

CONTACT admin@openconnectivity.org
Copyright Open Connectivity Foundation, Inc. © 2020
All Rights Reserved.

OCF Core Specification
VERSION 2.2.0 | July 2020

mailto:admin@openconnectivity.org

Copyright Open Connectivity Foundation, Inc. © 2016-2020. All rights Reserved

Legal Disclaimer 2
 3

NOTHING CONTAINED IN THIS DOCUMENT SHALL BE DEEMED AS GRANTING YOU ANY KIND 4
OF LICENSE IN ITS CONTENT, EITHER EXPRESSLY OR IMPLIEDLY, OR TO ANY 5
INTELLECTUAL PROPERTY OWNED OR CONTROLLED BY ANY OF THE AUTHORS OR 6
DEVELOPERS OF THIS DOCUMENT. THE INFORMATION CONTAINED HEREIN IS PROVIDED 7
ON AN "AS IS" BASIS, AND TO THE MAXIMUM EXTENT PERMITTED BY APPLICABLE LAW, 8
THE AUTHORS AND DEVELOPERS OF THIS SPECIFICATION HEREBY DISCLAIM ALL OTHER 9
WARRANTIES AND CONDITIONS, EITHER EXPRESS OR IMPLIED, STATUTORY OR AT 10
COMMON LAW, INCLUDING, BUT NOT LIMITED TO, IMPLIED WARRANTIES OF 11
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. OPEN CONNECTIVITY 12
FOUNDATION, INC. FURTHER DISCLAIMS ANY AND ALL WARRANTIES OF NON-13
INFRINGEMENT, ACCURACY OR LACK OF VIRUSES. 14

The OCF logo is a trademark of Open Connectivity Foundation, Inc. in the United States or other 15
countries. *Other names and brands may be claimed as the property of others. 16

Copyright © 2016-2020 Open Connectivity Foundation, Inc. All rights reserved. 17

Copying or other form of reproduction and/or distribution of these works are strictly prohibited. 18
 19

Copyright Open Connectivity Foundation, Inc. © 2016-2020. All rights Reserved

CONTENTS 20

1 Scope .. 1 21

2 Normative references .. 1 22

3 Terms, definitions, and abbreviated terms ... 3 23

3.1 Terms and definitions.. 3 24

3.2 Abbreviated terms ... 7 25

4 Document conventions and organization .. 8 26

4.1 Conventions .. 8 27

4.2 Notation .. 9 28

4.3 Data types .. 9 29

4.4 Resource notation syntax .. 11 30

5 Architecture ... 11 31

5.1 Overview .. 11 32

5.2 Principle ... 12 33

5.3 Functional block diagram .. 13 34

5.4 Framework .. 14 35

6 Identification and addressing ... 15 36

6.1 Introduction ... 15 37

6.2 Identification ... 15 38

6.2.1 Device and Platform identification .. 15 39

6.2.2 Resource identification and addressing ... 15 40

6.3 Namespace: .. 16 41

6.4 Network addressing .. 17 42

7 Resource model .. 17 43

7.1 Introduction ... 17 44

7.2 Resource .. 18 45

7.3 Property .. 18 46

7.3.1 Introduction ... 18 47

7.3.2 Common Properties ... 19 48

7.4 Resource Type ... 21 49

7.4.1 Introduction ... 21 50

7.4.2 Resource Type Property .. 21 51

7.4.3 Resource Type definition ... 21 52

7.4.4 Multi-value "rt" Resource ... 23 53

7.5 Device Type .. 23 54

7.6 OCF Interface ... 24 55

7.6.1 Introduction ... 24 56

7.6.2 OCF Interface Property .. 24 57

7.6.3 OCF Interface methods .. 25 58

7.7 Resource representation ... 44 59

7.8 Structure ... 44 60

7.8.1 Introduction ... 44 61

7.8.2 Resource relationships (Links) ... 44 62

Copyright Open Connectivity Foundation, Inc. © 2016-2020. All rights Reserved

7.8.3 Collections... 49 63

7.8.4 Atomic Measurement ... 52 64

7.9 Query Parameters ... 54 65

7.9.1 Introduction ... 54 66

7.9.2 Use of multiple parameters within a query ... 54 67

7.9.3 Application to multi-value "rt" Resources ... 54 68

7.9.4 OCF Interface specific considerations for queries .. 54 69

8 CRUDN ... 55 70

8.1 Overview .. 55 71

8.2 CREATE ... 56 72

8.2.1 Overview ... 56 73

8.2.2 CREATE request ... 56 74

8.2.3 Processing by the Server ... 56 75

8.2.4 CREATE response ... 56 76

8.3 RETRIEVE .. 57 77

8.3.1 Overview ... 57 78

8.3.2 RETRIEVE request .. 57 79

8.3.3 Processing by the Server ... 57 80

8.3.4 RETRIEVE response ... 57 81

8.4 UPDATE ... 58 82

8.4.1 Overview ... 58 83

8.4.2 UPDATE request ... 58 84

8.4.3 Processing by the Server ... 58 85

8.4.4 UPDATE response ... 59 86

8.5 DELETE .. 59 87

8.5.1 Overview ... 59 88

8.5.2 DELETE request .. 59 89

8.5.3 Processing by the Server ... 59 90

8.5.4 DELETE response ... 60 91

8.6 NOTIFY .. 60 92

8.6.1 Overview ... 60 93

8.6.2 NOTIFICATION response .. 60 94

9 Network and connectivity ... 60 95

9.1 Introduction ... 60 96

9.2 Architecture .. 60 97

9.3 IPv6 network layer requirements ... 61 98

9.3.1 Introduction ... 61 99

9.3.2 IPv6 node requirements ... 62 100

10 OCF Endpoint .. 62 101

10.1 OCF Endpoint definition .. 62 102

10.2 OCF Endpoint information ... 63 103

10.2.1 Introduction ... 63 104

10.2.2 "ep" ... 63 105

10.2.3 "pri" ... 64 106

Copyright Open Connectivity Foundation, Inc. © 2016-2020. All rights Reserved

10.2.4 "lat" ... 64 107

10.2.5 OCF Endpoint information in "eps" Parameter ... 64 108

10.3 OCF Endpoint discovery ... 65 109

10.3.1 Introduction ... 65 110

10.3.2 Implicit discovery ... 65 111

10.3.3 Explicit discovery with "/oic/res" response ... 65 112

11 Functional interactions .. 67 113

11.1 Introduction ... 67 114

11.2 Resource discovery .. 68 115

11.2.1 Introduction ... 68 116

11.2.2 Resource based discovery: mechanisms ... 68 117

11.2.3 Resource based discovery: Finding information ... 69 118

11.2.4 Resource discovery using "/oic/res" ... 75 119

11.2.5 Multicast discovery using "/oic/res" .. 77 120

11.3 Notification ... 77 121

11.3.1 Overview ... 77 122

11.3.2 Observe ... 77 123

11.4 Introspection ... 79 124

11.4.1 Overview ... 79 125

11.4.2 Usage of Introspection ... 82 126

11.5 Semantic Tags .. 83 127

11.5.1 Introduction ... 83 128

11.5.2 Semantic Tag definitions ... 84 129

12 Messaging ... 86 130

12.1 Introduction ... 86 131

12.2 Mapping of CRUDN to CoAP ... 86 132

12.2.1 Overview ... 86 133

12.2.2 URIs .. 87 134

12.2.3 CoAP method with request and response .. 87 135

12.2.4 Content-Format negotiation ... 88 136

12.2.5 OCF-Content-Format-Version information .. 89 137

12.2.6 Content-Format policy ... 90 138

12.2.7 CRUDN to CoAP response codes .. 91 139

12.2.8 CoAP block transfer ... 91 140

12.2.9 Generic requirements for CoAP multicast .. 91 141

12.2.10 Setting timeout on response to a confirmable request 92 142

12.3 Mapping of CRUDN to CoAP serialization over TCP ... 92 143

12.3.1 Overview ... 92 144

12.3.2 URIs .. 92 145

12.3.3 CoAP method with request and response .. 92 146

12.3.4 Content-Format negotiation ... 92 147

12.3.5 OCF-Content-Format-Version information .. 92 148

12.3.6 Content-Format policy ... 93 149

12.3.7 CRUDN to CoAP response codes .. 93 150

Copyright Open Connectivity Foundation, Inc. © 2016-2020. All rights Reserved

12.3.8 CoAP block transfer ... 93 151

12.3.9 Keep alive (connection health) ... 93 152

12.3.10 CoAP using a proxy ... 93 153

12.4 Payload Encoding in CBOR .. 93 154

13 Security ... 93 155

 (normative) Resource Type definitions ... 94 156

A.1 List of Resource Type definitions .. 94 157

A.2 Atomic Measurement links list representation ... 94 158

A.2.1 Introduction ... 94 159

A.2.2 Example URI ... 94 160

A.2.3 Resource type ... 94 161

A.2.4 OpenAPI 2.0 definition ... 94 162

A.2.5 Property definition ... 101 163

A.2.6 CRUDN behaviour ... 102 164

A.3 Collection.. 102 165

A.3.1 Introduction ... 102 166

A.3.2 Example URI ... 102 167

A.3.3 Resource type ... 102 168

A.3.4 OpenAPI 2.0 definition ... 102 169

A.3.5 Property definition ... 110 170

A.3.6 CRUDN behaviour ... 111 171

A.4 Device .. 111 172

A.4.1 Introduction ... 111 173

A.4.2 Well-known URI ... 111 174

A.4.3 Resource type ... 111 175

A.4.4 OpenAPI 2.0 definition ... 111 176

A.4.5 Property definition ... 114 177

A.4.6 CRUDN behaviour ... 115 178

A.5 Introspection Resource ... 116 179

A.5.1 Introduction ... 116 180

A.5.2 Well-known URI ... 116 181

A.5.3 Resource type ... 116 182

A.5.4 OpenAPI 2.0 definition ... 116 183

A.5.5 Property definition ... 118 184

A.5.6 CRUDN behaviour ... 118 185

A.6 Platform .. 119 186

A.6.1 Introduction ... 119 187

A.6.2 Well-known URI ... 119 188

A.6.3 Resource type ... 119 189

A.6.4 OpenAPI 2.0 definition ... 119 190

A.6.5 Property definition ... 122 191

A.6.6 CRUDN behaviour ... 122 192

A.7 Discoverable Resources ... 123 193

A.7.1 Introduction ... 123 194

Copyright Open Connectivity Foundation, Inc. © 2016-2020. All rights Reserved

A.7.2 Well-known URI ... 123 195

A.7.3 Resource type ... 123 196

A.7.4 OpenAPI 2.0 definition ... 123 197

A.7.5 Property definition ... 128 198

A.7.6 CRUDN behaviour ... 129 199

 (informative) OpenAPI 2.0 Schema Extension .. 130 200

B.1 OpenAPI 2.0 Schema Reference ... 130 201

B.2 OpenAPI 2.0 Introspection empty file .. 130 202

 (normative) Semantic Tag enumeration support ... 131 203

C.1 Introduction ... 131 204

C.2 "tag-pos-desc" supported enumeration .. 131 205

Bibliography .. 132 206

 207

 208

Copyright Open Connectivity Foundation, Inc. © 2016-2020. All rights Reserved

 209

Figures 210
 211

Figure 1 – Architecture - concepts .. 12 212

Figure 2 – Functional block diagram ... 13 213

Figure 3 – Communication layering model .. 14 214

Figure 4 – Example Resource ... 18 215

Figure 5 – CREATE operation ... 56 216

Figure 6 – RETRIEVE operation ... 57 217

Figure 7 – UPDATE operation ... 58 218

Figure 8 – DELETE operation ... 59 219

Figure 9 – High Level Network & Connectivity Architecture ... 61 220

Figure 10 – Resource based discovery: Finding information .. 69 221

Figure 11 – Observe Mechanism ... 78 222

Figure 12 – Example usage of oneOf JSON schema ... 81 223

Figure 13 – Interactions to check Introspection support and download the Introspection 224
Device Data. ... 83 225

Figure 14 – "tag-pos-rel" definition .. 85 226

Figure 15 – Content-Format Policy for backward compatible OCF Clients negotiating lower 227
OCF Content-Format-Version ... 91 228

Figure C.1 – Enumeration for "tag-pos-desc" Semantic Tag .. 131 229

Figure C.2 – Definition of "tag-pos-desc" Semantic Tag values ... 131 230

 231

Tables 232
 233

Table 1 – Additional OCF Types ... 10 234

Table 2 – Name Property Definition .. 20 235

Table 3 – Resource Identity Property Definition .. 20 236

Table 4 – Resource Type Common Property definition .. 21 237

Table 5 – Example foobar Resource Type ... 22 238

Table 6 – Example foobar Properties .. 22 239

Table 7 – Resource Interface Property definition ... 25 240

Table 8 – OCF standard OCF Interfaces ... 25 241

Table 9 – Batch OCF Interface Example ... 32 242

Table 10 – Link target attributes list .. 46 243

Table 11 – "bm" Property definition ... 46 244

Table 12 – Resource Types Property definition ... 49 245

Table 13 – Mandatory Resource Types Property definition .. 49 246

Table 14 – Common Properties for Collections (in addition to Common Properties defined 247
in 7.3.2) .. 51 248

Copyright Open Connectivity Foundation, Inc. © 2016-2020. All rights Reserved

Table 15 – Common Properties for Atomic Measurement (in addition to Common 249
Properties defined in 7.3.2) ... 52 250

Table 16 – Atomic Measurement Resource Type .. 53 251

Table 17 – Properties for Atomic Measurement (in addition to Common Properties defined 252
in 7.3.2) .. 53 253

Table 18 – Parameters of CRUDN messages .. 55 254

Table 19 – "ep" value for Transport Protocol Suite .. 64 255

Table 20 – List of Core Resources .. 68 256

Table 21 – Mandatory discovery Core Resources ... 70 257

Table 22 – "oic.wk.res" Resource Type definition .. 71 258

Table 23 – Protocol scheme registry ... 72 259

Table 24 – "oic.wk.d" Resource Type definition ... 72 260

Table 25 – "oic.wk.p" Resource Type definition ... 74 261

Table 26 – Introspection Resource .. 82 262

Table 27 – "oic.wk.introspection" Resource Type definition ... 82 263

Table 28 – "tag-pos-desc" Semantic Tag definition ... 84 264

Table 29 – "tag-pos-rel" Semantic Tag definition ... 85 265

Table 30 – "tag-func-desc" Semantic Tag definition .. 86 266

Table 31 – CoAP request and response .. 87 267

Table 32 – OCF Content-Formats ... 89 268

Table 33 – OCF-Content-Format-Version and OCF-Accept-Content-Format-Version Option 269
Numbers ... 89 270

Table 34 – OCF-Accept-Content-Format-Version and OCF-Content-Format-Version 271
Representation ... 89 272

Table 35 – Examples of OCF-Content-Format-Version and OCF-Accept-Content-Format-273
Version Representation .. 90 274

Table A.1 – Alphabetized list of Core Resources.. 94 275

Table A.2 – The Property definitions of the Resource with type "rt" = 276
"oic.wk.atomicmeasurement". ... 101 277

Table A.3 – The CRUDN operations of the Resource with type "rt" = 278
"oic.wk.atomicmeasurement". ... 102 279

Table A.4 – The Property definitions of the Resource with type "rt" = "oic.wk.col". 110 280

Table A.5 – The CRUDN operations of the Resource with type "rt" = "oic.wk.col". 111 281

Table A.6 – The Property definitions of the Resource with type "rt" = "oic.wk.d". 115 282

Table A.7 – The CRUDN operations of the Resource with type "rt" = "oic.wk.d". 115 283

Table A.8 – The Property definitions of the Resource with type "rt" = 284
"oic.wk.introspection". ... 118 285

Table A.9 – The CRUDN operations of the Resource with type "rt" = "oic.wk.introspection". 119 286

Table A.10 – The Property definitions of the Resource with type "rt" = "oic.wk.p". 122 287

Table A.11 – The CRUDN operations of the Resource with type "rt" = "oic.wk.p". 122 288

Table A.12 – The Property definitions of the Resource with type "rt" = "oic.wk.res". 128 289

Copyright Open Connectivity Foundation, Inc. © 2016-2020. All rights Reserved

Table A.13 – The CRUDN operations of the Resource with type "rt" = "oic.wk.res". 129 290

 291
 292

Copyright Open Connectivity Foundation, Inc. © 2016-2020. All rights Reserved 1

1 Scope 293

The OCF Core specifications are divided into a set of documents: 294

– Core specification (this document): The Core specification document specifies the Framework, 295
i.e., the OCF core architecture, interfaces, protocols and services to enable OCF profiles 296
implementation for Internet of Things (IoT) usages and ecosystems. This document is 297
mandatory for all Devices to implement. 298

– Core optional specification: The Core optional specification document specifies the Framework, 299
i.e., the OCF core architecture, interfaces, protocols and services to enable OCF profiles 300
implementation for Internet of Things (IoT) usages and ecosystems that can optionally be 301
implemented by any Device. 302

– Core extension specification(s): The Core extension specification(s) document(s) specifies 303
optional OCF Core functionality that are significant in scope (e.g., Wi-Fi easy setup, Cloud). 304

2 Normative references 305

The following documents, in whole or in part, are normatively referenced in this document and are 306
indispensable for its application. For dated references, only the edition cited applies. For undated 307
references, the latest edition of the referenced document (including any amendments) applies. 308

ISO 8601, Data elements and interchange formats – Information interchange –Representation of 309
dates and times, International Standards Organization, December 3, 2004 310

ISO/IEC DIS 20924, Information Technology – Internet of Things – Vocabulary, June 2018 311
https://www.iso.org/standard/69470.html 312

ISO/IEC 30118-2:2018, Information technology – Open Connectivity Foundation (OCF) 313
Specification – Part 2: Security specification 314
https://www.iso.org/standard/74239.html 315
Latest version available at: https://openconnectivity.org/specs/OCF_Security_Specification.pdf 316

IETF RFC 768, User Datagram Protocol, August 1980 317
https://www.rfc-editor.org/info/rfc768 318

IETF RFC 3339, Date and Time on the Internet: Timestamps, July 2002 319
https://www.rfc-editor.org/info/rfc3339 320

IETF RFC 3986, Uniform Resource Identifier (URI): General Syntax, January 2005. 321
https://www.rfc-editor.org/info/rfc3986 322

IETF RFC 4122, A Universally Unique IDentifier (UUID) URN Namespace, July 2005 323
https://www.rfc-editor.org/info/rfc4122 324

IETF RFC 4287, The Atom Syndication Format, December 2005, 325
https://www.rfc-editor.org/info/rfc4287 326

IETF RFC 4941, Privacy Extensions for Stateless Address Autoconfiguration in IPv6, September 327
2007 328
https://www.rfc-editor.org/info/rfc4941 329

IETF RFC 5646, Tags for Identifying Languages, September 2009 330
https://www.rfc-editor.org/info/rfc5646 331

IETF RFC 6347, Datagram Transport Layer Security Version 1.2, January 2012 332
https://www.rfc-editor.org/info/rfc6347 333

https://www.iso.org/standard/69470.html
https://www.iso.org/standard/74239.html
https://openconnectivity.org/specs/OCF_Security_Specification.pdf
https://www.rfc-editor.org/info/rfc768
https://www.rfc-editor.org/info/rfc3339
https://www.rfc-editor.org/info/rfc3986
https://www.rfc-editor.org/info/rfc4122
https://www.rfc-editor.org/info/rfc4287
https://www.rfc-editor.org/info/rfc4941
https://www.rfc-editor.org/info/rfc5646
https://www.rfc-editor.org/info/rfc6347

Copyright Open Connectivity Foundation, Inc. © 2016-2020. All rights Reserved 2

IETF RFC 6434, IPv6 Node Requirements, December 2011 334
https://www.rfc-editor.org/info/rfc6434 335

IETF RFC 6573, The Item and Collection Link Relations, April 2012 336
https://www.rfc-editor.org/info/rfc6573 337

IETF RFC 6690, Constrained RESTful Environments (CoRE) Link Format, August 2012 338
https://www.rfc-editor.org/info/rfc6690 339

IETF RFC 7049, Concise Binary Object Representation (CBOR), October 2013 340
https://www.rfc-editor.org/info/rfc7049 341

IETF RFC 7084, Basic Requirements for IPv6 Customer Edge Routers, November 2013 342
https://www.rfc-editor.org/info/rfc7084 343

IETF RFC 7159, The JavaScript Object Notation (JSON) Data Interchange Format, March 2014 344
https://www.rfc-editor.org/info/rfc7159 345

IETF RFC 7252, The Constrained Application Protocol (CoAP), June 2014 346
https://www.rfc-editor.org/info/rfc7252 347

IETF RFC 7301, Transport Layer Security (TLS) Application-Layer Protocol Negotiation 348
Extension, July 2014 349
https://www.rfc-editor.org/info/rfc7301 350

IETF RFC 7346, IPv6 Multicast Address Scopes, August 2014 351
https://www.rfc-editor.org/info/rfc7346 352

IETF RFC 7595, Guidelines and Registration Procedures for URI Schemes, June 2015 353
https://www.rfc-editor.org/info/rfc7595 354

IETF RFC 7641, Observing Resources in the Constrained Application Protocol 355
(CoAP), September 2015 356
https://www.rfc-editor.org/info/rfc7641 357

IETF RFC 7721, Security and Privacy Considerations for IPv6 Address Generation Mechanisms, 358
March 20016 359
https://www.rfc-editor.org/info/rfc7721 360

IETF RFC 7959, Block-Wise Transfers in the Constrained Application Protocol (CoAP), August 361
2016 362
https://www.rfc-editor.org/info/rfc7959 363

IETF RFC 8075, Guidelines for Mapping Implementations: HTTP to the Constrained Application 364
Protocol (CoAP), February 2017 365
https://www.rfc-editor.org/info/rfc8075 366

IETF RFC 8085, UDP Usage Guidelines, March 2017 367
https://www.rfc-editor.org/info/rfc8085 368

IETF RFC 8288, Web Linking, October 2017 369
https://www.rfc-editor.org/info/rfc8288 370

IETF RFC 8323, CoAP (Constrained Application Protocol) over TCP, TLS, and WebSockets, 371
February 2018 372
https://www.rfc-editor.org/info/rfc8323 373

https://www.rfc-editor.org/info/rfc6434
https://www.rfc-editor.org/info/rfc6573
https://www.rfc-editor.org/info/rfc6690
https://www.rfc-editor.org/info/rfc7049
https://www.rfc-editor.org/info/rfc7084
https://www.rfc-editor.org/info/rfc7159
https://www.rfc-editor.org/info/rfc7252
https://www.rfc-editor.org/info/rfc7301
https://www.rfc-editor.org/info/rfc7346
https://www.rfc-editor.org/info/rfc7595
https://www.rfc-editor.org/info/rfc7641
https://www.rfc-editor.org/info/rfc7721
https://www.rfc-editor.org/info/rfc7959
https://www.rfc-editor.org/info/rfc8075
https://www.rfc-editor.org/info/rfc8085
https://www.rfc-editor.org/info/rfc8288
https://www.rfc-editor.org/info/rfc8323

Copyright Open Connectivity Foundation, Inc. © 2016-2020. All rights Reserved 3

IANA ifType-MIB Definitions 374
https://www.iana.org/assignments/ianaiftype-mib/ianaiftype-mib 375

IANA IPv6 Multicast Address Space Registry 376
http://www.iana.org/assignments/ipv6-multicast-addresses/ipv6-multicast-addresses.xhtml 377

IANA Link Relations, October 2017 378
http://www.iana.org/assignments/link-relations/link-relations.xhtml 379

JSON Schema Validation, JSON Schema: interactive and non-interactive validation, January 2013 380
http://json-schema.org/draft-04/json-schema-validation.html 381

OpenAPI specification, fka Swagger RESTful API Documentation Specification, Version 2.0 382
https://github.com/OAI/OpenAPI-Specification/blob/master/versions/2.0.md 383

3 Terms, definitions, and abbreviated terms 384

3.1 Terms and definitions 385

For the purposes of this document, the terms and definitions given in the following apply. 386

ISO and IEC maintain terminological databases for use in standardization at the following 387
addresses: 388
– ISO Online browsing platform: available at https://www.iso.org/obp. 389

– IEC Electropedia: available at http://www.electropedia.org/. 390

3.1.1 391
Atomic Measurement 392
a design pattern that ensures that the Client (3.1.6) can only access the Properties (3.1.33) of 393
linked Resources (3.1.31) atomically, that is as a single group 394

3.1.2 395
Bridged Client 396
logical entity that accesses data via a Bridged Protocol (3.1.4) 397

Note 1 to entry: For example, an AllJoyn Consumer application is a Bridged Client (3.1.2) 398

3.1.3 399
Bridged Device 400
Bridged Client (3.1.2) or Bridged Server (3.1.5) 401

3.1.4 402
Bridged Protocol 403
another protocol (e.g., AllJoyn) that is being translated to or from OCF protocols 404

3.1.5 405
Bridged Server 406
logical entity that provides data via a Bridged Protocol (3.1.4) 407

Note 1 to entry: For example an AllJoyn Producer is a Bridged Server (3.1.5). 408

Note 2 to entry: More than one Bridged Server (3.1.5) can exist on the same physical platform. 409

3.1.6 410
Client 411
a logical entity that accesses a Resource (3.1.31) on a Server (3.1.36) 412

3.1.7 413
Collection 414
a Resource (3.1.31) that contains zero or more Links (3.1.21) 415

https://www.iana.org/assignments/ianaiftype-mib/ianaiftype-mib
http://www.iana.org/assignments/ipv6-multicast-addresses/ipv6-multicast-addresses.xhtml
http://www.iana.org/assignments/link-relations/link-relations.xhtml
http://json-schema.org/draft-04/json-schema-validation.html
https://github.com/OAI/OpenAPI-Specification/blob/master/versions/2.0.md
https://www.iso.org/obp
http://www.electropedia.org/

Copyright Open Connectivity Foundation, Inc. © 2016-2020. All rights Reserved 4

3.1.8 416
Common Properties 417
Properties (3.1.33) specified for all Resources (3.1.31) 418

3.1.9 419
Composite Device 420
a Device (3.1.13) that is modelled as multiple Device Types (3.1.14); with each component Device 421
Type (3.1.14) being exposed as a Collection (3.1.7) 422

3.1.10 423
Configuration Source 424
a cloud or service network or a local read-only file which contains and provides configuration 425
related information to the Devices (3.1.13) 426

3.1.11 427
Core Resources 428
those Resources (3.1.31) that are defined in this document 429

3.1.12 430
Default OCF Interface 431
an OCF Interface (3.1.18) used to generate the response when an OCF Interface (3.1.18) is omitted 432
in a request 433

3.1.13 434
Device 435
a logical entity that assumes one or more roles, e.g., Client (3.1.6), Server (3.1.36) 436

Note 1 to entry: More than one Device (3.1.13) can exist on a Platform (3.1.30). 437

3.1.14 438
Device Type 439
a uniquely named definition indicating a minimum set of Resource Types (3.1.34) that a Device 440
(3.1.13) supports 441

Note 1 to entry: A Device Type (3.1.14) provides a hint about what the Device (3.1.13) is, such as a light or a fan, for 442
use during Resource (3.1.31) discovery. 443

3.1.15 444
Discoverable Resource 445
a Resource (3.1.31) that is listed in "/oic/res" 446

3.1.16 447
OCF Endpoint 448
entity participating in the OCF protocol, further identified as the source or destination of a request 449
and response messages for a given Transport Protocol Suite 450

Note 1 to entry: Example of a Transport Protocol Suite would be CoAP over UDP over IPv6. 451

3.1.17 452
Framework 453
a set of related functionalities and interactions defined in this document, which enable 454
interoperability across a wide range of networked devices, including IoT 455

3.1.18 456
OCF Interface 457
interface description in accordance with IETF RFC 6690 and as defined by OCF that provides a 458
view to and permissible responses from a Resource (3.1.31) 459

Copyright Open Connectivity Foundation, Inc. © 2016-2020. All rights Reserved 5

3.1.19 460
Introspection 461
mechanism to determine the capabilities of the hosted Resources (3.1.31) of a Device (3.1.13) 462

3.1.20 463
Introspection Device Data (IDD) 464
data that describes the payloads per implemented method of the Resources (3.1.31) that make up 465
the Device (3.1.13) 466

Note 1 to entry: See 11.4 for all requirements and exceptions. 467

3.1.21 468
Links 469
extends typed web links according to IETF RFC 8288 470

3.1.22 471
Non-Discoverable Resource 472
a Resource (3.1.31) that is not listed in "/oic/res" 473

Note 1 to entry: The Resource (3.1.31) can be reached by a Link (3.1.21) which is conveyed by another Resource 474
(3.1.31). For example a Resource (3.1.31) linked in a Collection (3.1.7) does not have to be listed in "/oic/res", since 475
traversing the Collection (3.1.7) would discover the Resource (3.1.31) implemented on the Device (3.1.13). 476

3.1.23 477
Notification 478
the mechanism to make a Client (3.1.6) aware of state changes in a Resource (3.1.31) 479

3.1.24 480
Observe 481
the act of monitoring a Resource (3.1.31) by sending a RETRIEVE operation which is cached by 482
the Server (3.1.36) hosting the Resource (3.1.31) and reprocessed on every change to that 483
Resource (3.1.31) 484

3.1.25 485
OpenAPI 2.0 486
Resource (3.1.31) and Intropection Device Data (3.1.20) definitions used in this document as 487
defined in the OpenAPI specification 488

3.1.26 489
Parameter 490
an element that provides metadata about a Resource (3.1.31) referenced by the target URI of a 491
Link (3.1.21) 492

3.1.27 493
Partial UPDATE 494
an UPDATE operation to a Resource (3.1.31) that includes a subset of the Properties (3.1.33) that 495
are visible via the OCF Interface (3.1.18) being applied for the Resource Type (3.1.34) 496

3.1.28 497
Permanent Immutable ID 498
an identity for a Device (3.1.13) that cannot be altered 499

3.1.29 500
Physical Device 501
the physical thing on which a Device(s) (3.1.13) is exposed 502

3.1.30 503
Platform 504
a Physical Device (3.1.29) containing one or more Devices (3.1.13) 505

Copyright Open Connectivity Foundation, Inc. © 2016-2020. All rights Reserved 6

3.1.31 506
Resource 507
represents an entity modelled and exposed by the Framework (3.1.17) 508

3.1.32 509
Resource Interface 510
a qualification of the permitted requests on a Resource (3.1.31) 511

3.1.33 512
Property 513
a significant aspect or Parameter (3.1.26) of a Resource (3.1.31), including metadata, that is 514
exposed through the Resource (3.1.31) 515

3.1.34 516
Resource Type 517
a uniquely named definition of a class of Properties (3.1.33) and the interactions that are supported 518
by that class 519

Note 1 to entry: Each Resource (3.1.31) has a Property (3.1.33) "rt" whose value is the unique name of the Resource 520
Type (3.1.34). 521

3.1.35 522
Secure OCF Endpoint 523
an OCF Endpoint (3.1.16) with a secure connection (e.g., CoAPS) 524

3.1.36 525
Semantic Tag 526
meta-information that provides additional contextual information with regard to the Resource 527
(3.1.31) that is the target of a Link (3.1.21) 528

3.1.37 529
Server 530
a Device (3.1.13) with the role of providing Resource (3.1.31) state information and facilitating 531
remote interaction with its Resources (3.1.31) 532

3.1.38 533
Sleepy Server 534
a Server (3.1.37) that will have latency in responding to requests 535

3.1.39 536
Unsecure OCF Endpoint 537
an OCF Endpoint (3.1.16) with an unsecure connection (e.g., CoAP) 538

3.1.40 539
Vertical Resource Type 540
a Resource Type (3.1.34) in a vertical domain specification 541

Note 1 to entry: An example of a Vertical Resource Type (3.1.40) would be "oic.r.switch.binary". 542

3.1.41 543
Virtual OCF Client 544
logical representation of a Bridged Client (3.1.2), which an Bridged Device (3.1.3) exposes to 545
Servers (3.1.36) 546

3.1.42 547
Virtual OCF Device (or VOD) 548
Virtual OCF Client (3.1.41) or Virtual OCF Server (3.1.43) 549

Copyright Open Connectivity Foundation, Inc. © 2016-2020. All rights Reserved 7

3.1.43 550
Virtual OCF Server 551
logical representation of a Bridged Server (3.1.5), which an Bridged Device (3.1.3) exposes to 552
Clients (3.1.6) 553

3.2 Abbreviated terms 554

3.2.1 555
ACL 556
Access Control List 557

Note 1 to entry: The details are defined in ISO/IEC 30118-2:2018. 558

3.2.2 559
BLE 560
Bluetooth Low Energy 561

3.2.3 562
CBOR 563
Concise Binary Object Representation 564

3.2.4 565
CoAP 566
Constrained Application Protocol 567

3.2.5 568
CoAPS 569
Secure Constrained Application Protocol 570

3.2.6 571
DTLS 572
Datagram Transport Layer Security 573

Note 1 to entry: The details are defined in IETF RFC 6347. 574

3.2.7 575
EXI 576
Efficient XML Interchange 577

3.2.8 578
IP 579
Internet Protocol 580

3.2.9 581
IRI 582
Internationalized Resource Identifiers 583

3.2.10 584
ISP 585
Internet Service Provider 586

3.2.11 587
JSON 588
JavaScript Object Notation 589

3.2.12 590
mDNS 591
Multicast Domain Name Service 592

Copyright Open Connectivity Foundation, Inc. © 2016-2020. All rights Reserved 8

3.2.13 593
MTU 594
Maximum Transmission Unit 595

3.2.14 596
NAT 597
Network Address Translation 598

3.2.15 599
OCF 600
Open Connectivity Foundation 601

the organization that created this document 602

3.2.16 603
REST 604
Representational State Transfer 605

3.2.17 606
RESTful 607
REST-compliant Web services 608

3.2.18 609
UDP 610
User Datagram Protocol 611

Note 1 to entry: The details are defined in IETF RFC 768. 612

3.2.19 613
URI 614
Uniform Resource Identifier 615

3.2.20 616
URN 617
Uniform Resource Name 618

3.2.21 619
UTC 620
Coordinated Universal Time 621

3.2.22 622
UUID 623
Universal Unique Identifier 624

3.2.23 625
XML 626
Extensible Markup Language 627

4 Document conventions and organization 628

4.1 Conventions 629

In this document a number of terms, conditions, mechanisms, sequences, parameters, events, 630
states, or similar terms are printed with the first letter of each word in uppercase and the rest 631
lowercase (e.g., Network Architecture). Any lowercase uses of these words have the normal 632
technical English meaning. 633

The messaging payload examples in this document contain OCF Vertical Device Types and 634
Resource Types, which are used for illustrative purposes only. 635

Copyright Open Connectivity Foundation, Inc. © 2016-2020. All rights Reserved 9

4.2 Notation 636

In this document, features are described as required, recommended, allowed or DEPRECATED as 637
follows: 638

Required (or shall or mandatory)(M). 639

– These basic features shall be implemented to comply with Core Architecture. The phrases "shall 640
not", and "PROHIBITED" indicate behaviour that is prohibited, i.e. that if performed means the 641
implementation is not in compliance. 642

Recommended (or should)(S). 643

– These features add functionality supported by Core Architecture and should be implemented. 644
Recommended features take advantage of the capabilities Core Architecture, usually without 645
imposing major increase of complexity. Notice that for compliance testing, if a recommended 646
feature is implemented, it shall meet the specified requirements to be in compliance with these 647
guidelines. Some recommended features could become requirements in the future. The phrase 648
"should not" indicates behaviour that is permitted but not recommended. 649

Allowed (may or allowed)(O). 650

– These features are neither required nor recommended by Core Architecture, but if the feature 651
is implemented, it shall meet the specified requirements to be in compliance with these 652
guidelines. 653

DEPRECATED. 654

– Although these features are still described in this document, they should not be implemented 655
except for backward compatibility. The occurrence of a deprecated feature during operation of 656
an implementation compliant with the current documenthas no effect on the implementation’s 657
operation and does not produce any error conditions. Backward compatibility may require that 658
a feature is implemented and functions as specified but it shall never be used by 659
implementations compliant with this document. 660

Conditionally allowed (CA). 661

– The definition or behaviour depends on a condition. If the specified condition is met, then the 662
definition or behaviour is allowed, otherwise it is not allowed. 663

Conditionally required (CR). 664

– The definition or behaviour depends on a condition. If the specified condition is met, then the 665
definition or behaviour is required. Otherwise the definition or behaviour is allowed as default 666
unless specifically defined as not allowed. 667

Strings that are to be taken literally are enclosed in "double quotes". 668

Words that are emphasized are printed in italic. 669

In all of the Property and Resource definition tables that are included throughout this document the 670
"Mandatory" column indicates that the item detailed is mandatory to implement; the mandating of 671
inclusion of the item in a Resource Payload associated with a CRUDN action is dependent on the 672
applicable schema for that action. 673

4.3 Data types 674

Resources are defined using data types derived from JSON values as defined in IETF RFC 7159. 675
However, a Resource can overload a JSON defined value to specify a particular subset of the 676
JSON value, using validation keywords defined in JSON Schema Validation. 677

Copyright Open Connectivity Foundation, Inc. © 2016-2020. All rights Reserved 10

Among other validation keywords, clause 7 in JSON Schema Validation defines a "format" keyword 678
with a number of format attributes such as "uri" and "date-time", and a "pattern" keyword with a 679
regular expression that can be used to validate a string. This clause defines patterns that are 680
available for use in describing OCF Resources. The pattern names can be used in documenttext 681
where JSON format names can occur. The actual JSON schemas shall use the JSON type and 682
pattern instead. 683

For all rows defined in Table 1, the JSON type is string. 684

Table 1 – Additional OCF Types 685

Pattern Name Pattern Description

"csv" <none> A comma separated list of values
encoded within a string. The value
type in the csv is described by the
Property where the csv is used. For
example a csv of integers.

NOTE csv is considered
deprecated and an array of strings
should be used instead for new
Resources.

"date" ^([0-9]{4})-(1[0-2]|0[1-9])-(3[0-1]|2[0-
9]|1[0-9]|0[1-9])$

The full-date format pattern
according to IETF RFC 3339

"duration" ^(P(?!$)([0-9]+Y)?([0-9]+M)?([0-
9]+W)?([0-9]+D)?((T(?=[0-
9]+[HMS])([0-9]+H)?([0-9]+M)?([0-
9]+S)?)?))$|^(P[0-9]+W)$|^(P[0-
9]{4})-(1[0-2]|0[1-9])-(3[0-1]|2[0-
9]|1[0-9]|0[1-9])T(2[0-3]|1[0-9]|0[1-
9]):([0-5][0-9]):([0-5][0-9])$|^(P[0-
9]{4})(1[0-2]|0[1-9])(3[0-1]|2[0-9]|1[0-
9]|0[1-9])T(2[0-3]|1[0-9]|0[1-9])([0-
5][0-9])([0-5][0-9])$

A string representing duration
formatted as defined in ISO 8601.
Allowable formats are:
P[n]Y[n]M[n]DT[n]H[n]M[n]S, P[n]W,
P[n]Y[n]-M[n]-DT[0-23]H[0-59]:M[0-
59]:S, and P[n]W, P[n]Y[n]M[n]DT[0-
23]H[0-59]M[0-59]S. P is mandatory,
all other elements are optional, time
elements must follow a T.

"int64" ^0|(-?[1-9][0-9]{0,18})$ A string instance is valid against this
attribute if it contains an integer in
the range [-(2**63), (2**63)-1]

NOTE IETF RFC 7159 clause 6
explains that JSON integers outside
the range [-(2**53)+1, (2**53)-1] are
not interoperable and so JSON
numbers cannot be used for 64-bit
numbers.

"language-tag" ^[A-Za-z]{1,8}(-[A-Za-z0-9]{1,8})*$ An IETF language tag formatted
according to IETF RFC 5646 clause
2.1.

"uint64" ^0|([1-9][0-9]{0,19})$ A string instance is valid against this
attribute if it contains an integer in
the range [0, (2**64)-1]

Also see note for "int64"

"uuid" ^[a-fA-F0-9]{8}-[a-fA-F0-9]{4}-[a-fA-
F0-9]{4}-[a-fA-F0-9]{4}-[a-fA-F0-
9]{12}$

A UUID string representation
formatted according to
IETF RFC 4122 clause 3.

