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Abstract

We introduce four principles for explainable artificial intelligence (AI) that comprise fun-
damental properties for explainable Al systems. We propose that explainable Al systems
deliver accompanying evidence or reasons for outcomes and processes; provide explana-
tions that are understandable to individual users; provide explanations that correctly reflect
the system’s process for generating the output; and that a system only operates under condi-
tions for which it was designed and when it reaches sufficient confidence in its output. We
have termed these four principles as explanation, meaningful, explanation accuracy, and
knowledge limits, respectively. Through significant stakeholder engagement, these four
principles were developed to encompass the multidisciplinary nature of explainable Al,
including the fields of computer science, engineering, and psychology. Because one-size-
fits-all explanations do not exist, different users will require different types of explanations.
We present five categories of explanation and summarize theories of explainable Al. We
give an overview of the algorithms in the field that cover the major classes of explainable
algorithms. As a baseline comparison, we assess how well explanations provided by people
follow our four principles. This assessment provides insights to the challenges of designing
explainable Al systems.

Key words

Artificial Intelligence (Al); explainable Al; explainability; trustworthy Al
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Executive Summary

The Al space is vast, complicated, and continually evolving. With advances in computing
power and ever-larger datasets, Al algorithms are being explored and developed for use
in a wide variety of application spaces, with a variety of potential users and associated
risks. The Al community is pursuing explainability as one of many desirable character-
istics for trustworthy Al systems. Working with the AI community, NIST has identified
additional technical characteristics to cultivate trust in Al In addition to explainability and
interpretability, among other Al system characteristics proposed to support system trust-
worthiness are accuracy, privacy, reliability, robustness, safety, security (resilience), miti-
gation of harmful bias, transparency, fairness, and accountability. Explainability and other
Al system characteristics interact at various stages in the Al lifecycle. While all are criti-
cally important, this work focuses solely on principles of explainable Al systems.

In this paper, we introduce four principles that we believe comprise fundamental prop-
erties for explainable Al systems. These principles of explainable Al were informed by
engagement with the larger Al community through a NIST public workshop and public
comment period. We recognize that not all Al systems may require explanations. How-
ever, for those Al systems that are intended or required to be explainable, we propose that
those systems adhere to the following four principles:

Explanation: A system delivers or contains accompanying evidence or reason(s) for out-
puts and/or processes.

Meaningful: A system provides explanations that are understandable to the intended con-
sumer(s).

Explanation Accuracy: An explanation correctly reflects the reason for generating the
output and/or accurately reflects the system’s process.

Knowledge Limits: A system only operates under conditions for which it was designed
and when it reaches sufficient confidence in its output.

In this work, we recognize the importance of both process-based and outcome-based
explanations, as well as the importance of explanation purpose and style. For example, Al
developers and designers may have very different explanation needs than policy makers and
end users. Therefore, why an explanation is requested and how it is delivered may differ
depending on the Al users. These four principles are heavily influenced by considering
the Al system’s interaction with the human recipient of the information. The requirements
of the given situation, the task at hand, and the consumer will all influence the type of
explanation deemed appropriate for the situation. These situations can include, but are not
limited to, regulator and legal requirements, quality control of an Al system, and customer
relations. Our four principles of explainable Al systems are intended to capture a broad set
of motivations, reasons, and perspectives. The principles allow for defining the contextual
factors to consider for an explanation, and pave the way forward to measuring explanation
quality.

il
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We imagine that given the complexity of the Al space, these principles will benefit
from additional refinement and community input over time. We fully acknowledge that
there are numerous other socio-technical factors that influence Al trustworthiness beyond
explainability. This work on principles of explainable Al systems is part of the much
larger NIST Al portfolio1 around trustworthy Al data, standards, evaluation, validation,
and verification—all necessary for AI measurements. NIST is a metrology institute and
as such, defining initial principles of explainable Al systems acts as a roadmap for future
measurement and evaluation activities. The agency’s Al goals and activities are prioritized
and informed by its statutory mandates, White House directions, and the needs expressed
by U.S. industry, other federal agencies, and the global Al research community. The current
work is but one step in this much larger space, and we imagine this work will continue to
evolve and progress over time, much like the larger Al field.

INIST AI Program Fact Sheet: https://www.nist.gov/system/files/documents/2021/08/10/A1%20Fact%
20Sheet%200615%20FINAL.pdf

il
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1. Introduction

When the father of one of the authors was diagnosed with cancer, they went to speak with
his oncologist. The oncologist described the state of his cancer and went through strategies
and options for treatment. The oncologist answered the father’s questions and explained his
role in his treatment. The author’s father felt he was a partner and had some control. The
father trusted the treatment because he received a meaningful and understandable explana-
tion about the process. The doctor’s bedside manner won over the father. The medical arts
have changed, and possessing a good bedside manner has become de rigueur. When arti-
ficial intelligence (AI) systems contribute to a diagnosis, they could support good bedside
manners by explaining their recommendations to physicians.

Medical diagnoses are just one example where Al systems contribute to decisions that
impact a person’s life. Other examples are systems which evaluate loan applications and
recommend jail sentences. The nature of these decisions has spurred a drive to create algo-
rithms, methods, and techniques to accompany outputs from Al systems with explanations.
This drive is motivated in part by laws and regulations which state that decisions, including
those from automated systems, must provide information about the reasoning behind those
decisions?. It is also motivated by the desire to create trustworthy AI [49, 109, 131].

Explainable Al is one of several properties that characterize trust in Al systems [121,
127, 134]. Other properties include resiliency, reliability, bias, and accountability. Usually,
these terms are not defined in isolation, but as a part or set of principles or pillars. The
definitions vary by author, and they focus on the norms that society expects Al systems to
follow. Based on the calls for explainable systems [59], it can be assumed that the failure
to articulate the rationale for an answer can affect the level of trust users will grant that
system. Suspicions that the system is biased or unfair can raise concerns about harm to
individuals and to society [119, 146]. This may slow societal acceptance and adoption of
the technology.

With the increased call for explanations, the field needs a principled method that char-
acterizes a good explanation from an Al system. First, the characterization needs to be
human-centered, because humans consume them. Second, they need to be understandable
to people. Third, explanations should correctly reflect the system’s process for generating
the output. To foster confidence in explanations, the system should indicate when it is op-
erating outside its designed conditions. These core concepts of a good explanation are the
basis for our four principles of explainable Al

Although these principles may affect the methods in which algorithms operate to meet
explainable Al goals, the focus of the concepts is not algorithmic methods or computations
themselves. Also, the principles do not pertain to the system’s usage during deployment.
Rather, we present four principles organized around the humans that consume the expla-
nations. They provide a structure to begin measuring components of explanations: their
quality, goodness, accuracy, and limitations. To measure explanations in a structured way

The Fair Credit Reporting Act (FCRA) and the European Union (E.U.) General Data Protection Regulation
(GDPR) Article 13.
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is essential for the field to make progress toward concrete definitions by which explana-
tion quality can be measured. They serve as a guide for future research directions for the
field. The four principles support the foundation of explainable AI measurement, policy
considerations, safety, acceptance by society, and other aspects of Al technology.

