NIST Special Publication 260-220

Certification of Standard Reference Material[®] 3289 Multivitamin Tablets

Hugh V. Hayes Jerome Mulloor Michael A. Nelson Catherine A. Rimmer Laura Regalado James H. Yen Lee L. Yu

This publication is available free of charge from: https://doi.org/10.6028/NIST.SP.260-220

This page intentionally blank.

NIST Special Publication 260-220

Certification of Standard Reference Material[®] 3289 Multivitamin Tablets

Hugh V. Hayes Jerome Mulloor Michael A. Nelson Catherine A. Rimmer Laura Regalado (Student) Lee L. Yu Chemical Sciences Division Material Measurement Laboratory

James H. Yen Statistical Engineering Division Information Technology Laboratory

This publication is available free of charge from: https://doi.org/10.6028/NIST.SP.260-220

March 2022

U.S. Department of Commerce *Gina M. Raimondo, Secretary*

National Institute of Standards and Technology James K. Olthoff, Performing the Non-Exclusive Functions and Duties of the Under Secretary of Commerce for Standards and Technology & Director, National Institute of Standards and Technology Certain commercial entities, equipment, or materials may be identified in this document in order to describe an experimental procedure or concept adequately. Such identification is not intended to imply recommendation or endorsement by the National Institute of Standards and Technology, nor is it intended to imply that the entities, materials, or equipment are necessarily the best available for the purpose.

National Institute of Standards and Technology Special Publication 260-220 Natl. Inst. Stand. Technol. Spec. Publ. 260-220, 64 pages (March 2022) CODEN: NSPUE2

> This publication is available free of charge from: https://doi.org/10.6028/NIST.SP.260-220

Abstract

Standard Reference Material[®] (SRM[®]) 3289 Multivitamin Tablets was developed as part of a collaborative effort between the National Institute for Standards and Technology (NIST) and the National Institutes of Health Office of Dietary Supplements (NIH-ODS) as a partial replacement for SRM 3280 Multivitamin/Multielement Tablets. SRM 3289 was formulated with both vitamins and elements to replicate all analytical challenges associated with the measurement of vitamins in dietary supplement matrices. The material was purchased prepackaged from Gemini Pharmaceuticals (Commack, NY), an experienced contract manufacturer. Certified values for fat-soluble and water-soluble vitamin-related measurands have been assigned based upon data obtained from NIST, manufacturer, and interlaboratory comparison measurements. A description of the material, sample preparations, results, and data analysis are discussed in the following report.

Keywords

Dietary Supplements; Fat-Soluble Vitamins; Reference Material; Vitamin Tablets, Water-Soluble Vitamins

Technical Information Contact for this SRM

Please address technical questions you may have about this SRM to <u>srms@nist.gov</u> where they will be assigned to the appropriate Technical Project Leader responsible for support of this material. For sales and customer service inquiries, please contact <u>srminfo@nist.gov</u>.

1	Inti	roduction	1
2	Ma	terial	2
	2.1	Acquisition & Packaging	2
	2.2	Storage	
	2.3	Manufacturer's Analysis	2
3	NIS	T Measurements of Vitamins B ₁ , B ₂ , B ₃ , B ₅ , B ₆ , and B ₇	4
	3.1	Materials	
	3.2	Equipment	
	3.3	Preparation	
	3.4	Analysis	5
	3.5	Re-analysis of Vitamin B ₃	8
	3.6	Bias Assessments	
		6.1 Packing-Order Homogeneity	
		6.2 Sample Preparation	
	3.	6.3 Sample analysis	
	3.7		
	3.	7.1 NMR Spectroscopy	
		3.7.1.1 Sample Preparation	
		3.7.1.2 Instrumental Parameters	
		3.7.1.3 Purity Measurement Model	
	2	3.7.1.4 Calculations	
		7.2 Vitamin B ₁ (Thiamine)	
		7.3 Vitamin B ₂ (Riboflavin)	
		7.4 Vitamin B₃ (Niacin)7.5 Vitamin B₅ (Calcium pantothenate)	
		7.5 Vitamin B ₅ (Calcium pantomenate)	
		7.7 Vitamin B ₇ (Biotin)	
4		ST Measurement of Vitamin B ₁₂ (Cyancobalamin)	
	4.1	Materials	
	4.2	Equipment	
	4.3	Preparation	
	4.4	Analysis	
	4.5	Preparation of the Standard Additions Spiking Solution	
		5.2 Identity by NMR	
		5.3 Characterization of the Standard Additions Spiking Solution	
		5.4 Standard Additions Method	
5		MQAP	
-			
6		asurement Results	
	6.1	Vitamin B ₁ (Thiamine)	
	6.2	Vitamin B ₂ (Riboflavin)	
	6.3	Vitamin B_3 (Niacin)	
	6.4	Vitamin B ₅ (Pantothenic Acid)	
	6.5	Vitamin B ₆ (Pyridoxine)	
	6.6	Vitamin B ₇ (Biotin)	
	6.7	Vitamin B ₉ (Folic Acid)	. 42

Table of Contents

6.8	Vitamin B ₁₂ (Cyanocobalamin)	
6.9		
6.10	0 Provitamin A (β-Carotene)	
6.1	1 Lutein	46
	2 Vitamin C (Ascorbic Acid)	
	3 Vitamin D ₂ (Ergocalciferol)	
	4 Vitamin D ₃ (Cholecalciferol)	
	5 Vitamin E (α-Tocopherol Acetate)	
	6 Vitamin K ₁ (Phylloquinone)	
	atistical Analysis	
7 Sta	atistical Analysis Single Laboratory Methods	
7 Sta 7.1	atistical Analysis	
7 Sta 7.1 7.2	atistical Analysis Single Laboratory Methods Interlaboratory Studies Assignment of Values and Uuncertainties	
7 Sta 7.1 7.2 7.3	atistical Analysis Single Laboratory Methods Interlaboratory Studies Assignment of Values and Uuncertainties Homogeneity Assessment	
7 Sta 7.1 7.2 7.3 7.4 7.5	atistical Analysis Single Laboratory Methods Interlaboratory Studies Assignment of Values and Uuncertainties Homogeneity Assessment Analysis Results	
7 Sta 7.1 7.2 7.3 7.4 7.5	atistical Analysis Single Laboratory Methods Interlaboratory Studies Assignment of Values and Uuncertainties Homogeneity Assessment	

Table of Tables

Table 1. Vitamin B ₁ , B ₂ , B ₃ , B ₅ , B ₆ , and B ₇ Calibration Materials	4
Table 2. Vitamin B ₁ , B ₂ , B ₃ , B ₅ , B ₆ , and B ₇ Isotopically Labelled Standards	
Table 3. Vitamin B ₁ , B ₂ , B ₃ , B ₅ , B ₆ , and B ₇ Internal Standard Stock Solutions	5
Table 4. LC-MS/MS Instrument Settings	6
Table 5. LC Gradient Profile Used for Analysis of Vitamin B ₁ , B ₂ , B ₃ , B ₅ , B ₆ , and B ₇	6
Table 6. Multiple Reaction Monitoring Conditions for Vitamin B ₁ , B ₂ , B ₃ , B ₅ , B ₆ , and B ₇	6
Table 7. Vitamin B ₃ as Niacin Internal Standard Stock Solutions	9
Table 8. ¹ H-NMR Integration Regions for Thiamine Purity Assessment	16
Table 9. ¹ H-NMR Integration Regions for Calcium Pantothenate Purity Assessment	18
Table 10. ¹ H-NMR Integration Regions for Niacin Purity Assessment	19
Table 11. ¹ H-NMR Integration Regions for Calcium Pantothenate Purity Assessment	21
Table 12. ¹ H-NMR Integration Regions for Pyridoxine Purity Assessment	
Table 13. ¹ H-NMR Integration Regions for Biotin Purity Assessment	24
Table 14. LC-ICP-MS Parameters for the Determination of Cyanocobalamin	26
Table 15. Cyanocobalamin Uncertainty Components and Estimated Values	27
Table 16. Instrument Parameters for Q-Exactive HR-MS of Cyancobalamin Standard	28
Table 17. Theoretical and Measured m/z for the Cyanocobalamin Standard	
Table 18. Measurement Results for Thiamine (Vitamin B ₁), mg/g	
Table 19. Measurement Results for Riboflavin (Vitamin B ₂), mg/g	37
Table 20. Measurement Results for Niacin (Vitamin B ₃), mg/g	38
Table 21. Measurement Results for Pantothenic Acid (Vitamin B ₅), mg/g	
Table 22. Measurement Results for Pyridoxine Acid (Vitamin B ₆), mg/g	40
Table 23. Measurement Results for Biotin (Vitamin B ₇), µg/g	
Table 24. Measurement Results for Folic Acid (Vitamin B ₉), µg/g	
Table 25. Measurement Results for Cyanocobalamin (Vitamin B ₁₂), µg/g	43
Table 26. Measurement Results for Retinyl Acetate (Vitamin A), µg/g	
Table 27. Measurement Results for β -Carotene (Provitamin A), $\mu g/g$	
Table 28. Measurement Results for Lutein, µg/g	46
Table 29. Measurement Results for Ascorbic Acid (Vitamin C), mg/g	47
Table 30. Measurement Results for Ergocalciferol (Vitamin D ₂), µg/g	
Table 31. Measurement Results for Cholecalciferol (Vitamin D ₃), µg/g	49

Table 32.	Measurement Results for α-Tocopherol Acetate (Vitamin E), mg/g	. 50
Table 33.	Measurement Results for Phylloquinone (Vitamin K ₁), µg/g	. 51