 686

Strings shall be encoded as UTF-8 unless otherwise specified. 687

Copyright Open Connectivity Foundation, Inc. © 2016-2020. All rights Reserved 11

In a JSON schema, "maxLength" for a string indicates the maximum number of characters not 688
octets. However, "maxLength" shall also indicate the maximum number of octets. If no "maxLength" 689
is defined for a string, then the maximum length shall be 64 octets. 690

4.4 Resource notation syntax 691

When it is desired to describe the Property of a Resource Type or the "anchor" Parameter value in 692
an abbreviated notation, it can be described as follows: 693

– A value of the "rt" Property of the Resource Type or "anchor" Parameter value ":" Property name 694

– e.g., "oic.wk.d:di", which is the "di" Property of the Device Resource Type. 695

If Property name is a composite type (a type that is composed of several Properties), it can be 696
described in recursive way. The following expression describes this as a regular expression format: 697

– A value of the "rt" Property of the Resource Type or "anchor" Parameter value (":" Property 698
name)+ 699

– e.g., "oic.r.pstat:dos:s", which is the "s" Property of the "dos" Property of the "pstat" Resource 700
Type (see 13.8 of ISO/IEC 30118-2:2018). 701

If there is a Resource URI (i.e., The Resource instance for a specific Resource Type), it can be 702
used instead of using a value of "rt" Property of Resource Type or the “anchor" Parameter value 703
as follows: 704

– A Resource URI (":" Property name)+ 705

– e.g., "/oic/d:di", which is the "di" Property of the Device Resource Type instance. 706

– e.g. "/oic/sec/pstat:dos:s", which is the "s" Property of the "dos" Property of the "oic.r.pstat" 707
Resource Type instance. 708

In the auto-generated Annex's Property definition tables for Resource Types, the Property names 709
can be noted as belonging to the RETRIEVE schema or to the UPDATE schema by prefixing the 710
Property name with "RETRIEVE" or "UPDATE" followed with the ":" separator. This is to avoid 711
duplicate Property names appearing in the Property definition tables that are auto-generated. The 712
following are examples using this notation with the "locn" Property of the "oic.wk.con" Resource 713
Type: 714

– "RETRIEVE:locn" 715

– "UPDATE:locn" 716

5 Architecture 717

5.1 Overview 718

The architecture enables resource based interactions among IoT artefacts, i.e. physical devices or 719
applications. The architecture leverages existing industry standards and technologies and provides 720
solutions for establishing connections (either wireless or wired) and managing the flow of 721
information among Devices, regardless of their form factors, operating systems or service providers. 722

Specifically, the architecture provides: 723

– A communication and interoperability framework for multiple market segments (Consumer, 724
Enterprise, Industrial, Automotive, Health, etc.), OSs, platforms, modes of communication, 725
transports and use cases. 726

– A common and consistent model for describing the environment and enabling information and 727
semantic interoperability. 728

– Common communication protocols for discovery and connectivity. 729

Copyright Open Connectivity Foundation, Inc. © 2016-2020. All rights Reserved 12

– Common security and identification mechanisms. 730

– Opportunity for innovation and product differentiation. 731

– A scalable solution addressing different Device capabilities, applicable to smart devices as well 732
as the smallest connected things and wearable devices. 733

The architecture is based on the Resource Oriented Architecture design principles and described 734
in the 5.2 through 5.4 respectively. 5.2 presents the guiding principles for OCF operations. 5.3 735
defines the functional block diagram and Framework. 736

5.2 Principle 737

In the architecture, Entities in the physical world (e.g., temperature sensor, an electric light or a 738
home appliance) are represented as Resources. Interactions with an entity are achieved through 739
its Resource representations (see 7.6.3.9) using operations that adhere to Representational State 740
Transfer (REST) architectural style, i.e., RESTful interactions. 741

The architecture defines the overall structure of the Framework as an information system and the 742
interrelationships of the Entities that make up OCF. Entities are exposed as Resources, with their 743
unique identifiers (URIs) and support interfaces that enable RESTful operations on the Resources. 744
Every RESTful operation has an initiator of the operation (the Client) and a responder to the 745
operation (the Server). In the Framework, the notion of the Client and Server is realized through 746
roles. Any Device can act as a Client and initiate a RESTful operation on any Device acting as a 747
Server. Likewise, any Device that exposes Entities as Resources acts as a Server. Conformant to 748
the REST architectural style, each RESTful operation contains all the information necessary to 749
understand the context of the interaction and is driven using a small set of generic operations, i.e., 750
CREATE, RETRIEVE, UPDATE, DELETE and NOTIFY (CRUDN) defined in clause 8, which include 751
representations of Resources. 752

Figure 1 depicts the architecture. 753

OCF Device

Client

Protocol specific
Implementation of
CRUDN Operations

(e.g. CoAP, HTTP, XMPP)

OCF Device

Server

Protocol specific
implementation of

Server

Resource

OCF RESTful
Resource Model

Layer

Specific
Implementation of

Data Protocol/
Messaging

OCF Roles

Entity
(e.g. light bulb,

Heart rate
monitor)

Resource Mapping

OCF
Abstractions

COAP Request
E.g. GET /s/data

{ “bulb”: “on” }

 754

Figure 1 – Architecture - concepts 755

Copyright Open Connectivity Foundation, Inc. © 2016-2020. All rights Reserved 13

The architecture is organized conceptually into three major aspects that provide overall separation 756
of concern: Resource model, RESTful operations and abstractions. 757

– Resource model: The Resource model provides the abstractions and concepts required to 758
logically model, and logically operate on the application and its environment. The Core 759
Resource model is common and agnostic to any specific application domain such as smart 760
home, industrial or automotive. For example, the Resource model defines a Resource which 761
abstracts an entity and the representation of a Resource maps the entity’s state. Other 762
Resource model concepts can be used to model other aspects, for example behaviour. 763

– RESTful operations: The generic CRUDN operations are defined using the RESTful paradigm 764
to model the interactions with a Resource in a protocol and technology agnostic way. The 765
specific communication or messaging protocols are part of the protocol abstraction and 766
mapping of Resources to specific protocols is provided in 11.4. 767

– Abstraction: The abstractions in the Resource model and the RESTful operations are mapped 768
to concrete elements using abstraction primitives. An entity handler is used to map an entity to 769
a Resource and connectivity abstraction primitives are used to map logical RESTful operations 770
to data connectivity protocols or technologies. Entity handlers may also be used to map 771
Resources to Entities that are reached over protocols that are not natively supported by OCF. 772

5.3 Functional block diagram 773

The functional block diagram encompasses all the functionalities required for operation. These 774
functionalities are categorized as L2 connectivity, networking, transport, Framework, and 775
application profiles. The functional blocks are depicted in Figure 2. 776

 777

Figure 2 – Functional block diagram 778

– L2 connectivity: Provides the functionalities required for establishing physical and data link 779
layer connections (e.g., Wi-FiTM or Bluetooth® connection) to the network. 780

– Networking: Provides functionalities required for Devices to exchange data among themselves 781
over the network (e.g., Internet). 782

Security

Application(s)

OCF Data Models

Vertical Domain
Profiles

Smart
Home eHealth Industrial

Framework

ID &
Addressing

Resource
model CRUDN

Discovery Device
management Messaging

 L2 Connectivity Networking Transport

Copyright Open Connectivity Foundation, Inc. © 2016-2020. All rights Reserved 14

– Transport: Provides end-to-end flow transport with specific QoS constraints. Examples of a 783
transport protocol include TCP and UDP or new Transport protocols under development in the 784
IETF, e.g., Delay Tolerant Networking (DTN). 785

– Framework: Provides the core functionalities as defined in this document. The functional block 786
is the source of requests and responses that are the content of the communication between 787
two Devices. 788

– Vertical Domain profile: Provides market segment specific functionalities, e.g., functions for the 789
smart home market segment. 790

When two Devices communicate with each other, each functional block in a Device interacts with 791
its counterpart in the peer Device as shown in Figure 3. 792

Device 1 Device 2

Vertical Domain Vertical Domain

Framework

Transport

Networking

L2 Connectivity

Framework

Transport

Networking

L2 Connectivity

Profiles

 793

Figure 3 – Communication layering model 794

5.4 Framework 795

Framework consists of functions which provide core functionalities for operation. 796

– Identification and addressing. Defines the identifier and addressing capability. The Identification 797
and addressing function is defined in clause 6. 798

– Discovery. Defines the process for discovering available. 799

– Devices (OCF Endpoint Discovery in clause 10) and 800

– Resources (Resource discovery in 11.2). 801

– Resource model. Specifies the capability for representation of entities in terms of Resources 802
and defines mechanisms for manipulating the Resources. The Resource model function is 803
defined in clause 7. 804

– CRUDN. Provides a generic scheme for the interactions between a Client and Server as defined 805
in clause 8. 806

– Messaging. Provides specific message protocols for RESTful operation, i.e. CRUDN. For 807
example, CoAP is a primary messaging protocol. The messaging function is defined in 11.5. 808

– Security. Includes authentication, authorization, and access control mechanisms required for 809
secure access to Entities. The security function is defined in clause 13. 810

Copyright Open Connectivity Foundation, Inc. © 2016-2020. All rights Reserved 15

6 Identification and addressing 811

6.1 Introduction 812

Facilitating proper and efficient interactions between elements in the Framework, requires a means 813
to identify, name and address these elements. 814

The identifier unambiguously identifies an element in a context or domain. The context or domain 815
may be determined by the use or the application. The identifier is expected to be immutable over 816
the lifecycle of that element and is unambiguous within a context or domain. 817

The address is used to define a place, way or means of reaching or accessing the element in order 818
to interact with it. An address may be mutable based on the context. 819

The name is a handle that distinguishes the element from other elements in the Framework. The 820
name may be changed over the lifecycle of that element. 821

There may be methods or resolution schemes that allow determining any of these based on the 822
knowledge of one or more of others (e.g., determine name from address or address from name). 823

Each of these aspects may be defined separately for multiple contexts (e.g., a context could be a 824
layer in a stack). So an address may be a URL for addressing Resource and an IP address for 825
addressing at the connectivity layer. In some situations, both these addresses would be required. 826
For example, to do RETRIEVE (see 8.3) operation on a particular Resource representation, the 827
Client needs to know the address of the target Resource and the address of the Server through 828
which the Resource is exposed. 829

In a context or domain of use, a name or address could be used as identifier or vice versa. For 830
example, a URL could be used as an identifier for a Resource and designated as a URI. 831

The remainder of this clause discusses the identifier, address and naming from the point of view 832
of the Resource model and the interactions to be supported by the Resource model. Examples of 833
interactions are the RESTful interactions, i.e. CRUDN operation (clause 8) on a Resource. Also 834
the mapping of these to transport protocols, e.g., CoAP is described. 835

6.2 Identification 836

6.2.1 Device and Platform identification 837

This document defines three identifiers that are used for identification of the Device. All identifiers 838
are exposed via Resources that are also defined within this document (see clause 11.2). 839

The Permanent Immutable ID ("piid" Property of "/oic/d") is the immutable identity of the Device, 840
the persistent valid value of this property is typically only visible after the Device is on-boarded 841
(when not on-boarded the Device typically exposes a temporary value). This value does not change 842
across the life-cycle of the Device. 843

The Device ID ("di" Property of "/oic/d") is a mutable identity. The value changes each time the 844
Device is on-boarded. It reflects a specific on-boarded instance of the Device. 845

The Platform ID ("pi" Property of "/oic/p") is the immutable identity of the Platform on which the 846
Device is resident. When multiple logical Devices are exposed on a single Platform (for example, 847
on a Bridge) then the "pi" exposed by each Device should be the same. 848

6.2.2 Resource identification and addressing 849

A Resource may be identified using a URI and addressed by the same URI if the URI is a URL. In 850
some cases a Resource may need an identifier that is different from a URI; in this case, the 851
Resource may have a Property whose value is the identifier. When the URI is in the form of a URL, 852
then the URI may be used to address the Resource. 853

Copyright Open Connectivity Foundation, Inc. © 2016-2020. All rights Reserved 16

An OCF URI is based on the general form of a URI as defined in IETF RFC 3986 as follows: 854

<scheme>://<authority>/<path>?<query> 855

Specifically the OCF URI is specified in the following form: 856

ocf://<authority>/<path>?<query> 857

The following is a description of values that each component takes. 858

The scheme for the URI is "ocf". The "ocf" scheme represents the semantics, definitions and use 859
as defined in this document. If a URI has the portion preceding the "//" (double slash) omitted, then 860
the "ocf" scheme shall be assumed. 861

Each transport binding is responsible for specifying how an OCF URI is converted to a transport 862
protocol URI before sending over the network by the requestor. Similarly on the receiver side, each 863
transport binding is responsible for specifying how an OCF URI is converted from a transport 864
protocol URI before handing over to the Resource model layer on the receiver. 865

The authority of an OCF URI shall be the Device ID ("di") value, as defined in [OCF Security], of 866
the Server. 867

The path is a string that unambiguously identifies or references a Resource within the context of 868
the Server. In this version of the document, a path shall not include pct-encoded non-ASCII 869
characters or NUL characters. A path shall be preceded by a "/" (slash). The path may have "/" 870
(slash) separated segments for human readability reasons. In the OCF context, the "/" (slash) 871
separated segments are treated as a single string that directly references the Resources (i.e. a flat 872
structure) and not parsed as a hierarchy. On the Server, the path or some substring in the path 873
may be shortened by using hashing or some other scheme provided the resulting reference is 874
unique within the context of the host. 875

Once a path is generated, a Client accessing the Resource or recipient of the URI should use that 876
path as an opaque string and should not parse to infer a structure, organization or semantic. 877

A query string shall contain a list of "<name>=<value>" segments (aka name-value pair) each 878
separated by a "&" (ampersand). The query string will be mapped to the appropriate syntax of the 879
protocol used for messaging. (e.g., CoAP). 880

A URI may be either fully qualified or relative generation of URI. 881

A URI may be defined by the Client which is the creator of that Resource. Such a URI may be 882
relative or absolute (fully qualified). A relative URI shall be relative to the Device on which it is 883
hosted. Alternatively, a URI may be generated by the Server of that Resource automatically based 884
on a pre-defined convention or organization of the Resources, based on an OCF Interface, based 885
on some rules or with respect to different roots or bases. 886

The absolute path reference of a URI is to be treated as an opaque string and a Client should not 887
infer any explicit or implied structure in the URI – the URI is simply an address. It is also 888
recommended that Devices hosting a Resource treat the URI of each Resource as an opaque string 889
that addresses only that Resource. (e.g., URI's "/a" and "/a/b" are considered as distinct addresses 890
and Resource b cannot be construed as a child of Resource a). 891

6.3 Namespace: 892

The relative URI prefix "/oic/" is reserved as a namespace for URIs defined in OCF specifications 893
and shall not be used for URIs that are not defined in OCF specifications. The prefix "oic." used for 894
OCF Interfaces and Resource Types is reserved for OCF specification usage. 895

Copyright Open Connectivity Foundation, Inc. © 2016-2020. All rights Reserved 17

6.4 Network addressing 896

The following are the addresses used in this document: 897

IP address 898

– An IP address is used when the Device is using an IP configured interface. 899

– When a Device only has the identity information of its peer, a resolution mechanism is needed 900
to map the identifier to the corresponding address. 901

7 Resource model 902

7.1 Introduction 903

The Resource model defines concepts and mechanisms that provide consistency and core 904
interoperability between Devices in the OCF ecosystems. The Resource model concepts and 905
mechanisms are then mapped to the transport protocols to enable communication between the 906
Devices – each transport provides the communication protocol interoperability. The Resource 907
model, therefore, allows for interoperability to be defined independent of the transports. 908

In addition, the concepts in the Resource model support modelling of the primary artefacts and 909
their relationships to one and another and capture the semantic information required for 910
interoperability in a context. In this way, OCF goes beyond simple protocol interoperability to 911
capture the rich semantics required for true interoperability in Wearable and Internet of Things 912
ecosystems. 913

The primary concepts in the Resource model are: entity, Resources, Uniform Resource Identifiers 914
(URI), Resource Types, Properties, Representations, OCF Interfaces, Collections and Links. In 915
addition, the general mechanisms are CREATE, RETRIEVE, UPDATE, DELETE and NOTIFY. 916
These concepts and mechanisms may be composed in various ways to define the rich semantics 917
and interoperability needed for a diverse set of use cases that the Framework is applied to. 918

In the OCF Resource model Framework, an entity needs to be visible, interacted with or 919
manipulated, it is represented by an abstraction called a Resource. A Resource encapsulates and 920
represents the state of an entity. A Resource is identified, addressed and named using URIs. 921

Properties are "key=value" pairs and represent state of the Resource. A snapshot of these 922
Properties is the Representation of the Resource. A specific view of the Representation and the 923
mechanisms applicable in that view are specified as OCF Interfaces. Interactions with a Resource 924
are done as Requests and Responses containing Representations. 925

A Resource instance is derived from a Resource Type. The uni-directional relationship between 926
one Resource and another Resource is defined as a Link. A Resource that has Properties and 927
Links is a Collection. 928

A set of Properties can be used to define a state of a Resource. This state may be retrieved or 929
updated using appropriate Representations respectively in the response from and request to that 930
Resource. 931

A Resource (and Resource Type) could represent and be used to expose a capability. Interactions 932
with that Resource can be used to exercise or use that capability. Such capabilities can be used to 933
define processes like discovery, management, advertisement etc. For example: discovery of 934
Resources on a Device can be defined as the retrieval of a representation of a specific Resource 935
where a Property or Properties have values that describe or reference the Resources on the Device. 936

The information for Request or Response with the Representation may be communicated on the 937
wire by serializing using a transfer protocol or encapsulated in the payload of the transport protocol 938

Copyright Open Connectivity Foundation, Inc. © 2016-2020. All rights Reserved 18

– the specific method is determined by the normative mapping of the Request or Response to the 939
transport protocol. See 11.4 for transport protocols supported. 940

The OpenAPI 2.0 definitions (Annex A) used in this document are normative. This includes that all 941
defined JSON payloads shall comply with the indicated OpeAPI 2.0 definitions. Annex A contains 942
all of the OpenAPI 2.0 definitions for Resource Types defined in this document. 943

7.2 Resource 944

A Resource shall be defined by one or more Resource Type(s) – see Annex A for Resource Type. 945
A request to CREATE a Resource shall specify one or more Resource Types that define that 946
Resource. 947

A Resource is hosted in a Device. A Resource shall have a URI as defined in clause 6. The URI 948
may be assigned by the Authority at the creation of the Resource or may be pre-defined by the 949
definition of the Resource Type. An example Resource representation is depicted in Figure 4. 950

 951

Figure 4 – Example Resource 952

Core Resources are the Resources defined in this document to enable functional interactions as 953
defined in clause 10 (e.g., Discovery, Device management, etc). Among the Core Resources, 954
"/oic/res", "/oic/p", and "/oic/d" shall be supported on all Devices. Devices may support other Core 955
Resources depending on the functional interactions they support. 956

7.3 Property 957

7.3.1 Introduction 958

A Property describes an aspect that is exposed through a Resource including meta-information 959
related to that Resource. 960

A Property shall have a name i.e. Property Name and a value i.e. Property Value. The Property is 961
expressed as a key-value pair where key is the Property Name and value the Property Value like 962
<Property Name> = <Property Value>. For example if the "temperature" Property has a Property 963
Name "temp" and a Property Value "30F", then the Property is expressed as "temp=30F". The 964
specific format of the Property depends on the encoding scheme. For example, in JSON, Property 965
is represented as "key": value (e.g., "temp": 30). 966

In addition, the Property definition shall have a 967

– Value Type – the Value Type defines the values that a Property Value may take. The Value 968
Type may be a simple data type (e.g. string, Boolean) as defined in 4.3 or may be a complex 969
data type defined with a schema. The Value Type may define 970

– Value Rules define the rules for the set of values that the Property Value may take. Such 971
rules may define the range of values, the min-max, formulas, the set of enumerated values, 972
patterns, conditional values, and even dependencies on values of other Properties. The 973
rules may be used to validate the specific values in a Property Value and flag errors. 974

/my/resource/example

{
"rt": ["oic.r.foobar"],
"if": ["oic.if.a"],
"value": "foo value"
}

Properties

URI

Copyright Open Connectivity Foundation, Inc. © 2016-2020. All rights Reserved 19

– Mandatory – specifies if the Property is mandatory or not for a given Resource Type. 975

– Access modes – specifies whether the Property may be read, written or both. Updates are 976
equivalent to a write. "r" is used for read and "w" is used for write – both may be specified. 977
Write does not automatically imply read. 978

The definition of a Property may include the following additional information – these items are 979
informative: 980

– Property Title - a human-friendly name to designate the Property; usually not sent over the wire. 981

– Description – descriptive text defining the purpose and expected use of this Property. 982

In general, a Property is meaningful only within the Resource to which it is associated. However a 983
base set of Properties that may be supported by all Resources, known as Common Properties, 984
keep their semantics intact across Resources i.e. their "key=value" pair means the same in any 985
Resource. Detailed tables for all Common Properties are defined in 7.3.2. 986

7.3.2 Common Properties 987

7.3.2.1 Introduction 988

The Common Properties defined in this clause may be specified for all Resources. The following 989
Properties are defined as Common Properties: 990

– Resource Type 991

– Resource Interface 992

– Name 993

– Resource Identity. 994

The name of a Common Property shall be unique and shall not be used by other Properties. When 995
defining a new Resource Type, its non-common Properties shall not use the name of existing 996
Common Properties (e.g., "rt", "if", "n", "id"). When defining a new "Common Property", it should 997
be ensured that its name has not been used by any other Properties. The uniqueness of a new 998
Common Property name can be verified by checking all the Properties of all the existing OCF 999
defined Resource Types. However, this may become cumbersome as the number of Resource 1000
Types grow. To prevent such name conflicts in the future, OCF may reserve a certain name space 1001
for Common Property. Potential approaches are (1) a specific prefix (e.g. "oic") may be designated 1002
and the name preceded by the prefix (e.g. "oic.psize") is only for Common Property; (2) the names 1003
consisting of one or two letters are reserved for Common Property and all other Properties shall 1004
have the name with the length larger than the 2 letters; (3) Common Properties may be nested 1005
under specific object to distinguish themselves. 1006

The ability to UPDATE a Common Property (that supports write as an access mode) is restricted 1007
to the "oic.if.rw" (read-write) OCF Interface; thus a Common Property shall be updatable using the 1008
read-write OCF Interface if and only if the Property supports write access as defined by the Property 1009
definition and the associated schema for the read-write OCF Interface. 1010

The following Common Properties for all Resources are specified in 7.3.2.2 through 7.3.2.6 and 1011
summarized as follows: 1012

– Resource Type ("rt") – this Property is used to declare the Resource Type of that Resource. 1013
Since a Resource could be define by more than one Resource Type the Property Value of the 1014
Resource Type Property can be used to declare more than one Resource type (see clause 1015
7.4.4). See 7.3.2.3 for details. 1016

– OCF Interface ("if") – this Property declares the OCF Interfaces supported by the Resource. 1017
The Property Value of the OCF Interface Property can be multi-valued and lists all the OCF 1018
Interfaces supported. See 7.3.2.4 for details. 1019

Copyright Open Connectivity Foundation, Inc. © 2016-2020. All rights Reserved 20

– Name ("n") – the Property declares human-readable name assigned to the Resource. See 1020
7.3.2.5. 1021

– Resource Identity ("id"): its Property Value shall be a unique (across the scope of the host 1022
Server) instance identifier for a specific instance of the Resource. The encoding of this identifier 1023
is Device and implementation dependent. See 7.3.2.6 for details. 1024

7.3.2.2 Property Name and Property Value definitions 1025

The Property Name and Property Value as used in this document: 1026

– Property Name– the key in "key=value" pair. Property Name is case sensitive and its data type 1027
is "string". Property names shall contain only letters A to Z, a to z, digits 0 to 9, hyphen, and 1028
dot, and shall not begin with a digit. 1029

– Property Value – the value in "key=value" pair. Property Value is case sensitive when its data 1030
type is "string". 1031

7.3.2.3 Resource Type 1032

Resource Type Property is specified in 7.4. 1033

7.3.2.4 OCF Interface 1034

OCF Interface Property is specified in 7.6. 1035

7.3.2.5 Name 1036

A human friendly name for the Resource, i.e. a specific resource instance name (e.g., 1037
MyLivingRoomLight), The Name Property is as defined in Table 2 1038

Table 2 – Name Property Definition 1039

Property
title

Property
name

Value
type

Value
rule

Unit Access
mode

Mandatory Description

Name "n" "string" N/A N/A R, W No Human understandable name for
the Resource.

 1040

The Name Property is read-write unless otherwise restricted by the Resource Type (i.e. the 1041
Resource Type does not support UPDATE or does not support UPDATE using read-write). 1042

7.3.2.6 Resource Identity 1043

The Resource Identity Property shall be a unique (across the scope of the host Server) instance 1044
identifier for a specific instance of the Resource. The encoding of this identifier is Device and 1045
implementation dependent as long as the uniqueness constraint is met, noting that an 1046
implementation may use a uuid as defined in 4.3. The Resource Identity Property is as defined in 1047
Table 3. 1048

Table 3 – Resource Identity Property Definition 1049

Property
title

Property
name

Value
type

Value rule Unit Access
mode

Mandatory Description

Resource
Identity

"id" "string"
or uuid

Implementation
Dependent

N/A R No Unique identifier of the
Resource (over all
Resources in the
Device)

 1050

Copyright Open Connectivity Foundation, Inc. © 2016-2020. All rights Reserved 21

7.4 Resource Type 1051

7.4.1 Introduction 1052

Resource Type is a class or category of Resources and a Resource is an instance of one or more 1053
Resource Types. 1054

The Resource Types of a Resource is declared using the Resource Type Common Property as 1055
described in 7.3.2.3 or in a Link using the Resource Type Parameter. 1056

A Resource Type may either be pre-defined by OCF or in custom definitions by manufacturers, end 1057
users, or developers of Devices (vendor-defined Resource Types). Resource Types and their 1058
definition details may be communicated out of band (i.e. in documentation) or be defined explicitly 1059
using a meta-language which may be downloaded and used by APIs or applications. OCF has 1060
adopted OpenAPI 2.0 as the specification method for OCF’s RESTful interfaces and Resource 1061
definitions. 1062

Every Resource Type shall be identified with a Resource Type ID which shall be represented using 1063
the requirements and ABNF governing the Resource Type attribute in IETF RFC 6690 (clause 2 for 1064
ABNF and clause 3.1 for requirements) with the caveat that segments are separated by a "." 1065
(period). The entire string represents the Resource Type ID. When defining the ID each segment 1066
may represent any semantics that are appropriate to the Resource Type. For example, each 1067
segment could represent a namespace. Once the ID has been defined, the ID should be used 1068
opaquely and implementations should not infer any information from the individual segments. The 1069
string "oic", when used as the first segment in the definition of the Resource Type ID, is reserved 1070
for OCF-defined Resource Types. All OCF defined Resource Types are to be registered with the 1071
IANA Core Parameters registry as described also in IETF RFC 6690. 1072

7.4.2 Resource Type Property 1073

A Resource when instantiated or created shall have one or more Resource Types that are the 1074
template for that Resource. The Resource Types that the Resource conforms to shall be declared 1075
using the "rt" Common Property for the Resource as defined in Table 4. The Property Value for the 1076
"rt" Common Property shall be the list of Resource Type IDs for the Resource Types used as 1077
templates (i.e., "rt"=<list of Resource Type IDs>). 1078

Table 4 – Resource Type Common Property definition 1079

Property
title

Property
name

Value
type

Value rule Unit Access
mode

Mandatory Description

Resource
Type

"rt" "array" Array of strings,
conveying
Resource Type
IDs

N/A R Yes The Property name rt
is as described in
IETF RFC 6690

 1080

Resource Types may be explicitly discovered or implicitly shared between the user (i.e. Client) and 1081
the host (i.e. Server) of the Resource. 1082

7.4.3 Resource Type definition 1083

Resource Type is specified as follows: 1084

– Pre-defined URI (optional) – a pre-defined URI may be specified for a specific Resource Type 1085
in an OCF specification. When a Resource Type has a pre-defined URI, all instances of that 1086
Resource Type shall use only the pre-defined URI. An instance of a different Resource Type 1087
shall not use the pre-defined URI. 1088

– Resource Type Title (optional) – a human friendly name to designate the Resource Type. 1089

Copyright Open Connectivity Foundation, Inc. © 2016-2020. All rights Reserved 22

– Resource Type ID – the value of "rt" Property which identifies the Resource Type, (e.g., 1090
"oic.wk.p"). 1091

– Resource Interfaces – list of the OCF Interfaces that may be supported by the Resource Type. 1092

– Properties – definition of all the Properties that apply to the Resource Type. The Resource Type 1093
definition shall define whether a property is mandatory, conditional mandatory, or optional. 1094

– Related Resource Types (optional) – the definition of other Resource Types that may be 1095
referenced as part of the Resource Type, applicable to Collections. 1096

– Mime Types (optional) – mime types supported by the Resource including serializations (e.g., 1097
application/cbor, application/json, application/xml). 1098

Table 5 and Table 6 provides an example description of an illustrative foobar Resource Type and 1099
its associated Properties. 1100

Table 5 – Example foobar Resource Type 1101

Pre-defined
URI

Resource
Type Title

Resource
Type ID ("rt"

value)

OCF
Interfaces

Description Related
Functional
Interaction

M/CR/O

none "foobar" "oic.r.foobar" "oic.if.a" Example
"foobar"
Resource

Actuation O

 1102

Table 6 – Example foobar Properties 1103

Property
title

Property
name

Value
type

Value rule Unit Access
mode

Mandatory Description

Resource
Type

"rt" "array" N/A N/A R Yes Resource Type

OCF
Interface

"if" "array" N/A N/A R Yes OCF Interface

Foo value value "string" N/A N/A R Yes Foo value

 1104

For example, an instance of the foobar Resource Type. 1105

{ 1106
"rt": ["oic.r.foobar"], 1107
"if": ["oic.if.a"], 1108
"value": "foo value" 1109
} 1110

 1111

For example, a schema representation for the foobar Resource Type. 1112

{ 1113
 "$schema": "http://json-schema.org/draft-04/schema", 1114
 "type": "object", 1115
 "properties": { 1116
 "rt": { 1117
 "type": "array", 1118
 "items" : { 1119
 "type" : "string", 1120
 "maxLength": 64 1121
 }, 1122

Copyright Open Connectivity Foundation, Inc. © 2016-2020. All rights Reserved 23

 "minItems" : 1, 1123
 "readOnly": true, 1124
 "description": "Resource Type of the Resource" 1125
 }, 1126
 "if": { 1127
 "type": "array", 1128
 "items": { 1129
 "type" : "string", 1130
 "enum" : ["oic.if.baseline", "oic.if.ll", "oic.if.b", "oic.if.lb", "oic.if.rw", 1131
"oic.if.r", "oic.if.a", "oic.if.s"] 1132
 }, 1133
 "value": {"type": "string"} 1134
 }, 1135
 "required": ["rt", "if", "value"] 1136
} 1137

7.4.4 Multi-value "rt" Resource 1138

Multi-value "rt" Resource means a Resource with multiple Resource Types where none of the 1139
included Resource Types denote a well-known Resource Type (i.e. "oic.wk.<thing>"). Such a 1140
Resource is associated with multiple Resource Types and so has an "rt" Property Value of multiple 1141
Resource Type IDs (e.g. "rt": ["oic.r.switch.binary", "oic.r.light.brightness"]). The order of the 1142
Resource Type IDs in the "rt" Property Value is meaningless. For example, "rt": 1143
["oic.r.switch.binary", "oic.r.light.brightness"] and "rt": ["oic.r.light.brightness", "oic.r.switch.binary"] 1144
have the same meaning. 1145

Resource Types for multi-value "rt" Resources shall satisfy the following conditions: 1146

– Property Name – Property Names for each Resource Type shall be unique (within the scope of 1147
the multi-value "rt" Resource) with the exception of Common Properties, otherwise there will be 1148
conflicting Property semantics. If two Resource Types have a Property with the same Property 1149
"Name, a multi-value "rt" Resource shall not be composed of these Resource Types. 1150

A multi-value "rt" Resource satisfies all the requirements for each Resource Type and conforms to 1151
the OpenAPI 2.0 definitions for each component Resource Type. Thus the mandatory Properties 1152
of a multi-value "rt" Resource shall be the union of all the mandatory Properties of each Resource 1153
Type. For example, mandatory Properties of a Resource with "rt": ["oic.r.switch.binary", 1154
"oic.r.light.brightness"] are "value" and "brightness", where the former is mandatory for 1155
"oic.r.switch.binary" and the latter for "oic.r.light.brightness". 1156

The multi-value "rt" Resource Interface set shall be the union of the sets of OCF Interfaces from 1157
the component Resource Types. The Resource Representation in response to a CRUDN action on 1158
an OCF Interface shall be the union of the schemas that are defined for that OCF Interface. The 1159
Default OCF Interface for a multi-value "rt" Resource shall be the baseline OCF Interface 1160
("oic.if.baseline") as that is the only guaranteed common OCF Interface between the Resource 1161
Types. 1162

For clarity if each Resource Type supports the same set of OCF Interfaces, then the resultant multi-1163
value "rt" Resource has that same set of OCF Interfaces with a Default OCF Interface of baseline 1164
("oic.if.baseline"). 1165

See 7.9.3 for the handling of query parameters as applied to a multi-value "rt" Resource. 1166

7.5 Device Type 1167

A Device Type is a class of Device. Each Device Type defined will include a list of minimum 1168
Resource Types that a Device shall implement for that Device Type. A Device may expose 1169
additional standard and vendor defined Resource Types beyond the minimum list. The Device Type 1170
is used in Resource discovery as specified in 11.2.3. 1171

Copyright Open Connectivity Foundation, Inc. © 2016-2020. All rights Reserved 24

Like a Resource Type, a Device Type can be used in the Resource Type Common Property or in a 1172
Link using the Resource Type Parameter. 1173

A Device Type may either be pre-defined by an ecosystem that builds on this document, or in 1174
custom definitions by manufacturers, end users, or developers of Devices (vendor-defined Device 1175
Types). Device Types and their definition details may be communicated out of band (like in 1176
documentation). 1177

Every Device Type shall be identified with a Resource Type ID using the same syntax constraints 1178
as a Resource Type. 1179

7.6 OCF Interface 1180

7.6.1 Introduction 1181

An OCF Interface provides first a view into the Resource and then defines the requests and 1182
responses permissible on that view of the Resource. So this view provided by an OCF Interface 1183
defines the context for requests and responses on a Resource. Therefore, the same request to a 1184
Resource when targeted to different OCF Interfaces may result in different responses. 1185

An OCF Interface may be defined by either this document (a Core OCF Interface), manufacturers, 1186
end users or developers of Devices (a vendor-defined OCF Interface). 1187

The OCF Interface Property lists all the OCF Interfaces the Resource support. All Resources shall 1188
have at least one OCF Interface. The Default OCF Interface shall be defined by the Resource Type 1189
definition. The Default OCF Interface associated with all OCF-defined Resource Types shall be the 1190
supported OCF Interface listed first within the applicable enumeration in the definition of the 1191
Resource Type (see Annex A for the OCF-defined Resource Types defined in this document). The 1192
applicable enumeration is in the "parameters" enumeration referenced from the first "get" method 1193
in the first "path" in the OpenAPI 2.0 file ("post" method if no "get" exists) for the Resource Type. 1194
All Default OCF Interfaces specified in an OCF specification shall be mandatory. 1195

In addition to any defined OCF Interface in this document, all Resources shall support the baseline 1196
OCF Interface ("oic.if.baseline") as defined in 7.6.3.2. 1197

See 7.9.4 for the use of queries to enable selection of a specific OCF Interface in a request. 1198

An OCF Interface may accept more than one media type. An OCF Interface may respond with more 1199
than one media type. The accepted media types may be different from the response media types. 1200
The media types are specified with the appropriate header parameters in the transfer protocol. 1201
(NOTE: This feature has to be used judiciously and is allowed to optimize representations on the 1202
wire) Each OCF Interface shall have at least one media type. 1203

 1204

7.6.2 OCF Interface Property 1205

The OCF Interfaces supported by a Resource shall be declared using the OCF Interface Common 1206
Property (Table 7), e.g., ""if": ["oic.if.ll", "oic.if.baseline"]". The Property Value of an OCF Interface 1207
Property shall be a lower case string with segments separated by a "." (dot). The string "oic", when 1208
used as the first segment in the OCF Interface Property Value, is reserved for OCF-defined OCF 1209
Interfaces. The OCF Interface Property Value may also be a reference to an authority similar to 1210
IANA that may be used to find the definition of an OCF Interface. A Resource Type shall support 1211
one or more of the OCF Interfaces defined in 7.6.3. 1212

Copyright Open Connectivity Foundation, Inc. © 2016-2020. All rights Reserved 25

Table 7 – Resource Interface Property definition 1213

Property
title

Property
name

Value
type

Value rule Unit Access
mode

Mandatory Description

OCF
Interface

"if" "array" Array of strings,
conveying OCF
Interfaces

N/A R Yes Property to declare the
OCF Interfaces
supported by a
Resource.

 1214

7.6.3 OCF Interface methods 1215

7.6.3.1 Overview 1216

OCF Interface methods shall not violate the defined OpenAPI 2.0 definitions for the Resources as 1217
defined in Annex A. 1218

The defined OCF Interfaces are listed in Table 8: 1219

Table 8 – OCF standard OCF Interfaces 1220

OCF
Interface

Name Applicable Operations Description

baseline "oic.if.baseline" RETRIEVE, NOTIFY,
UPDATE1

The baseline OCF Interface defines a view into all
Properties of a Resource including the Common
Properties. This OCF Interface is used to operate on the
full Representation of a Resource.

links list "oic.if.ll" RETRIEVE,
NOTIFY

The links list OCF Interface provides a view into Links in
a Collection (Resource).
Since Links represent relationships to other Resources,
the links list OCF Interfaces may be used to discover
Resources with respect to a context. The discovery is
done by retrieving Links to these Resources. For
example: the Core Resource "/oic/res" uses this OCF
Interface to allow discovery of Resource hosted on a
Device.

batch "oic.if.b" RETRIEVE, NOTIFY,
UPDATE

The batch OCF Interface is used to interact with a
Collection of Resources at the same time. This also
removes the need for the Client to first discover the
Resources it is manipulating – the Server forwards the
requests and aggregates the responses

read-only "oic.if.r" RETRIEVE NOTIFY The read-only OCF Interface exposes the Properties of a
Resource that may be read. This OCF Interface does not
provide methods to update Properties, so can only be
used to read Property Values.

read-
write

"oic.if.rw" RETRIEVE, NOTIFY,
UPDATE

The read-write OCF Interface exposes only those
Properties that may be read from a Resource during a
RETRIEVE operation and only those Properties that may
be written to a Resource during and UPDATE operation.

actuator "oic.if.a" RETRIEVE, NOTIFY,
UPDATE

The actuator OCF Interface is used to read or write the
Properties of an actuator Resource.

sensor "oic.if.s" RETRIEVE, NOTIFY The sensor OCF Interface is used to read the Properties
of a sensor Resource.

create "oic.if.create" CREATE The create OCF Interface is used to create new
Resources in a Collection. Both the Resource and the
Link pointing to it are created in a single atomic
operation.