We present and discuss the principles in Section 2. We adopt an expansive view of
explanations and characterize the space in Section 3. We outline risks introduced by ex-
plainable Al — especially those introduced if the principles are not met (Section 4). To
put current work into context, we provide a review of current explainable Al methods and
evaluation metrics, and other existing principles for explainable Al (Sections 5, 6, and 7).
Finally, we review existing literature to assess the extent to which humans meet the same
principles we introduce for Al (Section 8). Performance expectations can vary for humans
and machines. Although in some contexts, these differing expectations may or may not be
appropriate, a baseline on which they could be compared is needed.

2. Four Principles of Explainable AI

We present four fundamental principles for explainable Al systems. These principles are
heavily influenced by considering the Al system’s interaction with the human recipient of
the information. The requirements of the given situation, the task at hand, and the consumer
will all influence the type of explanation deemed appropriate for the situation. These situa-
tions can include, but are not limited to, regulator and legal requirements, quality control of
an Al system, and customer relations. Our four principles are intended to capture a broad
set of motivations, reasons, and perspectives. Our principles apply to systems that produce
explanations, and they support the full range of Al techniques, not only machine learning
ones.

Before we delve into the principles, for this document, we operationally define three
key terms: explanation, output, and process. An explanation is the evidence, support, or
reasoning related to a system’s output or process. We define the output of a system as 1) the
outcome from or ii) the action taken by a machine or system performing a task. The output
of a system differs by task. For a loan application, the output is a decision: approved or
denied. For a recommendation system, the output could be a list of recommended movies.
For a grammar checking system, the output is grammatical errors and recommended cor-
rections. For a classification system, it could be an object identifier or a spam detector.
For automated driving, it could be the navigation itself. The process refers to the proce-
dures, design, and system workflow which underlie the system (c.f. [50]). This includes
documentation about the system, information on data used for system development or data
stored, and related knowledge about the system.

Briefly, our four principles of explainable Al are:

Explanation: A system delivers or contains accompanying evidence or reason(s) for out-
puts and/or processes.
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Meaningful: A system provides explanations that are understandable to the intended con-
sumer(s).

Explanation Accuracy: An explanation correctly reflects the reason for generating the
output and/or accurately reflects the system’s process.

Knowledge Limits: A system only operates under conditions for which it was designed
and when it reaches sufficient confidence in its output.

These are defined and put into context in more detail below. Figure 1 shows the prin-
ciples and indicates that for a system to be considered explainable, it must first have an
explanation or contain accompanying evidence which can be accessed.

Explanation:
Delivers or contains accompanying evidence or reason(s) for outputs and/or processes

$ { U

AN y AN /

Meaningful: [ Explanation Accuracy: Knowledge Limits:
System provides Explanation correctly System only operates
explanations that reflects the reason for under conditions for
are understandable generating the output which it was designed
to the intended and/or accurately and when it reaches
consumer(s) reflects the system's sufficient confidence in

| process J { its output.

Fig. 1. [llustration of the four principles of explainable artificial intelligence. Arrows indicate that
for a system to be explainable, it must provide an explanation. The remaining three principles are
the fundamental properties of those explanations.

2.1 Explanation

The Explanation principle states that for a system to be considered explainable it supplies
evidence, support, or reasoning related to an outcome from or a process of an Al system.
By itself, the explanation principle is independent of whether the explanation is correct,
informative, or intelligible. This principle does not impose any metric of quality on those
explanations. These factors are components of the meaningful and explanation accuracy
principles. Explanations in practice will vary, and should, according to the given system
and scenario. This means there will be a large range of ways an explanation can be executed
or embedded into a system. To accommodate a large range of applications we adopt a
deliberately broad definition of an explanation.

2.2 Meaningful

A system fulfills the Meaningful principle if the intended recipient understands the system’s
explanation(s). There are commonalities across explanations which can make them more
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meaningful [84]. For example, stating why the system did behave a certain way can be
more understandable than describing why it did not behave a certain way [76]. Many fac-
tors contribute to what individual people will consider a “good” explanation [55, 84, 139].
Therefore, developers need to consider the intended audience [44]. Several factors influ-
ence what information people will find important, relevant, or useful. These include a
person’s prior knowledge and experiences and the overall psychological differences be-
tween people [18, 64, 90]. Moreover, what they consider meaningful will change over time
as they gain experience with a task or system [18]. Different groups of people will also
have different desires from a system’s explanations [13, 44, 50]. Groups may be defined
broadly according to their role or relationship to the system. For example: developers of a
system are likely to have different desires from an explanation compared to an end-user.

In addition to its audience, what is considered meaningful will vary according to the ex-
planation’s purpose. Different scenarios and needs will drive what is important and useful
in a given context. Meeting the Meaningful principle will be accomplished by understand-
ing the audience’s needs, level of expertise, and relevancy to the question or query at hand.
We provide a more detailed discussion of these purposes in Section 3.

Measuring the meaningful principle is an area of ongoing work (Section 7.1). The
challenge is to develop measurement protocols that adapt to different audiences. Rather
than viewing this as a burden, we argue that both the awareness and appreciation of an
explanation’s context support the ability to measure the quality of Al explanations. Scoping
these factors will therefore bound the possibilities for how to execute the explanation in a
goal-oriented and meaningful way.

2.3 Explanation Accuracy

Together, the Explanation and Meaningful principles only call for a system to produce
explanations that are intelligible to the intended audience. These two principles do not
require that an explanation correctly reflects a system’s process for generating its output.
The Explanation Accuracy principle imposes veracity on a system’s explanations.

Explanation accuracy is a distinct concept from decision accuracy. Decision accuracy
refers to whether the system’s judgment is correct or incorrect. Regardless of the system’s
decision accuracy, the corresponding explanation may or may not accurately describe how
the system came to its conclusion or action. Researchers in Al have developed standard
measures of algorithm and system accuracy [23, 29, 52, 96, 97, 99, 103, 114]. While these
established decision accuracy metrics exist, researchers are in the process of developing
performance metrics for explanation accuracy. In Section 7.2, we review current work on
this subject.

Additionally, explanation accuracy needs to account for the level of detail in the expla-
nation. For some audiences and/or purposes, simple explanations will suffice. The given
reasoning might succinctly focus on the critical point(s) or provide a high level reasoning
without extensive detail. These simple explanations could lack nuances that are necessary
to completely characterize the algorithm’s process for generating its output. However, these
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nuances may only be meaningful to certain audiences, such as experts of the system. This
is similar to how humans approach explaining complex topics. A professor of neuroscience
may explain a new finding with extensive and technical details to a colleague. That same
finding will likely be distilled and changed for presenting to an undergraduate student in
order to present the pertinent and higher level details. That same professor may explain the
finding very differently to their untrained friends and parents.

Together, this highlights the point that explanation accuracy and meaningfulness inter-
act. A detailed explanation may accurately reflect the system’s processing, but sacrifice
how useful and accessible it is to certain audiences. Likewise, a brief, simple explanation
may be highly understandable but would not fully characterize the system. Given these
considerations, this principle allows for flexibility in explanation accuracy metrics.

