or lines of longitude, allows a simplified length integral (𝑳𝒄), by using deltas for either 
longitude or latitude, but not both. Which changes the square root of the sum of squares, to a single E 
or G summation term. 

It should be noted that both E(φ) and G(φ) are always only a function of latitude and always positive 
(always a sum of squares). In the Lc integrals, the Δφ and Δλ are squared and then square-rooted, 
meaning they are also always contributing positively in the numeric integration for the line-length 
integrals. 

Eq 101. N-S Distance 
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Eq 102. E-W Distance 
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It is the case that these two functions are equivalent to local square of the radius of curvature or lines 

of varying latitude lines (meridians) for √𝐸(𝜑) = 𝑀(𝜑) = 𝑎(1 − 𝑒2)(1 − 𝑒2 𝑠𝑖𝑛2 𝜑)−3/2 and for lines of 

varying longitude (parallels) for √𝐺(𝜑) for𝜌(𝜑) =  𝑁(𝜑)|𝑐𝑜𝑠 𝜑|. 
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Annex C Examples 

The two tables below describe the length of the meridians (north-south lines) and parallels (east-west) 
in terms of Δφ and Δλ converted to meters based on the radius of curvature of these curves on the 
ellipsoid. With this information and the integrals in Annex B. What they show is that using Δφ and Δλ of 
approximately a degree or less, local distances, and thereby local areas, can be calculated down to the 
level of centimeter accuracy. 

C.1 Length of a Degree of Longitude 

The table below uses the equations in Annex B to calculate the length of a degree of longitude along 
parallels of the various latitudes, partially repeated below the table. This table would be north-south 
symmetric, so that the value for "𝜑" is the same as "-𝜑", The given the radius "r" derives from the 
computation below the table, circumference is "2πr". The formula below is valid for any φ in radians 
(2π radians =360°). The radius "ρ" falls out of the calculations in equation below. The radius of 
curvature in meters at latitude "φ" in the plane of the parallel of latitude. 

Eq 103. Parallel radius ( )2 2

2 2
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1 sin
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e
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A full circle is 360 ̊ degrees, and 2π radians. The radius of a circle of latitude is ρ(φ) and so the 
circumference of the circle of parallel is 2πρ(φ). Table 1 show the radius at each latitude (the equator 
radius is the semimajor axis "a=6,378,137 meters” which is 111.319 km per degree, and 6,378,137 
meters per radian)" to the pole where the radius is "0.0". Bomford [3] calls ρ(φ) the radius of the 

parallel of latitude. The local circumference at latitude "φ" is " ( ) ( )2c   = ". This table did not 

require any integral but is directly observed by analysis of the ellipsoid, see equation (80). Clynch [9] 
also deals with the value of the radius function "ρ(φ)". Unlike latitude the length of Δλ along a parallel 
is constant on any ellipsoid. In each row below the length of the parallel is calculated from the latitude, 
where the radius of the circular parallel. 
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Table 1. Length of Parallel of Longitude at each quarter Latitude: 

Latitude 
in 

Degrees 

Latitude in 
Radians 

Radius in Meters 
of Parallel 

ρ(φ) 

Circumferen
ce in Km 

Difference of 
Parallels in Km 

Km in a λ 
Degree 

0.00 0.000000000 6,378,137.000000 40,075.016686 0.000000000 111.31949079 

0.25 0.004363323 6,378,076.691178 40,074.637754 0.378931504 111.31843821 

0.50 0.008726646 6,377,895.765791 40,073.50966 1.136787733 111.31528046 

0.75 0.013089969 6,377,594.227076 40,071.606343 1.894623623 111.31001762 

1.00 0.017453293 6,377,172.080428 40,068.953917 2.652425615 111.30264977 

1.25 0.021816616 6,376,629.333401 40,065.543737 3.410180150 111.29317705 

1.50 0.026179939 6,375,965.995704 40,061.375863 4.167873669 111.28159962 

1.75 0.030543262 6,375,182.079207 40,056.450371 4.925492616 111.26791770 

2.00 0.034906585 6,374,277.597936 40,050.767347 5.683023432 111.25213152 

2.25 0.039269908 6,373,252.568076 40,044.326895 6.440452561 111.23424137 

2.50 0.043633231 6,372,107.007966 40,037.129128 7.197766447 111.21424800 

2.75 0.047996554 6,370,840.938107 40,029.174177 7.954951535 111.19215049 

3.00 0.052359878 6,369,454.381155 40,020.462182 8.711994272 111.16795051 

3.25 0.056723201 6,367,947.361922 40,010.993301 9.468881105 111.14164806 

3.50 0.061086524 6,366,319.907377 40,000.767703 10.22559848 111.11324362 

3.75 0.065449847 6,364,572.046647 39,989.785570 10.98213286 111.08273769 

4.00 0.06981317 6,362,703.811015 39,978.047099 11.73847068 111.05013083 

4.25 0.074176493 6,360,715.233918 39,965.552501 12.49459840 111.01542361 

4.50 0.078539816 6,358,606.350952 39,952.301998 13.2550247 110.97861666 

4.75 0.082903139 6,356,377.199865 39,938.295829 14.00616936 110.93971064 

5.00 0.087266463 6,354,027.820562 39,923.534244 14.76158551 110.89870623 

5.25 0.091629786 6,351,558.255103 39,908.017506 15.51673740 110.85560418 

5.50 0.095993109 6,348,968.547703 39,891.745895 16.27161149 110.81040526 

5.75 0.100356432 6,346,258.744728 39,874.719700 17.02619423 110.76311028 

6.00 0.104719755 6,343,428.894702 39,856.939228 17.78047211 110.71372008 

6.25 0.109083078 6,340,479.048298 39,838.404797 18.53443158 110.66223555 

6.50 0.113446401 6,337,409.258345 39,819.116738 19.28805913 110.60865760 

6.75 0.117809725 6,334,219.579823 39,799.075396 20.04134122 110.55298721 

7.00 0.122173048 6,330,910.069865 39,778.281132 20.79426434 110.49522537 

7.25 0.126536371 6,327,480.787754 39,756.734317 21.54681497 110.43537310 

7.50 0.130899694 6,323,931.794925 39,734.435337 22.29897960 110.37343149 

7.75 0.135263017 6,320,263.154963 39,711.384593 23.05074471 110.30940165 

8.00 0.13962634 6,316,474.933602 39,687.582496 23.80209679 110.24328471 

8.25 0.143989663 6,312,567.198729 39,663.029474 24.55302234 110.17508187 

8.50 0.148352986 6,308,540.020374 39,637.725966 25.30350786 110.10479435 

8.75 0.152716310 6,304,393.470721 39,611.672426 26.05353986 110.03242341 

9.00 0.157079633 6,300,127.624097 39,584.869321 26.80310483 109.95797034 

9.25 0.161442956 6,295,742.556979 39,557.317132 27.55218929 109.88143648 

9.50 0.165806279 6,291,238.347988 39,529.016352 28.30077975 109.80282320 
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Latitude 
in 

Degrees 

Latitude in 
Radians 

Radius in Meters 
of Parallel 

ρ(φ) 

Circumferen
ce in Km 

Difference of 
Parallels in Km 

Km in a λ 
Degree 

9.75 0.170169602 6,286,615.077892 39,499.967489 29.04886274 109.72213191 

10.00 0.174532925 6,281,872.829603 39,470.171065 29.79642477 109.63936407 

10.25 0.178896248 6,277,011.688179 39,439.627612 30.54345238 109.55452114 

10.50 0.183259571 6,272,031.740818 39,408.337680 31.28993209 109.46760467 

10.75 0.187622895 6,266,933.076864 39,376.301830 32.03585044 109.37861619 

11.00 0.191986218 6,261,715.787801 39,343.520636 32.78119398 109.28755732 

11.25 0.196349541 6,256,379.967255 39,309.994686 33.52594926 109.19442968 

11.50 0.200712864 6,250,925.710992 39,275.724584 34.27010282 109.09923495 

11.75 0.205076187 6,245,353.116916 39,240.710942 35.01364122 109.00197484 

12.00 0.209439510 6,239,662.285072 39,204.954391 35.75655103 108.90265109 

12.25 0.213802833 6,233,853.317642 39,168.455573 36.49881881 108.80126548 

12.50 0.218166156 6,227,926.318942 39,131.215141 37.24043114 108.69781984 

12.75 0.222529480 6,221,881.395428 39,093.233767 37.98137461 108.59231602 

13.00 0.226892803 6,215,718.655689 39,054.512131 38.72163578 108.48475592 

13.25 0.231256126 6,209,438.210446 39,015.050930 39.46120127 108.37514147 

13.50 0.235619449 6,203,040.172557 38,974.850872 40.20005766 108.26347464 

13.75 0.239982772 6,196,524.657008 38,933.912680 40.93819157 108.14975745 

14.00 0.244346095 6,189,891.780918 38,892.237091 41.67558959 108.03399192 

14.25 0.248709418 6,183,141.663535 38,849.824853 42.41223836 107.91618015 

14.50 0.253072742 6,176,274.426237 38,806.676728 43.14812449 107.79632424 

14.75 0.257436065 6,169,290.192528 38,762.793493 43.88323462 107.67442637 

15.00 0.261799388 6,162,189.088038 38,718.175938 44.61755539 107.55048872 

15.25 0.266162711 6,154,971.240525 38,672.824865 45.35107344 107.42451351 

15.50 0.270526034 6,147,636.779869 38,626.741089 46.08377543 107.29650303 

15.75 0.274889357 6,140,185.838073 38,579.925441 46.81564802 107.16645956 

16.00 0.279252680 6,132,618.549263 38,532.378763 47.54667787 107.03438545 

16.25 0.283616003 6,124,935.049683 38,484.101912 48.27685166 106.90028309 

16.50 0.287979327 6,117,135.477700 38,435.095756 49.00615609 106.76415488 

16.75 0.292342650 6,109,219.973795 38,385.361178 49.73457783 106.62600327 

17.00 0.296705973 6,101,188.680568 38,334.899074 50.46210360 106.48583076 

17.25 0.301069296 6,093,041.742734 38,283.710354 51.18872010 106.34363987 

17.50 0.305432619 6,084,779.307120 38,231.795940 51.91441405 106.19943317 

17.75 0.309795942 6,076,401.522668 38,179.156768 52.63917218 106.05321324 

18.00 0.314159265 6,067,908.540429 38,125.793787 53.36298122 105.90498274 

18.25 0.318522588 6,059,300.513566 38,071.707959 54.08582791 105.75474433 

18.50 0.322885912 6,050,577.597346 38,016.900260 54.80769902 105.60250072 

18.75 0.327249235 6,041,739.949148 37,961.371678 55.52858131 105.44825466 

19.00 0.331612558 6,032,787.728451 37,905.123217 56.24846155 105.29200894 

19.25 0.335975881 6,023,721.096841 37,848.155890 56.96732652 105.13376636 

19.50 0.340339204 6,014,540.218004 37,790.470727 57.68516302 104.97352980 
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Latitude 
in 