Table of Figures

8	
Figure 1. Sales History of SRM 3280 Multivitamin/Multielement Tablets	
Figure 2. Customer Locations for SRM 3280 Multivitamin/Multielement Tablets	
Figure 3. Manufacturer's Certificate of Analysis	
Figure 4. Exemplar Chromatograms	
Figure 5. Mass Fraction Analytes in SRM 3280 Control as Functions of Analysis C	Order8
Figure 6. Mass Fraction Analytes in SRM 3289 as Functions of Packing Order	
Figure 7. Mass Fraction Analytes in SRM 3289 as Functions of Sample Preparation	n Order11
Figure 8. Mass Fraction Analytes in SRM 3289 as Functions of Analysis Order	
Figure 9. ¹ H-NMR Spectrum of Thiamine + KHP in D ₂ O	
Figure 10. ¹ H-NMR Spectrum of Riboflavin + DMMA in ~0.3 mol/L NaOD/D ₂ O	
Figure 11. ¹ H-NMR Spectrum of Niacin + Maleic Acid in DMSO- <i>d</i> ₆	
Figure 12. ¹ H-NMR Spectrum of Calcium Pantothenate + KHP in D ₂ O	
Figure 13. ¹ H-NMR Spectrum of Pyridoxine + DMMA in D ₂ O	
Figure 14. ¹ H-NMR Spectrum of (+)Biotin in DMSO- <i>d</i> ₆	
Figure 15. ¹ H-NMR Spectrum of Tecnazene in DMSO-d	
Figure 16. Exemplar LC-ICP-MS Chromatogram for Cyanocobalamin in SRM 328	39
Figure 17. Mass Fraction Cyanocobalamin in SRM 3280 Control	
Figure 18. HR-MS Spectrum of the Cyanocobalamin Standard	
Figure 19. Multiplicity-edited ¹ H- ¹³ C HSQC Spectrum of Cyanocobalamin Standar	rd in D ₂ O31
Figure 20. ¹ H Spectrum of Cyanocobalamin Standard in D ₂ O	
Figure 21. ¹ H- ¹ H COSY Spectrum of Cyanocobalamin Standard in D ₂ O	
Figure 22. Typical Chromatogram of Cyanocobalamin Standard Stock Solution	
Figure 23. Measurement Results for Thiamine (Vitamin B1), mg/g	
Figure 24. Measurement Results for Riboflavin (Vitamin B ₂), mg/g	
Figure 25. Measurement Results for Niacin (Vitamin B ₃), mg/g	
Figure 26. Measurement Results for Pantothenic Acid (Vitamin B ₅), mg/g	
Figure 27. Measurement Results for Pyridoxine Acid (Vitamin B ₆), mg/g	
Figure 28. Measurement Results for Biotin (Vitamin B7), µg/g	
Figure 29. Measurement Results for Folic Acid (Vitamin B ₉), µg/g	
Figure 30. Measurement Results for Cyanocobalamin (Vitamin B ₁₂), µg/g	
Figure 31. Measurement Results for Retinyl Acetate (Vitamin A), µg/g	
Figure 32. Measurement Results for β -Carotene (Provitamin A), $\mu g/g$	
Figure 33. Measurement Results for Lutein, µg/g	
Figure 34. Measurement Results for Ascorbic Acid (Vitamin C), mg/g	
Figure 35. Measurement Results for Ergocalciferol (Vitamin D ₂), µg/g	
Figure 36. Measurement Results for Cholecalciferol (Vitamin D ₃), µg/g	
Figure 37. Measurement Results for a-Tocopherol Acetate (Vitamin E), mg/g	
Figure 38. Measurement Results for Phylloquinone (Vitamin K ₁), µg/g	

Glossary			
CNCbl	cyanocobalamin		
COSY	¹ H- ¹ H correlation (COSY) NMR spectroscopy		
D1	NMR pulse recycle delay		
DMMA	dimethylmalonic acid		
DMSO	dimethyl sulfone		
EDTA	ethylenediamine tetraacetic acid disodium salt dihydrate		
GARP	globally-optimized, alternating-phase, rectangular pulse		
HAMQAP	Health Assessment Measurement Quality Assurance Program		
HSQC	heteronuclear single quantum coherence		
HNO ₃	nitric acid		
HPLC	high performance liquid chromatography		
HR-MS	high-resolution mass spectrometry		
ICP-MS	inductively coupled plasma mass spectrometer		
ID-LC-MS/MS	isotope dilution liquid chromatography tandem mass spectrometry		
IS	internal standard		
KHP	potassium hydrogen phthalate		
LC	liquid chromatography		
LC-ICP-MS	liquid chromatography tandem inductively coupled plasma mass		
	spectrometry		
LDPE	low density polyethylene		
NIH-ODS	National Institutes of Health Office of Dietary Supplements		
NIST	National Institute of Standards and Technology		
MRM NMR	multiple reaction monitoring		
¹ H-NMR _{IS}	nuclear magnetic resonance spectroscopy quantitative ¹ H-NMR using an internal standard		
SD	standard deviation		
SD	International System of Units (Système International d'unités)		
SOP	standard operating procedures		
SRM	Standard Reference Material		
T1	NMR spin lattice relaxation time		
USP	United States Pharmacopeia		
0.01	Omee States I harmacopeia		

This publication is available free of charge from: https://doi.org/10.6028/NIST.SP.260-220

1 Introduction

SRM 3289 Multivitamin Tablets was developed as part of a collaborative effort between the National Institute of Standards and Technology (NIST) and the National Institutes of Health Office of Dietary Supplements (NIH-ODS). SRM 3289 is a partial replacement for SRM 3280 Multivitamin/Multielement Tablets [1,2] which has sold about 50 units/year since it was released in 2009 (Figure 1). Slightly more than half of these sales have been within the U.S. (Figure 2).

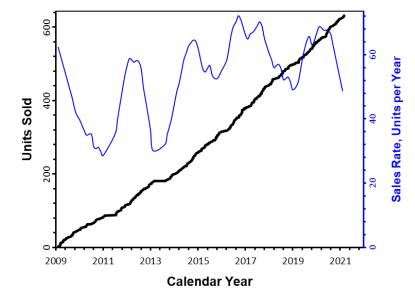


Figure 1. Sales History of SRM 3280 Multivitamin/Multielement Tablets.

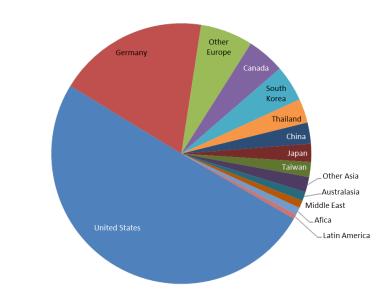


Figure 2. Customer Locations for SRM 3280 Multivitamin/Multielement Tablets.

However, vitamins in dietary supplement tablets have finite stability. Due to degradation of some of the vitamin-related measurands and increasingly difficult extraction of most, sale of SRM 3280 was halted in March 2021. While formulated with both vitamins and elements to replicate all analytical challenges associated with the measurement of vitamins in dietary supplement matrices, SRM 3289 provides certified values for just the vitamin-related measurands.

2 Material

2.1 Acquisition & Packaging

Two hundred fifty thousand (250 000) SRM 3289 tablets were purchased from Gemini Pharmaceuticals (Commack, NY). All tablets are from the same batch. The tablets have a microcrystalline cellulose matrix, are oval with dimension 0.927 cm by 2.223 cm (0.365 in by 0.875 in), beige in color, have a clear hydroxypropyl methylcellulose coating, and have a mean weight of (1.897 ± 0.005) gram per tablet.

The tablets were packed by the manufacturer into round, white, 100 mL, high-density polyethylene bottles, each containing 30 tablets. The bottles were capped with smooth, white, 38 mm lids with imprinted foam/foil liners. No cotton was included in the bottles. Each unit of SRM 3289 consists of five of these bottles.

The bottles were packed in 348 boxes, each box containing 24 bottles. The boxes were labeled sequentially from 1 to 348 in the order that the bottles were filled.

2.2 Storage

The SRM 3289 bottles have been stored at room temperature (18 °C to 22 °C) at NIST since their receipt.

2.3 Manufacturer's Analysis

Figure 3 reproduces the manufacturer's Certificate of Analysis. This table includes the acronyms: DFE = dietary folate equivalents, IU = International Unit, NE = niacin equivalents, and RAE = retinol activity equivalents.

Note: One microgram RAE is equivalent to 1 μ g retinol and 2 μ g supplemental beta-carotene [3]; 1 μ g retinol is equivalent to (328.5 g/mol retinyl acetate)/(286.45 g/mol retinol)=1.147 μ g retinyl acetate.

87 MODULAR AVENUE, COMMACK, NY 11725 631-543-3334 - 631-543-3335 -www.geminipharm.com

CERTIFICATE OF ANALYSIS

PRODUCT NAME: Multivitamin Tablets		3	
LOT NUMBER:	<u>53970</u>		
DATE OF MANUFACTURE:	06/18		
QUALITY ASSURANCE RELEASE DATE:	06/28/18		
CHARACTERISTIC	SPECIFICATION		<u>RESULT</u>
Identification:	0.375" x 0.875" Oval Beige	Tablet Film Coated Clear	Conforms
Average Weight:	1860mg – 2046mg		<u>1897.0mg</u>
<u>COMPONENT</u>	<u>Label Claim:</u> <u>Per Tablet</u>	Specification	<u>% Label Claim</u>
Vitamin A (as Retinyl Acetate)	1200 mcg RAE (4000IU)	80.0%-200.0%	<u>130.5%</u>
Vitamin A (as Beta Carotene)	420 mcg RAE (1400IU)	80.0%-200.0%	<u>150.4%</u>
Vitamin C (Ascorbic Acid)	70 mg	80.0%-200.0%	123.5%
Vitamin D2 (Ergocalciferol)	15 mcg (600IU)	80.0%-200.0%	<u>134.7%</u>
Vitamin D3 (Cholecalciferol)	15 mcg (600IU)	80.0%-200.0%	<u>136.7%</u>
Vitamin E (as dl-alpha Tocopheryl Acetate)	27 mg (30IU)	80.0%-200.0%	<u>126.6%</u>
Vitamin K1 (Phytonadione)	30 mcg	80.0%-200.0%	<u>103.7%</u>
Vitamin B1 (Thiamine from Thiamine HCl)	2 mg	80.0%-200.0%	<u>117.4%</u>
Vitamin B2 (Riboflavin)	2 mg	80.0%-200.0%	<u>118.2%</u>
Vitamin B3 (as Niacin)	20 mg NE (20mg)	80.0%-200.0%	<u>116.9%</u>
Vitamin B6 (Pyridoxine from Pyridoxine HCl)	2 mg	80.0%-200.0%	<u>127.4%</u>
Folate	1000 mcg DFE (600 mcg Folic Acid)	80.0%-200.0%	<u>141.8%</u>
Vitamin B12 (as Cyanocobalamin)	9 mcg	80.0%-200.0%	<u>117.8%</u>
Biotin (as D-Biotin)	40 mcg	80.0%-200.0%	<u>101.5%</u>
Vitamin B5 (Pantothenic Acid from d- Calcium Pantothenate)	10 mg	80.0%-200.0%	<u>138.3%</u>
Calcium (from DiCalcium Phosphate & Calcium Carbonate)	200 mg	80.0%-200.0%	<u>115.5%</u>
Iron (from Ferrous Fumarate)	20 mg	80.0%-200.0%	<u>102.5%</u>
Phosphorus (from Dicalcium Phosphate)	100 mg	80.0%-200.0%	<u>113.0%</u>
Iodine (from Potassium Iodide) Magnesium (from Magnesium Oxide)	200 mcg 100 mg	80.0%-200.0% 80.0%-200.0%	<u>151.0%</u> <u>96.0%</u>
Zinc (from Zinc Oxide)	20 mg	80.0%-200.0%	<u>107.8%</u>
Selenium (from Sodium Selenate)	30 mcg	80.0%-200.0%	<u>81.2%</u>
Copper (from Cupric Oxide)	2 mg	80.0%-200.0%	<u>113.6%</u>
Manganese (from Manganese Ascorbate)	2 mg	80.0%-200.0%	<u>119.1%</u>
Chromium (from Chromium Citrate)	140 mcg	80.0%-200.0%	125.3%
Molybdenum (from Sodium Molybdenum)	100 mcg	80.0%-200.0%	<u>112.4%</u>
Chloride (from Potassium Chloride)	80 mcg	80.0%-200.0%	<u>107.5%</u>
Potassium (from Potassium Chloride)	90 mcg	80.0%-200.0%	<u>160.1%</u>
Nickel (from Nickel Sulfate)	10 mcg	80.0%-200.0%	<u>171.0%</u>
Tin (from Tin Chelate)	10 mcg	80.0%-200.0%	<u>114.0%</u>
Vanadium (from Vanadyl Sulfate)	10 mcg	80.0%-200.0%	<u>93.5%</u>
Silicon (from Silicon Dioxide)	3 mg	80.0%-200.0%	<u>165.3%</u>
Lutein	350 mcg	80.0%-200.0%	<u>109.7%</u>

Figure 3. Manufacturer's Certificate of Analysis

3 NIST Measurements of Vitamins B₁, B₂, B₃, B₅, B₆, and B₇

The mass fractions of thiamine hydrochloride (B₁), riboflavin (B₂), niacin (B₃), pantothenic acid (B₅), pyridoxine hydrochloride (B₆), and biotin (B₇) were determined by isotope dilution liquid chromatography tandem mass spectrometry (ID-LC-MS/MS) [4].