2.4 Knowledge Limits

The previous principles implicitly assume that a system is operating within the scope of
its design and knowledge boundaries. The Knowledge Limits principle states that systems
identify cases in which they were not designed or approved to operate, or in cases for which
their answers are not reliable. By identifying and declaring knowledge limits, this practice
safeguards answers so that a judgment is not provided when it may be inappropriate to do
so. This principle can increase trust in a system by preventing misleading, dangerous, or
unjust outputs.

There are two ways a system can reach or exceed its knowledge limits. In one way, the
operation or query to the system can be outside its domain. For example, in a system built
to classify bird species, a user may input an image of an apple. The system could return an
answer to indicate that it could not find any birds in the input image; therefore, the system
cannot provide an answer. This is both an answer and an explanation. In a second way, the
confidence of the most likely answer may be too low, depending on an internal confidence
threshold. To revisit an example of the bird classification system, the input image of a bird
may be too blurry to determine its species. In this case, the system may recognize that the
image is of a bird but that the image is of low quality. An example output may be: “I found
a bird in the image, but the image quality is too low to identify it.”

2.5 Summary

Given the wide range of needs and applications of explainable Al systems, a system may
be considered more explainable, or better able to meet the principles, if it can generate
more than one type of explanation. Further, the metrics used to evaluate the accuracy of an
explanation may not be universal or absolute. A body of ongoing work currently seeks to
develop and validate explainable Al methods. An overview of these efforts is provided in
Sections 6 and 7. The four principles serve as a guidance for how to consider whether the
explanation itself meets user needs.

The field of explainable Al is an area of active research. Our understanding of these
systems and their use will vary as the field grows with new knowledge and data. Therefore,
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these principles serve as a way to guide how we think about the needs of the system. These
principles provide a basis for approaching new challenges and questions.

3. Purposes and styles of explanations

To illustrate the broad range of explanations, we characterize explanations by two proper-
ties: purpose and style. Purpose is the reason why a person requests an explanation or what
question the explanation intends to answer. Style describes how an explanation is delivered.

The audience will strongly influence the purpose of the explanation and the information
it provides. This information will vary according to different groups of people and their role
in the system [13, 44, 50]. A system builder may want explanations related to debugging
Al models or evaluating training data. Regulators may inquire if a system meets stated
regulatory requirements [44].

The explanation’s purpose will in turn influence its style. In Figure 2, we visualize
our three elements of style: level of detail, degree of interaction between the human and
machine, and its format. These attributes are not exhaustive — explanations can take many
forms. However, we highlight these elements as ones closely related to meeting the four
principles. Therefore, considering these will lay the groundwork for producing explana-
tions. We expound upon these in more detail below.

The level of detail is depicted as a range, from sparse to extensive. By sparse, we mean
that the amount of information provided is brief, limited, and/or at a high-level, lacking in
detail. An example of a sparse explanation might be an explanation for a decision made
by an alert system (e.g., “system processes slowed because of overheating.”). An extensive
explanation may contain detailed information about a system and/or provide a large amount
of information (e.g., a report with relevant system information to understand its process).

We place the degree of human-machine interaction into three categories: declarative
explanations, one-way interaction, and two-way interaction. In a declarative explanation,
the systems provides an explanation, and there is no further interaction. This describes
most current explainable AI methods (Section 6). For example, a loan application system
may always output the rationale for an acceptance or rejection. An object classifier may
output a saliency map [120]. A model card [86] may contain pre-determined information
about the system. A declarative explanation is based on a default query, such as “why did
the object classifier produce this decision?”. The human cannot alter the question being
asked (barring a change in the system itself to produce something different).

A higher degree of interaction is a one-way interaction. For this, the explanation is
determined based on a query or question input to the system [20, 35, 142]. For example,
this may be a graphical output depending on the factors a person wishes to visualize. This
may allow the explanation’s consumer the ability to probe further or to submit different
queries.

We define the category with the deepest interaction level as the two-way interaction.
This models a conversation between people. The person can probe further, and the ma-
chine can probe back, ask clarifying questions, or provide new avenues of exploration. For
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Fig. 2. [llustration of our elements of explanation styles.
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example, a system may probe the user for additional details or propose alternate questions.
To our knowledge, two-way interactions do not yet exist. Developing them is a future
research direction.

The explanation’s format includes visual and graphical, verbal, and auditory or visual
alerts. Examples of graphical formats include outputs from data analyses or saliency maps.
Verbal formats can include written outputs and reports as well as auditory outputs, such as
speech. These visual and verbal formats carry the assumption that the audience is expect-
ing and attending to the explanation. Another form of explanation can capture an unaware
audience’s attention. A siren or light system can produce different alarms, light flashing
patterns, and/or light colors as an explanation that alert the audience. For example, a spe-
cific siren pitch or pattern could indicate something about a system’s status which may need
attention.

Each of these style elements will need to be considered to produce an explanation for
its purpose and to meet the four principles. Some cases may call for a simple, declarative
explanation as the most appropriate style to optimize how meaningful it is. This is some-
times the case in a weather emergency, such as when a tornado is in the area. A current
weather alert from the National Weather Service, “Tornado Warning: Take Action!”3, op-
erates as both an alert and a simple explanation. The alert is to “Take Action” with the
simple explanation of “Tornado Warning.” Depending on the metric, this explanation may
not be considered highly accurate because the minimal level of detail: it does not include
why a tornado warning is declared in its explanation. However, in this example, brevity
is appropriate to ensure it is understood by a wide audience and to enable swift action.
Although minimal, additional information with an alert may be helpful to address non-
compliance in responding to weather alerts (e.g., “cry-wolf” effects) [73]. In a different
scenario, such as when debugging a system, the explanation could include information on
the internal steps of a system. This could be lengthy and contain field-specific language.
The audience may need time and more effort to examine the explanation and to decide on
their next actions. Here, more details in the user’s preferred format would be helpful, and
two-way interactions could become important.

These different purposes, styles, and considerations illustrate the range and types of
explanations. This points to the need for flexibility in addressing the scope of systems that
require explanations. Because the circumstances under which an explanation is provided
will differ, the four principles encourage adapting to different styles as appropriate. Some
explanations will be easier to achieve than others, and designers will need to consider trade-
offs between accomplishing different goals.

4. Risk Management of Explainable Al

Risk is defined as “the effect of uncertainty of objectives” [22, pg. 6] and includes both neg-
ative outcomes (threats) as well as positive outcomes (opportunities). Risk management is
a process that can be used to define, assess, and mitigate risk. Explainable Al can mitigate

3https://www.weather.gov/safety/tornado-ww
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the risks of artificial intelligence by assessing, measuring, or predicting the risk in a model
or system. Explanations can be used to test for vulnerabilities [41]. Alternatively, explain-
able Al can introduce risks of its own, e.g., adversarial attacks discussed in Section 6.3.
This section focuses on the latter, managing the potential risks introduced by explainable
Al

Any explainable Al system will contain potential risks, both threats and opportunities.
The degree to which stakeholders are prepared to accept the trade-off of general risk and
goals is called the stakeholders’ risk appetite [22]. Many risk management strategies share
the common components: identifying, analyzing, responding, monitoring, and reviewing.
For explainable Al, a risk management strategy will need to factor the four principles.

