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Authority 

This publication has been developed by NIST in accordance with its statutory responsibilities under the 
Federal Information Security Modernization Act (FISMA) of 2014, 44 U.S.C. § 3541 et seq., Public Law 
(P.L.) 113-283. NIST is responsible for developing information security standards and guidelines, 
including minimum requirements for federal information systems, but such standards and guidelines shall 
not apply to national security systems without the express approval of appropriate federal officials 
exercising policy authority over such systems. This guideline is consistent with the requirements of the 
Office of Management and Budget (OMB) Circular A-130. 

Nothing in this publication should be taken to contradict the standards and guidelines made mandatory 
and binding on federal agencies by the Secretary of Commerce under statutory authority. Nor should 
these guidelines be interpreted as altering or superseding the existing authorities of the Secretary of 
Commerce, Director of the OMB, or any other federal official. This publication may be used by 
nongovernmental organizations on a voluntary basis and is not subject to copyright in the United States. 
Attribution would, however, be appreciated by NIST.  

National Institute of Standards and Technology Special Publication 800-38G 
Natl. Inst. Stand. Technol. Spec. Publ. 800-38G, 28 pages (March 2016) 

CODEN: NSPUE2 

This publication is available free of charge from: 
http://dx.doi.org/10.6028/NIST.SP.800-38G 

Certain commercial entities, equipment, or materials may be identified in this document in order to describe an 
experimental procedure or concept adequately. Such identification is not intended to imply recommendation or 
endorsement by NIST, nor is it intended to imply that the entities, materials, or equipment are necessarily the best 
available for the purpose.  

There may be references in this publication to other publications currently under development by NIST in 
accordance with its assigned statutory responsibilities. The information in this publication, including concepts and 
methodologies, may be used by federal agencies even before the completion of such companion publications. Thus, 
until each publication is completed, current requirements, guidelines, and procedures, where they exist, remain 
operative. For planning and transition purposes, federal agencies may wish to closely follow the development of 
these new publications by NIST  

Organizations are encouraged to review all draft publications during public comment periods and provide feedback 
to NIST. Many NIST cybersecurity publications, other than the ones noted above, are available at 
http://csrc.nist.gov/publications. 

Comments on this publication may be submitted to: 
National Institute of Standards and Technology 

Attn: Computer Security Division, Information Technology Laboratory 
100 Bureau Drive (Mail Stop 8930) Gaithersburg, MD 20899-8930 

Email: encryptionmodes@nist.gov  
 

NOTE: August 4, 2016 – Although it was included in the draft of 800-38G posted for public comment on July 8, 
2013, the following statement was unintentionally omitted when the final version was published in March 2016: 
 

“It is possible that implementation of modes included in this NIST Recommendation may involve an 
invention covered by patent rights. By publication of this Special Publication, no position is taken with 
respect to the validity, scope or enforceability of any claim(s) of any such patent rights in connection with 
such implementation. If a patent holder has filed with NIST a Letter of Assurance (LOA) with respect to 
any such patent rights, a copy of that LOA may be obtained from NIST.”  
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Reports on Computer Systems Technology 

The Information Technology Laboratory (ITL) at the National Institute of Standards and 
Technology (NIST) promotes the U.S. economy and public welfare by providing technical 
leadership for the Nation’s measurement and standards infrastructure. ITL develops tests, test 
methods, reference data, proof of concept implementations, and technical analyses to advance 
the development and productive use of information technology. ITL’s responsibilities include the 
development of management, administrative, technical, and physical standards and guidelines for 
the cost-effective security and privacy of other than national security-related information in 
federal information systems. The Special Publication 800-series reports on ITL’s research, 
guidelines, and outreach efforts in information system security, and its collaborative activities 
with industry, government, and academic organizations. 

Abstract 

This Recommendation specifies two methods, called FF1 and FF3, for format-preserving 
encryption. Both of these methods are modes of operation for an underlying, approved 
symmetric-key block cipher algorithm. 
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Block cipher; confidentiality; encryption; FF1; FF3; format-preserving encryption; information 
security; mode of operation. 
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1 Purpose 

This publication is the seventh part in a series of Recommendations regarding the modes of 
operation of block cipher algorithms. The purpose of this part is to provide approved methods for 
format-preserving encryption (FPE). 

2 Introduction 

A block cipher mode of operation—or simply, mode—is an algorithm for the cryptographic 
transformation of data that is based on a block cipher. The previously approved modes for 
encryption are transformations on binary data, i.e., the inputs and outputs of the modes are bit 
strings—sequences of ones and zeros. For sequences of non-binary symbols, however, there is 
no natural and general way for the previously approved modes to produce encrypted data that has 
the same format. 

For example, a Social Security number (SSN) consists of nine decimal numerals, so it is an 
integer that is less than one billion. This integer can be converted to a bit string as input to a 
previously approved mode, but when the output bit string is converted back to an integer, it may 
be greater than one billion, which would be too long for an SSN. 

Format-preserving encryption (FPE) is designed for data that is not necessarily binary. In 
particular, given any finite set of symbols, like the decimal numerals, a method for FPE 
transforms data that is formatted as a sequence of the symbols in such a way that the encrypted 
form of the data has the same format, including the length, as the original data. Thus, an FPE-
encrypted SSN would be a sequence of nine decimal digits. 

FPE facilitates the targeting of encryption to sensitive information, as well as the retrofitting of 
encryption technology to legacy applications, where a conventional encryption mode might not 
be feasible. For example, database applications may not support changes to the length or format 
of data fields. FPE has emerged as a useful cryptographic tool, whose applications include 
financial-information security, data sanitization1, and the transparent encryption of fields in 
legacy databases. 

The two FPE modes specified in this publication are abbreviated FF1 and FF3, to indicate that 
they are format-preserving, Feistel-based encryption modes. FF1 was submitted to NIST under 
the name FFX[Radix] in [2]. FF3 is a component of the FPE method that was submitted to NIST 
under the name BPS in [3]. In particular, FF3 is essentially equivalent to the BPS-BC component 
of BPS, instantiated with a 128-bit block cipher. The full BPS mode—in particular, its chaining 
mechanism for longer input strings—is not approved in this publication. 