3.1 Materials

One bottle from each of ten boxes of SRM 3289 (numbers 10, 42, 88, 111, 151, 185, 230, 260, 293, and 318) were selected based on a stratified random sampling scheme. The bottles were labeled with the box number. One bottle of SRM 3280 Multivitamin/Multielement Tablets was used as control.

Table 1 lists the calibrants used in the analysis of these B vitamins. The identity of these compounds was confirmed and their purity assessed using nuclear magnetic resonance spectroscopy (NMR) techniques (see Section 3.7.1). Table 2 lists the isotopically labeled standards. All solvents used were high-performance liquid chromatography (HPLC) grade. All other salts and acids used in sample and mobile phase preparation were reagent grade.

				Assessed
				Purity, %
	Compound	Source	Lot Number	Coverage Interval
B_1	Thiamine hydrochloride	U.S. Pharmacopeia (Rockville, MD)	#O1F236	93.38 to 97.34
B_2	Riboflavin	U.S. Pharmacopeia (Rockville, MD)	#N0C021	91.8 to 94.2
B ₃	Niacin (Nicotinic acid)	U.S. Pharmacopeia (Rockville, MD)	#J0J235	99.12 to 99.97
B ₅	Calcium pantothenate	U.S. Pharmacopeia (Rockville, MD)	#O1H081	94.37 to 95.12
B_6	Pyridoxine hydrochloride	U.S. Pharmacopeia (Rockville, MD)	#Q0G409	98.83 to 99.74
\mathbf{B}_7	Biotin	Sigma-Aldrich (St. Louis, MO)	#073K07115	96.49 to 98.80

Table 1. Vitamin B1, B2, B3, B5, B6, and B7 Calibration Materials

Table 2. Vitamin B1, B2, B3, B5, B6, and B7 Isotopically Labeled Standards

	Labeled Compound	Source	Lot Number
B_1	Thiamine chloride $(^{13}C_4)$	Isosciences (King of Prussia, PA)	NM1-2019-241A1
B ₂		Cambridge Isotope Laboratories (Andover, MA)	#I-24053F
B_3	Niacin $(^{2}H_{4})$	Isosciences (King of Prussia, PA)	#RS2-2004-126A
B_5	Calcium pantothenate monohydrate $({}^{13}C_6, {}^{15}N_2)$	Isosciences (King of Prussia, PA)	#RS9-2018-233A1
B_6	Pyridoxine hydrochloride (4,5-	Cambridge Isotope Laboratories	#M-1270
	bis(hydroxymethyl)- ¹³ C ₄)	(Andover, MA)	$\pi_1 v_1 - 1 \angle / 0$
B_7	Biotin $(^{2}H_{2})$	Isosciences (King of Prussia, PA)	#SL3-2005-147A1

3.2 Equipment

All tablet samples were ground using a Retsch RM-100 (Newtown, PA) automated mortar grinder. Samples were analyzed using an Agilent Series 1290 LC equipped with an Agilent Series 6410 Triple Quadrupole MS with electrospray ionization in the positive ion mode. The system was composed of a mobile phase degasser, binary pump, autosampler, and mass selective detector.

3.3 Preparation

All samples were analyzed in as-received condition. All sample, stock calibrant, and internal standard solutions were prepared in 1% (volume fraction) acetic acid in water (i.e., one volume glacial acetic acid plus 99 volumes water). All solution preparation was conducted under reduced lighting to minimize potential vitamin degradation.

Four independent gravimetrically prepared stock solutions for each of the vitamin calibrants were prepared. The calibrants were prepared to reflect the mass fraction of each vitamin in SRM 3289. Four independent gravimetrically prepared internal standard (IS) solutions were prepared from the six isotopically labeled standards. Table 3 lists the composition of the four IS stock solutions. Four working calibration solutions were gravimetrically prepared by combining the calibrant and IS stocks.

	Mass, mg			
Components	IS ₁	IS ₂	IS ₃	IS_4
Thiamine chloride $(^{13}C_4)$	3.8833			
Riboflavin (${}^{13}C_4$, ${}^{15}N_2$)		1.5982		
Niacin (² H ₄)			20.5883	
Calcium pantothenate monohydrate (${}^{13}C_6$, ${}^{15}N_2$)			9.5346	
Pyridoxine hydrochloride (4,5-bis(hydroxymethyl)- ¹³ C ₄)	2.1084			
Biotin $(^{2}H_{2})$				0.5291
1 % v/v acetic acid solution	15073.5	15061.4	15070.3	15081.9

Table 3. Vitamin B₁, B₂, B₃, B₅, B₆, and B₇ Internal Standard Stock Solutions

Thirty tablets from each bottle were ground for 10 min with the automated mortar grinder. The ground material was transferred back to the SRM bottles. Two subsamples were analyzed from each SRM bottle. For analysis, a known mass of about 0.2 g was added to a 50 mL polypropylene centrifuge tube with 0.4 g of the isotopically labeled stocks IS₁, IS₂, and IS₄ and 0.2 g of IS₃. The extraction solvent (24 mL of 1% acetic acid) was added to the centrifuge tube and vortexed for 30 s. The samples were placed in an ultrasonic bath and sonicated for 30 min with no added heat. The samples were then centrifuged at 314 rad/s (3000 RPM) for 15 min. Roughly 5 mL of the supernatant was withdrawn with a disposable syringe and transferred to an autosampler vial through a 0.45 μ m nylon filter.

Three subsamples of the SRM 3280 control were prepared using the above procedure.

3.4 Analysis

The SRM 3289 and SRM 3280 samples were analyzed by ID-LC-MS/MS using the parameters listed in Table 4, the gradient profile listed in Table 5, and the multiple reaction monitoring (MRM) conditions listed in Table 6. Mass fractions of B₁, B₂, B₃, B₅, B₆, and B₇ in the samples were bracketed with mass fractions in the calibration solutions. A response factor was calculated for each transition in each injection. Figure 4 displays typical chromatograms.

System	Parameter	Value
-	Nebulizer pressure	103 kPa (15 psig)
Tuin 1.	Drying gas flow	11 L/min
Triple Quadrupole MS	Drying gas temperature	300 °C
Quadrupole MIS	Capillary voltage	4000 V
	Dwell time	100 ms
	Column	Imtakt Cadenza CD-C18 column
	Column	(250×4.6 mm i.d., 3 μm particles)
	Injection volume	10 μL
LC	Flow rate	0.8 mL/min
	Mahila shasa A	20 mmol/L ammonium formate in water
	Mobile phase A	adjusted to pH 3.0 with formic acid
	Mobile phase B	methanol

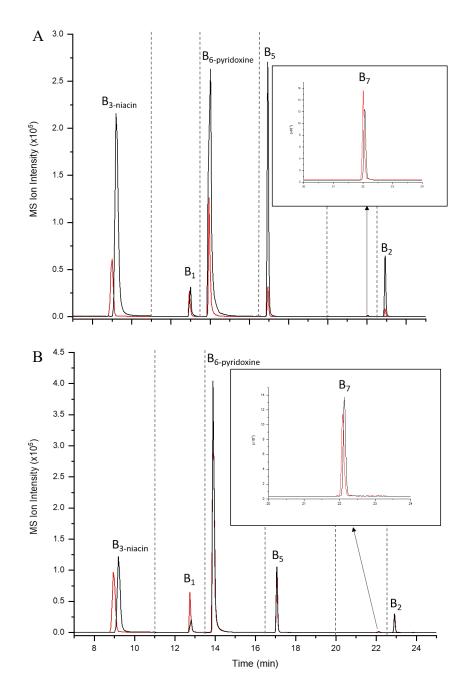

Table 4. LC-MS/MS Instrument Settings

Table 5. LC Gradient Profile Used for Analysis of Vitamin B1, B2, B3, B5, B6, and B7

Time (min)	% A	% B
0 to 6	100	0
6.1 to 20	50	50
20.1 to 25	0	100
25.1 to 40	100	0

Table 6. Multiple Reaction Monitoring Conditions for Vitamin B1, B2, B3, B5, B6, and B7

Time	Compound	Precursor	Product	IS Precursor	IS Product	Fragmentor	Collision	
(min)	(Abbreviation)	Ion (m/z)	Ion (m/z)	Ion (m/z)	Ion (m/z)	(V)	Energy (eV)	
()	()	()	52.1		53.0		30	
		1010	53.0		56.1		30	
8.0	Niacin (B ₃)	124.0	78.0	128.0	81.0	120	22	
			80.0		84.0		20	
			42.1		42.1		52	
11.0	Thiamine (B ₁)	266.1	81.0	270.1	81.1	110	30	
			123.1		123.1		10	
				77.0		81.1		38
13.5	Pyridoxine (B ₆)	170.1	80.1	174.1	83.1	120	40	
15.5	\mathbf{F} yridoxille (\mathbf{D}_6)		134.0		138.0		18	
			152.1		156.1		10	
			41.1	224.0	41.1	110	48	
16.5	Pantothenic Acid	220.0	43.1		43.1		30	
10.5	(B ₅)	220.0	72.1		76.0		16	
			90.1		94.1		10	
20.0	Biotin (B7)	245.1	96.9	247.1	99.0	130	36	
20.0		21011	227.1	217.1	229.1	150	16	
			43.1		43.1	146	38	
22.5	Riboflavin	377.2	172.1	383.2	175.1		38	
	(B ₂)		198.0		202.1		38	
			243.1		249.1		18	

Typical extracted ion chromatograms using ID-LC-MS/MS with multiple reaction monitoring (MRM) for A) SRM 3289 Multivitamin Tablets extract and B) calibration solution prepared in 1% acetic acid in water. Transitions for vitamin ions are shown in black, transitions for isotopically labeled internal standards are shown in red. Only traces for most intense transitions are displayed.

