

NIST Special Publication 800-38G

Recommendation for Block Cipher

Modes of Operation:

Methods for Format-Preserving Encryption

Morris Dworkin

This publication is available free of charge from:
http://dx.doi.org/10.6028/NIST.SP.800-38G

C O M P U T E R S E C U R I T Y

http://dx.doi.org/10.6028/NIST.SP.800-38G

NIST Special Publication 800-38G

Recommendation for Block Cipher
Modes of Operation:

Methods for Format-Preserving Encryption

Morris Dworkin
Computer Security Division

Information Technology Laboratory

This publication is available free of charge from:
http://dx.doi.org/10.6028/NIST.SP.800-38G

March 2016
INCLUDES UPDATES AS OF 08-04-2016: PAGE I

 U.S. Department of Commerce
Penny Pritzker, Secretary

National Institute of Standards and Technology

Willie May, Under Secretary of Commerce for Standards and Technology and Director

http://dx.doi.org/10.6028/NIST.SP.800-38G

 i

Authority

This publication has been developed by NIST in accordance with its statutory responsibilities under the
Federal Information Security Modernization Act (FISMA) of 2014, 44 U.S.C. § 3541 et seq., Public Law
(P.L.) 113-283. NIST is responsible for developing information security standards and guidelines,
including minimum requirements for federal information systems, but such standards and guidelines shall
not apply to national security systems without the express approval of appropriate federal officials
exercising policy authority over such systems. This guideline is consistent with the requirements of the
Office of Management and Budget (OMB) Circular A-130.

Nothing in this publication should be taken to contradict the standards and guidelines made mandatory
and binding on federal agencies by the Secretary of Commerce under statutory authority. Nor should
these guidelines be interpreted as altering or superseding the existing authorities of the Secretary of
Commerce, Director of the OMB, or any other federal official. This publication may be used by
nongovernmental organizations on a voluntary basis and is not subject to copyright in the United States.
Attribution would, however, be appreciated by NIST.

National Institute of Standards and Technology Special Publication 800-38G
Natl. Inst. Stand. Technol. Spec. Publ. 800-38G, 28 pages (March 2016)

CODEN: NSPUE2

This publication is available free of charge from:
http://dx.doi.org/10.6028/NIST.SP.800-38G

Certain commercial entities, equipment, or materials may be identified in this document in order to describe an
experimental procedure or concept adequately. Such identification is not intended to imply recommendation or
endorsement by NIST, nor is it intended to imply that the entities, materials, or equipment are necessarily the best
available for the purpose.

There may be references in this publication to other publications currently under development by NIST in
accordance with its assigned statutory responsibilities. The information in this publication, including concepts and
methodologies, may be used by federal agencies even before the completion of such companion publications. Thus,
until each publication is completed, current requirements, guidelines, and procedures, where they exist, remain
operative. For planning and transition purposes, federal agencies may wish to closely follow the development of
these new publications by NIST

Organizations are encouraged to review all draft publications during public comment periods and provide feedback
to NIST. Many NIST cybersecurity publications, other than the ones noted above, are available at
http://csrc.nist.gov/publications.

Comments on this publication may be submitted to:
National Institute of Standards and Technology

Attn: Computer Security Division, Information Technology Laboratory
100 Bureau Drive (Mail Stop 8930) Gaithersburg, MD 20899-8930

Email: encryptionmodes@nist.gov

NOTE: August 4, 2016 – Although it was included in the draft of 800-38G posted for public comment on July 8,
2013, the following statement was unintentionally omitted when the final version was published in March 2016:

“It is possible that implementation of modes included in this NIST Recommendation may involve an
invention covered by patent rights. By publication of this Special Publication, no position is taken with
respect to the validity, scope or enforceability of any claim(s) of any such patent rights in connection with
such implementation. If a patent holder has filed with NIST a Letter of Assurance (LOA) with respect to
any such patent rights, a copy of that LOA may be obtained from NIST.”

mailto:encryptionmodes@nist.gov
http://csrc.nist.gov/publications
http://dx.doi.org/10.6028/NIST.SP.800-38G

Reports on Computer Systems Technology

The Information Technology Laboratory (ITL) at the National Institute of Standards and
Technology (NIST) promotes the U.S. economy and public welfare by providing technical
leadership for the Nation’s measurement and standards infrastructure. ITL develops tests, test
methods, reference data, proof of concept implementations, and technical analyses to advance
the development and productive use of information technology. ITL’s responsibilities include the
development of management, administrative, technical, and physical standards and guidelines for
the cost-effective security and privacy of other than national security-related information in
federal information systems. The Special Publication 800-series reports on ITL’s research,
guidelines, and outreach efforts in information system security, and its collaborative activities
with industry, government, and academic organizations.

Abstract

This Recommendation specifies two methods, called FF1 and FF3, for format-preserving
encryption. Both of these methods are modes of operation for an underlying, approved
symmetric-key block cipher algorithm.

Keywords

Block cipher; confidentiality; encryption; FF1; FF3; format-preserving encryption; information
security; mode of operation.

Acknowledgements

The author gratefully acknowledges the designers of the two algorithms that are specified in this
publication: 1) Mihir Bellare, Phil Rogaway, and Terence Spies; and 2) Eric Brier, Thomas
Peyrin, and Jacques Stern. The author also wishes to thank his colleagues who reviewed drafts of
this publication and contributed to its development, especially Elaine Barker, Lily Chen, John
Kelsey, Meltem Somnez Turan, Kerry McKay, Allen Roginsky, Larry Bassham, Ray Perlner,
Rene Peralta, Jim Foti, Sara Kerman, Andy Regenscheid, Bill Burr, and Tim Polk. The author
also acknowledges the comments from the public and private sectors to improve the quality of
this publication.

Conformance Testing

Conformance testing for implementations of the functions that are specified in this publication
will be conducted within the framework of the Cryptographic Algorithm Validation Program
(CAVP) and the Cryptographic Module Validation Program (CMVP). The requirements on these
implementations are indicated by the word “shall.” Some of these requirements may be out-of-
scope for CAVP or CMVP validation testing, and thus are the responsibility of entities using,
implementing, installing, or configuring applications that incorporate this Recommendation.

ii

NIST SP 800-38G METHODS FOR FORMAT-PRESERVING ENCRYPTION

Table of Contents

1 Purpose ... 1
2 Introduction... 1
3 Definitions and Notation.. 2

3.1 Definitions ..2
3.2 Acronyms ...4
3.3 Operations and Functions ..5

4 Preliminaries... 6
4.1 Representation of Character Strings..6

4.2 Examples of Basic Operations and Functions ...7
4.3 Underlying Block Cipher and Key ..8
4.4 Encryption and Decryption Functions ..9
4.5 Feistel Structure ...10
4.6 Component Functions ..11

5 Mode Specifications... 14
5.1 FF1...14
5.2 FF3...16

6 Conformance .. 19
Appendix A: Parameter Choices and Security ... 20
Appendix B: Security Goal ... 20
Appendix C: Tweaks.. 21
Appendix D: Examples.. 21
Appendix E: References ... 22

List of Figures

Figure 1: Feistel Structure ... 10

iii

NIST SP 800-38G METHODS FOR FORMAT-PRESERVING ENCRYPTION

1 Purpose

This publication is the seventh part in a series of Recommendations regarding the modes of
operation of block cipher algorithms. The purpose of this part is to provide approved methods for
format-preserving encryption (FPE).