An explanation, the first principle, is necessary for explainable Al, but an explanation
itself introduces risks, both positive and negative. A potential negative outcome of having
an explanation is the exposure of proprietary details [85]. A single explanation may not
expose the inner workings of the system. However, multiple explanations, either from
multiple independent queries or through a two-way interaction, could expose intellectual
property when connected to each other. How many explanations must an end user have
access to before they have an understanding of the system? The scope of each explanation
may impact the number. These include explanations that describe the limit of the system’s
knowledge.

However, explanations also have the potential for positive outcomes. A user can better
understand the system. This could lead to improvements, such as increased trust in the
system. Explanations may also be necessary for compliance with regulations, e.g., The
Fair Credit Reporting Act (FCRA) and Article 13 of the European Union General Data
Protection Regulation (GDPR).

Explanations need to be meaningful for the audience. This is the second principle
and introduces its own risks. A meaningful explanation can give deeper insight into the
system, but it may expose intellectual property or system vulnerabilities by exposing its
inner workings. An explanation that is not meaningful, on the other hand, is in jeopardy of
being ignored or not recognized as an explanation.

In order to be useful, an explanation not only needs to be meaningful, it must also be
accurate, our third principle. A relevant potential risk is commonly known as model risk,
the potential negative outcomes derived from an invalid or misapplied model. As stated
in the Federal Reserve System [31], one of the two main sources for this type of risk is
underlying errors in the model causing erroneous outputs. An inaccurate explanation can
lead to a misinterpretation or misunderstanding of how the system works or arrived at an
outcome. This is a negative risk for an end user, but Al systems are also used as one part
of a larger system where the Al might bias a human.

In face recognition, a human face examiner could receive information from an Al algo-
rithm on which parts of the face are useful. An accurate explanation can help the examiner
more accurately assess the pair of faces while an inaccurate explanation could lead to a
wrong decision. In the judicial system, Al algorithms have been used in decision, such as
if a defendant may be arrested again [8]. An inaccurate explanation of how the algorithm
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arrived at its outcome could result in a miscarriage of justice. An accurate explanation can
help create a more just society.

The other main source of model risk is using the model incorrectly or beyond its knowl-
edge limits [31]. Explanations that describe the knowledge limits of the system, the fourth
principle, can provide assurance the model is not operating out of scope and nurture confi-
dence. Describing the limits of a system can potentially expose the inner workings of the
system, especially if combined with information collected from other explanations.

Examining the potential risks of software exposure, there are different contexts, cate-
gories, and levels of risk. Who are the end users? If they are only internal to the organi-
zations such as developers, the management strategy will be different than if the end users
include external customers.

Explainable Al introduces new threats to a system. However, it also introduces new op-
portunities as well. Whether the outcome is a threat or an opportunity sometimes depends
on the audience. Risk management considers the trade-offs and possibilities of these and
other factors. When assessing risk, two components often assessed are the likelihood of the
risk and the impact of the outcome [37].

In general for Al, there is a need to develop a risk management framework; a request for
information by NIST* occurred on 2021-07-29. For more information on risk management,
see [22, 37, 128].

5. Overview of Principles in the Literature

Theories and properties of explainable Al have been discussed from different perspectives,
with commonalities and differences across these points of view [9, 26, 34, 50,79, 111, 112,
141].

Lipton [79] divides explainable techniques into two broad categories: transparent and
post-hoc interpretability. Lipton [79] defines a transparent explanation as reflecting to some
degree how a system came to its output. A subclass is simulatability, which requires that
a person can grasp the entire model. This implies that explanations will reflect the inner
workings of a system. Their post-hoc explanations “often do not elucidate precisely how
a model works, they may nonetheless confer useful information for practitioners and end
users of machine learning.” For example, the bird is a cardinal because it is similar to
cardinals in the training set.

Rudin [111] argues that it should not be assumed that interpretability must be sacrificed
for state-of-the-art accuracy. They recommend that for high stakes decisions, one should
avoid a black-box model, unless one can prove that an interpretable model does not exist
with the same level of accuracy. Note that we will we refer to black-box as closed-box for
the remainder of this document [94]. Rudin et al. [113] builds on their previous work by
presenting five principles and ten grand challenges of interpretable machine learning.

Mueller et al. [91] reviews some of the basic concepts for user-centered explainable
Al systems. Based on these concepts, they describe the Self-Explanation Scorecard, and

“https://www.federalregister.gov/d/2021-16176; Date Accessed: 2021-08-31
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present a set of user-centered design principles.

From a psychological perspective, Broniatowski [17] makes the case that interpretabil-
ity and explainability are distinct requirements for machine learning systems. The resulting
analysis implies that system output should be tailored to different types of users.

Wachter et al. [140] argue that explanations do need to meet the explanation accuracy
property. They claim that counterfactual explanations are sufficient. “A counterfactual ex-
planation of a prediction describes the smallest change to the feature values that changes the
prediction to a predefined output [88];” e.g., if you had arrived to the platform 15 minutes
earlier, you would have caught the train. Counterfactual explanations do not necessarily
reveal the inner workings of a system. This property allows counterfactual explanations to
protect intellectual property.

Gilpin et al. [34] defines a set of concepts for explainable Al. Similar to the meaningful
and explanation accuracy principles in our current work, Gilpin et al. [34] propose that
explanations should allow for a trade-off between their interpretability and completeness.
In addition, they state that trade-offs must not obscure key limitations of a system.

Doshi-Velez and Kim [26] address the critical question: measuring if explanations are
meaningful for users or consumers. They present a framework for a science to measure
the efficiency of explanations. This paper discusses factors that are required to begin test-
ing interpretability of explainable systems. The paper highlights the gap between these
principles as a concept and creating metrics and evaluation methods.

Information Commissioner’s Office and The Alan Turing Institute [50] lays out prin-
ciples to follow for explainable Al. These principles are: be transparent, be accountable,
consider the context you are operating in, and reflect on the impact of your Al system on the
individuals affected as well as the wider society [50]. In addition to discussing principles,
they discuss different things that go into an explanation, including process-based explana-
tions vs. outcome-based explanations, the rationale, the responsibility of who made what
decisions, an explanation of the data, and design steps that maximize fairness, safety, and
impact of the use of the system.

Barredo Arrieta et al. [9] discuss these various terms used in different sources to de-
scribe explainability or interpretability: understandability, comprehensibility, interpretabil-
ity, explainability, and transparency. They discuss how these terms are all different yet tied
together.

Weller [141] discusses types of transparency and how they address different classes
of users or consumers of explanations. Similar to the explanation accuracy principle, the
paper introduces faithfulness of an explanation as

...broadly beneficial for society provided that explanations given are faithful,
in the sense that they accurately convey a true understanding without hiding
important details. This notion of faithful can be hard to characterize precisely.
It is similar in spirit to the instructions sometimes given in courts to tell “the
truth, the whole truth, and nothing but the truth.” [141]

Across these viewpoints, there exist both commonalities and disagreement. Similar to
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our four principles, commonalities include concepts which distinguish between the exis-
tence of an explanation, how meaningful it is, and how accurate or complete it is. Although
disagreements remain, these perspectives provide guidance for development of explainable
systems. A key disagreement between philosophies is the relative importance of explana-
tion meaningfulness and accuracy. These disagreements highlight the difficulty in balanc-
ing multiple principles simultaneously. Context of the application, community and user
requirements, and the specific task will drive the importance of each principle.