Average mass fraction values for B₁, B₂, B₅, B₆, and B₇ from the SRM 3280 control samples were consistent with the certified values (Figure 5). However, B₃ as niacin was not present in the control where B₃ is present as nicotinamide.

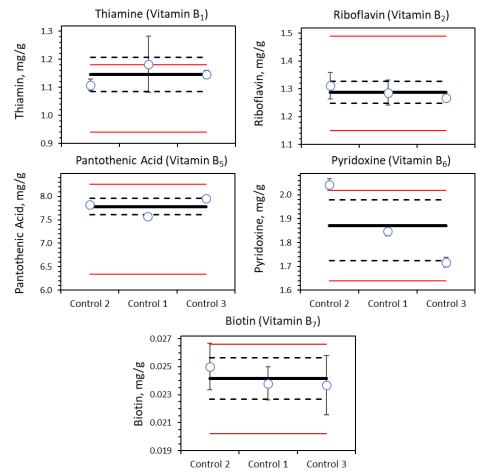


Figure 5. Mass Fraction Analytes in SRM 3280 Control as Functions of Analysis Order Open circles represent results of the analysis of the three SRM 3280 control preparations. Solid black lines represents the mean value; dashed lines bound one standard deviation (SD) above and below the mean. Error bars represent the SD for the three transitions averaged to determine each value. Red solid lines bound the approximate 95 % level of confidence expanded uncertainty intervals for the analytes stated in the SRM 3280 Certificate of Analysis [1].

3.5 Re-analysis of Vitamin B₃

The results for B_1 , B_2 , B_5 , B_6 , and B_7 in SRM 3289 agreed well with the manufacturer's values. However, the ID-LC-MS/MS results for B_3 were significantly lower than expected. Combined with the absence of niacin in the SRM 3280 control material, a re-analysis of vitamin B_3 as niacin was performed.

The same materials and equipment were used as described in Sections 3.1 and 3.2. However, given that the concentration of niacin in the SRM 3289 tablets is much higher than that of the other analytes, matching that concentration in the multi-component IS required making a fairly concentrated labeled-standard stock. To avoid possible saturation of the solution, two stock IS solutions for niacin were prepared at about half the concentration used previously. Table 7 lists the composition of the IS stock solutions. Four working calibration solutions were gravimetrically prepared using a combination of the unlabeled and labeled stocks.

	Mass	s, mg
Components	IS ₅	IS ₆
Niacin (² H ₄)	9.9381	20.2228
1 % acetic acid solution	14019.075	29542.52

Table 7. Vitamin B₃ as Niacin Internal Standard Stock Solutions

The niacin assays were completed in two parts. Three bottles (151, 293, and 318) were analyzed in duplicate during the first part with the remaining seven bottles (10, 42, 77, 111, 185, 230, and 260) were analyzed in duplicate during the second part. Both assays provided similar results. These results agreed well with expectations based on the manufacturer's COA.

3.6 Bias Assessments

Systematic bias was evaluated as a function of packaging order, sample preparation order, and chromatographic run order for vitamins B_1 , B_2 , B_3 , B_5 , B_6 , and B_7 . Biases in B_3 (niacin) were evaluated for results from both the original and the re-analysis.

3.6.1 Packing-Order Homogeneity

Figure 6 displays results as a function of box number, which is isomorphic with the order in which the tablets were bottled and packed. There are no apparent trends indicating packing order inhomogeneity.

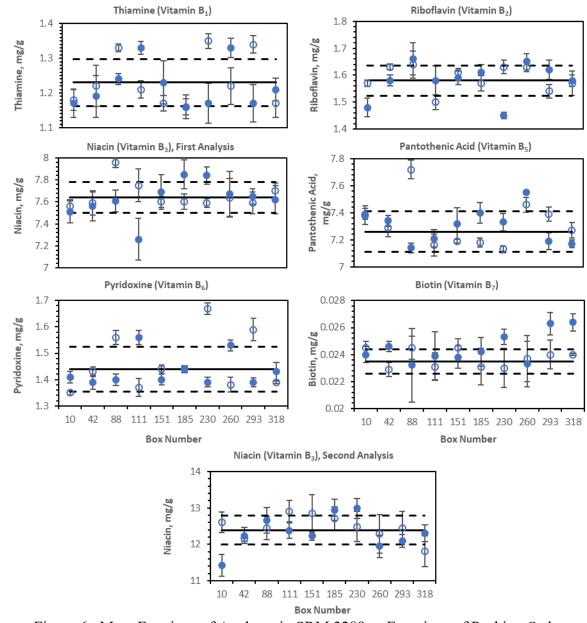


Figure 6. Mass Fractions of Analytes in SRM 3289 as Functions of Packing Order Blue circles represent the result of the analysis of the first preparation from each bottle, hollow circles represent the results of the second preparation. Solid lines denote the mean value; dashed lines bound one standard deviation (SD) above and below the mean. Error bars represent the SD for the three transitions averaged to determine the value.

3.6.2 Sample Preparation

Figure 7 displays results as a function of the sample code arranged in sample preparation order. There are no apparent trends indicating systematic changes in the sample-preparation process over time.

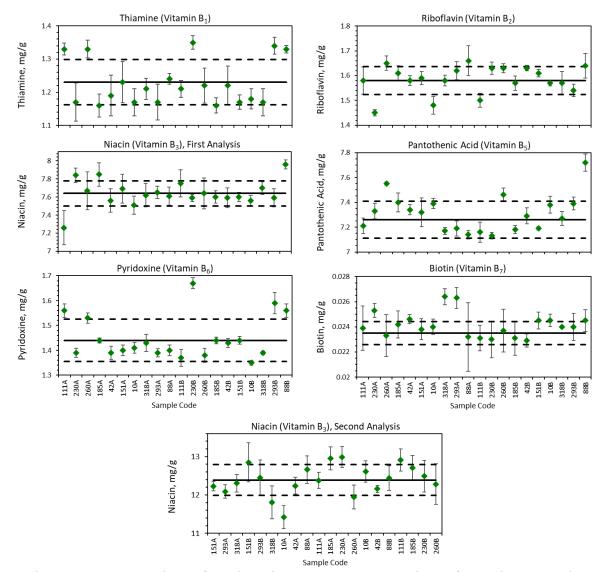


Figure 7. Mass Fractions of Analytes in SRM 3289 as Functions of Sample Preparation Order

Green diamonds represent results of the analysis of one of the two SRM 3289 preparations from each bottle. Solid lines denote the mean value; dashed lines bound one standard deviation (SD) above and below the mean. Error bars represent the SD for the three transitions averaged to determine the value.

3.6.3 Sample analysis

Figure 8 displays results as a function of the sample code arranged in chromatographic run order. There are no apparent trends for vitamins B_2 , B_3 , B_6 , and B_7 . However, the first five results for B_1 (thiamin) and B_6 (pyridoxine) are relatively larger and the peak areas were considerably higher than those of the following 15 results.

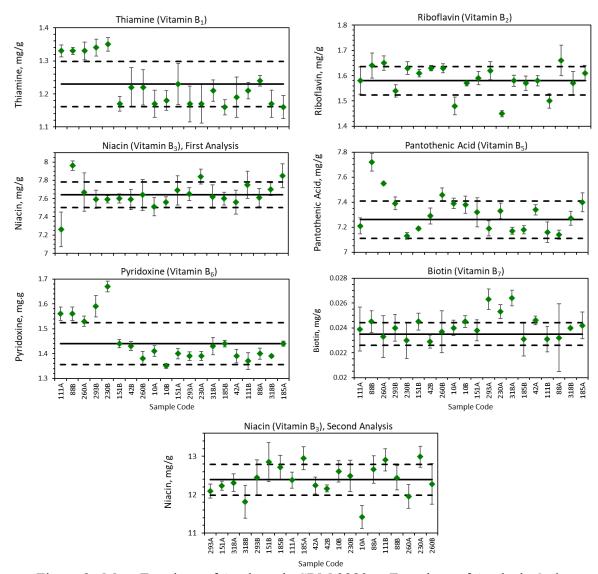


Figure 8. Mass Fractions of Analytes in SRM 3289 as Functions of Analysis Order Green diamonds represent results of the analysis of one of the two SRM 3289 preparations from each bottle. Solid lines denote the mean value; dashed lines bound one standard deviation (SD) above and below the mean. Error bars represent the SD for the three transitions averaged to determine the value.

Thiamine and pyridoxine neighbor each other in the chromatographic separation (Figure 4) and closely straddle a change in selected ion monitoring window. Since the sample preparation and extractions were consistent for all samples, controls, and calibrants, the differences in peak areas from these samples suggest that an instrumental bias may be present with respect to the mass fragmentation transitions for these particular samples.

3.7 Calibrant Identity and Purity Determinations

Analyte identity confirmation and purity determinations were accomplished via quantitative ¹H-NMR using an internal standard (¹H-NMR_{IS}), a primary ratio method for evaluating the chemical purity of neat organic materials that contain at least one non-exchangeable ¹H atom. The resulting purity estimates are metrologically traceable to the International System of Units (SI) unit of mass, expressed as mass percentage of analyte in neat calibrant material, through linkage of the purity values of the ¹H-NMR internal standards used to that of the NIST PS1 Primary Standard for ¹H-NMR (benzoic acid) [5,6].

3.7.1 NMR Spectroscopy

Experimental NMR data were acquired by a Bruker Avance II 600 MHz spectrometer equipped with a 5-mm broadband inverse detection probe and operating with Topspin (Version 3.2) software.

3.7.1.1 Sample Preparation

All sample preparation was performed under incandescent light with the lamp pointed away from the materials and samples. Glassware was cleaned with distilled water and organic solvents, baked in a furnace at 450 °C, and stored in a desiccator. Clean Bruker 600 MHz NMR tubes (5 mm internal diameter, 17.8 cm length) were stored in a desiccator prior to use. All calibrant standards were stored with desiccant at -20 °C. All internal standards were stored at room temperature in a desiccator. Deuterated solvents from Cambridge Isotopes Laboratory with \geq 99.8 % D-atom purity were used for all analyses. Samples were diluted with approximately 1.4 mL of solvent withdrawn from ampoules by cleaned glass Pasteur pipettes. Samples were sonicated and vortexed several times to facilitate total dissolution. Care was taken to ensure complete dissolution and that no crystals of the neat materials adhered to the weighing bottle walls.

Sample mass determinations and preparations for ¹H-NMR analysis were performed in accordance with balance use and sample preparation Standard Operating Procedures (SOPs). However, due to limited laboratory access during periods of 2020 and 2021, masses of some of the calibrants were determined using an analytical balance with 0.01 mg readability rather than an ultra-microbalance with 0.1 μ g readability usually used for these types of analyses. To compensate for the lower precision of the analytical balance, larger amounts of the calibrant and IS were used to achieve higher confidence in mass determinations. Due to the difficulty in adding large amounts of material to the weigh boats, some materials were added directly to tared glass vials without weigh boats.