1 The use of UPDATE with the baseline OCF Interface is not recommended, see clause 7.6.3.2.3.

Copyright Open Connectivity Foundation, Inc. © 2016-2020. All rights Reserved 26

 1221

7.6.3.2 Baseline OCF Interface 1222

7.6.3.2.1 Overview 1223

The Representation that is visible using the baseline OCF Interface includes all the Properties of 1224
the Resource including the Common Properties. The baseline OCF Interface shall be defined for 1225
all Resource Types. All Resources shall support the baseline OCF Interface. 1226

7.6.3.2.2 Use of RETRIEVE 1227

The baseline OCF Interface is used when a Client wants to retrieve all Properties of a Resource; 1228
that is the Server shall respond with a Resource representation that includes all of the implemented 1229
Properties of the Resource. When the Server is unable to send back the whole Resource 1230
representation, it shall reply with an error message. The Server shall not return a partial Resource 1231
representation. 1232

An example response to a RETRIEVE request using the baseline OCF Interface: 1233

{ 1234
"rt": ["oic.r.temperature"], 1235
"if": ["oic.if.a","oic.if.baseline"], 1236
"temperature": 20, 1237
"units": "C", 1238
"range": [0,100] 1239
} 1240

7.6.3.2.3 Use of UPDATE 1241

Support for the UPDATE operation using the baseline OCF Interface should not be provided by a 1242
Resource Type. Where a Resource Type needs to support the ability to be UPDATED this should 1243
only be supported using one of the other OCF Interfaces defined in Table 8 that supports the 1244
UPDATE operation. 1245

If a Resource Type is required to support UPDATE using the baseline OCF Interface, then all 1246
Properties of a Resource with the exception of Common Properties may be modified using an 1247
UPDATE operation only if the Resource Type defines support for UPDATE using baseline in the 1248
applicable OpenAPI 2.0 schema for the Resource Type. If the OCF Interfaces exposed by a 1249
Resource in addition to the baseline OCF Interface do not support the UPDATE operation, then 1250
UPDATE using the baseline OCF Interface shall not be supported. 1251

7.6.3.3 Links list OCF Interface 1252

7.6.3.3.1 Overview 1253

The Links list OCF Interface is used to provide a view into a Collection, Atomic Measurement, or 1254
"/oic.res" Resource. This view shall be an array of all Links for those Resources subject to any 1255
applied filtering being applied. The Links list OCF Interface name is "oic.if.ll". 1256

7.6.3.3.2 Use with RETRIEVE 1257

The RETRIEVE operation is supported with the Links list OCF Interface. A successful RETRIEVE 1258
operation shall return a status code indicating success (i.e. "Content") with a payload with the 1259
Resource representation as an array of Links. If there are no Links present in a Resource 1260
representation, then an empty array list shall be returned in response to a RETRIEVE operation 1261
request. 1262

An example of a RETRIEVE operation request using the Links list OCF Interface for a Collection is 1263
as illustrated: 1264

RETRIEVE /scenes/scene1?if=oic.if.ll 1265

Copyright Open Connectivity Foundation, Inc. © 2016-2020. All rights Reserved 27

The RETRIEVE operation response will be the array of Links to all Resources in the Collection as 1266
illustrated: 1267

Response: Content 1268
Payload: 1269
[1270
 { 1271
 "href": "/the/light/1", 1272
 "rt": ["oic.r.switch.binary"], 1273
 "if": ["oic.if.a", "oic.if.baseline"], 1274
 "eps":[{"ep": "coaps://[2001:db8:a::b1d4]:55555"}] 1275
 }, 1276
 { 1277
 "href": "/the/light/2", 1278
 "rt": ["oic.r.switch.binary"], 1279
 "if": ["oic.if.a", "oic.if.baseline"], 1280
 "eps": [{"ep": "coaps://[2001:db8:a::b1d4]:55555"}] 1281
 }, 1282
 { 1283
 "href": "/my/fan/1", 1284
 "rt": ["oic.r.switch.binary"], 1285
 "if": ["oic.if.a", "oic.if.baseline"], 1286
 "eps":[{"ep": "coaps://[2001:db8:a::b1d4]:55555"}] 1287
 }, 1288
 { 1289
 "href": "/his/fan/2", 1290
 "rt": ["oic.r.switch.binary"], 1291
 "if": ["oic.if.a", "oic.if.baseline"], 1292
 "eps":[{"ep": "coaps://[2001:db8:a::b1d4]:55555"}] 1293
 } 1294
] 1295
 1296

7.6.3.3.3 Use with NOTIFY 1297

The NOTIFY operation is supported with the Links list OCF Interface. A successful NOTIFY 1298
operation shall return a status code indicating success (i.e. "Content") with a payload with the 1299
Resource representation as an array of Links. If there are no Links present in a Resource 1300
representation, then an empty array list shall be returned in response to a NOTIFY operation 1301
request. Future events that change the Resource representation (e.g. UPDATE operation) shall 1302
return a status code indicating success (i.e. "Content") with a payload with the newly updated 1303
Resource representation as an array of Links. 1304

An example of a NOTIFY operation request using the Links list OCF Interface for a Collection is as 1305
illustrated: 1306

NOTIFY /scenes/scene1?if=oic.if.ll 1307

The NOTIFY operation response will be the array of Links to all Resources in the Collection as 1308
illustrated: 1309

Response: Content 1310
Payload: 1311
[1312
 { 1313
 "href": "/the/light/1", 1314
 "rt": ["oic.r.switch.binary"], 1315
 "if": ["oic.if.a", "oic.if.baseline"], 1316
 "eps":[{"ep": "coaps://[2001:db8:a::b1d4]:55555"}] 1317
 }, 1318
 { 1319
 "href": "/the/light/2", 1320
 "rt": ["oic.r.switch.binary"], 1321

Copyright Open Connectivity Foundation, Inc. © 2016-2020. All rights Reserved 28

 "if": ["oic.if.a", "oic.if.baseline"], 1322
 "eps": [{"ep": "coaps://[2001:db8:a::b1d4]:55555"}] 1323
 }, 1324
 { 1325
 "href": "/my/fan/1", 1326
 "rt": ["oic.r.switch.binary"], 1327
 "if": ["oic.if.a", "oic.if.baseline"], 1328
 "eps":[{"ep": "coaps://[2001:db8:a::b1d4]:55555"}] 1329
 }, 1330
 { 1331
 "href": "/his/fan/2", 1332
 "rt": ["oic.r.switch.binary"], 1333
 "if": ["oic.if.a", "oic.if.baseline"], 1334
 "eps":[{"ep": "coaps://[2001:db8:a::b1d4]:55555"}] 1335
 } 1336
] 1337
 1338

Later when the "/his/fan/2" Link is removed (e.g., UPDATE operation with the Link remove OCF 1339
Interface) the response to the NOTIFY operation request is as illustrated: 1340

Response: Content 1341
Payload: 1342
[1343
 { 1344
 "href": "/the/light/1", 1345
 "rt": ["oic.r.switch.binary"], 1346
 "if": ["oic.if.a", "oic.if.baseline"], 1347
 "eps":[{"ep": "coaps://[2001:db8:a::b1d4]:55555"}] 1348
 }, 1349
 { 1350
 "href": "/the/light/2", 1351
 "rt": ["oic.r.switch.binary"], 1352
 "if": ["oic.if.a", "oic.if.baseline"], 1353
 "eps": [{"ep": "coaps://[2001:db8:a::b1d4]:55555"}] 1354
 }, 1355
 { 1356
 "href": "/my/fan/1", 1357
 "rt": ["oic.r.switch.binary"], 1358
 "if": ["oic.if.a", "oic.if.baseline"], 1359
 "eps":[{"ep": "coaps://[2001:db8:a::b1d4]:55555"}] 1360
 } 1361
] 1362

If the result of removing a Link results in no Links being present, then an empty array list shall be 1363
sent in a notification. An example of a response with no Links being present is as illustrated: 1364

Response: Content 1365
Payload: 1366
[1367
] 1368

7.6.3.3.4 Use with CREATE, UPDATE, and DELETE 1369

The CREATE, UPDATE and DELETE operations are not allowed by the Links list OCF Interface. 1370
Attempts to perform CREATE, UPDATE or DELETE operations using the Links list OCF Interface 1371
shall return an appropriate error status code, for example "Method Not Allowed". 1372

7.6.3.4 Batch OCF Interface 1373

7.6.3.4.1 Overview 1374

The batch OCF Interface is used to interact with a Collection of Resources using a single/same 1375
Request. The batch OCF Interface can be used to RETRIEVE or UPDATE the Properties of the 1376
linked Resources with a single request. 1377

Copyright Open Connectivity Foundation, Inc. © 2016-2020. All rights Reserved 29

7.6.3.4.2 General requirements for realizations of the batch OCF Interface 1378

All realiation of the batch OCF Interface adhere to the following: 1379

– The batch OCF Interface name is "oic.if.b" 1380

– A Collection Resource has linked Resources that are represented as URIs. In the "href" 1381
Property of the batch payload the URI shall be fully qualified for remote Resources and a 1382
relative reference for local Resources. 1383

– The original request is modified to create new requests targeting each of the linked Resources 1384
in the Collection by substituting the URI in the original request with the URI of the linked 1385
Resource. The payload in the original request is replicated in the payload of the new requests. 1386

– The requests shall be forwarded assuming use of the Default OCF Interface of the linked 1387
Resources. 1388

– Requests shall only be forwarded to linked Resources that are identified by relation types "item" 1389
or "hosts" ("hosts" is the default relation type value should the "rel" Link Parameter not be 1390
present). Requests shall not be forwarded to linked Resources that do not contain the "item" or 1391
"hosts" relation type values. 1392

– Properties of the Collection Resource itself may be included in payloads using "oic.if.b" OCF 1393
Interface by exposing a single Link with the link relation "self" along with "item" within the 1394
Collection, and ensuring that Link resolution cannot become an infinite loop due to recursive 1395
references. For example, if the Default OCF Interface of the Collection is "oic.if.b", then the 1396
Server might recursively include its batch representation within its batch representation, in an 1397
endless loop. See 7.6.3.4.5 for an example of use of a Link containing "rel": ["self","item"] to 1398
include Properties of the Collection Resource, along with linked Resources, in "oic.if.b" 1399
payloads. 1400

– If the Default OCF Interface of a Collection Resource is exposed using the Link relation "self", 1401
and the Default OCF Interface contains Properties that expose any Links, those Properties shall 1402
not be included in a batch representation which includes the "self" Link. 1403

– Any request forwarded to a linked Resource that is a Collection (including a "self" Link reference) 1404
shall have the Default OCF Interface of the linked Collection Resource applied. 1405

– All the responses from the linked Resources shall be aggregated into a single Response to the 1406
Client. The Server may timeout the response to a time window, the Server may choose any 1407
appropriate window based on conditions. 1408

– If a linked Resource cannot process the request, an empty response, i.e. a JSON object with 1409
no content ("{}") as the representation for the "rep" Property, or error response should the linked 1410
Resource Type provide an error schema or diagnostic payload, shall be returned by the linked 1411
Resource. These empty or error responses for all linked Resources that exhibit an error shall 1412
be included in the aggregated response to the original Client request. See the example in 1413
7.6.3.4.5. 1414

– If any of the linked Resources returns an error response, the aggregated response sent to the 1415
Client shall also indicate an error (e.g. 4.xx in CoAP). If all of the linked Resources return 1416
successful responses, the aggregated response shall include the success response code. 1417

– The aggregated response shall be an array of objects representing the responses from each 1418
linked Resource. Each object in the response shall include at least two items: (1) the URI of 1419
the linked Resource (fully qualified for remote Resources, or a relative reference for local 1420
Resources) as "href": <URI> and (2) the individual response object or array of objects if the 1421
linked Resource is itself a Collection using "rep" as the key, e.g. "rep": { <representation of 1422
individual response> }. 1423

– The Client may choose to restrict the linked Resources to which the request is forwarded by 1424
including additional query parameters in the request. The Server should process any additional 1425

Copyright Open Connectivity Foundation, Inc. © 2016-2020. All rights Reserved 30

query parameters in a request that includes "oic.if.b" as selectors for linked Resources that are 1426
to be processed by the request. 1427

7.6.3.4.3 Observability of the batch OCF Interface 1428

When a Collection supports the ability to be observed using the batch OCF Interface the following 1429
apply: 1430

– If the Collection Resource is marked as Observable, linked Resources referenced in the 1431
Collection may be Observed using the batch OCF Interface. If the Collection Resource is not 1432
marked as Observable then the Collection cannot be Observed and Observe requests to the 1433
Collection shall be handled as defined for the case where request validation fails in clause 1434
11.3.2.4. The Observe mechanism shall work as defined in 11.3.2 with the Observe request 1435
forwarded to each of the linked Resources. All responses to the request shall be aggregated 1436
into a single response to the Client using the same representations and status codes as for 1437
RETRIEVE operations using the batch OCF Interface. 1438

– Should any one of the Observable linked Resources fail to honour the Observe request the 1439
response to the batch Observe request shall also indicate that the entire request was not 1440
honoured using the mechanism described in 11.3.2.4. 1441

– If any of the Observable Resources in a request to a Collection using the batch OCF Interface 1442
replies with an error or Observe Cancel, the Observations of all other linked Resources shall 1443
be cancelled and the error or Observe Cancel status shall be returned to the Observing Client. 1444

NOTE Behavior may be different for Links that do network requests vs. local Resources. 1445

– All notifications to the Client that initiated an Observe request using the batch OCF Interface 1446
shall use the batch representation for the Collection. This is the aggregation of any individual 1447
Observe notifications received by the Device hosting the Collection from the individual Observe 1448
requests that were forwarded to the linked Resources. 1449

– Linked Resources which are not marked Observable in the Links of a Collection shall not trigger 1450
Notifications, but may be included in the response to, and subsequent Notifications resulting 1451
from, an Observe request to the batch OCF Interface of a Collection. 1452

– Each notification shall contain the most current values for all of the Linked Resources that would 1453
be included if the original Observe request were processed again. The Server hosting the 1454
Collection may choose to RETRIEVE all of the linked Resources each time, or may choose to 1455
employ caching to avoid retrieving linked Resources on each Notification. 1456

– If a Linked Resource is Observable and has responded with a successful Observe response, 1457
the most recently reported value of that Resource is considered to be the most current value 1458
and may be reported in all subsequent Notifications. 1459

– Links in the Collection should be Observed by using the "oic.if.ll" OCF Interface. A notification 1460
shall be sent any time the contents of the "oic.if.ll" OCF Interface representation are changed; 1461
that is, if a Link is added, if a Link is removed, or if a Link is updated. Notifications on the 1462
"oic.if.ll" OCF Interface shall contain all of the Links in the "oic.if.ll" OCF Interface representation. 1463

– Other Properties of the Collection Resource, if present, may be Observed by using the OCF 1464
Interfaces defined in the definition for the Resource Type, including using the "oic.if.baseline" 1465
OCF Interface. 1466

7.6.3.4.4 UPDATE using the batch OCF Interface 1467

When a Collection supports the ability for the linked Resources to be the subject of the UPDATE 1468
operation using the batch OCF Interface the following apply: 1469

– A Client shall perform UPDATE operations using the batch OCF Interface by creating a payload 1470
that is similar to a RETRIEVE response payload from a batch OCF Interface request. The Server 1471
shall send a separate UPDATE request to each of the linked Resources according to each "href" 1472
Property and the corresponding value of the "rep" Property. 1473

Copyright Open Connectivity Foundation, Inc. © 2016-2020. All rights Reserved 31

– Items shall always contain a link-specific "href". 1474

– An UPDATE received by a Server with an empty "href" shall be rejected with a response 1475
indicating an appropriate error (e.g. bad request). 1476

– Each linked Resource shall follow the requirements for an UPDATE request may not be 1477
supported by the linked Resource. In such cases, writable Properties in the UPDATE operation 1478
as defined in clause 8.4. 1479

– The UPDATE response shall contain the updated values using the same payload schema as 1480
RETRIEVE operations if provided by the linked Resource, along with the appropriate status 1481
code. The aggregated response payload shall reflect the known state of the updated Properties 1482
after the batch update was completed. If no payload is provided by the updated Resource, then 1483
an empty response (i.e. "rep": {}) shall be provided for that Resource. 1484

– A Collection shall not support the use of the UPDATE operation to add, modify, or remove Links 1485
in an existing Collection using the "oic.if.baseline", "oic.if.rw" or "oic.if.a" OCF Interfaces. 1486

– A Collection shall not support the use of the UPDATE operation using the batch OCF Interface 1487
when the Collection contains Links that resolve to Resources that are not hosted on the Device 1488
that also hosts the Collection. If such a Collection receives an UPDATE operation, the operation 1489
shall be rejected with a response indicating an appropriate error (e.g. method not allowed). If 1490
the ability to UPDATE linked remote Resources is desired, the use of the optional scene feature 1491
(see clause 11.6 in [1]) to effect the UPDATE could be utilizied. 1492

7.6.3.4.5 Examples: Batch OCF Interface 1493

Note that the examples provided in Table 9 are illustrative and do not include all mandatory schema 1494
elements in all cases. It is assumed that the Default OCF Interface for the Resource Type 1495
"x.org.example.rt.room" is specified in its Resource Type definition file as "oic.if.rw", which exposes 1496
the Properties "x.org.example.colour" and "x.org.example.size". 1497

Copyright Open Connectivity Foundation, Inc. © 2016-2020. All rights Reserved 32

Table 9 – Batch OCF Interface Example 1498

Copyright Open Connectivity Foundation, Inc. © 2016-2020. All rights Reserved 33

Resources /a/room/1
{
 "rt": "x.org.example.rt.room"],
 "if": ["oic.if.rw","oic.if.baseline","oic.if.b","oic.if.ll"],
 "x.org.example.colour": "blue",
 "x.org.example.dimension": "15bx15wx10h",
 "links": [
 {"href": "/a/room/1", "rel": ["self", "item"], "rt":
["x.org.example.rt.room"], "if":
["oic.if.rw","oic.if.baseline","oic.if.b","oic.if.ll"],"p": {"bm": 2} },
 {"href": "/the/light/1", "rel": ["item"], "rt": ["oic.r.switch.binary"],
"if": ["oic.if.a","oic.if.baseline"], "ins": "11111", "p": {"bm": 2} },
 {"href": "/the/light/2", "rel": ["item"], "rt": ["oic.r.switch.binary"],
"if": ["oic.if.a" ,"oic.if.baseline"], "ins": "22222", "p": {"bm": 2} },
 {"href": "/my/fan/1", "rel": ["item"], "rt": ["oic.r.switch.binary"],
"if": ["oic.if.a", "oic.if.baseline"], "ins": "33333", "p": {"bm": 2} },
 {"href": "/his/fan/2", "rel": ["item"], "rt": ["oic.r.switch.binary"],
"if": ["oic.if.a", "oic.if.baseline"], "ins": "44444", "p": {"bm": 2} },
 {"href": "/the/switches/1", "rel": ["item"], "rt": ["oic.wk.col"],
"if":["oic.if.ll", "oic.if.b", "oic.if.baseline"], "ins": "55555", "p": {"bm":
2} }
]
}

/the/light/1
{
 "rt": ["oic.r.switch.binary"],
 "if": ["oic.if.a", "oic.if.baseline"],
 "value": false
}

/the/light/2
{
 "rt": ["oic.r.switch.binary"],
 "if": ["oic.if.a", "oic.if.baseline"],
 "value": true
}

/my/fan/1
{
 "rt": ["oic.r.switch.binary"],
 "if": ["oic.if.a", "oic.if.baseline"],
 "value": true
}

/his/fan/2
{
 "rt": ["oic.r.switch.binary"],
 "if": ["oic.if.a", "oic.if.baseline"],
 "value": false
}
/the/switches/1
{
 "rt": ["oic.wk.col"],
 "if":["oic.if.ll", "oic.if.b", "oic.if.baseline"],
"links": [
 {
 "href": "/switch-1a",
 "rt": ["oic.r.switch.binary"],
 "if": ["oic.if.a","oic.if.baseline"],
 "p": {"bm": 2}
 }

Copyright Open Connectivity Foundation, Inc. © 2016-2020. All rights Reserved 34

 {
 "href": "/switch-1b",
 "rt": ["oic.r.switch.binary"],
 "if": ["oic.if.a","oic.if.baseline"],
 "p": {"bm": 2 }
 }
]
}

Copyright Open Connectivity Foundation, Inc. © 2016-2020. All rights Reserved 35

Use of batch,
successful
response

Request: GET /a/room/1?if=oic.if.b
Becomes the following individual request messages issued by the Device in the Client role

GET /a/room/1 (NOTE: uses the Default OCF Interface as specified for the
Collection Resource, in this example oic.if.rw)
GET /the/light/1 (NOTE: Uses the Default OCF Interface as specified for this
Resource)
GET /the/light/2 (NOTE: Uses the Default OCF Interface as specified for this
Resource)
GET /my/fan/1 (NOTE: Uses the Default OCF Interface as specified for this
Resource)
GET /his/fan/2 (NOTE: Uses the Default OCF Interface as specified for this
Resource)
GET /the/switches/1 (NOTE: Uses the Default OCF Interface for the Collection
that is within the Collection)
Response:
[
 {
 "href": "/a/room/1",
 "rep": {"x.org.example.colour": "blue","x.org.example.dimension":
"15bx15wx10h"}
 },
 {
 "href": "/the/light/1",
 "rep": {"value": false}
 },
 {
 "href": "/the/light/2",
 "rep": {"value": true}
 },
 {
 "href": "/my/fan/1",
 "rep": {"value": true}
 },
 {
 "href": "/his/fan/2",
 "rep": {"value": false}
 },
 {
 "href": "/the/switches/1",
 "rep": [
 {
 "href": "/switch-1a",
 "rt": ["oic.r.switch.binary"],
 "if": ["oic.if.a","oic.if.baseline"],
 "p": {"bm": 2},
 "eps":[
 {"ep": "coaps://[2001:db8:a::b1d4]:55555"}
]
 },
 {
 "href": "/switch-1b",
 "rt": ["oic.r.switch.binary"],
 "if": ["oic.if.a","oic.if.baseline"],
 "p": {"bm": 2 },
 "eps":[
 {"ep": "coaps://[2001:db8:a::b1d4]:55555"}
]
 }]
 }
]

Copyright Open Connectivity Foundation, Inc. © 2016-2020. All rights Reserved 36

Use of batch,
error

response

Should any of the RETRIEVE requests in the previous example fail then the response includes an empty
payload for that Resource instance and an error code is sent. The following example assumes errors from
"/my/fan/1" and "/the/switches/1"

Error Response:

[
 {
 "href": "/a/room/1",
 "rep": {"x.org.example.colour": "blue","x.org.example.dimension":
"15bx15wx10h"}
 },
 {
 "href": "/the/light/1",
 "rep": {"value": false}
 },
 {
 "href": "/the/light/2",
 "rep": {"value": true}
 },
 {
 "href": "/my/fan/1",
 "rep": {}
 },
 {
 "href": "/his/fan/2",
 "rep": {"value": false}
 },
 {
 "href": "/the/switches/1",
 "rep": {}
 }
]

Copyright Open Connectivity Foundation, Inc. © 2016-2020. All rights Reserved 37

Use of batch

(UPDATE has
POST

semantics)

UPDATE /a/room/1?if=oic.if.b
[
 {
 "href": "",
 "rep": {
 "value": false
 }
 }
]

Since the "href" value in the UPDATE request is empty, the request is forwarded to all Resources in the
Collection and becomes:

UPDATE /a/room/1 { "value": false }
UPDATE /the/light/1 { "value": false }
UPDATE /the/light/2 { "value": false }
UPDATE /my/fan/1 { "value": false }
UPDATE /his/fan/2 { "value": false }
UPDATE /the/switches/1 { "value": false }

Response:

[
 {
 "href": "/the/light/1",
 "rep": {"value": false}
 },
 {
 "href": "/the/light/2",
 "rep": {"value": false}
 },
 {
 "href": "/my/fan/1",
 "rep": {"value": false}
 },
 {
 "href": "/his/fan/2",
 "rep": {"value": false}
 },
 {
 "href": "/the/switches/1",
 "rep":
 {
 }
 }
]

Since /a/room/1 does not have a "value" Property exposed by its Default OCF Interface, the UPDATE
request will be silently ignored and it will not be included in the UPDATE response.
Since the UPDATE request with the links list OCF Interface is not allowed, an empty payload for the
"/the/switches/1" is included in the UPDATE response and an error code is sent.

Copyright Open Connectivity Foundation, Inc. © 2016-2020. All rights Reserved 38

Use of batch
(UPDATE has

POST
semantics)

UPDATE /a/room/1?if=oic.if.b
[
 {
 "href": "/the/light/1",
 "rep": {
 "value": false
 }
 },
 {
 "href": "/the/light/2",
 "rep": {
 "value": true
 }
 },
 {
 "href": "/a/room/1",
 "rep": {
 "x.org.example.colour": "red"
 }
 }
]

This turns /the/light/1 off, turns /the/light/2 on, and sets the colour of /a/room/1 to "red".

The response will be same as response for GET /a/room/1?if=oic.if.b with the updated Property values as
shown.

[
 {
 "href": "/a/room/1",
 "rep":{"x.org.example.colour": "red",
 "x.org.example.dimension": "15bx15wx10h"}
 },
 {
 "href": "/the/light/1",
 "rep": {"value": false}
 },
 {
 "href": "/the/light/2",
 "rep": {"value": true}
 }
]

Example use of additional query parameters to select items by matching Link Parameters.

Turn on light 1 based on the "ins" Link Parameters value of "11111"

UPDATE /a/room/1?if=oic.if.b&ins=11111
[
 {
 "href": "",
 "rep": {
 "value": false
 }
 }
]

Similar to the earlier example, "href": "" applies the UPDATE request to all of the Resources in the
Collection. Since the additional query parameter ins=11111 selects only links that have a matching "ins"
value, only one link is selected. The payload is applied to the target Resource of that link, /the/light/1.

Copyright Open Connectivity Foundation, Inc. © 2016-2020. All rights Reserved 39

Retrieving the item using the same query parameter:

RETRIEVE /a/room/1?if=oic.if.b&ins=11111

Response payload:

[
 {
 "href": "/the/light/1",
 "rep": {
 "value": false
 }
 }
]

 1499

7.6.3.5 Actuator OCF Interface 1500

The actuator OCF Interface is the OCF Interface for viewing Resources that may be actuated i.e. 1501
changes some value within or the state of the entity abstracted by the Resource: 1502

– The actuator OCF Interface name shall be "oic.if.a" 1503

– The actuator OCF Interface shall expose in the Resource Representation all mandatory 1504
Properties as defined by the applicable OpenAPI 2.0 schema; the actuator OCF Interface may 1505
also expose in the Resource Representation optional Properties as defined by the applicable 1506
OpenAPI 2.0 schema that are implemented by the target Device. 1507

For example, a "Heater" Resource (for illustration only): 1508

/a/act/heater 1509
{ 1510
 "rt": ["x.com.acme.gas"], 1511
 "if": ["oic.if.baseline", "oic.if.r", "oic.if.a", "oic.if.s"], 1512
 "x.com.acme.settemp": 10, 1513
 "x.com.acme.currenttemp" : 7 1514
} 1515

The actuator OCF Interface with respect to "Heater" Resource (for illustration only): 1516
 1517
a) Retrieving values of an actuator. 1518

Request: RETRIEVE /a/act/heater?if="oic.if.a" 1519
 1520
Response: Content 1521
Payload: 1522
{ 1523
 "x.com.acme.settemp": 10, 1524
 "x.com.acme.currenttemp" : 7 1525
} 1526

b) Correct use of actuator OCF Interface. 1527

 1528
Request: UPDATE /a/act/heater?if="oic.if.a" 1529
{ 1530
 "x.com.acme.settemp": 20 1531
} 1532
Response: Changed 1533
Payload: 1534
{ 1535
 "x.com.acme.settemp": 20 1536
} 1537

c) Incorrect use of actuator OCF Interface. 1538

Copyright Open Connectivity Foundation, Inc. © 2016-2020. All rights Reserved 40

 1539
Request: UPDATE /a/act/heater?if="oic.if.a" 1540
{ 1541
 "if": ["oic.if.s"]  this is visible through baseline OCF Interface 1542
} 1543
Response:Bad Request 1544
Payload: 1545
{ 1546
} 1547

– A RETRIEVE request using this OCF Interface shall return the Representation for this Resource 1548
subject to any query and filter parameters that may also exist. 1549

– An UPDATE request using this OCF Interface shall provide a payload or body that contains the 1550
Properties that will be updated on the target Resource. 1551

7.6.3.6 Sensor OCF Interface 1552

The sensor OCF Interface is the OCF Interface for retrieving measured, sensed or capability 1553
specific information from a Resource that senses: 1554

– The sensor OCF Interface name shall be "oic.if.s". 1555

– The sensor OCF Interface shall expose in the Resource Representation all mandatory 1556
Properties as defined by the applicable OpenAPI 2.0 schema; the sensor OCF Interface may 1557
also expose in the Resource Representation optional Properties as defined by the applicable 1558
OpenAPI 2.0 schema that are implemented by the target Device. 1559

– A RETRIEVE request using this OCF Interface shall return this representation for the Resource 1560
subject to any query and filter parameters that may also exist. 1561

NOTE: The example here is with respect to retrieving values of a sensor 1562

 1563
Request: RETRIEVE /a/act/heater?if="oic.if.s" 1564
 1565
Response: Content 1566
Payload: 1567
{ 1568
 "x.com.acme.currenttemp": 7 1569
} 1570
 1571

Incorrect use of the sensor. 1572

Request: UPDATE /a/act/heater?if="oic.if.s"  UPDATE is not allowed 1573
{ 1574
 "x.com.acme.settemp": 20  this is possible through actuator OCF Interface 1575
} 1576
Response: Bad Request 1577
Payload: 1578
{ 1579
} 1580
 1581

Another incorrect use of the sensor. 1582

Request: UPDATE /a/act/heater?if="oic.if.s"  UPDATE is not allowed 1583
{ 1584
 "x.com.acme.currenttemp": 15  this is not possible to be updated 1585
} 1586
Response: Bad Request 1587
Payload: 1588
{ 1589
} 1590

Copyright Open Connectivity Foundation, Inc. © 2016-2020. All rights Reserved 41

7.6.3.7 Read-only OCF Interface 1591

The read-only OCF Interface exposes only the Properties that may be read. This includes 1592
Properties that may be read-only, read-write but not Properties that are write-only or set-only. The 1593
applicable operations that can be applied to a Resource are only RETRIEVE and NOTIFY. An 1594
attempt by a Client to apply a method other than RETRIEVE or NOTIFY to a Resource shall be 1595
rejected with an error response code. 1596

The read-only OCF Interface with respect to "Heater" Resource (for illustration only): 1597

Request: RETRIEVE /a/act/heater?if="oic.if.r" 1598
Response: Content 1599
Payload: 1600
{ 1601
 "x.com.acme.settemp": 10, 1602
 "x.com.acme.currenttemp" : 7 1603
} 1604

7.6.3.8 Read-write OCF Interface 1605

The read-write OCF Interface is a generic OCF Interface to support reading and setting Properties 1606
in a Resource. The applicable methods that can be applied to a Resource are only RETRIEVE, 1607
NOTIFY, and UPDATE. For the RETRIEVE and NOTIFY operations, the behaviour is the same as 1608
for the "oic.if.r" OCF Interface defined in 7.6.3.7. For the UPDATE operation, read-only Properties 1609
(i.e. Properties tagged with "readOnly=true" in the OpenAPI 2.0 definition) shall not be in the 1610
UPDATE payload. An attempt by a Client to apply a method other than RETRIEVE, NOTIFY, or 1611
UPDATE to a Resource shall be rejected with an error response code. 1612

For example, a "Grinder" Resource (for illustration only): 1613

/a/mygrinder 1614
{ 1615
 "rt": ["oic.r.grinder"], 1616
 "if": ["oic.if.rw", "oic.if.baseline"], 1617
 "coarseness": 10, 1618
 "remaining": 50 1619
} 1620

 1621

The read-write OCF Interface with respect to “Grinder" Resource (for illustration only): 1622

a) Retrieving the value with read-write OCF Interface 1623

 1624
Request: RETRIEVE /a/mygrinder?if="oic.if.rw" 1625
 1626
Response: Content 1627
Payload: 1628
{ 1629
 "coarseness": 10, 1630
 "remaining": 50 1631
} 1632
 1633

b) Updating the value with read-write OCF Interface 1634

 1635
Request: UPDATE /a/mygrinder?if="oic.if.rw" 1636
{ 1637
 "coarseness": 20 1638
} 1639
 1640
Response: Changed 1641
Payload: 1642

Copyright Open Connectivity Foundation, Inc. © 2016-2020. All rights Reserved 42

{ 1643
 "coarseness": 20 1644
} 1645

7.6.3.9 Create OCF Interface 1646

7.6.3.9.1 Overview 1647

The create OCF Interface is used to create Resource instances in a Collection. An instance of a 1648
Resource and the Link pointing to the Resource are created together, atomically, according to a 1649
Client-supplied representation. The create OCF Interface name is "oic.if.create". A Collection which 1650
exposes the "oic.if.create" OCF Interface shall expose the "rts" Property (see clause 7.8.2.8) with 1651
all Resource Types that can be hosted with the Collection. If a Client attempts to create a Resource 1652
Type which is not supported by the Collection, the Server shall return an appropriate error status 1653
code, for example "Bad Request". Successful CREATE operations shall return a success code, i.e. 1654
"Created". The IDD for all allowed Resource Types that may be created shall adhere to 1655
Introspection for dynamic Resources (see clause 11.4). 1656

7.6.3.9.2 Data format for CREATE 1657

The data format for the create OCF Interface is similar to the data format for the batch OCF 1658
Interface. The create OCF Interface format consists of a set of Link Parameters and a "rep" 1659
Parameter which contains a representation for the created Resource. 1660

The representation supplied for the Link pointing to the newly created Resource shall contain at 1661
least the "rt" and "if" Link Parameters. 1662

The Link Parameter "p" should be included in representations supplied for all created Resources. 1663
If the "Discoverable" bit is set, then the supplied Link representation shall be exposed in "/oic/res" 1664
of the Device on which the Resource is being created. The Link Parameters representation in the 1665
"/oic/res" Resource does not have to mirror the Link Parameters in the Collection of the created 1666
Resource (e.g., "ins" Parameter). 1667

Creating a discoverable Resource is the only way to add a Link to "/oic/res". 1668

If the "p" Parameter is not included, the Server shall create the Resource using the default settings 1669
of not discoverable, and not observable. 1670

The representation supplied for a created Resource in the value of the "rep" Parameter shall 1671
contain all mandatory Properties required by the Resource Type to be created excluding the 1672
Common Properties "rt" and "if" as they are already included in the create payload. 1673

Note that the "rt" and "if" Property Values are created from the supplied Link Parameters of the 1674
Resource creation payload. 1675

If the supplied representation does not contain all of the required Properties and Link Parameters, 1676
the Server shall return an appropriate error status code, for example "Bad Request". 1677

An example of the create OCF Interface payload is as illustrated: 1678

{ 1679
 "rt": ["oic.r.temperature"], 1680
 "if": ["oic.if.a","oic.if.baseline"], 1681
 "p": {"bm":3}, 1682
 "rep": { 1683
 "temperature": 20 1684
 } 1685
} 1686

The representation returned when a Resource is successfully created shall contain the "href", "if", 1687
and "rt" Link Parameters and all other Link Parameters that were included in the CREATE operation. 1688

Copyright Open Connectivity Foundation, Inc. © 2016-2020. All rights Reserved 43

In addition, the "rep" Link Parameter shall include all Resource Properties as well as the "rt" and 1689
"if" Link Parameters supplied in the CREATE operation. The Server may include additional Link 1690
Parameters and Properties in the created Resource as required by the application-specific 1691
Resource Type. The Server shall assign an "ins" value to each created Link and shall include the 1692
"ins" Parameter in the representation of each created Link as illustrated in the Collection that the 1693
Link of the created Resource was created within: 1694

{ 1695
 "href": "/3755f3ac", 1696
 "rt": ["oic.r.temperature"], 1697
 "if": ["oic.if.a","oic.if.baseline"], 1698
 "ins": 39724818, 1699
 "p": {"bm":3}, 1700
 "rep": { 1701
 "rt": ["oic.r.temperature"], 1702
 "if": ["oic.if.a","oic.if.baseline"], 1703
 "temperature": 20 1704
 } 1705
} 1706

The Link Parameters representation in the "/oic/res" Resource, if the created Resource is 1707
discoverable, may not mirror exactly all the Link Parameters added in the Collection; except it shall 1708
expose at a minimum the mandatory Properties of the Link (i.e., "rt", "if", and "href") of the created 1709
Resource. 1710

7.6.3.9.3 Use with CREATE 1711

The CREATE operation shall be sent to the URI of the Collection in which the Resource is to be 1712
created. The query string "?if=oic.if.create" shall be included in all CREATE operations. 1713

The Server shall generate a URI for the created Resource and include the URI in the "href" 1714
Parameter of the created Link. 1715

When a Server successfully completes a CREATE operation using the "oic.if.create" OCF Interface 1716
addressing a Collection, the Server shall automatically modify the ACL Resource to provide initial 1717
authorizations for accessing for the newly created Resource according to ISO/IEC 30118-2:2018. 1718

An example performing a CREATE operation is as illustrated: 1719

CREATE /scenes/scene1?if=oic.if.create 1720
{ 1721
 "rt": ["oic.r.temperature"], 1722
 "if": ["oic.if.a","oic.if.baseline"], 1723
 "p": {"bm":3}, 1724
 "rep": { 1725
 "temperature": 20 1726
 } 1727
} 1728
Response: Created 1729
Payload: 1730
{ 1731
 "href": "/3755f3ac", 1732
 "ins": 39724818, 1733
 "rt": ["oic.r.temperature"], 1734
 "if": ["oic.if.a","oic.if.baseline"], 1735
 "p": {"bm":3}, 1736
 "rep": { 1737
 "rt": ["oic.r.temperature"], 1738
 "if": ["oic.if.a","oic.if.baseline"], 1739
 "temperature": 20 1740
 } 1741
} 1742

Copyright Open Connectivity Foundation, Inc. © 2016-2020. All rights Reserved 44

7.6.3.9.4 Use with UPDATE and DELETE 1743

The UPDATE and DELETE operations are not allowed by the create OCF Interface. Attempts to 1744
perform UPDATE or DELETE operations using the create OCF Interface shall return an appropriate 1745
error status code, for example "Method Not Allowed", unless the UPDATE and CREATE operations 1746
map to the same transport binding method (e.g., CoAP with the POST method). In that situation 1747
where the UPDATE and CREATE operations map to the same transport binding method, this shall 1748
be processed as a CREATE operation according to clause 7.6.3.9.3. 1749

7.7 Resource representation 1750

Resource representation captures the state of a Resource at a particular time. The Resource 1751
representation is exchanged in the request and response interactions with a Resource. A Resource 1752
representation may be used to retrieve or update the state of a Resource. 1753

The Resource representation shall not be manipulated by the data connectivity protocols and 1754
technologies (e.g., CoAP, UDP/IP or BLE). 1755

7.8 Structure 1756

7.8.1 Introduction 1757

In many scenarios and contexts, the Resources may have either an implicit or explicit structure 1758
between them. This may be achieved through the use of Collection (7.8.3) and Atomic 1759
Measurement (7.8.4) Resources. 1760

7.8.2 Resource relationships (Links) 1761

7.8.2.1 Introduction 1762

Resource relationships are expressed as Links. A Link is a hyperlink, which defines a typed 1763
connection between two Resources. Hyperlinks, or web links, have the following components as 1764
defined in IETF RFC 8288: 1765

– Link context (URI reference) as defined in 7.8.2.2 1766

– Link relation type as defined in 7.8.2.3 1767

– Link target (URI reference) as defined in 7.8.2.4 1768

– Link target attributes as defined in 7.8.2.5 1769

The Link context is the Resource with which the Link is associated. A Link is viewed as a statement 1770
of the form "(Link context) has a (Link relation type) to a Resource at (Link target), which has (Link 1771
target attributes)" as per IETF RFC 8288 clause 2. 1772

To paraphrase, the Link target is related to the Link context according to the Link relation type. 1773
Additionally, the Link target attributes make semantic statements about the Link target, to identify 1774
the content type, physical location, etc. 1775

Links conform to the definitions in IETF RFC 8288, with an example JSON serialization with 1776
associated Link Parameters as illustrated: 1777

{ 1778
 "anchor": "/some/ocf/resource", // Link context, optional 1779
 "rel": ["hosts"], // Link relation Type, optional 1780
 "href": "/some/other/ocf/resource", // Link target, required 1781
 "p": {"bm": 3}, // Link target attributes, optional 1782
 "if": ["oic.if.baseline"], // Link target attributes, required 1783
 "rt": ["oic.r.sensor"] // Link target attributes, required 1784
} 1785

 1786

Copyright Open Connectivity Foundation, Inc. © 2016-2020. All rights Reserved 45

Additional items in the Link may be made mandatory based on the use of the Links in different 1787
contexts (e.g. in Collections, in discovery, in bridging etc.). The OpenAPI 2.0 file for the Link 1788
payload is detailed in Annex A. 1789

Another example of a Link is as illustrated: 1790

{"href": "/switch", "rt": ["oic.r.switch.binary"], "if": ["oic.if.a", 1791
"oic.if.baseline"], "p": {"bm": 3}, "rel": "item"} 1792

7.8.2.2 Link context 1793

The Link context is defined in the Link using the "anchor" Parameter. If the Link doesn't contain an 1794
"anchor" Parameter, the Link context shall be the Resource from which the Link was retrieved. 1795

7.8.2.3 Link relation type 1796

The Link relation type conveys the semantics of the Link. The Link relation type is defined in the 1797
Link using the "rel" Parameter. If the Link doesn't contain a "rel" Parameter, the Link relation type 1798
shall be assumed to have the default value "hosts", which means that the Resource at the Link 1799
target is "hosted" by the Resource at the Link context. The set of Link relation types to be used to 1800
describe various relationships between Resources are as listed: 1801

– "hosts" 1802

– The Link target points to a Resource that is hosted at the Link context. This Link relation 1803
type indicates that the Resource is allowed to be included in the batch representations of 1804
the Link target. This Link relation type is defined by IETF RFC 6690. 1805

– "self" 1806

– The Link refers to the Link context, which allows a Link to describe the Resource at the Link 1807
context, which is to say that the Link can describe the Collection or Atomic Measurement 1808
Resource that the Link is retrieved from. The Link target points to the Link context, and the 1809
Link target attributes describe the Link context. This Link relation type is defined by 1810
IETF RFC 4287. 1811

– "item" 1812

– The Link target points to a Resource that is a member of the Collection or Atomic 1813
Measurement at the Link context, which might not specifically be hosted by the Collection 1814
or Atomic Measurement Resource, and is allowed to be contained in batch representations 1815
of the Collection or Atomic Measurement. An example is using "rel": "item" to declare that 1816
the Properties of the Collection or Atomic Measurement Resource itself should be included 1817
in a batch representation of the Collection or Atomic Measurement. This Link relation type 1818
is defined by IETF RFC 6573. 1819

All of these Link relation types are registered in the IANA Registry for Link relations types defined 1820
in IANA Link Relations. Other Link relation types may be included in Links, provided that they 1821
conform to the requirements in IETF RFC 8288. Other Link relation types may be defined for 1822
features contained in other specifications and may not be included in what is defined in this clause. 1823
The presence of Link relation types not defined in this document does not affect the processing of 1824
Link relation types defined in this document. 1825

When there is more than one Link relation type value in a Link, all of the values apply to describe 1826
the relationship between the Link context and the Link target. A Link with multiple Link relation type 1827
values is equivalent to a set of Links having the same Link context and Link target, each having 1828
one of the Link relation values. 1829

7.8.2.4 Link target 1830

The Link target is a URI reference to a Resource using the "href" Parameter. 1831

Copyright Open Connectivity Foundation, Inc. © 2016-2020. All rights Reserved 46

7.8.2.5 Parameters for Link target attributes 1832

7.8.2.5.1 Introduction 1833

Link target attributes are specialisations of Link Parameters. Table 10 lists all the Link target 1834
attributes defined in this document. 1835

Table 10 – Link target attributes list 1836

Parameter
title

Parameter
name

Mandatory Description

Device ID "di" No Defined in clause 7.8.2.5.5

OCF Endpoint
information

"eps" No Defined in clause 7.8.2.5.6

OCF Interface "if" Yes Defined in clause 7.6

Link instance "ins" No Defined in clause 7.8.2.5.2

Policy "p" No Defined in clause 7.8.2.5.3

Resource Type "rt" Yes Defined in clause 7.4

Media type "type" No Defined in clause 7.8.2.5.4

Position
description
Semantic Tag

"tag-pos-desc" No Defined in clause 11.5.2.1.2

Relative
position
Semantic Tag

"tag-pos-pos" No Defined in clause 11.5.2.1.3

Function
description
Semantic Tag

"tag-func-desc" No Defined in clause 11.5.2.2.2

Note: Other Link target attributes may to defined for features in other specifications and may not be included in this table. 1837

7.8.2.5.2 "ins" or Link instance Parameter 1838

The "ins" Parameter identifies a particular Link instance in a list of Links. The "ins" Parameter may 1839
be used to modify or delete a specific Link in a list of Links. The value of the "ins" Parameter is set 1840
at instantiation of the Link by the OCF Device (Server) that is hosting the list of Links – once it has 1841
been set, the "ins" Parameter shall not be modified for as long as the Link is a member of that list. 1842

7.8.2.5.3 "p" or policy Parameter 1843

The policy Parameter defines various rules for correctly accessing a Resource referenced by a 1844
target URI. The policy rules are configured by a set of key-value pairs. 1845

The policy Parameter "p" is defined by: 1846

– "bm" key: The "bm" key corresponds to an integer value that is interpreted as an 8-bit bitmask. 1847
Each bit in the bitmask corresponds to a specific policy rule. The rules are specified for "bm" in 1848
Table 11: 1849

Table 11 – "bm" Property definition 1850

Bit Position Policy rule Comment

Bit 0 (the LSB) discoverable The discoverable rule defines whether the Link is to be
included in the Resource discovery message via "/oic/res".
If the Link is to be included in the Resource discovery
message, then "p" shall include the "bm" key and set the
discoverable bit to value 1.

Copyright Open Connectivity Foundation, Inc. © 2016-2020. All rights Reserved 47

If the Link is NOT to be included in the Resource discovery
message, then "p" shall either include the "bm" key and set
the discoverable bit to value 0 or omit the "bm" key entirely.

Bit 1 (2nd LSB) observable The Observable rule defines whether the Resource
referenced by the target URI supports the NOTIFY operation.
With the self-link, i.e. the Link with "rel" value of "self",
"/oic/res" can have a Link with the target URI of "/oic/res" and
indicate itself Observable. The "self" is defined by
IETF RFC 4287 and registered in the IANA Registry for "rel"
value defined at IANA Link Relations.
If the Resource supports the NOTIFY operation, then "p" shall
include the "bm" key and set the Observable bit to value 1.
If the Resource does NOT support the NOTIFY operation,
then "p" shall either include the "bm" key and set the
Observable bit to value 0 or omit the "bm" key entirely.