Degrees 

Latitude in 
Radians 

Radius in Meters 
of Parallel 

ρ(φ) 

Circumferen
ce in Km 

Difference of 
Parallels in Km 

Km in a λ 
Degree 

19.75 0.344702527 6,005,245.257727 37,732.068769 58.40195784 104.81130214 

20.00 0.349065850 5,995,836.383896 37,672.951072 59.11769781 104.64708631 

20.25 0.353429174 5,986,313.766495 37,613.118702 59.83236974 104.48088528 

20.50 0.357792497 5,976,677.577600 37,552.572741 60.54596048 104.31270206 

20.75 0.362155820 5,966,927.991385 37,491.314284 61.25845686 104.14253968 

21.00 0.366519143 5,957,065.184112 37,429.344439 61.96984574 103.97040122 

21.25 0.370882466 5,947,089.334135 37,366.664325 62.68011400 103.79628979 

21.50 0.375245789 5,937,000.621898 37,303.275076 63.38924850 103.62020855 

21.75 0.379609112 5,926,799.229927 37,239.177840 64.09723614 103.44216067 

22.00 0.383972435 5,916,485.342837 37,174.373776 64.80406382 103.26214938 

22.25 0.388335759 5,906,059.147324 37,108.864058 65.50971846 103.08017794 

22.50 0.392699082 5,895,520.832164 37,042.649871 66.21418697 102.89624964 

22.75 0.397062405 5,884,870.588214 36,975.732415 66.91745631 102.71036782 

23.00 0.401425728 5,874,108.608405 36,908.112901 67.61951341 102.52253584 

23.25 0.405789051 5,863,235.087746 36,839.792556 68.32034524 102.33275710 

23.50 0.410152374 5,852,250.223317 36,770.772617 69.01993878 102.14103505 

23.75 0.414515697 5,841,154.214269 36,701.054336 69.71828102 101.94737316 

24.00 0.418879020 5,829,947.261822 36,630.638977 70.41535895 101.75177494 

24.25 0.423242344 5,818,629.569262 36,559.527818 71.11115960 101.55424394 

24.50 0.427605667 5,807,201.341941 36,487.722148 71.80566999 101.35478374 

24.75 0.431968990 5,795,662.787271 36,415.223270 72.49887717 101.15339797 

25.00 0.436332313 5,784,014.114726 36,342.032502 73.19076819 100.95009028 

25.25 0.440695636 5,772,255.535836 36,268.151172 73.88133012 100.74486437 

25.50 0.445058959 5,760,387.264187 36,193.580622 74.57055004 100.53772395 

25.75 0.449422282 5,748,409.515419 36,118.322207 75.25841507 100.32867280 

26.00 0.453785606 5,736,322.507223 36,042.377295 75.94491231 100.11771471 

26.25 0.458148929 5,724,126.459335 35,965.747266 76.63002889 99.90485352 

26.50 0.462512252 5,711,821.593542 35,888.433514 77.31375196 99.69009309 

26.75 0.466875575 5,699,408.133671 35,810.437445 77.99606868 99.47343735 

27.00 0.471238898 5,686,886.305590 35,731.760479 78.67696622 99.25489022 

27.25 0.475602221 5,674,256.337207 35,652.404047 79.35643177 99.03445569 

27.50 0.479965544 5,661,518.458466 35,572.369595 80.03445255 98.81213776 

27.75 0.484328867 5,648,672.901344 35,491.658579 80.71101577 98.58794050 

28.00 0.488692191 5,635,719.899847 35,410.272470 81.38610869 98.36186797 

28.25 0.493055514 5,622,659.690012 35,328.212752 82.05971855 98.13392431 

28.50 0.497418837 5,609,492.509899 35,245.480919 82.73183262 97.90411366 

28.75 0.501782160 5,596,218.599591 35,162.078481 83.40243821 97.67244022 

29.00 0.506145483 5,582,838.201193 35,078.006958 84.07152262 97.43890822 

29.25 0.510508806 5,569,351.558823 34,993.267885 84.73907318 97.20352190 

29.50 0.514872129 5,555,758.918618 34,907.862808 85.40507722 96.96628558 
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29.75 0.519235452 5,542,060.528723 34,821.793286 86.06952212 96.72720357 

30.00 0.523598776 5,528,256.639293 34,735.060890 86.73239525 96.48628025 

30.25 0.527962099 5,514,347.502487 34,647.667206 87.39368402 96.24352002 

30.50 0.532325422 5,500,333.372467 34,559.613830 88.05337583 95.99892731 

30.75 0.536688745 5,486,214.505397 34,470.902372 88.71145813 95.75250659 

31.00 0.541052068 5,471,991.159433 34,381.534454 89.36791838 95.50426237 

31.25 0.545415391 5,457,663.594727 34,291.511710 90.02274404 95.25419919 

31.50 0.549778714 5,443,232.073422 34,200.835787 90.67592263 95.00232163 

31.75 0.554142038 5,428,696.859646 34,109.508346 91.32744164 94.74863429 

32.00 0.558505361 5,414,058.219511 34,017.531057 91.97728861 94.49314183 

32.25 0.562868684 5,399,316.421111 33,924.905606 92.62545111 94.23584891 

32.50 0.567232007 5,384,471.734515 33,831.633689 93.27191671 93.97676025 

32.75 0.571595330 5,369,524.431769 33,737.717016 93.91667300 93.71588060 

33.00 0.575958653 5,354,474.786886 33,643.157309 94.55970761 93.45321475 

33.25 0.580321976 5,339,323.075848 33,547.956300 95.20100817 93.18876750 

33.50 0.584685299 5,324,069.576601 33,452.115738 95.84056235 92.92254372 

33.75 0.589048623 5,308,714.569050 33,355.637380 96.47835783 92.65454828 

34.00 0.593411946 5,293,258.335058 33,258.522998 97.11438232 92.38478611 

34.25 0.597775269 5,277,701.158440 33,160.774374 97.74862355 92.11326215 

34.50 0.602138592 5,262,043.324960 33,062.393305 98.38106926 91.83998140 

34.75 0.606501915 5,246,285.122330 32,963.381598 99.01170724 91.56494888 

35.00 0.610865238 5,230,426.840200 32,863.741073 99.64052527 91.28816965 

35.25 0.615228561 5,214,468.770164 32,763.473561 100.2675112 91.00964878 

35.50 0.619591884 5,198,411.205744 32,662.580909 100.8926528 90.72939141 

35.75 0.623955208 5,182,254.442399 32,561.064971 101.5159381 90.44740270 

36.00 0.628318531 5,165,998.777511 32,458.927616 102.1373548 90.16368782 

36.25 0.632681854 5,149,644.510385 32,356.170725 102.7568909 89.87825201 

36.50 0.637045177 5,133,191.942247 32,252.796190 103.3745344 89.59110053 

36.75 0.641408500 5,116,641.376236 32,148.805917 103.9902732 89.30223866 

37.00 0.645771823 5,099,993.117404 32,044.201822 104.6040953 89.01167173 

37.25 0.650135146 5,083,247.472708 31,938.985833 105.2159887 88.71940509 

37.50 0.654498469 5,066,404.751009 31,833.159892 105.8259415 88.42544414 

37.75 0.658861793 5,049,465.263064 31,726.725950 106.4339418 88.12979431 

38.00 0.663225116 5,032,429.321529 31,619.685972 107.0399775 87.83246103 

38.25 0.667588439 5,015,297.240946 31,512.041935 107.6440370 87.53344982 

38.50 0.671951762 4,998,069.337744 31,403.795827 108.2461083 87.23276619 

38.75 0.676315085 4,980,745.930233 31,294.949648 108.8461795 86.93041569 

39.00 0.680678408 4,963,327.338603 31,185.505409 109.4442309 86.62640391 

39.25 0.685041731 4,945,813.884912 31,075.465134 110.0402749 86.32073648 

39.50 0.689405055 4,928,205.893089 30,964.830858 110.6342755 86.01341905 
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39.75 0.693768378 4,910,503.688925 30,853.604629 111.2262291 85.70445730 