2 Introduction

A block cipher mode of operation—or simply, mode—is an algorithm for the cryptographic
transformation of data that is based on a block cipher. The previously approved modes for
encryption are transformations on binary data, i.e., the inputs and outputs of the modes are bit
strings—sequences of ones and zeros. For sequences of non-binary symbols, however, there is
no natural and general way for the previously approved modes to produce encrypted data that has
the same format.

For example, a Social Security number (SSN) consists of nine decimal numerals, so it is an
integer that is less than one billion. This integer can be converted to a bit string as input to a
previously approved mode, but when the output bit string is converted back to an integer, it may
be greater than one billion, which would be too long for an SSN.

Format-preserving encryption (FPE) is designed for data that is not necessarily binary. In
particular, given any finite set of symbols, like the decimal numerals, a method for FPE
transforms data that is formatted as a sequence of the symbols in such a way that the encrypted
form of the data has the same format, including the length, as the original data. Thus, an FPE-
encrypted SSN would be a sequence of nine decimal digits.

FPE facilitates the targeting of encryption to sensitive information, as well as the retrofitting of
encryption technology to legacy applications, where a conventional encryption mode might not
be feasible. For example, database applications may not support changes to the length or format
of data fields. FPE has emerged as a useful cryptographic tool, whose applications include
financial-information security, data sanitization1, and the transparent encryption of fields in
legacy databases.

The two FPE modes specified in this publication are abbreviated FF1 and FF3, to indicate that
they are format-preserving, Feistel-based encryption modes. FF1 was submitted to NIST under
the name FFX[Radix] in [2]. FF3 is a component of the FPE method that was submitted to NIST
under the name BPS in [3]. In particular, FF3 is essentially equivalent to the BPS-BC component
of BPS, instantiated with a 128-bit block cipher. The full BPS mode—in particular, its chaining
mechanism for longer input strings—is not approved in this publication.

A third mode, FF2—submitted to NIST under the name VAES3—was included in the initial
draft of this publication. As part of the public review of Draft NIST Special Publication (SP)
800-38G and as part of its routine consultation with other agencies, NIST was advised by the
National Security Agency in general terms that the FF2 mode in the draft did not provide the

1 The sanitization of personally identifiable information in a database—whether by FPE or other methods—does not
necessarily provide strong assurance that individuals cannot be re-identified; for example, see [4].

1

NIST SP 800-38G METHODS FOR FORMAT-PRESERVING ENCRYPTION

expected 128 bits of security strength. NIST cryptographers confirmed this assessment via the
security analysis in [5] and announced the removal of FF2 in [8]. An extension of the
VAES3/FF2 proposal [16] was submitted for NIST’s consideration in November 2015.

Each of these FPE modes fits within a larger framework, called FFX, for constructing FPE
mechanisms; FFX was submitted to NIST in [1]. The “X” indicates the flexibility to instantiate
the framework with different parameter sets, as well as FFX’s evolution from its precursor, the
Feistel Finite Set Encryption Mode.

The FFX framework itself is not specified in this publication; in fact, FF1 and FF3 are not
presented explicitly as instantiations of FFX parameter sets, but rather as separate algorithms, in
order to simplify the individual specifications.

FF1 and FF3 each employ the Feistel structure—see Sec. 4.5—which also underlies the Triple
Data Encryption Algorithm (TDEA) [12]. At the core of FF1 and FF3 are somewhat different
Feistel round functions that are derived from an approved block cipher with 128-bit blocks, i.e.,
the Advanced Encryption Standard (AES) algorithm [10].

In addition to the formatted data for which the modes provide confidentiality, each mode also
takes an additional input called the “tweak,” which is not necessarily secret. The tweak can be
regarded as a changeable part of the key, because together they determine the encryption and
decryption functions. Tweaks that vary can be especially important for implementations of FPE
modes, because the number of possible values for the confidential data is often relatively small,
as discussed in Appendix A and Appendix C.

FF1 and FF3 offer somewhat different performance advantages. FF1 supports a greater range of
lengths for the protected, formatted data, as well as flexibility in the length of the tweak. FF3
achieves greater throughput, mainly because its round count is eight, compared to ten for FF1.

3 Definitions and Notation

3.1 Definitions

alphabet A finite set of two or more symbols.

FIPS-approved or NIST-recommended: an algorithm or technique that is
approved either 1) specified in a FIPS or a NIST Recommendation, or 2) adopted in a

Federal Information Processing Standard (FIPS) or a NIST Recommendation.

base The number of characters in a given alphabet. The base is denoted by radix.

bit A binary digit: 0 or 1.

bit string A finite, ordered sequence of bits.

For a given block cipher, a bit string whose length is the block size of the block block cipher.

2

NIST SP 800-38G METHODS FOR FORMAT-PRESERVING ENCRYPTION

block cipher

block cipher
mode of
operation

block size

block string

byte

byte string

character

character string

ciphertext

decryption
function

designated
cipher function

encryption
function

exclusive-OR
(XOR)

Feistel structure

forward
transformation

A parameterized family of permutations on bit strings of a fixed length; the
parameter that determines the permutation is a bit string called the key.

An algorithm for the cryptographic transformation of data that is based on a
block cipher.

For a given block cipher and key, the fixed length of the input (or output) bit
strings.

A bit string whose length is a multiple of a given block size, so that it can be
represented as the concatenation of a finite sequence of blocks.

A string of eight bits.

A bit string whose length is a multiple of eight bits, so that it can be
represented as the concatenation of a finite sequence of bytes.

A symbol in a given alphabet.

A finite, ordered sequence of characters from a given alphabet.

In this publication, the numeral string that is the encrypted form of a plaintext
numeral string.

For a given block cipher and key, the function of an FPE mode that takes a
ciphertext numeral string and a tweak as input and returns the corresponding
plaintext numeral string as output.

For a given block cipher and key, the choice of either the forward
transformation or the inverse transformation.

For a given block cipher and key, the function of an FPE mode that takes a
plaintext numeral string and a tweak as input and returns a ciphertext numeral
string as output.

The bitwise addition, modulo 2, of two bit strings of equal length.

A framework for constructing an encryption mode. The framework consists
of several iterations, called rounds, in which a keyed function, called the
round function, is applied to one part of the data in order to modify the other
part of the data; the roles of the two parts are swapped for the next round.

For a given block cipher, the permutation of blocks that is determined by the
choice of a key.

3

NIST SP 800-38G METHODS FOR FORMAT-PRESERVING ENCRYPTION

inverse
transformation

key

mode

numeral

numeral string

plaintext

prerequisite

shall

should

tweak

3.2 Acronyms

AES

CAVP

CCN

CMVP

FIPS

FISMA

FPE

IETF

ITL

NIST

For a given block cipher, the inverse of the permutation of blocks that is

determined by the choice of a key.

For a given block cipher, the secret bit string that parameterizes the

permutation.

See block cipher mode of operation.

For a given base, a nonnegative integer less than the base.

For a given base, a finite, ordered sequence of numerals for the base.

In this publication, a numeral string whose confidentiality is protected by an

FPE mode.

A required input to an algorithm that has been established prior to the

invocation of the algorithm.

Is required to. Requirements apply to conforming implementations.