Bits 2-7 -- Reserved for future use. All reserved bits in "bm" shall be set
to value 0.

 1851

NOTE If all the bits in "bm" are defined to value 0, then the "bm" key may be omitted entirely from "p" as an efficiency 1852
measure. However, if any bit is set to value 1, then "bm" shall be included in "p" and all the bits shall be defined 1853
appropriately. 1854

– In a payload sent in response to a request that includes an OCF-Accept-Content-Format-1855
Version option the "eps" Parameter shall provide the information for an encrypted connection. 1856

– Note that access to the Resource is controlled by the ACL for the Resource. A successful 1857
encrypted connection does not ensure that the requested action will succeed. See 1858
ISO/IEC 30118-2:2018 clause 12 for more information. 1859

This shows the policy Parameter for a Resource that is discoverable but not Observable. 1860

"p": {"bm": 1} 1861

This shows a self-link, i.e. the "/oic/res" Link in itself that is discoverable and Observable. 1862

{ 1863
 "href": "/oic/res", 1864
 "rel": "self", 1865
 "rt": ["oic.wk.res"], 1866
 "if": ["oic.if.ll", "oic.if.baseline"], 1867
 "p": {"bm": 3} 1868
} 1869

7.8.2.5.4 "type" or media type Parameter 1870

The "type" Parameter may be used to specify the various media types that are supported by a 1871
specific target Resource. The default type of "application/vnd.ocf+cbor" shall be used when the 1872
"type" element is omitted. Once a Client discovers this information for each Resource, it may use 1873
one of the available representations in the appropriate header field of the Request or Response. 1874

7.8.2.5.5 "di" or Device ID Parameter 1875

The "di" Parameter specifies the Device ID of the Device that hosts the target Resource defined in 1876
the in the "href" Parameter. 1877

The Device ID may be used to qualify a relative reference used in the "href" or to lookup OCF 1878
Endpoint information for the relative reference. 1879

7.8.2.5.6 "eps" Parameter 1880

The "eps" Parameter indicates the OCF Endpoint information of the target Resource. 1881

Copyright Open Connectivity Foundation, Inc. © 2016-2020. All rights Reserved 48

A Device shall populate all exposed "eps" Link Parameters with an array of items representing OCF 1882
Endpoint information as specified in 10.2. Each entry in that array shall include an "ep" Property, 1883
and may include the optional "pri" and "lat" Properties. 1884

This is an example of "eps" with multiple OCF Endpoints. 1885

"eps": [1886
 {"ep": "coap://[fe80::b1d6]:1111", "pri": 2, "lat": 240}, 1887
 {"ep": "coaps://[fe80::b1d6]:1122", "lat": 240}, 1888
 {"ep": "coap+tcp://[2001:db8:a::123]:2222", "pri": 3} 1889
] 1890

When "eps" is present in a link, the OCF Endpoint information in "eps" can be used to access the 1891
target Resource referred by the "href" Parameter. 1892

Note that the type of OCF Endpoint – Secure or Unsecure – that a Resource exposes merely 1893
determines the connection type(s) guaranteed to be available for sending requests to the Resource. 1894
For example, if a Resource only exposes a single CoAP "ep", it does not guarantee that the 1895
Resource cannot also be accessed via a Secure OCF Endpoint (e.g. via a CoAPS "ep" from another 1896
Resource’s "eps information). Nor does exposing a given type of OCF Endpoint ensure that access 1897
to the Resource will be granted using the "ep" information. Whether requests to the Resource are 1898
granted or denied by the Access Control layer is separate from the "eps" information, and is 1899
determined by the configuration of the /acl2 Resource (see ISO/IEC 30118-2:2018 clause 13.5.3 1900
for details). 1901

When present, max-age information (e.g. Max-Age option for CoAP defined in IETF RFC 7252) 1902
determines the maximum time "eps" values may be cached before they are considered stale. 1903

7.8.2.6 Formatting 1904

When formatting in JSON, the list of Links shall be an array. 1905

7.8.2.7 List of Links in a Collection 1906

A Resource that exposes one or more Properties that are defined to be an array of Links where 1907
each Link can be discretely accessed is a Collection. The Property Name "links" is recommended 1908
for such an array of Links. 1909

This is an example of a Resource with a list of Links. 1910

/Room1 1911
{ 1912
 "rt": ["oic.wk.col"], 1913
 "if": ["oic.if.ll", "oic.if.baseline"], 1914
 "color": "blue", 1915
 "links": 1916
 [1917
 { 1918
 "href": "/switch", 1919
 "rt": ["oic.r.switch.binary"], 1920
 "if": ["oic.if.a", "oic.if.baseline"], 1921
 "p": {"bm": 3} 1922
 }, 1923
 { 1924
 "href": "/brightness", 1925
 "rt": ["oic.r.light.brightness"], 1926
 "if": ["oic.if.a", "oic.if.baseline"], 1927
 "p": {"bm": 3} 1928
 } 1929
] 1930
} 1931

Copyright Open Connectivity Foundation, Inc. © 2016-2020. All rights Reserved 49

7.8.2.8 Properties describing an array of Links 1932

If a Resource Type that defines an array of Links (e.g. Collections, Atomic Measurements) has 1933
restrictions on the "rt" values that can be within the array of Links, the Resource Type will define 1934
the "rts" Property. The "rts" Property as defined in Table 12 will include all "rt" values allowed for 1935
all Links in the array. If the Resource Type does not define the "rts" Property or the "rts" Property 1936
is an empty array, then any "rt" value is permitted in the array of Links. 1937

For all instances of a Resource Type that defines the "rts" Property, the "rt" Link Parameter in 1938
every Link in the array of Links shall be one of the "rt" values that is included in the "rts" 1939
Property. 1940

Table 12 – Resource Types Property definition 1941

Property
title

Property
name

Value
type

Value rule Unit Access
mode

Mandatory Description

Resource
Types

"rts" "array" Array of strings,
conveying
Resource Type
IDs

N/A R No An array of Resource
Types that are
supported within an
array of Links exposed
by a Resource.

 1942

If a Resource Type that defines an array of Links has "rt" values which are required to be in the 1943
array, the Resource Type will define the "rts-m" Property, as defined in Table 13, which will contain 1944
all of the "rt" vaues that are required to be in the array of Links. If "rts-m" is defined, and "rts" is 1945
defined and is not an empty array, then the "rt" values present in "rts-m" will be part of the values 1946
present in "rts". Moreover, if the "rts-m" Property is defined, it shall be mandated (i.e. included in 1947
the "required" field of a JSON definition) in the Resource definition and Introspection Device Data 1948
(see 11.4). 1949

For all instances of a Resource Type that defines the "rts-m" Property, there shall be at least one 1950
Link in the array of Links corresponding to each one of the "rt" values in the "rts-m" Property; for 1951
all such Links the "rt" Link Parameter shall contain at least one of the "rt" values in the "rts-m" 1952
Property. 1953

Table 13 – Mandatory Resource Types Property definition 1954

Property
title

Property
name

Value
type

Value rule Unit Access
mode

Mandatory Description

Mandatory
Resource
Types

"rts-m" "array" Array of strings,
conveying
Resource Type
IDs

N/A R No An array of Resource
Types that are
mandatory to be
exposed within an
array of Links exposed
by a Resource.

 1955

7.8.3 Collections 1956

7.8.3.1 Overview 1957

A Resource that contains one or more references (specified as Links) to other Resources is a 1958
Collection. These references may be related to each other or just be a list; the Collection provides 1959
a means to refer to this set of references with a single handle (i.e. the URI). A simple Resource is 1960
kept distinct from a Collection. Any Resource may be turned into a Collection by binding Resource 1961
references as Links. Collections may be used for creating, defining or specifying hierarchies, 1962
indexes, groups, and so on. 1963

Copyright Open Connectivity Foundation, Inc. © 2016-2020. All rights Reserved 50

A Collection shall have at least one Resource Type and at least one OCF Interface bound at all 1964
times during its lifetime. During creation time of a Collection the Resource Type and OCF Interfaces 1965
are specified. The initial defined Resource Types and OCF Interfaces may be updated during its 1966
life time. These initial values may be overridden using mechanism used for overriding in the case 1967
of a Resource. Additional Resource Types and OCF Interfaces may be bound to the Collection at 1968
creation or later during the lifecycle of the Collection. 1969

A Collection shall define a Property that is an array with zero or more Links. The target URIs in the 1970
Links may reference another Collection or another Resource. The referenced Collection or 1971
Resource may reside on the same Device as the Collection that includes that Link (called a local 1972
reference) or may reside on another Device (called a remote reference). The context URI of the 1973
Links in the array shall (implicitly) be the Collection that contains that Property. The (implicit) 1974
context URI may be overridden with explicit specification of the "anchor" Parameter in the Link 1975
where the value of "anchor" is the new base of the Link. 1976

A Resource may be referenced in more than one Collection, therefore, a unique parent-child 1977
relationship is not guaranteed. There is no pre-defined relationship between a Collection and the 1978
Resource referenced in the Collection, i.e., the application may use Collections to represent a 1979
relationship but none is automatically implied or defined. The lifecycles of the Collection and the 1980
referenced Resource are also independent of one another. 1981

In the following example a Property "links" represents the list of Links in a Collection. The "links" 1982
Property has, as its value, an array of items and each item is a Link. 1983

/my/house  This is IRI/URI of the Resource 1984
{ 1985
 "rt": ["my.r.house"],  This and the next 3 lines are the Properties of the 1986
Resource. 1987
 "color": "blue", 1988
 "n": "myhouse", 1989
 "links": [1990
 {  This and the next 4 lines are the Parameters of a Link 1991
 "href": "/door", 1992
 "rt": ["oic.r.door"], 1993
 "if": ["oic.if.a", "oic.if.baseline"] 1994
 }, 1995
 1996
 { 1997
 "href": "/door/lock.status", 1998
 "rt": ["oic.r.lock"], 1999
 "if": ["oic.if.a", "oic.if.baseline"] 2000
 }, 2001
 2002
 { 2003
 "href": "/light", 2004
 "rt": ["oic.r.light"], 2005
 "if": ["oic.if.s", "oic.if.baseline"] 2006
 }, 2007
 2008
 { 2009
 "href": "/binarySwitch", 2010
 "rt": ["oic.r.switch.binary"], 2011
 "if": ["oic.if.a", "oic.if.baseline"] 2012
 } 2013
 2014
] 2015
} 2016

A Collection may be: 2017

Copyright Open Connectivity Foundation, Inc. © 2016-2020. All rights Reserved 51

– A pre-defined Collection where the Collection has been defined a priori and the Collection is 2018
static over its lifetime. Such Collections may be used to model, for example, an appliance that 2019
is composed of other Devices or fixed set of Resources representing fixed functions. 2020

– A Device local Collection where the Collection is used only on the Device that hosts the 2021
Collection. Such Collections may be used as a short-hand on a Client for referring to many 2022
Servers as one. 2023

– A centralized Collection where the Collection is hosted on a Device but other Devices may 2024
access or update the Collection. 2025

– A hosted Collection where the Collection is centralized but is managed by an authorized agent 2026
or party. 2027

7.8.3.2 Collection Properties 2028

A Collection shall define a Property that is an array of Links (the Property Name "links" is 2029
recommended). In addition, other Properties may be defined for the Collection by the Resource 2030
Type. The mandatory and recommended Common Properties for a Collection are shown in Table 14. 2031
This list of Common Properties is in addition to those defined for Resources in 7.3.2. 2032

Table 14 – Common Properties for Collections (in addition to Common Properties defined 2033
in 7.3.2) 2034

Property Description Property Name Value Type Mandatory

Links The array of Links in
the Collection

Per Resource Type
definition

json
Array of Links

Yes

Resource Types The list of allowed
Resource Types for
Links in the
Collection.
If this Property is not
defined or is null
string then any
Resource Type is
permitted

As defined in
Table 12

As defined in
Table 12

No

Mandatory
Resource Types

The list of Resource
Types for Links that
are mandatory in the
Collection.

As defined in
Table 13

As defined in
Table 13

No

 2035

7.8.3.3 Default Resource Type 2036

A default Resource Type, "oic.wk.col", is available for Collections. This Resource Type shall be 2037
used only when another type has not been defined on the Collection or when no Resource Type 2038
has been specified at the creation of the Collection. 2039

The default Resource Type provides support for the Common Properties including an array of Links 2040
with the Property Name "links". 2041

7.8.3.4 Default OCF Interface 2042

All instances of a Collection shall support the links list ("oic.if.ll") OCF Interface in addition to the 2043
baseline ("oic.if.baseline") OCF Interface. An instance of a Collection may optionally support 2044
additional OCF Interfaces that are defined within this document. The Default OCF Interface for a 2045
Collection shall be links list ("oic.if.ll") unless otherwise specified by the Resource Type definition. 2046

Copyright Open Connectivity Foundation, Inc. © 2016-2020. All rights Reserved 52

7.8.4 Atomic Measurement 2047

7.8.4.1 Overview 2048

Certain use cases require that the Properties of multiple Resources are only accessible as a group 2049
and individual access to those Properties of each Resource by a Client is prohibited. The Atomic 2050
Measurement Resource Type is defined to meet this requirement. This is accomplished through 2051
the use of the Batch OCF Interface. 2052

7.8.4.2 Atomic Measurement Properties 2053

An Atomic Measurement shall define a Property that is an array of Links (the Property Name "links" 2054
is recommended). In addition, other Properties may be defined for the Atomic Measurement by the 2055
Resource Type. The mandatory and recommended Common Properties for an Atomic 2056
Measurement are shown in Table 15. This list of Common Properties is in addition to those defined 2057
for Resources in 7.3.2. 2058

Table 15 – Common Properties for Atomic Measurement (in addition to Common Properties 2059
defined in 7.3.2) 2060

Property Description Property Name Value Type Mandatory

Links The array of Links in
the Atomic
Measurement

Per Resource Type
definition

json
Array of Links

Yes

Resource Types The list of allowed
Resource Types for
Links in the Atomic
Measurement.
If this Property is not
defined or is null
string then any
Resource Type is
permitted

As defined in
Table 12

As defined in
Table 12

No

Mandatory
Resource Types

The list of Resource
Types for Links that
are mandatory in the
Atomic
Measurement.

As defined in
Table 13

As defined in
Table 13

No

 2061

7.8.4.3 Normative behaviour 2062

The normative behaviour of an Atomic Measurement is as follows: 2063

– The behaviour of the Batch OCF Interface ("oic.if.b") on the Atomic Measurement is defined as 2064
follows: 2065

– Only RETRIEVE and NOTIFY operations are supported, for Batch OCF Interface, on Atomic 2066
Measurement; the behavior of the RETRIEVE and NOTIFY operations shall be the same as 2067
specified in 7.6.3.4, with exceptions as provided for in 7.8.4.3. 2068

– The UPDATE operation is not allowed, for Batch OCF Interface, on Atomic Measurement; if 2069
an UPDATE operation is received, it shall result in a method not allowed error code. 2070

– An error response shall not include any representation of a linked Resource (i.e. empty 2071
response for all linked Resources). 2072

– Any linked Resource within an Atomic Measurement (i.e. the target Resource of a Link in an 2073
Atomic Measurement) is subject to the following conditions: 2074

– Linked Resources within an Atomic Measurement and the Atomic Measurement itself shall 2075
exist on a single Server. 2076

Copyright Open Connectivity Foundation, Inc. © 2016-2020. All rights Reserved 53

– CRUDN operations shall not be allowed on linked Resources and shall result in a forbidden 2077
error code. 2078

– Linked Resources shall not expose the "oic.if.ll" OCF Interface. Since CRUDN operations 2079
are not allowed on linked Resources, the "oic.if.ll" OCF Interface would never be accessible. 2080

– Links to linked Resources in an Atomic Measurement shall only be accessible through the 2081
"oic.if.ll" or the "oic.if.baseline" OCF Interfaces of an Atomic Measurement. 2082

– The linked Resources shall not be listed in "/oic/res". 2083

– A linked Resource in an Atomic Measurement shall have defined one of "oic.if.a", "oic.if.s", 2084
"oic.if.r", or "oic.if.rw" as its Default OCF Interface. 2085

– Not all linked Resources in an Atomic Measurement are required to be Observable. If an Atomic 2086
Measurement is being Observed using the "oic.if.b" OCF Interface, notification responses shall 2087
not be generated when the linked Resources which are not marked Observable are updated or 2088
change state. 2089

– All linked Resources in an Atomic Measurement shall be included in every RETRIEVE and 2090
Observe response when using the "oic.if.b" OCF Interface. 2091

– An Atomic Measurement shall support the "oic.if.b" and the "oic.if.ll" OCF Interfaces. 2092

– Filtering of linked Resources in an Atomic Measurement is not allowed. Query parameters that 2093
select one or more individual linked Resources in a request to an Atomic Measurement shall 2094
result in a "forbidden" error code. 2095

– If the "rel" Link Parameter is included in a Link contained in an Atomic Measurement, it shall 2096
have either the "hosts" or the "item" value. 2097

– The Default OCF Interface of an Atomic Measurement is "oic.if.b". 2098

7.8.4.4 Security considerations 2099

Access rights to an Atomic Measurement Resource Type is as specified in clause 12.2.7.2 (ACL 2100
considerations for batch request to the Atomic Measurement Resource Type) of ISO/IEC 30118-2101
2:2018). 2102

7.8.4.5 Default Resource Type 2103

The Resource Type is defined as "oic.wk.atomicmeasurement" as defined in Table 16. 2104

Table 16 – Atomic Measurement Resource Type 2105

Pre-
defined

URI

Resource
Type Title

Resource Type
ID ("rt" value)

OCF Interfaces Description Related
Functional
Interaction

M/CR/O

none Atomic
Measurement

"oic.wk.atomicme
asurement"

"oic.if.ll"
"oic.if.baseline"
"oic.if.b"

A specialisation of
the Collection pattern
to ensure atomic
RETRIEVAL of its
referred Resources

RETRIEVE,
NOTIFY

O

 2106

The Properties for Atomic Measurement are as defined in Table 17. 2107

Table 17 – Properties for Atomic Measurement (in addition to Common Properties defined 2108
in 7.3.2) 2109

Property Description Property name Value Type Mandatory

Links The set of links that
point to the linked
Resources

Per Resource Type
definition

json
Array of Links

Yes

Copyright Open Connectivity Foundation, Inc. © 2016-2020. All rights Reserved 54

 2110

7.9 Query Parameters 2111

7.9.1 Introduction 2112

Properties and Parameters (including those that are part of a Link) may be used in the query part 2113
of a URI (see 6.2.2) as one criterion for selection of a particular Resource. This is done by declaring 2114
the Property (i.e. <Property Name> = <desired Property Value>) as one of the segments of the 2115
query. Only ASCII strings are permitted in query filters, and NULL characters are disallowed in 2116
query filters. This means that only Property Values with ASCII characters may be matched in a 2117
query filter. 2118

The Resource is selected when all the declared Properties or Link Parameters in the query match 2119
the corresponding Properties or Link Parameters in the target. 2120

7.9.2 Use of multiple parameters within a query 2121

When a query contains multiple separate query parameters these are delimited by an "&" as 2122
described in 6.2.2. 2123

A Client may apply multiple separate query parameters, for 2124
example "?ins=11111&rt=oic.r.switch.binary". If such queries are supported by the Server this shall 2125
be accomplished by matching "all of" the different query parameter types ("rt", "ins", "if", etc) 2126
against the target of the query. In the example, this resolves to an instance of oic.r.switch.binary 2127
that also has an "ins" populated as "11111". There is no significance applied to the order of the 2128
query parameters. 2129

A Client may select more than one Resource Type using repeated query parameters, for example 2130
"?rt=oic.r.switch.binary&rt=oic.r.ramptime". If such queries are supported by the Server this shall 2131
be accomplished by matching "any of" the repeated query parameters against the target of the 2132
query. In the example, any instances of "oic.r.switch.binary" and/or "oic.r.ramptime" that may exist 2133
are selected. 2134

A Client may combine both multiple repeated parameters and multiple separate parameters in a 2135
single query, for example "?if=oic.if.b&ins=11111&rt=oic.r.switch.binary&rt=oic.r.ramptime". If 2136
such queries are supported by the Server this shall be accomplished by matching "any of" the 2137
repeated query parameters and then matching "all of" the different query parameter types. In the 2138
example any instances of "oic.r.switch.binary" and/or "oic.r.ramptime" that also have an "ins" of 2139
"11111" that may exist are selected in a batch response. 2140

NOTE The parameters within a query string are represented within the actual messaging protocol as defined in clause 2141
11.5. 2142

7.9.3 Application to multi-value "rt" Resources 2143

An "rt" query for a multi-value "rt" Resource with the Default OCF Interface of "oic.if.a", "oic.if.s", 2144
"oic.if.r", "oic.if.rw" or "oic.if.baseline" is an extension of a generic "rt" query. When a Server 2145
receives a RETRIEVE request for a multi-value "rt" Resource with an "rt" query, (i.e. GET 2146
/ResExample?rt=oic.r.foo), the Server should respond only when the query value is an item of the 2147
"rt" Property Value of the target Resource and should send back only the Properties associated 2148
with the query value(s). For example, upon receiving GET /ResExample?rt=oic.r.switch.binary 2149
targeting a Resource with "rt": ["oic.r.switch.binary", "oic.r.light.brightness"], the Server responds 2150
with only the Properties of oic.r.switch.binary. 2151

7.9.4 OCF Interface specific considerations for queries 2152

7.9.4.1 OCF Interface selection 2153

When an OCF Interface is to be selected for a request, it shall be specified as a query parameter 2154
in the URI of the Resource in the request message. If no query parameter is specified, then the 2155

Copyright Open Connectivity Foundation, Inc. © 2016-2020. All rights Reserved 55

Default OCF Interface shall be used. If the selected OCF Interface is not one of the permitted OCF 2156
Interfaces on the Resource then selecting that OCF Interface is an error and the Server shall 2157
respond with an error response code. 2158

For example, the baseline OCF Interface may be selected by adding "if=oic.if.baseline" to the list 2159
of query parameters in the URI of the target Resource. For example: "GET 2160
/oic/res?if=oic.if.baseline". 2161

7.9.4.2 Batch OCF Interface 2162

See 7.6.3.4 for details on the batch OCF Interface itself. Query parameters may be used with the 2163
batch OCF Interface in order to select particular Resources in a Collection for retrieval or update; 2164
these parameters are used to select items in the Collection by matching Link Parameter Values. 2165

When Link selection query parameters are used with RETRIEVE operations applied using the batch 2166
OCF Interface, only the Resources in the Collection with matching Link Parameters should be 2167
returned. 2168

When Link selection query parameters are used with UPDATE operations applied using the batch 2169
OCF Interface, only the Resources having matching Link Parameters should be updated. 2170

See 7.6.3.4.5 for examples of RETRIEVE and UPDATE operations that use Link selection query 2171
parameters. 2172

8 CRUDN 2173

8.1 Overview 2174

CREATE, RETRIEVE, UPDATE, DELETE, and NOTIFY (CRUDN) are operations defined for 2175
manipulating Resources. These operations are performed by a Client on the Resources contained 2176
in a Server. All required Properties shall be present in the payloads for which they are defined for 2177
the operations for which those payloads apply (see clause 7.1 regarding OpenAPI 2.0 definitions 2178
requirement). 2179

On reception of a valid CRUDN operation a Server hosting the Resource that is the target of the 2180
request shall generate a response depending on the OCF Interface included in the request; or 2181
based on the Default OCF Interface for the Resource Type if no OCF Interface is included. 2182

CRUDN operations utilize a set of parameters that are carried in the messages and are defined in 2183
Table 18. A Device shall use CBOR as the default payload (content) encoding scheme for Resource 2184
representations included in CRUDN operations and operation responses; a Device may negotiate 2185
a different payload encoding scheme (e.g, see in 12.2.4 for CoAP messaging). Clauses 8.2 through 2186
8.6 respectively specify the CRUDN operations and use of the parameters. The type definitions for 2187
these terms will be mapped in the clause 12 for each protocol. 2188

Table 18 – Parameters of CRUDN messages 2189

Applicability Name Denotation Definition

All messages

fr From The URI of the message originator.

to To The URI of the recipient of the message.

ri Request Identifier The identifier that uniquely identifies the message in the
originator and the recipient.

cn Content Information specific to the operation.

Requests
op Operation Specific operation requested to be performed by the

Server.

obs Observe Indicator for an Observe request.

Copyright Open Connectivity Foundation, Inc. © 2016-2020. All rights Reserved 56

Responses
rs Response Code

Indicator of the result of the request; whether it was
accepted and what the conclusion of the operation was.
The values of the response code for CRUDN operations
shall conform to those as defined in clause 5.9 and 12.1.2
in IETF RFC 7252.

obs Observe Indicator for an Observe response.

8.2 CREATE 2190

8.2.1 Overview 2191

The CREATE operation is used to request the creation of new Resources on the Server. The 2192
CREATE operation is initiated by the Client and consists of three steps, as depicted in Figure 5. 2193

 2194

Figure 5 – CREATE operation 2195

8.2.2 CREATE request 2196

The CREATE request message is transmitted by the Client to the Server to create a new Resource 2197
by the Server. The CREATE request message will carry the following parameters: 2198

– fr: Unique identifier of the Client 2199

– to: URI of the target Resource responsible for creation of the new Resource. 2200

– ri: Identifier of the CREATE request. 2201

– cn: Information of the Resource to be created by the Server. 2202

– cn will include the URI and Resource Type Property of the Resource to be created. 2203

– cn may include additional Properties of the Resource to be created. 2204

– op: CREATE 2205

8.2.3 Processing by the Server 2206

Following the receipt of a CREATE request, the Server may validate if the Client has the 2207
appropriate rights for creating the requested Resource. If the validation is successful, the Server 2208
creates the requested Resource. The Server caches the value of ri parameter in the CREATE 2209
request for inclusion in the CREATE response message. 2210

8.2.4 CREATE response 2211

The Server shall transmit a CREATE response message in response to a CREATE request 2212
message from a Client. The CREATE response message will include the following parameters: 2213

– fr: Unique identifier of the Server 2214

– to: Unique identifier of the Client 2215

– ri: Identifier included in the CREATE request 2216

– cn: Information of the Resource as created by the Server. 2217

Copyright Open Connectivity Foundation, Inc. © 2016-2020. All rights Reserved 57

– cn will include the URI of the created Resource. 2218

– cn will include the Resource representation of the created Resource. 2219

– rs: The result of the CREATE operation. 2220

8.3 RETRIEVE 2221

8.3.1 Overview 2222

The RETRIEVE operation is used to request the current state or representation of a Resource. The 2223
RETRIEVE operation is initiated by the Client and consists of three steps, as depicted in Figure 6. 2224

 2225

Figure 6 – RETRIEVE operation 2226

8.3.2 RETRIEVE request 2227

RETRIEVE request message is transmitted by the Client to the Server to request the representation 2228
of a Resource from a Server. The RETRIEVE request message will carry the following parameters: 2229

– fr: Unique identifier of the Client. 2230

– to: URI of the Resource the Client is targeting. 2231

– ri: Identifier of the RETRIEVE request. 2232

– op: RETRIEVE. 2233

8.3.3 Processing by the Server 2234

Following the receipt of a RETRIEVE request, the Server may validate if the Client has the 2235
appropriate rights for retrieving the requested data and the Properties are readable. The Server 2236
caches the value of ri parameter in the RETRIEVE request for use in the response 2237

8.3.4 RETRIEVE response 2238

The Server shall transmit a RETRIEVE response message in response to a RETRIEVE request 2239
message from a Client. The RETRIEVE response message will include the following parameters: 2240

– fr: Unique identifier of the Server. 2241

– to: Unique identifier of the Client. 2242

– ri: Identifier included in the RETRIEVE request. 2243

– cn: Information of the Resource as requested by the Client. 2244

– cn should include the URI of the Resource targeted in the RETRIEVE request. 2245

– rs: The result of the RETRIEVE operation. 2246

Copyright Open Connectivity Foundation, Inc. © 2016-2020. All rights Reserved 58

8.4 UPDATE 2247

8.4.1 Overview 2248

The UPDATE operation is either a Partial UPDATE or a complete replacement of the information 2249
in a Resource in conjunction with the OCF Interface that is also applied to the operation. The 2250
UPDATE operation is initiated by the Client and consists of three steps, as depicted in Figure 7. 2251

 2252

Figure 7 – UPDATE operation 2253

8.4.2 UPDATE request 2254

The UPDATE request message is transmitted by the Client to the Server to request the update of 2255
information of a Resource on the Server. The UPDATE request message, as indicated in 8.1, 2256
contains all required Properties whether changed or not. The UPDATE request message will carry 2257
the following parameters: 2258

– fr: Unique identifier of the Client. 2259

– to: URI of the Resource targeted for the information update. 2260

– ri: Identifier of the UPDATE request. 2261

– op: UPDATE. 2262

– cn: Information, including Properties, of the Resource to be updated at the target Resource. 2263

8.4.3 Processing by the Server 2264

8.4.3.1 Overview 2265

Following the receipt of an UPDATE request, the Server may validate if the Client has the 2266
appropriate rights for updating the requested data. If the validation is successful the Server updates 2267
the target Resource information according to the information carried in cn parameter of the 2268
UPDATE request message. The Server caches the value of ri parameter in the UPDATE request 2269
for use in the response. 2270

An UPDATE request that includes Properties that are read-only shall be rejected by the Server with 2271
an rs indicating a bad request. 2272

An UPDATE request shall be applied only to the Properties in the target Resource visible via the 2273
applied OCF Interface that support the operation. An UPDATE of non-existent Properties is ignored. 2274

An UPDATE request shall be applied to the Properties in the target Resource even if those Property 2275
Values are the same as the values currently exposed by the target Resource. 2276

8.4.3.2 Resource monitoring by the Server 2277

The Server shall monitor the state the Resource identified in the Observe request from the Client. 2278
Anytime there is a change in the state of the Observed Resource or an UPDATE operation applied 2279
to the Resource, the Server sends another RETRIEVE response with the Observe indication. The 2280

Copyright Open Connectivity Foundation, Inc. © 2016-2020. All rights Reserved 59

mechanism does not allow the Client to specify any bounds or limits which trigger a notification, 2281
the decision is left entirely to the Server. 2282

8.4.3.3 Additional RETRIEVE responses with Observe indication 2283

The Server shall transmit updated RETRIEVE response messages following Observed changes in 2284
the state of the Resources requested by the Client. The RETRIEVE response message shall include 2285
the parameters listed in 11.3.2.4. 2286

8.4.4 UPDATE response 2287

The UPDATE response message will include the following parameters: 2288

– fr: Unique identifier of the Server. 2289

– to: Unique identifier of the Client. 2290

– ri: Identifier included in the UPDATE request. 2291

– rs: The result of the UPDATE request. 2292

The UPDATE response message may also include the following parameters: 2293

– cn: The Resource representation following processing of the UPDATE request. 2294

8.5 DELETE 2295

8.5.1 Overview 2296

The DELETE operation is used to request the removal of a Resource. The DELETE operation is 2297
initiated by the Client and consists of three steps, as depicted in Figure 8. 2298

 2299

Figure 8 – DELETE operation 2300

8.5.2 DELETE request 2301

DELETE request message is transmitted by the Client to the Server to delete a Resource on the 2302
Server. The DELETE request message will carry the following parameters: 2303

– fr: Unique identifier of the Client. 2304

– to: URI of the target Resource which is the target of deletion. 2305

– ri: Identifier of the DELETE request. 2306

– op: DELETE. 2307

8.5.3 Processing by the Server 2308

Following the receipt of a DELETE request, the Server may validate if the Client has the appropriate 2309
rights for deleting the identified Resource, and whether the identified Resource exists. If the 2310
validation is successful, the Server removes the requested Resource and deletes all the associated 2311
information. The Server caches the value of ri parameter in the DELETE request for use in the 2312
response. 2313

Copyright Open Connectivity Foundation, Inc. © 2016-2020. All rights Reserved 60

8.5.4 DELETE response 2314

The Server shall transmit a DELETE response message in response to a DELETE request message 2315
from a Client. The DELETE response message will include the following parameters: 2316

– fr: Unique identifier of the Server. 2317

– to: Unique identifier of the Client. 2318

– ri: Identifier included in the DELETE request. 2319

– rs: The result of the DELETE operation. 2320

8.6 NOTIFY 2321

8.6.1 Overview 2322

The NOTIFY operation is used to request asynchronous notification of state changes. Complete 2323
description of the NOTIFY operation is provided in 11.3. The NOTIFY operation uses the 2324
NOTIFICATION response message which is defined here. 2325

8.6.2 NOTIFICATION response 2326

The NOTIFICATION response message is sent by a Server to notify the URLs identified by the 2327
Client of a state change. The NOTIFICATION response message carries the following parameters: 2328

– fr: Unique identifier of the Server. 2329

– to: URI of the Resource target of the NOTIFICATION message. 2330

– ri: Identifier included in the CREATE request. 2331

– op: NOTIFY. 2332

– cn: The updated state of the Resource. 2333

9 Network and connectivity 2334

9.1 Introduction 2335

The Internet of Things is comprised of a wide range of applications which sense and actuate the 2336
physical world with a broad spectrum of device and network capabilities: from battery powered 2337
nodes transmitting 100 bytes per day and able to last 10 years on a coin cell battery, to mains 2338
powered nodes able to maintain Megabit video streams. It is estimated that many 10s of billions of 2339
IoT devices will be deployed over the coming years. 2340

It is desirable that the connectivity options be adapted to the IP layer. To that end, IETF has 2341
completed considerable work to adapt Bluetooth®, Wi-Fi, 802.15.4, LPWAN, etc. to IPv6. These 2342
adaptations, plus the larger address space and improved address management capabilities, make 2343
IPv6 the clear choice for the OCF network layer technology. 2344

9.2 Architecture 2345

While the aging IPv4 centric network has evolved to support complex topologies, its deployment 2346
was primarily provisioned by a single Internet Service Provider (ISP) as a single network. More 2347
complex network topologies, often seen in residential home, are mostly introduced through the 2348
acquisition of additional home network devices, which rely on technologies like private Network 2349
Address Translation (NAT). These technologies require expert assistance to set up correctly and 2350
should be avoided in a home network as they most often result in breakage of constructs like 2351
routing, naming and discovery services. 2352

The multi-segment ecosystem OCF addresses will not only cause a proliferation of new devices 2353
and associated routers, but also new services introducing additional edge routers. All these new 2354
requirements require advance architectural constructs to address complex network topologies like 2355
the one shown in Figure 9. 2356

Copyright Open Connectivity Foundation, Inc. © 2016-2020. All rights Reserved 61

 2357

Figure 9 – High Level Network & Connectivity Architecture 2358

In terms of IETF RFC 6434, IPv6 nodes assume either a router or host role. Nodes may further 2359
implement various specializations of those roles: 2360

– A Router may implement Customer Edge Router capabilities as defined in IETF RFC 7084. 2361

– Nodes limited in processing power, memory, non-volatile storage or transmission capacity 2362
requires special IP adaptation layers (6LoWPAN) and/or dedicated routing protocols (RPL). 2363
Examples include devices transmitting over low power physical layer like IEEE 802.14.5, ITU 2364
G9959, Bluetooth Low Energy, DECT Ultra Low Energy, and Near Field Communication (NFC). 2365

– A node may translate and route messaging between IPv6 and non-IPv6 networks. 2366

9.3 IPv6 network layer requirements 2367

9.3.1 Introduction 2368

Projections indicate that many 10s of billions of new IoT endpoints and related services will be 2369
brought online in the next few years. These endpoint’s capabilities will span from battery powered 2370
nodes with limited compute, storage, and bandwidth to more richly resourced devices operating 2371
over Ethernet and WiFi links. 2372

Internet Protocol version 4 (IPv4), deployed some 30 years ago, has matured to support a wide 2373
variety of applications such as Web browsing, email, voice, video, and critical system monitoring 2374
and control. However, the capabilities of IPv4 are at the point of exhaustion, not the least of which 2375
is that available address space has been consumed. 2376

Sensor Network
(6LowPan)

/
Subnets

IPv6 Local Network

IPv4-only or Legacy
(Zigbee, …)

Border
Router

Gateway
(iotivity+
plugins)

IPv6 + IPv4

Internet
Core

IPv6 Sensor Network

Non-IPv6 Network

IPv6 Local
Network

User
Interface

Monitoring

Intrusion
detection

Private
VPN Service

Internet
Services

SP CE
Router

Private
Proxy

Smart
Grid)

SP CE
Router

Smart Grid
(Energy segment)

Power Grid

Legend:

OCF
OCF aware
OCF plugged-in
Infrastructure

Copyright Open Connectivity Foundation, Inc. © 2016-2020. All rights Reserved 62

The IETF long ago saw the need for a successor to IPv4, thus the development of IPv6. OCF 2377
recommends IPv6 at the network layer. Amongst the reasons for IPv6 recommendations are: 2378

– Larger address space. Side-effect: greatly reduce the need for NATs. 2379

– More flexible addressing architecture. Multiple addresses and types per interface: Link-local, 2380
ULA, GUA, variously scoped Multicast addresses, etc. Better ability to support multi-homed 2381
networks, better re-numbering capability, etc. 2382

– More capable auto configuration capabilities: DHCPv6, SLAAC, Router Discovery, etc. 2383

– Technologies enabling IP connectivity on constrained nodes are based upon IPv6. 2384

– All major consumer operating systems (IoS, Android, Windows, Linux) are already IPv6 enabled. 2385

– Major Service Providers around the globe are deploying IPv6. 2386

9.3.2 IPv6 node requirements 2387

9.3.2.1 Introduction 2388

In order to ensure network layer services interoperability from node to node, mandating a common 2389
network layer across all nodes is vital. The protocol should enable the network to be: secure, 2390
manageable, and scalable and to include constrained and self-organizing meshed nodes. OCF 2391
mandates IPv6 as the common network layer protocol to ensure interoperability across all Devices. 2392
More capable Devices may also include additional protocols creating multiple-stack Devices. The 2393
remainder of this clause will focus on interoperability requirements for IPv6 hosts, IPv6 constrained 2394
hosts and IPv6 routers. The various protocol translation permutations included in multi-stack 2395
gateway devices may be addresses in subsequent addendums of this document. 2396

9.3.2.2 IP Layer 2397

An IPv6 node shall support IPv6 and it shall conform to the requirements as specified in 2398
IETF RFC 6434. 2399

10 OCF Endpoint 2400

10.1 OCF Endpoint definition 2401

The specific definition of an OCF Endpoint depends on the Transport Protocol Suite being used. 2402
For the example of CoAP over UDP over IPv6, the OCF Endpoint is identified by an IPv6 address 2403
and UDP port number. 2404

Each Device shall associate with at least one OCF Endpoint with which it can exchange request 2405
and response messages. When a message is sent to an OCF Endpoint, it shall be delivered to the 2406
Device which is associated with the OCF Endpoint. When a request message is delivered to an 2407
OCF Endpoint, path component is enough to locate the target Resource. 2408

A Device can be associated with multiple OCF Endpoints. For example, n Device can have several 2409
IP addresses or port numbers or support both CoAP and HTTP transfer protocol. Different 2410
Resources in n Device may be accessed with the same OCF Endpoint or need different ones. Some 2411
Resources may use one OCF Endpoint and others a different one. It depends on an implementation. 2412

On the other hand, an OCF Endpoint can be shared among multiple Devices, only when there is a 2413
way to clearly designate the target Resource with request URI. For example, when multiple CoAP 2414
servers use uniquely different URI paths for all their hosted Resources, and the CoAP 2415
implementation demultiplexes by path, they can share the same CoAP OCF Endpoint. However, 2416
this is not possible in this version of the document, because a pre-determined URI (e.g. "/oic/d") is 2417
mandatory for some mandatory Resources (e.g. "oic.wk.d"). 2418

Copyright Open Connectivity Foundation, Inc. © 2016-2020. All rights Reserved 63

10.2 OCF Endpoint information 2419

10.2.1 Introduction 2420

OCF Endpoint is represented by OCF Endpoint information which consists of items of key-value 2421
pair, "ep", "pri", and "lat". 2422

10.2.2 "ep" 2423

"ep" represents Transport Protocol Suite and OCF Endpoint Locator specified as follows: 2424

– Transport Protocol Suite - a combination of protocols (e.g. CoAP + UDP + IPv6) with which 2425
request and response messages can be exchanged for RESTful transaction (i.e. CRUDN). A 2426
Transport Protocol Suite shall be indicated by a URI scheme name. All scheme names 2427
supported by this document are IANA registered, these are listed in Table 19. A vendor may 2428
also make use of a non-IANA registered scheme name for their own use (e.g. 2429
"com.example.foo"), this shall follow the syntax for such scheme names defined by 2430
IETF RFC 7595. The behaviour of a vendor-defined scheme name is undefined by this 2431
document. All OCF defined Resource Types when exposing OCF Endpoint Information in an 2432
"eps" (see 10.2.4) shall include at least one "ep" with a Transport Protocol Suite as defined in 2433
Table 19. 2434

– OCF Endpoint Locator – an address (e.g. IPv6 address + Port number) or an indirect identifier 2435
(e.g., DNS name) resolvable to an IP address, through which a message can be sent to the 2436
OCF Endpoint and in turn associated Device. The OCF Endpoint Locator for "coap" and "coaps" 2437
shall be specified as "IP address: port number". The OCF Endpoint Locator for "coap+tcp" or 2438
"coaps+tcp" shall be specified as "IP address: port number" or "DNS name: port number" or 2439
"DNS name" such that the DNS name shall be resolved to a valid IP address for the target 2440
Resource with a name resolution service (i.e., DNS). For the 3rd case, when the port number 2441
is omitted, the default port "5683" (and "5684") shall be assumed for "coap+tcp" (and for 2442
"coaps+tcp") scheme respectively as defined in IETF RFC 8323.Temporary addresses should 2443
not be used because OCF Endpoint Locators are for the purpose of accepting incoming 2444
sessions, whereas temporary addresses are for initiating outgoing sessions (IETF RFC 4941). 2445
Moreover, its inclusion in "/oic/res" can cause a privacy concern (IETF RFC 7721). 2446