40.00 0.698131701 4,892,707.600073 30,741.788505 111.8161240 85.39385696 

40.25 0.702495024 4,874,817.956036 30,629.384557 112.4039486 85.08162377 

40.50 0.706858347 4,856,835.088170 30,516.394865 112.9896912 84.76776351 

40.75 0.711221670 4,838,759.329674 30,402.821525 113.5733402 84.45228201 

41.00 0.715584993 4,820,591.015588 30,288.666641 114.1548841 84.13518511 

41.25 0.719948316 4,802,330.482789 30,173.932330 114.7343114 83.81647869 

41.50 0.724311640 4,783,978.069981 30,058.620719 115.3116105 83.49616866 

41.75 0.728674963 4,765,534.117696 29,942.733949 115.8867700 83.17426097 

42.00 0.733038286 4,746,998.968287 29,826.274171 116.4597784 82.85076159 

42.25 0.737401609 4,728,372.965922 29,709.243546 117.0306244 82.52567652 

42.50 0.741764932 4,709,656.456578 29,591.644250 117.5992965 82.19901181 

42.75 0.746128255 4,690,849.788040 29,473.478466 118.1657834 81.87077352 

43.00 0.750491578 4,671,953.309892 29,354.748393 118.7300739 81.54096776 

43.25 0.754854901 4,652,967.373514 29,235.456236 119.2921565 81.20960066 

43.50 0.759218225 4,633,892.332076 29,115.604216 119.8520201 80.87667838 

43.75 0.763581548 4,614,728.540531 28,995.194562 120.4096535 80.54220712 

44.00 0.767944871 4,595,476.355612 28,874.229517 120.9650454 80.20619310 

44.25 0.772308194 4,576,136.135828 28,752.711332 121.5181848 79.86864259 

44.50 0.776671517 4,556,708.241454 28,630.642272 122.0690605 79.52956187 

44.75 0.781034840 4,537,193.034529 28,508.024610 122.6176614 79.18895725 

45.00 0.785398163 4,517,590.878849 28,384.860634 123.1639766 78.84683509 

45.25 0.789761487 4,497,902.139962 28,261.152639 123.7079949 78.50320177 

45.50 0.794124810 4,478,127.185163 28,136.902934 124.2497054 78.15806370 

45.75 0.798488133 4,458,266.383487 28,012.113836 124.7890973 77.81142732 

46.00 0.802851456 4,438,320.105703 27,886.787677 125.3261595 77.46329910 

46.25 0.807214779 4,418,288.724311 27,760.926795 125.8608812 77.11368554 

46.50 0.811578102 4,398,172.613532 27,634.533544 126.3932517 76.76259318 

46.75 0.815941425 4,377,972.149305 27,507.610284 126.9232600 76.41002857 

47.00 0.820304748 4,357,687.709282 27,380.159388 127.4508955 76.05599830 

47.25 0.824668072 4,337,319.672818 27,252.183241 127.9761474 75.70050900 

47.50 0.829031395 4,316,868.420969 27,123.684236 128.4990051 75.34356732 

47.75 0.833394718 4,296,334.336484 26,994.664778 129.0194579 74.98517994 

48.00 0.837758041 4,275,717.803798 26,865.127282 129.5374953 74.62535356 

48.25 0.842121364 4,255,019.209028 26,735.074176 130.0531065 74.26409493 

48.50 0.846484687 4,234,238.939967 26,604.507895 130.5662812 73.90141082 

48.75 0.85084801 4,213,377.386073 26,473.430886 131.0770089 73.53730802 

49.00 0.855211333 4,192,434.938469 26,341.845607 131.5852791 73.17179335 

49.25 0.859574657 4,171,411.989933 26,209.754525 132.0910814 72.80487368 

49.50 0.86393798 4,150,308.934891 26,077.160120 132.5944054 72.43655589 
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49.75 0.868301303 4,129,126.169414 25,944.064879 133.0952408 72.06684689 

50.00 0.872664626 4,107,864.091207 25,810.471302 133.5935774 71.69575362 

50.25 0.877027949 4,086,523.099606 25,676.381897 134.0894049 71.32328305 

50.50 0.881391272 4,065,103.595569 25,541.799184 134.5827131 70.94944218 

50.75 0.885754595 4,043,605.981672 25,406.725692 135.0734918 70.57423803 

51.00 0.890117919 4,022,030.662098 25,271.163961 135.5617309 70.19767767 

51.25 0.894481242 4,000,378.042635 25,135.116541 136.0474205 69.81976817 

51.50 0.898844565 3,978,648.530665 24,998.585990 136.5305503 69.44051664 

51.75 0.903207888 3,956,842.535161 24,861.574880 137.0111106 69.05993022 

52.00 0.907571211 3,934,960.466675 24,724.085789 137.4890912 68.67801608 

52.25 0.911934534 3,913,002.737339 24,586.121306 137.9644823 68.29478141 

52.50 0.916297857 3,890,969.760847 24,447.684032 138.4372742 67.91023342 

52.75 0.920661180 3,868,861.952457 24,308.776575 138.9074568 67.52437938 

53.00 0.925024504 3,846,679.728981 24,169.401555 139.3750206 67.13722654 

53.25 0.929387827 3,824,423.508777 24,029.561599 139.8399558 66.74878222 

53.50 0.933751150 3,802,093.711742 23,889.259346 140.3022526 66.35905374 

53.75 0.938114473 3,779,690.759303 23,748.497445 140.7619016 65.96804846 

54.00 0.942477796 3,757,215.074415 23,607.278551 141.2188931 65.57577375 

54.25 0.946841119 3,734,667.081548 23,465.605334 141.6732175 65.18223704 

54.50 0.951204442 3,712,047.206682 23,323.480469 142.1248654 64.78744575 

54.75 0.955567765 3,689,355.877298 23,180.906641 142.5738274 64.39140734 

55.00 0.959931089 3,666,593.522374 23,037.886547 143.0200940 63.99412930 

55.25 0.964294412 3,643,760.572373 22,894.422891 143.4636560 63.59561914 

55.50 0.968657735 3,620,857.459237 22,750.518387 143.9045039 63.19588441 

55.75 0.973021058 3,597,884.616380 22,606.175759 144.3426287 62.79493266 

56.00 0.977384381 3,574,842.478680 22,461.397738 144.7780210 62.39277149 

56.25 0.981747704 3,551,731.482471 22,316.187066 145.2106718 61.98940852 

56.50 0.986111027 3,528,552.065534 22,170.546494 145.6405719 61.58485137 

56.75 0.990474351 3,505,304.667091 22,024.478781 146.0677123 61.17910773 

57.00 0.994837674 3,481,989.727795 21,877.986697 146.4920840 60.77218527 

57.25 0.999200997 3,458,607.689725 21,731.073019 146.9136781 60.36409172 

57.50 1.003564320 3,435,158.996373 21,583.740534 147.3324855 59.95483482 

57.75 1.007927643 3,411,644.092642 21,435.992036 147.7484976 59.54442232 

58.00 1.012290966 3,388,063.424832 21,287.830331 148.1617055 59.13286203 

58.25 1.016654289 3,364,417.440635 21,139.258230 148.5721005 58.72016175 

58.50 1.021017612 3,340,706.589127 20,990.278556 148.9796738 58.30632932 

58.75 1.025380936 3,316,931.320758 20,840.894140 149.3844169 57.89137261 

59.00 1.029744259 3,293,092.087345 20,691.107818 149.7863211 57.47529950 

59.25 1.034107582 3,269,189.342061 20,540.922440 150.1853780 57.05811789 

59.50 1.038470905 3,245,223.539431 20,390.340861 150.5815790 56.63983573 
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59.75 1.042834228 3,221,195.135320 20,239.365946 150.9749157 56.22046096 

60.00 1.047197551 3,197,104.586924 20,088.00566 151.3653797 55.80000157 

60.25 1.051560874 3,172,952.352764 19,936.247603 151.7529628 55.37846556 

60.50 1.055924197 3,148,738.892675 19,784.109947 152.1376567 54.95586096 

60.75 1.060287521 3,124,464.667800 19,631.590494 152.5194531 54.53219582 

61.00 1.064650844 3,100,130.140577 19,478.692150 152.8983439 54.10747819 

61.25 1.069014167 3,075,735.774734 19,325.417829 153.2743210 53.68171619 

61.50 1.073377490 3,051,282.035278 19,171.770452 153.6473765 53.25491792 

61.75 1.077740813 3,026,769.388488 19,017.752950 154.0175021 52.82709153 

62.00 1.082104136 3,002,198.301904 18,863.368260 154.3846902 52.39824517 

62.25 1.086467459 2,977,569.244319 18,708.619327 154.7489328 51.96838702 

62.50 1.090830782 2,952,882.685768 18,553.509105 155.1102220 51.53752529 

62.75 1.095194106 2,928,139.097524 18,398.040555 155.4685501 51.10566821 

63.00 1.099557429 2,903,338.952081 18,242.216645 155.8239095 50.67282402 

63.25 1.103920752 2,878,482.723153 18,086.040353 156.1762924 50.23900098 

63.50 1.108284075 2,853,570.885660 17,929.514662 156.5256913 49.80420739 

63.75 1.112647398 2,828,603.915717 17,772.642563 156.8720987 49.36845156 

64.00 1.117010721 2,803,582.290630 17,615.427056 157.2155071 48.93174182 

64.25 1.121374044 2,778,506.488883 17,457.871147 157.5559091 48.49408652 

64.50 1.125737368 2,753,376.990129 17,299.977850 157.8932973 48.05549403 

64.75 1.130100691 2,728,194.275181 17,141.750185 158.2276646 47.61597274 

65.00 1.134464014 2,702,958.826003 16,983.191181 158.5590035 47.17553106 

65.25 1.138827337 2,677,671.125698 16,824.303874 158.8873070 46.73417743 

65.50 1.143190660 2,652,331.658502 16,665.091306 159.2125680 46.29192030 

65.75 1.147553983 2,626,940.909770 16,505.556527 159.5347794 45.84876813 

66.00 1.151917306 2,601,499.365971 16,345.702593 159.8539342 45.40472942 

66.25 1.156280629 2,576,007.514674 16,185.532567 160.1700255 44.95981269 

66.50 1.160643953 2,550,465.844542 16,025.049521 160.4830465 44.51402645 

66.75 1.165007276 2,524,874.845319 15,864.256531 160.7929903 44.06737925 

67.00 1.169370599 2,499,235.007819 15,703.156680 161.0998503 43.61987967 

67.25 1.173733922 2,473,546.823924 15,541.753061 161.4036196 43.17153628 

67.50 1.178097245 2,447,810.786562 15,380.048769 161.7042918 42.72235769 

67.75 1.182460568 2,422,027.389707 15,218.046909 162.0018603 42.27235252 

68.00 1.186823891 2,396,197.128365 15,055.750590 162.2963185 41.82152942 

68.25 1.191187214 2,370,320.498563 14,893.162930 162.5876602 41.36989703 

68.50 1.195550538 2,344,397.997340 14,730.287051 162.8758788 40.91746403 

68.75 1.199913861 2,318,430.122737 14,567.126083 163.1609682 40.46423912 

69.00 1.204277184 2,292,417.373786 14,403.683161 163.4429220 40.01023100 

69.25 1.208640507 2,266,360.25502 14,239.961427 163.7217342 39.55544841 

69.50 1.213003830 2,240,259.253868 14,075.964028 163.9973986 39.09990008 
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69.75 1.217367153 2,214,114.885828 13,911.694119 164.2699091 38.64359478 