Is recommended to.

The input parameter to the encryption and decryption functions whose

confidentiality is not necessarily protected by the mode.

Advanced Encryption Standard.

Cryptographic Algorithm Validation Program.

credit card number.

Cryptographic Module Validation Program.

Federal Information Processing Standard.

Federal Information Security Management Act.

format-preserving encryption.

Internet Engineering Task Force.

Information Technology Laboratory.

National Institute of Standards and Technology.

4

NIST SP 800-38G	 METHODS FOR FORMAT-PRESERVING ENCRYPTION

PRF pseudorandom function.

RFC Request For Comment.

SSN Social Security number.

3.3 Operations and Functions

Examples of most of the following operations and functions are provided in Sec. 4.2.

BYTELEN(X) 	 The number of bytes in a byte string, X.

The output of the designated cipher function of the block cipher under the key
CIPHK (X) K applied to the block X.

LEN(X) The number of numerals [or bits] in a numeral string [or bit string] X.

LOG(x) The base 2 logarithm of the real number x > 0.

The integer that 	a bit string X represents when the bits are valued in
NUM(X) decreasing order of significance.

The number that the numeral string X represents in base radix when the

NUMradix (X) numerals are valued in decreasing order of significance.

The output of the function PRF applied to the block X; PRF is defined in terms

PRF(X) of a given designated cipher function.

Given a numeral string, X, the numeral string that consists of the numerals of

REV(X) X in reverse order.

Given a byte string, X, the byte string that consists of the bytes of X in reverse

REVB(X) order.

m Given a nonnegative integer x less than radixm, the representation of x as a
STRradix (x) string of m numerals in base radix, in decreasing order of significance.

⌊x⌋ The greatest integer that does not exceed the real number x.

⎡x⎤ The least integer that is not less than the real number x.

Given a nonnegative integer x less than	
 256 s, the representation of x as a [x]s
string of s bytes.

[i .. j] The set of integers between two integers i and j, including i and j.

5

NIST SP 800-38G METHODS FOR FORMAT-PRESERVING ENCRYPTION

x mod m The nonnegative remainder of the integer x modulo the positive integer m.

X [i] The i th element of the string X.

X [i .. j] The substring of the string X from X [i] to X [j], including X [i] and X [j].

X⊕Y The bitwise exclusive-OR of bit strings X and Y whose bit lengths are equal.

X || Y The concatenation of numeral strings X and Y.

0s The bit string that consists of s consecutive ‘0’ bits.

4 Preliminaries

4.1 Representation of Character Strings

The data inputs and outputs for FF1 and FF3 are sequences of numbers that can represent both
numeric and non-numeric data, as discussed below.

A finite set of two or more symbols is called an alphabet. The symbols in an alphabet are called
the characters of the alphabet. The number of characters in an alphabet is called the base,
denoted by radix; thus, radix ≥ 2.

A character string is a finite sequence of characters from an alphabet; individual characters may
repeat in the string. In this publication, character strings (and bit strings) are presented in the
Courier New font.

Thus, for the alphabet of lower-case English letters,

{a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q, r, s, t, u, v, w, x, y, z},

hello and cannot are character strings, but Hello and can’t are not, because the symbols
“H” and “ ’ ” are not in the alphabet.

SSNs or CCNs can be regarded as character strings in the alphabet of base ten numerals, namely,
{0, 1, 2, 3, 4, 5, 6, 7, 8, 9}. The notion of numerals is generalized to any given base as follows:
the set of base radix numerals is

{0, 1, …, radix-1}.

The data inputs and outputs to the FF1 and FF3 encryption and decryption functions must be
finite sequences of numerals, i.e., numeral strings. If the data to be encrypted is formatted in an
alphabet that is not already the set of base radix numerals, then each character must be
represented by a distinct numeral in order to apply FF1 or FF3.

For example, the natural representation of lower-case English letters with base 26 numerals is

a→0, b→1, c→2, … x→23, y→24, z→25.

6

NIST SP 800-38G METHODS FOR FORMAT-PRESERVING ENCRYPTION

The character string hello would then be represented by the numeral string 7 4 11 11 14.
Other representations are possible.

The choice and implementation of a one-to-one correspondence between a given alphabet and
the set of base radix numerals that represents the alphabet is outside the scope of this publication.

In this publication, individual numerals are themselves represented in base ten. In order to
display numeral sequences unambiguously when the base is greater than ten, a delimiter between
the numerals is required, such as a space (as in the base 26 example above) or a comma.

FF1 and FF3 use different conventions for interpreting numeral strings as numbers. For FF1,
numbers are represented by strings of numerals with decreasing order of significance; for FF3,
numbers are represented by strings of numerals in the reverse order, i.e., with increasing order of
significance. Algorithms for the functions that convert numeral strings to numbers and vice versa
are given in Sec. 4.6.

4.2 Examples of Basic Operations and Functions

Given a positive real number x, the base 2 logarithm of x, denoted by LOG(x), is the unique real
number for which 2LOG(x) = x. For example, LOG(64) = 6 and LOG(10) ≈ 3.32.

Given a real number x, the floor function, denoted by ⌊x⌋, is the greatest integer that does not
exceed x. For example, ⌊2.1⌋ = 2, and ⌊4⌋ = 4.

Given a real number x, the ceiling function, denoted by ⎡x⎤, is the least integer that is not less
than x. For example, ⎡2.1⎤ = 3, and ⎡4⎤ = 4.

Given two integers i and j with i≤ j, the set of integers between i and j, including i and j, is
denoted by [i .. j]. For example, [2 ..5] = {2, 3, 4, 5}.

Given a real number x and a positive integer m, the remainder of x modulo m, denoted by x mod
m, is x–m⌊x/m⌋. For example, -3 mod 7 = 4, and 13 mod 7 = 6.

Given a positive integer s, 0s denotes the string that consists of s ‘0’ bits. For example,
08 = 00000000.

The concatenation operation on bit strings or numeral strings is denoted by ||. For example,
001 || 1011= 0011011, and 3 1 || 31 8 10 = 3 1 31 8 10.

Given bit strings of equal length, the exclusive-OR (XOR) operation, denoted by ⊕, specifies
the addition, modulo 2, of the bits in corresponding bit positions. For example,
10011⊕ 10101= 00110.

Given a numeral or bit string X, its length is denoted by LEN(X). For example, LEN(010) = 3.

Given a byte string X—i.e., a bit string that could be represented as the concatenation of a
sequence of bytes—the length of X in bytes, i.e., LEN(X)/8, is denoted by BYTELEN(X). For
example, BYTELEN(1011100110101100) = 2.

7

NIST SP 800-38G METHODS FOR FORMAT-PRESERVING ENCRYPTION

Given a numeral [bit] string X and an index i such that 1 ≤ i ≤ LEN(X), the i th numeral [bit] of X is
denoted by X[i]. For a pair of indices (i, j), with 1 ≤ i ≤ j ≤ LEN(X), the substring of numerals [bits]
from X[i] to X[j] is denoted by X[i .. j]. For example, in base ten, if X = 798137, then X[2] = 9,
and X[3..5] = 813.