3.7.1.2 Instrumental Parameters

One-dimensional ¹H-NMR spectroscopy experiments were conducted at 298 K with 20.0276 ppm spectral sweep width. The transmitter frequency offset for ¹H was set to 6.175 ppm. 90-degree ¹H excitation pulse widths were used. When necessary to achieve adequate selectivity with NMR spectral features, some experiments were conducted with globally-optimized, alternating-phase, rectangular pulse (GARP) composite pulse ¹³C decoupling during acquisition of the free induction decay signal (FID). Spin lattice relaxation time (T1) inversion recovery experiments were performed to establish the time required for net magnetization of all analyzed resonances to return to practically 100 % of the equilibrium

value between 90-degree excitation pulses. A recycle delay (D1) of 55 s to 60 s was typically used to stabilize temperature fluctuations during GARP ¹³C decoupling. Data acquisition time was either 5.453 s per scan to generate an FID with 131 072 data points or 5.62 s to generate an FID with 135168 data points. Experiments were performed using 64 to 80 scans. Apodization was performed using an exponential window function to achieve 0.3 Hz line broadening.

Two-dimensional multiplicity-edited ${}^{1}\text{H}{}^{-13}\text{C}$ heteronuclear single quantum coherence (HSQC) NMR experiments were conducted at 298 K. One thousand twenty-four data points were collected in the ${}^{1}\text{H}$ dimension having a spectral width of 13.018 ppm, centered at 6.012 ppm; 256 data points were collected in the ${}^{13}\text{C}$ dimension having a 165 ppm spectral width centered at 90 ppm. Typically, 8 scans, preceded by16 dummy scans for which no data was acquired, were performed using a 64 µs dwell time.

3.7.1.3 Purity Measurement Model

The chemical mass fraction purity (%) of the primary component, Pp, of a calibrant sample is determined using the following ¹H-NMR equation:

$$P_{\rm P} = \left(\frac{N_{\rm I}}{N_{\rm P}}\right) \times \left(\frac{M_{\rm P}}{M_{\rm I}}\right) \times \left(\frac{A_{\rm P}}{A_{\rm I}}\right) \times \left(\frac{m_{\rm I}}{m_{\rm C}}\right) \times P_{\rm I}$$

where $N_{\rm P}$ = multiplicity (# H/peak) of the primary chemical component spectral peak

 $N_{\rm I}$ = multiplicity (# H/peak) of the internal standard peak

 $M_{\rm P}$ = relative molar mass, g/mol, of the primary chemical component

 $M_{\rm I}$ = relative molar mass, g/mol, of the internal standard

 $A_{\rm P}$ = integrated area of the primary component peak

 $A_{\rm I}$ = integrated area of the internal standard peak

 $m_{\rm C}$ = mass (g) of the sample material

 $m_{\rm I} = {\rm mass} ({\rm g})$ of the internal standard

 $P_{\rm I}$ = mass fraction purity (%) of the internal standard

The proton multiplicities and relative molar masses (g/mol) of primary components and internal standards are determined by their respective chemical structures. The multiplicities, N_P and N_I , are considered to be exact without uncertainty. The uncertainty of the relative molar masses (g/mol) are determined with a web-based molecular weight calculator [7] that applies the International Union of Pure and Applied Chemistry Guidelines provided by the Commission on Isotopic Abundances and Atomic Weights. The peak integrals (A_P and A_I) were determined through spectral analysis of multiple peaks for each compound. Their standard uncertainties were estimated as the standard deviation of the respective impurity-adjusted, proton multiplicity-normalized peak areas. The mass of the sample material and internal standard are determined by weighing, with an assigned uncertainty based on observed balance performance. The purities of the internal standards and their uncertainties are linked via ¹H-NMR_{IS} to the value for purity of the NIST PS1.

3.7.1.4 Calculations

The evaluation programs used to estimate the standard uncertainty, u(Pp), and the approximate 95 % uncertainty interval about Pp have evolved over time. All of the programs that were used for the vitamin B calibrants were implemented using Monte Carlo approaches.

The earliest method was a parametric bootstrap [8] wherein all of the above model's input variables were varied randomly using a bespoke Matlab program. During 100,000 iterations, Gaussian kernel "pseudo values" for each of the inputs were defined using the Matlab "randn" random number generation function and each input variable's value and standard uncertainty. The value of Pp was calculated using these pseudo values and the result recorded. The uncertainties were estimated from the distribution of the 100,000 calculated Pp results. Since each of the inputs was varied independently and did not consider degrees of freedom nor covariances between the inputs, the estimated uncertainties tended to be conservative (in the sense of providing large uncertainty estimates). However, the method can be used when results from only three samples are available.

When measurement data for four or more independently prepared samples are available, a hierarchical Bayesian method can make fuller use of all of the information implicitly available in the results and the experimental design [9]. The method was first implemented as bespoke OpenBUGS [10] programs. It has since been implemented as the NIST ABACUS ¹H-NMR Shiny app for chemical purity assessment [11].

3.7.2 Vitamin B₁ (Thiamine)

One vial of thiamine hydrochloride (Lot # O1F326, USP) was evaluated using potassium hydrogen phthalate (KHP, NIST SRM 84k) as internal standard and D₂O as solvent. Analysis of control samples indicated that the material was stable over time.

Due to the larger masses required for accurate weighing using the analytical balance, only three samples were prepared and analyzed. The longest T1 was 4.1 s. Figure 9 presents the ¹H-NMR- spectra with labeled peak assignments. Table 8 lists descriptions of the integrated peaks.

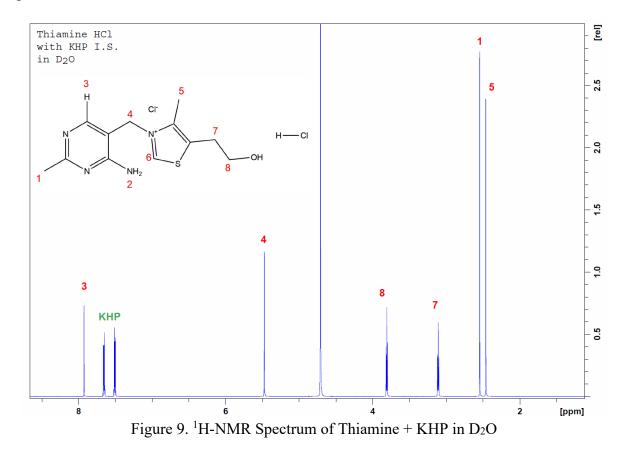
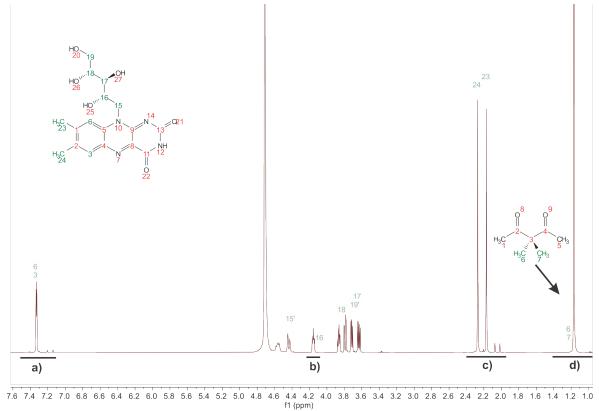
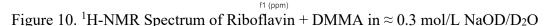


Table 8. ¹H-NMR Integration Regions for Thiamine Purity Assessment


	Chemical		Proton	Proton
Analyte	Shift (ppm)	Multiplet Type	Moiety	Multiplicity
	5.5	Singlet	4	2
Thiamine Hydrochloride	3.8	Triplet	8	2
Potassium Hydrogen Phthalate	7.6	2× Multiplets	Aromatic	4


Since data for more than three samples are needed for the more rigorous Bayesian approach, the purity result was calculated using the parametric bootstrap method. The purity of thiamine hydrochloride was assessed as (95.36 ± 1.01) % with a 95 % level of confidence expanded uncertainty interval of (93.38 to 97.34) %.

3.7.3 Vitamin B₂ (Riboflavin)

One 500 mg bottle of the riboflavin (USP Lot #N0C021) calibrant was characterized using dimethylmalonic acid (DMMA, Fluka TraceCERT Lot #BCBL6998V) as internal standard. Previous studies established that concentrations of riboflavin in D₂O that are great enough for accurate ¹H-NMR measurements are not achievable at neutral pH. A solution of ≈ 0.3 mol/L NaOD in D₂O was found suitable for dissolving riboflavin at mass concentrations > 1mg/mL. However, an initial experiment demonstrated that riboflavin significantly degrades with time in the NaOD/D₂O solvent, with the degree of degradation correlated to the amount of time between sample dilution and the NMR experiment.

A set of five samples were prepared and each sample was individually diluted just prior to the NMR experiment to minimize degradation prior to analysis. The longest T1 lasted approximately 1.1 s. Figure 10 presents the ¹H-NMR- spectra with labeled peak assignments. Table 8 lists descriptions of the integrated peaks.

	Chemical		Proton	Proton
Analyte	Shift (ppm)	Multiplet Type	Moiety	Multiplicity
	a) 7.3	2 Overlapping Singlets	3,6	2
Riboflavin	b) 4.2	Multiplet	16	1
	c) 2.1	2 Overlapping Singlets	24,23	6
Dimethylmalonic Acid	d) 1.3	Singlet	$2 \times (-CH_3)$	6

Table 9. ¹H-NMR Integration Regions for Calcium Pantothenate Purity Assessment

Due to the presence of overlapping impurity peaks, only the integral region around the peak at 4.2 ppm was used to estimate riboflavin purity. This integral also contained impurity peaks, but they were smaller and more readily quantified than those of the other regions. The interfering peaks are believed to have arisen from impurities that structurally related to riboflavin.

A bespoke OpenBUGS implementation of the hierarchical Bayesian procedure was used to estimate riboflavin purity. The purity was assessed as (93.1 ± 0.6) % with a 95 % level of confidence expanded uncertainty interval of (91.8 to 94.2) %.

3.7.4 Vitamin B₃ (Niacin)

One vial of the niacin (USP Lot #J0J235, Rockville, MD) calibrant was characterized using maleic acid (Sigma Lot #BCBM8127V) as internal standard and perdeuterated dimethyl sulfone (DMSO- d_6) as solvent. Earlier studies had noted difficulties in dissolving niacin in D₂O. Analysis of control samples indicated that the material was stable over time.

Four replicate samples were prepared. The longest T1 was 4.5 s, however a long D1 of 105s was used to limit effects from temperature fluctuations due to ¹³C decoupling. Figure 11 presents the ¹H-NMR- spectra with labeled peak assignments. Table 10 lists descriptions of the peaks integrated for quantitation.