A third mode, FF2—submitted to NIST under the name VAES3—was included in the initial 
draft of this publication. As part of the public review of Draft NIST Special Publication (SP) 
800-38G and as part of its routine consultation with other agencies, NIST was advised by the 
National Security Agency in general terms that the FF2 mode in the draft did not provide the 

1 The sanitization of personally identifiable information in a database—whether by FPE or other methods—does not 
necessarily provide strong assurance that individuals cannot be re-identified; for example, see [4]. 
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expected 128 bits of security strength. NIST cryptographers confirmed this assessment via the 
security analysis in [5] and announced the removal of FF2 in [8]. An extension of the 
VAES3/FF2 proposal [16] was submitted for NIST’s consideration in November 2015. 

Each of these FPE modes fits within a larger framework, called FFX, for constructing FPE 
mechanisms; FFX was submitted to NIST in [1]. The “X” indicates the flexibility to instantiate 
the framework with different parameter sets, as well as FFX’s evolution from its precursor, the 
Feistel Finite Set Encryption Mode. 

The FFX framework itself is not specified in this publication; in fact, FF1 and FF3 are not 
presented explicitly as instantiations of FFX parameter sets, but rather as separate algorithms, in 
order to simplify the individual specifications. 

FF1 and FF3 each employ the Feistel structure—see Sec. 4.5—which also underlies the Triple 
Data Encryption Algorithm (TDEA) [12]. At the core of FF1 and FF3 are somewhat different 
Feistel round functions that are derived from an approved block cipher with 128-bit blocks, i.e., 
the Advanced Encryption Standard (AES) algorithm [10]. 

In addition to the formatted data for which the modes provide confidentiality, each mode also 
takes an additional input called the “tweak,” which is not necessarily secret. The tweak can be 
regarded as a changeable part of the key, because together they determine the encryption and 
decryption functions. Tweaks that vary can be especially important for implementations of FPE 
modes, because the number of possible values for the confidential data is often relatively small, 
as discussed in Appendix A and Appendix C. 

FF1 and FF3 offer somewhat different performance advantages. FF1 supports a greater range of 
lengths for the protected, formatted data, as well as flexibility in the length of the tweak. FF3 
achieves greater throughput, mainly because its round count is eight, compared to ten for FF1. 

3 Definitions and Notation 

3.1 Definitions 

alphabet A finite set of two or more symbols. 

FIPS-approved or NIST-recommended: an algorithm or technique that is 
approved either 1) specified in a FIPS or a NIST Recommendation, or 2) adopted in a 

Federal Information Processing Standard (FIPS) or a NIST Recommendation. 

base The number of characters in a given alphabet. The base is denoted by radix. 

bit A binary digit: 0 or 1. 

bit string A finite, ordered sequence of bits. 

For a given block cipher, a bit string whose length is the block size of the block block cipher. 

2
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block cipher 

block cipher 
mode of 
operation 

block size 

block string 

byte 

byte string 

character 

character string 

ciphertext 

decryption 
function 

designated 
cipher function 

encryption 
function 

exclusive-OR 
(XOR) 

Feistel structure 

forward 
transformation 

A parameterized family of permutations on bit strings of a fixed length; the 
parameter that determines the permutation is a bit string called the key. 

An algorithm for the cryptographic transformation of data that is based on a 
block cipher. 

For a given block cipher and key, the fixed length of the input (or output) bit 
strings. 

A bit string whose length is a multiple of a given block size, so that it can be
represented as the concatenation of a finite sequence of blocks. 

A string of eight bits. 

A bit string whose length is a multiple of eight bits, so that it can be 
represented as the concatenation of a finite sequence of bytes. 

A symbol in a given alphabet. 

A finite, ordered sequence of characters from a given alphabet. 

In this publication, the numeral string that is the encrypted form of a plaintext 
numeral string. 

For a given block cipher and key, the function of an FPE mode that takes a 
ciphertext numeral string and a tweak as input and returns the corresponding 
plaintext numeral string as output. 

For a given block cipher and key, the choice of either the forward 
transformation or the inverse transformation. 

For a given block cipher and key, the function of an FPE mode that takes a 
plaintext numeral string and a tweak as input and returns a ciphertext numeral 
string as output. 

The bitwise addition, modulo 2, of two bit strings of equal length. 

A framework for constructing an encryption mode. The framework consists 
of several iterations, called rounds, in which a keyed function, called the 
round function, is applied to one part of the data in order to modify the other 
part of the data; the roles of the two parts are swapped for the next round. 

For a given block cipher, the permutation of blocks that is determined by the 
choice of a key. 

3
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inverse 
transformation 

key 

mode 

numeral 

numeral string 

plaintext 

prerequisite 

shall 

should 

tweak 

3.2 Acronyms 

AES 

CAVP 

CCN 

CMVP 

FIPS 

FISMA 

FPE 

IETF 

ITL 

NIST 

For a given block cipher, the inverse of the permutation of blocks that is
 
determined by the choice of a key.
 

For a given block cipher, the secret bit string that parameterizes the
 
permutation.
 

See block cipher mode of operation.
 

For a given base, a nonnegative integer less than the base.
 

For a given base, a finite, ordered sequence of numerals for the base.
 

In this publication, a numeral string whose confidentiality is protected by an 

FPE mode.
 

A required input to an algorithm that has been established prior to the
 
invocation of the algorithm.
 

Is required to. Requirements apply to conforming implementations.
 

Is recommended to.
 

The input parameter to the encryption and decryption functions whose
 
confidentiality is not necessarily protected by the mode. 


Advanced Encryption Standard.
 

Cryptographic Algorithm Validation Program.
 

credit card number.
 

Cryptographic Module Validation Program.
 

Federal Information Processing Standard.
 

Federal Information Security Management Act.
 

format-preserving encryption.
 

Internet Engineering Task Force.
 

Information Technology Laboratory.
 

National Institute of Standards and Technology.
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PRF pseudorandom function. 

RFC Request For Comment. 

SSN Social Security number. 

3.3 Operations and Functions 

Examples of most of the following operations and functions are provided in Sec. 4.2. 

BYTELEN(X) 	 The number of bytes in a byte string, X. 

The output of the designated cipher function of the block cipher under the key 
CIPHK (X) K applied to the block X. 

