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Bootstrap method versus analytical approach 

for estimating uncertainties of measures 

in ROC analysis on large datasets

Jin Chu Wu, Alvin F. Martin, Gregory A. Sanders and Raghu N. Kacker 

National Institute of Standards and Technology, Gaithersburg, MD 20899

Abstract – The nonparametric two-sample bootstrap is employed to estimate uncertainties of 

measures in ROC analysis on large datasets with/without data dependency due to multiple use 

of the same subjects in many disciplines, based on our studies of bootstrap variability. On the 

other hand, it would seem that the analytical approach might be used for the same purpose. 

The differences between these two methods are noteworthy. The bootstrap method can 

intrinsically take account of how genuine scores and impostor scores are distributed, deal with 

data dependency, and solve the issue of the covariance occurred while the statistic is a weighted 

sum of two probabilities derived from two sets of data, respectively, in ROC analysis. The 

analytical approach cannot. The analytical approach generally underestimates the uncertainties 

of measures as opposed to the bootstrap method. The comparison was carried out using the 

real data obtained from the speaker recognition evaluations and the biometric evaluations, as 

well as the simulated data with normal distributions and nonparametric distributions, 

respectively. 

Keywords: Metrology, measurement uncertainty, ROC analysis, large datasets, bootstrap, data 

dependency, analytical method, biometrics, speaker recognition 

1 Introduction 

A measure without estimated uncertainty is incomplete, because it cannot be employed in the 

practice of evaluating and comparing different systems [1, 2]. When the performance level of 

a system is very close to a criterion or when the performance levels of two systems are very 

close, the evaluation and comparison cannot be done without carrying out hypothesis testing 

to determine the statistical significance of differences. Such a testing demands that the 

uncertainties, i.e., the standard errors (SE) of measures be estimated. 

Receiver operating characteristic (ROC) analysis on large datasets is an important statistical 

method to analyze statistics of interest for decision making of a classifier in many disciplines. 

Generally speaking, genuine scores are created by comparing two different objects (e.g., 

images, speech segments, etc.) of the same subject (e.g., face, speaker, etc.), and impostor 

scores are generated by matching two objects of two different subjects. The two distributions 

of continuous scores are schematically depicted in Figure 1 (A). 

The cumulative probability of genuine scores from the lowest score to a threshold t is defined 

as the probability of type I error (miss) α(t), and the one of impostor score from the highest 

score to a threshold t is defined as the probability of type II error (false alarm) β(t). Thus, these 
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two probabilities are associated with a threshold and negatively traded-off against each other 

in general. In the coordinate system of (1 – α) versus β, as the threshold t moves from the 

highest score down to the lowest score, an ROC curve is constructed as depicted in Figure 1 

(B). 

 

In different disciplines related to ROC analysis, different measures may be of interest. For 

instance, in biometrics, the true accept rate (TAR), i.e., 1 – α, at a specified false accept rate 

(FAR), i.e., β, is of interest. In speaker recognition evaluation (SRE), the measure of interest 

is the detection cost function (DCF) defined as a weighted sum of the probabilities of α(t) and 

β(t) at a given threshold t. 

 

  

Figure 1 (A): A schematic diagram of two distributions of continuous genuine scores and impostor scores, 

showing three related variables: type I error α, type II error β, and threshold. (B): A schematic drawing of 

an ROC curve. 

 

Then, a question arises: How to estimate the SEs of those measures? If datasets are independent 

and identically distributed (i.i.d.), the nonparametric two-sample bootstrap was employed to 

estimate uncertainties of measures in ROC analysis on large datasets [1, 3]. If datasets involve 

data dependency, the nonparametric two-sample two-layer bootstrap was used [4]. Both of 

them are based on our studies of bootstrap variability [1, 5-8]. On the other hand, it would 

seem that the analytical approach might be used [9]. The analytical approach in this article 

refers to using the formula for the sample proportion to compute the SE of an error rate (see 

Section 2.2.1). However, the differences between these two methods are quite noteworthy in 

terms of methodologies and results of estimation. 

 

First, in real applications, no underlying parametric distribution functions can be applied to 

genuine and impostor scores; the score distributions may vary substantially from algorithm to 

algorithm in a way that differentiates algorithms in terms of matching accuracy [1, 10]. The 

nonparametric two-sample bootstrap algorithm randomly resamples with replacement (WR) 

the original genuine scores and impostor scores at each iteration [11-12]. In other words, the 

bootstrap method can intrinsically take account of how genuine scores and impostor scores are 

distributed. 

 

Second, data dependency due to multiple use of the same subjects in order to generate more 

samples because of limited resources exits ubiquitously in many disciplines [4, 12]. If data 

dependency is involved, the datasets are constructed into a two-layer data structure based on 
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probability theory [4]. Genuine scores are grouped into genuine sets, if they are created using 

the same subject, with equal number of scores, and likewise for impostor scores. 

 

Further, from the perspective of the multinomial probabilities of selecting bootstrap samples 

from the original scores as well as the distributions of the bootstrap replications of the measure, 

in addition to the statistical analysis of the four examples, our research suggested that the 

nonparametric two-sample two-layer bootstrap algorithm be employed [4, 12]. The two-layer 

randomly resampling WR takes place not only on sets, but subsequently on scores within the 

sets. Scores in the same set are assumed to be conditionally independent, because they are 

generated by two sets of objects and objects in at least one set of the two sets are different. 