Given a base, radix, and a length, m, there are radixm distinct numeral strings. Given an integer x
such that 0 ≤ x < radixm, the integer-to-string function, denoted by STR

m
radix (x), is the numeral

string of length m in base radix that represents x, when the numerals are in decreasing order of
significance. For example, STR 12

4 (559) is the string of four numerals in base 12 that represents
559, namely, 0 3 10 7. An algorithm for computing STR

m
radix (x) is given in Sec. 4.6.

A separate notation is given for the conversion of integers to byte strings, in particular,
[x]s = STR 82

s (x). For example, [1]1 =00000001.

Given a (non-empty) numeral string X in base radix of length m, the string-to-integer function,
denoted by NUM radix (X), is the integer x that X represents, so that STR

m
radix (x) = X. For example,

NUM5 (00011010)=755. An algorithm for computing NUM radix (X) is given in Sec. 4.6.

Similar notation is given for the function that converts bit strings to integers. In particular, given
a byte string X, NUM(X) is the integer x that X represents, so that [NUM(X)]BYTELEN(X) = X. For
example, NUM(10000000)=128. An algorithm for computing NUM(X) is given in Sec. 4.6.

Given a numeral string, X, the string REV(X) is the sequence of numerals of X in reverse order.
For example, in base ten, REV(13579) = 97531.

Given a byte string, X, the string REVB(X) is the sequence of bytes of X in reverse order. For
example, REVB([1] || [2] || [3])=[3] || [2] || [1].

4.3 Underlying Block Cipher and Key

The encryption and decryption functions of FF1 and FF3 feature a block cipher as the main
component; thus, each of these FPE mechanisms is a mode of operation (mode, for short) of the
block cipher.

For any given key, K, the underlying block cipher of the mode is a permutation, i.e., an invertible
transformation on bit strings of a fixed length; the fixed-length bit strings are called blocks, and
the length of a block is called the block size. For an FPE mode, as part of the choice of the
underlying block cipher with the key, either the forward transformation or the inverse
transformation2 is specified as the designated cipher function, denoted by CIPHK. The inverse of
CIPHK is not needed for the modes that are specified in this publication.

For both of the modes, the underlying block cipher shall be approved, and the block size shall be
128 bits. Currently, the AES block cipher [10], with key lengths of 128, 192, or 256 bits, is the

2 The forward transformation and the inverse transformations are sometimes referred to as the “encrypt” and
“decrypt” functions, respectively, of the block cipher; however, in this publication, those terms are reserved for
functions of the FPE modes.

8

NIST SP 800-38G METHODS FOR FORMAT-PRESERVING ENCRYPTION

only block cipher that fits this profile.

The choice of the key length affects the security of the FPE modes, e.g., against brute-force
search, and also affects the details of the implementation of the AES algorithm. Otherwise, the
key length does not affect the implementation of FF1 and FF3, and the choice of the key length
is not explicitly indicated in their specifications. Methods for generating cryptographic keys are
discussed in [13]; the goal is to select the keys uniformly at random, i.e., for each possible key to
occur with equal probability.

The key shall be kept secret, i.e., disclosed only to parties that are authorized to know the
protected information. Compliance with this requirement is the responsibility of the entities
using, implementing, installing, or configuring applications that incorporate the functions that are
specified in this publication. The management of cryptographic keys is outside the scope of this
publication.

4.4 Encryption and Decryption Functions

For a given key, denoted by K, for the designated block cipher, FF1 and FF3 each consist of two
related functions: encryption and decryption. The inputs to the encryption function are a numeral
string called the plaintext, denoted by X, and a byte string, called the tweak, denoted by T; the
function returns a numeral string called the ciphertext, denoted by Y, with the same length as X.
Similarly, the inputs to the decryption function are a numeral string X and a tweak T; the output
is a numeral string Y of the same length as X.

For FF1, the encryption function is denoted by FF1.Encrypt(K, T, X), and the decryption function
is denoted by FF1.Decrypt(K, T, X), with analogous notation for FF3.

For a given tweak, the decryption function is the inverse of the encryption function, so that

FF1.Decrypt(K, T, FF1.Encrypt(K, T, X)) = X,

FF3.Decrypt(K, T, FF3.Encrypt(K, T, X)) = X.

Thus, when a ciphertext is an input to the decryption function, along with the same tweak that
was used to generate the ciphertext, the output is the corresponding plaintext.

The tweak does not need to be kept secret; often, it is some readily available data that is
associated with the plaintext. Although implementations may fix the value of the tweak, the use
of variable tweaks is strongly recommended as a security enhancement; see Appendix C. In FF1
and FF3, tweaks are byte strings. The specifications in Sec. 5 include the lengths that can be
supported for the tweak, as well as for the plaintext/ciphertext.

The key, K, is indicated in the above notation as an input for the encryption and decryption
functions; however, in the specifications in this publication, the key is listed as a prerequisite,
i.e., an input that is usually established prior to the invocation of the function.3 Several other

3 The distinction doesn’t affect the execution of the function: all inputs are required, independent of when they were
established or provided to the implementation.

9

NIST SP 800-38G METHODS FOR FORMAT-PRESERVING ENCRYPTION

prerequisites are omitted from the above notation, such as the underlying block cipher, the
designation of CIPHK, and the base for the numeral strings.

4.5 Feistel Structure

FFX schemes, including FF1 and FF3, are based on the Feistel structure. The Feistel structure
consists of several iterations, called rounds, of a reversible transformation. The transformation
consists of three steps: 1) the data is split into two parts; 2) a keyed function, called the round
function, is applied to one part of the data in order to modify the other part of the data; and 3) the
roles of the two parts are swapped for the next round. The structure is illustrated in Figure 1
below, for both encryption and decryption. Four rounds are shown in Figure 1, but ten rounds are
actually specified for FF1, and eight rounds for FF3.

u!characters! v!characters! u!characters! v!characters!
A0! B0! A4!! B4!

B1!←!C0! A1!←!B0!

FK!+! n,!T,!0!

FK! +!n,!T,!1!

A2!←!B1! B2!←!C1!

B3!←!C2! A3!←!B2!

FK!+! n,!T,!2!

B3!←!A4! A3!!

FK! _!n,!T,!3!

n,!T,!2!

A2!! B2!←!A3!

FK!_!

n,!T,!1!

B1!←!A2! A1!

FK! _!

FK! +!

!

n,!T,!3!

!1

FK!_! n,!T,!0!

A4!←!B3! B4!←!C3 A0! B0!←!A

Encryption! Decryption!

Figure 1: Feistel Structure

10

NIST SP 800-38G METHODS FOR FORMAT-PRESERVING ENCRYPTION

For the encryption function in Figure 1, the rounds are indexed from 0 to 3. The input data (and
output data) for each round are two strings of characters—which will be numerals for FF1 and
FF3. The lengths of the two strings are denoted by u and v, and the total number of characters is
denoted by n, so that u+v = n. During Round i, the round function, denoted by FK, is applied to
one of the input strings, denoted by Bi, with the length n, the tweak T, and the round number i as
additional inputs. (In Figure 1, this triple (n, T, i) of additional inputs is indicated within the
dotted rectangles, with the appropriate values for i). The result is used to modify the other string,
denoted by Ai, via modular addition4, indicated by +, on the numbers that the strings represent5.
The string that represents the resulting number is named with a temporary variable, Ci. The
names of the two parts are swapped for the next round, so that the modified Ai, i.e., Ci, becomes
Bi+1, and Bi becomes Ai+1.