70.00 1.221730476 2,187,927.649279 13,747.154859 164.5392599 38.18654128 

70.25 1.226093800 2,161,698.048054 13,582.349414 164.8054450 37.72874837 

70.50 1.230457123 2,135,426.586917 13,417.280955 165.0684586 37.27022488 

70.75 1.234820446 2,109,113.771550 13,251.952661 165.3282949 36.81097961 

71.00 1.239183769 2,082,760.108543 13,086.367712 165.5849482 36.35102142 

71.25 1.243547092 2,056,366.105383 12,920.529300 165.8384129 35.89035917 

71.50 1.247910415 2,029,932.270445 12,754.440616 166.0886833 35.42900171 

71.75 1.252273738 2,003,459.112979 12,588.104862 166.3357540 34.96695795 

72.00 1.256637061 1,976,947.143101 12,421.525243 166.5796196 34.50423678 

72.25 1.261000385 1,950,396.871779 12,254.704968 166.8202747 34.04084713 

72.50 1.265363708 1,923,808.810830 12,087.647254 167.0577139 33.57679793 

72.75 1.269727031 1,897,183.472899 11,920.355322 167.2919321 33.11209812 

73.00 1.274090354 1,870,521.371456 11,752.832398 167.5229240 32.64675666 

73.25 1.278453677 1,843,823.020780 11,585.081713 167.7506847 32.18078254 

73.50 1.282817000 1,817,088.935952 11,417.106504 167.9752090 31.71418473 

73.75 1.287180323 1,790,319.632843 11,248.910012 168.1964920 31.24697226 

74.00 1.291543646 1,763,515.628099 11,080.495483 168.4145288 30.77915412 

74.25 1.295906970 1,736,677.439137 10,911.866169 168.6293146 30.31073936 

74.50 1.300270293 1,709,805.584127 10,743.025324 168.8408446 29.84173701 

74.75 1.304633616 1,682,900.581986 10,573.976210 169.0491141 29.37215614 

75.00 1.308996939 1,655,962.952365 10,404.722092 169.2541186 28.90200581 

75.25 1.313360262 1,628,993.215636 10,235.266238 169.4558536 28.43129511 

75.50 1.317723585 1,601,991.892885 10,065.611924 169.6543144 27.96003312 

75.75 1.322086908 1,574,959.505896 9,895.762427 169.8494967 27.48822896 

76.00 1.326450232 1,547,896.577144 9,725.721031 170.0413963 27.01589175 

76.25 1.330813555 1,520,803.629781 9,555.491022 170.2300088 26.54303062 

76.50 1.335176878 1,493,681.187625 9,385.075692 170.4153301 26.06965470 

76.75 1.339540201 1,466,529.775149 9,214.478336 170.5973559 25.59577315 

77.00 1.343903524 1,439,349.917470 9,043.702253 170.7760824 25.12139515 

77.25 1.348266847 1,412,142.140339 8,872.750748 170.9515055 24.64652986 

77.50 1.352630170 1,384,906.970125 8,701.627127 171.1236213 24.17118646 

77.75 1.356993493 1,357,644.933808 8,530.334700 171.2924260 23.69537417 

78.00 1.361356817 1,330,356.558966 8,358.876785 171.4579159 23.21910218 

78.25 1.365720140 1,303,042.373763 8,187.256697 171.6200871 22.74237972 

78.50 1.370083463 1,275,702.906938 8,015.477761 171.7789363 22.26521600 

78.75 1.374446786 1,248,338.687793 7,843.543302 171.9344597 21.78762028 

79.00 1.378810109 1,220,950.246182 7,671.456648 172.0866539 21.30960180 

79.25 1.383173432 1,193,538.112498 7,499.221132 172.2355156 20.83116981 

79.50 1.387536755 1,166,102.817665 7,326.840091 172.3810414 20.35233359 
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Latitude 
in 

Degrees 

Latitude in 
Radians 

Radius in Meters 
of Parallel 

ρ(φ) 

Circumferen
ce in Km 

Difference of 
Parallels in Km 

Km in a λ 
Degree 

79.75 1.391900078 1,138,644.893121 7,154.316863 172.5232281 19.87310240 

80.00 1.396263402 1,111,164.870810 6,981.654790 172.6620724 19.39348553 

80.25 1.400626725 1,083,663.283170 6,808.857219 172.7975714 18.91349227 

80.50 1.404990048 1,056,140.663121 6,635.927497 172.9297219 18.43313194 

80.75 1.409353371 1,028,597.544051 6,462.868976 173.0585211 17.95241382 

81.00 1.413716694 1,001,034.459806 6,289.685010 173.1839659 17.47134725 

81.25 1.418080017 973,451.944681 6,116.378956 173.3060538 16.98994154 

81.50 1.422443340 945,850.533404 5,942.954174 173.4247818 16.50820604 

81.75 1.426806664 918,230.761124 5,769.414027 173.5401474 16.02615007 

82.00 1.431169987 890,593.163403 5,595.761879 173.6521479 15.54378300 

82.25 1.435533310 862,938.276200 5,422.001098 173.7607809 15.06111416 

82.50 1.439896633 835,266.635864 5,248.135054 173.8660440 14.57815293 

82.75 1.444259956 807,578.779115 5,074.167119 173.9679347 14.09490866 

83.00 1.448623279 779,875.243040 4,900.100668 174.0664508 13.61139075 

83.25 1.452986602 752,156.565074 4,725.939078 174.1615901 13.12760855 

83.50 1.457349925 724,423.282993 4,551.685728 174.2533505 12.64357147 

83.75 1.461713249 696,675.934900 4,377.343998 174.3417298 12.15928888 

84.00 1.466076572 668,915.059213 4,202.917272 174.4267262 11.67477020 

84.25 1.470439895 641,141.194654 4,028.408934 174.5083377 11.19002482 

84.50 1.474803218 613,354.880236 3,853.822372 174.5865625 10.70506214 

84.75 1.479166541 585,556.655249 3,679.160973 174.6613988 10.21989159 

85.00 1.483529864 557,747.059254 3,504.428128 174.7328450 9.73452258 

85.25 1.487893187 529,926.632063 3,329.627228 174.8008994 9.24896452 

85.50 1.492256510 502,095.913735 3,154.761668 174.8655605 8.76322686 

85.75 1.496619834 474,255.444558 2,979.834841 174.9268269 8.27731900 

86.00 1.50983157 446,405.765037 2,804.850144 174.9846972 7.79125040 

86.25 1.505346480 418,547.415888 2,629.810974 175.0391701 7.30503048 

86.50 1.509709803 390,680.938017 2,454.720730 175.0902443 6.81866869 

86.75 1.514073126 362,806.872517 2,279.582811 175.1379188 6.33217447 

87.00 1.518436449 334,925.760648 2,104.400618 175.1821924 5.84555727 

87.25 1.522799772 307,038.143829 1,929.177554 175.2230642 5.35882654 

87.50 1.527163095 279,144.563626 1,753.917021 175.2605333 4.87199172 

87.75 1.531526419 251,245.561738 1,578.622422 175.2945987 4.38506228 

88.00 1.535889742 223,341.679987 1,403.297162 175.3252598 3.89804767 

88.25 1.540253065 195,433.460304 1,227.944646 175.3525159 3.41095735 

88.50 1.544616388 167,521.444716 1,052.568280 175.3763662 2.92380078 

88.75 1.548979711 139,606.175338 877.171470 175.3968104 2.43658742 

89.00 1.553343034 111,688.194356 701.757622 175.4138479 1.94932673 

89.25 1.557706357 83,768.044017 526.330143 175.4274784 1.46202818 

89.50 1.562069681 55,846.266619 350.892442 175.4377015 0.97470123 
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Latitude 
in 

Degrees 

Latitude in 
Radians 

Radius in Meters 
of Parallel 

ρ(φ) 

Circumferen
ce in Km 

Difference of 
Parallels in Km 

Km in a λ 
Degree 

89.75 1.566433004 27,923.404494 175.447925 175.4445170 0.48735535 

90.00 1.570796327 0.00000 0.00000 175.4479248 0.0000000 

This could have been done using a numeric integral, which drops the 𝜑 based terms since 𝜑 is a 
constant along a parallel and thereby produces zero to the integral. For example, if Δφ=0, then the 

√𝐺(𝜑) function is a constant, and the 0d dt   which implies 
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Eq 106. 
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C.2 Length of a meridian of north-south latitude 

Table 2 below calculates the north-south distances for each quarter degree between 0° (equator) to 
90° (either pole). Note that the calculations use radians. The function m(𝜑) describes the radius of 
curvature along the vertical meridian arcs. The radius of curvature of an arc at a point is the radius of 
the best-fitting circle tangent to that arc. See Burkholder [4], Wikipedia [33]. 
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The same table can be calculated using the length integral in latitudes along a meridian ∫ √𝐸(𝜑)
𝜋

2
0

𝑑𝜑 =

∫ 𝑀(𝜑)
𝜋

2
0

𝑑𝜑; which is described in equation (81. Using a spread sheet to do the calculations, the 

difference between using √𝑬 and M tracked until the end which showed a 0.13-meter difference, or a 
little less than 5.1 inches or 13 cm in about 10,001 km. See Latitude, Wikipedia page is 
https://en.wikipedia.org/wiki/Latitude. Using a different spread sheet with a delta of a tenth of a 

degree, the difference between √𝑬 and M from 0 to 360 degrees was tested; the two were identical to 
the limits of the application which agreed to 8 decimal places and 7-digit integer parts meaning that the 
two values are within 10 nanometers, which would probably mean that the spread sheet was using 
double precision floating numbers, and found no difference in values. The editor is still working on a 
proof that then two are mathematical identical functions. The columns are: 

1. Degrees: is the current latitude (φ) in decimal degrees, in 0.25 increments, beginning at the 
equator and traversing to either pole.  

2. M(φ) in meters: This holds the M(φ)-values for the summation difference between each 
quarter degree [𝑀(𝜑𝑖+1) − 𝑀(𝜑𝑖)] that need to be multiplied by the Δφ to achieve the delta 
distance for M(φ). 

3. KM up to φi: This holds the ith summation term in meters for the numeric integral e.g.  
𝑀(𝜑𝑛) ≅ ∑ [𝑀(𝜑𝑖) + 𝑀(𝜑𝑖−1)](𝛥𝜑)𝑛

𝑖=1 . The first value is null, since each sub-section is the 
interval between two values of latitude, i.e. the Δφ’s. This column is the partial sum of the 
summation, and therefore the current best value for the distance from the equator from 0 to 
the current φ (i.e. 0° to 0.25 ̊…,90°). The summation in Wikipedia is 10001.965729 km and 
our value in meters is 10,001,965.7293125 from the Wikipedia page 
https://en.wikipedia.org/wiki/Latitude, [32]. 