– OCF Latency – the maximum latency in seconds [sec] that the Server may take to respond to 2447
a request. 2448

"ep" shall have as its value a URI (as specified in IETF RFC 3986) with the scheme component 2449
indicating Transport Protocol Suite and the authority component indicating the OCF Endpoint 2450
Locator. 2451

An "ep" example for "coap" and "coaps" is as illustrated: 2452

"ep": "coap://[fe80::b1d6]:1111"

An "ep" example for "coap+tcp" and "coaps+tcp" is as illustrated: 2453

"ep": "coap+tcp://[2001:db8:a::123]:2222"
"ep": "coap+tcp://foo.bar.com:2222"
"ep": "coap+tcp://foo.bar.com"

The current list of "ep" with corresponding Transport Protocol Suite is shown in Table 19: 2454

Copyright Open Connectivity Foundation, Inc. © 2016-2020. All rights Reserved 64

Table 19 – "ep" value for Transport Protocol Suite 2455

Transport Protocol
Suite

scheme OCF Endpoint
Locator

"ep" Value example

coap+udp+ip "coap" IP address + port
number

"coap://[fe80::b1d6]:1111"

coaps + udp + ip "coaps" IP address + port
number

"coaps://[fe80::b1d6]:1122"

coap + tcp + ip "coap+tcp" IP address + port
number
DNS name: port
number
DNS name

"coap+tcp://[2001:db8:a::123]:2222"
"coap+tcp://foo.bar.com:2222"
"coap+tcp://foo.bar.com"

coaps + tcp + ip "coaps+tcp" IP address + port
number
DNS name: port
number
DNS name

"coaps+tcp://[2001:db8:a::123]:2233"
"coaps+tcp://[2001:db8:a::123]:2233"
"coaps+tcp://foo.bar.com:2233"

 2456

10.2.3 "pri" 2457

When there are multiple OCF Endpoints, "pri" indicates the priority among them. 2458

"pri" shall be represented as a positive integer (e.g. "pri": 1) and the lower the value, the higher the 2459
priority. 2460

The default "pri" value is 1, i.e. when "pri" is not present, it shall be equivalent to "pri": 1. 2461

10.2.4 "lat" 2462

"lat" indicates the expected delay of the response. For example, when a Server implements a mode 2463
to improve battery performance; the Server can expose this value, thereby providing a Client with 2464
the ability to use this for the timeout on the connection. For example, the Thread "rx-off-when-idle" 2465
link mode is an implementation of a battery performance improvement mechanism. 2466

"lat" shall be represented as a positive integer (e.g. "lat": 240), and the value is specified in seconds. 2467

10.2.5 OCF Endpoint information in "eps" Parameter 2468

To carry OCF Endpoint information, a new Link Parameter "eps" is defined in 7.8.2.5.6. "eps" has 2469
an array of items as its value and each item represents OCF Endpoint information with key-value 2470
pairs, "ep", "pri", and "lat", of which "ep" is mandatory and "pri" and "lat" are optional. 2471

OCF Endpoint Information in an "eps" Parameter is valid for the target Resource of the Link, i.e., 2472
the Resource referred by "href" Parameter. OCF Endpoint information in an "eps" Parameter may 2473
be used to access other Resources on the Device, but such access is not guaranteed. 2474

A Client may resolve the "ep" value to an IP address for the target Resource, i.e., the address to 2475
access the Device which hosts the target Resource. A valid (transfer protocol) URI for the target 2476
Resource can be constructed with the scheme, host and port components from the "ep" value and 2477
the "path" component from the "href" value. 2478

Links with an "eps": 2479

{ 2480
 "anchor": "ocf://e61c3e6b-9c54-4b81-8ce5-f9039c1d04d9 ", 2481
 "href": "/myLightSwitch", 2482

Copyright Open Connectivity Foundation, Inc. © 2016-2020. All rights Reserved 65

 "rt": ["oic.r.switch.binary"], 2483
 "if": ["oic.if.a", "oic.if.baseline"], 2484
 "p": {"bm": 3}, 2485
 "eps": [2486
 {"ep": "coap://[fe80::b1d6]:1111", "pri": 2, "lat": 240}, 2487
 {"ep": "coaps://[fe80::b1d6]:1122"} 2488
] 2489
} 2490
 2491
{ 2492
 "anchor": "ocf://dc70373c-1e8d-4fb3-962e-017eaa863989", 2493
 "href": "/myTemperature", 2494
 "rt": ["oic.r.temperature"], 2495
 "if": ["oic.if.a", "oic.if.baseline"], 2496
 "p": {"bm": 3}, 2497
 "eps": [2498
 {"ep": "coap+tcp://foo.bar.com", "pri": 2, "lat": 240}, 2499
 {"ep": "coaps+tcp://foo.bar.com:1122"} 2500
] 2501
} 2502

In the previous example, "anchor" represents the hosting Device, "href", target Resource and "eps" 2503
the two OCF Endpoints for the target Resource. The (fully-qualified) URIs for the target Resource 2504
are as illustrated: 2505

coap://[fe80::b1d6]:1111/myLightSwitch 2506
coaps://[fe80::b1d6]:1122/myLightSwitch 2507
coap+tcp://foo.bar.com:5683/myTemperature 2508

coaps+tcp://foo.bar.com:1122/myTemperatureIf the target Resource of a Link requires a secure 2509
connection (e.g. CoAPS), "eps" Parameter shall be used to indicate the necessary information (e.g. 2510
port number) in OCF 1.0 payload. For optional backward compatibility with OIC 1.1, the "sec" and 2511
"port" shall only be used in OIC 1.1 payload. 2512

10.3 OCF Endpoint discovery 2513

10.3.1 Introduction 2514

 OCF Endpoint discovery is defined as the process for a Client to acquire the OCF Endpoint 2515
information for Device or Resource. 2516

10.3.2 Implicit discovery 2517

If a Device is the source of a CoAP message (e.g. "/oic/res" response), the source IP address and 2518
port number may be combined to form the OCF Endpoint Locator for the Device. Along with a 2519
"coap" scheme and default "pri" value, OCF Endpoint information for the Device may be constructed. 2520

In other words, a "/oic/res" response message with CoAP may implicitly carry the OCF Endpoint 2521
information of the responding Device and in turn all the hosted Resources, which may be accessed 2522
with the same transfer protocol of CoAP. In the absence of an "eps" Parameter, a Client shall be 2523
able to utilize implicit discovery to access the target Resource. 2524

10.3.3 Explicit discovery with "/oic/res" response 2525

OCF Endpoint information may be explicitly indicated with the "eps" Parameter of the Links in 2526
"/oic/res". 2527

As in 10.3.2, an "/oic/res" response may implicitly indicate the OCF Endpoint information for some 2528
Resources hosted by the responding Device. However implicit discovery, i.e., inference of OCF 2529
Endpoint information from CoAP response message, may not work for some Resources on the 2530
same Device. For example, some Resources may allow only secure access via CoAPS which 2531
requires the "eps" Parameter to indicate the port number. Moreover "/oic/res" may expose a target 2532
Resource which belongs to another Device. 2533

Copyright Open Connectivity Foundation, Inc. © 2016-2020. All rights Reserved 66

When the OCF Endpoint for a target Resource of a Link cannot be implicitly inferred, the "eps" 2534
Parameter shall be included to provide explicit OCF Endpoint information with which a Client can 2535
access the target Resource. In the presence of the "eps" Parameter, a Client shall be able to utilize 2536
it to access the target Resource. For "coap" and "coaps", a Client may use the IP address in the 2537
"ep" value in the "eps" Parameter to access the target Resource. For "coap+tcp" and "coaps+tcp", 2538
a Client may use the IP address in the "eps" Parameter or resolve the DNS name in the "eps" 2539
Parameter to acquire a valid IP address for the target Resource. If "eps" Parameter omits the port 2540
number, then the default port "5683" (and "5684") shall be assumed for "coap+tcp" (and 2541
"coaps+tcp") scheme as defined in IETF RFC 8323.To access the target Resource of a Link, a 2542
Client may use the "eps" Parameter in the Link, if it is present and fall back on implicit discovery if 2543
not. 2544

This is an example of an "/oic/res" response from a Device having the "eps" Parameter in Links. 2545

 2546
[2547
 { 2548
 "anchor": "ocf://e61c3e6b-9c54-4b81-8ce5-f9039c1d04d9", 2549
 "href": "/oic/res", 2550
 "rel": "self", 2551
 "rt": ["oic.wk.res"], 2552
 "if": ["oic.if.ll", "oic.if.baseline"], 2553
 "p": {"bm": 3}, 2554
 "eps": [2555
 {"ep": "coap://[2001:db8:a::b1d4]:55555"}, 2556
 {"ep": "coaps://[2001:db8:a::b1d4]:11111"} 2557
] 2558
 }, 2559
 { 2560
 "anchor": "ocf://e61c3e6b-9c54-4b81-8ce5-f9039c1d04d9", 2561
 "href": "/oic/d", 2562
 "rt": ["oic.wk.d"], 2563
 "if": ["oic.if.r", "oic.if.baseline"], 2564
 "p": {"bm": 3}, 2565
 "eps": [2566
 {"ep": "coap://[2001:db8:a::b1d4]:55555"}, 2567
 {"ep": "coaps://[2001:db8:a::b1d4]:11111"} 2568
] 2569
 }, 2570
 { 2571
 "anchor": "ocf://e61c3e6b-9c54-4b81-8ce5-f9039c1d04d9", 2572
 "href": "/oic/p", 2573
 "rt": ["oic.wk.p"], 2574
 "if": ["oic.if.r", "oic.if.baseline"], 2575
 "p": {"bm": 3}, 2576
 "eps": [2577
 {"ep": "coap://[2001:db8:a::b1d4]:55555"}, 2578
 {"ep": "coaps://[2001:db8:a::b1d4]:11111"} 2579
] 2580
 }, 2581
 { 2582
 "anchor": "ocf://e61c3e6b-9c54-4b81-8ce5-f9039c1d04d9", 2583
 "href": "/oic/sec/doxm", 2584
 "rt": ["oic.r.doxm"], 2585
 "if": ["oic.if.baseline"], 2586
 "p": {"bm": 1}, 2587
 "eps": [2588
 {"ep": "coap://[2001:db8:a::b1d4]:55555"}, 2589
 {"ep": "coaps://[2001:db8:a::b1d4]:11111"} 2590
] 2591
 }, 2592
 { 2593

Copyright Open Connectivity Foundation, Inc. © 2016-2020. All rights Reserved 67

 "anchor": "ocf://e61c3e6b-9c54-4b81-8ce5-f9039c1d04d9", 2594
 "href": "/oic/sec/pstat", 2595
 "rt": ["oic.r.pstat"], 2596
 "if": ["oic.if.baseline"], 2597
 "p": {"bm": 1}, 2598
 "eps": [2599
 {"ep": "coaps://[2001:db8:a::b1d4]:11111"} 2600
] 2601
 }, 2602
 { 2603
 "anchor": "ocf://e61c3e6b-9c54-4b81-8ce5-f9039c1d04d9", 2604
 "href": "/oic/sec/cred", 2605
 "rt": ["oic.r.cred"], 2606
 "if": ["oic.if.baseline"], 2607
 "p": {"bm": 1}, 2608
 "eps": [2609
 {"ep": "coaps://[2001:db8:a::b1d4]:11111"} 2610
] 2611
 }, 2612
 { 2613
 "anchor": "ocf://e61c3e6b-9c54-4b81-8ce5-f9039c1d04d9", 2614
 "href": "/oic/sec/acl2", 2615
 "rt": ["oic.r.acl2"], 2616
 "if": ["oic.if.baseline"], 2617
 "p": {"bm": 1}, 2618
 "eps": [2619
 {"ep": "coaps://[2001:db8:a::b1d4]:11111"} 2620
] 2621
 }, 2622
 { 2623
 "anchor": "ocf://e61c3e6b-9c54-4b81-8ce5-f9039c1d04d9", 2624
 "href": "/myIntrospection", 2625
 "rt": ["oic.wk.introspection"], 2626
 "if": ["oic.if.r", "oic.if.baseline"], 2627
 "p": {"bm": 3}, 2628
 "eps": [2629
 {"ep": "coaps://[2001:db8:a::b1d4]:11111"} 2630
] 2631
 }, 2632
 { 2633
 "anchor": "ocf://dc70373c-1e8d-4fb3-962e-017eaa863989", 2634
 "href": "/myLight", 2635
 "rt": ["oic.r.switch.binary"], 2636
 "if": ["oic.if.a", "oic.if.baseline"], 2637
 "p": {"bm": 3}, 2638
 "eps": [2639
 {"ep": "coaps://[2001:db8:a::b1d4]:22222"} 2640
] 2641
 } 2642
] 2643
 2644

The exact format of the "/oic/res" response and a way for a Client to acquire a "/oic/res" response 2645
message is specified in Annex A and 11.2.4 respectively. 2646

11 Functional interactions 2647

11.1 Introduction 2648

The functional interactions between a Client and a Server are described in 11.1 through 11.4 2649
respectively. The functional interactions use CRUDN messages (clause 8) and include Discovery, 2650
Notification, and Device management. These functions require support of core defined Resources 2651
as defined in Table 20. 2652

Copyright Open Connectivity Foundation, Inc. © 2016-2020. All rights Reserved 68

Table 20 – List of Core Resources 2653

Pre-defined URI Resource Name Resource Type Related Functional
Interaction

Mandatory

"/oic/res" Default "oic.wk.res" Discovery Yes

"/oic/p" Platform "oic.wk.p" Discovery Yes

"/oic/d" Device "oic.wk.d" Discovery Yes

Implementation
defined

Introspection "oic.wk.introspection" Introspection Yes

 2654

11.2 Resource discovery 2655

11.2.1 Introduction 2656

Discovery is a function which enables OCF Endpoint discovery as well as Resource based 2657
discovery. OCF Endpoint discovery is described in detail in clause 10. This clause mainly describes 2658
the Resource based discovery. 2659

11.2.2 Resource based discovery: mechanisms 2660

11.2.2.1 Overview 2661

As part of discovery, a Client may find appropriate information about other OCF peers. This 2662
information could be instances of Resources, Resource Types or any other information represented 2663
in the Resource model that an OCF peer would want another OCF peer to discover. 2664

At the minimum, Resource based discovery uses the following: 2665

– A Resource to enable discovery shall be defined. The representation of that Resource shall 2666
contain the information that can be discovered. 2667

– The Resource to enable discovery shall be specified and commonly known a-priori. A Device 2668
for hosting the Resource to enable discovery shall be identified. 2669

– A mechanism and process to publish the information that needs to be discovered with the 2670
Resource to enable discovery. 2671

– A mechanism and process to access and obtain the information from the Resource to enable 2672
discovery. A query may be used in the request to limit the returned information. 2673

– A scope for the publication. 2674

– A scope for the access. 2675

– A policy for visibility of the information. 2676

Depending on the choice of the base aspects, the Framework defines three Resource based 2677
discovery mechanisms: 2678

– Direct discovery, where the Resources are published locally at the Device hosting the 2679
Resources and are discovered through peer inquiry. 2680

– Indirect discovery, where Resources are published at a third party assisting with the discovery 2681
and peers publish and perform discovery against the Resource to enable discovery on the 2682
assisting 3rd party. 2683

– Advertisement discovery, where the Resource to enable discovery is hosted local to the initiator 2684
of the discovery inquiry but remote to the Devices that are publishing discovery information. 2685

A Device shall support direct discovery. 2686

Copyright Open Connectivity Foundation, Inc. © 2016-2020. All rights Reserved 69

11.2.2.2 Direct discovery 2687

In direct discovery, 2688

– The Device that is providing the information shall host the Resource to enable discovery. 2689

– The Device publishes the information available for discovery with the local Resource to enable 2690
discovery (i.e. local scope). 2691

– Clients interested in discovering information about this Device shall issue RETRIEVE requests 2692
directly to the Resource. The request may be made as a unicast or multicast. The request may 2693
be generic or may be qualified or limited by using appropriate queries in the request. 2694

– The Server Device that receives the request shall send a response with the discovered 2695
information directly back to the requesting Client Device. 2696

– The information that is included in the request is determined by the policies set for the Resource 2697
to be discovered locally on the responding Device. 2698

11.2.3 Resource based discovery: Finding information 2699

The discovery process (Figure 10) is initiated as a RETRIEVE request to the Resource to enable 2700
discovery. The request may be sent to a single Device (as in a Unicast) or to multiple Devices (as 2701
in Multicast). The specific mechanisms used to do Unicast or Multicast are determined by the 2702
support in the data connectivity layer. The response to the request has the information to be 2703
discovered based on the policies for that information. The policies can determine which information 2704
is shared, when and to which requesting agent. The information that can be discovered can be 2705
Resources, types, configuration and many other standards or custom aspects depending on the 2706
request to appropriate Resource and the form of request. Optionally the requester may narrow the 2707
information to be returned in the request using query parameters in the URI query. 2708

 2709

Figure 10 – Resource based discovery: Finding information 2710

 2711

Discovery Resources 2712

The following Core Resources shall be implemented on all Devices to support discovery: 2713

– "/oic/res" for discovery of Resources. 2714

– "/oic/p" for discovery of Platform. 2715

– "/oic/d" for discovery of Device information. 2716

Devices shall expose each of "/oic/res", "/oic/d", and "/oic/p" via an unsecured OCF Endpoint. 2717
Further details for these mandatory Core Resources are described in Table 21. 2718

Platform Resource 2719

Copyright Open Connectivity Foundation, Inc. © 2016-2020. All rights Reserved 70

The OCF recognizes that more than one instance of Device may be hosted on a single Platform. 2720
Clients need a way to discover and access the information on the Platform. The Core Resource, 2721
"/oic/p" exposes Platform specific Properties. All instances of Device on the same Platform shall 2722
have the same values of any Properties exposed (i.e. a Device may choose to expose optional 2723
Properties within "/oic/p" but when exposed the value of that Property should be the same as the 2724
value of that Property on all other Devices on that Platform). 2725

Device Resource 2726

The Device Resource shall have the pre-defined URI "/oic/d", the Device Resource shall expose 2727
the Properties pertaining to a Device as defined in Table 24. The Device Resource shall have a 2728
default Resource Type that helps in bootstrapping the interactions with the Device (the default type 2729
is described in Table 21).The Device Resource may have one or more Resource Type(s) that are 2730
specific to the Device in addition to the default Resource Type or if present overriding the default 2731
Resource Type. The base Resource Type "oic.wk.d" defines the Properties that shall be exposed 2732
by all Devices. The Device specific Resource Type(s) exposed are dependent on the class of 2733
Device (e.g. air conditioner, smoke alarm, etc. Since all the Resource Types of "/oic/d" are not 2734
known a priori, the Resource Type(s) of "/oic/d" are determined by discovery through the Core 2735
Resource "/oic/res". 2736

Table 21 – Mandatory discovery Core Resources 2737

Pre-defined
URI

Resource
Type Title

Resource
Type ID

("rt" value)

OCF Interfaces Description Related
Functional
Interaction

"/oic/res" Default "oic.wk.res"

"oic.if.ll",
"oic.if.b",
"oic.if.baseline"

The Resource through which the
corresponding Server is
discovered and introspected for
available Resources.
"/oic/res" shall expose the
Resources that are discoverable
on a Device. When a Server
receives a RETRIEVE request
targeting "/oic/res" (e.g., "GET
/oic/res"), it shall respond with the
links list of all the Discoverable
Resources of itself. The "/oic/d"
and "/oic/p" are Discoverable
Resources, hence their links are
included in "/oic/res" response.
The Properties exposed by
"/oic/res" are listed in Table 22.

Discovery

"/oic/p" Platform "oic.wk.p" "oic.if.r" The Discoverable Resource
through which Platform specific
information is discovered.
The Properties exposed by
"/oic/p" are listed in Table 25

Discovery

"/oic/d" Device "oic.wk.d"
and/or one or
more Device
Specific
Resource Type
ID(s)

"oic.if.r" The discoverable via "/oic/res"
Resource which exposes
Properties specific to the Device
instance.
The Properties exposed by
"/oic/d" are listed in Table 24.

Discovery

Table 22 defines "oic.wk.res" Resource Type. 2738

Copyright Open Connectivity Foundation, Inc. © 2016-2020. All rights Reserved 71

Table 22 – "oic.wk.res" Resource Type definition 2739

Property
title

Property
name

Value
type

Value
rule

Unit Access
mode

Mandatory Description

Name "n" string N/A N/A R No Human-friendly name
defined by the vendor

Links "links" array See
7.8.2

N/A R Yes The array of Links
describes the URI,
supported Resource
Types and OCF
Interfaces, and access
policy.

Security
Domin
UUID

"sduuid" string uuid N/A R No Unique identifier for the
Security Domain. This
value shall be the same
value (i.e. mirror) as the
"sdi.uuid" Property as
defined in
ISO/IEC 30118-2:2018.
It shall be exposed if
the "sdi.priv" Property
is set to "false", and
shall not be exposed if
the "sdi.priv" Property
is set to "true".

Security
Domain
Name

"sdname" string N/A N/A R No Human-friendly name
for the Security
Domain. This value
shall be the same value
(i.e. mirror) as the
"sdi.name" Property as
defined in
ISO/IEC 30118-2:2018.
It shall be exposed if
the "sdi.priv" Property
is set to "false", and
shall not be exposed if
the "sdi.priv" Property
is set to "true".

Note: The "n", "sduuid", and "sdname" Property values for the "oic.wk.res" Resource Type are only in the response 2740
payload when used with the "oic.if.baseline" OCF Interface (i.e., RETRIEVE /oic/res?if="oic.if.baseline"). 2741

A Device shall support CoAP based discovery as the baseline discovery mechanism (see 11.2.5). 2742

The "/oic/res" shall list all Resources that are indicated as discoverable (see 11.2). Also the 2743
following architecture Resource Types shall be listed: 2744

– Introspection Resource indicated with an "rt" value of "oic.wk.introspection". 2745

– "/oic/p" indicated with an "rt" value of "oic.wk.p". 2746

– "/oic/d" indicated with an "rt" value of "oic.wk.d" 2747

– "/oic/sec/doxm" indicated with an "rt" value of "oic.r.doxm" as defined in ISO/IEC 30118-2:2018. 2748

– "/oic/sec/pstat" indicated with an "rt" value of "oic.r.pstat" as defined in ISO/IEC 30118-2:2018. 2749

– "/oic/sec/acl2" indicated with an "rt" value of "oic.r.acl2" as defined in ISO/IEC 30118-2:2018. 2750

– "/oic/sec/cred" indicated with an "rt" value of "oic.r.cred" as defined in ISO/IEC 30118-2:2018. 2751

Conditionally required: 2752

– "/oic/res" with an "rt" value of "oic.wk.res" as self-reference, on the condition that "oic/res" has 2753
to signal that it is Observable by a Client. 2754

Copyright Open Connectivity Foundation, Inc. © 2016-2020. All rights Reserved 72

– if the Device supports batch retrieval of "/oic/res" then "oic.if.b" shall be included in the "if" 2755
Property of "/oic/res". 2756

– if the Device supports batch retrieval there shall be a self-reference that includes an "if" Link 2757
Parameter containing "oic.if.b"; the self-reference shall expose a secure OCF Endpoint. 2758

The Introspection Resource is only applicable for Devices that host Vertical Resource Types (e.g. 2759
"oic.r.switch.binary") or vendor-defined Resource Types. Devices that only host Resources 2760
required to onboard the Device as a Client do not have to implement the Introspection Resource. 2761

Table 23 provides an OCF registry for protocol schemes. 2762

Table 23 – Protocol scheme registry 2763

SI Number Protocol

1 "coap"

2 "coaps"

3 "http"

4 "https"

5 "coap+tcp"

6 "coaps+tcp"

 2764

NOTE The discovery of an OCF Endpoint used by a specific protocol is out of scope. The mechanism used by a Client 2765
to form requests in a different messaging protocol other than discovery is out of scope. 2766

The following applies to the use of "/oic/d": 2767

– A vertical may choose to extend the list of Properties defined by the Resource Type "oic.wk.d". 2768
In that case, the vertical shall assign a new Device Type specific Resource Type ID. The 2769
mandatory Properties defined in Table 24 shall always be present. 2770

– A Device may choose to expose a separate, Discoverable Resource with its Resource Type ID 2771
set to a Device Type. In this case the Resource is equivalent to an instance of "oic.wk.d" and 2772
adheres to the definition thereof. As such the Resource shall at a minimum expose the 2773
mandatory Properties of "oic.wk.d". In the case where the Resource tagged in this manner is 2774
defined to be an instance of a Collection in accordance with 7.8.3 then the Resources that are 2775
part of that Collection shall at a minimum include the Resource Types mandated for the Device 2776
Type. 2777

Table 24 "oic.wk.d" Resource Type definition defines the base Resource Type for the "/oic/d" 2778
Resource. 2779

Table 24 – "oic.wk.d" Resource Type definition 2780

Property
title

Property
name

Value
type

Valu
e

rule

Uni
t

Acces
s

mode

Mandator
y

Description

(Device)
Name

"n" "string: N/A N/A R Yes Human friendly name defined by
the vendor. In the presence of "n"
Property of "/oic/con", both have
the same Property Value. When "n"
Property Value of "/oic/con" is
modified, it shall be reflected to "n"
Property Value of "/oic/d".

Spec
Version

"icv" "string
"

N/A N/A R Yes The specification version of this
document that a Device is
implemented to. The syntax shall

Copyright Open Connectivity Foundation, Inc. © 2016-2020. All rights Reserved 73

be "ocf.<major>.<minor>.<sub-
version>" where <major>, <minor,
and <sub-version> are the major,
minor and sub-version numbers of
this document respectively. The
specification version number (i.e.,
<major>.<minor>.<sub-version>)
shall be obtained from the title page
of this document (e.g. "2.0.5"). An
example of the string value for this
Property is "ocf.2.0.5".

Device ID "di" "uuid" N/A N/A R Yes Unique identifier for Device. This
value shall be the same value (i.e.
mirror) as the "doxm.deviceuuid"
Property as defined in
ISO/IEC 30118-2:2018. Handling
privacy-sensitivity for the "di"
Property, refer to clause 13.16 in
ISO/IEC 30118-2:2018.

Data Model
Version

"dmv" "csv" N/A N/A R Yes Spec version of the Resource
specification to which this Device
data model is implemented; if
implemented against a Vertical
specific Device specification(s),
then the Spec version of the vertical
specification this Device model is
implemented to. The syntax is a
comma separated list of
<res>.<major>.<minor>.<sub-
version> or
<vertical>.<major>.<minor>.<sub-
version>. <res> is the string
"ocf.res" and <vertical> is the name
of the vertical defined in the
Vertical specific Resource
specification. The <major>,
<minor>, and <sub-version> are the
major, minor and sub-version
numbers of the specification
respectively. One entry in the csv
string shall be the applicable
version of the Resource Type
Specification for the Device (e.g.
"ocf.res.1.0.0"). If applicable,
additional entry(-ies) in the csv
shall be the vertical(s) being
realized (e.g. "ocf.sh.1.0.0"). This
value may be extended by the
vendor. The syntax for extending
this value, as a comma separated
entry, by the vendor shall be by
adding
x.<Domain_Name>.<vendor_string>
. For example, "ocf.res.1.0.0,
ocf.sh.1.0.0, x.com.example.string",
The order of the values in the
comma separated string can be in
any order (i.e. no prescribed order).
This Property shall not exceed 256
octets.

Permanent
Immutable
ID

"piid" "uuid" N/A N/A R Yes A unique and immutable Device
identifier. A Client can detect that a
single Device supports multiple
communication protocols if it
discovers that the Device uses a
single Permanent Immutable ID

Copyright Open Connectivity Foundation, Inc. © 2016-2020. All rights Reserved 74

value for all the protocols it
supports. Handling privacy-
sensitivity for the "piid" Property,
refer to clause 13.16 in
ISO/IEC 30118-2:2018.

Localized
Descriptions

"ld" "array" N/A N/A R No Detailed description of the Device,
in one or more languages. This
Property is an array of objects
where each object has a "language"
field (containing an IETF RFC 5646
language tag) and a "value" field
containing the Device description in
the indicated language.

Software
Version

"sv" "string
"

N/A N/A R No Version of the Device software.

Manufacture
r Name

"dmn" "array" N/A N/A R No Name of manufacturer of the
Device, in one or more languages.
This Property is an array of objects
where each object has a "language"
field (containing an IETF RFC 5646
language tag) and a "value" field
containing the manufacturer name
in the indicated language.

Model
Number

"dmno" "string
"

N/A N/A R No Model number as designated by
manufacturer.

Ecosystem
Name

"econame" “string
”

enum N/A R No This is the name of ecosystem that
a Bridged Device belongs to. If a
Device has "oic.d.virtual" as one of
Resource Type values ("rt") the
Device shall contain this Property,
otherwise this Property shall not be
included.
This Property has enumeration
values: ["BLE", "oneM2M", "UPlus",
"Zigbee", "Z-Wave"].

Version of
Ecosystem

"ecoversion
"

“string
”

N/A N/A R No This is the version of ecosystem
that a Bridged Device belongs to. If
a Device has "oic.d.virtual" as one
of its Resource Type values ("rt")
the Device should contain this
Property, otherwise this Property
shall not be included.

Table 25 defines "oic.wk.p" Resource Type. 2781

Table 25 – "oic.wk.p" Resource Type definition 2782

Property title Property
name

Value type Value
rule

Unit Access
mode

Mandatory Description

Platform ID "pi" "uuid" N/A N/A R Yes Unique identifier for the
physical Platform
(UUID); this shall be a
UUID in accordance
with IETF RFC 4122. It
is recommended that
the UUID be created
using the random
generation scheme
(version 4 UUID)
specific in the RFC.
Handling privacy-
sensitivity for the "pi"
Property, refer to clause

Copyright Open Connectivity Foundation, Inc. © 2016-2020. All rights Reserved 75

13.16 in ISO/IEC 30118-
2:2018.

Manufacturer
Name

"mnmn" "string" N/A N/A R Yes Name of manufacturer.

Manufacturer
Details Link

"mnml" "uri" N/A N/A R No Reference to
manufacturer,
represented as a URI.

Model
Number

"mnmo" "string" N/A N/A R No Model number as
designated by
manufacturer.

Date of
Manufacture

"mndt" "date" N/A Time R No Manufacturing date of
Platform.

Serial
number

"mnsel "string" N/A s R No Serial number of the
Platform, may be unique
for each Platform of the
same model number.

Platform
Version

"mnpv" "string" N/A N/A R No Version of Platform –
string (defined by
manufacturer).

OS Version "mnos" "string" N/A N/A R No Version of Platform
resident OS – string
(defined by
manufacturer).

Hardware
Version

"mnhw" "string" N/A N/A R No Version of Platform
hardware.

Firmware
version

"mnfv" "string" N/A N/A R No Version of Platform
firmware.

Support link "mnsl" "uri" N/A N/A R No URI that points to
support information from
manufacturer.

SystemTime "st" "date-time" N/A N/A R No Reference time for the
Platform.

Vendor ID "vid" "string" N/A N/A R No Vendor defined string
for the Platform. The
string is freeform and up
to the vendor on what
text to populate it.

Network
Connectivity
Type

"mnnct" "array" array
of
integer

 R No An array of integer
where each integer
indicates the network
connectivity type based
on IANAIfType value as
defined by IANA ifType-
MIB Definitions, e.g.,
[71, 259] which
represents Wi-Fi and
Zigbee.

11.2.4 Resource discovery using "/oic/res" 2783

11.2.4.1 General Requirements 2784

Discovery using "/oic/res" is the default discovery mechanism that shall be supported by all Devices. 2785
General requirements for use of this mechanism are as follows: 2786

– Every Device updates its local "/oic/res" with the Resources that are discoverable (see 7.3.2.2). 2787
Every time a new Resource is instantiated on the Device and if that Resource is discoverable 2788
by a remote Device then that Resource is published with the "/oic/res" Resource that is local to 2789
the Device (as the instantiated Resource). 2790

Copyright Open Connectivity Foundation, Inc. © 2016-2020. All rights Reserved 76

After performing discovery using "/oic/res", Clients may discover additional details about the Device 2791
by performing discovery using "/oic/p", "/oic/d", etc. If a Client already knows about the Device it 2792
may discover using other Resources without going through the discovery of "/oic/res" 2793

11.2.4.2 Discovery using "oic.if.ll" (Default OCF Interfgace for "/oic/res") 2794

If a Client does not explicitly include an OCF Interface as a query parameter in the request to 2795
"/oic/res" then the OCF Interface is taken to be "oic.if.ll" as that is the Default OCF Interface for 2796
"/oic/res". The requirements in this clause are thus applied. The requirements in this clause also 2797
apply if an OCF Interface of "oic.if.ll" is explicitly requested by inclusion as a query parameter in 2798
the RETRIEVE operation. 2799

– A Device wanting to discover Resources or Resource Types on one or more remote Devices 2800
makes a RETRIEVE request to the "/oic/res" on the remote Devices. This request may be sent 2801
multicast (default) or unicast if only a specific host is to be probed. The RETRIEVE request may 2802
optionally be restricted using appropriate clauses in the query portion of the request. Queries 2803
may select based on Resource Types, OCF Interfaces, or Properties. 2804

– The query applies to the representation of the Resources. "/oic/res" is the only Resource whose 2805
representation has "rt". So "/oic/res" is the only Resource that can be used for Multicast 2806
discovery at the transport protocol layer. 2807

– The Device receiving the RETRIEVE request responds with a list of Resources, the Resource 2808
Type of each of the Resources and the OCF Interfaces that each Resource supports. 2809
Additionally, information on the policies active on the Resource can also be sent. The policy 2810
supported includes Observability and discoverability. 2811

– The receiving Device may do a deeper discovery based on the Resources returned in the 2812
request to "/oic/res". 2813

The information that is returned on discovery against "/oic/res" is at the minimum: 2814

– The URI (relative or fully qualified URL) of the Resource. 2815

– The Resource Type(s) of each Resource. More than one Resource Type may be returned if the 2816
Resource enables more than one type. To access Resources of multiple types, the specific 2817
Resource Type that is targeted shall be specified in the request. 2818

– The OCF Interfaces supported by that Resource. Multiple OCF Interfaces may be returned. To 2819
access a specific OCF Interface that OCF Interface shall be specified in the request. If the OCF 2820
Interface is not specified, then the Default OCF Interface is assumed. 2821

For Clients that do include the OCF-Accept-Content-Format-Version option, an "/oic/res" response 2822
includes an array of Links to conform to IETF RFC 6690. Each Link shall use an "eps" Parameter 2823
to provide the information for an encrypted connection and carry "anchor" of the value OCF URI 2824
where the authority component of <deviceID> indicates the Device hosting the target Resource. 2825

The OpenAPI 2.0 file for discovery using "/oic/res" is described in Annex A. Also refer to clause 10 2826
(OCF Endpoint discovery) for details of Multicast discovery using "/oic/res" on a CoAP transport. 2827

An example Device might return the following to Clients that request with the Content Format of 2828
"application/vnd.ocf+cbor" in Accept Option: 2829

[2830
 { 2831
 "href": "/oic/res", 2832
 "anchor": "ocf://dc70373c-1e8d-4fb3-962e-017eaa863989/oic/res", 2833
 "rel": "self", 2834
 "rt": ["oic.wk.res"], 2835
 "if": ["oic.if.ll", "oic.if.baseline"], 2836
 "p": {"bm": 3}, 2837
 "eps": [{"ep": "coap://[fe80::b1d6]:44444"}] 2838
 }, 2839

Copyright Open Connectivity Foundation, Inc. © 2016-2020. All rights Reserved 77

 { 2840
 "href": "/oic/p", 2841
 "anchor": "ocf://dc70373c-1e8d-4fb3-962e-017eaa863989, 2842
 "rt": ["oic.wk.p"], 2843
 "if": ["oic.if.r", "oic.if.baseline"], 2844
 "p": {"bm": 3}, 2845
 "eps": [{"ep": "coap://[fe80::b1d6]:44444"}, 2846
 {"ep": "coaps://[fe80::b1d6]:11111"} 2847
] 2848
 }, 2849
 { 2850
 "href": "/oic/d", 2851
 "anchor": "ocf://dc70373c-1e8d-4fb3-962e-017eaa863989, 2852
 "rt": ["oic.wk.d"], 2853
 "if": ["oic.if.r", "oic.if.baseline"], 2854
 "p": {"bm": 3}, 2855
 "eps": [{"ep": "coap://[fe80::b1d6]:44444"}, 2856
 {"ep": "coaps://[fe80::b1d6]:11111"} 2857
] 2858
 }, 2859
 { 2860
 "href": "/myLightSwitch", 2861
 "anchor": "ocf://dc70373c-1e8d-4fb3-962e-017eaa863989, 2862
 "rt": ["oic.r.switch.binary"], 2863
 "if": ["oic.if.a", "oic.if.baseline"], 2864
 "p": {"bm": 3}, 2865
 "eps": [{"ep": "coap://[fe80::b1d6]:44444"}, 2866
 {"ep": "coaps://[fe80::b1d6]:11111"} 2867
] 2868
 } 2869
] 2870

11.2.5 Multicast discovery using "/oic/res" 2871

Generic requirements for use of CoAP multicast are provided in clause 12.2.9. Devices shall 2872
support use of CoAP multicast to allow retrieving the "/oic/res" Resource from an unsecured OCF 2873
Endpoint on the Device. Clients may support use of CoAP multicast to retrieve the "/oic/res" 2874
Resource from other Devices. The CoAP multicast retrieval of "/oic/res" supports filtering Links 2875
based on the "rt" Property in the Links: 2876

– If the discovery request is intended for a specific Resource Type including as part of a multi-2877
value Resource Type, the query parameter "rt" shall be included in the request (see 6.2.2) with 2878
its value set to the desired Resource Type. Only Devices hosting the Resource Type shall 2879
respond to the discovery request. 2880

– When the "rt" query parameter is omitted, all Devices shall respond to the discovery request. 2881

11.3 Notification 2882

11.3.1 Overview 2883

A Server shall support NOTIFY operation to enable a Client to request and be notified of desired 2884
states of one or more Resources in an asynchronous manner. 11.3.2 specifies the Observe 2885
mechanism in which updates are delivered to the requester. 2886

11.3.2 Observe 2887

11.3.2.1 Overview 2888

In the Observe mechanism the Client utilizes the RETRIEVE operation to require the Server for 2889
updates in case of Resource state changes. The Observe mechanism consists of five steps which 2890
are depicted in Figure 11. 2891

NOTE the Observe mechanism can only be used for a resource with a Property of Observable (see 7.3.2.2). 2892

Copyright Open Connectivity Foundation, Inc. © 2016-2020. All rights Reserved 78

 2893

 2894

 2895

Figure 11 – Observe Mechanism 2896

11.3.2.2 RETRIEVE request with Observe indication 2897

The Client transmits a RETRIEVE request message to the Server to request updates for the 2898
Resource on the Server if there is a state change. The RETRIEVE request message carries the 2899
following parameters: 2900

– fr: Unique identifier of the Client. 2901

– to: Resource that the Client is requesting to Observe. 2902

– ri: Identifier of the RETRIEVE operation. 2903

– op: RETRIEVE. 2904

– obs: Indication for Observe operation. 2905

11.3.2.3 Processing by the Server 2906

Following the receipt of the RETRIEVE request, the Server may validate if the Client has the 2907
appropriate rights for the requested operation and the Properties are readable and Observable. If 2908
the validation is successful, the Server caches the information related to the Observe request. The 2909
Server caches the value of the ri parameter from the RETRIEVE request for use in the initial 2910
response and future responses in case of a change of state. 2911

11.3.2.4 RETRIEVE response with Observe indication 2912

The Server shall transmit a RETRIEVE response message in response to a RETRIEVE request 2913
message from a Client. If validation succeeded, the response includes an Observe indication. If 2914
not, the Observe indication is omitted from the response which signals to the requesting Client that 2915
registration for notification was not allowed. 2916

The RETRIEVE response message shall include the following parameters: 2917

– fr: Unique identifier of the Server. 2918

– to: Unique identifier of the Client. 2919

– ri: Identifier included in the RETRIEVE operation. 2920

Copyright Open Connectivity Foundation, Inc. © 2016-2020. All rights Reserved 79

– cn: Information Resource representation as requested by the Client. 2921

– rs: The result of the RETRIEVE operation. 2922

– obs: Indication that the response is made to an Observe operation. 2923

11.3.2.5 Resource monitoring by the Server 2924

The Server shall monitor the state the Resource identified in the Observe request from the Client. 2925
Anytime there is a change in the state of the Observed Resource, the Server sends another 2926
RETRIEVE response with the Observe indication. The mechanism does not allow the client to 2927
specify any bounds or limits which trigger a notification, the decision is left entirely to the server. 2928

11.3.2.6 Additional RETRIEVE responses with Observe indication 2929

The Server shall transmit updated RETRIEVE response messages following Observed changes in 2930
the state of the Resources indicated by the Client. The RETRIEVE response message shall include 2931
the parameters listed in 11.3.2.4. 2932

11.3.2.7 Cancelling Observe 2933

The Client can explicitly cancel Observe by sending a RETRIEVE request without the Observe 2934
indication field to the same Resource on the Server which it was Observing. For certain protocol 2935
mappings, the Client may also be able to cancel an Observe by ceasing to respond to the 2936
RETRIEVE responses. 2937

11.4 Introspection 2938

11.4.1 Overview 2939

Introspection is a mechanism to announce the capabilities of Resources hosted on the Device. 2940

The intended usage of the Introspection Device Data (IDD) is to enable dynamic Clients e.g. Clients 2941
that can use the IDD) to generate dynamically a UI or dynamically create translations of the hosted 2942
Resources to another eco-system. Other usages of Introspection is that the information can be 2943
used to generate Client code. The IDD is designed to augment the existing data already on the 2944
wire. This means that existing mechanisms need to be used to get a full overview of what is 2945
implemented in the Device. For example, the IDD does not convey information about Observability, 2946
since that is already conveyed with the "p" Property on the Links in "/oic/res" (see 7.8.2.5.3). 2947