The rectangles containing the two parts of the data have different sizes in order to illustrate that,
u cannot equal v if n is odd. In such cases, the round function is constructed so that the lengths of
its input and output strings depend on whether the round number index, i, is even or odd.

The Feistel structure for decryption is almost identical to the Feistel structure for encryption.
There are three differences: 1) the order of the round indices is reversed; 2) the roles of the two
parts of the data in the round function are swapped as follows: along with n, T, and i, the input to
FK is Ai+1 (not Bi), and the output is combined with Bi+1 (not Ai) to produce Ai (not Bi+1); and
3) modular addition (of the output of FK to Ai) is replaced by modular subtraction (of the output
of FK from Bi +1).

4.6 Component Functions

This section gives algorithms for the component functions that are called in the specifications of
FF1 and FF3. The conversion functions NUMradix(X), NUM(X), and STR

m
radix(x) are defined in

Sec. 4.2, including examples, and they are specified in Algorithms 1-3 below. These functions
support the ordering convention for the numeral [bit] strings in FF1, namely, that the first (i.e.,
left-most) numeral [bit] of the string is the most-significant numeral [bit].

In FF3, the numeral strings follow the opposite ordering convention, as do the byte strings for the
block cipher. In order to adapt NUMradix(X), STR

m
radix (x), and CIPHK (X) for the FF3 specifications,

the functions REV(X) and REVB(X) are defined in Sec. 4.2 and specified in Algorithms 4 and 5.

The PRF(X) function, specified in Algorithm 6, essentially invokes the Cipher Block Chaining
encryption mode [11] on the input bit string and returns the final block of the ciphertext; this
function is the pseudorandom core of the Feistel round function for FF1.Encrypt and
FF1.Decrypt.

In order to simplify the specifications of NUM(X), REVB(X), and PRF(X), the byte or block strings
in Algorithms 2, 5, and 6 are represented as bit strings.

4 For some applications of the Feistel structure—but not FF1 and FF3—the + operation may be a different reversible

operation on strings that preserves their length; for example, the FFX specification [1] supports an option for

character-wise addition.

5 The ordering convention for interpreting strings as numbers is different for FF3 than for FF1.

11

NIST SP 800-38G METHODS FOR FORMAT-PRESERVING ENCRYPTION

Algorithm 1: NUMradix (X)

Prerequisite:
Base, radix.

Input:

Numeral string, X.

Output:

Number, x.

Steps:
1. Let x = 0.
2. For i from 1 to LEN(X), let x = x ⋅radix + X [i].
3. Return x.

Algorithm 2: NUM(X)

Input:

Byte string, X, represented in bits.

Output:

Integer, x.

Steps:
1. Let x = 0.
2. For i from 1 to LEN(X), let x = 2x + X [i].
3. Return x.

Algorithm 3: STR
m
radix (x)

Prerequisites:

Base, radix;

String length, m.

Input:

Integer, x, such that 0 ≤ x < radixm .

Output:

Numeral string, X.

Steps:
1. For i from 1 to m:

i. X [m+1– i] = x mod radix;
ii. x = ⎣x/radix⎦.

2. Return X.

12

NIST SP 800-38G METHODS FOR FORMAT-PRESERVING ENCRYPTION

Algorithm 4: REV(X)

Input:

Numeral string, X.

Output:

Numeral string, Y.

Steps:
1. For i from 1 to LEN(X), let Y [i] = X [LEN(X)+1– i].
2. Return Y [1 ..LEN(X)].

Algorithm 5: REVB(X)

Input:

Byte string, X, represented in bits.

Output:

Byte string, Y, represented in bits.

Steps:
1. For i from 0 to BYTELEN(X)–1 and j from 1 to 8, let Y [8i+ j] = X [8 ⋅ (BYTELEN(X)–1– i)+ j].
2. Return Y [1 ..8 ⋅BYTELEN(X)].

Algorithm 6: PRF(X)

Prerequisites:

Designated cipher function, CIPH, of an approved 128-bit block cipher;

Key, K, for the block cipher.

Input:

Block string, X.

Output:
Block, Y.

Steps:
1. Let m = LEN(X)/128.
2. Let X1, …, Xm be the blocks for which X = X1 || … || Xm.
3. Let Y0 = 0128, and for j from 1 to m let Yj = CIPHK (Yj–1 ⊕ Xj).
4. Return Ym.

13

NIST SP 800-38G METHODS FOR FORMAT-PRESERVING ENCRYPTION

5 Mode Specifications

The specifications of the encryption and decryption algorithms for FF1 and FF3 are presented in
Sections 6.1 and 6.2, organized into prerequisites, inputs, outputs, steps, and descriptions of the
steps. In addition to the key and designated cipher function, the prerequisites for each mode are
the choices of 1) the base, radix, and 2) the range of lengths, [minlen ..maxlen], for the numeral
string inputs that the implementation supports. FF1 also has a prerequisite for the choice of the
maximum tweak length, maxTlen, that the implementation supports. For each mode, the
requirements on the values for the prerequisites are specified prior to the encryption and
decryption algorithms.

The parameter choices may affect interoperability. The behavior of an implementation when
presented with incorrect inputs is outside the scope of this Recommendation.

For each specification, the 128-bit input and output blocks of the designated block cipher,
CIPHK, are represented as strings of 16 bytes.

5.1 FF1

The specifications for the FF1.Encrypt and FF1.Decrypt functions are given in Algorithms 7 and
8 below. The tweak, T, is optional, in that it may be the empty string, with byte length t=0.

The parameters radix, minlen, and maxlen in FF1.Encrypt and FF1.Decrypt shall meet the
following requirements:

• radix ∈ [2 ..216],
• radix minlen ≥ 100, and
• 2 ≤ minlen ≤ maxlen < 232.

Algorithm 7: FF1.Encrypt(K, T, X)

Prerequisites:
Designated cipher function, CIPH, of an approved 128-bit block cipher;

Key, K, for the block cipher;

Base, radix;

Range of supported message lengths, [minlen ..maxlen];

Maximum byte length for tweaks, maxTlen.

Inputs:

Numeral string, X, in base radix of length n, such that n ∈ [minlen ..maxlen];

Tweak T, a byte string of byte length t, such that t ∈ [0 ..maxTlen].

Output:

Numeral string, Y, such that LEN(Y) = n.

14

NIST SP 800-38G	 METHODS FOR FORMAT-PRESERVING ENCRYPTION

Steps:
1.	 Let u = ⎣n/2⎦; v = n – u.
2. 	 Let A = X [1 ..u]; B = X [u + 1..n].
3.	 Let b = ⎡ ⎡v ⋅LOG(radix)⎤/8⎤.
4.	 Let d = 4⎡b/4⎤ + 4.
5.	 Let P = [1]1 || [2]1 || [1]1 || [radix]3 || [10]1 || [u mod 256]1 || [n]4 || [t]4.
6.	 For i from 0 to 9:

Let Q = T || [0](−t−b−1) mod 16 || [i]1 || [NUMradix(B)]bi.	 .
ii.	 Let R = PRF(P || Q).
iii.	 Let S be the first d bytes of the following string of ⎡d/16⎤ blocks:

R || CIPHK (R ⊕ [1]16) || CIPHK (R ⊕ [2]16) … CIPHK (R ⊕ [⎡d/16⎤–1]16).

iv.	 Let y = NUM(S).
v.	 If i is even, let m = u; else, let m = v.
vi.	 Let c = (NUMradix (A)+y) mod radix m .
vii.	 Let C = STR

m
radix (c).

viii. 	 Let A = B.
ix.	 Let B = C.