4. Delta KM: is the difference since the last partial sum of the numerical integration, and in the 
light of column 1, the distance between the current φ and the directly previous. This is the 
partial sums that create the previous column. 

5. Latitude (Radians): This column lists the angles in radians (needed in the integral) from 0° 
to 90° in quarter degrees or approximately 0.0043633231 radians. 

The consistency of these values is based on the size of the interval 0.25°, and the accuracy of the 
implied linearity in the summation approximation of the integral. Note that the various values are 
consistent in accuracy for the double precision floating point that is used by the spread sheet. The 
function m(φ) would be accurate up to 17 significant decimal digits. Table 2 can be trusted for about 9 
digits and the result for kilometers for φ in [0 ,̊90 ̊], which should be trusted probably to the decimeter, 
and maybe to the centimeter, so the final distance 10,001.965729313 is probably correct to 6 decimal 
places in this example, or more precisely for the ellipsoid. Wikipedia (see 
https://en.wikipedia.org/wiki/Latitude, [32]) gives a value (10,001.965729 km) which agrees with the 
table’s value to the millimeter. This is consistent with the delta kilometers between quarter degrees, 
which is usually near linear at the sub-meter level, which validates the use of only quarter-degree 

increments and the linear interpolation for the integral 1 0.25o

i i i   − = − = . The numeric integral 

using M(φ) is in equation Eq 4. More accurate numeric integrals could use a delta of 0.1 ;̊ as the limits 
of double precision numbers is usually set in the 15th or 17th decimal digit. The table below uses 12 
decimal digits. See, Weintrit [36] which states 10,001,965.729 as a best approximation, and references 

https://en.wikipedia.org/wiki/Latitude
https://en.wikipedia.org/wiki/Latitude
https://en.wikipedia.org/wiki/Latitude
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Bomford, 1985, as one of the best consensus at 10,001,965.72931360 by looking at Weintrit’s assessed 
7 best approximations with 4 of them range between 10,001,965.7293127 and 10,001,965.7293136 
which puts this calculation within a micrometer of the consensus value. As pointed out earlier, the 
similar values for "λ" is accurate based on the ellipsoid regardless of Δλ. This implies that summations 
at Δ-angles of a quarter degree 0.25 ̊ (0.004363323 radian) or smaller are sufficient to maintain 
centimeter accuracy or better, using double-precision arithmetic. In the geometries of ISO 19107, most 
"direct positions" used in coordinate strings will probably much smaller Δ-angles than a quarter 
degree, which is 27.64km or larger in latitudes near a pole, approaching 27.9235km. 

Table 2. Length of Meridian Equator to Pole ∫m(φ)dφ (or √𝐄) 

Degree φ M(φ) KM up to φ delta KM Radian=φ 

0.00 6,335,439.32729 0 0 0.000000000 

0.25 6,335,440.53848 27.643571598 27.64357160 0.0043633231 

0.50 6,335,444.17194 55.287153765 27.64358217 0.0087266463 

0.75 6,335,450.22742 82.930757070 27.64360331 0.0130899694 

1.00 6,335,458.70445 110.574392080 27.64363501 0.0174532925 

1.25 6,335,469.60242 138.218069360 27.64367728 0.0218166156 

1.50 6,335,482.92051 165.861799471 27.64373011 0.0261799388 

1.75 6,335,498.65773 193.505592971 27.64379350 0.0305432619 

2.00 6,335,516.81291 221.149460413 27.64386744 0.0349065850 

2.25 6,335,537.38471 248.793412344 27.64395193 0.0392699082 

2.50 6,335,560.37161 276.437459305 27.64404696 0.0436332313 

2.75 6,335,585.77188 304.081611831 27.64415253 0.0479965544 

3.00 6,335,613.58365 331.725880447 27.64426862 0.0523598776 

3.25 6,335,643.80485 359.370275672 27.64439522 0.0567232007 

3.50 6,335,676.43325 387.014808013 27.64453234 0.0610865238 

3.75 6,335,711.46640 414.659487969 27.64467996 0.0654498469 

4.00 6,335,748.90172 442.304326026 27.64483806 0.0698131701 

4.25 6,335,788.73642 469.949332661 27.64500663 0.0741764932 

4.50 6,335,830.96755 497.594518335 27.64518567 0.0785398163 

4.75 6,335,875.59196 525.239893499 27.64537516 0.0829031395 

5.00 6,335,922.60635 552.885468587 27.64557509 0.0872664626 

5.25 6,335,972.00723 580.531254021 27.64578543 0.0916297857 

5.50 6,336,023.79091 608.177260206 27.64600618 0.0959931089 

5.75 6,336,077.95357 635.823497530 27.64623732 0.1003564320 

6.00 6,336,134.49117 663.469976364 27.64647883 0.1047197551 

6.25 6,336,193.39951 691.116707062 27.64673070 0.1090830782 

6.50 6,336,254.67423 718.763699959 27.64699290 0.1134464014 

6.75 6,336,318.31076 746.410965370 27.64726541 0.1178097245 

7.00 6,336,384.30438 774.058513590 27.64754822 0.1221730476 

7.25 6,336,452.65018 801.706354893 27.64784130 0.1265363708 

7.50 6,336,523.34309 829.354499531 27.64814464 0.1308996939 

7.75 6,336,596.37786 857.002957735 27.64845820 0.1352630170 

8.00 6,336,671.74906 884.651739710 27.64878198 0.1396263402 
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Degree φ M(φ) KM up to φ delta KM Radian=φ 

8.25 6,336,749.45108 912.300855640 27.64911593 0.1439896633 

8.50 6,336,829.47815 939.950315681 27.64946004 0.1483529864 

8.75 6,336,911.82433 967.600129965 27.64981428 0.1527163095 

9.00 6,336,996.48350 995.25308598 27.65017863 0.1570796327 

9.25 6,337,083.44935 1,022.900861659 27.65055306 0.1614429558 

9.50 6,337,172.71543 1,050.551799199 27.65093754 0.1658062789 

9.75 6,337,264.27510 1,078.203131239 27.65133204 0.1701696021 

10.00 6,337,358.12155 1,105.854867773 27.65173653 0.1745329252 

10.25 6,337,454.24781 1,133.507018763 27.65215099 0.1788962483 

10.50 6,337,552.64673 1,161.159594140 27.65257538 0.1832595715 

10.75 6,337,653.31098 1,188.812603807 27.65300967 0.1876228946 

11.00 6,337,756.23309 1,216.466057630 27.65345382 0.1919862177 

11.25 6,337,861.40539 1,244.119965444 27.65390781 0.1963495408 

11.50 6,337,968.82007 1,271.774337051 27.65437161 0.2007128640 

11.75 6,338,078.46914 1,299.429182218 27.65484517 0.2050761871 

12.00 6,338,190.34443 1,327.084510676 27.65532846 0.2094395102 

12.25 6,338,304.43763 1,354.740332121 27.65582144 0.2138028334 

12.50 6,338,420.74023 1,382.396656212 27.65632409 0.2181661565 

12.75 6,338,539.24360 1,410.053492569 27.65683636 0.2225294796 

13.00 6,338,659.93891 1,437.710850777 27.65735821 0.2268928028 

13.25 6,338,782.81717 1,465.368740381 27.65788960 0.2312561259 

13.50 6,338,907.86925 1,493.027170884 27.65843050 0.2356194490 

13.75 6,339,035.08582 1,520.686151752 27.65898087 0.2399827721 

14.00 6,339,164.45742 1,548.345692409 27.65954066 0.2443460953 

14.25 6,339,295.97442 1,576.005802237 27.66010983 0.2487094184 

14.50 6,339,429.62702 1,603.666490574 27.66068834 0.2530727415 

14.75 6,339,565.40526 1,631.327766719 27.66127614 0.2574360647 

15.00 6,339,703.29904 1,658.989639923 27.66187320 0.2617993878 

15.25 6,339,843.29809 1,686.652119396 27.66247947 0.2661627109 

15.50 6,339,985.39196 1,714.315214300 27.66309490 0.2705260341 

15.75 6,340,129.57009 1,741.978933752 27.66371945 0.2748893572 

16.00 6,340,275.82171 1,769.643286824 27.66435307 0.2792526803 

16.25 6,340,424.13594 1,797.308282539 27.66499571 0.2836160034 

16.50 6,340,574.50172 1,824.973929872 27.66564733 0.2879793266 

16.75 6,340,726.90783 1,852.640237752 27.66630788 0.2923426497 

17.00 6,340,881.34292 1,880.307215055 27.66697730 0.2967059728 

17.25 6,341,037.79548 1,907.974870609 27.66765555 0.3010692960 

17.50 6,341,196.25383 1,935.643213193 27.66834258 0.3054326191 

17.75 6,341,356.70615 1,963.312251532 27.66903834 0.3097959422 

18.00 6,341,519.14049 1,990.981994300 27.66974277 0.3141592654 

18.25 6,341,683.54472 2,018.652450119 27.67045582 0.3185225885 

18.50 6,341,849.90658 2,046.323627558 27.67117744 0.3228859116 
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Degree φ M(φ) KM up to φ delta KM Radian=φ 