LEN(X) The number of numerals [or bits] in a numeral string [or bit string] X. 

LOG(x) The base 2 logarithm of the real number x > 0. 

The integer that 	a bit string X represents when the bits are valued in 
NUM(X) decreasing order of significance. 


The number that the numeral string X represents in base radix when the 

NUMradix (X) numerals are valued in decreasing order of significance.
 

The output of the function PRF applied to the block X; PRF is defined in terms 

PRF(X) of a given designated cipher function.
 

Given a numeral string, X, the numeral string that consists of the numerals of 

REV(X) X in reverse order.
 

Given a byte string, X, the byte string that consists of the bytes of X in reverse 

REVB(X) order. 

m Given a nonnegative integer x less than radixm, the representation of x as a 
STRradix (x) string of m numerals in base radix, in decreasing order of significance. 

⌊x⌋ The greatest integer that does not exceed the real number x. 

⎡x⎤ The least integer that is not less than the real number x. 

Given a nonnegative integer x less than	
   256 s, the representation of x as a [x]s 
string of s bytes. 

[i .. j] The set of integers between two integers i and j, including i and j. 

5
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x mod m The nonnegative remainder of the integer x modulo the positive integer m. 

X [i] The i th element of the string X. 

X [i .. j] The substring of the string X from X [i] to X [j], including X [i] and X [j]. 

X⊕Y The bitwise exclusive-OR of bit strings X and Y whose bit lengths are equal. 

X || Y The concatenation of numeral strings X and Y. 

0s The bit string that consists of s consecutive ‘0’ bits. 

4 Preliminaries 

4.1 Representation of Character Strings 

The data inputs and outputs for FF1 and FF3 are sequences of numbers that can represent both 
numeric and non-numeric data, as discussed below. 

A finite set of two or more symbols is called an alphabet. The symbols in an alphabet are called 
the characters of the alphabet. The number of characters in an alphabet is called the base, 
denoted by radix; thus, radix ≥ 2. 

A character string is a finite sequence of characters from an alphabet; individual characters may 
repeat in the string. In this publication, character strings (and bit strings) are presented in the 
Courier New font. 

Thus, for the alphabet of lower-case English letters, 

{a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q, r, s, t, u, v, w, x, y, z}, 

hello and cannot are character strings, but Hello and can’t are not, because the symbols 
“H” and “ ’ ” are not in the alphabet. 

SSNs or CCNs can be regarded as character strings in the alphabet of base ten numerals, namely, 
{0, 1, 2, 3, 4, 5, 6, 7, 8, 9}. The notion of numerals is generalized to any given base as follows: 
the set of base radix numerals is 

{0, 1, …, radix-1}. 

The data inputs and outputs to the FF1 and FF3 encryption and decryption functions must be 
finite sequences of numerals, i.e., numeral strings. If the data to be encrypted is formatted in an 
alphabet that is not already the set of base radix numerals, then each character must be 
represented by a distinct numeral in order to apply FF1 or FF3. 

For example, the natural representation of lower-case English letters with base 26 numerals is 

a→0, b→1, c→2, … x→23, y→24, z→25. 

6
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The character string hello would then be represented by the numeral string 7 4 11 11 14. 
Other representations are possible. 

The choice and implementation of a one-to-one correspondence between a given alphabet and 
the set of base radix numerals that represents the alphabet is outside the scope of this publication. 

In this publication, individual numerals are themselves represented in base ten. In order to 
display numeral sequences unambiguously when the base is greater than ten, a delimiter between 
the numerals is required, such as a space (as in the base 26 example above) or a comma. 

FF1 and FF3 use different conventions for interpreting numeral strings as numbers. For FF1, 
numbers are represented by strings of numerals with decreasing order of significance; for FF3, 
numbers are represented by strings of numerals in the reverse order, i.e., with increasing order of 
significance. Algorithms for the functions that convert numeral strings to numbers and vice versa 
are given in Sec. 4.6. 

4.2 Examples of Basic Operations and Functions 

Given a positive real number x, the base 2 logarithm of x, denoted by LOG(x), is the unique real 
number for which 2LOG(x) = x. For example, LOG(64) = 6 and LOG(10) ≈ 3.32. 

Given a real number x, the floor function, denoted by ⌊x⌋, is the greatest integer that does not 
exceed x. For example, ⌊2.1⌋ = 2, and ⌊4⌋ = 4. 

Given a real number x, the ceiling function, denoted by ⎡x⎤, is the least integer that is not less 
than x. For example, ⎡2.1⎤ = 3, and ⎡4⎤ = 4. 

Given two integers i and j with i≤ j, the set of integers between i and j, including i and j, is 
denoted by [i .. j]. For example, [2 ..5] = {2, 3, 4, 5}. 

Given a real number x and a positive integer m, the remainder of x modulo m, denoted by x mod 
m, is x–m⌊x/m⌋. For example, -3 mod 7 = 4, and 13 mod 7 = 6. 

Given a positive integer s, 0s denotes the string that consists of s ‘0’ bits. For example, 
08 = 00000000. 

The concatenation operation on bit strings or numeral strings is denoted by ||. For example, 
001 || 1011= 0011011, and 3 1 || 31 8 10 = 3 1 31 8 10. 

Given bit strings of equal length, the exclusive-OR (XOR) operation, denoted by ⊕, specifies 
the addition, modulo 2, of the bits in corresponding bit positions. For example, 
10011⊕ 10101= 00110. 

Given a numeral or bit string X, its length is denoted by LEN(X). For example, LEN(010) = 3. 

Given a byte string X—i.e., a bit string that could be represented as the concatenation of a 
sequence of bytes—the length of X in bytes, i.e., LEN(X)/8, is denoted by BYTELEN(X). For 
example, BYTELEN(1011100110101100) = 2. 

7
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Given a numeral [bit] string X and an index i such that 1 ≤ i ≤ LEN(X), the i th numeral [bit] of X is 
denoted by X[i]. For a pair of indices (i, j), with 1 ≤ i ≤ j ≤ LEN(X), the substring of numerals [bits] 
from X[i] to X[j] is denoted by X[i .. j]. For example, in base ten, if X = 798137, then X[2] = 9, 
and X[3..5] = 813. 