 

Third, if the measure is a weighted sum of the probabilities of type I error and type II error at 

a threshold, a covariance can occur in the formation of the variance. The impact of the 

covariance on the estimated SE of the measure can be taken into account intrinsically by the 

bootstrap algorithm. 

 

On the other hand, the analytical approach cannot take account of the distributions of similarity 

scores, cannot deal with the issue of data dependency, and cannot solve the issue of the 

covariance because it is difficult to estimate analytically how much it should be. 

 

In terms of estimated results, as shown in the examples of this article and many examples in 

our practice, the analytical approach generally underestimates the uncertainties of measures in 

ROC analysis on large datasets with/without data dependency as opposed to the bootstrap 

method. 

 

The bootstrap is a stochastic process, meaning that different executions of the bootstrap 

algorithms usually produce different results. But the analytical approach is a deterministic 

process and thus provides a unique solution. Hence, in this article, the bootstrap estimated SEs 

of a measure are represented in terms of 95% confidence interval (CI). Such a CI is relatively 

narrow. The SE produced by a random execution of the bootstrap algorithm should have 95% 

probability to fall in such a CI. Then, the analytical result or its upper bound (if the negative 

covariance is hard to estimate) is compared with such a 95% CI of SEs rather than a single 

bootstrap estimated SE. The absolute relative errors related to 95% CIs are also computed. 

 

In this article, four types of dataset resources were employed1: (1) datasets obtained from the 

SREs involving data dependency; (2) datasets obtained from biometrics evaluation, which are 

i.i.d.; (3) simulated data with normal distributions; (4) simulated data with nonparametric 

distributions. 

 

The bootstrap method and the analytical approach are presented in Section 2. The former 

includes the nonparametric two-sample bootstrap for i.i.d. datasets, and the nonparametric two-

sample two-layer bootstrap for datasets with dependency. The bootstrap results and the 

                                                 
1 Specific hardware and software products identified in this paper were used in order to adequately support the development of technology to 

conduct the performance evaluations described in this document. In no case does such identification imply recommendation or endorsement 
by the National Institute of Standards and Technology, nor does it imply that the products and equipment identified are necessarily the best 

available for the purpose. 
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analytical results derived from different datasets, and the comparisons are shown in Section 3. 

The conclusions and discussion can be found in Section 4. 

 

2 Methods 

 

2.1 The bootstrap methods 

 

2.1.1 The nonparametric two-sample bootstrap algorithm for i.i.d. datasets 

 

For convenient computation, all non-integer scores were converted into integers by shifting the 

decimal point. While converting, as many decimal places of scores as possible are kept so that 

it does not result in loss of precision. Thereafter, the scores are expressed using the integer 

scores {s} = {smin, smin+1, …, smax}. The genuine score set G and the impostor score set I are 

denoted as 

G = {mi  | mi  {s} and i = 1, …, NG} , (1) 

and 

I = {ni  | ni  {s} and i = 1, …, NI} , (2) 

where NG and NI are the total numbers of scores. Both G and I are all multisets meaning that 

members may appear more than once, and have discrete probability distribution functions of 

scores. 

 

The nonparametric two-sample bootstrap [1, 11-12] is employed to estimate the SEs of 

measures in ROC analysis while the datasets can be assumed to be i.i.d. The algorithm is as 

follows. 

 

Algorithm I (Nonparametric two-sample bootstrap) 

 

1: for i = 1 to B do 

2: select NG scores randomly WR from G to form a set {new NG genuine scores}i 

3: select NI scores randomly WR from I to form a set {new NI impostor scores}i 

4: {new NG genuine scores}i & {new NI impostor scores}i => statistic iT̂  

5: end for 

6:  {T̂i | i = 1, … , B}  ⇒  SÊB 

7: end 

 

where B is the number of two-sample bootstrap replications and WR stands for “with 

replacement”. As shown from Step 1 to 5, this algorithm runs B times. In the i-th iteration, NG 

(NI) scores are randomly selected WR from the original genuine (impostor) score set G (I) to 

form a new set of NG genuine (NI impostor) scores, and then from these two new sets of scores 

the i-th bootstrap replication of a measure, iT̂ , is generated. A measure can be any statistic of 

interest in ROC analysis. For instance, it can be the true accept rate (TAR), i.e., 1 – α at a 

specified false accept rate (FAR), i.e., β (see Figure 1 (A)) [1]. 

 

Finally, in Step 6, the 𝑆ÊB of a measure is estimated to be the sample standard deviation of the 

B replications B} ..., 1,  i | T̂{ i   [1, 11-12]. Further, based on our bootstrap variability studies 
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in ROC analysis on large datasets, the number of bootstrap replications B was determined to 

be 2,000 in order to reduce the bootstrap variance and ensure the accuracy of the computation 

[1, 5-8]. 

 

In order to compare with the unique analytical result, due to the stochastic nature of the 

bootstrap method, a distribution of SÊs of a measure needs to be generated by running 

Algorithm I multiple times. Based on our previous studies, in order to create a stable 

distribution, it was suggested that the algorithm be executed 500 times [1, 5-8]. Thus, a 

distribution {𝑆ÊB i | i = 1, …, 500} was generated. Thereafter, the 95% CI of such a distribution 

can be estimated. 