6. Overview of Explainable AI Algorithms

Researchers have developed different algorithms to explain Al systems. Following other
sources [9, 38, 68], we organize the explanations into two broad categories: self-interpretable
models and post-hoc explanations. Self-interpretable models are the algorithm model (or a
representation of the algorithm itself) that can be directly read and interpreted by a human.
In this case the model itself is the explanation. Post-hoc explanations are explanations, of-
ten generated by other software tools, that describe, explain, or model the algorithm to give
an idea of how the algorithm works. Post-hoc explanations often can be used on algorithms
without any inner knowledge of how the algorithm works, provided that it can be queried
for outputs on chosen inputs.

Rather than mention all of the different explanation subtypes and all of the different
explanations available, we highlight a few widely-used examples, some categorizations,
and then refer the reader to various surveys on explainable Al [2, 9, 38, 68, 78, 89].

6.1 Self-Interpretable Models

Self-interpretable models are models that are themselves the explanations. Not only do they
explain the entire model globally, but by walking through each input through the model,
the simulation of the input on the self-interpretable model can provide a local explanation
for each decision.

Some of the most common self-interpretable models include decision trees and regres-
sion models (including logistic regression). There is work in producing many more inter-
pretable models that improve in accuracy over basic decision trees and basic regression
models in many cases. These models include decision lists [70], decision sets [71], pro-
totypes (representative samples of each class) Kim et al. [56], feature combination rules
that completely classify sets of inputs Kuhn et al. [61], Bayesian Rule Lists [74], additive
decision trees [81] and improved variants of decision trees [4, 11, 77].

With self-interpretable models, some sources state an accuracy-interpretability trade-
off [19, 27, 78]: self-interpretable models are less accurate than post-hoc models because
there is a trade-off between making the model more exact or more meaningful to humans.
However, Rudin [111], Rudin and Radin [112] disagree, arguing that there is not necessarily
an accuracy-interpretability trade-off and in many cases interpretable models can be used
without a loss of decision accuracy.

12



21 €8 41" 1 SIN/8Z09 01 /610 10p//:sdny :wolj abieyd Jo aauy s|ge|ieAe si uoneaijqnd siy|

6.2 Post-Hoc Explanations

Post-hoc explanations are grouped into two kinds: local explanations and global explana-
tions. A local explanation explains a subset of decisions or is a per-decision explanation.
A global explanation produces a model that approximates the non-interpretable model. In
some cases, a global explanation can also provide local explanations by simulating them
on specific inputs to provide local explanations for those individual inputs. As simple ex-
amples, consider a logistic regression (which could either be a self-interpretable model or a
post-hoc approximation to an opaque model). The regression coefficients provide a global
explanation that explain all inputs. However, one can plug the input in with the weights
and then use those weights to explain the output of the algorithm.

We discuss each of these explanations in the following subsections, describing local
explanations in Section 6.2.1 and global explanations in Section 6.2.2.

6.2.1 Local Explanations

Local explanations explain a subset of inputs. The most common type of local explanation
is a per-decision or single-decision explanation, which provides an explanation for the
algorithm output or decision on a single input point.

One commonly-used local explanation algorithm is LIME (Local Interpretable Model-
Agnostic Explainer) [107]. LIME takes a decision, and by querying nearby points, builds
an interpretable model that represents the local decision, and then uses that model to pro-
vide per-feature explanations. The default model chosen is logistic regression. For images,
LIME breaks each image into superpixels, and then queries the model with a random search
space where it varies which superpixels are omitted and replaced with all black (or a color
of the user’s choice).

Another commonly-used local explanation algorithm is SHAP (SHapley Additive ex-
Planations) [82]. SHAP provides a per-feature importance for an input on a regression
problem by converting the scenario to a coalitional game from game theory and then pro-
ducing the Shapley values from that game. SHAP treats the features as the players, the
features value vs. a default value as the strategies, and the system output as the payoff,
forming a coalitional game from the input. See Ferguson [32] for more information on
Shapley values and coalitional games.

Another common local explanation is a counterfactual. A counterfactual is an expla-
nation saying “if the input were this new input instead, the system would have made a
different decision.” [140] In these explanations, although there are often multiple widely-
differing instances that all are counterfactuals, a counterfactual explanation often provides
a single instance. The hope is that the instance is as similar as possible to the input with
the exception that the system makes a different decision. However, some systems can pro-
duce multiple counterfactual instances as a single explanation. Ustun et al. [138] develop
a counterfactual explanation of logistic (or linear) regression models. Counterfactuals are
represented as the amounts of specific features to change.

Another popular type of local explanations for problems on image data are saliency
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pixels. Saliency pixels color each pixel depending on how much that pixel contributes to
the classification decision. One of the first saliency algorithms is Class Activation Maps
(CAM) [150]. A popular saliency pixel algorithm that enhanced CAM is GRAD-CAM
[120]. GRAD-CAM generalized CAM so that it can explain any convolutional network.

An additional local explanation in Koh and Liang [58] takes a decision and produces
an estimate of the influence of each training data point on that particular decision. Another
additional local explanation is an Individual Conditional Expectation (ICE) [89, 149]. An
ICE curve shows the marginal effect of the change in one feature for an instance of the
data.

6.2.2 Global Explanations

Global explanations produce post-hoc explanations on the entire algorithm. Often, this
involves producing a global model for an algorithm or a system.

One Global explanation is Partial Dependence Plots (PDPs) [89, 149]. A Partial Depen-
dence Plots shows the marginal change of the predicted response when the feature (value
of that specific data column or component) changes. PDPs are useful for determining if a
relationship between a feature and the response is linear or more complex [89].

In deep neural networks, one such global algorithm is TCAV (Testing with Concept Ac-
tivation Vectors) [153]. TCAV wishes to explain a neural network in a more user-friendly
way by representing the neural network state as a linear weighting of human-friendly con-
cepts, called Concept Activation Vectors (CAVs). TCAV was applied to explain image
classification algorithms through learning CAVs including color, to see how colors influ-
enced the image classifier’s decisions.

Two visualizations used to provide global explanations are Partial Dependence Plots
(PDPs) and Individual Conditional Expectation (ICE) [89, 149]. The partial dependence
plot shows the marginal change of the predicted response when the feature (value of that
specific data column or component) changes. PDPs are useful for determining if a relation-
ship between a feature and the response is linear or more complex [89]. The ICE curves are
finer-grained and show the marginal effect of the change in one feature for each instance
of the data. ICE curves are useful to check if the relationship visualized in the PCP is the
same across all ICE curves, and can help identify potential interactions.

Prototypes [75], representative samples of each class, are also sometimes used as a
global explanation for a neural network in addition to sometimes being a self-interpretable
model as mentioned in Section 6.1.