Given a base, radix, and a length, m, there are radixm distinct numeral strings. Given an integer x 
such that 0 ≤ x < radixm, the integer-to-string function, denoted by STR 

m
radix (x), is the numeral 

string of length m in base radix that represents x, when the numerals are in decreasing order of 
significance. For example, STR 12

4 (559) is the string of four numerals in base 12 that represents 
559, namely, 0 3 10 7. An algorithm for computing STR 

m
radix (x) is given in Sec. 4.6. 

A separate notation is given for the conversion of integers to byte strings, in particular, 
[x]s = STR 82 

s (x). For example, [1]1 =00000001. 

Given a (non-empty) numeral string X in base radix of length m, the string-to-integer function, 
denoted by NUM radix (X), is the integer x that X represents, so that STR 

m
radix (x) = X. For example, 

NUM5 (00011010)=755. An algorithm for computing NUM radix (X) is given in Sec. 4.6. 

Similar notation is given for the function that converts bit strings to integers. In particular, given 
a byte string X, NUM(X) is the integer x that X represents, so that [NUM(X)]BYTELEN(X) = X. For 
example, NUM(10000000)=128. An algorithm for computing NUM(X) is given in Sec. 4.6. 

Given a numeral string, X, the string REV(X) is the sequence of numerals of X in reverse order. 
For example, in base ten, REV(13579) = 97531. 

Given a byte string, X, the string REVB(X) is the sequence of bytes of X in reverse order. For 
example, REVB([1] || [2] || [3])=[3] || [2] || [1]. 

4.3 Underlying Block Cipher and Key 

The encryption and decryption functions of FF1 and FF3 feature a block cipher as the main 
component; thus, each of these FPE mechanisms is a mode of operation (mode, for short) of the 
block cipher. 

For any given key, K, the underlying block cipher of the mode is a permutation, i.e., an invertible 
transformation on bit strings of a fixed length; the fixed-length bit strings are called blocks, and 
the length of a block is called the block size. For an FPE mode, as part of the choice of the 
underlying block cipher with the key, either the forward transformation or the inverse 
transformation2 is specified as the designated cipher function, denoted by CIPHK. The inverse of 
CIPHK is not needed for the modes that are specified in this publication. 

For both of the modes, the underlying block cipher shall be approved, and the block size shall be 
128 bits. Currently, the AES block cipher [10], with key lengths of 128, 192, or 256 bits, is the 

2 The forward transformation and the inverse transformations are sometimes referred to as the “encrypt” and 
“decrypt” functions, respectively, of the block cipher; however, in this publication, those terms are reserved for 
functions of the FPE modes. 
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only block cipher that fits this profile. 

The choice of the key length affects the security of the FPE modes, e.g., against brute-force 
search, and also affects the details of the implementation of the AES algorithm. Otherwise, the 
key length does not affect the implementation of FF1 and FF3, and the choice of the key length 
is not explicitly indicated in their specifications. Methods for generating cryptographic keys are 
discussed in [13]; the goal is to select the keys uniformly at random, i.e., for each possible key to 
occur with equal probability. 

The key shall be kept secret, i.e., disclosed only to parties that are authorized to know the 
protected information. Compliance with this requirement is the responsibility of the entities 
using, implementing, installing, or configuring applications that incorporate the functions that are 
specified in this publication. The management of cryptographic keys is outside the scope of this 
publication. 

4.4 Encryption and Decryption Functions 

For a given key, denoted by K, for the designated block cipher, FF1 and FF3 each consist of two 
related functions: encryption and decryption. The inputs to the encryption function are a numeral 
string called the plaintext, denoted by X, and a byte string, called the tweak, denoted by T; the 
function returns a numeral string called the ciphertext, denoted by Y, with the same length as X. 
Similarly, the inputs to the decryption function are a numeral string X and a tweak T; the output 
is a numeral string Y of the same length as X. 

For FF1, the encryption function is denoted by FF1.Encrypt(K, T, X), and the decryption function 
is denoted by FF1.Decrypt(K, T, X), with analogous notation for FF3. 

For a given tweak, the decryption function is the inverse of the encryption function, so that 

FF1.Decrypt(K, T, FF1.Encrypt(K, T, X)) = X,
 
FF3.Decrypt(K, T, FF3.Encrypt(K, T, X)) = X.
 

Thus, when a ciphertext is an input to the decryption function, along with the same tweak that 
was used to generate the ciphertext, the output is the corresponding plaintext. 

The tweak does not need to be kept secret; often, it is some readily available data that is 
associated with the plaintext. Although implementations may fix the value of the tweak, the use 
of variable tweaks is strongly recommended as a security enhancement; see Appendix C. In FF1 
and FF3, tweaks are byte strings. The specifications in Sec. 5 include the lengths that can be 
supported for the tweak, as well as for the plaintext/ciphertext. 

The key, K, is indicated in the above notation as an input for the encryption and decryption 
functions; however, in the specifications in this publication, the key is listed as a prerequisite, 
i.e., an input that is usually established prior to the invocation of the function.3 Several other 

3 The distinction doesn’t affect the execution of the function: all inputs are required, independent of when they were 
established or provided to the implementation. 
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prerequisites are omitted from the above notation, such as the underlying block cipher, the 
designation of CIPHK, and the base for the numeral strings. 

4.5 Feistel Structure 

FFX schemes, including FF1 and FF3, are based on the Feistel structure. The Feistel structure 
consists of several iterations, called rounds, of a reversible transformation. The transformation 
consists of three steps: 1) the data is split into two parts; 2) a keyed function, called the round 
function, is applied to one part of the data in order to modify the other part of the data; and 3) the 
roles of the two parts are swapped for the next round. The structure is illustrated in Figure 1 
below, for both encryption and decryption. Four rounds are shown in Figure 1, but ten rounds are 
actually specified for FF1, and eight rounds for FF3. 

u!characters! v!characters! u!characters! v!characters! 
A0! B0! A4!! B4! 

B1!←!C0! A1!←!B0! 

FK!+! n,!T,!0! 

FK! +!n,!T,!1! 

A2!←!B1! B2!←!C1! 

B3!←!C2! A3!←!B2! 

FK!+! n,!T,!2! 