 

2.1.2 The nonparametric two-sample two-layer bootstrap algorithm for datasets with 

dependency 

 

If the data dependency is involved due to multiple use of the same subjects, then the datasets 

should be re-structured into a two-layer data structure based on the probability theory, and the 

nonparametric two-sample two-layer bootstrap algorithm should be employed to estimate the 

SEs of measures in ROC analysis on large datasets from the perspective of the multinomial 

probabilities of selecting bootstrap samples from the original scores as well as the distributions 

of the bootstrap replications of the measure [4, 12]. 

 

2.1.2.1 The two-layer data structure 

 

genuine 

SG 

sets 1G S  2G S  …… 
GmG  S  

scores 
1 1G  , 2 1G  , …, 

1G μ  1G   

1 2G  , 2 2G  , …, 

2G μ  2G   
…… 

1 G Gm , 2 G Gm , …, 

GG G m G μm  

Table 1 The genuine sets, the number of which is mG, and the genuine scores contained in each set. 

 

impostor 

SI 

sets 1 IS  2 IS  …… 
Im  IS  

scores 
1 1 I , 2 1 I , …, 

1 Iμ  1 I  

1 2 I , 2 2 I , …, 

2 Iμ  2 I  
…… 

1  I Im , 2  I Im , …, 

I II m  I μm  

Table 2 The impostor sets, the number of which is mI, and the impostor scores contained in each set. 

 

To preserve the data dependency while the bootstrap resampling takes place, the genuine 

scores and impostor scores that were generated using the same subject are grouped into a 

genuine set and an impostor set, respectively. Thus, a two-layer data structure is constructed: 

The first layer consists of genuine sets and impostor sets, and the second layer consists of 

genuine scores and impostor scores within those sets. 

 

In this Section 2.1.2, the first subscript index indicates genuine or impostor, and the second 

and third subscript indices numerate sets and scores, respectively. Suppose that the numbers 

of the genuine sets and impostor sets are mG and mI. Thus, the set SG (SI) of all genuine 

(impostor) sets is expressed 

Si = {Si j | j = 1, …, mi}, i  {G, I}, (3) 
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where SG j (SI j) are genuine (impostor) sets. In terms of scores, each set can be expressed as 

Si j = {αi j k | k = 1, …, μi j}, j = 1, …, mi and i  {G, I}, (4) 

where αG j k (αI j k) are genuine (impostor) scores, and μi j stands for the number of scores in the 

corresponding set. The sets Si j are all multiset. 

 

The genuine and impostor sets and scores in sets are explicitly listed in Table 1 and Table 2, 

respectively. There are mG genuine sets and mI impostor sets. The genuine sets 1G S , 2G S , …, 

GmG  S  contain 1G μ , 2G μ , …, 
GmG  μ  genuine scores, respectively; and the impostor sets 1 IS , 

2 IS , …, 
Im  IS  have 1 Iμ , 2 Iμ , …, 

Im  Iμ  impostor scores, respectively. Finally, the total number 

of genuine scores NG and the total number of impostor scores NI are, respectively, 

  



m

1  j

j ii 

i 

μN  , where i  {G, I}. (5) 

 

2.1.2.2 The probabilities for each score being selected 

 

For the two-layer randomly resampling WR taking place first on score sets and subsequently 

on scores in sets as described in Section I, the probability for a score αi j k in a set Si j being 

selected is 

,
μ

1
x

m

1
) | α( P x )( P  )(α P

j ii

j ik j ij ik j ilayer-2  SS

 
                                        where k = 1, …, μi j, j = 1, …, mi and i  {G, I}. 

(6) 

These probabilities are the same for all scores within a set, regardless of whether it is a genuine 

set or an impostor set. However, the probabilities for scores being selected are different from 

set to set due to different score numbers in different sets indicated by µi j. 

 

The unequal selection probabilities for two-layer resampling must be eliminated in order to 

reduce the variance of the computation. If the numbers of scores in genuine sets, i.e., µG j, j = 

1, …, mG, are all set to be equal to µG, then each genuine score can have equal probability to 

be selected, which is 1/NG due to Eq. (5). By the same token, if all μI j, j = 1, …, mI, are set to 

be equal to µI, then the probability for each impostor score being selected is 1/NI. 

 

2.1.2.3 The nonparametric two-sample two-layer bootstrap algorithm 

 

This bootstrap algorithm is employed to estimate the SEs of DCF (see Section 2.1.2.4) at a 

threshold t, in which datasets involve dependency and two score distributions have no 

parametric model to fit. From here on, the superscript indices are used to numerate the 

resampling iterations. Here is a function WR_Random_Sampling_Set that will be frequently 

used in the following algorithm, 

 

1: function WR_Random_Sampling_Set (N, Γ, Θ) 

2: for i = 1 to N do 

3: select randomly WR an index j   {1, …, N} 

4: θi = γj 

5: end for 
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6: end function 

 

where WR stands for “with replacement”. Γ and Θ represent a set of sets or a set of scores 

accordingly with the same cardinality N. Thus, this function can be applied to either a set of 

sets or a set of scores. As shown from Step 2 to Step 5, it runs N iterations. In the i-th iteration, 

a member γj of the set Γ is randomly selected WR to become a member θi of a new set Θ. As 

a result, N members (sets or scores) are randomly selected WR from the set Γ to form a new 

set Θ. 

 

Then, the nonparametric two-sample two-layer bootstrap algorithm is described as follows. 