18.75 6,342,018.21365 2,073.995535131 27.67190757 0.3272492347 

19.00 6,342,188.45337 2,101.668181299 27.67264617 0.3316125579 

19.25 6,342,360.61304 2,129.341574467 27.67339317 0.3359758810 

19.50 6,342,534.67980 2,157.015722983 27.67414852 0.3403392041 

19.75 6,342,710.64066 2,184.690635141 27.67491216 0.3447025273 

20.00 6,342,888.48248 2,212.366319177 27.67568404 0.3490658504 

20.25 6,343,068.19198 2,240.042783269 27.67646409 0.3534291735 

20.50 6,343,249.75573 2,267.720035537 27.67725227 0.3577924967 

20.75 6,343,433.16018 2,295.398084042 27.67804850 0.3621558198 

21.00 6,343,618.39162 2,323.076936785 27.67885274 0.3665191429 

21.25 6,343,805.43621 2,350.756601709 27.67966492 0.3708824660 

21.50 6,343,994.27996 2,378.437086694 27.68048499 0.3752457892 

21.75 6,344,184.90878 2,406.118399560 27.68131287 0.3796091123 

22.00 6,344,377.30840 2,433.800548064 27.68214850 0.3839724354 

22.25 6,344,571.46444 2,461.483539902 27.68299184 0.3883357586 

22.50 6,344,767.36237 2,489.167382706 27.68384280 0.3926990817 

22.75 6,344,964.98756 2,516.852084044 27.68470134 0.3970624048 

23.00 6,345,164.32522 2,544.537651420 27.68556738 0.4014257280 

23.25 6,345,365.36042 2,572.224092275 27.68644085 0.4057890511 

23.50 6,345,568.07814 2,599.911413982 27.68732171 0.4101523742 

23.75 6,345,772.46320 2,627.599623849 27.68820987 0.4145156973 

24.00 6,345,978.5029 2,655.288729118 27.68910527 0.4188790205 

24.25 6,346,186.17400 2,682.978736965 27.69000785 0.4232423436 

24.50 6,346,395.46878 2,710.669654495 27.69091753 0.4276056667 

24.75 6,346,606.36895 2,738.361488749 27.69183425 0.4319689899 

25.00 6,346,818.85872 2,766.054246697 27.69275795 0.4363323130 

25.25 6,347,032.92217 2,793.747935239 27.69368854 0.4406956361 

25.50 6,347,248.54325 2,821.442561207 27.69462597 0.4450589593 

25.75 6,347,465.70581 2,849.138131363 27.69557016 0.4494222824 

26.00 6,347,684.39358 2,876.834652396 27.69652103 0.4537856055 

26.25 6,347,904.59016 2,904.532130927 27.69747853 0.4581489286 

26.50 6,348,126.27904 2,932.230573502 27.69844258 0.4625122518 

26.75 6,348,349.44360 2,959.929986597 27.69941309 0.4668755749 

27.00 6,348,574.06710 2,987.630376614 27.70039002 0.4712388980 

27.25 6,348,800.13268 3,015.331749882 27.70137327 0.4756022212 

27.50 6,349,027.62339 3,043.034112657 27.70236277 0.4799655443 

27.75 6,349,256.52215 3,070.737471118 27.70335846 0.4843288674 

28.00 6,349,486.81178 3,098.441831374 27.70436026 0.4886921906 

28.25 6,349,718.47500 3,126.147199454 27.70536808 0.4930555137 

28.50 6,349,951.49441 3,153.853581314 27.70638186 0.4974188368 

28.75 6,350,185.85252 3,181.560982834 27.70740152 0.5017821599 

29.00 6,350,421.53171 3,209.269409816 27.70842698 0.5061454831 
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Degree φ M(φ) KM up to φ delta KM Radian=φ 

29.25 6,350,658.51428 3,236.978867986 27.70945817 0.5105088062 

29.50 6,350,896.78242 3,264.689362993 27.71049501 0.5148721293 

29.75 6,351,136.31824 3,292.400900406 27.71153741 0.5192354525 

30.00 6,351,377.10372 3,320.113485717 27.71258531 0.5235987756 

30.25 6,351,619.12075 3,347.827124341 27.71363862 0.5279620987 

30.50 6,351,862.35115 3,375.541821609 27.71469727 0.5323254219 

30.75 6,352,106.77661 3,403.257582778 27.71576117 0.5366887450 

31.00 6,352,352.37875 3,430.974413022 27.71683024 0.5410520681 

31.25 6,352,599.13909 3,458.692317433 27.71790441 0.5454153912 

31.50 6,352,847.03906 3,486.411301026 27.71898359 0.5497787144 

31.75 6,353,096.05999 3,514.131368732 27.72006771 0.5541420375 

32.00 6,353,346.18315 3,541.852525402 27.72115667 0.5585053606 

32.25 6,353,597.38969 3,569.574775803 27.72225040 0.5628686838 

32.50 6,353,849.66071 3,597.298124622 27.72334882 0.5672320069 

32.75 6,354,102.97718 3,625.022576462 27.72445184 0.5715953300 

33.00 6,354,357.32003 3,652.748135843 27.72555938 0.5759586532 

33.25 6,354,612.67009 3,680.474807201 27.72667136 0.5803219763 

33.50 6,354,869.00812 3,708.202594889 27.72778769 0.5846852994 

33.75 6,355,126.31478 3,735.931503177 27.72890829 0.5890486225 

34.00 6,355,384.57067 3,763.661536247 27.73003307 0.5934119457 

34.25 6,355,643.75632 3,791.392698199 27.73116195 0.5977752688 

34.50 6,355,903.85217 3,819.124993048 27.73229485 0.6021385919 

34.75 6,356,164.83860 3,846.858424723 27.73343167 0.6065019151 

35.00 6,356,426.69592 3,874.592997065 27.73457234 0.6108652382 

35.25 6,356,689.40435 3,902.328713832 27.73571677 0.6152285613 

35.50 6,356,952.94406 3,930.065578695 27.73686486 0.6195918845 

35.75 6,357,217.29515 3,957.803595236 27.73801654 0.6239552076 

36.00 6,357,482.43765 3,985.542766954 27.73917172 0.6283185307 

36.25 6,357,748.35154 4,013.283097257 27.74033030 0.6326818538 

36.50 6,358,015.01671 4,041.024589467 27.74149221 0.6370451770 

36.75 6,358,282.41302 4,068.767246818 27.74265735 0.6414085001 

37.00 6,358,550.52026 4,096.511072457 27.74382564 0.6457718232 

37.25 6,358,819.31814 4,124.256069441 27.74499698 0.6501351464 

37.50 6,359,088.78634 4,152.002240740 27.74617130 0.6544984695 

37.75 6,359,358.90448 4,179.749589233 27.74734849 0.6588617926 

38.00 6,359,629.65213 4,207.498117713 27.74852848 0.6632251158 

38.25 6,359,901.00878 4,235.247828881 27.74971117 0.6675884389 

38.50 6,360,172.95391 4,262.998725349 27.75089647 0.6719517620 

38.75 6,360,445.46692 4,290.750809641 27.75208429 0.6763150851 

39.00 6,360,718.52718 4,318.504084188 27.75327455 0.6806784083 

39.25 6,360,992.11401 4,346.258551335 27.75446715 0.6850417314 

39.50 6,361,266.20668 4,374.014213333 27.75566200 0.6894050545 
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Degree φ M(φ) KM up to φ delta KM Radian=φ 