B3!←!A4! A3!! 

FK! _!n,!T,!3! 

n,!T,!2! 

A2!! B2!←!A3! 

FK!_! 

n,!T,!1! 

B1!←!A2! A1! 

FK! _! 

FK! +!

! 

n,!T,!3! 

!1

FK!_! n,!T,!0! 

A4!←!B3! B4!←!C3 A0! B0!←!A

Encryption! Decryption! 

Figure 1: Feistel Structure 
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For the encryption function in Figure 1, the rounds are indexed from 0 to 3. The input data (and 
output data) for each round are two strings of characters—which will be numerals for FF1 and 
FF3. The lengths of the two strings are denoted by u and v, and the total number of characters is 
denoted by n, so that u+v = n. During Round i, the round function, denoted by FK, is applied to 
one of the input strings, denoted by Bi, with the length n, the tweak T, and the round number i as 
additional inputs. (In Figure 1, this triple (n, T, i) of additional inputs is indicated within the 
dotted rectangles, with the appropriate values for i). The result is used to modify the other string, 
denoted by Ai, via modular addition4, indicated by +, on the numbers that the strings represent5. 
The string that represents the resulting number is named with a temporary variable, Ci. The 
names of the two parts are swapped for the next round, so that the modified Ai, i.e., Ci, becomes 
Bi+1, and Bi becomes Ai+1. 

The rectangles containing the two parts of the data have different sizes in order to illustrate that, 
u cannot equal v if n is odd. In such cases, the round function is constructed so that the lengths of 
its input and output strings depend on whether the round number index, i, is even or odd. 

The Feistel structure for decryption is almost identical to the Feistel structure for encryption. 
There are three differences: 1) the order of the round indices is reversed; 2) the roles of the two 
parts of the data in the round function are swapped as follows: along with n, T, and i, the input to 
FK is Ai+1 (not Bi), and the output is combined with Bi+1 (not Ai) to produce Ai (not Bi+1); and 
3) modular addition (of the output of FK to Ai) is replaced by modular subtraction (of the output 
of FK from Bi +1). 

4.6 Component Functions 

This section gives algorithms for the component functions that are called in the specifications of 
FF1 and FF3. The conversion functions NUMradix(X), NUM(X), and STR

m
radix(x) are defined in 

Sec. 4.2, including examples, and they are specified in Algorithms 1-3 below. These functions 
support the ordering convention for the numeral [bit] strings in FF1, namely, that the first (i.e., 
left-most) numeral [bit] of the string is the most-significant numeral [bit]. 

In FF3, the numeral strings follow the opposite ordering convention, as do the byte strings for the 
block cipher. In order to adapt NUMradix(X), STR

m
radix (x), and CIPHK (X) for the FF3 specifications, 

the functions REV(X) and REVB(X) are defined in Sec. 4.2 and specified in Algorithms 4 and 5. 

The PRF(X) function, specified in Algorithm 6, essentially invokes the Cipher Block Chaining 
encryption mode [11] on the input bit string and returns the final block of the ciphertext; this 
function is the pseudorandom core of the Feistel round function for FF1.Encrypt and 
FF1.Decrypt. 

In order to simplify the specifications of NUM(X), REVB(X), and PRF(X), the byte or block strings 
in Algorithms 2, 5, and 6 are represented as bit strings. 

4 For some applications of the Feistel structure—but not FF1 and FF3—the + operation may be a different reversible
 
operation on strings that preserves their length; for example, the FFX specification [1] supports an option for
 
character-wise addition.
 
5 The ordering convention for interpreting strings as numbers is different for FF3 than for FF1.
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Algorithm 1: NUMradix (X) 

Prerequisite: 
Base, radix. 

Input:
 
Numeral string, X.
 

Output:
 
Number, x.
 

Steps: 
1. Let x = 0. 
2. For i from 1 to LEN(X), let x = x ⋅radix + X [i]. 
3. Return x. 

Algorithm 2: NUM(X) 

Input:
 
Byte string, X, represented in bits.
 

Output:
 
Integer, x.
 

Steps: 
1. Let x = 0. 
2. For i from 1 to LEN(X), let x = 2x + X [i]. 
3. Return x. 

Algorithm 3: STR
m
radix (x) 

Prerequisites:
 
Base, radix;
 
String length, m.
 

Input:
 
Integer, x, such that 0 ≤ x < radixm .
 

Output:
 
Numeral string, X.
 

Steps: 
1. For i from 1 to m: 

i. X [m+1– i] = x mod radix; 
ii. x = ⎣x/radix⎦. 

2. Return X. 
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Algorithm 4: REV(X ) 

Input:
 
Numeral string, X.
 

Output:
 
Numeral string, Y.
 

Steps: 
1. For i from 1 to LEN(X), let Y [i] = X [LEN(X)+1– i]. 
2. Return Y [1 ..LEN(X)]. 

Algorithm 5: REVB(X) 

Input:
 
Byte string, X, represented in bits.
 

Output:
 
Byte string, Y, represented in bits.
 

Steps: 
1. For i from 0 to BYTELEN(X)–1 and j from 1 to 8, let Y [8i+ j] = X [8 ⋅ (BYTELEN(X)–1– i)+ j]. 
2. Return Y [1 ..8 ⋅BYTELEN(X)]. 

Algorithm 6: PRF(X) 

Prerequisites:
 
Designated cipher function, CIPH, of an approved 128-bit block cipher;
 
Key, K, for the block cipher.
 

Input: 

Block string, X.
 

Output: 
Block, Y. 

Steps: 
1. Let m = LEN(X)/128. 
2. Let X1, …, Xm be the blocks for which X = X1 || … || Xm. 
3. Let Y0 = 0128, and for j from 1 to m let Yj = CIPHK (Yj–1 ⊕ Xj). 
4. Return Ym. 
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5 Mode Specifications 

The specifications of the encryption and decryption algorithms for FF1 and FF3 are presented in 
Sections 6.1 and 6.2, organized into prerequisites, inputs, outputs, steps, and descriptions of the 
steps. In addition to the key and designated cipher function, the prerequisites for each mode are 
the choices of 1) the base, radix, and 2) the range of lengths, [minlen ..maxlen], for the numeral 
string inputs that the implementation supports. FF1 also has a prerequisite for the choice of the 
maximum tweak length, maxTlen, that the implementation supports. For each mode, the 
requirements on the values for the prerequisites are specified prior to the encryption and 
decryption algorithms. 