 

Algorithm II  (Nonparametric two-sample two-layer bootstrap) 

 

1: for i = 1 to B do 

2:     WR_Random_Sampling_Set (mG, SG, S 'G i = {S 'G j 
i | j = 1, …, mG}) 

3:     for k = 1 to mG do 

4:           WR_Random_Sampling_Set (μG, S 'G k 
i, S "G k 

i) 

5:     end for 

 

6:     WR_Random_Sampling_Set (mI, SI, S 'I 
i = {S 'I j 

i | j = 1, …, mI}) 

7:     for k = 1 to mI do 

8:           WR_Random_Sampling_Set (μI, S 'I k 
i, S "I k 

i) 

9:     end for 

 

10:    S "G i = {S "G j 
i | j = 1, …, mG} and S "I 

i = {S "I j 
i | j = 1, …, mI} => statistic 

iĈ  

11: end for 

12:  {Ĉi | i = 1, … , B}  ⇒  SÊB 

13: end 

 

where B is the number of bootstrap replications. The sets SG and SI refer to Eq. (3). This 

algorithm runs B times as shown from Step 1 to 11. In Steps 2 and 6, the function 

WR_Random_Sampling_Set is applied twice to the first layer of datasets, i.e., sets. That is, mG 

genuine sets are randomly selected WR from the set SG to constitute a new set S 'G i = {S 'G j 
i | 

j = 1, …, mG}, and mI impostor sets are randomly selected WR from the set SI to form a new 

set S 'I 
i = {S 'I j 

i | j = 1, …, mI}. 

 

Subsequently, the same function is applied to the second layer of datasets, i.e., the scores in 

sets. From Step 3 to 5, mG iterations take place. In the k-th iteration, μG genuine scores are 

randomly selected WR from the genuine set S 'G k 
i, which is the k-th new genuine set from the 

first-layer resampling, to form the k-th new genuine set S "G k 
i of the second-layer resampling. 

The analogous interpretation can be applied to impostor scores in the impostor set S 'I k 
i as 

shown from Step 7 to 9. 

 

In Step 10, all genuine scores in the new set S "G i = {S "G j 
i | j = 1, …, mG} and all impostor 

scores in the new set S "I 
i = {S "I j 

i | j = 1, …, mI} are used to generate the i-th bootstrap 
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replication of the measure 
iĈ . Finally in Step 12, from the set {

iĈ  | i = 1, …, B}, the standard 

error SÊ of the measure is estimated using the sample standard deviation of the B replications. 

 

With the new data structure described in Section 2.1.2.2, not only does each genuine (impostor) 

score have the same probability of being selected, but also the same number of genuine scores 

and the same number of impostor scores at different iterations are obtained in Step 10 to 

estimate the bootstrap replications of the measure. This can reduce the computational variance. 

 

By the same token discussed in Section 2.1.1, in order to reduce the bootstrap variance and 

ensure the accuracy of computation, based on our bootstrap variability studies, the appropriate 

number of bootstrap replications was determined to be 2,000 [1, 5-8]. And also, because of the 

stochastic nature of the bootstrap, the 95% CI of the bootstrap estimated SEs of a measure is 

generated from the distribution of 500 bootstrap estimated SEs of the measure [1, 5-8]. 

 

2.1.2.4 The measure in SRE 

 

The measure in this study for the datasets involving data dependency is the DCF in SRE. Let 

f i(s), i  {G, I}, denote the continuous probability density functions of genuine scores and 

impostor scores. The two corresponding discrete probability distribution functions, denoted by 

Pi(s) where s  {s} and i  {G, I}, are expressed as 

Pi = {Pi (s) |  s  {s} and 1  (s) P

max

min

S

S  s

i 


}, i  {G, I}. (7) 

 

Hence, the probabilities of type I error α (t) and type II error β (t) related to a threshold } {s t   

can be expressed by 

, s)(P - 1 (s)P ds s)(f  (t) α
max

min

S

1  t  s

G

t

S  s

G

t

 

G 


        (8) 

and 

, s)(P  ds s)(f  (t) β
maxS

 t s

I

 

t

I 




        (9) 

where 0  (s)P

max

max

S

1  S  s

G 


 is assumed and thus the normalization in Eq. (7) is preserved [1, 10]. For 

discrete probability distribution, while computing α(t) and β(t) at a threshold t, the probabilities 

of genuine scores and impostor scores at this threshold t must be taken into account [13]. 

 

The DCF is defined as a weighted sum of the probabilities of type I error α(t) and type II error 

β(t) at a given threshold t [14] and can be expressed in terms of the cumulative discrete 

probability distribution functions of genuine scores and impostor scores using Eqs. (8) and (9), 

 

C (t) = η1 × α(t) + η2 × β(t) 

        = η1 × 











s)(P - 1
maxS

1  t  s

G  + η2 × 










s)(P

maxS

 t s

I  , 
(10) 
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where η1 = CMiss × PGenuine, η2 = CFalseAlarm × (1 – PGenuine), and the parameters CMiss, CFalseAlarm, 

and PGenuine were set to be 10, 1, and 0.01, respectively [14]. 

 

2.1.3 The stochastic nature and the absolute relative errors 

 

Because of the stochastic nature of the bootstrap algorithms, the bootstrap estimated SE of a 

measure γ is represented using the 95% CI of SE, i.e., [ξ1, ξ2], meaning that the SE of the 

measure γ estimated from a random execution of the bootstrap algorithm may fall with 95% 

confidence in this interval of SE. Indeed, this is what was encountered in our practice [1, 2, 4]. 