The IDD is recommended to be conveyed as static data. Meaning that the data does not change 2948
during the uptime of a Device. However, when the IDD is not static, the Introspection Resource 2949
shall be Observable and the url Property Value of "oic.wk.introspection" Resource shall change to 2950
indicate that the IDD is changed. 2951

The IDD describes the Resources that make up the Device. For the complete list of included 2952
Resources see Table 20. The IDD is described as a OpenAPI 2.0 in JSON format file. The text in 2953
the following bulleted list contains OpenAPI 2.0 terms, such as paths, methods etc. The OpenAPI 2954
2.0 file shall contain the description of the Resources: 2955

– The IDD will use the HTTP syntax, e.g., define the CRUDN operation as HTTP methods and 2956
use the HTTP status codes. 2957

– The IDD does not have to define all the status codes that indicate an error situation. 2958

– The IDD does not have to define a schema when the status code indicates that there is no 2959
payload (see HTTP status code 204 as an example). 2960

– The paths (URLs) of the Resources in the IDD shall be without the OCF Endpoint description, 2961
e.g. it shall not be a fully-qualified URL but only the relative path from the OCF Endpoint, aka 2962
the "href". The relative path may include a query parameter (e.g. "?if=oic.if.ll"), in such cases 2963
the text following (and including) the "?" delimiter shall be removed before equating to the "href" 2964
that is conveyed by "/oic/res". 2965

Copyright Open Connectivity Foundation, Inc. © 2016-2020. All rights Reserved 80

– The following Resources shall be excluded in the IDD: 2966

– Resource with Resource Type: "oic.wk.res" unless 3rd party defined or optional Properties 2967
are implemented. 2968

– Resource with Resource Type: "oic.wk.introspection". 2969

– Resources explicitly identified within other specifications working in conjuction with this 2970
document (e.g. Resources that handle Wi-Fi Easy Setup, see [2]). 2971

– The following Resources shall be included in the IDD when optional or 3rd party defined 2972
Properties are implemented: 2973

– Resources with type: "oic.wk.p" and "oic.wk.d" (e.g. discovery related Resources). 2974

– Security Virtual Resources from ISO/IEC 30118-2:2018. 2975

– When the Device does not expose instances of Vertical Resource Types, and does not have 2976
any 3rd party defined Resources (see 7.8.4.4), and does not need to include Resources in the 2977
IDD due to other clauses in this clause, then the IDD shall be an empty OpenAPI 2.0 file. An 2978
example of an empty OpenAPI 2.0 file can be found in found in Annex B.2. 2979

– All other Resources that are individually addressable by a Client (i.e. the "href" can be resolved 2980
and at least one operation is supported with a success path response) shall be listed in the IDD. 2981

– Per Resource the IDD shall include: 2982

– All implemented methods 2983

– For an OCF defined Resource Type, only the methods that are listed in the OpenAPI 2.0 2984
definition are allowed to exist in the IDD. For an OCF defined Resource Type, methods 2985
not listed in the OpenAPI 2.0 definition shall not exist in the IDD. The supported methods 2986
contained in the IDD shall comply with the listed OCF Interfaces. For example, if the 2987
POST method is listed in the IDD, then an OCF Interface that allows UPDATE will be 2988
listed in the IDD. 2989

– Per supported method: 2990

– Implemented query parameters per method. 2991

– This includes the supported OCF Interfaces ("if") as enum values. 2992

– Schemas of the payload for the request and response bodies of the method. 2993

– Where the schema provides the representation of a batch request or response ("oic.if.b") 2994
the schema shall contain the representations for all Resource Types that may be 2995
included within the batch representation. The representations shall be provided within 2996
the IDD itself. 2997

– The schema data shall be conveyed by the OpenAPI 2.0 schema. 2998

– The OpenAPI 2.0 schema object shall comply with: 2999

– The schemas shall be fully resolved, e.g. no references shall exist outside the 3000
OpenAPI 2.0 file. 3001

– The schemas shall list which OCF Interfaces are supported on the method. 3002

– The schemas shall list if a Property is optional or required. 3003

– The schemas shall include all Property validation keywords. Where an enum is 3004
defined the enum shall contain the values supported by the Device. When vendor 3005
defined extensions exist to the enum (defined in accordance to 7.8.4.4) these shall 3006
be included in the enum. 3007

– The schemas shall indicate if an Property is read only or read-write. 3008

– By means of the readOnly schema tag belonging to the Property. 3009

– Default value of readOnly is false as defined by OpenAPI 2.0. 3010

Copyright Open Connectivity Foundation, Inc. © 2016-2020. All rights Reserved 81

– The default value of the "rt" Property shall be used to indicate the supported 3011
Resource Types. 3012

– oneOf and anyOf constructs are allowed to be used as part of a OpenAPI 2.0 schema 3013
object. The OpenAPI 2.0 schema with oneOf and anyOf constructs can be found in 3014
Annex B.1. 3015

– For Atomic Measurements (see clause 7.8.4), the following apply: 3016

– The "rts" Property Value in the IDD shall include only the Resource Types the instance 3017
contains and not the theoretical maximal set allowed by the schema definition. 3018

– The Resources that are part of an Atomic Measurement, excluding the Atomic Measurement 3019
Resource itself, shall not be added to their own individual path in the IDD, as they are not 3020
individually addressable; however, the schemas for the composed Resource Types shall be 3021
provided in the IDD as part of the batch response definition along with the "href" for the 3022
Resource. 3023

Dynamic Resources (e.g. Resources that can be created on a request by a Client) shall have a 3024
URL definition which contains a URL identifier (e.g. using the {} syntax). A URL with {} identifies 3025
that the Resource definition applies to the whole group of Resources that may be created. The 3026
actual path may contain the Collection node that links to the Resource. 3027

Example of a URL with identifiers: 3028

/SceneListResURI/{SceneCollectionResURI}/{SceneMemberResURI}: 3029

When different Resource Types are allowed to be created in a Collection, then the different 3030
schemas for the CREATE method shall define all possible Resource Types that may be created. 3031
The schema construct oneOf allows the definition of a schema with selectable Resources. The 3032
oneOf construct allows the integration of all schemas and that only one existing sub schema shall 3033
be used to indicate the definition of the Resource that may be created. 3034

Example usage of oneOf JSON schema construct is shown in Figure 12: 3035

{ 3036
 "oneOf": [3037
 { <<subschema 1 definition>> }, 3038
 { << sub schema 2 definition >> } 3039
… 3040
] 3041
} 3042

Figure 12 – Example usage of oneOf JSON schema 3043

A Client using the IDD of a Device should check the version of the supported IDD of the Device. 3044
The OpenAPI 2.0 version is indicated in each file with the tag "swagger". Example of the 2.0 3045
supported version of the tag is: "swagger": "2.0". Later versions of this document may reference 3046
newer versions of the OpenAPI specification, for example 3.0. 3047

A Device shall support one Resource with a Resource Type of "oic.wk.introspection" as defined in 3048
Table 26. The Resource with a Resource Type of "oic.wk.introspection" shall be included in the 3049
Resource "/oic/res". 3050

An empty IDD file, e.g. no URLs are exposed, shall still have the mandatory OpenAPI 2.0 fields. 3051
See OpenAPI specification. An example of an empty OpenAPI 2.0 file can be found in found in 3052
Annex B.2. 3053

Copyright Open Connectivity Foundation, Inc. © 2016-2020. All rights Reserved 82

Table 26 – Introspection Resource 3054

Pre-defined
URI

Resource
Type Title

Resource Type ID
("rt" value)

OCF
Interfaces

Description Related
Functional
Interaction

none Introspection "oic.wk.introspection"

"oic.if.r" The Resource that
announces the URL of
the Introspection file.

Introspection

 3055

Table 27 defines "oic.wk.introspection" Resource Type. 3056

Table 27 – "oic.wk.introspection" Resource Type definition 3057

Property
title

Property
name

Value
type

Value
rule

Unit Access
mode

Mandatory Description

urlInfo "urlInfo" "array" N/A N/A R Yes array of objects

url "url" "string" "uri" N/A R Yes URL to the hosted payload

protocol "protocol" "string" "enum" N/A R Yes Protocol definition to retrieve
the Introspection Device
Data from the url.

content-
type

"content-
type"

"string" "enum" N/A R No content type of the url.

version "version" "integer" "enum" N/A R No Version of the Introspection
protocol, indicates which
rules are applied on the
Introspection Device Data
regarding the content of the
OpenAPI 2.0 file.
Current value is 1.

 3058

11.4.2 Usage of Introspection 3059

The Introspection Device Data is retrieved in the following steps and as depicted in Figure 13: 3060

– Check if the Introspection Resource is supported and retrieve the URL of the Resource. 3061

– Retrieve the contents of the Introspection Resource 3062

– Download the Introspection Device Data from the URL specified the Introspection Resource. 3063

– Usage of the Introspection Device Data by the Client 3064

 3065

Copyright Open Connectivity Foundation, Inc. © 2016-2020. All rights Reserved 83

 3066

Figure 13 – Interactions to check Introspection support and download the Introspection 3067
Device Data. 3068

11.5 Semantic Tags 3069

11.5.1 Introduction 3070

Semantic Tags are meta-information associated with a specific Resource instance that are 3071
represented as both Link Parameters and Resource Properties that provide a mechanism whereby 3072
the Resource be annotated with additional contextual metadata that helps describe the Resource. 3073

When a Semantic Tag is defined for a Resource, it shall be present as a Link Parameter in all Links 3074
that are present that target the Resource, including Links in "/oic/res" if the Resource is a 3075
Discoverable Resource. The Semantic Tag is further treated as a Common Property associated 3076
with the Resource and so shall be returned as part of the "baseline" response for the Resource if 3077
a Semantic Tag has been populated. 3078

Copyright Open Connectivity Foundation, Inc. © 2016-2020. All rights Reserved 84

11.5.2 Semantic Tag definitions 3079

11.5.2.1 Relative and descriptive position Semantic Tags 3080

11.5.2.1.1 Introduction 3081

Consider where there may be multiple instances of the same Resource Type exposed by a Device; 3082
or a case where there may be potentially ambiguity with regard to the physical attribute that a 3083
Resource is representing. In such a case the ability to annotate the Links to the Resource with 3084
information pertaining to the relative position of the Resource within the Physical Device becomes 3085
useful. 3086

11.5.2.1.2 "tag-pos-desc" or position description Semantic Tag 3087

The "tag-pos-desc" Semantic Tag as defined in Table 28 describes the position of the Resource as 3088
a descriptive position. If the tag is not exposed it conveys the same meaning as if the tag is exposed 3089
with a value of "unknown". The value for the "tag-pos-desc" Semantic Tag if exposed, shall be a 3090
string containing a value from the enumeration detailed in Annex C. The population of the Semantic 3091
Tag is defined by the Device vendor and shall not be mutable by a Client. 3092

Table 28 – "tag-pos-desc" Semantic Tag definition 3093

Link Parameter
name

Type Contents Value example

"tag-pos-desc" enum See Annex C "tag-pos-desc": "topleft"

 3094

11.5.2.1.3 "tag-pos-rel" or relative position Semantic Tag 3095

The "tag-pos-rel" Semantic Tag describes the position of the Resource as a relative position in 3D 3096
space against a known point defined by the Device vendor. The known point is defined using [x,y,z] 3097
form as [0.0,0.0,0.0]. The position itself is then represented by the x-, y-, and z- plane relative 3098
position from this known point using a bounded box of size +1.0/-1.0 in each plane. 3099

Figure 14 illustrates the definition of "tag-pos-rel". 3100

Copyright Open Connectivity Foundation, Inc. © 2016-2020. All rights Reserved 85

[1.0,1.0,1.0]

[-1.0,-1.0,1.0] [1.0,-1.0,1.0]

[1.0,-1.0,-1.0]

[1.0,1.0,-1.0]

[-1.0,1.0,1.0]

[-1.0,1.0,-1.0]

x-Plane

y-Plane

z-Plane 3101

Figure 14 – "tag-pos-rel" definition 3102

The "tag-pos-rel" Semantic Tag value is defined by the Device vendor and shall not be mutable by 3103
a Client. This is detailed in Table 29. 3104

Table 29 – "tag-pos-rel" Semantic Tag definition 3105

Link Parameter
name

Type Contents Value example

"tag-pos-rel" array Three element array of numbers defining
the position relative to a known [0,0,0]
point within the context of an abstract box
[-1,-1,-1],[1,1,1].

"tag-pos-rel": [0.5,0.5,0.5]

 3106

11.5.2.2 Functional behaviour Semantic Tags 3107

11.5.2.2.1 Introduction 3108

Consider, for example, the case of a Device that supports two target temperatures simultaneously 3109
for different modes of operation, for example a temperature for heating and a separate temperature 3110
for cooling. 3111

Copyright Open Connectivity Foundation, Inc. © 2016-2020. All rights Reserved 86

There is then an ambiguity with respect to the target mode of the specific temperature Resource; 3112
it isn't explicit which instance of temperature is associated with which Device function. In such a 3113
case the ability to annotate the Links to the Resource with information pertaining to the function of 3114
the Resource within the Physical Device becomes useful. 3115

11.5.2.2.2 "tag-func-desc" or function description Semantic Tag 3116

The "tag-func-desc" Semantic Tag describes the function of the Resource, if exposed it shall be 3117
populated with a value from the currently supported set of standardized enumeration values defined 3118
by the Device ecosystem specifications. If the tag is not exposed it conveys the same meaning as 3119
if the tag is exposed with a value of "unknown". The value for the "tag-func-desc" Semantic Tag, if 3120
exposed, is defined by the Device vendor and shall not be mutable by a Client. 3121

This "tag-func-desc" Semantic Tag is detailed in Table 30. 3122

Table 30 – "tag-func-desc" Semantic Tag definition 3123

Link Parameter
name

Type Contents Value example

"tag-func-rel" enum Defined by Device ecosystem "tag-func-desc": "cool"

 3124

12 Messaging 3125

12.1 Introduction 3126

This clause specifies the protocol messaging mapping to the CRUDN messaging operations (clause 3127
8) for each messaging protocol specified (e.g., CoAP.). Mapping to additional protocols is expected 3128
in later version of this document. All the Property information from the Resource model shall be 3129
carried within the message payload. This payload shall be generated in the Resource model layer 3130
and shall be encapsulated in the data connectivity layer. The message header shall only be used 3131
to describe the message payload (e.g., verb, mime-type, message payload format), in addition to 3132
the mandatory header fields defined in a messaging protocol (e.g., CoAP) specification. If the 3133
message header does not support this, then this information shall also be carried in the message 3134
payload. Resource model information shall not be included in the message header structure unless 3135
the message header field is mandatory in the messaging protocol specification. 3136

When a Resource is specified with a RESTful description language like OpenAPI 2.0 then the HTTP 3137
syntax definitions are used in the description (e.g., HTTP syntax for the CRUDN operations, status 3138
codes, etc). The HTTP syntax will be mapped to the actual used web transfer protocol (e.g., CoAP). 3139

The communication is largely based on UDP and UDP has defined the Maximum Transmission Unit 3140
(MTU). All UDP payload size communications shall not exceed the MTU size as per by the 3141
IETF RFC 8085 clause 3.2. This is to avoid being dependent on package reassembly by the 3142
operating systems. 3143

12.2 Mapping of CRUDN to CoAP 3144

12.2.1 Overview 3145

A Device implementing CoAP shall conform to IETF RFC 7252 for the methods specified in clause 3146
12.2.3. A Device implementing CoAP shall conform to IETF RFC 7641 to implement the CoAP 3147
Observe option. Support for CoAP block transfer when the payload is larger than the MTU is defined 3148
in 12.2.8. 3149

Copyright Open Connectivity Foundation, Inc. © 2016-2020. All rights Reserved 87

12.2.2 URIs 3150

An OCF: URI is mapped to a coap: URI by replacing the scheme name "ocf" with "coap" if unsecure 3151
or "coaps" if secure before sending over the network by the requestor. Similarly on the receiver 3152
side, the scheme name is replaced with "ocf". 3153

Any query string that is present within the URI is encoded as one or more URI-Query Options as 3154
defined in IETF RFC 7252 clause 6.4. 3155

12.2.3 CoAP method with request and response 3156

12.2.3.1 Overview 3157

Every request has a CoAP method that realizes the request. The primary methods and their 3158
meanings are shown in Table 31, which provides the mapping of GET/POST/DELETE methods to 3159
CREATE, RETRIEVE, UPDATE, and DELETE operations. The associated text provides the generic 3160
behaviours when using these methods, however Resource OCF Interfaces may modify these 3161
generic semantics. The HTTP codes in the RESTful descriptions will be translated as described in 3162
IETF RFC 8075 clause 7 Response Code Mapping. CoAP methods not listed in Table 31 are not 3163
supported. 3164

Table 31 – CoAP request and response 3165

Method for CRUDN (mandatory) Request data (mandatory) Response data

GET for RETRIEVE - Method code: GET (0.01).
- Request URI: an existing URI for
the Resource to be retrieved

- Response code: success (2.xx) or
error (4.xx or 5.xx).
- Payload: Resource representation
of the target Resource (when
successful).

POST for CREATE - Method code: POST (0.02).
- Request URI: an existing URI for
the Resource responsible for the
creation.
- Payload: Resource presentation of
the Resource to be created.

- Response code: success (2.xx) or
error (4.xx or 5.xx).
- Payload: the URI of the newly
created Resource (when successful).

POST for UPDATE - Method code: POST (0.02).
- Request URI: an existing URI for
the Resource to be updated.
- Payload: representation of the
Resource to be updated.

- Response Code: success (2.xx) or
error (4.xx or 5.xx).

DELETE for DELETE - Method code: DELETE (0.04).
- Request URI: an existing URI for
the Resource to be deleted.

- Response code: success (2.xx) or
error (4.xx or 5.xx).

 3166

 3167

12.2.3.2 CREATE with POST 3168

POST shall be used only in situations where the request URI is valid, that is it is the URI of an 3169
existing Resource on the Server that is processing the request. If no such Resource is present, the 3170
Server shall respond with an error response code of 4.xx. The use of POST for CREATE shall use 3171
an existing request URI which identifies the Resource on the Server responsible for creation. The 3172
URI of the created Resource is determined by the Server and provided to the Client in the response. 3173

A Client shall include the representation of the new Resource in the request payload. The new 3174
resource representation in the payload shall have all the necessary Properties to create a valid 3175
Resource instance, i.e. the created Resource should be able to properly respond to the valid 3176
Request with mandatory OCF Interface (e.g., "GET with ?if=oic.if.baseline"). 3177

Copyright Open Connectivity Foundation, Inc. © 2016-2020. All rights Reserved 88

Upon receiving the POST request, the Server shall either: 3178

– Create the new Resource with a new URI, respond with the new URI for the newly created 3179
Resource and a success response code (2.xx); or 3180

– respond with an error response code (4.xx or 5.xx). 3181

12.2.3.3 RETRIEVE with GET 3182

GET shall be used for the RETRIEVE operation. The GET method retrieves the representation of 3183
the target Resource identified by the request URI. 3184

Upon receiving the GET request, the Server shall either: 3185

– Send back the response with the representation of the target Resource with a success response 3186
code (2.xx); or 3187

– respond with an error response code (4.xx or 5.xx) or ignore it (e.g. non-applicable multicast 3188
GET). 3189

GET is a safe method and is idempotent. 3190

12.2.3.4 UPDATE with POST 3191

POST shall be used only in situations where the request URI is valid, that is it is the URI of an 3192
existing Resource on the Server that is processing the request. If no such Resource is present, the 3193
Server shall respond with an error response code of 4.xx. A client shall use POST to UPDATE 3194
Property values of an existing Resource. 3195

Upon receiving the request, the Server shall either: 3196

– Apply the request to the Resource identified by the request URI in accordance with the applied 3197
OCF Interface (i.e. POST for non-existent Properties is ignored) and send back a response with 3198
a success response code (2.xx); or 3199

– respond with an error response code (4.xx or 5.xx). Note that if the representation in the payload 3200
is incompatible with the target Resource for POST using the applied OCF Interface (i.e. the 3201
overwrite semantic cannot be honored because of read-only Property in the payload), then the 3202
error response code 4.xx shall be returned. 3203

12.2.3.5 DELETE with DELETE 3204

DELETE shall be used for DELETE operation. The DELETE method requests that the Resource 3205
identified by the request URI be deleted. 3206

Upon receiving the DELETE request, the Server shall either: 3207

– Delete the target Resource and send back a response with a success response code (2.xx); or 3208

– respond with an error response code (4.xx or 5.xx). 3209

DELETE is unsafe but idempotent (unless URIs are recycled for new instances). 3210

12.2.4 Content-Format negotiation 3211

The Framework mandates support of CBOR, however it allows for negotiation of the payload body 3212
if more than one Content-Format (e.g. CBOR and JSON) is supported by an implementation. In this 3213
case the Accept Option defined in clause 5.10.4 of IETF RFC 7252 shall be used to indicate which 3214
Content–Format (e.g. JSON) is requested by the Client. 3215

The Content-Formats supported are shown in Table 32. 3216

Copyright Open Connectivity Foundation, Inc. © 2016-2020. All rights Reserved 89

Table 32 – OCF Content-Formats 3217

Media Type ID

"application/vnd.ocf+cbor" 10000

 3218

Clients shall include a Content-Format Option in every message that contains a payload. Servers 3219
shall include a Content-Format Option for all success (2.xx) responses with a payload body. Per 3220
IETF RFC 7252 clause 5.5.1, Servers shall include a Content-Format Option for all error (4.xx or 3221
5.xx) responses with a payload body unless they include a Diagnostic Payload; error responses 3222
with a Diagnostic Payload do not include a Content-Format Option. The Content-Format Option 3223
shall use the ID column numeric value from Table 32. An OCF vertical may mandate a specific 3224
Content-Format Option. 3225

Clients shall also include an Accept Option in every request message. The Accept Option shall 3226
indicate the required Content-Format as defined in Table 32 for response messages. The Server 3227
shall return the required Content-Format if available. If the required Content-Format cannot be 3228
returned, then the Server shall respond with an appropriate error message. 3229

12.2.5 OCF-Content-Format-Version information 3230

Servers and Clients shall include the OCF-Content-Format-Version Option in both request and 3231
response messages with a payload. Clients shall include the OCF-Accept-Content-Format-Version 3232
Option in request messages. The OCF-Content-Format-Version Option and OCF-Accept-Content-3233
Format-Version Option are specified as Option Numbers in the CoAP header as shown in Table 33. 3234

Table 33 – OCF-Content-Format-Version and OCF-Accept-Content-Format-Version Option 3235
Numbers 3236

CoAP Option Number Name Format Length
(bytes)

2049 OCF-Accept-Content-
Format-Version

uint 2

2053 OCF-Content-Format-
Version

uint 2

 3237

The value of both the OCF-Accept-Content-Format-Version Option and the OCF-Content-Format-3238
Version Option is a two-byte unsigned integer that is used to define the major, minor and sub 3239
versions. The major and minor versions are represented by 5 bits and the sub version is 3240
represented by 6 bits as shown in Table 34. 3241

Table 34 – OCF-Accept-Content-Format-Version and OCF-Content-Format-Version 3242
Representation 3243

 Major Version Minor Version Sub Version

Bit 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

 3244

Table 35 illustrates several examples: 3245

Copyright Open Connectivity Foundation, Inc. © 2016-2020. All rights Reserved 90

Table 35 – Examples of OCF-Content-Format-Version and OCF-Accept-Content-Format-3246
Version Representation 3247

OCF version Binary representation Integer value

"1.0.0" "0000 1000 0000 0000" 2048

"1.1.0" "0000 1000 0100 0000" 2112

 3248

The OCF-Accept-Content-Format-Version Option and OCF-Content-Format-Version Option for this 3249
version of the document shall be "1.0.0" (i.e. "0b0000 1000 0000 0000"). 3250

12.2.6 Content-Format policy 3251

All Devices shall support the current Content-Format Option, "application/vnd.ocf+cbor", and OCF-3252
Content-Format-Version "1.0.0". 3253

For backward compatibility with previous OCF-Content-Format-Version Options: 3254

– All Client Devices shall support OCF-Content-Format-Version Option set to "1.0.0" and higher. 3255

– All Client Devices shall support OCF-Accept-Content-Format-Version Option set to "1.0.0" and 3256
higher. 3257

– A Client shall send a discovery request message with its Accept Option set to 3258
"application/vnd.ocf+cbor", and its OCF-Accept-Content-Format-Version Option matching its 3259
highest supported version. 3260

– A Server shall respond to a Client's discovery request that is higher than its OCF-Content-3261
Format-Version by responding with its Content-Format Option set to "application/vnd.ocf+cbor", 3262
and OCF-Content-Format-Version matching its highest supported version. The response 3263
representation shall be encoded with the OCF-Content-Format-Version matching the Server's 3264
highest supported version. 3265

– A Server may support previous Content-Formats and OCF-Content-Format-Versions to support 3266
backward compatibility with previous versions. 3267

– For a Server that supports multiple OCF-Content-Format-Version Options, the Server should 3268
attempt to respond with an OCF-Content-Format-Version that matches the OCF-Accept-3269
Content-Format-Version of the request. 3270

To maintain compatibility between Devices implemented to different versions of this document, 3271
Devices should follow the policy as described in Figure 15. 3272

The OCF Clients in Figure 15 support sending Content-Format Option set to 3273
"application/vnd.ocf+cbor", Accept Option set to "application/vnd.ocf+cbor", OCF-Content-Format-3274
Version Option set to "1.0.0", and OCF-Accept-Content-Format-Version Option set to "1.0.0" 3275
(representing OCF 1.0 and later Clients). The OCF Servers in Figure 15 support sending Content-3276
Format Option set to "application/vnd.ocf+cbor" and OCF-Content-Format-Version Option set to 3277
"1.0.0" (representing OCF 1.0 and later Servers). 3278

 3279

Copyright Open Connectivity Foundation, Inc. © 2016-2020. All rights Reserved 91

 3280

Figure 15 – Content-Format Policy for backward compatible OCF Clients negotiating lower 3281
OCF Content-Format-Version 3282

12.2.7 CRUDN to CoAP response codes 3283

The mapping of CRUDN operations response codes to CoAP response codes are identical to the 3284
response codes defined in IETF RFC 7252. 3285

12.2.8 CoAP block transfer 3286

Basic CoAP messages work well for the small payloads typical of light-weight, constrained IoT 3287
devices. However scenarios can be envisioned in which an application needs to transfer larger 3288
payloads. 3289

CoAP block-wise transfer as defined in IETF RFC 7959 shall be used by all Servers which generate 3290
a content payload that would exceed the size of a CoAP datagram as the result of handling any 3291
defined CRUDN operation. 3292

Similarly, CoAP block-wise transfer as defined in IETF RFC 7959 shall be supported by all Clients. 3293
The use of block-wise transfer is applied to both the reception of payloads as well as transmission 3294
of payloads that would exceed the size of a CoAP datagram. 3295

A Client may support both the block1 (as descriptive) and block2 (as control) options as described 3296
by IETF RFC 7959. A Server may support both the block1 (as control) and block2 (as descriptive) 3297
options as described by IETF RFC 7959. 3298

12.2.9 Generic requirements for CoAP multicast 3299

A Client may use CoAP multicast to retrieve a target Resource with a fixed local path from multiple 3300
other Devices. This clause provides generic requirements for this mechanism. 3301

– Devices shall join the All OCF Nodes multicast groups (as defined in [IANA IPv6 Multicast 3302
Address Space Registry]) with scopes 2, 3, and 5 (i.e., ff02::158, ff03::158 and ff05::158) and 3303
shall listen on the port 5683. For compliance to IETF RFC 7252 a Device may additionally join 3304
the All CoAP Nodes multicast groups. 3305

– Clients intending to discover Resources shall join the multicast groups as defined in the first 3306
bullet. 3307

– Clients shall send multicast requests to the All OCF Nodes multicast group address with scope 3308
2 ("ff02::158") or with scope 5 ("ff05::158") at port "5683". The requested URI shall be the fixed 3309
local path of the target Resource optionally followed by query parameters. For compliance to 3310
IETF RFC 7252 a Client may additionally send to the All CoAP Nodes multicast groups. 3311

– To discover Devices on a low-rate wireless personal area network (LR-WPAN) [see 3312
IETF RFC 7346], Clients should send additional discovery requests (GET request) to the All 3313
OCF Nodes multicast group address with REALM_LOCAL scope 3 ("ff03::158") at port "5683". 3314
The set of replying Devices then can be used to distinguish if the Device is SITE_LOCAL or 3315
REALM_LOCAL to the Client discovering the Devices. Such request shall use the IPv6 hop limit 3316
with a value of 255. If the Client sends discovery requests to All OCF Nodes, then for 3317

Copyright Open Connectivity Foundation, Inc. © 2016-2020. All rights Reserved 92

compliance to IETF RFC 7252 a Client may additionally send to the All CoAP Nodes multicast 3318
groups with the same REALM_LOCAL scope with the IPv6 hop limit value of 255. 3319

– Clients should send discovery requests (GET request) to the All OCF Nodes multicast group 3320
address with SITE_LOCAL scope 5 ("ff05::158") at port "5683". Such request shall use the IPv6 3321
hop limit with a value of 255. If the Client sends discovery requests to All OCF Nodes, then for 3322
compliance to IETF RFC 7252 a Client may additionally send to the All CoAP Nodes multicast 3323
groups with the same SITE_LOCAL scope with the IPv6 hop limit value of 255. 3324

– The multicast request shall be permitted by matching the request to an ACE which permits 3325
unauthenticated access to the target Resource as described in ISO/IEC 30118-2:2018. 3326

– Handling of multicast requests shall be as described in clause 8 of IETF RFC 7252 and clause 3327
4.1 in IETF RFC 6690. 3328

– Devices which receive the request shall respond, subject to query parameter processing 3329
specific to the requested Resource. 3330

12.2.10 Setting timeout on response to a confirmable request 3331

The timeout specified by "oic.wk.res:eps[]:lat", when present, should only be taken into account by 3332
the Client when the Server is in the "ready for normal operation state" [see clause 8.5 in 3333
ISO/IEC 30118-2:2018] and the request made is a confirmable request. The Server should only 3334
enable the state that will cause latency when in "ready for normal operation state" [see clause 8.5 3335
in ISO/IEC 30118-2:2018]. In all other states the Server should respond with timeouts as identified 3336
in IETF RFC 7252. 3337

12.3 Mapping of CRUDN to CoAP serialization over TCP 3338

12.3.1 Overview 3339

In environments where TCP is already available, CoAP can take advantage of it to provide reliability. 3340
Also in some environments UDP traffic is blocked, so deployments may use TCP. For example, 3341
consider a cloud application acting as a Client and the Server is located at the user’s home. A 3342
Server which already support CoAP as a messaging protocol could easily support CoAP 3343
serialization over TCP rather than utilizing another messaging protocol. A Device implementing 3344
CoAP Serialization over TCP shall conform to IETF RFC 8323. 3345

12.3.2 URIs 3346

When UDP is blocked, Clients are dependent on pre-configured details of the Device to determine 3347
if the Device supports CoAP serialization over TCP. When UDP is not-blocked, a Device which 3348
supports CoAP serialization over TCP shall populate the "eps" Parameter in the "/oic/res" response, 3349
as defined in 10.2, with the URI scheme(s) as defined in clause 8.1 or 8.2 of IETF RFC 8323. For 3350
the "coaps+tcp" URI scheme, as defined in clause 8.2 of IETF RFC 8323, IETF RFC 7301 shall be 3351
used. In addition, the URIs used for CoAP serialization over TCP shall conform to 12.2.2 by 3352
substituting the scheme names with the scheme names defined in clauses 8.1 and 8.2 of 3353
IETF RFC 8323 respectively. 3354

12.3.3 CoAP method with request and response 3355

The CoAP methods used for CoAP serialization over TCP shall conform to 12.2.3. 3356

12.3.4 Content-Format negotiation 3357

The Content Format negotiation used for CoAP serialization over TCP shall conform to 12.2.4. 3358

12.3.5 OCF-Content-Format-Version information 3359

The OCF Content Format Version information used for CoAP serialization over TCP shall conform 3360
to 12.2.5. 3361

Copyright Open Connectivity Foundation, Inc. © 2016-2020. All rights Reserved 93

12.3.6 Content-Format policy 3362

The Content Format policy used for CoAP serialization over TCP shall conform to 12.2.6. 3363

12.3.7 CRUDN to CoAP response codes 3364

The CRUDN to CoAP response codes for CoAP serialization over TCP shall conform to 12.2.7. 3365

12.3.8 CoAP block transfer 3366

The CoAP block transfer for CoAP serialization over TCP shall conform to clause 6 of 3367
IETF RFC 8323. 3368

12.3.9 Keep alive (connection health) 3369

The Device that initiated the CoAP over TCP connection shall send a Ping message as described 3370
in clause 5.4 in IETF RFC 8323. The Device to which the connection was made may send a Ping 3371
message. The recipient of any Ping message shall send a Pong message as described in clause 3372
5.4 in IETF RFC 8323. 3373

Both sides of an established CoAP over TCP connection may send subsequent Ping (and 3374
corresponding Pong) messages. 3375

12.3.10 CoAP using a proxy 3376

In cases that a request is made to a forwarding proxy, the option proxy-uri (clause 5.10.2 of 3377
IETF RFC 7252) shall be used. The format of the information in the proxy-uri option includes the 3378
OCF Device information. The proxi-uri shall have the format of an OCF URI as described in clause 3379
6.2.2. The authority will have the same value as oic.wk.d:uuid of the targeted Device. 3380

12.4 Payload Encoding in CBOR 3381

OCF implementations shall perform the conversion to CBOR from JSON defined schemas and to 3382
JSON from CBOR in accordance with IETF RFC 7049 clause 4 unless otherwise specified in this 3383
clause. 3384

Properties defined as a JSON integer shall be encoded in CBOR as an integer (CBOR major types 3385
0 and 1). Properties defined as a JSON number shall be encoded as an integer, single- or double-3386
precision floating point (CBOR major type 7, sub-types 26 and 27); the choice is implementation 3387
dependent. Half-precision floating point (CBOR major 7, sub-type 25) shall not be used. Integer 3388
numbers shall be within the closed interval [-2^53, 2^53]. Properties defined as a JSON number 3389
should be encoded as integers whenever possible; if this is not possible Properties defined as a 3390
JSON number should use single-precision if the loss of precision does not affect the quality of 3391
service, otherwise the Property shall use double-precision. 3392

On receipt of a CBOR payload, an implementation shall be able to interpret CBOR integer values 3393
in any position. If a Property defined as a JSON integer is received encoded other than as an 3394
integer, the implementation may reject this encoding using a final response as appropriate for the 3395
underlying transport (e.g. 4.00 for CoAP) and thus optimise for the integer case. If a Property is 3396
defined as a JSON number an implementation shall accept integers, single- and double-precision 3397
floating point. 3398

13 Security 3399

The details for handling security and privacy are specified in ISO/IEC 30118-2:2018. 3400

Copyright Open Connectivity Foundation, Inc. © 2016-2020. All rights Reserved 94

 3401

(normative) 3402

 3403

Resource Type definitions 3404

A.1 List of Resource Type definitions 3405

All the clauses in Annex A describe the Resource Types with a RESTful API definition language. 3406
The Resource Type definitions presented in Annex A are formatted for readability, and so may 3407
appear to have extra line breaks. Table A.1 contains the list of defined Core Common Resources 3408
in this document. 3409

Table A.1 – Alphabetized list of Core Resources 3410

Friendly Name (informative) Resource Type (rt) Clause

Atomic Measurement "oic.wk.atomicmeasurement" A.2

Collections "oic.wk.col" A.3

Device "oic.wk.d" A.4

Discoverable Resource "oic.wk.res" A.7

Introspection "oic.wk.introspection" A.5

Platform "oic.wk.p" A.6

A.2 Atomic Measurement links list representation 3411

A.2.1 Introduction 3412

The oic.if.baseline OCF Interface exposes a representation of the links and 3413
the Common Properties of the Atomic Measurement Resource. 3414
 3415

A.2.2 Example URI 3416

/AtomicMeasurementResURI 3417

A.2.3 Resource type 3418

The Resource Type is defined as: "oic.wk.atomicmeasurement". 3419

A.2.4 OpenAPI 2.0 definition 3420

{ 3421
 "swagger": "2.0", 3422
 "info": { 3423
 "title": "Atomic Measurement links list representation", 3424
 "version": "2019-03-04", 3425
 "license": { 3426
 "name": "OCF Data Model License", 3427
 "url": "https://openconnectivityfoundation.github.io/core/LICENSE.md", 3428
 "x-copyright": "Copyright 2018-2019 Open Connectivity Foundation, Inc. All rights reserved." 3429
 }, 3430
 "termsOfService": "https://openconnectivityfoundation.github.io/core/DISCLAIMER.md" 3431
 }, 3432
 "schemes": ["http"], 3433
 "consumes": ["application/json"], 3434
 "produces": ["application/json"], 3435
 "paths": { 3436
 "/AtomicMeasurementResURI?if=oic.if.ll": { 3437
 "get": { 3438
 "description": "The oic.if.ll OCF Interface exposes a representation 3439
of the Links", 3440

Copyright Open Connectivity Foundation, Inc. © 2016-2020. All rights Reserved 95

 "parameters": [3441
 { 3442
 "$ref": "#/parameters/interface-all" 3443
 } 3444
], 3445
 "responses": { 3446
 "200": { 3447
 "description": "", 3448
 "x-example": [{ 3449
 "href": "/temperature", 3450
 "rt": ["oic.r.temperature"], 3451
 "if": ["oic.if.s", "oic.if.baseline"] 3452
 }, 3453
 { 3454
 "href": "/bodylocation", 3455
 "rt": ["oic.r.body.location.temperature"], 3456
 "if": ["oic.if.s", "oic.if.baseline"] 3457
 }, 3458
 { 3459
 "href": "/timestamp", 3460
 "rt": ["oic.r.time.stamp"], 3461
 "if": ["oic.if.s", "oic.if.baseline"] 3462
 }], 3463
 "schema": { 3464
 "$ref": "#/definitions/links" 3465
 } 3466
 } 3467
 } 3468
 } 3469
 }, 3470
 "/AtomicMeasurementResURI?if=oic.if.b": { 3471
 "get": { 3472
 "description": "The oic.if.b OCF Interface returns data items 3473
retrieved from Resources pointed to by the Links.\n", 3474
 "parameters": [3475
 { 3476
 "$ref": "#/parameters/interface-all" 3477
 } 3478
], 3479
 "responses": { 3480
 "200": { 3481
 "description": "Normal response, no errors, all 3482
Properties are returned correctly\n", 3483
 "x-example": [{ 3484
 "href": "/temperature", 3485
 "rep": { 3486
 "temperature": 38, 3487
 "units": "C", 3488
 "range": [25, 45] 3489
 } 3490
 }, 3491
 { 3492
 "href": "/bodylocation", 3493
 "rep": { 3494
 "bloc": "ear" 3495
 } 3496
 }, 3497
 { 3498
 "href": "/timestamp", 3499
 "rep": { 3500
 "timestamp": "2007-04-05T14:30+09:00" 3501
 } 3502
 }], 3503
 "schema": { 3504
 "$ref": "#/definitions/batch-retrieve" 3505
 } 3506
 } 3507
 } 3508
 } 3509
 }, 3510
 "/AtomicMeasurementResURI?if=oic.if.baseline": { 3511

Copyright Open Connectivity Foundation, Inc. © 2016-2020. All rights Reserved 96

 "get": { 3512
 "description": "The oic.if.baseline OCF Interface exposes a 3513
representation of the links and\nthe Common Properties of the Atomic Measurement Resource.\n", 3514
 "parameters": [3515
 { 3516
 "$ref": "#/parameters/interface-all" 3517
 } 3518
], 3519
 "responses": { 3520
 "200": { 3521
 "description": "", 3522
 "x-example": { 3523
 "rt": ["oic.wk.atomicmeasurement"], 3524
 "if": ["oic.if.b", "oic.if.ll",3525
 "oic.if.baseline"], 3526
 "rts": ["oic.r.temperature", 3527
"oic.r.body.location.temperature", "oic.r.time.stamp"], 3528
 "rts-m": ["oic.r.temperature", 3529
"oic.r.body.location.temperature", "oic.r.time.stamp"], 3530
 "links": [{ 3531
 "href": "/temperature", 3532
 "rt": ["oic.r.temperature"], 3533
 "if": ["oic.if.s", "oic.if.baseline"] 3534
 }, 3535
 { 3536
 "href": "/bodylocation", 3537
 "rt": 3538
["oic.r.body.location.temperature"], 3539
 "if": ["oic.if.s", "oic.if.baseline"] 3540
 }, 3541
 { 3542
 "href": "/timestamp", 3543
 "rt": ["oic.r.time.stamp"], 3544
 "if": ["oic.if.s", "oic.if.baseline"] 3545
 }] 3546
 }, 3547
 "schema": { 3548
 "$ref": "#/definitions/baseline" 3549
 } 3550
 } 3551
 } 3552
 } 3553
 } 3554
 }, 3555
 "parameters": { 3556
 "interface-all": { 3557
 "in": "query", 3558
 "name": "if", 3559
 "type": "string", 3560
 "enum": ["oic.if.b", "oic.if.ll", "oic.if.baseline"] 3561
 } 3562
 }, 3563
 "definitions": { 3564
 "links": { 3565
 "type": "array", 3566
 "items": { 3567
 "$ref": "#/definitions/oic.oic-link" 3568
 } 3569
 }, 3570
 "batch-retrieve": { 3571
 "title": "Collection Batch Retrieve Format (auto merged)", 3572
 "minItems": 1, 3573
 "items": { 3574
 "additionalProperties": true, 3575
 "properties": { 3576
 "href": { 3577
 "$ref": 3578
"https://openconnectivityfoundation.github.io/core/schemas/oic.links.properties.core-3579
schema.json#/definitions/href" 3580
 }, 3581
 "rep": { 3582