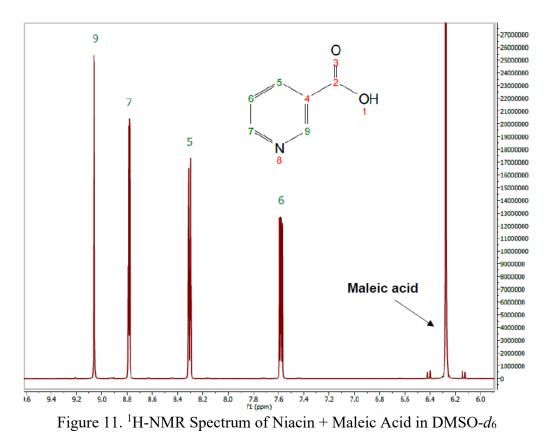


Table 10. ¹H-NMR Integration Regions for Niacin Purity Assessment

	Chemical		Proton	Proton
Analyte	Shift (ppm)	Peak and Multiplet Type	Moiety	Multiplicity
	7.5	Triplet	6	1
Niacin	8.3	Doublet	5	1
	9.0	Doublet (8.9) + Singlet (9.1)	7,9	2
Maleic Acid	6.3	Singlet		2×(=CH)

The aromatic peaks at 9.06 ppm and 8.78 ppm were evaluated as a combined integral since they were very close to each other.

Estimates of purity for niacin were determined using the NIST ABACUS ¹H-NMR Shiny app for chemical purity assessment. The purity was assessed as (99.68 \pm 0.23) % with a 95 % level of confidence expanded uncertainty interval of (99.12 to 99.97) %.

3.7.5 Vitamin B₅ (Calcium pantothenate)

One vial of calcium pantothenate (Lot #O1H081) was evaluated using potassium hydrogen phthalate (KHP, SRM 84k) as internal standard and D₂O as solvent. Analysis of control samples indicated that the material was stable over time.

Five replicate samples were prepared and analyzed. The longest T1 was 4.5 s. Figure 12 presents the ¹H-NMR- spectra with labeled peak assignments. Table 11 lists descriptions of the integrated peaks.

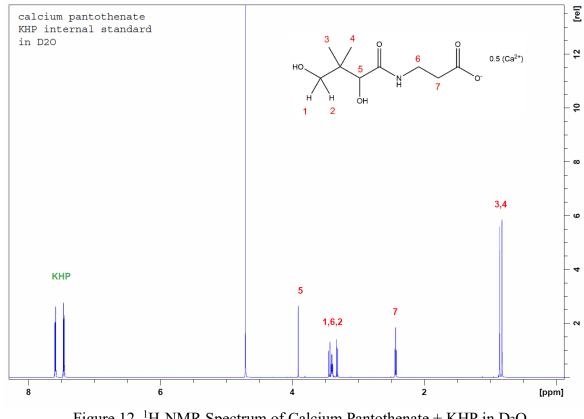
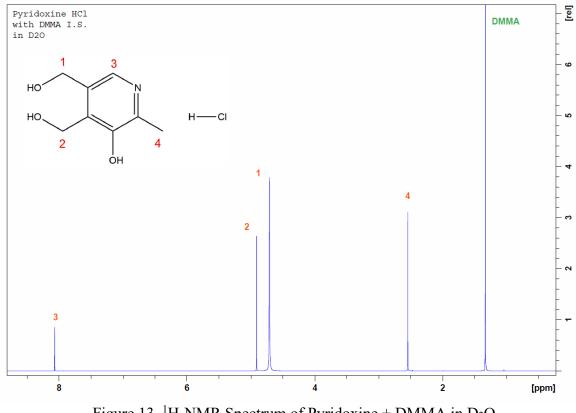
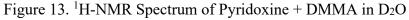


Figure 12. ¹H-NMR Spectrum of Calcium Pantothenate + KHP in D₂O

Table 11. ¹H-NMR Integration Regions for Calcium Pantothenate Purity Assessment


	Chemical		Proton	Proton
Analyte	Shift (ppm)	Multiplet Type	Moiety	Multiplicity
Calcium Pantothenate	3.9	Singlet	5	1
	2.4	Triplet	7	2
Potassium Hydrogen Phthalate	7.6	2× Multiplets	Aromatic	4


Estimates of purity for calcium pantothenate were determined with the hierarchical Bayesian procedure implemented via the NIST ABACUS ¹H-NMR Shiny app for chemical purity assessment. The purity of calcium pantothenate was assessed as (94.77 ± 0.20) % with a 95 % level of confidence expanded uncertainty interval of (94.37 to 95.12) %.

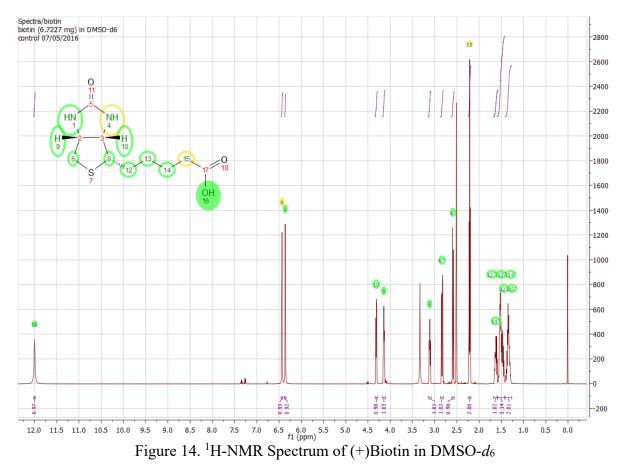
3.7.6 Vitamin B₆ (Pyridoxine Hydrochloride)

One vial of pyridoxine hydrochloride (Lot # Q0G409) was evaluated using dimethylmalonic acid (DMMA, Sigma Lot # BCBG455V) as internal standard and D₂O as solvent. No solubility issues were encountered. Analysis of control samples indicated that the material was stable over time.

Due to the larger masses required for accurate weighing using the analytical balance, only three samples were prepared and analyzed. The longest T1 was 1.5 s. Figure 13 presents the ¹H-NMR- spectra with labeled peak assignments. Table 12 lists descriptions of the integrated peaks.

Table 12. ¹ H·	-NMR Integratio	n Regions for Pyrid	oxine Purity Assessment

	Chemical		Proton	Proton
Analyte	Shift (ppm)	Multiplet Type	Moiety	Multiplicity
Pyridoxine Hydrochloride	8	Singlet	3	1
Dimethylmalonic Acid	1.3	Singlet	2× (-CH ₃)	6


Only one peak (8.0 ppm) was selected for integration since the peaks for moieties 1 and 2 (Figure 3) partially overlapped with the D₂O peak.

Since more than three samples are needed for the more rigorous Bayesian approach, the purity result was calculated using the parametric bootstrap method. The purity of pyridoxine hydrochloride was assessed as (99.50 ± 0.67) % with a 95 % level of confidence expanded uncertainty interval of (98.20 to 100.00) %. While the symmetric distribution defined by the (mean ±SD) is computationally convenient, the asymmetric distribution (99.50 +0.24, -0.67) % is likely a better representation.

3.7.7 Vitamin B₇ (Biotin)

One vial of the D (+) enantiomer of biotin (Sigma Aldrich Lot #073K07115) calibrant was characterized using 1,2,4,5-tetrachloro-3-nitrobenzene (tecnazene, Sigma Aldrich Lot # BCBC2607V) as internal standard and DMSO-*d*₆ as solvent.

Five biotin replicate samples were prepared. ¹³C decoupling was not used during the FID acquisition. Figure 14 presents the ¹H-NMR spectrum of biotin with labeled peak assignments; Figure 15 presents the ¹H-NMR spectrum of tecnazene with labeled peak assignment. Table 13 lists descriptions of the integrated peaks.

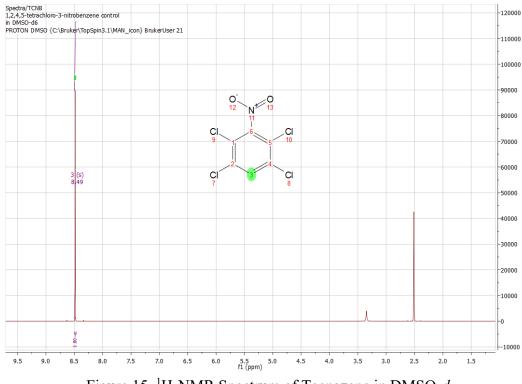


Figure 15. ¹H-NMR Spectrum of Tecnazene in DMSO-*d*

	Chemical		Proton	Proton
Analyte	Shift	Multiplet Type	Moiety	Multiplicity
Biotin	4.2 3.1 2.2	Triplet and Double Triplet Multiplet Triplet	10 & 9 8 15	2 1 2
Tecnazene	8.4	Singlet	3	1

Of the many ¹H peaks in the biotin spectrum, only three were assessed to be of suitable quality for ¹H-NMR. Broad peaks in crowded spectral regions (δ 1.8 ppm to δ 1.1 ppm) were not selected due to the difficulty in determining reliable integral regions and the potential for significant underlying impurity components. The peak at δ 2.5 ppm was not selected due to overlap with the solvent impurity peak, nor was the non-equivalent resonance peak of the same proton moiety (6) at δ 2.9 ppm. Additionally, the peaks of the exchangeable -NH and -OH moieties were not selected for quantification. Tecnazene has only one suitable ¹H.

The purity of biotin was assessed as (97.64 ± 0.59) % with a 95 % level of confidence expanded uncertainty interval of (96.49 to 98.80) % using a parametric bootstrap method. The biotin uncertainty largely reflects variability among the multiplicity-normalized integrals of the three biotin regions used for quantification.

4 NIST Measurement of Vitamin B₁₂ (Cyancobalamin)

The mass fraction of cyanocobalamin (CNCbl) in SRM 3289 was determined using liquid chromatography tandem inductively coupled plasma mass spectrometry (LC-ICP-MS) [12] and single-point standard addition with use of an internal standard.

4.1 Materials

One bottle from each of ten boxes of SRM 3289 (numbers 7, 39, 84, 108, 148, 179, 221, 255, 285 and 318) was obtained for analysis. One bottle of SRM 3280 was obtained for use as a control.

The 18 M Ω -cm deionized water used as solvent was locally generated. Optima-grade nitric acid (HNO₃), HPLC-grade methanol, HPLC-grade acetonitrile, and reagent-grade ethylenediamine tetraacetic acid disodium salt dihydrate (EDTA) were obtained from Thermo Fisher Scientific. US Pharmacopeia (USP, Rockville, MD) Reference Standard Cyanocobalamin lot# F07440 was purchased from USP.

4.2 Equipment

An Agilent 1260 Infinity LC system coupled to an Agilent 8800 inductively coupled plasma mass spectrometer (ICP-MS) was used for the determination of cobalt (Co) and CNCbl. The LC system consisted of an autosampler and a quaternary pump. Separation of CNCbl from Co was accomplished by using an Atlantis T3 column. An analytical balance was used in the preparation of samples and standards. The balance is serviced and calibrated annually. Prior to use, calibration of the balance was verified using standard masses ranging from 20 g to 100 g. A Retsch model RM 100 automated mortar-and-pestle grinder, a dual action shaker, an ultrasonic bath, and a centrifuge were used in sample preparation. A model DMA 35 density meter was used to measure the density of sample solutions in the extraction and derivatization process.