 

Assume that the distribution of γ is normal [1, 2, 4]. Thus, the measure γ is within [γ – 1.96 ξ1, 

γ + 1.96 ξ1] with 95% probability due to the bootstrap estimated SE ξ1, and within [γ – 1.96 ξ2, 

γ + 1.96 ξ2] due to the SE ξ2. Hence, the measure γ caused by different bootstrap estimated SEs 

in [ξ1, ξ2] may occur in [γ – 1.96 ξ2, γ – 1.96 ξ1] and [γ + 1.96 ξ1, γ + 1.96 ξ2]. Indeed, these 

two regions show the impact of the stochastic nature of the bootstrap algorithm while 

estimating SEs on the measure γ. 

 

So, the absolute relative errors caused by such a stochastic nature on the measure γ vary from 

ε1 = 1.96 ξ1/γ to ε2 = 1.96 ξ2/γ. In Section 3, it will be shown that the variation of the absolute 

relative errors ε2 – ε1 is very small. Hence, in real practice, while using the bootstrap method 

to estimate the SE of a measure, the bootstrap algorithm only needs to be carried out once. 

 

2.2 The analytical approach 

 

2.2.1 Standard error of a single error rate 

 

  

Figure 2 The two curves of the analytically estimated SEs of an error rate for 60,000 (A) and 120,000 (B) 

scores, respectively. 

 

A classifier in the matching process may be simplified as making a dichotomous decision (i.e., 

yes or no) with respect to a specified criterion, albeit different genuine scores and impostor 

scores are generated. This indicates that the populations consist of only two classes, i.e., 

success and failure [15]. Therefore, the SE of the sample proportion p may be estimated by 

SE = √
p (1 − p)

𝑛
 (11) 
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where n is the total number of scores. While computing the SEs of type I error α(t) and type II 

error β(t) at an operational threshold to in Eq. (10), p = α(to) as n = NG, and p = β(to) as n = NI. 

 

It is easy to prove that the analytically computed SE in Eq. (11) is symmetric with respect to p 

= 0.5, reaches the maximum at that point, and then decreases and approaches 0. All these can 

also be seen in Figure 2, while n is 60,000 (A) and 120,000 (B), respectively. 

 

The score distributions vary substantially from classifier to classifier in a way that 

differentiates classifiers in terms of matching accuracy. However, Eq. (11) does not take 

account of how the scores are distributed, the combined impact of the two score distributions, 

and data dependency if it is involved in the datasets [16]. The analytically computed SEs for 

any two classifiers in the same test remain the same if their two corresponding error rates are 

equal. The analytical approach generally underestimates the SE of a measure as opposed to the 

bootstrap method (see below). 

 

Regarding the total numbers of genuine scores and impostor scores, there are tens of thousands 

of scores in the datasets used in this article [17]. In the SREs’ datasets, NG = 12,672 and NI = 

31,720; in the biometric datasets, NG = 61,531 and NI = 121,994; and in the simulated datasets, 

NG = 60,000 and NI = 120,000. 

 

2.2.2 Standard error of a weighted sum of two rates 

 

The analytically estimated SE of DCF can be derived from Eq. (10) [9, 15] 

 

SE(t)2 = η1
2 SE2

α(t) + η2
2 SE2

β(t) + 2 η1 η2 Cov(α(t), β(t)), (12) 

 

where Cov(α(t), β(t)) is the covariance between α(t) and β(t) [15]. Since α(t) and β(t) are all 

single-error rates, SEα(t) and SEβ(t) may be estimated using Eq. (11), but its drawback is stated 

in Section 2.2.1 [9, 15-16]. 

 

It is difficult to estimate the covariance Cov(α(t), β(t)). However, as pointed out in Section I, 

α(t) and β(t) are generally traded off and thus negatively correlated as the threshold t varies. 

Hence, this covariance must be negative [15]. As a result, even though it is difficult to estimate 

this covariance, the upper bound of the analytically estimated SEs of DCF can be obtained by 

setting this negative Cov(α(t), β(t)) in Eq. (12) to zero, and thereafter is used to compare with 

the 95% CI of the bootstrap estimated SEs. 

 

It is obvious that the analytically computed SE(t) must be smaller than its upper bound. In this 

article, such upper bounds will be compared with the 95% CIs of the bootstrap estimated SEs 

due to the stochastic nature of the bootstrap method. 

 

Again, Eq. (12) does not take account of how similarity scores are distributed, and data 

dependency if it is involved in the datasets. Moreover, it is hard to estimate the covariance in 

Eq. (12). 

 

3 Results 
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The datasets from the SREs with data dependency and from the biometrics evaluations with 

i.i.d. assumption, respectively, are employed. And the simulated datasets with normal 

distributions and with nonparametric distributions, respectively, are also used. 

 

3.1 Speaker recognition evaluations 

 

As described in Section 2.1.2, the datasets generated from the SRE involve data dependency 

due to multiple use of the same subjects. Hence, the datasets are reconstructed into a two-layer 

structure, and the nonparametric two-sample two-layer bootstrap algorithm is employed to 

estimate the SE of DCF in terms of a 95% CI of SEs of DCF due to the stochastic nature of the 

bootstrap algorithms [4]. And the upper bound of the analytically computed SE of DCF, in 

which the negative covariance is set to be zero, is compared with such a 95% CI. 