Another way to produce global explanations is to summarize local explanations taken
on a variety of inputs. A variant of LIME, SP-LIME [107], uses a submodular pick to
choose the most relevant local LIME explanations as summary explanations. Another way
is to try to approximate the post-hoc model by learning a global model on a system such as
a decision set [72] or a summary of counterfactual rules [106].
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6.3 Adversarial Attacks on Explainability

Explanation accuracy (Principle 3) is an important component of explanations. Sometimes,
if an explanation does not have 100 percent explanation accuracy, it can be exploited by
adversaries who manipulate a classifier’s output on small perturbations of an input to hide
the biases of a system. First, Lakkaraju and Bastani [69] observes that even if an expla-
nation can mimic the predictions of the closed-box that this is insufficient for explanation
accuracy and such systems can produce explanations that may mislead users. An approach
to generate misleading explanations is demonstrated in Slack et al. [124]. They do this
by producing a scaffolding around a given classifier that matches the classification on all
input data instances but changes outputs for small perturbations of input points, which can
obfuscate global system behavior when only queried locally. This means that if the sys-
tem is anticipating being explained by a tool such as LIME that gives similar instances to
training set instances as inputs, the system will develop an alternative protocol to decide
those instances that differ from how they will classify trials in the training and test sets.
This can mislead the explainer by anticipating which trials the system might be asked to
classify. Another similar approach is demonstrated in Aivodji et al. [5]. They fairwash a
model by taking a closed-box model and produce an ensemble of interpretable models that
approximate the original model but are much fairer, which then hide the unfairness of the
original model. Another example of slightly perturbing a model to manipulate explanations
is demonstrated in Dimanov et al. [24]. The ability for developers to cover up unfairness in
closed-box models is one of the several vulnerabilities of explainable Al discussed in Hall
et al. [41]. Kindermans et al. [5S7] shows that many saliency pixel explanations lack input
invariance, meaning that a small change to the input can greatly change the output and the
attribution to relevant pixels.

7. [Evaluating Explainable AI Algorithms

This sections summarizes the state-of-the art of evaluating explainable Al algorithms (cf.,
[151]). In this paper, we separate the evaluation of explainable Al algorithms according to
which principle is being evaluated. The Explanation principle (Principle 1) is covered under
the section, Overview of Explainable Al Algorithms (Section 6), which reviews current
explanation methods. In this section, we review current methods for measuring explanation
meaningfulness (Principle 2) and explanation accuracy (Principle 3). To our knowledge
there is limited work on developing and evaluating algorithms’ knowledge limits (Principle
4). As a result, we do not discuss evaluating knowledge limits in this section.

7.1 Evaluating Meaningfulness

One way to measure the meaningfulness of an explanation involves measuring human sim-
ulatability. This is essentially the ability for a person to understand a machine learning
model to the extent that they would be able to take the same input data as the model, and
understand the parameters of the model such that they would be able to produce a prediction

15



21 €8 41" 1 SIN/8Z09 01 /610 10p//:sdny :wolj abieyd Jo aauy s|ge|ieAe si uoneaijqnd siy|

from the model themselves in a reasonable amount of time [79]. The ability to simulate the
model themselves would reflect a high degree of understanding. This is typically measured
for self-interpretable models as a way to measure the complexity of the model.

Several studies have put human simulatability to the test. Lage et al. [65] and Lage et al.
[66] measured the accuracy of the humans’ results, the response time taken, and a human
poll of the subjective difficulty of simulating the model. Hase and Bansal [43] discusses
two kinds of human simulatability: forward simulation, which is when a human predicts a
system’s output for a given input; and counterfactual simulation, where a human is given
an input and an output. They must predict what output the system would give if the input
were changed in a particular way. When evaluating explanations, they evaluated forward
and counterfactual simulation by measuring the change in user accuracy relative to different
explanations. Poursabzi-Sangdeh et al. [101] measured the accuracy of humans simulating
different logistic regression models on housing prices. Slack et al. [123] conducted a “what-
if” simulatability evaluation: the user receives an input with an explanation. The user is
then asked to simulate the model on a new input that is slightly perturbed from the given
input (the new input mirrors a what-if or counterfactual).

Another strategy to evaluate meaningfulness is to ask humans to complete a task using
the provided system’s output as input, then measuring the human’s time taken and deci-
sion accuracy on the task. Poursabzi-Sangdeh et al. [101] does this by also asking humans
to predict what they believe house prices should be, in addition to asking what the model
will predict the house price will be (humans can disagree with the models in this step).
Kim et al. [56] harnessed the power of examples. Their model, the Bayesian Case Model
(BCM), learned prototypes of different cooking recipes. Humans were provided only the
ingredients of the prototype and were measured on how well they were able to classify
each recipe. Lai and Tan [67] tested meaningfulness in a deception detection task. The task
was to determine if hotel reviews were genuine or deceptive. Human accuracy of deception
detection was compared when they were only provided the review itself and when they
were presented with explanations from a machine. This comparison enables comparing
human decision accuracy with and without machine assistance/explanations. Lakkaraju
et al. [72] evaluated the interpretability of different complexity decision sets by asking
humans to view explanations and make decisions, measuring their accuracy and response
time. Mac Aodha et al. [83] evaluated an explanation by comparing human accuracy when
humans are trained with systems that provide explanations compared to being trained with
systems that do not provide an explanation. Schmidt and Biessmann [116] recruited users
to complete tasks given with and without system explanations and measures each user’s
total time taken and decision accuracy. Anderson et al. [7] studied two techniques for
explaining the actions of reinforcement learning agents to people not trained in Al. They
tested multiple explanation conditions: no explanation, each of the two explanations sepa-
rately, and both explanations. Overall, humans were most accurate when combining both
techniques, saliency maps and reward-decomposition bars.

Meaningfulness has been measured with subjective ratings as well. Hoffman et al. [45]
discussed a variety of criteria for good explanations and provide an Explanation Satisfac-

16



21 €8 41" 1 SIN/8Z09 01 /610 10p//:sdny :wolj abieyd Jo aauy s|ge|ieAe si uoneaijqnd siy|

tion Scale. Holzinger et al. [46] developed the System Causability Scale (SCS) to compare
explanations. As part of their evaluation of human simulatability, Lage et al. [65] also
asked humans to subjectively rate the difficulty of simulating a model. Rajagopal et al.
[105] conducted experiments asking users to evaluate different properties of explanations.

Metrics on the size or complexity of a model are sometimes used as measures for a
model’s interpretability. Lakkaraju et al. [71] measured the interpretability of a model by
asking users if the information provided was sufficient to make conclusions. Poursabzi-
Sangdeh et al. [101] compared two types of models to test which enabled participants more
closely simulate the model’s actual predictions. They found that less information (a less
transparent model) could enable this better than a more transparent model perhaps due to
“information overload”). Lage et al. [66] measured the effect of complexity on human sim-
ulatability. The idea is that different levels, and types, of complexity can affect transparency
more or less than other types. Lakkaraju et al. [72] asked humans to made decisions, pro-
vided them the explanation as help, and measured how quickly and how accurately they
made decisions. Narayanan et al. [92] compared different types of output complexity for
how they affected human performance. Bhatt et al. [12] designed a complexity metric to
quantify “feature importance” explanations.