The parameter choices may affect interoperability. The behavior of an implementation when 
presented with incorrect inputs is outside the scope of this Recommendation. 

For each specification, the 128-bit input and output blocks of the designated block cipher, 
CIPHK, are represented as strings of 16 bytes. 

5.1 FF1 

The specifications for the FF1.Encrypt and FF1.Decrypt functions are given in Algorithms 7 and 
8 below. The tweak, T, is optional, in that it may be the empty string, with byte length t=0. 

The parameters radix, minlen, and maxlen in FF1.Encrypt and FF1.Decrypt shall meet the 
following requirements: 

• radix ∈ [2 ..216], 
• radix minlen ≥ 100, and 
• 2 ≤ minlen ≤ maxlen < 232. 

Algorithm 7: FF1.Encrypt(K, T, X) 

Prerequisites: 
Designated cipher function, CIPH, of an approved 128-bit block cipher;
 
Key, K, for the block cipher;
 
Base, radix;
 
Range of supported message lengths, [minlen ..maxlen];
 
Maximum byte length for tweaks, maxTlen. 


Inputs:
 
Numeral string, X, in base radix of length n, such that n ∈ [minlen ..maxlen];
 
Tweak T, a byte string of byte length t, such that t ∈ [0 ..maxTlen].
 

Output:
 
Numeral string, Y, such that LEN(Y) = n.
 

14
 



      

  

 
      
               
       
     
                  
  

           
       
          
     

    
    

  
   

    
          
       

  
      
    
     

      
 

 
           

        
         

      
       

 

      
        

     
     

         
       

        
       

           
    

      
 

                                                
                        

               
        

NIST SP 800-38G	 METHODS FOR FORMAT-PRESERVING ENCRYPTION 

Steps: 
1.	 Let u = ⎣n/2⎦; v = n – u. 
2. 	 Let A = X [1 ..u]; B = X [u + 1..n]. 
3.	 Let b = ⎡ ⎡v ⋅LOG(radix)⎤/8⎤. 
4.	 Let d = 4⎡b/4⎤ + 4. 
5.	 Let P = [1]1 || [2]1 || [1]1 || [radix]3 || [10]1 || [u mod 256]1 || [n]4 || [t]4. 
6.	 For i from 0 to 9: 

Let Q = T || [0](−t−b−1) mod 16 || [i]1 || [NUMradix(B)]bi.	 . 
ii.	 Let R = PRF(P || Q). 
iii.	 Let S be the first d bytes of the following string of ⎡d/16⎤ blocks:
 

R || CIPHK (R ⊕ [1]16) || CIPHK (R ⊕ [2]16) … CIPHK (R ⊕ [⎡d/16⎤–1]16).
 
iv.	 Let y = NUM(S). 
v.	 If i is even, let m = u; else, let m = v. 
vi.	 Let c = (NUMradix (A)+y) mod radix m . 
vii.	 Let C = STR 

m
radix (c). 

viii. 	 Let A = B. 
ix.	 Let B = C. 

7.	 Return A || B. 

Description 
The “split” of the numeral string X into two substrings, A and B, is performed in Steps 1 and 2. If 
n is even, LEN(A)=LEN(B); otherwise, LEN(A)=LEN(B)–1. The byte lengths b and d, which are 
used in Steps 6i and 6iii, respectively, are defined in Steps 3 and 4.6 A fixed block, P, used as the 
initial block for the invocation of the function PRF in Step 6ii, is defined in Step 5. An iteration 
loop for the ten Feistel rounds of FF1 is initiated in Step 6, executing nine substeps for each 
round, as follows: 

The tweak, T, the substring, B, and the round number, i, are encoded as a binary string, Q, in 
Step 6i. The function PRF is applied to the concatenation of P and Q in Step 6ii, to produce a 
block, R, which is either truncated or expanded to a byte string, S, with the appropriate number 
of bytes, d, in Step 6iii. (In Figure 1, S corresponds to the output of FK.) In Steps 6iv to 6vii, S is 
combined with the substring A to produce a numeral string C in the same base and with the same 
length. (In Figure 1, the combining of S with A is indicated by the “+” operation.) In particular, 
in Step 6iv, S is converted to a number, y. In Step 6v, the length, m, of A for this Feistel round is 
determined. In Step 6vi, y is added to the number represented by the substring A, and the result is 
reduced modulo the mth power of radix, yielding a number, c, which is converted to a numeral 
string in Step 6vii. In Steps 6viii and 6ix, the roles of A and B are swapped for the next round: 
the substring B is renamed as the substring A, and the modified A (i.e., C) is renamed as B. 

This completes one round of the Feistel structure in FF1. After the tenth round, the concatenation 
of A and B is returned as the output in Step 7. 

6 When B is encoded as a byte string in Step 6i, b is the number of bytes in the encoding. The definition of d ensures 
that the output of the Feistel round function is at least four bytes longer than this encoding of B, which minimizes 
any bias in the modular reduction in Step 6vi. 
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Algorithm 8: FF1.Decrypt(K, T, X) 

Prerequisites: 
Designated cipher function, CIPH, of an approved 128-bit block cipher;
 
Key, K, for the block cipher;
 
Base, radix;
 
Range of supported message lengths, [minlen ..maxlen];
 
Maximum byte length for tweaks, maxTlen.
 

Inputs:
 
Numeral string, X, in base radix of length n, such that n ∈ [minlen ..maxlen];
 
Tweak T, a byte string of byte length t, such that t ∈ [0 ..maxTlen].
 

Output:
 
Numeral string, Y, such that LEN(Y) = n.
 