 

The related results of 12 speaker recognition systems presented in Ref. [4] are shown in Table 

3. The smaller the DCFs are, the more accurate the systems are. Table 3 shows that for all 12 

speaker recognition systems with different matching accuracies, the upper bounds of the 

analytically estimated SEs of DCF are correspondingly smaller than the lower bounds of the 

95% CIs of the bootstrap estimated SEs of DCF. It indicates that the analytical approach 

underestimates the SEs of DCF in SREs. 

 

System DCF 

SE of DCF 

Analytical 

(Upper bound) 

Bootstrap 

95% CI Abs. relative error 

EL 0.022199 0.000686 (0.001916, 0.002043) (16.92%, 18.04%) 

UJ 0.028996 0.000502 (0.001961, 0.002093) (13.25%, 14.15%) 

BK 0.031588 0.000520 (0.001818, 0.001934) (11.28%, 12.00%) 

LZ 0.040098 0.000888 (0.002781, 0.002956) (13.59%, 14.45%) 

DL 0.040880 0.000571 (0.001756, 0.001878) (8.42%, 9.00%) 

AF 0.073500 0.000502 (0.001683, 0.001788) (4.49%, 4.77%) 

FI 0.096988 0.000346 (0.000805, 0.000856) (1.63%, 1.73%) 

PB 0.098744 0.001118 (0.004149, 0.004420) (8.24%, 8.77%) 

PM 0.161254 0.001886 (0.005055, 0.005381) (6.14%, 6.54%) 

CO 0.223263 0.002194 (0.006623, 0.007026) (5.81%, 6.17%) 

CH 0.236771 0.002294 (0.005020, 0.005345) (4.16%, 4.42%) 

DG 0.455384 0.002777 (0.009339, 0.009926) (4.02%, 4.27%) 

Table 3 The DCF and its SE estimated using the upper bound of the analytical result, and the 

nonparametric two-sample two-layer bootstrap method in terms of 95% CI of SEs and absolute relative 

error of 12 speaker recognition systems. The datasets involve data dependency. 

 

Furthermore, the impact of the stochastic nature of the bootstrap algorithm on the estimates of 

SEs of DCF is explored in Table 3. Based on the measures proposed in Section 2.1.3, the 

absolute relative errors due to the bootstrap estimated SEs of DCF vary just about 1%. For 

instance, for the most accurate System EL, the absolute relative error changes from 16.95% to 

18.04%. It suggests that such an impact be little. In other words, a random execution of the 

nonparametric two-sample two-layer bootstrap algorithm provide a stable estimate of the SE 

of DCF with 95% confidence in spite of its stochastic nature. As a result, the SE of DCF derived 

from a random execution of the bootstrap algorithm can be treated as the bootstrap estimated 

SE of DCF. 
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3.2 Biometrics evaluations 

 

Algorithm 
TAR at 

FAR = 0.001 

SE of TAR 

Analytical 
Bootstrap 

95% CI Abs. relative error 

A 0.993255 0.000330 (0.000320, 0.000341) (0.06%, 0.07%) 

B 0.796753 0.001622 (0.003362, 0.003618) (0.83%, 0.89%) 

Table 4 The TAR at FAR = 0.001 and its SE estimated using the analytical approach, and the 

nonparametric two-sample bootstrap method in terms of 95% CI and absolute relative error for the high-

accuracy Algorithm A and the low-accuracy Algorithm B. The biometric datasets are assumed to be i.i.d. 

 

The biometric datasets are assumed to be i.i.d. The measure is TAR at FAR = 0.001 [1]. The 

SE of TAR was computed using the analytical formula Eq. (11), and was also estimated using 

the nonparametric two-sample bootstrap algorithm shown in Section 2.1.1. The results for the 

high-accuracy Algorithm A and the low-accuracy Algorithm B are shown in Table 4. 

 

Indeed, the analytical SE of TAR can be roughly found in Figure 2 (A) as well, which has no 

relationship with how the genuine scores and the impostor scores are distributed. If the matcher 

is of very high accuracy, i.e., the TAR at FAR = 0.001 is very close to 1, then it is possible that 

the analytically estimated SE is quite close to the bootstrap estimated SE. This is what happens 

to Algorithm A. However, for Algorithm B, the analytically estimated SE of TAR is smaller 

than the lower bound of the 95% CI of SEs of the TAR at FAR = 0.001. 

 

Again, the range of the absolute relative errors caused by the stochastic nature of the bootstrap 

algorithm is very narrow as shown in Table 4, which is 0.01% for Algorithm A and 0.06% for 

Algorithm B. In other words, the bootstrap algorithm provides a stable estimate of SE of a 

measure with 95% confidence. 

 

3.3 The simulated datasets with normal distributions 

 

The matching ability of an image matcher determines how genuine scores and impostor scores 

are distributed [1, 10]. Thus, the SEs of a measure should not be unrelated to such distributions. 

In this simulation study, the accuracies of the two image matchers are intentionally designed 

to be almost the same, but their score distributions are totally different except they are all 

normally distributed. Under such circumstances, as shown and elaborated below, the 

analytically computed SEs of the measure stay almost the same, but those bootstrap estimated 

SEs of the measure vary. 

 

As presented in Table 5 and depicted in Figure 3, in Case (A), the mean and standard deviation 

of the normal distribution of the impostor scores are 14.0 and 3.0, and those of the genuine 

scores are 26.0 and 2.0, respectively. In Case (B), the mean and standard deviation of the 

normal distribution of the impostor scores are 20.0 and 1.5, and those of the genuine scores are 

26.0 and 1.0, respectively. 