4.3 Preparation

All samples were analyzed in as-received condition. Sample preparations were conducted in a dark room with red lamps because aqueous solutions of CNCbl are light-sensitive.

Fifteen tablets from each bottle of SRM 3289 and SRM 3280 were ground for 15 min and 10 min, respectively, to generate homogenous samples. The ground samples were placed in 50 mL Falcon tubes that were covered on the outside with aluminum foil to protect the contents from exposure to light.

Duplicate 0.5 g portions were accurately weighted from each of the ten SRM 3289 samples into two 50 mL centrifuge tubes. An aliquot of 40 mL of de-ionized water was added and the contents were shaken to wet all the powder. The Falcon tubes with the samples were shaken in the shaker for 15 min at 60 cycles/min, and then were sonicated in a water bath for 15 min. Each sample was quantitatively transferred into a pre-weighed 100 mL volumetric flask, diluted to volume with water, and weighed. The contents were transferred to two 50 mL Falcon tubes and centrifuged for 15 min at 314 rad/s (3000 RPM). The supernatant from both Falcon tubes was filtered through a Whatman 2V filter paper into a 125 mL Erlenmeyer flask.

A pre-qualified S*PURE Maxi-Clean C18 900 mg SPE cartridge (Part #20942/5122344) was attached to a 20 mL syringe. The SPE cartridge was conditioned and rinsed by allowing 20 mL acetonitrile and then 10 mL water to pass through the cartridge by gently pressing the piston of the syringe. The conditioned SPE cartridge with the 20 mL syringe barrel was inserted onto the stopcock of the vacuum manifold. A 20 mL aliquot of the sample filtrate was passed through the cartridge to collect the analyte. The residual effluent was monitored to exit the SPE cartridge at approximately 47 drops per minute to prevent a loss of the analyte at excessive flow rate. The filtrate was discarded. After all the sample filtrate passed through the cartridge was air-dried by pulling vacuum until no more effluent was observed. The stopcock was then closed.

A 5 mL volumetric flask was placed under the cartridge, and a 4.5 mL aliquot of 30 % acetonitrile in water (volume fractions) was added to the syringe. CNCbl in the SPE cartridge was then eluted into the volumetric flask, assisted by gently pressing the piston. The sample was then diluted to volume with water. The contents of the volumetric flask were filtered through a 0.45 μ m nylon filter. A 1 mL aliquot of the filtrate was collected for the determination of density, and the rest was used for the determination of CNCbl by LC-ICP-MS.

An aliquot of 200 mg of a solution containing 90 μ g/kg Co was added as an internal standard to 2 g of the filtrate. The resulting solution was homogenized by gentle shaking. A 1 g aliquot subsample was transferred into a 2 mL amber vial. A 120 mg aliquot of a solution containing 71 μ g/kg Co as CNCbl was added to the vial to constitute a spiked sample for the purpose of quantification by the method of standard additions (see Sections 4.5.3 and 4.5.4).

Four blanks and four SRM 3280 controls were prepared similarly.

4.4 Analysis

SRM 3289, SRM 3280, and procedural blanks were analyzed by LC-ICP-MS using the separation and spectrometric parameters listed in Table 14. Free Co from the internal standard and Co from CNCbl were measured at 59 m/z in the single-quadrupole no-gas mode. The measurement of all samples was completed in two days. Figure 16 displays a typical chromatogram.

System	Component	Description
	Column	150 mm x 2.1 mm i.d.
LC	Mobile Phase	10 mmol/L EDTA in 25:75 methanol:water
LC	Flow Rate	200 µL/min, isocratic
	Injection Volume	10 µL
	RF Power	1550 W
Trinto Que drun ele	Nebulizer Gas Flow	1 mL/min
Triple Quadrupole ICP-MS	Make Up Gas Flow	0.1 L/min
ICT-IVIS	Sample Introduction	PFA microflow nebulizer
		PFA Scott type spray chamber

 Table 14. LC-ICP-MS Parameters for the Determination of Cyanocobalamin

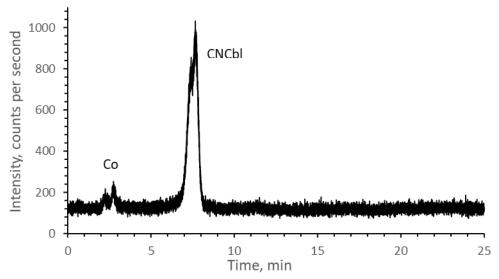


Figure 16. Exemplar LC-ICP-MS Chromatogram for Cyanocobalamin in SRM 3289.

There was no detectable CNCbl in the procedural blanks. The (mean \pm SD) result of four replicate analyses of the SRM 3280 control was (4.63 \pm 0.26) µg/g. This agrees well with the certified value and its 95 % expanded uncertainty of (4.80 \pm 1.00) µg/g (Figure 17). These results suggest that there is no detectable measurement bias.

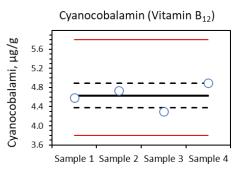


Figure 17. Mass Fraction Cyanocobalamin in SRM 3280 Control

Open circles represent results of the analysis of four SRM 3280 control preparations. The solid black line represents the mean value; the dashed lines bound one standard deviation above and below the mean. Red solid lines bound the approximate 95 % level of confidence expanded uncertainty interval for cyanocobalamin stated in the SRM 3280 Certificate of Analysis [1].

The standard uncertainty of these LC-ICP-MS measurements is estimated using:

$$u = \sqrt{u_{\rm rep}^2 + \beta_1^2 + \beta_2^2 + \beta_3^2 + \beta_4^2 + \beta_5^2} \,.$$

These uncertainty components are described and their estimated values are provided in Table 15.

Table 15. Cyanocobalamin Uncertainty Components and Estimated Values

		Degrees of	
Component	Description	Freedom	Value
$u_{ m rep}$	Standard uncertainty of replicate LC-ICP-MS measurements	19	0.069
β_1 , Calibrant	Experiment-based CNCbl characterization standard uncertainty	large	0.022
β_2 , Weighing	Balance calibration specification, converted to standard uncertainty	large	0.0026
β₃ Volumetry	Volumetric flask and syringe specifications, converted to standard uncertainty	large	0.01
β4, Density	Density meter readability, converted to standard uncertainty	large	0.004
β_5 , Recovery	Experiment-based method recovery standard uncertainty	large	0.048
и	Combined standard uncertainty:	49	0.088

4.5 Preparation of the Standard Additions Spiking Solution

Analyte identity confirmation for the USP Vitamin B₁₂ standard used to produce the CNCbl spiking solution was confirmed using high-resolution mass spectrometry (HR-MS) and NMR spectroscopy. The mass fraction of Co contributed by CNCbl to the spiking solution was established using ICP-MS and LC-ICP-MS.

4.5.1 Identity by HR-MS

A 2.4 mg sample of the USP CNCbl standard was dissolved in 50:50 water/acetonitrile (volume fractions) to prepare a solution with mass fraction 240 μ g/g. The HR-MS measurement was performed with a Thermo Q-Exactive via direct infusion at 500 μ L/min into an electrospray ionization (ESI) source operated in positive mode. The mass spectrum was acquired between 150 *m*/*z* to 2000 *m*/*z* at a resolving power of 70 000. Prior to analysis the instrument was calibrated with a relative mass accuracy of 0.000 021 %. Table 16 summarizes the instrument settings.

Table 16. Instrument Parameters for Q-Exactive HR-MS of Cyancobalamin Standard

Parameter	Value
Sheath Gas Flow Rate	60 L/min
Auxiliary Gas Flow Rate	20 L/min
Spray Voltage	3.00 kV
Capillary Temperature	380 °C
Auxiliary Gas Temperature	350 °C

Figure 18 displays the HR-MS spectrum of the USP material. Table 17 compares the theoretical [Error! Bookmark not defined.] and measured mass to charge ratios (m/z) of CNCbl for the $[M+H]^+$ and $[M+2H]^{2+}$ ions. The measured values are consistent with those expected for CNCbl.

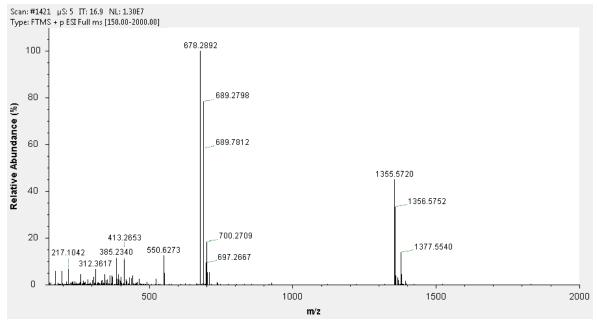
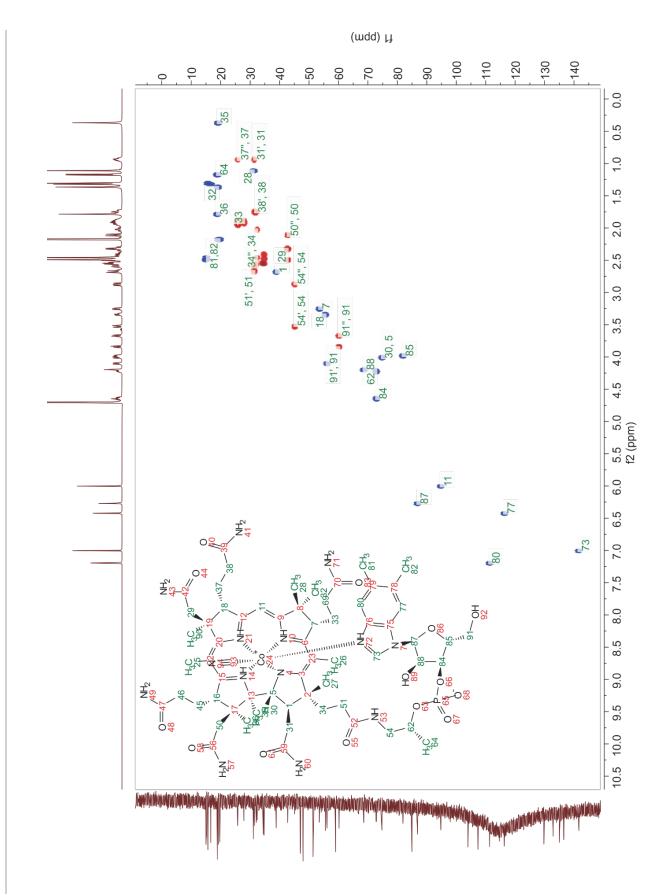


Figure 18. HR-MS Spectrum of the Cyanocobalamin Standard


Table 17. Theoretical and Measured m/z for the Cyanocobalamin Standard

Mass to Charge Ratio, m/z											
Ion	Theoretical	Measured	Difference								
$[M+H]^+$	1355.5747	1355.5720	0.0027								
$[M+2H]^{2+}$	678.2910	678.2892	0.0018								

4.5.2 Identity by NMR

One vial of the USP CNCbl standard was assessed with various NMR techniques using D_2O as solvent. One dimensional ¹H, two-dimensional ¹H-¹³C HSQC with sensitivity enhancement using adiabatic shaped pulses, and ¹H-¹H correlation (COSY) NMR spectroscopy experiments were conducted at 298 K. Figure 19 displays the multiplicity-edited ¹H-¹³C HSQC spectrum of CNCbl in D₂O with chemical structure assignments of correlation cross sections. Figure 20 and Figure 21 display the ¹H and ¹H-⁻¹H COSY spectra used to support the HSQC assessment. These assignments are in full accordance with published literature [13,14].