7.2 Evaluating Explanation Accuracy

Explanation accuracy is closely related to work on “fidelity”. Several studies have eval-
uated explanation fidelity [87, 110]. One way this has been tested is to simulate models
by using the system output as the ground truth and evaluating the post-hoc explanations
using a machine learning metric [87, 107]. Lakkaraju et al. [72] followed this strategy
but also checked that each instance had at most one explanation and that every instance
is explained by the post-hoc explanation model. The second method Mohseni et al. [87]
proposed is having humans evaluate the explanations and apply “sanity checks” to evalu-
ate the explanation accuracy. The third method asked the system to explain a variety of
inputs. In many cases, the inputs are adaptive. New inputs are slightly changed versions
of the previous inputs, based on the provided explanation. Experiments then measure the
change in output relative to the change in input and the importance of the changed features
from the explanation. Samek et al. [115] evaluated the quality of the explanation accu-
racy with saliency pixels. They gradually deleted the most important pixels and measured
how much the classification score changes. The idea is that if pixels which are impor-
tant have more influence on decision accuracy, and as they are deleted, the system is less
likely to classify the image as the original class. Hooker et al. [47] tested whether systems
performed worse when important features are removed. They applied a strategy in which
they removed important pixels, then retrained systems and measured decision accuracy of
the retrained systems. Yeh et al. [147] developed an “infidelity measure” to evaluate ex-
planation accuracy. Alvarez Melis and Jaakkola [6] evaluated the explanation accuracy, or
faithfulness, by removing the model’s higher order features and measuring the drop in clas-
sification probability. They also measured explanation accuracy by adding white noise to
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the inputs and measuring how much the explanation changes. Adebayo et al. [3] evaluated
explanation accuracy of saliency pixel explanations for deep neural networks by measur-
ing the amount the explanation changed relative to how the trained models differed. Sixt
et al. [122] evaluated the quality of saliency pixels by randomizing middle convolutional
layers and comparing saliency pixels. They also compared the saliency pixels when the
labels are the actual labels vs. random. Qi et al. [104] evaluated explanation accuracy by
adding or deleting image pixels deemed relevant by the explanation. They then compared
the system’s scores on the new images. Bhatt et al. [12] evaluated the explanation accuracy
of “feature importance” explanations by both checking sensitivity, meaning similar inputs
have similar feature importance explanations, and faithfulness, meaning the change in the
explanations should correlate to the change in inputs.

The quality of counterfactual explanations were tested in Wachter et al. [140]. A coun-
terfactual explanation should answer, “what is the minimum amount an input would need
to change for the system to change its decision on that input?” Therefore, they tested how
far away the counterfactual was from the original data point.

8. Humans as a Comparison Group for Explainable Al

When considering the performance of humans and Al systems, there are fairly significant
differences of opinion regarding performance expectations. Some argue that we should
hold machines to a much higher standard than humans, while others believe it is suffi-
cient for machines to simply be as good as humans. A cascade of interesting and difficult
questions arise from this overarching philosophical divide, such as how much better do
machines have to be than humans? In what way(s) must they be better? How do we mea-
sure “as good as”? Regardless of where one falls on this particular philosophical debate,
it is nonetheless helpful to consider human performance as a baseline. In this section, we
describe human decision-making with respect to the extent humans explanations line up
with our four principles.

Independent of Al, humans operating alone also make high stakes decisions with the
expectation that they be explainable. For example, physicians, judges, lawyers, and foren-
sic scientists are often expected to provide a rationale for their judgments. How do these
proffered explanations adhere to our four principles? We focused strictly on human expla-
nations of their own judgments and decisions (e.g.,“why did you arrive at this conclusion
or choice?”), not of external events (e.g., “why is the sky blue?” or “why did an event oc-
cur?”). External events accompanied by explanations can be helpful for human reasoning
and formulating predictions [80]. This is consistent with a desire for explainable AI. How-
ever, as outlined in what follows, human-produced explanations for their own judgments,
decisions, and conclusions are largely unreliable. Humans as a comparison group for ex-
plainable Al can inform the development of benchmark metrics for explainable Al systems;
and lead to a better understanding of the dynamics of human-machine collaboration.
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8.1 Explanation

This principle states only that for a system to be considered explainable, it provides an
explanation. In this section, we will focus on whether humans produce explanations of their
own judgments and decisions and whether doing so is beneficial for the decision makers
themselves. In Section 8.2, we will discuss whether human explanations are meaningful,
and in Section 8.3, we will discuss the accuracy of those explanations.

Humans are able to produce a variety of explanation types [55, 79, 84]. However,
producing verbal explanations can interfere with decision and reasoning processes [117,
118, 144]. It is thought that as one gains expertise, the underlying processes become more
automatic, outside of conscious awareness, and therefore, more difficult to explain verbally
[28, 30, 63, 117]. This produces a similar tension which exists for Al itself: the desire for
high accuracy are often thought to come with reductions in explainability (however, c.f.,
[79D).

More generally, processes which occur with limited conscious awareness can be harmed
by requiring the decision itself to be expressed explicitly. An example of this comes from
lie detection. Lie detection based on explicitly judging whether or not a person is telling
the truth or a lie is typically inaccurate [16, 130]. However, when judgments are provided
via implicit categorization tasks, therefore bypassing an explicit judgment, lie detection ac-
curacy can be improved [129, 130]. This suggests that lie detection may be a nonconscious
process which is interrupted when forced to be made a conscious one.

Together these findings suggest that some assessments from humans may be more ac-
curate when left automatic and implicit, compared to requiring an explicit judgment or
explanation. Human judgments and decision making can oftentimes operate as a closed-
box [79], and interfering with this closed-box process can be deleterious to the accuracy of
a decision.

8.2 Meaningful

To meet this principle, the system provides explanations that are intelligible and under-
standable to the intended audience. For this, we focused on the ability of humans to inter-
pret how another human arrived at a conclusion. Here, consider this to mean: 1) whether
the audience reaches the same conclusion as intended by the person providing the explana-
tion, and 2) whether the audience agrees with each other on what the conclusion is, based
on an explanation.

One analogous case to explainable Al for human-to-human interaction is that of a foren-
sic scientist explaining forensic evidence to laypeople (e.g., members of a jury). Currently,
there are gaps between the ways forensic scientists report results and the understanding of
those results by laypeople (see Edmond et al. [28], Jackson et al. [51] for reviews). Jack-
son et al. [51] extensively studied the types of evidence presented to juries and the ability
for juries to understand that evidence. They found that most types of explanations from
forensic scientists are misleading or prone to confusion. Therefore, they do not meet our
internal criteria for being “meaningful.” A challenge for the field is learning how to improve
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explanations, and the proposed solutions do not always have consistent outcomes [51].

Complications for producing meaningful explanations for others include people expect-
ing different explanation types, depending on the question at hand [84], context driving the
formation of opinions [51], and individual differences in what is considered to be a satis-
factory explanation [90]. Therefore, what is considered meaningful varies by context and
across people.

8.3 Explanation Accuracy

This principle states that a system’s explanation correctly reflects its reasons for generating
a certain output and/or accurately reflects its process. For humans, this is analogous to an
explanation of one’s decision processes truly reflecting the mental processes behind that
decision. In this section, we focused on this aspect only. An evaluation of the quality or
coherence of the explanation falls outside of the scope of this principle.