 

The measure is TAR at FAR = 0.001. As stated in Section 2.2.1, NI = 120,000. So, if the FAR 

is set to be 0.001, the number of the falsely accepted instances would be about 120, which is 

reasonably large in operational practice [1, 10]. 
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Case 

Impostor 

Scores 

Genuine 

Scores TAR at 

FAR = 

0.001 

SE of TAR 

mean sd mean sd Analytical 

Bootstrap 

95% CI 
Abs. relative 

error 

A 14.0 3.0 26.0 2.0 0.906000 0.001191 (0.005239, 0.005622) (1.13%, 1.22%) 

B 20.0 1.5 26.0 1.0 0.908200 0.001179 (0.009311, 0.009732) (2.01%, 2.10%) 

Table 5 The assigned means and standard deviations for normal probability distributions using simulated 

data for two Cases (A) and (B) with almost the same TAR at FAR = 0.001, in which the SEs of TAR are 

computed using the analytical approach and the nonparametric two-sample bootstrap method in terms of 

95% CI and absolute relative error, respectively. 

 

  

Figure 3 The normal probability distributions of the simulated genuine scores (red) and impostor scores 

(blue) for two Cases (A) and (B) with different means and standard deviations. 

 

The two normal distributions in Case (B) are narrower than the corresponding ones in Case 

(A). However, as far as the TAR at FAR = 0.001 is concerned, it is intended to design in such 

a way that they are almost the same for both Cases (A) and (B): the former is 0.906000, and 

the latter is 0.908200, as shown in Table 5. 

 

Hence, based on NG = 60,000 provided in Section 2.2.1, the SE of TAR calculated using the 

analytical formula Eq. (11) is 0.001191 in Case (A), and 0.001179 in Case (B), which can also 

be found in Figure 2 (A) based on the corresponding values of the TAR at FAR = 0.001. These 

two SEs of TAR are almost the same. It indicates that the analytically computed SE of TAR is 

immune to how the genuine scores and the impostor score are distributed. 

 

All simulated scores are i.i.d. Hence, the nonparametric two-sample bootstrap algorithm 

presented in Section 2.1.1 is employed to compute the SE of TAR at FAR = 0.001 [1]. The 

95% CI of the bootstrap estimated SEs of TAR is (0.005239, 0.005622) in Case (A), but 

(0.009311, 0.009732) in Case (B), which are very different. 

 

The rationale for this observation is that genuine scores and impostor scores are distributed 

closer to the point where FAR = 0.001 in Case (B) than in Case (A). This indicates that more 

similarity scores can affect the area, where the TAR at FAR = 0.001 is determined, in Case (B) 

than in Case (A). As a result, more uncertainty, i.e., larger SE of measure can occur in Case 

(B) than in Case (A). This is why the SE of TAR at FAR = 0.001 should be larger in Case (B) 

than in Case (A), which is exactly what the bootstrap method provides. Hence, the bootstrap 
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algorithm takes account of how similarity score are distributed, i.e., how the matchers are 

functioning. 

 

The analytically computed SE of TAR is fixed, but smaller than the lower bound of the 95% 

CI of the bootstrap estimated SEs of TAR. It indicates that the analytical approach 

underestimates the SE of TAR. Furthermore, the two ranges of the bootstrap estimated absolute 

relative errors shown in Table 5 are all about 0.09%. This suggests with 95% confidence that 

the impact of the stochastic nature of the bootstrap algorithm on estimating SE of TAR be 

negligible. 

 

3.4 The simulated datasets with nonparametric distributions 

 

Case 

Impostor Scores Genuine Scores 

TAR at 

FAR = 

0.001 

SE of TAR 

Region Prob. Region Prob. Analytical 

Bootstrap 

95% CI 

Abs. 

relative 

error 

A 

0.0 0.98 [0.0, 50.0) 0.02 

0.980783 0.000560 
(0.001398, 

0.001647) 

(0.28%, 

0.33%) 

(0.0, 50.0) 0.019 
[50.0, 

1000.0) 
0.88 

[50.0, 

100.0) 
0.001 1000.0 0.10 

B 

20.0 0.98 [20.0, 50.0) 0.02 

0.979217 0.000582 
(0.001745, 

0.001867) 

(0.35%, 

0.37%) 
(20.0, 50.0) 0.019 [50.0, 700.0) 0.88 

[50.0, 70.0) 0.001 700.0 0.10 

Table 6 The assigned probabilities at different regions for nonparametric probability distributions using 

simulated data for two Cases (A) and (B) with almost the same TAR at FAR = 0.001, in which the SEs of 

TAR are computed using the analytical approach and the nonparametric two-sample bootstrap method in 

terms of 95% CI and absolute relative error, respectively. 

 

  

Figure 4 The nonparametric probability distributions of the simulated genuine scores (red) and impostor 

scores (blue) for two Cases (A) and (B). 