Copyright Open Connectivity Foundation, Inc. © 2016-2020. All rights Reserved 97

 "oneOf": [{ 3583
 "description": "The response payload from a 3584
single Resource", 3585
 "type": "object" 3586
 }, 3587
 { 3588
 "description": " The response payload from a 3589
Collection (batch) Resource", 3590
 "items": { 3591
 "properties": { 3592
 "anchor": { 3593
 "$ref": 3594
"https://openconnectivityfoundation.github.io/core/schemas/oic.links.properties.core-3595
schema.json#/definitions/anchor" 3596
 }, 3597
 "di": { 3598
 "$ref": 3599
"https://openconnectivityfoundation.github.io/core/schemas/oic.links.properties.core-3600
schema.json#/definitions/di" 3601
 }, 3602
 "eps": { 3603
 "$ref": 3604
"https://openconnectivityfoundation.github.io/core/schemas/oic.links.properties.core-3605
schema.json#/definitions/eps" 3606
 }, 3607
 "href": { 3608
 "$ref": 3609
"https://openconnectivityfoundation.github.io/core/schemas/oic.links.properties.core-3610
schema.json#/definitions/href" 3611
 }, 3612
 "if": { 3613
 "description": "The OCF 3614
Interface set supported by this Resource", 3615
 "items": { 3616
 "enum": [3617
 3618
 "oic.if.baseline", 3619
 "oic.if.ll", 3620
 "oic.if.b", 3621
 "oic.if.rw", 3622
 "oic.if.r", 3623
 "oic.if.a", 3624
 "oic.if.s"], 3625
 "type": 3626
"string" 3627
 }, 3628
 "minItems": 1, 3629
 "uniqueItems": true, 3630
 "type": "array" 3631
 }, 3632
 "ins": { 3633
 "$ref": 3634
"https://openconnectivityfoundation.github.io/core/schemas/oic.links.properties.core-3635
schema.json#/definitions/ins" 3636
 }, 3637
 "p": { 3638
 "$ref": 3639
"https://openconnectivityfoundation.github.io/core/schemas/oic.links.properties.core-3640
schema.json#/definitions/p" 3641
 }, 3642
 "rel": { 3643
 "description": "The relation of the target URI 3644
referenced by the Link to the context URI", 3645
 "oneOf": [3646
 { 3647
 "$ref": 3648
"https://openconnectivityfoundation.github.io/core/schemas/oic.links.properties.core-3649
schema.json#/definitions/rel_array" 3650
 }, 3651
 { 3652
 "$ref": 3653

Copyright Open Connectivity Foundation, Inc. © 2016-2020. All rights Reserved 98

"https://openconnectivityfoundation.github.io/core/schemas/oic.links.properties.core-3654
schema.json#/definitions/rel_string" 3655
 } 3656
] 3657
 }, 3658
 "rt": { 3659
 "description": 3660
"Resource Type of the Resource", 3661
 "items": { 3662
 "maxLength": 3663
64, 3664
 "type": 3665
"string" 3666
 }, 3667
 "minItems": 1, 3668
 "uniqueItems": true, 3669
 "type": "array" 3670
 }, 3671
 "title": { 3672
 "$ref": 3673
"https://openconnectivityfoundation.github.io/core/schemas/oic.links.properties.core-3674
schema.json#/definitions/title" 3675
 }, 3676
 "type": { 3677
 "$ref": 3678
"https://openconnectivityfoundation.github.io/core/schemas/oic.links.properties.core-3679
schema.json#/definitions/type" 3680
 } 3681
 }, 3682
 "required": [3683
 "href", 3684
 "rt", 3685
 "if" 3686
], 3687
 "type": "object" 3688
 }, 3689
 "type": "array" 3690
 }] 3691
 } 3692
 }, 3693
 "required": [3694
 "href", 3695
 "rep" 3696
], 3697
 "type": "object" 3698
 }, 3699
 "type": "array" 3700
 }, 3701
 "baseline": { 3702
 "properties": { 3703
 "links": { 3704
 "description": "A set of simple or individual Links.", 3705
 "items": { 3706
 "$ref": "#/definitions/oic.oic-link" 3707
 }, 3708
 "type": "array" 3709
 }, 3710
 "n": { "$ref" : 3711
"https://openconnectivityfoundation.github.io/core/schemas/oic.common.properties.core-3712
schema.json#/definitions/n"}, 3713
 "id": { "$ref" : 3714
"https://openconnectivityfoundation.github.io/core/schemas/oic.common.properties.core-3715
schema.json#/definitions/id"}, 3716
 "rt": { 3717
 "description": "Resource Type of this Resource", 3718
 "items": { 3719
 "enum": ["oic.wk.atomicmeasurement"], 3720
 "type": "string", 3721
 "maxLength": 64 3722
 }, 3723
 "minItems": 1, 3724

Copyright Open Connectivity Foundation, Inc. © 2016-2020. All rights Reserved 99

 "readOnly": true, 3725
 "uniqueItems": true, 3726
 "type": "array" 3727
 }, 3728
 "rts": { 3729
 "description": "An array of Resource Types that are supported 3730
within an array of Links exposed by the Resource", 3731
 "items": { 3732
 "maxLength": 64, 3733
 "type": "string" 3734
 }, 3735
 "minItems": 1, 3736
 "readOnly": true, 3737
 "uniqueItems": true, 3738
 "type": "array" 3739
 }, 3740
 "rts-m": { 3741
 "description": "An array of Resource Types that are mandatory 3742
to be exposed within an array of Links exposed by the Resource", 3743
 "items": { 3744
 "maxLength": 64, 3745
 "type": "string" 3746
 }, 3747
 "minItems": 1, 3748
 "readOnly": true, 3749
 "uniqueItems": true, 3750
 "type": "array" 3751
 }, 3752
 "if": { 3753
 "description": "The OCF Interface set supported by this 3754
Resource", 3755
 "items": { 3756
 "enum": ["oic.if.b", "oic.if.ll", "oic.if.baseline"], 3757
 "type": "string" 3758
 }, 3759
 "minItems": 3, 3760
 "readOnly": true, 3761
 "uniqueItems": true, 3762
 "type": "array" 3763
 } 3764
 }, 3765
 "type": "object", 3766
 "required": [3767
 "rt", 3768
 "if", 3769
 "links" 3770
] 3771
 }, 3772
 "oic.oic-link": { 3773
 "properties": { 3774
 "anchor": { 3775
 "$ref": 3776
"https://openconnectivityfoundation.github.io/core/schemas/oic.links.properties.core-3777
schema.json#/definitions/anchor" 3778
 }, 3779
 "di": { 3780
 "$ref": 3781
"https://openconnectivityfoundation.github.io/core/schemas/oic.links.properties.core-3782
schema.json#/definitions/di" 3783
 }, 3784
 "eps": { 3785
 "$ref": 3786
"https://openconnectivityfoundation.github.io/core/schemas/oic.links.properties.core-3787
schema.json#/definitions/eps" 3788
 }, 3789
 "href": { 3790
 "$ref": 3791
"https://openconnectivityfoundation.github.io/core/schemas/oic.links.properties.core-3792
schema.json#/definitions/href" 3793
 }, 3794
 "if": { 3795

Copyright Open Connectivity Foundation, Inc. © 2016-2020. All rights Reserved 100

 "description": "The OCF Interface set supported by this 3796
Resource", 3797
 "items": { 3798
 "enum": [3799
 "oic.if.baseline", 3800
 "oic.if.ll", 3801
 "oic.if.b", 3802
 "oic.if.rw", 3803
 "oic.if.r", 3804
 "oic.if.a", 3805
 "oic.if.s"], 3806
 "type": "string" 3807
 }, 3808
 "minItems": 1, 3809
 "uniqueItems": true, 3810
 "type": "array" 3811
 }, 3812
 "ins": { 3813
 "$ref": 3814
"https://openconnectivityfoundation.github.io/core/schemas/oic.links.properties.core-3815
schema.json#/definitions/ins" 3816
 }, 3817
 "p": { 3818
 "$ref": 3819
"https://openconnectivityfoundation.github.io/core/schemas/oic.links.properties.core-3820
schema.json#/definitions/p" 3821
 }, 3822
 "rel": { 3823
 "description": "The relation of the target URI referenced by the Link to the context URI", 3824
 "oneOf": [3825
 { 3826
 "$ref": 3827
"https://openconnectivityfoundation.github.io/core/schemas/oic.links.properties.core-3828
schema.json#/definitions/rel_array" 3829
 }, 3830
 { 3831
 "$ref": 3832
"https://openconnectivityfoundation.github.io/core/schemas/oic.links.properties.core-3833
schema.json#/definitions/rel_string" 3834
 } 3835
] 3836
 }, 3837
 "rt": { 3838
 "description": "Resource Type of the Resource", 3839
 "items": { 3840
 "maxLength": 64, 3841
 "type": "string" 3842
 }, 3843
 "minItems": 1, 3844
 "uniqueItems": true, 3845
 "type": "array" 3846
 }, 3847
 "title": { 3848
 "$ref": 3849
"https://openconnectivityfoundation.github.io/core/schemas/oic.links.properties.core-3850
schema.json#/definitions/title" 3851
 }, 3852
 "type": { 3853
 "$ref": 3854
"https://openconnectivityfoundation.github.io/core/schemas/oic.links.properties.core-3855
schema.json#/definitions/type" 3856
 } 3857
 }, 3858
 "required": [3859
 "href", 3860
 "rt", 3861
 "if" 3862
], 3863
 "type": "object" 3864
 } 3865
 } 3866

Copyright Open Connectivity Foundation, Inc. © 2016-2020. All rights Reserved 101

} 3867
 3868

A.2.5 Property definition 3869

Table A.2 defines the Properties that are part of the "oic.wk.atomicmeasurement" Resource Type. 3870

Table A.2 – The Property definitions of the Resource with type "rt" = 3871
"oic.wk.atomicmeasurement". 3872

Property name Value type Mandatory Access mode Description

href multiple types: see
schema

Yes Read Write

rep multiple types: see
schema

Yes Read Write

links array: see schema Yes Read Write A set of simple or
individual Links.

n multiple types: see
schema

No Read Write

id multiple types: see
schema

No Read Write

rt array: see schema Yes Read Only Resource Type of
this Resource

rts array: see schema No Read Only An array of
Resource Types that
are supported within
an array of Links
exposed by the
Resource

rts-m array: see schema No Read Only An array of
Resource Types that
are mandatory to be
exposed within an
array of Links
exposed by the
Resource

if array: see schema Yes Read Only The OCF Interface
set supported by this
Resource

anchor multiple types: see
schema

No Read Write

di multiple types: see
schema

No Read Write

eps multiple types: see
schema

No Read Write

href multiple types: see
schema

Yes Read Write

if array: see schema Yes Read Write The OCF Interface
set supported by this
Resource

ins multiple types: see
schema

No Read Write

p multiple types: see
schema

No Read Write

rel multiple types: see
schema

No Read Write The relation of the
target URI
referenced by the

Copyright Open Connectivity Foundation, Inc. © 2016-2020. All rights Reserved 102

Link to the context
URI

rt array: see schema Yes Read Write Resource Type of
the Resource

title multiple types: see
schema

No Read Write

type multiple types: see
schema

No Read Write

A.2.6 CRUDN behaviour 3873

Table A.3 defines the CRUDN operations that are supported on the "oic.wk.atomicmeasurement" 3874
Resource Type. 3875

Table A.3 – The CRUDN operations of the Resource with type "rt" = 3876
"oic.wk.atomicmeasurement". 3877

Create Read Update Delete Notify

 get observe

A.3 Collection 3878

A.3.1 Introduction 3879

Collection Resource Type contains Properties and Links. 3880
The oic.if.baseline OCF Interface exposes a representation of 3881
the Links and the Properties of the Collection Resource itself 3882
 3883

A.3.2 Example URI 3884

/CollectionResURI 3885

A.3.3 Resource type 3886

The Resource Type is defined as: "oic.wk.col". 3887

A.3.4 OpenAPI 2.0 definition 3888

{ 3889
 "swagger": "2.0", 3890
 "info": { 3891
 "title": "Collection", 3892
 "version": "2019-03-04", 3893
 "license": { 3894
 "name": "OCF Data Model License", 3895
 "url": "https://openconnectivityfoundation.github.io/core/LICENSE.md", 3896
 "x-copyright": "Copyright 2016-2019 Open Connectivity Foundation, Inc. All rights reserved." 3897
 }, 3898
 "termsOfService": "https://openconnectivityfoundation.github.io/core/DISCLAIMER.md" 3899
 }, 3900
 "schemes": [3901
 "http" 3902
], 3903
 "consumes": [3904
 "application/json" 3905
], 3906
 "produces": [3907
 "application/json" 3908
], 3909
 "paths": { 3910
 "/CollectionResURI?if=oic.if.ll" : { 3911
 "get": { 3912
 "description": "Collection Resource Type contains Properties and Links.\nThe oic.if.ll OCF 3913

Copyright Open Connectivity Foundation, Inc. © 2016-2020. All rights Reserved 103

Interface exposes a representation of the Links\n", 3914
 "parameters": [3915
 { 3916
 "$ref": "#/parameters/interface-all" 3917
 } 3918
], 3919
 "responses": { 3920
 "200": { 3921
 "description" : "", 3922
 "x-example": [3923
 { 3924
 "href": "/switch", 3925
 "rt": ["oic.r.switch.binary"], 3926
 "if": ["oic.if.a", "oic.if.baseline"], 3927
 "eps": [3928
 {"ep": "coap://[fe80::b1d6]:1111", "pri": 2}, 3929
 {"ep": "coaps://[fe80::b1d6]:1122"}, 3930
 {"ep": "coap+tcp://[2001:db8:a::123]:2222", "pri": 3} 3931
] 3932
 }, 3933
 { 3934
 "href": "/airFlow", 3935
 "rt": ["oic.r.airflow"], 3936
 "if": ["oic.if.a", "oic.if.baseline"], 3937
 "eps": [3938
 {"ep": "coap://[fe80::b1d6]:1111", "pri": 2}, 3939
 {"ep": "coaps://[fe80::b1d6]:1122"}, 3940
 {"ep": "coap+tcp://[2001:db8:a::123]:2222", "pri": 3} 3941
] 3942
 } 3943
], 3944
 "schema": { 3945
 "$ref": "#/definitions/slinks" 3946
 } 3947
 } 3948
 } 3949
 } 3950
 }, 3951
 "/CollectionResURI?if=oic.if.baseline" : { 3952
 "get": { 3953
 "description": "Collection Resource Type contains Properties and Links.\nThe oic.if.baseline 3954
OCF Interface exposes a representation of\nthe Links and the Properties of the Collection Resource 3955
itself\n", 3956
 "parameters": [3957
 { 3958
 "$ref": "#/parameters/interface-all" 3959
 } 3960
], 3961
 "responses": { 3962
 "200": { 3963
 "description" : "", 3964
 "x-example": { 3965
 "rt": ["oic.wk.col"], 3966
 "if": ["oic.if.ll", "oic.if.b", "oic.if.baseline"], 3967
 "rts": ["oic.r.switch.binary", "oic.r.airflow"], 3968
 "rts-m": ["oic.r.switch.binary"], 3969
 "links": [3970
 { 3971
 "href": "/switch", 3972
 "rt": ["oic.r.switch.binary"], 3973
 "if": ["oic.if.a", "oic.if.baseline"], 3974
 "eps": [3975
 {"ep": "coap://[fe80::b1d6]:1111", "pri": 2}, 3976
 {"ep": "coaps://[fe80::b1d6]:1122"}, 3977
 {"ep": "coaps+tcp://[2001:db8:a::123]:2222", "pri": 3} 3978
] 3979
 }, 3980
 { 3981
 "href": "/airFlow", 3982
 "rt": ["oic.r.airflow"], 3983
 "if": ["oic.if.a", "oic.if.baseline"], 3984

Copyright Open Connectivity Foundation, Inc. © 2016-2020. All rights Reserved 104

 "eps": [3985
 {"ep": "coap://[fe80::b1d6]:1111", "pri": 2}, 3986
 {"ep": "coaps://[fe80::b1d6]:1122"}, 3987
 {"ep": "coaps+tcp://[2001:db8:a::123]:2222", "pri": 3} 3988
] 3989
 } 3990
] 3991
 }, 3992
 "schema": { 3993
 "$ref": "#/definitions/sbaseline" 3994
 } 3995
 } 3996
 } 3997
 }, 3998
 "post": { 3999
 "description": "Update on Baseline OCF Interface\n", 4000
 "parameters": [4001
 { 4002
 "$ref": "#/parameters/interface-update" 4003
 }, 4004
 { 4005
 "name": "body", 4006
 "in": "body", 4007
 "required": true, 4008
 "schema": { 4009
 "$ref": "#/definitions/sbaseline-update" 4010
 } 4011
 } 4012
], 4013
 "responses": { 4014
 "200": { 4015
 "description" : "", 4016
 "schema": { 4017
 "$ref": "#/definitions/sbaseline" 4018
 } 4019
 } 4020
 } 4021
 } 4022
 }, 4023
 "/CollectionResURI?if=oic.if.b" : { 4024
 "get": { 4025
 "description": "Collection Resource Type contains Properties and Links.\nThe oic.if.b OCF 4026
Interfacce exposes a composite representation of the\nResources pointed to by the Links\n", 4027
 "parameters": [4028
 { 4029
 "$ref": "#/parameters/interface-all" 4030
 } 4031
], 4032
 "responses": { 4033
 "200": { 4034
 "description" : "All targets returned OK status", 4035
 "x-example": [4036
 { 4037
 "href": "/switch", 4038
 "rep": { 4039
 "value": true 4040
 } 4041
 }, 4042
 { 4043
 "href": "/airFlow", 4044
 "rep": { 4045
 "direction": "floor", 4046
 "speed": 3 4047
 } 4048
 } 4049
], 4050
 "schema": { 4051
 "$ref": "#/definitions/sbatch-retrieve" 4052
 } 4053
 }, 4054
 "404": { 4055

Copyright Open Connectivity Foundation, Inc. © 2016-2020. All rights Reserved 105

 "description" : "One or more targets did not return an OK status, return a 4056
representation containing returned Properties from the targets that returned OK", 4057
 "x-example": [4058
 { 4059
 "href": "/switch", 4060
 "rep": { 4061
 "value": true 4062
 } 4063
 } 4064
], 4065
 "schema": { 4066
 "$ref": "#/definitions/sbatch-retrieve" 4067
 } 4068
 } 4069
 } 4070
 }, 4071
 "post": { 4072
 "description": "Update on Batch OCF Interface\n", 4073
 "parameters": [4074
 { 4075
 "$ref": "#/parameters/interface-update" 4076
 }, 4077
 { 4078
 "name": "body", 4079
 "in": "body", 4080
 "required": true, 4081
 "schema": { 4082
 "$ref": "#/definitions/sbatch-update" 4083
 }, 4084
 "x-example": [4085
 { 4086
 "href": "/switch", 4087
 "rep": { 4088
 "value": true 4089
 } 4090
 }, 4091
 { 4092
 "href": "/airFlow", 4093
 "rep": { 4094
 "direction": "floor", 4095
 "speed": 3 4096
 } 4097
 } 4098
] 4099
 } 4100
], 4101
 "responses": { 4102
 "200": { 4103
 "description" : "All targets returned OK status, return a representation of the current 4104
state of all targets", 4105
 "x-example": [4106
 { 4107
 "href": "/switch", 4108
 "rep": { 4109
 "value": true 4110
 } 4111
 }, 4112
 { 4113
 "href": "/airFlow", 4114
 "rep": { 4115
 "direction": "demist", 4116
 "speed": 5 4117
 } 4118
 } 4119
], 4120
 "schema": { 4121
 "$ref": "#/definitions/sbatch-retrieve" 4122
 } 4123
 }, 4124
 "403": { 4125
 "description" : "One or more targets did not return OK status; return a retrieve 4126

Copyright Open Connectivity Foundation, Inc. © 2016-2020. All rights Reserved 106

representation of the current state of all targets in the batch", 4127
 "x-example": [4128
 { 4129
 "href": "/switch", 4130
 "rep": { 4131
 "value": true 4132
 } 4133
 }, 4134
 { 4135
 "href": "/airFlow", 4136
 "rep": { 4137
 "direction": "floor", 4138
 "speed": 3 4139
 } 4140
 } 4141
], 4142
 "schema": { 4143
 "$ref": "#/definitions/sbatch-retrieve" 4144
 } 4145
 } 4146
 } 4147
 } 4148
 } 4149
 }, 4150
 "parameters": { 4151
 "interface-all" : { 4152
 "in" : "query", 4153
 "name" : "if", 4154
 "type" : "string", 4155
 "enum" : ["oic.if.ll", "oic.if.b", "oic.if.baseline"] 4156
 }, 4157
 "interface-update" : { 4158
 "in" : "query", 4159
 "name" : "if", 4160
 "type" : "string", 4161
 "enum" : ["oic.if.b", "oic.if.baseline"] 4162
 } 4163
 }, 4164
 "definitions": { 4165
 "sbaseline" : { 4166
 "properties": { 4167
 "links" : { 4168
 "description": "A set of simple or individual Links.", 4169
 "items": { 4170
 "$ref": "#/definitions/oic.oic-link" 4171
 }, 4172
 "type": "array" 4173
 }, 4174
 "n": { 4175
 "$ref" : 4176
"https://openconnectivityfoundation.github.io/core/schemas/oic.common.properties.core-4177
schema.json#/definitions/n" 4178
 }, 4179
 "id": { 4180
 "$ref" : 4181
"https://openconnectivityfoundation.github.io/core/schemas/oic.common.properties.core-4182
schema.json#/definitions/id" 4183
 }, 4184
 "rt": { 4185
 "$ref": "#/definitions/oic.core.rt-col" 4186
 }, 4187
 "rts": { 4188
 "$ref": "#/definitions/oic.core.rt" 4189
 }, 4190
 "rts-m": { 4191
 "$ref": "#/definitions/oic.core.rt" 4192
 }, 4193
 "if": { 4194
 "description": "The OCF Interfaces supported by this Resource", 4195
 "items": { 4196
 "enum": [4197

Copyright Open Connectivity Foundation, Inc. © 2016-2020. All rights Reserved 107

 "oic.if.ll", 4198
 "oic.if.baseline", 4199
 "oic.if.b" 4200
], 4201
 "type": "string", 4202
 "maxLength": 64 4203
 }, 4204
 "minItems": 2, 4205
 "uniqueItems": true, 4206
 "readOnly": true, 4207
 "type": "array" 4208
 } 4209
 }, 4210
 "additionalProperties": true, 4211
 "type" : "object", 4212
 "required": [4213
 "rt", 4214
 "if", 4215
 "links" 4216
] 4217
 }, 4218
 "sbaseline-update": { 4219
 "additionalProperties": true 4220
 }, 4221
 "oic.core.rt-col": { 4222
 "description": "Resource Type of the Resource", 4223
 "items": { 4224
 "enum": ["oic.wk.col"], 4225
 "type": "string", 4226
 "maxLength": 64 4227
 }, 4228
 "minItems": 1, 4229
 "uniqueItems": true, 4230
 "readOnly": true, 4231
 "type": "array" 4232
 }, 4233
 "oic.core.rt": { 4234
 "description": "Resource Type or set of Resource Types", 4235
 "items": { 4236
 "type": "string", 4237
 "maxLength": 64 4238
 }, 4239
 "minItems": 1, 4240
 "uniqueItems": true, 4241
 "readOnly": true, 4242
 "type": "array" 4243
 }, 4244
 "sbatch-retrieve" : { 4245
 "minItems" : 1, 4246
 "items" : { 4247
 "additionalProperties": true, 4248
 "properties": { 4249
 "href": { 4250
 "$ref": 4251
"https://openconnectivityfoundation.github.io/core/schemas/oic.links.properties.core-4252
schema.json#/definitions/href" 4253
 }, 4254
 "rep": { 4255
 "oneOf": [4256
 { 4257
 "description": "The response payload from a single Resource", 4258
 "type": "object" 4259
 }, 4260
 { 4261
 "description": " The response payload from a Collection (batch) Resource", 4262
 "items": { 4263
 "$ref": "#/definitions/oic.oic-link" 4264
 }, 4265
 "type": "array" 4266
 } 4267
] 4268

Copyright Open Connectivity Foundation, Inc. © 2016-2020. All rights Reserved 108

 } 4269
 }, 4270
 "required": [4271
 "href", 4272
 "rep" 4273
], 4274
 "type": "object" 4275
 }, 4276
 "type" : "array" 4277
 }, 4278
 "sbatch-update" : { 4279
 "title" : "Collection Batch Update Format", 4280
 "minItems" : 1, 4281
 "items" : { 4282
 "$ref": "#/definitions/sbatch-update.item" 4283
 }, 4284
 "type" : "array" 4285
 }, 4286
 "sbatch-update.item" : { 4287
 "additionalProperties": true, 4288
 "description": "Array of Resource representations to apply to the batch Collection, using href 4289
to indicate which Resource(s) in the batch to update. If the href Property is empty, effectively 4290
making the URI reference to the Collection itself, the representation is to be applied to all 4291
Resources in the batch", 4292
 "properties": { 4293
 "href": { 4294
 "$ref": 4295
"https://openconnectivityfoundation.github.io/core/schemas/oic.links.properties.core-4296
schema.json#/definitions/href" 4297
 }, 4298
 "rep": { 4299
 "oneOf": [4300
 { 4301
 "description": "The payload for a single Resource", 4302
 "type": "object" 4303
 }, 4304
 { 4305
 "description": " The payload for a Collection (batch) Resource", 4306
 "items": { 4307
 "$ref": "#/definitions/oic.oic-link" 4308
 }, 4309
 "type": "array" 4310
 } 4311
] 4312
 } 4313
 }, 4314
 "required": [4315
 "href", 4316
 "rep" 4317
], 4318
 "type": "object" 4319
 }, 4320
 "slinks" : { 4321
 "type" : "array", 4322
 "items" : { 4323
 "$ref": "#/definitions/oic.oic-link" 4324
 } 4325
 }, 4326
 "oic.oic-link": { 4327
 "properties": { 4328
 "if": { 4329
 "description": "The OCF Interfaces supported by the Linked target", 4330
 "items": { 4331
 "enum": [4332
 "oic.if.baseline", 4333
 "oic.if.ll", 4334
 "oic.if.b", 4335
 "oic.if.rw", 4336
 "oic.if.r", 4337
 "oic.if.a", 4338
 "oic.if.s" 4339

Copyright Open Connectivity Foundation, Inc. © 2016-2020. All rights Reserved 109

], 4340
 "type": "string", 4341
 "maxLength": 64 4342
 }, 4343
 "minItems": 1, 4344
 "uniqueItems": true, 4345
 "readOnly": true, 4346
 "type": "array" 4347
 }, 4348
 "rt": { 4349
 "$ref": "#/definitions/oic.core.rt" 4350
 }, 4351
 "anchor": { 4352
 "$ref": 4353
"https://openconnectivityfoundation.github.io/core/schemas/oic.links.properties.core-4354
schema.json#/definitions/anchor" 4355
 }, 4356
 "di": { 4357
 "$ref": 4358
"https://openconnectivityfoundation.github.io/core/schemas/oic.links.properties.core-4359
schema.json#/definitions/di" 4360
 }, 4361
 "eps": { 4362
 "$ref": 4363
"https://openconnectivityfoundation.github.io/core/schemas/oic.links.properties.core-4364
schema.json#/definitions/eps" 4365
 }, 4366
 "href": { 4367
 "$ref": 4368
"https://openconnectivityfoundation.github.io/core/schemas/oic.links.properties.core-4369
schema.json#/definitions/href" 4370
 }, 4371
 "ins": { 4372
 "$ref": 4373
"https://openconnectivityfoundation.github.io/core/schemas/oic.links.properties.core-4374
schema.json#/definitions/ins" 4375
 }, 4376
 "p": { 4377
 "$ref": 4378
"https://openconnectivityfoundation.github.io/core/schemas/oic.links.properties.core-4379
schema.json#/definitions/p" 4380
 }, 4381
 "rel": { 4382
 "$ref": 4383
"https://openconnectivityfoundation.github.io/core/schemas/oic.links.properties.core-4384
schema.json#/definitions/rel_array" 4385
 }, 4386
 "title": { 4387
 "$ref": 4388
"https://openconnectivityfoundation.github.io/core/schemas/oic.links.properties.core-4389
schema.json#/definitions/title" 4390
 }, 4391
 "type": { 4392
 "$ref": 4393
"https://openconnectivityfoundation.github.io/core/schemas/oic.links.properties.core-4394
schema.json#/definitions/type" 4395
 }, 4396
 "tag-pos-desc": { 4397
 "$ref": 4398
"https://openconnectivityfoundation.github.io/core/schemas/oic.links.properties.core-4399
schema.json#/definitions/tag-pos-desc" 4400
 }, 4401
 "tag-pos-rel": { 4402
 "$ref": 4403
"https://openconnectivityfoundation.github.io/core/schemas/oic.links.properties.core-4404
schema.json#/definitions/tag-pos-rel" 4405
 }, 4406
 "tag-func-desc": { 4407
 "$ref": 4408
"https://openconnectivityfoundation.github.io/core/schemas/oic.links.properties.core-4409
schema.json#/definitions/tag-func-desc" 4410

Copyright Open Connectivity Foundation, Inc. © 2016-2020. All rights Reserved 110

 } 4411
 }, 4412
 "required": [4413
 "href", 4414
 "rt", 4415
 "if" 4416
], 4417
 "type": "object" 4418
 } 4419
 } 4420
} 4421
 4422

A.3.5 Property definition 4423

Table A.4 defines the Properties that are part of the "oic.wk.col" Resource Type. 4424

Table A.4 – The Property definitions of the Resource with type "rt" = "oic.wk.col". 4425

Property name Value type Mandatory Access mode Description

links array: see schema Yes Read Write A set of simple or
individual Links.

n multiple types: see
schema

No Read Write

id multiple types: see
schema

No Read Write

rt multiple types: see
schema

Yes Read Write

rts multiple types: see
schema

No Read Write

rts-m multiple types: see
schema

No Read Write

if array: see schema Yes Read Only The OCF Interfaces
supported by this
Resource

href multiple types: see
schema

Yes Read Write

rep multiple types: see
schema

Yes Read Write

href multiple types: see
schema

Yes Read Write

rep multiple types: see
schema

Yes Read Write

if array: see schema Yes Read Only The OCF Interfaces
supported by the
Linked target

rt multiple types: see
schema

Yes Read Write

anchor multiple types: see
schema

No Read Write

di multiple types: see
schema

No Read Write

eps multiple types: see
schema

No Read Write

href multiple types: see
schema

Yes Read Write

Copyright Open Connectivity Foundation, Inc. © 2016-2020. All rights Reserved 111

ins multiple types: see
schema

No Read Write

p multiple types: see
schema

No Read Write

rel multiple types: see
schema

No Read Write

title multiple types: see
schema

No Read Write

type multiple types: see
schema

No Read Write

tag-pos-desc multiple types: see
schema

No Read Write

tag-pos-rel multiple types: see
schema

No Read Write

tag-func-desc multiple types: see
schema

No Read Write

A.3.6 CRUDN behaviour 4426

Table A.5 defines the CRUDN operations that are supported on the "oic.wk.col" Resource Type. 4427

Table A.5 – The CRUDN operations of the Resource with type "rt" = "oic.wk.col". 4428

Create Read Update Delete Notify

 get post observe

A.4 Device 4429

A.4.1 Introduction 4430

Known Resource that is hosted by every Server. 4431
Allows for logical Device specific information to be discovered. 4432
 4433

A.4.2 Well-known URI 4434

/oic/d 4435

A.4.3 Resource type 4436

The Resource Type is defined as: "oic.wk.d". 4437

A.4.4 OpenAPI 2.0 definition 4438

{ 4439
 "swagger": "2.0", 4440
 "info": { 4441
 "title": "Device", 4442
 "version": "2019-03-13", 4443
 "license": { 4444
 "name": "OCF Data Model License", 4445
 "url": "https://openconnectivityfoundation.github.io/core/LICENSE.md", 4446
 "x-copyright": "Copyright 2016-2019 Open Connectivity Foundation, Inc. All rights reserved." 4447
 }, 4448
 "termsOfService": "https://openconnectivityfoundation.github.io/core/DISCLAIMER.md" 4449
 }, 4450
 "schemes": [4451
 "http" 4452
], 4453
 "consumes": [4454
 "application/json" 4455
], 4456

Copyright Open Connectivity Foundation, Inc. © 2016-2020. All rights Reserved 112

 "produces": [4457
 "application/json" 4458
], 4459
 "paths": { 4460
 "/oic/d" : { 4461
 "get": { 4462
 "description": "Known Resource that is hosted by every Server.\nAllows for logical Device 4463
specific information to be discovered.\n", 4464
 "parameters": [4465
 { 4466
 "$ref": "#/parameters/interface" 4467
 } 4468
], 4469
 "responses": { 4470
 "200": { 4471
 "description": "", 4472
 "x-example": 4473
 { 4474
 "n": "Device 1", 4475
 "rt": ["oic.wk.d"], 4476
 "di": "54919CA5-4101-4AE4-595B-353C51AA983C", 4477
 "icv": "ocf.2.0.2", 4478
 "dmv": "ocf.res.1.0.0, ocf.sh.1.0.0", 4479
 "piid": "6F0AAC04-2BB0-468D-B57C-16570A26AE48" 4480
 }, 4481
 "schema": { 4482
 "$ref": "#/definitions/Device" 4483
 } 4484
 } 4485
 } 4486
 } 4487
 } 4488
 }, 4489
 "parameters": { 4490
 "interface" : { 4491
 "in": "query", 4492
 "name": "if", 4493
 "type": "string", 4494
 "enum": ["oic.if.r", "oic.if.baseline"] 4495
 } 4496
 }, 4497
 "definitions": { 4498
 "Device": { 4499
 "properties": { 4500
 "rt": { 4501
 "description": "Resource Type of the Resource", 4502
 "items": { 4503
 "type": "string", 4504
 "maxLength": 64 4505
 }, 4506
 "minItems": 1, 4507
 "readOnly": true, 4508
 "uniqueItems": true, 4509
 "type": "array" 4510
 }, 4511
 "ld": { 4512
 "description": "Localized Descriptions.", 4513
 "items": { 4514
 "properties": { 4515
 "language": { 4516
 "allOf": [4517
 { 4518
 "$ref" : "http://openconnectivityfoundation.github.io/core/schemas/oic.types-4519
schema.json#/definitions/language-tag" 4520
 }, 4521
 { 4522
 "description": "An RFC 5646 language tag.", 4523
 "readOnly": true 4524
 } 4525
] 4526
 }, 4527

Copyright Open Connectivity Foundation, Inc. © 2016-2020. All rights Reserved 113

 "value": { 4528
 "description": "Device description in the indicated language.", 4529
 "maxLength": 64, 4530
 "readOnly": true, 4531
 "type": "string" 4532
 } 4533
 }, 4534
 "type": "object" 4535
 }, 4536
 "minItems": 1, 4537
 "readOnly": true, 4538
 "type": "array" 4539
 }, 4540
 "piid": { 4541
 "allOf": [4542
 { 4543
 "$ref" : "http://openconnectivityfoundation.github.io/core/schemas/oic.types-4544
schema.json#/definitions/uuid" 4545
 }, 4546
 { 4547
 "description": "Protocol independent unique identifier for the Device that is 4548
immutable.", 4549
 "readOnly": true 4550
 } 4551
] 4552
 }, 4553
 "di": { 4554
 "allOf": [4555
 { 4556
 "$ref" : "http://openconnectivityfoundation.github.io/core/schemas/oic.types-4557
schema.json#/definitions/uuid" 4558
 }, 4559
 { 4560
 "description": "Unique identifier for the Device", 4561
 "readOnly": true 4562
 } 4563
] 4564
 }, 4565
 "dmno": { 4566
 "description": "Model number as designated by manufacturer.", 4567
 "maxLength": 64, 4568
 "readOnly": true, 4569
 "type": "string" 4570
 }, 4571
 "sv": { 4572
 "description": "Software version.", 4573
 "maxLength": 64, 4574
 "readOnly": true, 4575
 "type": "string" 4576
 }, 4577
 "dmn": { 4578
 "description": "Manufacturer Name.", 4579
 "items": { 4580
 "properties": { 4581
 "language": { 4582
 "allOf": [4583
 { 4584
 "$ref" : "http://openconnectivityfoundation.github.io/core/schemas/oic.types-4585
schema.json#/definitions/language-tag" 4586
 }, 4587
 { 4588
 "description": "An RFC 5646 language tag.", 4589
 "readOnly": true 4590
 } 4591
] 4592
 }, 4593
 "value": { 4594
 "description": "Manufacturer name in the indicated language.", 4595
 "maxLength": 64, 4596
 "readOnly": true, 4597
 "type": "string" 4598

Copyright Open Connectivity Foundation, Inc. © 2016-2020. All rights Reserved 114

 } 4599
 }, 4600
 "type": "object" 4601
 }, 4602
 "minItems": 1, 4603
 "readOnly": true, 4604
 "type": "array" 4605
 }, 4606
 "icv": { 4607
 "description": "The version of the Device", 4608
 "maxLength": 64, 4609
 "readOnly": true, 4610
 "type": "string" 4611
 }, 4612
 "dmv": { 4613
 "description": "Specification versions of the Resource and Device Specifications to which 4614
this device data model is implemented", 4615
 "maxLength": 256, 4616
 "readOnly": true, 4617
 "type": "string" 4618
 }, 4619
 "n": { 4620
 "$ref" : 4621
"https://openconnectivityfoundation.github.io/core/schemas/oic.common.properties.core-4622
schema.json#/definitions/n" 4623
 }, 4624
 "id": { 4625
 "$ref" : 4626
"https://openconnectivityfoundation.github.io/core/schemas/oic.common.properties.core-4627
schema.json#/definitions/id" 4628
 }, 4629
 "if": { 4630
 "description": "The OCF Interfacces supported by this Resource", 4631
 "items": { 4632
 "enum": [4633
 "oic.if.r", 4634
 "oic.if.baseline" 4635
], 4636
 "type": "string", 4637
 "maxLength": 64 4638
 }, 4639
 "minItems": 2, 4640
 "uniqueItems": true, 4641
 "readOnly": true, 4642
 "type": "array" 4643
 }, 4644
 "econame" : { 4645
 "description": "Ecosystem Name of the Bridged Device which is exposed by this VOD.", 4646
 "type": "string", 4647
 "enum": ["BLE", "oneM2M", "UPlus", "Zigbee", "Z-Wave"], 4648
 "readOnly": true 4649
 }, 4650
 "ecoversion" : { 4651
 "description": "Version of ecosystem that a Bridged Device belongs to. Typical version 4652
string format is like n.n (e.g. 5.0).", 4653
 "type": "string", 4654
 "maxLength": 64, 4655
 "readOnly": true 4656
 } 4657
 }, 4658
 "type": "object", 4659
 "required": ["n", "di", "icv", "dmv", "piid"] 4660
 } 4661
 } 4662
} 4663
 4664

A.4.5 Property definition 4665

Table A.6 defines the Properties that are part of the "oic.wk.d" Resource Type. 4666

Copyright Open Connectivity Foundation, Inc. © 2016-2020. All rights Reserved 115

Table A.6 – The Property definitions of the Resource with type "rt" = "oic.wk.d". 4667

Property name Value type Mandatory Access mode Description

rt array: see schema No Read Only Resource Type of
the Resource

ld array: see schema No Read Only Localized
Descriptions.

piid multiple types: see
schema

Yes Read Write

di multiple types: see
schema

Yes Read Write

dmno string No Read Only Model number as
designated by
manufacturer.

sv string No Read Only Software version.

dmn array: see schema No Read Only Manufacturer Name.

icv string Yes Read Only The version of the
Device

dmv string Yes Read Only Specification
versions of the
Resource and
Device
Specifications to
which this device
data model is
implemented

n multiple types: see
schema

Yes Read Write

id multiple types: see
schema

No Read Write

if array: see schema No Read Only The OCF Interfacces
supported by this
Resource

econame string No Read Only Ecosystem Name of
the Bridged Device
which is exposed by
this VOD.

ecoversion string No Read Only Version of
ecosystem that a
Bridged Device
belongs to. Typical
version string format
is like n.n (e.g. 5.0).