7.	 Return A || B.

Description
The “split” of the numeral string X into two substrings, A and B, is performed in Steps 1 and 2. If
n is even, LEN(A)=LEN(B); otherwise, LEN(A)=LEN(B)–1. The byte lengths b and d, which are
used in Steps 6i and 6iii, respectively, are defined in Steps 3 and 4.6 A fixed block, P, used as the
initial block for the invocation of the function PRF in Step 6ii, is defined in Step 5. An iteration
loop for the ten Feistel rounds of FF1 is initiated in Step 6, executing nine substeps for each
round, as follows:

The tweak, T, the substring, B, and the round number, i, are encoded as a binary string, Q, in
Step 6i. The function PRF is applied to the concatenation of P and Q in Step 6ii, to produce a
block, R, which is either truncated or expanded to a byte string, S, with the appropriate number
of bytes, d, in Step 6iii. (In Figure 1, S corresponds to the output of FK.) In Steps 6iv to 6vii, S is
combined with the substring A to produce a numeral string C in the same base and with the same
length. (In Figure 1, the combining of S with A is indicated by the “+” operation.) In particular,
in Step 6iv, S is converted to a number, y. In Step 6v, the length, m, of A for this Feistel round is
determined. In Step 6vi, y is added to the number represented by the substring A, and the result is
reduced modulo the mth power of radix, yielding a number, c, which is converted to a numeral
string in Step 6vii. In Steps 6viii and 6ix, the roles of A and B are swapped for the next round:
the substring B is renamed as the substring A, and the modified A (i.e., C) is renamed as B.

This completes one round of the Feistel structure in FF1. After the tenth round, the concatenation
of A and B is returned as the output in Step 7.

6 When B is encoded as a byte string in Step 6i, b is the number of bytes in the encoding. The definition of d ensures
that the output of the Feistel round function is at least four bytes longer than this encoding of B, which minimizes
any bias in the modular reduction in Step 6vi.

15

NIST SP 800-38G	 METHODS FOR FORMAT-PRESERVING ENCRYPTION

Algorithm 8: FF1.Decrypt(K, T, X)

Prerequisites:
Designated cipher function, CIPH, of an approved 128-bit block cipher;

Key, K, for the block cipher;

Base, radix;

Range of supported message lengths, [minlen ..maxlen];

Maximum byte length for tweaks, maxTlen.

Inputs:

Numeral string, X, in base radix of length n, such that n ∈ [minlen ..maxlen];

Tweak T, a byte string of byte length t, such that t ∈ [0 ..maxTlen].

Output:

Numeral string, Y, such that LEN(Y) = n.

Steps:
1.	 Let u = ⎣n/2⎦; v = n – u.
2. 	 Let A = X [1 ..u]; B = X [u+1..n].
3.	 Let b = ⎡⎡v ⋅LOG(radix)⎤/8⎤.
4.	 Let d = 4 ⎡b/4⎤+4
5.	 Let P = [1]1 || [2]1 || [1]1 || [radix]3 || [10]1 ||[u mod 256]1 || [n]4 || [t]4.
6.	 For i from 9 to 0:

Let Q = T || [0](−t−b−1) mod 16 || [i]1 || [NUMradix (A)]bi.	 .
ii.	 Let R = PRF(P || Q).
iii.	 Let S be the string of the first d bytes of the following string of ⎡d/16⎤ blocks:

R || CIPHK (R ⊕ [1]16) || CIPHK (R ⊕ [2]16) … CIPHK (R ⊕ [⎡d/16⎤ – 1]16).
iv.	 Let y = NUM(S).
v.	 If i is even, let m = u; else, let m = v.
vi.	 Let c = (NUMradix (B)–y) mod radix m .
vii.	 Let C = STR

m
radix (c).

viii. 	 Let B = A.
ix.	 Let A = C.

7.	 Return A || B.

Description:

The FF1.Decrypt algorithm is similar to the FF1.Encrypt algorithm; the differences are in Step 6,

where: 1) the order of the indices is reversed, 2) the roles of A and B are swapped, and

3) modular addition is replaced by modular subtraction, in Step 6vi.

5.2	 FF3

The specifications for the FF3.Encrypt and FF3.Decrypt functions are given in Algorithms 9 and
10 below. The parameters radix, minlen, and maxlen in FF3.Encrypt and FF3.Decrypt shall meet
the following requirements:

16

NIST SP 800-38G METHODS FOR FORMAT-PRESERVING ENCRYPTION

• radix ∈ [2 ..216],
• radix minlen ≥ 100, and
• 2 ≤ minlen ≤ maxlen ≤ 2⎣log radix (296)⎦.

Algorithm 9: FF3.Encrypt(K, T, X)

Prerequisites:
Designated cipher function, CIPH, of an approved 128-bit block cipher;

Key, K, for the block cipher;

Base, radix;

Range of supported message lengths, [minlen ..maxlen].

Inputs:

Numeral string, X, in base radix of length n, such that n ∈ [minlen ..maxlen];

Tweak bit string, T, such that LEN(T) = 64.

Output:

Numeral string, Y, such that LEN(Y) = n.

Steps:
1. Let u = ⌈n/2⌉; v = n – u.
2. Let A = X [1 ..u]; B = X [u + 1..n].
3. Let TL = T[0 ..31] and TR = T [32..63]
4. For i from 0 to 7:

i. If i is even, let m = u and W = TR, else let m = v and W = TL.
ii. Let P = W ⊕ [i]4 || [NUMradix (REV(B))]12.

iii Let S = REVB(CIPHREVB(K) REVB(P)).

iv. Let y = NUM(S).
v. Let c = (NUMradix (REV(A)) + y) mod radix m .
vi. Let C = REV(STR

m
radix (c)).

vii. Let A = B.
viii. Let B = C.

5. Return A || B.

Description:
The “split” of the numeral string X into two substrings, A and B, is performed in Steps 1 and 2. If
n is even, LEN(A)=LEN(B); otherwise, LEN(A)=LEN(B)+1.7 The tweak, T, is partitioned in Step 3
into a 32-bit left tweak, TL, and a 32-bit right tweak, TR. An iteration loop for the eight Feistel
rounds of FF3 is initiated in Step 4, executing eight substeps for each round, as follows:

In Step 4i, the parity of the round number, i, determines the length, m, of the substring A, and
whether TL or TR will be used as W in Step 4ii, in which a 32-bit encoding of i, XORed with W, is
concatenated with a 96-bit encoding of B to produce a block, P. In Step 4iii, the block cipher

7 If n is odd, A is one numeral longer than B, in contrast to FF1, where B is one numeral longer than A.

17

NIST SP 800-38G METHODS FOR FORMAT-PRESERVING ENCRYPTION

under the key, is applied to P using the byte-reversed ordering convention, to produce a block, S.
(In Figure 1 S corresponds to the output of FK.) In Steps 4iv to 4vi, S is combined with the
substring A to produce a numeral string C in the same base and with the same length. (In Figure
1, the combining of S with A is indicated by the “+” operation, although this operation is
different than for FF1 in that FF3 uses the opposite ordering convention for the conversion of
strings to numbers and vice versa.) In particular, in Step 4iv, S is converted to a number, y. In
Step 4v, the number y is added to the number represented by the substring A, and the result is
reduced modulo the mth power of radix, yielding a number, c, which is converted to a numeral
string in Step 4vi. In Steps 4vii and 4viii, the roles of A and B are swapped for the next round:
the substring B is renamed as the substring A, and the modified A (i.e., C) is renamed as B.