39.75 6,361,540.78443 4,401.771072345 27.75685901 0.6937683777 

40.00 6,361,815.82643 4,429.529130440 27.75805810 0.6981317008 

40.25 6,362,091.31185 4,457.288389601 27.75925916 0.7024950239 

40.50 6,362,367.21980 4,485.048851714 27.76046211 0.7068583471 

40.75 6,362,643.52934 4,512.810518580 27.76166687 0.7112216702 

41.00 6,362,920.21953 4,540.573391904 27.76287332 0.7155849933 

41.25 6,363,197.26936 4,568.337473301 27.76408140 0.7199483164 

41.50 6,363,474.65782 4,596.102764295 27.76529099 0.7243116396 

41.75 6,363,752.36385 4,623.869266317 27.76650202 0.7286749627 

42.00 6,364,030.36636 4,651.636980707 27.76771439 0.7330382858 

42.25 6,364,308.64425 4,679.405908713 27.76892801 0.7374016090 

42.50 6,364,587.17637 4,707.176051489 27.77014278 0.7417649321 

42.75 6,364,865.94158 4,734.947410100 27.77135861 0.7461282552 

43.00 6,365,144.91867 4,762.719985516 27.77257542 0.7504915784 

43.25 6,365,424.08646 4,790.493778615 27.77379310 0.7548549015 

43.50 6,365,703.42372 4,818.268790183 27.77501157 0.7592182246 

43.75 6,365,982.90920 4,846.045020913 27.77623073 0.7635815477 

44.00 6,366,262.52166 4,873.822471405 27.77745049 0.7679448709 

44.25 6,366,542.23982 4,901.601142168 27.77867076 0.7723081940 

44.50 6,366,822.04239 4,929.381033616 27.77989145 0.7766715171 

44.75 6,367,101.90810 4,957.162146070 27.78111245 0.7810348403 

45.00 6,367,381.81562 4,984.944479760 27.78233369 0.7853981634 

45.25 6,367,661.74365 5,012.728034822 27.78355506 0.7897614865 

45.50 6,367,941.67088 5,040.512811298 27.78477648 0.7941248097 

45.75 6,368,221.57597 5,068.298809139 27.78599784 0.7984881328 

46.00 6,368,501.43760 5,096.086028202 27.78721906 0.8028514559 

46.25 6,368,781.23446 5,123.874468250 27.78844005 0.8072147790 

46.50 6,369,060.94520 5,151.664128954 27.78966070 0.8115781022 

46.75 6,369,340.54851 5,179.455009893 27.79088094 0.8159414253 

47.00 6,369,620.02306 5,207.247110550 27.79210066 0.8203047484 

47.25 6,369,899.34754 5,235.040430317 27.79331977 0.8246680716 

47.50 6,370,178.5064 5,262.834968493 27.79453818 0.8290313947 

47.75 6,370,457.46105 5,290.630724284 27.79575579 0.8333947178 

48.00 6,370,736.20750 5,318.427696803 27.79697252 0.8377580410 

48.25 6,371,014.71869 5,346.225885070 27.79818827 0.8421213641 

48.50 6,371,292.97336 5,374.025288011 27.79940294 0.8464846872 

48.75 6,371,570.95027 5,401.825904461 27.80061645 0.8508480103 

49.00 6,371,848.62817 5,429.627733162 27.80182870 0.8552113335 

49.25 6,372,125.98585 5,457.430772762 27.80303960 0.8595746566 

49.50 6,372,403.00212 5,485.235021819 27.80424906 0.8639379797 

49.75 6,372,679.65580 5,513.040478797 27.80545698 0.8683013029 

50.00 6,372,955.92574 5,540.847142066 27.80666327 0.8726646260 



59 

Degree φ M(φ) KM up to φ delta KM Radian=φ 

50.25 6,373,231.79080 5,568.655009908 27.80786784 0.8770279491 

50.50 6,373,507.22990 5,596.464080508 27.80907060 0.8813912723 

50.75 6,373,782.22196 5,624.274351963 27.81027145 0.8857545954 

51.00 6,374,056.74594 5,652.085822276 27.81147031 0.8901179185 

51.25 6,374,330.78082 5,679.898489359 27.81266708 0.8944812416 

51.50 6,374,604.30562 5,707.712351032 27.81386167 0.8988445648 

51.75 6,374,877.29941 5,735.527405023 27.81505399 0.9032078879 

52.00 6,375,149.74128 5,763.343648970 27.81624395 0.9075712110 

52.25 6,375,421.61034 5,791.161080420 27.81743145 0.9119345342 

52.50 6,375,692.88579 5,818.979696827 27.81861641 0.9162978573 

52.75 6,375,963.54682 5,846.799495556 27.81979873 0.9206611804 

53.00 6,376,233.57268 5,874.620473881 27.82097832 0.9250245036 

53.25 6,376,502.94269 5,902.442628985 27.82215510 0.9293878267 

53.50 6,376,771.63617 5,930.265957961 27.82332898 0.9337511498 

53.75 6,377,039.63252 5,958.090457813 27.82449985 0.9381144729 

54.00 6,377,306.91119 5,985.916125454 27.82566764 0.9424777961 

54.25 6,377,573.45166 6,013.742957708 27.82683225 0.9468411192 

54.50 6,377,839.23347 6,041.570951309 27.82799360 0.9512044423 

54.75 6,378,104.23622 6,069.400102902 27.82915159 0.9555677655 

55.00 6,378,368.43958 6,097.230409043 27.83030614 0.9599310886 

55.25 6,378,631.82324 6,125.061866201 27.83145716 0.9642944117 

55.50 6,378,894.36697 6,152.894470755 27.83260455 0.9686577349 

55.75 6,379,156.05061 6,180.728218995 27.83374824 0.9730210580 

56.00 6,379,416.85404 6,208.563107125 27.83488813 0.9773843811 

56.25 6,379,676.75723 6,236.399131261 27.83602414 0.9817477042 

56.50 6,379,935.74019 6,264.236287431 27.83715617 0.9861110274 

56.75 6,380,193.78300 6,292.074571576 27.83828415 0.9904743505 

57.00 6,380,450.86583 6,319.913979551 27.83940797 0.9948376736 

57.25 6,380,706.96889 6,347.754507124 27.84052757 0.9992009968 

57.50 6,380,962.07249 6,375.596149977 27.84164285 1.0035643199 

57.75 6,381,216.15699 6,403.438903705 27.84275373 1.0079276430 

58.00 6,381,469.20284 6,431.282763821 27.84386012 1.0122909662 

58.25 6,381,721.19056 6,459.127725749 27.84496193 1.0166542893 

58.50 6,381,972.10074 6,486.973784830 27.84605908 1.0210176124 

58.75 6,382,221.91407 6,514.820936320 27.84715149 1.0253809355 

59.00 6,382,470.61129 6,542.669175392 27.84823907 1.0297442587 

59.25 6,382,718.17325 6,570.518497133 27.84932174 1.0341075818 

59.50 6,382,964.58087 6,598.368896548 27.85039942 1.0384709049 

59.75 6,383,209.81517 6,626.220368560 27.85147201 1.0428342281 

60.00 6,383,453.85723 6,654.072908008 27.85253945 1.0471975512 

60.25 6,383,696.68824 6,681.926509647 27.85360164 1.0515608743 

60.50 6,383,938.28948 6,709.781168154 27.85465851 1.0559241975 
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Degree φ M(φ) KM up to φ delta KM Radian=φ 

60.75 6,384,178.64230 6,737.636878121 27.85570997 1.0602875206 

61.00 6,384,417.72818 6,765.493634062 27.85675594 1.0646508437 

61.25 6,384,655.52865 6,793.351430407 27.85779635 1.0690141668 

61.50 6,384,892.02537 6,821.210261508 27.85883110 1.0733774900 

61.75 6,385,127.20009 6,849.070121636 27.85986013 1.0777408131 

62.00 6,385,361.03464 6,876.931004984 27.86088335 1.0821041362 

62.25 6,385,593.51098 6,904.792905664 27.86190068 1.0864674594 

62.50 6,385,824.61114 6,932.655817712 27.86291205 1.0908307825 

62.75 6,386,054.31727 6,960.519735083 27.86391737 1.0951941056 

63.00 6,386,282.61164 6,988.384651656 27.86491657 1.0995574288 

63.25 6,386,509.47659 7,016.25561232 27.86590958 1.1039207519 

63.50 6,386,734.89460 7,044.117457537 27.86689630 1.1082840750 

63.75 6,386,958.84824 7,071.985334219 27.86787668 1.1126473981 

64.00 6,387,181.32020 7,099.854184850 27.86885063 1.1170107213 

64.25 6,387,402.29327 7,127.724002929 27.86981808 1.1213740444 

64.50 6,387,621.75037 7,155.594781876 27.87077895 1.1257373675 

64.75 6,387,839.67451 7,183.466515042 27.87173317 1.1301006907 

65.00 6,388,056.04884 7,211.339195700 27.87268066 1.1344640138 

65.25 6,388,270.85661 7,239.212817051 27.87362135 1.1388273369 

65.50 6,388,484.08121 7,267.087372225 27.87455517 1.1431906601 

65.75 6,388,695.70612 7,294.962854276 27.87548205 1.1475539832 

66.00 6,388,905.71497 7,322.839256189 27.87640191 1.1519173063 

66.25 6,389,114.09149 7,350.716570877 27.87731469 1.1562806294 

66.50 6,389,320.81954 7,378.594791183 27.87822031 1.1606439526 

66.75 6,389,525.88312 7,406.473909880 27.87911870 1.1650072757 

67.00 6,389,729.26633 7,434.353919668 27.88000979 1.1693705988 

67.25 6,389,930.95343 7,462.234813184 27.88089352 1.1737339220 

67.50 6,390,130.92877 7,490.116582990 27.88176981 1.1780972451 

67.75 6,390,329.17687 7,517.999221586 27.88263860 1.1824605682 

68.00 6,390,525.68235 7,545.882721400 27.88349981 1.1868238914 

68.25 6,390,720.42998 7,573.767074796 27.88435340 1.1911872145 

68.50 6,390,913.40466 7,601.652274071 27.88519927 1.1955505376 

68.75 6,391,104.59142 7,629.538311456 27.88603739 1.1999138607 

69.00 6,391,293.97544 7,657.425179117 27.88686766 1.2042771839 

69.25 6,391,481.54202 7,685.312869158 27.88769004 1.2086405070 

69.50 6,391,667.27661 7,713.201373615 27.88850446 1.2130038301 

69.75 6,391,851.16480 7,741.090684464 27.88931085 1.2173671533 

70.00 6,392,033.19232 7,768.980793617 27.89010915 1.2217304764 

70.25 6,392,213.34504 7,796.871692925 27.89089931 1.2260937995 

70.50 6,392,391.60897 7,824.763374177 27.89168125 1.2304571227 

70.75 6,392,567.97028 7,852.655829101 27.89245492 1.2348204458 

71.00 6,392,742.41526 7,880.549049366 27.89322026 1.2391837689 
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Degree φ M(φ) KM up to φ delta KM Radian=φ 

71.25 6,392,914.93037 7,908.443026580 27.89397721 1.2435470920 

71.50 6,393,085.50222 7,936.337752293 27.89472571 1.2479104152 

71.75 6,393,254.11755 7,964.233217999 27.89546571 1.2522737383 

72.00 6,393,420.76326 7,992.129415130 27.89619713 1.2566370614 

72.25 6,393,585.42640 8,020.026335066 27.89691994 1.2610003846 

72.50 6,393,748.09418 8,047.923969126 27.89763406 1.2653637077 

72.75 6,393,908.75395 8,075.822308578 27.89833945 1.2697270308 

73.00 6,394,067.39323 8,103.721344633 27.89903605 1.2740903540 

73.25 6,394,223.99968 8,131.621068446 27.89972381 1.2784536771 

73.50 6,394,378.56112 8,159.521471123 27.90040268 1.2828170002 

73.75 6,394,531.06554 8,187.422543714 27.90107259 1.2871803233 

74.00 6,394,681.50108 8,215.324277217 27.90173350 1.2915436465 

74.25 6,394,829.85604 8,243.226662580 27.90238536 1.2959069696 

74.50 6,394,976.11887 8,271.129690699 27.90302812 1.3002702927 

74.75 6,395,120.27820 8,299.033352421 27.90366172 1.3046336159 

75.00 6,395,262.32281 8,326.937638543 27.90428612 1.3089969390 

75.25 6,395,402.24164 8,354.842539814 27.90490127 1.3133602621 

75.50 6,395,540.02382 8,382.748046935 27.90550712 1.3177235853 

75.75 6,395,675.65861 8,410.654150559 27.90610362 1.3220869084 

76.00 6,395,809.13546 8,438.560841293 27.90669073 1.3264502315 

76.25 6,395,940.44398 8,466.468109700 27.90726841 1.3308135546 

76.50 6,396,069.57394 8,494.375946295 27.90783660 1.3351768778 

76.75 6,396,196.51529 8,522.284341551 27.90839526 1.3395402009 

77.00 6,396,321.25815 8,550.193285897 27.90894435 1.3439035240 

77.25 6,396,443.79280 8,578.102769718 27.90948382 1.3482668472 

77.50 6,396,564.10969 8,606.012783360 27.91001364 1.3526301703 

77.75 6,396,682.19946 8,633.923317124 27.91053376 1.3569934934 

78.00 6,396,798.05290 8,661.834361273 27.91104415 1.3613568166 

78.25 6,396,911.66099 8,689.745906029 27.91154476 1.3657201397 

78.50 6,397,023.01488 8,717.657941577 27.91203555 1.3700834628 

78.75 6,397,132.10589 8,745.570458060 27.91251648 1.3744467859 

79.00 6,397,238.92553 8,773.483445588 27.91298753 1.3788101091 

79.25 6,397,343.46545 8,801.396894230 27.91344864 1.3831734322 

79.50 6,397,445.71753 8,829.310794023 27.91389979 1.3875367553 

79.75 6,397,545.67378 8,857.225134966 27.91434094 1.3919000785 

80.00 6,397,643.32642 8,885.139907025 27.91477206 1.3962634016 

80.25 6,397,738.66783 8,913.055100131 27.91519311 1.4006267247 

80.50 6,397,831.69058 8,940.970704184 27.91560405 1.4049900479 

80.75 6,397,922.38741 8,968.886709051 27.91600487 1.4093533710 

81.00 6,398,010.75127 8,996.803104568 27.91639552 1.4137166941 

81.25 6,398,096.77524 9,024.719880540 27.91677597 1.4180800172 

81.50 6,398,180.45263 9,052.637026743 27.91714620 1.4224433404 
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Degree φ M(φ) KM up to φ delta KM Radian=φ 