A.4.6 CRUDN behaviour 4668

Table A.7 defines the CRUDN operations that are supported on the "oic.wk.d" Resource Type. 4669

Table A.7 – The CRUDN operations of the Resource with type "rt" = "oic.wk.d". 4670

Create Read Update Delete Notify

 get observe

Copyright Open Connectivity Foundation, Inc. © 2016-2020. All rights Reserved 116

A.5 Introspection Resource 4671

A.5.1 Introduction 4672

This Resource provides the means to get the Introspection Device Data (IDD) specifying all the 4673
OCF Endpoints of the Device. 4674
The url hosted by this Resource is either a local or an external url. 4675
 4676

A.5.2 Well-known URI 4677

/IntrospectionResURI 4678

A.5.3 Resource type 4679

The Resource Type is defined as: "oic.wk.introspection". 4680

A.5.4 OpenAPI 2.0 definition 4681

{ 4682
 "swagger": "2.0", 4683
 "info": { 4684
 "title": "Introspection Resource", 4685
 "version": "2019-03-04", 4686
 "license": { 4687
 "name": "OCF Data Model License", 4688
 "url": "https://openconnectivityfoundation.github.io/core/LICENSE.md", 4689
 "x-copyright": "Copyright 2016-2019 Open Connectivity Foundation, Inc. All rights reserved." 4690
 }, 4691
 "termsOfService": "https://openconnectivityfoundation.github.io/core/DISCLAIMER.md" 4692
 }, 4693
 "schemes": [4694
 "http" 4695
], 4696
 "consumes": [4697
 "application/json" 4698
], 4699
 "produces": [4700
 "application/json" 4701
], 4702
 "paths": { 4703
 "/IntrospectionResURI": { 4704
 "get": { 4705
 "description": "This Resource provides the means to get the Introspection Device Data (IDD) 4706
specifying all the OCF Endpoints of the Device.\nThe url hosted by this Resource is either a local 4707
or an external url.\n", 4708
 "parameters": [4709
 { 4710
 "$ref": "#/parameters/interface" 4711
 } 4712
], 4713
 "responses": { 4714
 "200": { 4715
 "description": "", 4716
 "x-example": { 4717
 "rt": ["oic.wk.introspection"], 4718
 "urlInfo": [4719
 { 4720
 "content-type": "application/cbor", 4721
 "protocol": "coap", 4722
 "url": "coap://[fe80::1]:1234/IntrospectionExampleURI" 4723
 } 4724
] 4725
 }, 4726
 "schema": { 4727
 "$ref": "#/definitions/oic.wk.introspectionInfo" 4728
 } 4729
 } 4730
 } 4731

Copyright Open Connectivity Foundation, Inc. © 2016-2020. All rights Reserved 117

 } 4732
 } 4733
 }, 4734
 "parameters": { 4735
 "interface": { 4736
 "in": "query", 4737
 "name": "if", 4738
 "type": "string", 4739
 "enum": ["oic.if.r", "oic.if.baseline"] 4740
 } 4741
 }, 4742
 "definitions": { 4743
 "oic.wk.introspectionInfo": { 4744
 "properties": { 4745
 "rt": { 4746
 "description": "Resource Type of the Resource", 4747
 "items": { 4748
 "enum": ["oic.wk.introspection"], 4749
 "type": "string", 4750
 "maxLength": 64 4751
 }, 4752
 "minItems": 1, 4753
 "readOnly": true, 4754
 "uniqueItems": true, 4755
 "type": "array" 4756
 }, 4757
 "n": { 4758
 "$ref": 4759
"https://openconnectivityfoundation.github.io/core/schemas/oic.common.properties.core-4760
schema.json#/definitions/n" 4761
 }, 4762
 "urlInfo": { 4763
 "description": "Information on the location of the Introspection Device Data (IDD).", 4764
 "items": { 4765
 "properties": { 4766
 "content-type": { 4767
 "default": "application/cbor", 4768
 "description": "content-type of the Introspection Device Data", 4769
 "enum": [4770
 "application/json", 4771
 "application/cbor" 4772
], 4773
 "type": "string" 4774
 }, 4775
 "protocol": { 4776
 "description": "Identifier for the protocol to be used to obtain the Introspection 4777
Device Data", 4778
 "enum": [4779
 "coap", 4780
 "coaps", 4781
 "http", 4782
 "https", 4783
 "coap+tcp", 4784
 "coaps+tcp" 4785
], 4786
 "type": "string" 4787
 }, 4788
 "url": { 4789
 "description": "The URL of the Introspection Device Data.", 4790
 "format": "uri", 4791
 "type": "string" 4792
 }, 4793
 "version": { 4794
 "default": 1, 4795
 "description": "The version of the Introspection Device Data that can be 4796
downloaded", 4797
 "enum": [4798
 1 4799
], 4800
 "type": "integer" 4801
 } 4802

Copyright Open Connectivity Foundation, Inc. © 2016-2020. All rights Reserved 118

 }, 4803
 "required": [4804
 "url", 4805
 "protocol" 4806
], 4807
 "type": "object" 4808
 }, 4809
 "minItems": 1, 4810
 "readOnly": true, 4811
 "type": "array" 4812
 }, 4813
 "id": { 4814
 "$ref": 4815
"https://openconnectivityfoundation.github.io/core/schemas/oic.common.properties.core-4816
schema.json#/definitions/id" 4817
 }, 4818
 "if": { 4819
 "description": "The OCF Interfaces supported by this Resource", 4820
 "items": { 4821
 "enum": [4822
 "oic.if.r", 4823
 "oic.if.baseline" 4824
], 4825
 "type": "string", 4826
 "maxLength": 64 4827
 }, 4828
 "minItems": 2, 4829
 "readOnly": true, 4830
 "uniqueItems": true, 4831
 "type": "array" 4832
 } 4833
 }, 4834
 "type" : "object", 4835
 "required": ["urlInfo"] 4836
 } 4837
 } 4838
} 4839
 4840

A.5.5 Property definition 4841

Table A.8 defines the Properties that are part of the "oic.wk.introspection" Resource Type. 4842

Table A.8 – The Property definitions of the Resource with type "rt" = 4843
"oic.wk.introspection". 4844

Property name Value type Mandatory Access mode Description

rt array: see schema No Read Only Resource Type of
the Resource

n multiple types: see
schema

No Read Write

urlInfo array: see schema Yes Read Only Information on the
location of the
Introspection Device
Data (IDD).

id multiple types: see
schema

No Read Write

if array: see schema No Read Only The OCF Interfaces
supported by this
Resource

A.5.6 CRUDN behaviour 4845

Table A.9 defines the CRUDN operations that are supported on the "oic.wk.introspection" Resource 4846
Type. 4847

Copyright Open Connectivity Foundation, Inc. © 2016-2020. All rights Reserved 119

Table A.9 – The CRUDN operations of the Resource with type "rt" = "oic.wk.introspection". 4848

Create Read Update Delete Notify

 get observe

A.6 Platform 4849

A.6.1 Introduction 4850

Known Resource that is defines the Platform on which an Server is hosted. 4851
Allows for Platform specific information to be discovered. 4852
 4853

A.6.2 Well-known URI 4854

/oic/p 4855

A.6.3 Resource type 4856

The Resource Type is defined as: "oic.wk.p". 4857

A.6.4 OpenAPI 2.0 definition 4858

{ 4859
 "swagger": "2.0", 4860
 "info": { 4861
 "title": "Platform", 4862
 "version": "2019-03-04", 4863
 "license": { 4864
 "name": "OCF Data Model License", 4865
 "url": 4866
"https://github.com/openconnectivityfoundation/core/blob/e28a9e0a92e17042ba3e83661e4c0fbce8bdc4ba/LI4867
CENSE.md", 4868
 "x-copyright": "Copyright 2016-2019 Open Connectivity Foundation, Inc. All rights reserved." 4869
 }, 4870
 "termsOfService": "https://openconnectivityfoundation.github.io/core/DISCLAIMER.md" 4871
 }, 4872
 "schemes": ["http"], 4873
 "consumes": ["application/json"], 4874
 "produces": ["application/json"], 4875
 "paths": { 4876
 "/oic/p" : { 4877
 "get": { 4878
 "description": "Known Resource that is defines the Platform on which an Server is 4879
hosted.\nAllows for Platform specific information to be discovered.\n", 4880
 "parameters": [4881
 {"$ref": "#/parameters/interface"} 4882
], 4883
 "responses": { 4884
 "200": { 4885
 "description" : "", 4886
 "x-example": { 4887
 "pi": "54919CA5-4101-4AE4-595B-353C51AA983C", 4888
 "rt": ["oic.wk.p"], 4889
 "mnmn": "Acme, Inc" 4890
 }, 4891
 "schema": { "$ref": "#/definitions/Platform" } 4892
 } 4893
 } 4894
 } 4895
 } 4896
 }, 4897
 "parameters": { 4898
 "interface" : { 4899
 "in" : "query", 4900
 "name" : "if", 4901
 "type" : "string", 4902
 "enum" : ["oic.if.r", "oic.if.baseline"] 4903

Copyright Open Connectivity Foundation, Inc. © 2016-2020. All rights Reserved 120

 } 4904
 }, 4905
 "definitions": { 4906
 "Platform" : { 4907
 "properties": { 4908
 "rt" : { 4909
 "description": "Resource Type of the Resource", 4910
 "items": { 4911
 "enum": ["oic.wk.p"], 4912
 "type": "string", 4913
 "maxLength": 64 4914
 }, 4915
 "minItems": 1, 4916
 "uniqueItems": true, 4917
 "readOnly": true, 4918
 "type": "array" 4919
 }, 4920
 "pi" : { 4921
 "pattern": "^[a-fA-F0-9]{8}-[a-fA-F0-9]{4}-[a-fA-F0-9]{4}-[a-fA-F0-9]{4}-[a-fA-F0-4922
9]{12}$", 4923
 "type": "string", 4924
 "description": "Platform Identifier", 4925
 "readOnly": true 4926
 }, 4927
 "mnfv" : { 4928
 "description": "Manufacturer's firmware version", 4929
 "maxLength": 64, 4930
 "readOnly": true, 4931
 "type": "string" 4932
 }, 4933
 "vid" : { 4934
 "description": "Manufacturer's defined information for the Platform. The content is 4935
freeform, with population rules up to the manufacturer", 4936
 "maxLength": 64, 4937
 "readOnly": true, 4938
 "type": "string" 4939
 }, 4940
 "mnmn" : { 4941
 "description": "Manufacturer name", 4942
 "maxLength": 64, 4943
 "readOnly": true, 4944
 "type": "string" 4945
 }, 4946
 "mnmo" : { 4947
 "description": "Model number as designated by the manufacturer", 4948
 "maxLength": 64, 4949
 "readOnly": true, 4950
 "type": "string" 4951
 }, 4952
 "mnhw" : { 4953
 "description": "Platform Hardware Version", 4954
 "maxLength": 64, 4955
 "readOnly": true, 4956
 "type": "string" 4957
 }, 4958
 "mnos" : { 4959
 "description": "Platform Resident OS Version", 4960
 "maxLength": 64, 4961
 "readOnly": true, 4962
 "type": "string" 4963
 }, 4964
 "mndt" : { 4965
 "pattern": "^([0-9]{4})-(1[0-2]|0[1-9])-(3[0-1]|2[0-9]|1[0-9]|0[1-9])$", 4966
 "type": "string", 4967
 "description": "Manufacturing Date.", 4968
 "readOnly": true 4969
 }, 4970
 "id" : { 4971
 "$ref": 4972
"https://openconnectivityfoundation.github.io/core/schemas/oic.common.properties.core-4973
schema.json#/definitions/id" 4974

Copyright Open Connectivity Foundation, Inc. © 2016-2020. All rights Reserved 121

 }, 4975
 "mnsl" : { 4976
 "description": "Manufacturer's Support Information URL", 4977
 "format": "uri", 4978
 "maxLength": 256, 4979
 "readOnly": true, 4980
 "type": "string" 4981
 }, 4982
 "mnpv" : { 4983
 "description": "Platform Version", 4984
 "maxLength": 64, 4985
 "readOnly": true, 4986
 "type": "string" 4987
 }, 4988
 "st" : { 4989
 "description": "The date-time format pattern according to IETF RFC 3339.", 4990
 "format": "date-time", 4991
 "readOnly": true, 4992
 "type": "string" 4993
 }, 4994
 "n" : { 4995
 "$ref": 4996
"https://openconnectivityfoundation.github.io/core/schemas/oic.common.properties.core-4997
schema.json#/definitions/n" 4998
 }, 4999
 "mnml" : { 5000
 "description": "Manufacturer's URL", 5001
 "format": "uri", 5002
 "maxLength": 256, 5003
 "readOnly": true, 5004
 "type": "string" 5005
 }, 5006
 "mnsel" : { 5007
 "description": "Serial number as designated by the manufacturer", 5008
 "maxLength": 64, 5009
 "readOnly": true, 5010
 "type": "string" 5011
 }, 5012
 "if" : { 5013
 "description": "The OCF Interfaces supported by this Resource", 5014
 "items": { 5015
 "enum": [5016
 "oic.if.r", 5017
 "oic.if.baseline" 5018
], 5019
 "type": "string", 5020
 "maxLength": 64 5021
 }, 5022
 "minItems": 2, 5023
 "readOnly": true, 5024
 "uniqueItems": true, 5025
 "type": "array" 5026
 }, 5027
 "mnnct" : { 5028
 "description": "An array of integers and each integer indicates the network connectivity 5029
type based on IANAIfType value as defined by: https://www.iana.org/assignments/ianaiftype-5030
mib/ianaiftype-mib, e.g., [71, 259] which represents Wi-Fi and Zigbee.", 5031
 "items": { 5032
 "type": "integer", 5033
 "minimum": 1, 5034
 "description": "The network connectivity type based on IANAIfType value as defined by: 5035
https://www.iana.org/assignments/ianaiftype-mib/ianaiftype-mib." 5036
 }, 5037
 "minItems": 1, 5038
 "readOnly": true, 5039
 "type": "array" 5040
 } 5041
 }, 5042
 "type" : "object", 5043
 "required": ["pi", "mnmn"] 5044
 } 5045

Copyright Open Connectivity Foundation, Inc. © 2016-2020. All rights Reserved 122

 } 5046
} 5047
 5048

A.6.5 Property definition 5049

Table A.10 defines the Properties that are part of the "oic.wk.p" Resource Type. 5050

Table A.10 – The Property definitions of the Resource with type "rt" = "oic.wk.p". 5051

Property
name

Value type Mandatory Access mode Description

rt array: see
schema

No Read Only Resource Type of the Resource

pi string Yes Read Only Platform Identifier

mnfv string No Read Only Manufacturer's firmware version

vid string No Read Only Manufacturer's defined information for the
Platform. The content is freeform, with
population rules up to the manufacturer

mnmn string Yes Read Only Manufacturer name

mnmo string No Read Only Model number as designated by the
manufacturer

mnhw string No Read Only Platform Hardware Version

mnos string No Read Only Platform Resident OS Version

mndt string No Read Only Manufacturing Date.

id multiple types:
see schema

No Read Write

mnsl string No Read Only Manufacturer's Support Information URL

mnpv string No Read Only Platform Version

st string No Read Only The date-time format pattern according to
IETF RFC 3339.

n multiple types:
see schema

No Read Write

mnml string No Read Only Manufacturer's URL

mnsel string No Read Only Serial number as designated by the
manufacturer

if array: see
schema

No Read Only The OCF Interfaces supported by this
Resource

mnnct array: see
schema

No Read Only An array of integers and each integer
indicates the network connectivity type
based on IANAIfType value as defined by:
https://www.iana.org/assignments/ianaiftype-
mib/ianaiftype-mib, e.g., [71, 259] which
represents Wi-Fi and Zigbee.

A.6.6 CRUDN behaviour 5052

Table A.11 defines the CRUDN operations that are supported on the "oic.wk.p" Resource Type. 5053

Table A.11 – The CRUDN operations of the Resource with type "rt" = "oic.wk.p". 5054

Create Read Update Delete Notify

 get observe

Copyright Open Connectivity Foundation, Inc. © 2016-2020. All rights Reserved 123

A.7 Discoverable Resources 5055

A.7.1 Introduction 5056

Baseline representation of /oic/res; list of discoverable Resources 5057
 5058

A.7.2 Well-known URI 5059

/oic/res 5060

A.7.3 Resource type 5061

The Resource Type is defined as: "oic.wk.res". 5062

A.7.4 OpenAPI 2.0 definition 5063

{ 5064
 "swagger": "2.0", 5065
 "info": { 5066
 "title": "Discoverable Resources", 5067
 "version": "2019-04-22", 5068
 "license": { 5069
 "name": "OCF Data Model License", 5070
 "url": "https://openconnectivityfoundation.github.io/core/LICENSE.md", 5071
 "x-copyright": "Copyright 2016-2019 Open Connectivity Foundation, Inc. All rights reserved." 5072
 }, 5073
 "termsOfService": "https://openconnectivityfoundation.github.io/core/DISCLAIMER.md" 5074
 }, 5075
 "schemes": [5076
 "http" 5077
], 5078
 "consumes": [5079
 "application/json" 5080
], 5081
 "produces": [5082
 "application/json" 5083
], 5084
 "paths": { 5085
 "/oic/res?if=oic.if.ll": { 5086
 "get": { 5087
 "description": "Links list representation of /oic/res; list of discoverable Resources\n", 5088
 "parameters": [5089
 { 5090
 "$ref": "#/parameters/interface-all" 5091
 } 5092
], 5093
 "responses": { 5094
 "200": { 5095
 "description" : "", 5096
 "x-example": [5097
 { 5098
 "href": "/oic/res", 5099
 "rt": ["oic.wk.res"], 5100
 "if": ["oic.if.ll", "oic.if.b", "oic.if.baseline"], 5101
 "rel": ["self"], 5102
 "p": {"bm": 3}, 5103
 "eps": [5104
 {"ep": "coaps://[fe80::b1d6]:1122"}] 5105
 }, 5106
 { 5107
 "href": "/humidity", 5108
 "rt": ["oic.r.humidity"], 5109
 "if": ["oic.if.s", "oic.if.baseline"], 5110
 "p": {"bm": 3}, 5111
 "eps": [5112
 {"ep": "coaps://[fe80::b1d6]:1111", "pri": 2}, 5113
 {"ep": "coaps://[fe80::b1d6]:1122"}, 5114
 {"ep": "coaps+tcp://[2001:db8:a::123]:2222", "pri": 3} 5115
] 5116

Copyright Open Connectivity Foundation, Inc. © 2016-2020. All rights Reserved 124

 }, 5117
 { 5118
 "href": "/temperature", 5119
 "rt": ["oic.r.temperature"], 5120
 "if": ["oic.if.s", "oic.if.baseline"], 5121
 "p": {"bm": 3}, 5122
 "eps": [5123
 {"ep": "coaps://[[2001:db8:a::123]:2222"} 5124
] 5125
 } 5126
], 5127
 "schema": { 5128
 "$ref": "#/definitions/slinklist" 5129
 } 5130
 } 5131
 } 5132
 } 5133
 }, 5134
 "/oic/res?if=oic.if.b" : { 5135
 "get": { 5136
 "description": "Batch representation of /oic/res; list of discoverable Resources\n", 5137
 "parameters": [5138
 {"$ref": "#/parameters/interface-all"} 5139
], 5140
 "responses": { 5141
 "200": { 5142
 "description" : "", 5143
 "x-example": [5144
 { 5145
 "href": "/humidity", 5146
 "rep":{ 5147
 "rt": ["oic.r.humidity"], 5148
 "humidity": 40, 5149
 "desiredHumidity": 40 5150
 } 5151
 }, 5152
 { 5153
 "href": "/temperature", 5154
 "rep":{ 5155
 "rt": ["oic.r.temperature"], 5156
 "temperature": 20.0, 5157
 "units": "C" 5158
 } 5159
 } 5160
], 5161
 "schema": { "$ref": "#/definitions/sbatch" } 5162
 } 5163
 } 5164
 } 5165
 }, 5166
 "/oic/res?if=oic.if.baseline": { 5167
 "get": { 5168
 "description": "Baseline representation of /oic/res; list of discoverable Resources\n", 5169
 "parameters": [5170
 { 5171
 "$ref": "#/parameters/interface-all" 5172
 } 5173
], 5174
 "responses": { 5175
 "200": { 5176
 "description": "", 5177
 "x-example": [5178
 { 5179
 "rt": ["oic.wk.res"], 5180
 "if": ["oic.if.ll", "oic.if.b", "oic.if.baseline"], 5181
 "links": [5182
 { 5183
 "href": "/humidity", 5184
 "rt": ["oic.r.humidity"], 5185
 "if": ["oic.if.s", "oic.if.baseline"], 5186
 "p": {"bm": 3}, 5187

Copyright Open Connectivity Foundation, Inc. © 2016-2020. All rights Reserved 125

 "eps": [5188
 {"ep": "coaps://[fe80::b1d6]:1111", "pri": 2}, 5189
 {"ep": "coaps://[fe80::b1d6]:1122"}, 5190
 {"ep": "coap+tcp://[2001:db8:a::123]:2222", "pri": 3} 5191
] 5192
 }, 5193
 { 5194
 "href": "/temperature", 5195
 "rt": ["oic.r.temperature"], 5196
 "if": ["oic.if.s", "oic.if.baseline"], 5197
 "p": {"bm": 3}, 5198
 "eps": [5199
 {"ep": "coaps://[[2001:db8:a::123]:2222"} 5200
] 5201
 } 5202
] 5203
 } 5204
], 5205
 "schema": { 5206
 "$ref": "#/definitions/sbaseline" 5207
 } 5208
 } 5209
 } 5210
 } 5211
 } 5212
 }, 5213
 "parameters": { 5214
 "interface-all": { 5215
 "in": "query", 5216
 "name": "if", 5217
 "type": "string", 5218
 "enum": ["oic.if.ll", "oic.if.b", "oic.if.baseline"] 5219
 } 5220
 }, 5221
 "definitions": { 5222
 "oic.oic-link": { 5223
 "type": "object", 5224
 "properties": { 5225
 "anchor": { 5226
 "$ref": 5227
"https://openconnectivityfoundation.github.io/core/schemas/oic.links.properties.core-5228
schema.json#/definitions/anchor" 5229
 }, 5230
 "di": { 5231
 "$ref": 5232
"https://openconnectivityfoundation.github.io/core/schemas/oic.links.properties.core-5233
schema.json#/definitions/di" 5234
 }, 5235
 "eps": { 5236
 "$ref": 5237
"https://openconnectivityfoundation.github.io/core/schemas/oic.links.properties.core-5238
schema.json#/definitions/eps" 5239
 }, 5240
 "href": { 5241
 "$ref": 5242
"https://openconnectivityfoundation.github.io/core/schemas/oic.links.properties.core-5243
schema.json#/definitions/href" 5244
 }, 5245
 "if": { 5246
 "description": "The OCF Interfaces supported by the Linked Resource", 5247
 "items": { 5248
 "enum": [5249
 "oic.if.baseline", 5250
 "oic.if.ll", 5251
 "oic.if.b", 5252
 "oic.if.rw", 5253
 "oic.if.r", 5254
 "oic.if.a", 5255
 "oic.if.s" 5256
], 5257
 "type": "string", 5258

Copyright Open Connectivity Foundation, Inc. © 2016-2020. All rights Reserved 126

 "maxLength": 64 5259
 }, 5260
 "minItems": 1, 5261
 "uniqueItems": true, 5262
 "type": "array" 5263
 }, 5264
 "ins": { 5265
 "$ref": 5266
"https://openconnectivityfoundation.github.io/core/schemas/oic.links.properties.core-5267
schema.json#/definitions/ins" 5268
 }, 5269
 "p": { 5270
 "$ref": 5271
"https://openconnectivityfoundation.github.io/core/schemas/oic.links.properties.core-5272
schema.json#/definitions/p" 5273
 }, 5274
 "rel": { 5275
 "description": "The relation of the target URI referenced by the Link to the context URI", 5276
 "oneOf": [5277
 { 5278
 "$ref": 5279
"https://openconnectivityfoundation.github.io/core/schemas/oic.links.properties.core-5280
schema.json#/definitions/rel_array" 5281
 }, 5282
 { 5283
 "$ref": 5284
"https://openconnectivityfoundation.github.io/core/schemas/oic.links.properties.core-5285
schema.json#/definitions/rel_string" 5286
 } 5287
] 5288
 }, 5289
 "rt": { 5290
 "description": "Resource Type of the Linked Resource", 5291
 "items": { 5292
 "maxLength": 64, 5293
 "type": "string" 5294
 }, 5295
 "minItems": 1, 5296
 "uniqueItems": true, 5297
 "type": "array" 5298
 }, 5299
 "title": { 5300
 "$ref": 5301
"https://openconnectivityfoundation.github.io/core/schemas/oic.links.properties.core-5302
schema.json#/definitions/title" 5303
 }, 5304
 "type": { 5305
 "$ref": 5306
"https://openconnectivityfoundation.github.io/core/schemas/oic.links.properties.core-5307
schema.json#/definitions/type" 5308
 }, 5309
 "tag-pos-desc": { 5310
 "$ref": 5311
"https://openconnectivityfoundation.github.io/core/schemas/oic.links.properties.core-5312
schema.json#/definitions/tag-pos-desc" 5313
 }, 5314
 "tag-pos-rel": { 5315
 "$ref": 5316
"https://openconnectivityfoundation.github.io/core/schemas/oic.links.properties.core-5317
schema.json#/definitions/tag-pos-rel" 5318
 }, 5319
 "tag-func-desc": { 5320
 "$ref": 5321
"https://openconnectivityfoundation.github.io/core/schemas/oic.links.properties.core-5322
schema.json#/definitions/tag-func-desc" 5323
 } 5324
 }, 5325
 "required": [5326
 "href", 5327
 "rt", 5328
 "if" 5329

Copyright Open Connectivity Foundation, Inc. © 2016-2020. All rights Reserved 127

] 5330
 }, 5331
 "slinklist": { 5332
 "type" : "array", 5333
 "readOnly": true, 5334
 "items": { 5335
 "$ref": "#/definitions/oic.oic-link" 5336
 } 5337
 }, 5338
 "sbaseline": { 5339
 "type": "array", 5340
 "minItems": 1, 5341
 "maxItems": 1, 5342
 "items": { 5343
 "type": "object", 5344
 "properties": { 5345
 "n": { 5346
 "$ref": 5347
"https://openconnectivityfoundation.github.io/core/schemas/oic.common.properties.core-5348
schema.json#/definitions/n" 5349
 }, 5350
 "id": { 5351
 "$ref": 5352
"https://openconnectivityfoundation.github.io/core/schemas/oic.common.properties.core-5353
schema.json#/definitions/id" 5354
 }, 5355
 "rt": { 5356
 "description": "Resource Type of this Resource", 5357
 "items": { 5358
 "enum": ["oic.wk.res"], 5359
 "type": "string", 5360
 "maxLength": 64 5361
 }, 5362
 "minItems": 1, 5363
 "readOnly": true, 5364
 "uniqueItems": true, 5365
 "type": "array" 5366
 }, 5367
 "if": { 5368
 "description": "The OCF Interfaces supported by this Resource", 5369
 "items": { 5370
 "enum": [5371
 "oic.if.ll", 5372
 "oic.if.b", 5373
 "oic.if.baseline" 5374
], 5375
 "type": "string", 5376
 "maxLength": 64 5377
 }, 5378
 "minItems": 2, 5379
 "readOnly": true, 5380
 "uniqueItems": true, 5381
 "type": "array" 5382
 }, 5383
 "links": { 5384
 "type": "array", 5385
 "items": { 5386
 "$ref": "#/definitions/oic.oic-link" 5387
 } 5388
 }, 5389
 "sduuid": { 5390
 "description": "A UUID that identifies the Security Domain.", 5391
 "type": "string", 5392
 "pattern": "^[a-fA-F0-9]{8}-[a-fA-F0-9]{4}-[a-fA-F0-9]{4}-[a-fA-F0-9]{4}-[a-fA-F0-5393
9]{12}$", 5394
 "readOnly": true 5395
 }, 5396
 "sdname": { 5397
 "description": "Human-friendly name for the Security Domain.", 5398
 "type": "string", 5399
 "readOnly": true 5400

Copyright Open Connectivity Foundation, Inc. © 2016-2020. All rights Reserved 128

 } 5401
 }, 5402
 "required": [5403
 "rt", 5404
 "if", 5405
 "links" 5406
] 5407
 } 5408
 }, 5409
 "sbatch" : { 5410
 "type" : "array", 5411
 "minItems" : 1, 5412
 "items" : { 5413
 "type": "object", 5414
 "additionalProperties": true, 5415
 "properties": { 5416
 "href": { 5417
 "$ref": 5418
"https://openconnectivityfoundation.github.io/core/schemas/oic.links.properties.core-5419
schema.json#/definitions/href" 5420
 }, 5421
 "rep": { 5422
 "oneOf": [5423
 { 5424
 "description": "The response payload from a single Resource", 5425
 "type": "object" 5426
 }, 5427
 { 5428
 "description": " The response payload from a Collection (batch) Resource", 5429
 "items": { 5430
 "$ref": "#/definitions/oic.oic-link" 5431
 }, 5432
 "type": "array" 5433
 } 5434
] 5435
 } 5436
 }, 5437
 "required": [5438
 "href", 5439
 "rep" 5440
] 5441
 } 5442
 } 5443
 } 5444
} 5445
 5446

A.7.5 Property definition 5447

Table A.12 defines the Properties that are part of the "oic.wk.res" Resource Type. 5448

Table A.12 – The Property definitions of the Resource with type "rt" = "oic.wk.res". 5449

Property name Value type Mandatory Access mode Description

anchor multiple types: see
schema

No Read Write

di multiple types: see
schema

No Read Write

eps multiple types: see
schema

No Read Write

href multiple types: see
schema

Yes Read Write

if array: see schema Yes Read Write The OCF Interfaces
supported by the
Linked Resource

Copyright Open Connectivity Foundation, Inc. © 2016-2020. All rights Reserved 129

ins multiple types: see
schema

No Read Write

p multiple types: see
schema

No Read Write

rel multiple types: see
schema

No Read Write The relation of the
target URI
referenced by the
Link to the context
URI

rt array: see schema Yes Read Write Resource Type of
the Linked Resource

title multiple types: see
schema

No Read Write

type multiple types: see
schema

No Read Write

tag-pos-desc multiple types: see
schema

No Read Write

tag-pos-rel multiple types: see
schema

No Read Write

tag-func-desc multiple types: see
schema

No Read Write

n multiple types: see
schema

No Read Write

id multiple types: see
schema

No Read Write

rt array: see schema Yes Read Only Resource Type of
this Resource

if array: see schema Yes Read Only The OCF Interfaces
supported by this
Resource

links array: see schema Yes Read Write

sduuid string No Read Only A UUID that
identifies the
Security Domain.

sdname string No Read Only Human-friendly
name for the
Security Domain.

href multiple types: see
schema

Yes Read Write

rep multiple types: see
schema

Yes Read Write

A.7.6 CRUDN behaviour 5450

Table A.13 defines the CRUDN operations that are supported on the "oic.wk.res" Resource Type. 5451

Table A.13 – The CRUDN operations of the Resource with type "rt" = "oic.wk.res". 5452

Create Read Update Delete Notify

 get observe

 5453
 5454

Copyright Open Connectivity Foundation, Inc. © 2016-2020. All rights Reserved 130

 5455

(informative) 5456

 5457

OpenAPI 2.0 Schema Extension 5458

B.1 OpenAPI 2.0 Schema Reference 5459

OpenAPI 2.0 does not support allOf and anyOf JSON schema valiation constructs; this document 5460
has extended the underlying OpenAPI 2.0 schema to enable these, all OpenAPI 2.0 files are valid 5461
against the extended schema. Reference the following location for a copy of the extended schema: 5462

– https://github.com/openconnectivityfoundation/OCFswagger2.0-schema 5463

B.2 OpenAPI 2.0 Introspection empty file 5464

Reference the following location for a copy of an empty OpenAPI 2.0 file: 5465

– https://github.com/openconnectivityfoundation/DeviceBuilder/blob/master/introspection-5466
examples/introspection-empty.txt 5467

https://github.com/openconnectivityfoundation/OCFswagger2.0-schema
https://github.com/openconnectivityfoundation/DeviceBuilder/blob/master/introspection-examples/introspection-empty.txt
https://github.com/openconnectivityfoundation/DeviceBuilder/blob/master/introspection-examples/introspection-empty.txt

Copyright Open Connectivity Foundation, Inc. © 2016-2020. All rights Reserved 131

 5468

(normative) 5469

 5470

Semantic Tag enumeration support 5471

C.1 Introduction 5472

This Annex defines the enumerations that are applicable to defined Semantic Tags. 5473

C.2 "tag-pos-desc" supported enumeration 5474

Figure C.1 defines the enumeration from which a value populated within an instance of the "tag-5475
pos-desc" Semantic Tag is taken. 5476

"pos-descriptions": {
"enum":
["unknown","top","bottom","left","right","centre","topleft","bottomleft","centreleft"
,"centreright","bottomright","topright","topcentre","bottomcentre"]
}

Figure C.1 – Enumeration for "tag-pos-desc" Semantic Tag 5477

 5478

Figure C.2 provides an illustrative representation of the definition of the values that can be 5479
represented within an instance of "tag-pos-desc". 5480

topleft topcentre topright

centreleft centre centreright

bottomrightbottomcentrebottomleft

bottom

top

left right

 5481

Figure C.2 – Definition of "tag-pos-desc" Semantic Tag values 5482

 5483

Copyright Open Connectivity Foundation, Inc. © 2016-2020. All rights Reserved 132

Bibliography 5484

[1] OCF Core - Optional, Information technology – Open Connectivity Foundation (OCF) 5485
Specification – Part X: Core - Optional specification 5486
Latest version available at: 5487
https://openconnectivity.org/specs/OCF_Core_Optional_Specification.pdf 5488

[2] OCF Easy Wi-Fi Setup, Information technology – Open Connectivity Foundation (OCF) 5489
Specification – Part 7: Wi-Fi Easy Setup specification 5490
Latest version available at: https://openconnectivity.org/specs/OCF_Wi-5491
Fi_Easy_Setup_Specification.pdf 5492

 5493

	1 Scope
	2 Normative references
	3 Terms, definitions, and abbreviated terms
	3.1 Terms and definitions
	3.2 Abbreviated terms

	4 Document conventions and organization
	4.1 Conventions
	4.2 Notation
	4.3 Data types
	4.4 Resource notation syntax

	5 Architecture
	5.1 Overview
	5.2 Principle
	5.3 Functional block diagram
	5.4 Framework

	6 Identification and addressing
	6.1 Introduction
	6.2 Identification
	6.2.1 Device and Platform identification
	6.2.2 Resource identification and addressing

	6.3 Namespace:
	6.4 Network addressing

	7 Resource model
	7.1 Introduction
	7.2 Resource
	7.3 Property
	7.3.1 Introduction
	7.3.2 Common Properties
	7.3.2.1 Introduction
	7.3.2.2 Property Name and Property Value definitions
	7.3.2.3 Resource Type
	7.3.2.4 OCF Interface
	7.3.2.5 Name
	7.3.2.6 Resource Identity

	7.4 Resource Type
	7.4.1 Introduction
	7.4.2 Resource Type Property
	7.4.3 Resource Type definition
	7.4.4 Multi-value "rt" Resource

	7.5 Device Type
	7.6 OCF Interface
	7.6.1 Introduction
	7.6.2 OCF Interface Property
	7.6.3 OCF Interface methods
	7.6.3.1 Overview
	7.6.3.2 Baseline OCF Interface
	7.6.3.2.1 Overview
	7.6.3.2.2 Use of RETRIEVE
	7.6.3.2.3 Use of UPDATE

	7.6.3.3 Links list OCF Interface
	7.6.3.3.1 Overview
	7.6.3.3.2 Use with RETRIEVE
	7.6.3.3.3 Use with NOTIFY
	7.6.3.3.4 Use with CREATE, UPDATE, and DELETE

	7.6.3.4 Batch OCF Interface
	7.6.3.4.1 Overview
	7.6.3.4.2 General requirements for realizations of the batch OCF Interface
	7.6.3.4.3 Observability of the batch OCF Interface
	7.6.3.4.4 UPDATE using the batch OCF Interface
	7.6.3.4.5 Examples: Batch OCF Interface

	7.6.3.5 Actuator OCF Interface
	7.6.3.6 Sensor OCF Interface
	7.6.3.7 Read-only OCF Interface
	7.6.3.8 Read-write OCF Interface
	7.6.3.9 Create OCF Interface
	7.6.3.9.1 Overview
	7.6.3.9.2 Data format for CREATE
	7.6.3.9.3 Use with CREATE
	7.6.3.9.4 Use with UPDATE and DELETE

	7.7 Resource representation
	7.8 Structure
	7.8.1 Introduction
	7.8.2 Resource relationships (Links)
	7.8.2.1 Introduction
	7.8.2.2 Link context
	7.8.2.3 Link relation type
	7.8.2.4 Link target
	7.8.2.5 Parameters for Link target attributes
	7.8.2.5.1 Introduction
	7.8.2.5.2 "ins" or Link instance Parameter
	7.8.2.5.3 "p" or policy Parameter
	7.8.2.5.4 "type" or media type Parameter
	7.8.2.5.5 "di" or Device ID Parameter
	7.8.2.5.6 "eps" Parameter

	7.8.2.6 Formatting
	7.8.2.7 List of Links in a Collection
	7.8.2.8 Properties describing an array of Links

	7.8.3 Collections
	7.8.3.1 Overview
	7.8.3.2 Collection Properties
	7.8.3.3 Default Resource Type
	7.8.3.4 Default OCF Interface

	7.8.4 Atomic Measurement
	7.8.4.1 Overview
	7.8.4.2 Atomic Measurement Properties
	7.8.4.3 Normative behaviour
	7.8.4.4 Security considerations
	7.8.4.5 Default Resource Type

	7.9 Query Parameters
	7.9.1 Introduction
	7.9.2 Use of multiple parameters within a query
	7.9.3 Application to multi-value "rt" Resources
	7.9.4 OCF Interface specific considerations for queries
	7.9.4.1 OCF Interface selection
	7.9.4.2 Batch OCF Interface

	8 CRUDN
	8.1 Overview
	8.2 CREATE
	8.2.1 Overview
	8.2.2 CREATE request
	8.2.3 Processing by the Server
	8.2.4 CREATE response

	8.3 RETRIEVE
	8.3.1 Overview
	8.3.2 RETRIEVE request
	8.3.3 Processing by the Server
	8.3.4 RETRIEVE response

	8.4 UPDATE
	8.4.1 Overview
	8.4.2 UPDATE request
	8.4.3 Processing by the Server
	8.4.3.1 Overview
	8.4.3.2 Resource monitoring by the Server
	8.4.3.3 Additional RETRIEVE responses with Observe indication

	8.4.4 UPDATE response

	8.5 DELETE
	8.5.1 Overview
	8.5.2 DELETE request
	8.5.3 Processing by the Server
	8.5.4 DELETE response

	8.6 NOTIFY
	8.6.1 Overview
	8.6.2 NOTIFICATION response

	9 Network and connectivity
	9.1 Introduction
	9.2 Architecture
	9.3 IPv6 network layer requirements
	9.3.1 Introduction
	9.3.2 IPv6 node requirements
	9.3.2.1 Introduction
	9.3.2.2 IP Layer

	10 OCF Endpoint
	10.1 OCF Endpoint definition
	10.2 OCF Endpoint information
	10.2.1 Introduction
	10.2.2 "ep"
	10.2.3 "pri"
	10.2.4 "lat"
	10.2.5 OCF Endpoint information in "eps" Parameter

	10.3 OCF Endpoint discovery
	10.3.1 Introduction
	10.3.2 Implicit discovery
	10.3.3 Explicit discovery with "/oic/res" response

	11 Functional interactions
	11.1 Introduction
	11.2 Resource discovery
	11.2.1 Introduction
	11.2.2 Resource based discovery: mechanisms
	11.2.2.1 Overview
	11.2.2.2 Direct discovery

	11.2.3 Resource based discovery: Finding information
	11.2.4 Resource discovery using "/oic/res"
	11.2.4.1 General Requirements
	11.2.4.2 Discovery using "oic.if.ll" (Default OCF Interfgace for "/oic/res")

	11.2.5 Multicast discovery using "/oic/res"

	11.3 Notification
	11.3.1 Overview
	11.3.2 Observe
	11.3.2.1 Overview
	11.3.2.2 RETRIEVE request with Observe indication
	11.3.2.3 Processing by the Server
	11.3.2.4 RETRIEVE response with Observe indication
	11.3.2.5 Resource monitoring by the Server
	11.3.2.6 Additional RETRIEVE responses with Observe indication
	11.3.2.7 Cancelling Observe

	11.4 Introspection
	11.4.1 Overview
	11.4.2 Usage of Introspection

	11.5 Semantic Tags
	11.5.1 Introduction
	11.5.2 Semantic Tag definitions
	11.5.2.1 Relative and descriptive position Semantic Tags
	11.5.2.1.1 Introduction
	11.5.2.1.2 "tag-pos-desc" or position description Semantic Tag
	11.5.2.1.3 "tag-pos-rel" or relative position Semantic Tag

	11.5.2.2 Functional behaviour Semantic Tags
	11.5.2.2.1 Introduction
	11.5.2.2.2 "tag-func-desc" or function description Semantic Tag

	12 Messaging
	12.1 Introduction
	12.2 Mapping of CRUDN to CoAP
	12.2.1 Overview
	12.2.2 URIs
	12.2.3 CoAP method with request and response
	12.2.3.1 Overview
	12.2.3.2 CREATE with POST
	12.2.3.3 RETRIEVE with GET
	12.2.3.4 UPDATE with POST
	12.2.3.5 DELETE with DELETE

	12.2.4 Content-Format negotiation
	12.2.5 OCF-Content-Format-Version information
	12.2.6 Content-Format policy
	12.2.7 CRUDN to CoAP response codes
	12.2.8 CoAP block transfer
	12.2.9 Generic requirements for CoAP multicast
	12.2.10 Setting timeout on response to a confirmable request

	12.3 Mapping of CRUDN to CoAP serialization over TCP
	12.3.1 Overview
	12.3.2 URIs
	12.3.3 CoAP method with request and response
	12.3.4 Content-Format negotiation
	12.3.5 OCF-Content-Format-Version information
	12.3.6 Content-Format policy
	12.3.7 CRUDN to CoAP response codes
	12.3.8 CoAP block transfer
	12.3.9 Keep alive (connection health)
	12.3.10 CoAP using a proxy

	12.4 Payload Encoding in CBOR

	13 Security
	Annex A (normative) Resource Type definitions
	A.1 List of Resource Type definitions
	A.2 Atomic Measurement links list representation
	A.2.1 Introduction
	A.2.2 Example URI
	A.2.3 Resource type
	A.2.4 OpenAPI 2.0 definition
	A.2.5 Property definition
	A.2.6 CRUDN behaviour

	A.3 Collection
	A.3.1 Introduction
	A.3.2 Example URI
	A.3.3 Resource type
	A.3.4 OpenAPI 2.0 definition
	A.3.5 Property definition
	A.3.6 CRUDN behaviour

	A.4 Device
	A.4.1 Introduction
	A.4.2 Well-known URI
	A.4.3 Resource type
	A.4.4 OpenAPI 2.0 definition
	A.4.5 Property definition
	A.4.6 CRUDN behaviour

	A.5 Introspection Resource
	A.5.1 Introduction
	A.5.2 Well-known URI
	A.5.3 Resource type
	A.5.4 OpenAPI 2.0 definition
	A.5.5 Property definition
	A.5.6 CRUDN behaviour

	A.6 Platform
	A.6.1 Introduction
	A.6.2 Well-known URI
	A.6.3 Resource type
	A.6.4 OpenAPI 2.0 definition
	A.6.5 Property definition
	A.6.6 CRUDN behaviour

	A.7 Discoverable Resources
	A.7.1 Introduction
	A.7.2 Well-known URI
	A.7.3 Resource type
	A.7.4 OpenAPI 2.0 definition
	A.7.5 Property definition
	A.7.6 CRUDN behaviour
	Annex B (informative) OpenAPI 2.0 Schema Extension

	B.1 OpenAPI 2.0 Schema Reference
	B.2 OpenAPI 2.0 Introspection empty file
	Annex C (normative) Semantic Tag enumeration support

	C.1 Introduction
	C.2 "tag-pos-desc" supported enumeration

	Bibliography