This completes one round of the Feistel structure in FF3. After the eighth round, the
concatenation of A and B is returned as the output in Step 5.

Algorithm 10: FF3.Decrypt(K, T, X)

Prerequisites:
Designated cipher function, CIPH, of an approved 128-bit block cipher;

Key, K, for the block cipher;

Base, radix;

Range of supported message lengths, [minlen ..maxlen].

Inputs:

Numeral string, X, in base radix of length n, such that n ∈ [minlen ..maxlen];

Tweak bit string, T, such that LEN(T) = 64.

Output:

Numeral string, Y, such that LEN(Y) = n.

Steps:
1. Let u = ⌈n/2⌉; v = n – u.
2. Let A = X [1 ..u]; B = X [u + 1..n].
3. Let TL = T [0 ..31] and TR = T [32..63]
4. For i from 7 to 0:

i. If i is even, let m = u and W = TR, else let m = v and W =TL.
ii. P = W ⊕ [i]4 || [NUMradix (REV(A))]12.

iii Let S = REVB(CIPHREVB(K) REVB(P)).

iv. Let y = NUM(S).
v. Let c = (NUMradix (REV(B))–y) mod radix m .
vi. Let C = REV(STR

m
radix (c)).

vii. Let B = A.
viii. Let A = C.

5. Return A || B.

18

6

NIST SP 800-38G METHODS FOR FORMAT-PRESERVING ENCRYPTION

Description:

The FF3.Decrypt algorithm is similar to the FF3.Encrypt algorithm; the differences are in Step 4,

where: 1) the order of the indices is reversed, 2) the roles of A and B are swapped, and

3) modular addition is replaced by modular subtraction, in Step 4v.

Conformance

Implementations of FF1.Encrypt, FF1.Decrypt, FF3.Encrypt, or FF3.Decrypt may be tested for
conformance to this Recommendation under the auspices of NIST’s Cryptographic Algorithm
Validation Program [9].

Component functions such as PRF are not approved for use independent of these four functions.

In order to claim conformance with this Recommendation, an implementation of FF1 or FF3
may support as few as one value for the base.

Two implementations can only interoperate when they support common values for the base.
Moreover, FF1 and FF3 have two parameters, minlen and maxlen, that determine the lengths for
the numeral strings that are supported by an implementation of the encryption or decryption
function for the mode. FF1 also has a parameter, maxTlen, that indicates the maximum supported
length of a tweak string. The selection of these parameters may also affect interoperability.

For every algorithm that is specified in this Recommendation, a conforming implementation may
replace the given set of steps with any mathematically equivalent set of steps. In other words,
different procedures that produce the correct output for any input are permitted.

19

NIST SP 800-38G METHODS FOR FORMAT-PRESERVING ENCRYPTION

Appendix A: Parameter Choices and Security

The values of the parameters, e.g., radix, minlen, and maxlen affect the security that FF1 and FF3
can offer, because, as for any FPE method, encrypted data may be vulnerable to guessing attacks
when the number of possible inputs is sufficiently small.

In particular, for a base radix numeral string S, there are radix LEN(S) possible values. For any
ciphertext C, the corresponding plaintext has the same length; therefore, an attacker can guess
the plaintext with probability 1/radix LEN(C) by selecting a numeral string of LEN(C) at random.
Repeated guesses increase the attacker’s probability of success proportionately: with g distinct
guesses, the probability is g/radix LEN(C).

For example, SSNs are base 10 numeral strings of length 9, so there are one billion possibilities.
If an attacker could guess a thousand different values for an SSN, one of the guesses would be
correct with probability 1000/109, i.e., one in a million.

The specifications of FF1 and FF3 only impose a modest absolute minimum on the number of
possible inputs; in particular, radixminlen ≥ 100, in order to preclude a generic meet-in-the-middle
attack on the Feistel structure [14].

However, in order to limit the effectiveness of guessing attacks, the value radix minlen should
generally be at least one million, and, depending on that value, the implementation should also
limit the number of guesses that an attacker can mount, if possible. The minimum of one million
is suggested rather than required, in recognition that radix and minlen are usually determined by
the needs of the implementation.

In order to prevent attacks against one instance of encryption from applying to other instances,
implementations should enforce the use of different tweaks for different instances, as discussed
in Appendix C. Usually, tweaks are non-secret information that can be associated with instances
of encryption. For FF3, the tweak length is fixed, but for FF1 the maximum tweak length
parameter, maxTlen, should be chosen to accommodate the desired tweaks for the
implementation.

Two other potential parameters of the Feistel structure are fixed for FF1 and FF3, namely, the
number of Feistel rounds and the imbalance, i.e., the values of the lengths u and v in Figure 1.
Both of these parameters were set with consideration to both performance and security
requirements. See Appendix H of [1] for a discussion.

Appendix B: Security Goal

The designers of FFX aimed to achieve strong-pseudorandom permutation (PRP) security for a
conventional block cipher [7]. In the FFX proposal to NIST [1], the designers of FFX cite the
history of cryptographic results concerning Feistel networks as underlying their selection of the
FFX mechanism. They assert that, under the assumption that the underlying round function is a
good pseudorandom function (PRF), contemporary cryptographic results and experience indicate
that FFX achieves several cryptographic goals, including nonadaptive message-recovery
security, chosen-plaintext security, and even PRP-security against an adaptive chosen-ciphertext

20

NIST SP 800-38G METHODS FOR FORMAT-PRESERVING ENCRYPTION

attack. The quantitative security depends on the number of rounds used, the imbalance, and the
adversary's access to plaintext-ciphertext pairs. See [1] for details.

Appendix C: Tweaks

Tweaks have been supported in stand-alone block ciphers, such as Schroeppel’s Hasty Pudding
[15], and the notion was later formalized and investigated by Liskov, Rivest, and Wagner [6].
Tweaks are important for FPE modes, because FPE may be used in settings where the number of
possible character strings is relatively small. In such settings, the tweak should vary with each
instance of the encryption whenever possible.

For example, suppose that in an application for CCNs, the leading six digits and the trailing four
digits need to be available to the application, so that only the remaining six digits in the middle
of the CCNs are encrypted. There are a million different possibilities for these middle-six digits,
so, in a database of 100 million CCNs, about a hundred distinct CCNs would be expected to
share each possible value for these six digits. If the hundred CCNs that shared a given value for
the middle-six digits were encrypted with the same tweak, then their ciphertexts would be the
same. If, however, the other ten digits had been the tweak for the encryption of the middle-six
digits, then the hundred ciphertexts would almost certainly be different.

Similarly, in the encrypted database, about a hundred CCNs would be expected to share each
possible value for the ciphertext, i.e., the middle-six digits. If the hundred CCNs that produce a
given ciphertext had been encrypted with the same tweak, then the corresponding plaintexts
would also be the same. This outcome would be undesirable because the compromise of the
confidentiality of any of the hundred CCNs would reveal the others.