81.75 6,398,261.77691 9,080.554532924 27.91750618 1.4268066635 

82.00 6,398,340.74173 9,108.472388801 27.91785588 1.4311699866 

82.25 6,398,417.34095 9,136.390584067 27.91819527 1.4355333098 

82.50 6,398,491.56857 9,164.309108385 27.91852432 1.4398966329 

82.75 6,398,563.41881 9,192.227951396 27.91884301 1.4442599560 

83.00 6,398,632.88607 9,220.147102714 27.91915132 1.4486232792 

83.25 6,398,699.96493 9,248.066551930 27.91944922 1.4529866023 

83.50 6,398,764.65015 9,275.986288610 27.91973668 1.4573499254 

83.75 6,398,826.93668 9,303.906302299 27.92001369 1.4617132485 

84.00 6,398,886.81967 9,331.826582521 27.92028022 1.4660765717 

84.25 6,398,944.29444 9,359.747118778 27.92053626 1.4704398948 

84.50 6,398,999.35651 9,387.667900553 27.92078177 1.4748032179 

84.75 6,399,052.00158 9,415.588917307 27.92101675 1.4791665411 

85.00 6,399,102.22554 9,443.510158487 27.92124118 1.4835298642 

85.25 6,399,150.02446 9,471.431613520 27.92145503 1.4878931873 

85.50 6,399,195.39464 9,499.353271817 27.92165830 1.4922565105 

85.75 6,399,238.33250 9,527.275122771 27.92185095 1.4966198336 

86.00 6,399,278.83472 9,555.197155764 27.92203299 1.509831567 

86.25 6,399,316.89812 9,583.119360160 27.92220440 1.5053464798 

86.50 6,399,352.51974 9,611.041725312 27.92236515 1.5097098030 

86.75 6,399,385.69680 9,638.964240560 27.92251525 1.5140731261 

87.00 6,399,416.42669 9,666.886895230 27.92265467 1.5184364492 

87.25 6,399,444.70703 9,694.809678641 27.92278341 1.5227997724 

87.50 6,399,470.53561 9,722.732580100 27.92290146 1.5271630955 

87.75 6,399,493.91041 9,750.655588904 27.92300880 1.5315264186 

88.00 6,399,514.82961 9,778.578694342 27.92310544 1.5358897418 

88.25 6,399,533.29157 9,806.501885696 27.92319135 1.5402530649 

88.50 6,399,549.29485 9,834.425152242 27.92326655 1.5446163880 

88.75 6,399,562.83820 9,862.348483249 27.92333101 1.5489797111 

89.00 6,399,573.92057 9,890.271867981 27.92338473 1.5533430343 

89.25 6,399,582.54108 9,918.195295697 27.92342772 1.5577063574 

89.50 6,399,588.69908 9,946.118755656 27.92345996 1.5620696805 

89.75 6,399,592.39406 9,974.042237110 27.92348145 1.5664330037 

90.00 6,399,593.62576 10,001.965729313 27.92349220 1.5707963268 

The most accurate value taken in Weintrit, [36], is 10,001,965.72931270 m which is consistent with 
the above 10,001,965.72931260 m to the micrometer (10-6). This implies that our Trapezoid-rule 
calculations in meters on a meridian is valid and sufficiently accurate for GIS use. This is also consistent 
with the Wikipedia "Latitude" entry which cites 10,001.965729 km (see [32]). The Simpson rule 
method is described in [37]. Simpson rule summation is a bit more accurate, but the Trapezoid rule 
works sufficiently for the needs of GIS accuracy using quarter degree latitude steps.  
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The accuracy for east-west parallel for longitude does not need the numeric integration, and so it 
simply trigonometric functions is probably more accurate than along meridians.  

C.3 Area of a Surface  

The area integral is like the length integrals, except instead of using Pythagorean summation, it 
multiplies horizontal λ-distances and vertical to get area in square meters. Essentially, the area locally 
for a ΔΦ, ΔΛ rectangle (the minimum bounding rectangle) which is divided into horizontal stripes and 
then intersected with the area geometry. This gives a set of sub-strips where the boundary of the area 
crosses the stripe. This gives us a set of horizontal sections of lengths "

1, 2, 1, ,, ,..., ,
i ij j n j n j   −    " for 

the latitude division lines 
10 1 0, , , w, ,.. t., ;  i h  j jm jj m     −   = −  and a single vertical height for 

each stripe j . 

For each sub-stripe, the area integral is the product of the corresponding meter distance which is 
exactly what you do with length, but this time you multiply to get local areas and then add the little 
strips into a total area. An example is in Table 3. 
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Eq 109. 
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In the numeric approximation for the area integral is a double summation, both in the latitude and the 
longitude directions. The table below expresses angles as degrees, but the units of latitude and 
longitude are in radians in the integrals. 
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Eq 110. 
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The corresponding angle in radians are 0.00000, 0.002181, 0.004363, 0.006544, .008726, 0.010908, 
0.013089, 0.015271, 0.017453. 

The final value for the area of a degree square in latitude and longitude (along the equator) is 
12,308.814 square kilometers. This is slightly different from the information on lengths of degrees of 
latitude and longitude. A degree of longitude (λ) at latitude φ=0 ̊ is 111.319490 km and at latitude φ=1 ̊ 
is 111.31838 km for an average width is 111.31893, which implies that on a flat surface, the trapezoid 
would have an area of 12,309.023 which is about 0.2 square kilometers too large. In a plane the 
average is based on a linear growth, but on the ellipsoid the average is mainly associated to the cos φ 
which is near flat near φ=0 which goes linear near 90 ̊ (i.e. near the pole). So, the actual area (as 
latitude increases down the columns below the rapidity of change increases as the squares moves 
nearer the pole) is slightly larger than a planar approximation.  
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Table 3. Area of 1 ̊ Latitude by 1 ̊ Longitude at the Equator via Squares (sq. meters) 

Lat↓ 
Long → 

.000 
.125 .250 .375 .500 .625 .750 .875 1.00 

.000 192,329,72
9.221821 

192,329,72
9.221821 

192,329,72
9.221821 

192,329,729
.221821 

192,329,729
.221821 

192,329,729
.221821 

192,329,729
.221821 

192,329,729
.221821 

1,538,637,833.
77457 

.125 192,330,23
6.673325 

192,330,23
6.673325 

192,330,23
6.673325 

192,330,236
.673325 

192,330,236
.673325 

192,330,236
.673325 

192,330,236
.673325 

192,330,236
.673325 

1,538,641,893.
38660 

.250 192,329,84
7.085907 

192,329,84
7.085907 

192,329,84
7.085907 

192,329,847
.085907 

192,329,847
.085907 

192,329,847
.085907 

192,329,847
.085907 

192,329,847
.085907 

1,538,638,776.
68726 

.375 192,328,56
0.440212 

192,328,56
0.440212 

192,328,56
0.440212 

192,328,560
.440212 

192,328,560
.440212 

192,328,560
.440212 

192,328,560
.440212 

192,328,560
.440212 

1,538,628,483.
52170 

.500 192,326,37
6.720375 

192,326,37
6.720375 

192,326,37
6.720375 

192,326,376
.720375 

192,326,376
.720375 

192,326,376
.720375 

192,326,376
.720375 

192,326,376
.720375 

1,538,611,013.
76300 

.625 192,323,29
5.914023 

192,323,29
5.914023 

192,323,29
5.914023 

192,323,295
.914023 

192,323,295
.914023 

192,323,295
.914023 

192,323,295
.914023 

192,323,295
.914023 

1,538,586,367.
31218 

.750 192,319,31
8.012272 

192,319,31
8.012272 

192,319,31
8.012272 

192,319,318
.012272 

192,319,318
.012272 

192,319,318
.012272 

192,319,318
.012272 

192,319,318
.012272 

1,538,554,544.
09818 

.875 192,314,44
3.009734 

192,314,44
3.009734 

192,314,44
3.009734 

192,314,443
.009734 

192,314,443
.009734 

192,314,443
.009734 

192,314,443
.009734 

192,314,443
.009734 

1,538,515,544.
07788 

1.00          

Sum 1,538,601,8
07.07767 

1,538,601,8
07.07767 

1,538,601,8
07.07767 

1,538,601,8
07.07767 

1,538,601,8
07.07767 

1,538,601,8
07.07767 

1,538,601,8
07.07767 

1,538,601,8
07.07767 

12,308,814,45
6.6214 

Each square 
( ) ( ) ( ) ( )

( )( )1 1

2 2

i i i iM M     
 − −+ +  

=    
  

 

Table 4. Area of 1° Latitude by 1° Longitude at the Equator via Stripes (sq. meters) 

Latitude in 
radians 

Average 
M(ρ) 

Average 
ρ(φ) 

Stripe 
Height 

Stripe Length Area of Row 

0.0000000 
6,335,439.32729282 6,378,137.0000000 13,821.78480800 111,352.96452167 1,538,637,833.77457 

0.00218166 
6,335,439.63009043 6,378,168.39746324 13,821.78612920 111,351.78018338 1,538,641,893.38660 

0.00436332 
6,335,440.53847765 6,378,169.43746257 13,821.78877157 111,348.59284744 1,538,638,776.68726 

0.00654498 
6,335,442.05243760 6,378,140.11932799 13,821.79273506 111,342.41803770 1,538,628,483.52170 

0.00872665 
6,335,444.17194220 6,378,080.44253395 13,821.79801961 111,332.26756270 1,538,611,013.76300 

0.01090831 
6,335,446.89695210 6,377,990.40669941 13,821.80462511 111,317.15280954 1,538,586,367.31218 

0.01308997 
6,335,450.22741673 6,377,870.01158780 13,821.81255144 111,296.10221165 1,538,554,544.09818 

0.01527163 
6,335,454.16327427 6,377,719.25710712 13,821.82179845 110,943.09955475 1,538,515,544.07787 

0.01745329 

     

    
12,308,814,456.6214 
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