Steps: 
1.	 Let u = ⎣n/2⎦; v = n – u. 
2. 	 Let A = X [1 ..u]; B = X [u+1..n]. 
3.	 Let b = ⎡⎡v ⋅LOG(radix)⎤/8⎤. 
4.	 Let d = 4 ⎡b/4⎤+4 
5.	 Let P = [1]1 || [2]1 || [1]1 || [radix]3 || [10]1 ||[u mod 256]1 || [n]4 || [t]4. 
6.	 For i from 9 to 0: 

Let Q = T || [0](−t−b−1) mod 16 || [i]1 || [NUMradix (A)]bi.	 . 
ii.	 Let R = PRF(P || Q). 
iii.	 Let S be the string of the first d bytes of the following string of ⎡d/16⎤ blocks: 

R || CIPHK (R ⊕ [1]16) || CIPHK (R ⊕ [2]16) … CIPHK (R ⊕ [⎡d/16⎤ – 1]16). 
iv.	 Let y = NUM(S). 
v.	 If i is even, let m = u; else, let m = v. 
vi.	 Let c = (NUMradix (B)–y) mod radix m . 
vii.	 Let C = STR

m
radix (c). 

viii. 	 Let B = A. 
ix.	 Let A = C. 

7.	 Return A || B. 

Description:
 
The FF1.Decrypt algorithm is similar to the FF1.Encrypt algorithm; the differences are in Step 6, 

where: 1) the order of the indices is reversed, 2) the roles of A and B are swapped, and
 
3) modular addition is replaced by modular subtraction, in Step 6vi. 


5.2	 FF3 

The specifications for the FF3.Encrypt and FF3.Decrypt functions are given in Algorithms 9 and 
10 below. The parameters radix, minlen, and maxlen in FF3.Encrypt and FF3.Decrypt shall meet 
the following requirements: 
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• radix ∈ [2 ..216], 
• radix minlen ≥ 100, and 
• 2 ≤ minlen ≤ maxlen ≤ 2⎣log radix (296)⎦. 

Algorithm 9: FF3.Encrypt(K, T, X) 

Prerequisites: 
Designated cipher function, CIPH, of an approved 128-bit block cipher;
 
Key, K, for the block cipher;
 
Base, radix;
 
Range of supported message lengths, [minlen ..maxlen].
 

Inputs:
 
Numeral string, X, in base radix of length n, such that n ∈ [minlen ..maxlen];
 
Tweak bit string, T, such that LEN(T) = 64.
 

Output:
 
Numeral string, Y, such that LEN(Y) = n.
 

Steps: 
1. Let u = ⌈n/2⌉; v = n – u. 
2. Let A = X [1 ..u]; B = X [u + 1..n]. 
3. Let TL = T[0 ..31] and TR = T [32..63] 
4. For i from 0 to 7: 

i. If i is even, let m = u and W = TR, else let m = v and W = TL. 
ii. Let P = W ⊕ [i]4 || [NUMradix (REV(B))]12.
 
iii Let S = REVB(CIPHREVB(K) REVB(P)).
 
iv. Let y = NUM(S). 
v. Let c = (NUMradix (REV(A)) + y) mod radix m . 
vi. Let C = REV(STR

m
radix (c)). 

vii. Let A = B. 
viii. Let B = C. 

5. Return A || B. 

Description: 
The “split” of the numeral string X into two substrings, A and B, is performed in Steps 1 and 2. If 
n is even, LEN(A)=LEN(B); otherwise, LEN(A)=LEN(B)+1.7 The tweak, T, is partitioned in Step 3 
into a 32-bit left tweak, TL, and a 32-bit right tweak, TR. An iteration loop for the eight Feistel 
rounds of FF3 is initiated in Step 4, executing eight substeps for each round, as follows: 

In Step 4i, the parity of the round number, i, determines the length, m, of the substring A, and 
whether TL or TR will be used as W in Step 4ii, in which a 32-bit encoding of i, XORed with W, is 
concatenated with a 96-bit encoding of B to produce a block, P. In Step 4iii, the block cipher 

7 If n is odd, A is one numeral longer than B, in contrast to FF1, where B is one numeral longer than A. 
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under the key, is applied to P using the byte-reversed ordering convention, to produce a block, S. 
(In Figure 1 S corresponds to the output of FK.) In Steps 4iv to 4vi, S is combined with the 
substring A to produce a numeral string C in the same base and with the same length. (In Figure 
1, the combining of S with A is indicated by the “+” operation, although this operation is 
different than for FF1 in that FF3 uses the opposite ordering convention for the conversion of 
strings to numbers and vice versa.) In particular, in Step 4iv, S is converted to a number, y. In 
Step 4v, the number y is added to the number represented by the substring A, and the result is 
reduced modulo the mth power of radix, yielding a number, c, which is converted to a numeral 
string in Step 4vi. In Steps 4vii and 4viii, the roles of A and B are swapped for the next round: 
the substring B is renamed as the substring A, and the modified A (i.e., C) is renamed as B. 

This completes one round of the Feistel structure in FF3. After the eighth round, the 
concatenation of A and B is returned as the output in Step 5. 

Algorithm 10: FF3.Decrypt(K, T, X) 

Prerequisites: 
Designated cipher function, CIPH, of an approved 128-bit block cipher;
 
Key, K, for the block cipher;
 
Base, radix;
 
Range of supported message lengths, [minlen ..maxlen].
 

Inputs:
 
Numeral string, X, in base radix of length n, such that n ∈ [minlen ..maxlen];
 
Tweak bit string, T, such that LEN(T ) = 64.
 

Output:
 
Numeral string, Y, such that LEN(Y ) = n.
 

Steps: 
1. Let u = ⌈n/2⌉; v = n – u. 
2. Let A = X [1 ..u]; B = X [u + 1..n]. 
3. Let TL = T [0 ..31] and TR = T [32..63] 
4. For i from 7 to 0: 

i. If i is even, let m = u and W = TR, else let m = v and W =TL. 
ii. P = W ⊕ [i]4 || [NUMradix (REV(A))]12.
 
iii Let S = REVB(CIPHREVB(K) REVB(P)).
 
iv. Let y = NUM(S). 
v. Let c = (NUMradix (REV(B))–y) mod radix m . 
vi. Let C = REV(STR

m
radix (c)). 

vii. Let B = A. 
viii. Let A = C. 

5. Return A || B. 
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Description:
 
The FF3.Decrypt algorithm is similar to the FF3.Encrypt algorithm; the differences are in Step 4, 

where: 1) the order of the indices is reversed, 2) the roles of A and B are swapped, and 

3) modular addition is replaced by modular subtraction, in Step 4v. 