 

This simulation study is different from the previous one in Section 3.3 only in terms of the 

score distributions, but the same conclusions can be reached. Here, the score distributions are 

all nonparametric with a high score peak at one end of the distribution, which is a way to 

increase the matching accuracy [1, 10]. The same comments on the measure TAR at FAR = 

0.001 stated in Section 3.3 are also valid here. 
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As presented in Table 6 and depicted in Figure 4, in Case (A), the impostor scores with 

probabilities 0.98, 0.019, and 0.001 are uniformly distributed in the regions 0.0, (0.0, 50.0), 

and [50.0, 100.0); so do the genuine scores with probabilities 0.02, 0.88, and 0.10 in the regions 

[0.0, 50.0), [50.0, 1000.0), and 1000.0; and the TAR at FAR = 0.001 is 0.980783. In Case (B), 

the impostor scores with probabilities 0.98, 0.019, and 0.001 are uniformly distributed in the 

regions 20.0, (20.0, 50.0), and [50.0, 70.0); so do the genuine scores with probabilities 0.02, 

0.88, and 0.10 in the regions [20.0, 50.0), [50.0, 700.0), and 700.0; and the TAR at FAR = 

0.001 is 0.979217. 

 

Based on Eq. (11) and NG = 60,000 shown in Section 2.2.1, the analytically estimated SEs of 

TAR in Cases (A) and (B) are 0.000560 and 0.000582, respectively, which are almost the same 

and can also be seen in Figure 2 (A). Again, the analytical SE of TAR is independent of how 

the similarity scores are distributed. 

 

However, the score distributions in Case (A) are quite different from those in Case (B), as 

shown in Figure 4. This should have impact on the SEs of TAR. Since the simulated data are 

i.i.d., the nonparametric two-sample bootstrap algorithm shown in Section 2.1.1 is employed 

to estimate the SE of TAR at FAR = 0.001 [1]. 

 

In Case (A) the 95% CI of the bootstrap estimated SEs of TAR is (0.001398, 0.001647), and 

in Case (B) it is (0.001745, 0.001867). Thus, the bootstrap estimated SEs of TAR at FAR = 

0.001 are larger in Case (B) than in Case (A). Regarding this issue, the same comments made 

in Section 3.3 can be applied here as well. Again, it suggests that the SE of a measure can be 

affected by how the similarity scores are distributed. 

 

In these two cases, the analytically computed SE of TAR is smaller than the lower bound of 

the 95% CI of the bootstrap estimated SEs of TAR, which indicates that the analytical approach 

underestimates the SE of TAR. Moreover, in these two cases, the ranges of the bootstrap 

estimated absolute relative errors are 0.05% and 0.02%, respectively. It indicates that with 95% 

confidence the stochastic nature of the bootstrap algorithm has little impact on the bootstrap 

estimated SEs of TAR. 

 

4 Conclusions and discussion 

 

Evaluation and comparison of performance levels of matching systems in ROC analysis on 

large datasets cannot be fulfilled without estimating uncertainties of measures. The estimation 

is usually done using the analytical approach or the bootstrap method. However, there are 

substantial differences between these two methods, in terms of the methodologies, the 

conditions of the methods, and the estimates of SEs, etc. The comparisons between these two 

methods were carried out using the real data obtained from the SREs and the biometric 

evaluations, as well as the simulated data with normal distributions and nonparametric 

distributions, respectively. 

 

The analytical approach simply uses a formula without any input regarding how similarity 

scores are distributed. The bootstrap algorithm resamples the original similarity scores at each 
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iteration and thus takes account of the distributions of similarity scores, which are associated 

with how the matcher works. 

 

If the datasets involve data dependency due to multiple use of the same subjects like the data 

in SRE, the analytical approach cannot deal with such a situation, whereas the nonparametric 

two-sample two-layer bootstrap algorithm based on the two-layer data structure can. 

 

Moreover, if a measure is defined as a weighted sum of the probabilities of type I error and 

type II error like DCF in SRE and thus a covariance can be derived while estimating its 

uncertainty analytically, then it is very hard to estimate it. However, because of the way of 

estimating the SE of DCF, the bootstrap algorithm can intrinsically take the covariance into 

consideration. And more similar cases can be found in Ref. [1]. 

 

The analytical approach generally underestimates the SEs of measures as opposed to the 

bootstrap method. Of the 18 datasets employed in this article, there is only one case, shown in 

Section 3.2, in which the analytically estimated SE falls in the middle of the 95% CI of the 

bootstrap estimated SEs. In all others, the analytically estimated SEs are smaller than the lower 

bounds of the 95% CIs of the bootstrap estimated SEs. 

 

The analytical approach is a deterministic process and provides a unique value. The nature of 

the bootstrap algorithm is stochastic, and thus different executions of the bootstrap algorithm 

may generate slightly different estimates of SE of a measure in ROC analysis. Hence, the 

bootstrap estimated SEs are represented in terms of its 95% CI, meaning that the estimated SE 

of a measure derived from a random execution of the bootstrap algorithm should fall with 95% 

confidence in this interval of SEs. Then, the analytical SE is compared with such a 95% CI of 

the bootstrap SEs. 

 

Further, after converting to absolute relative errors, it is worth noting that the 95% CI of the 

bootstrap estimated SEs is generally very narrow. It suggests that a random execution of the 

bootstrap algorithm provide a stable estimate of the SE of a measure with 95% confidence in 

spite of its stochastic nature. As a result, the SE of a measure generated from a random 

execution of the bootstrap algorithm can be treated as the bootstrap estimated SE of the 

measure. 

 

As pointed out in Ref. [1], in some literature [18] the false non-match rate (FNMR) was 

employed, which is defined to be 1 – TAR. It is trivial to prove that as far as the estimated SE 

is concerned, there is no difference between TAR and FNMR. However, they have different 

coefficient of variation of SE [1]. 
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