If, however, the leading six digits and the trailing four digits of the CCN had been used as the
tweak, then the corresponding plaintexts would almost certainly be different. Therefore, for
example, learning that the decryption of 111111-770611-1111 is 111111-123456-1111 would
not reveal any information about the decryption of 999999-770611-9999, because the tweak in
that case was different.

In general, if there is information that is available and statically associated with a plaintext, it is
recommended to use that information as a tweak for the plaintext. Ideally, the non-secret tweak
associated with a plaintext is associated only with that plaintext.

Extensive tweaking means that fewer plaintexts are encrypted under any given tweak. This
corresponds, in the security model that is described in [1], to fewer queries to the target instance
of the encryption.

Appendix D: Examples

Examples for FF1 and FF3 are available at the examples page on NIST’s Computer Security
Resource Center website: http://csrc.nist.gov/groups/ST/toolkit/examples.html.

21

http://csrc.nist.gov/groups/ST/toolkit/examples.html

NIST SP 800-38G	 METHODS FOR FORMAT-PRESERVING ENCRYPTION

Appendix E: References

[1]	 M. Bellare, P. Rogaway, and T. Spies, The FFX Mode of Operation for Format-
Preserving Encryption, Draft 1.1, February 20, 2010, http://csrc.nist.gov/groups/ST
/toolkit/BCM/documents/proposedmodes/ffx/ffx-spec.pdf [accessed 2/18/2016].

[2]	 M. Bellare, P. Rogaway, and T. Spies, Addendum to “The FFX Mode of Operation for
Format-Preserving Encryption”: A parameter collection for enciphering strings of
arbitrary radix and length, Draft 1.0, September 3, 2010, http://csrc.nist.gov/groups
/ST/toolkit/BCM/documents/proposedmodes/ffx/ffx-spec2.pdf [accessed 2/18/2016].

[3]	 E. Brier, T. Peyrin, and J. Stern, BPS: a Format-Preserving Encryption Proposal,
[April 2010], http://csrc.nist.gov/groups/ST/toolkit/BCM/documents/proposedmodes/bps
/bps-spec.pdf [accessed 2/18/2016].

[4]	 Y-A. de Montjoye, L. Radaelli, V. Kumar Singh, and A. Pentland, “Unique in the
shopping mall: On the reidentifiability of credit card metadata,” Science, vol. 347 no.
6221 (January 30, 2016), pp. 536-539, http://dx.doi.org/10.1126/science.1256297.

[5]	 M. Dworkin and R. Perlner, Analysis of VAES3 (FF2), Report no. 2015/306, IACR
Cryptology ePrint Archive, April 2, 2015, http://eprint.iacr.org/2015/306 [accessed
2/18/2016].

[6]	 M. Liskov, R. Rivest, and D. Wagner, “Tweakable block ciphers,” in Advances in
Cryptology—CRYPTO 2002, Lecture Notes in Computer Science 2442, Berlin: Springer,
pp. 31–46, September 13, 2002, http://dx.doi.org/10.1007/3-540-45708-9_3.

[7]	 M. Luby and C. Rackoff, “How to construct pseudorandom permutations from
pseudorandom functions,” SIAM Journal on Computing, vol. 17 no. 2 (1988), pp. 373–
386, http://dx.doi.org/10.1137/0217022.

[8]	 National Institute of Standards and Technology, Explanation of changes to Draft SP 800-
38G, June 27, 2014, http://csrc.nist.gov/news_events/news_archive/news_archive_2014
.html#june27 [accessed 2/18/2016].

[9]	 National Institute of Standards and Technology, Cryptographic Algorithm Validation
Program (CAVP), http://csrc.nist.gov/groups/STM/cavp/index.html [accessed 2/18/2016].

[10]	 National Institute of Standards and Technology, Federal Information Processing Standard
(FIPS) 197, The Advanced Encryption Standard (AES), November 2001,
http://csrc.nist.gov/publications/fips/fips197/fips-197.pdf [accessed 2/18/2016].

[11]	 National Institute of Standards and Technology. NIST Special Publication (SP) 800-38A,
Recommendation for Block Cipher Modes of Operation—Methods and Techniques,
December 2001, http://dx.doi.org/10.6028/NIST.SP.800-38A.

[12]	 National Institute of Standards and Technology. NIST Special Publication (SP) 800-67
Revision 1, Recommendation for the Triple Data Encryption Algorithm (TDEA) Block
Cipher, January 2012, http://dx.doi.org/10.6028/NIST.SP.800-67r1.

[13]	 National Institute of Standards and Technology. NIST Special Publication (SP) 800-133,
Recommendation for Cryptographic Key Generation, December 2012, http://dx.doi.org
/10.6028/NIST.SP.800-133.

22

http:http://dx.doi.org
http://dx.doi.org/10.6028/NIST.SP.800-67r1
http://dx.doi.org/10.6028/NIST.SP.800-38A
http://csrc.nist.gov/publications/fips/fips197/fips-197.pdf
http://csrc.nist.gov/groups/STM/cavp/index.html
http://csrc.nist.gov/news_events/news_archive/news_archive_2014
http://dx.doi.org/10.1137/0217022
http://dx.doi.org/10.1007/3-540-45708-9_3
http://eprint.iacr.org/2015/306
http://dx.doi.org/10.1126/science.1256297
http://csrc.nist.gov/groups/ST/toolkit/BCM/documents/proposedmodes/bps
http://csrc.nist.gov/groups
http://csrc.nist.gov/groups/ST

NIST SP 800-38G	 METHODS FOR FORMAT-PRESERVING ENCRYPTION

[14]	 J. Patarin, Generic attacks on Feistel schemes, Report no. 2008/036, IACR Cryptology
ePrint Archive, January 24, 2008, http://eprint.iacr.org/2008/036 [accessed 2/18/2016].

[15]	 R. Schroeppel, Hasty Pudding Cipher specification [Web page], June 1998 (revised May
1999), http://richard.schroeppel.name:8015/hpc/hpc-spec [accessed 2/18/2016].

[16]	 J. Vance and M. Bellare, An extension of the FF2 FPE Scheme: Submission to NIST,
July 2, 2014,http://csrc.nist.gov/groups/ST/toolkit/BCM/documents/proposedmodes/dff
/dff-ff2-fpe-scheme-update.pdf [accessed 2/18/2016].

23

http://richard.schroeppel.name:8015/hpc/hpc-spec
http://eprint.iacr.org/2008/036

	NIST SP 800-38G, Recommendation for Block Cipher Modes of Operation: Methods for Format-Preserving Encryption
	Table of Contents
	1 Purpose
	2 Introduction
	3 Definitions and Notation
	3.1 Definitions
	3.2 Acronyms
	3.3 Operations and Functions

	4 Preliminaries
	4.1 Representation of Character Strings
	4.2 Examples of Basic Operations and Functions
	4.3 Underlying Block Cipher and Key
	4.4 Encryption and Decryption Functions
	4.5 Feistel Structure
	4.6 Component Functions

	5 Mode Specifications
	5.1 FF1
	5.2 FF3

	6 Conformance
	Appendix A: Parameter Choices and Security
	Appendix B: Security Goal
	Appendix C: Tweaks
	Appendix D: Examples
	Appendix E: References