Conformance 

Implementations of FF1.Encrypt, FF1.Decrypt, FF3.Encrypt, or FF3.Decrypt may be tested for 
conformance to this Recommendation under the auspices of NIST’s Cryptographic Algorithm 
Validation Program [9]. 

Component functions such as PRF are not approved for use independent of these four functions. 

In order to claim conformance with this Recommendation, an implementation of FF1 or FF3 
may support as few as one value for the base. 

Two implementations can only interoperate when they support common values for the base. 
Moreover, FF1 and FF3 have two parameters, minlen and maxlen, that determine the lengths for 
the numeral strings that are supported by an implementation of the encryption or decryption 
function for the mode. FF1 also has a parameter, maxTlen, that indicates the maximum supported 
length of a tweak string. The selection of these parameters may also affect interoperability. 

For every algorithm that is specified in this Recommendation, a conforming implementation may 
replace the given set of steps with any mathematically equivalent set of steps. In other words, 
different procedures that produce the correct output for any input are permitted. 
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Appendix A: Parameter Choices and Security 

The values of the parameters, e.g., radix, minlen, and maxlen affect the security that FF1 and FF3 
can offer, because, as for any FPE method, encrypted data may be vulnerable to guessing attacks 
when the number of possible inputs is sufficiently small. 

In particular, for a base radix numeral string S, there are radix LEN(S) possible values. For any 
ciphertext C, the corresponding plaintext has the same length; therefore, an attacker can guess 
the plaintext with probability 1/radix LEN(C) by selecting a numeral string of LEN(C) at random. 
Repeated guesses increase the attacker’s probability of success proportionately: with g distinct 
guesses, the probability is g/radix LEN(C). 

For example, SSNs are base 10 numeral strings of length 9, so there are one billion possibilities. 
If an attacker could guess a thousand different values for an SSN, one of the guesses would be 
correct with probability 1000/109, i.e., one in a million. 

The specifications of FF1 and FF3 only impose a modest absolute minimum on the number of 
possible inputs; in particular, radixminlen ≥ 100, in order to preclude a generic meet-in-the-middle 
attack on the Feistel structure [14]. 

However, in order to limit the effectiveness of guessing attacks, the value radix minlen should 
generally be at least one million, and, depending on that value, the implementation should also 
limit the number of guesses that an attacker can mount, if possible. The minimum of one million 
is suggested rather than required, in recognition that radix and minlen are usually determined by 
the needs of the implementation. 

In order to prevent attacks against one instance of encryption from applying to other instances, 
implementations should enforce the use of different tweaks for different instances, as discussed 
in Appendix C. Usually, tweaks are non-secret information that can be associated with instances 
of encryption. For FF3, the tweak length is fixed, but for FF1 the maximum tweak length 
parameter, maxTlen, should be chosen to accommodate the desired tweaks for the 
implementation. 

Two other potential parameters of the Feistel structure are fixed for FF1 and FF3, namely, the 
number of Feistel rounds and the imbalance, i.e., the values of the lengths u and v in Figure 1. 
Both of these parameters were set with consideration to both performance and security 
requirements. See Appendix H of [1] for a discussion. 

Appendix B: Security Goal 

The designers of FFX aimed to achieve strong-pseudorandom permutation (PRP) security for a 
conventional block cipher [7]. In the FFX proposal to NIST [1], the designers of FFX cite the 
history of cryptographic results concerning Feistel networks as underlying their selection of the 
FFX mechanism. They assert that, under the assumption that the underlying round function is a 
good pseudorandom function (PRF), contemporary cryptographic results and experience indicate 
that FFX achieves several cryptographic goals, including nonadaptive message-recovery 
security, chosen-plaintext security, and even PRP-security against an adaptive chosen-ciphertext 
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attack. The quantitative security depends on the number of rounds used, the imbalance, and the 
adversary's access to plaintext-ciphertext pairs. See [1] for details. 

Appendix C: Tweaks 

Tweaks have been supported in stand-alone block ciphers, such as Schroeppel’s Hasty Pudding 
[15], and the notion was later formalized and investigated by Liskov, Rivest, and Wagner [6]. 
Tweaks are important for FPE modes, because FPE may be used in settings where the number of 
possible character strings is relatively small. In such settings, the tweak should vary with each 
instance of the encryption whenever possible. 

For example, suppose that in an application for CCNs, the leading six digits and the trailing four 
digits need to be available to the application, so that only the remaining six digits in the middle 
of the CCNs are encrypted. There are a million different possibilities for these middle-six digits, 
so, in a database of 100 million CCNs, about a hundred distinct CCNs would be expected to 
share each possible value for these six digits. If the hundred CCNs that shared a given value for 
the middle-six digits were encrypted with the same tweak, then their ciphertexts would be the 
same. If, however, the other ten digits had been the tweak for the encryption of the middle-six 
digits, then the hundred ciphertexts would almost certainly be different. 

Similarly, in the encrypted database, about a hundred CCNs would be expected to share each 
possible value for the ciphertext, i.e., the middle-six digits. If the hundred CCNs that produce a 
given ciphertext had been encrypted with the same tweak, then the corresponding plaintexts 
would also be the same. This outcome would be undesirable because the compromise of the 
confidentiality of any of the hundred CCNs would reveal the others. 

If, however, the leading six digits and the trailing four digits of the CCN had been used as the 
tweak, then the corresponding plaintexts would almost certainly be different. Therefore, for 
example, learning that the decryption of 111111-770611-1111 is 111111-123456-1111 would 
not reveal any information about the decryption of 999999-770611-9999, because the tweak in 
that case was different. 

In general, if there is information that is available and statically associated with a plaintext, it is 
recommended to use that information as a tweak for the plaintext. Ideally, the non-secret tweak 
associated with a plaintext is associated only with that plaintext. 

Extensive tweaking means that fewer plaintexts are encrypted under any given tweak. This 
corresponds, in the security model that is described in [1], to fewer queries to the target instance 
of the encryption. 

Appendix D: Examples 

Examples for FF1 and FF3 are available at the examples page on NIST’s Computer Security 
Resource Center website: http://csrc.nist.gov/groups/ST/toolkit/examples.html. 
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