For the type of introspection related to explanation accuracy, it is well-documented that
although people often report their reasoning for decisions, this does not reliably reflect ac-
curate or meaningful introspection [93, 102, 143]. This has been coined the “introspection
illusion: a term to indicate that information gained by looking inward to one’s mental con-
tents is based on mistaken notions that doing so has value [102]. People fabricate reasons
for their decisions, even those thought to be immutable, such as personally held opinions
[40, 53, 143]. In fact, people’s conscious reasoning that is able to be verbalized does not
seem to always occur before the expressed decision. Instead, evidence suggests that people
make their decision and then apply reasons for those decisions after the fact [137]. From a
neuroscience perspective, neural markers of a decision can occur up to 10 seconds before a
person’s conscious awareness [125]. This finding suggests that decision making processes
begin long before our conscious awareness.

People are largely unaware of their inability to introspect accurately. This is docu-
mented through studies of “choice blindness” in which people do not accurately recall their
prior decisions. Despite this inaccurate recollection, participants will provide reasons for
making selections they never, in fact, made [39, 40, 53]. For studies that do not involve
long-term memory, participants have also been shown to be unaware of the ways they eval-
uate perceptual judgments. For example, people are inaccurate when reporting which facial
features they use to determine someone’s identity [108, 135].

Based on our definition of explanation accuracy, these findings do not support the idea
that humans reliably meet this criteria. As is the case with algorithms, human decision
accuracy and explanation accuracy are distinct. For numerous tasks, humans can be highly
accurate but cannot verbalize their decision process.

8.4 Knowledge Limits

This principle states that the system only operates 1) under the conditions it was designed
and 2) when it reaches a sufficient confidence in its output or actions. For this principle,
we narrowed down the broad field of metacognition, or thinking about one’s own thinking.
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Here, we focused on whether humans correctly assess their own ability and accuracy, and
whether they know when to report that they do not know an answer. There are several
ways to test whether people can evaluate their own knowledge limits. One method is to
ask participants to predict how well they believe they performed or will perform on a task,
relative to others (e.g., in what percentile will their scores fall relative to other task-takers).
Another way to test the awareness of knowledge limits is to obtain a measure of their
response confidence, with higher confidence indicating that a person believes with greater
likelihood that they are correct.

As demonstrated by the well known Dunning-Kruger Effect [60], most people inac-
curately estimate their own ability relative to others. A similar finding is that people, in-
cluding experts, generally do not predict their own accuracy and ability well when asked
to explicitly estimate performance [14, 15, 21, 42, 95]. However, a recent replication of
the Dunning-Kruger Effect for face perception showed that, although people did not reli-
ably predict their accuracy, their ability estimates varied accordingly with the task difficulty
[152]. This suggests that although the exact value (e.g., predicted performance percentile
relative to others, or predicted percent correct) may be erroneous, people can modulate the
direction of their predicted performance appropriately (e.g., knowing a task was more or
less difficult for them).

For a variety of judgments and decisions, people often know when they have made
errors, even in the absence of feedback [148]. To use eyewitness testimony as a relevant
example: although confidence and accuracy have repeatedly shown to be weakly related
[126], a person’s confidence does predict their accuracy in the absence of “‘contamination”
through the interrogation process and extended time between the event and the time of
recollection [145]. Therefore, human shortcomings in assessing their knowledge limits are
similar to those of producing explanations themselves. When asked explicitly to produce
an explanation, these explanations can interfere with more automatic processes gained by
expertise; they often do not accurately reflect the true cognitive processes. Likewise, as
outlined in this section, when people are asked to explicitly predict or estimate their ability
level relative to others, they are often inaccurate. However, when asked to assess their
confidence for a given decision vs. this explicit judgment, people can gauge their accuracy
at levels above chance. This suggests people do have insight into their own knowledge
limits, although this insight can be limited or weak in some cases.

9. Discussion and Conclusions

We introduced four principles to encapsulate the fundamental elements for explainable Al
systems. The principles provide a framework with which to address different components
of an explainable system. These four principles are that the system produce an explanation,
that the explanation be meaningful to humans, that the explanation reflects the system’s
processes accurately, and that the system expresses its knowledge limits. The principles
derive their strength when a system follows all four. A system that provides an explanation
but is not understandable, not accurate, or outside knowledge limits has reduced value. In
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fact, it may impact users’ acceptance of a system’s outcomes.

There are different approaches and philosophies for developing and evaluating explain-
able AI. Computer science approaches tackle the problem of explainable Al from a variety
of computational and graphical techniques and perspectives, which may lead to promising
breakthroughs. A blossoming field puts humans at the forefront when considering the ef-
fectiveness of Al explanations and the human factors behind their effectiveness. Our four
principles provide a multidisciplinary framework with which to explore this type of human-
machine interaction. The practical needs of the system will influence how these principles
are addressed (or dismissed). With these needs in mind, the community will ultimately
adapt and apply the four principles to capture a wide scope of applications.

The focus of explainable Al has been to advance the capability of the systems to pro-
duce a quality explanation. Here, we addressed whether humans can meet the same set of
principles we set forth for AI. We showed that humans demonstrate only limited ability to
meet the principles outlined here. This provides a benchmark with which to compare Al
systems. In reflection of societal expectations, recent regulations have imposed a degree
of accountability on Al systems via the requirement for explainable Al [1]. As advances
are made in explainable Al, we may find that certain parts of Al systems are better able
to meet societal expectations and goals compared to humans. By understanding the ex-
plainability of both the Al system and the human in the human-machine collaboration, this
opens the door to pursue implementations which incorporate the strengths of each, poten-
tially improving explainability beyond the capability of either the human or Al system in
isolation.

In this paper, we focused on a limited set of human factors related to explainable de-
cisions. Much is to be learned and studied regarding the interaction between humans and
explainable machines. Although beyond the scope of the current paper, in considering the
interface between Al and humans, understanding general principles that drive human rea-
soning and decision making may prove to be highly informative for the field of explainable
AI [36]. For humans, there are general tendencies for preferring simpler and more general
explanations [84]. However, as described earlier, there are individual differences in which
explanations are considered high quality. The context of the decision and the type of de-
cision being made can influence this as well. Humans do not make decisions in isolation
of other factors [64]. Without conscious awareness, people incorporate irrelevant infor-
mation into a variety of decisions such as first impressions, personality trait judgments,
and jury decisions [33, 48, 132, 133]. Even when provided identical information, the con-
text, a person’s biases, and the way in which information is presented influences decisions
[10, 25, 28, 36, 54, 62, 100, 136]. Considering these human factors within the context of
explainable Al has only just begun.

To succeed in explainable Al, the community needs to study the interface between hu-
mans and Al systems. Human-machine collaborations have shown to be highly effective
in terms of accuracy [98]. There may be similar breakthroughs for Al explainability in
human-machine collaborations. The principles defined here provide guidance and a phi-
losophy for driving explainable Al toward a safer world by giving users a deeper under-
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standing into a system’s output. Meaningful and accurate explanations empower users to
apply this information to adapt their behavior and/or appeal decisions. For developers and
auditors, explanations equip them with the ability to improve, maintain, and deploy sys-
tems as appropriate. Explainable Al contributes to the safe operation and trust of multiple
facets of complex Al systems. The common framework and definitions under the four prin-
ciples facilitate the evolution of explainable AI methods necessary for complex, real-world
systems.
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