There are no major signals in the NMR spectra (Figures 19-21) not attributable to CNCbl or water. Peaks that are suspected to be organic impurity components are observed in the ¹H spectrum (Figure 20); however, the relative areas of these peaks are <5 % of those for CNCbl.

This publication is available free of charge from: https://doi.org/10.6028/NIST.SP.260-220

Page 30 of 55

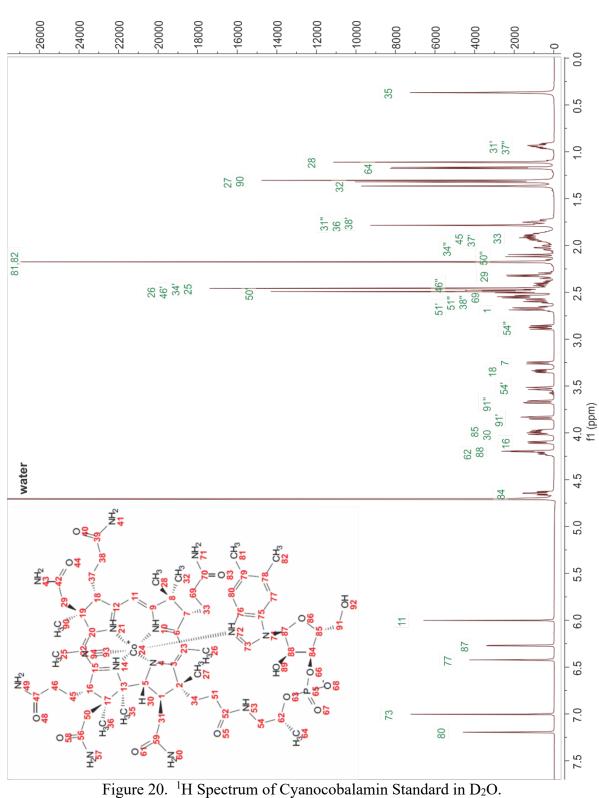
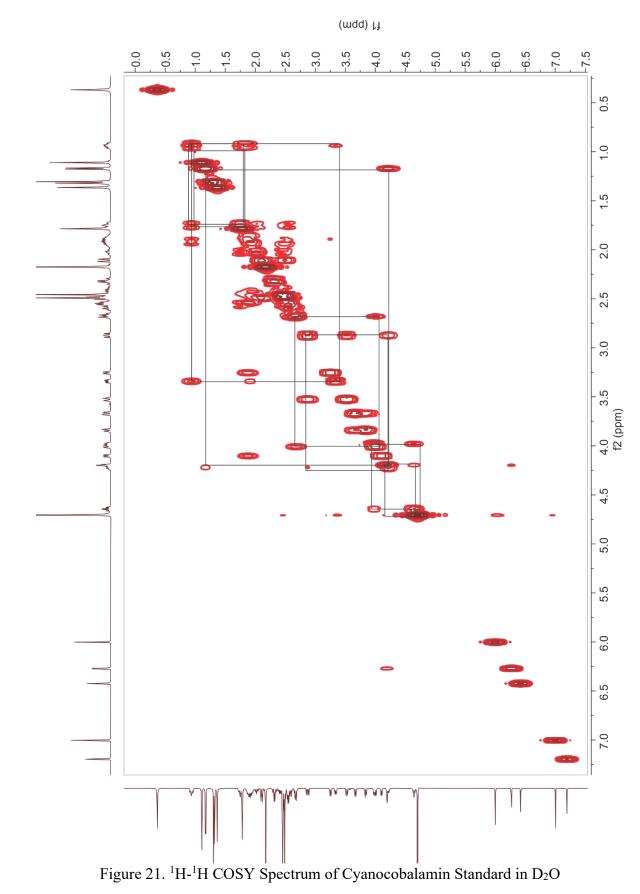
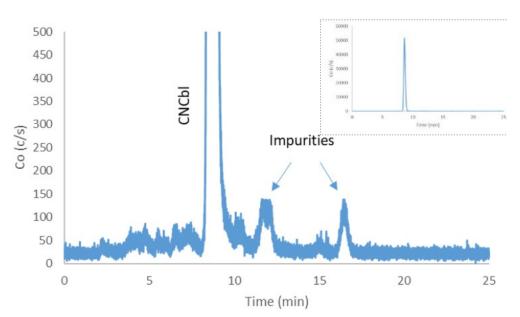



Figure 19. Multiplicity-Edited ${}^{1}H{}^{-13}C$ HSQC Spectrum of Cyanocobalamin Standard in D_2O

Page 32 of 55


4.5.3 Characterization of the Standard Additions Spiking Solution

The amount content of Co in the spiking solution attributable to CNCbl was established in two stages: 1) using ICP-MS to determine the total Co mass and 2) using LC-ICP-MS to determine the fraction of total Co coming from impurities. The mass of Co from CNCbl was calculated by subtracting the cobalt of the impurities from the total cobalt.

A stock solution containing nominally 123 μ g/g of Co as CNCbl was prepared by dissolving 141 mg of the as-received CNCbl standard in 50 g water. Eight aliquots of 0.2 g of the solution were weighed into eight microwave vessels. Eight milliliters of HNO₃ were added to each vessel and the contents microwave digested using two cycles with: power, 1600 W; ramp time, 25 min; temperature, 220 °C; and hold time, 15 min. Four blanks were prepared similarly. Each digested sample was transferred to a 60 mL low-density polyethylene (LDPE) bottle, and the contents were diluted to 50 g with water. A 0.2 g aliquot of each sample was weighed into a 60 mL LDPE bottle, into which 0.2 g of a solution containing 501 μ g/kg rhodium (Rh) was added as an internal standard. The contents were diluted to 50 g with 1.5 % HNO₃ in water.

A 25 g subsample of each replicate was weighed into a 30 mL LDPE bottle and combined with a 0.5 g aliquot of a solution containing a Co mass fraction of 218 μ g/kg, producing a spiked sample for the purpose of quantification by single-point standard additions using ICP-MS. The Co spike was prepared from SRM 3113 Cobalt (Co) Standard Solution, lot #000630. The result of the measurement of total Co in the stock solution was (114.8 ± 0.46) μ g/g based on the eight replicates.

Separately, six samples were prepared from the stock solution for assessment of Cocontaining impurities therein. Each sample was prepared by diluting the stock solution with water to contain approximately 200 μ g/kg Co as CNCbl. The samples were measured for Co species by LC-ICP-MS using the instrumental parameters described in Table 14. Figure 22 displays a typical chromatogram of the CNCbl stock solution.

Page 33 of 55

Figure 22. Typical Chromatogram of Cyanocobalamin Standard Stock Solution

There are some barely visible small peaks along with the dominant CNCbl peak. Given that the unknown peaks have retention time greater than the retention time of free Co, which is about 2 min, the impurities are most likely organic Co complexes. Assuming these Co-containing impurities have the same ICP-MS detector response factor as CNCbl, the purity of the CNCbl calibrant can be estimated from the ratio of CNCbl peak area to the total area of the Co signal. The fraction of Co in the CNCbl calibrant contributed by CNCbl was (0.9917 ± 0.0002).

The amount of Co from CNCbl in the stock solution is calculated as the product of the total Co amount and the fraction of Co as CNCbl, $(113.9 \pm 0.5) \mu g/g$. This result is traceable to the SI thru the SRM 3113 certified value and the LC-ICP-MS determination of the impurity content. The estimated standard uncertainty is almost entirely accounted for by the repeatability of the total Co measurement using the standard additions method.

4.5.4 Standard Additions Method

The method of standard additions refers to the calibration of an analytical instrument by measuring the increase in the analytical signal that occurs when a known amount of the analyte is added to the sample. It avoids multiplicative types of matrix interferences (enhancements or suppressions) since the calibrant is present with the same matrix as the sample. It can be used in any situation where an analyte and an internal standard can be quantitatively and homogeneously spiked into the sample.

The mass fraction of the analyte in the sample (F_{sample}) is calculated as:

$$F_{\text{sample}} = R_{\text{u}} \left(\frac{\left(\frac{m_{\text{sp}} F_{\text{sp}}}{m_{\text{spsolu}}} \right)}{R_{\text{sp}} - R_{\text{u}}} \right) \left(\frac{m_{\text{solu}}}{m_{\text{sample}}} \right)$$

where: F_{sp}

 $F_{\rm sp}$ mass fraction of the analyte in the spiking solution $m_{\rm sample}$ mass of sample that is present in the solution to be analyzed $m_{\rm solu}$ total mass of the sample solution after addition of the IS spike $m_{\rm sp}$ mass of the analyte spiking solution delivered to the solution $m_{\rm spsolu}$ mass of the solution that will be spiked $m_{\rm sp}$ analyte/IS signal ratios for the spiked solution $R_{\rm u}$ analyte/IS signal ratios for the unspiked solution.

5 HAMQAP

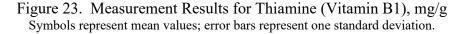
The Health Assessment Measurement Quality Assurance Program (HAMQAP) was launched in collaboration with the NIH ODS in 2017. HAMQAP was established to enable laboratories to improve the accuracy of measurements in samples that represent human intake (e.g., foods, dietary supplements, tobacco) and samples that represent human metabolism (e.g., blood, serum, plasma, urine) for demonstration of proficiency and/or compliance with various regulations. Participation in HAMQAP Exercises is voluntary and anonymous.

As of Fall 2021, SRM 3289 tablets have been distributed in four HAMQAP Exercises. The relevant measurands of interest were:

- Exercise 3, Spring 2019, prefix "C": folic acid (vitamin B₉), β-carotene (provitamin A), and lutein [16].
- Exercise 4, Summer 2019, prefix "D": cyanocobalamin (vitamin B₁₂) and phylloquinone (vitamin K₁) [17].
- Exercise 5, Spring 2020, prefix "E": thiamine (vitamin B₁), riboflavin (vitamin B₂), niacin (vitamin B₃), pantothenic acid (vitamin B₅), pyridoxine (vitamin B₆), ergocalciferol (vitamin D₂), and cholecalciferol (vitamin D₃) [15].
- Exercise 6, Spring 2021, prefix "F": biotin (vitamin B₇), retinyl acetate (vitamin A), ascorbic acid (vitamin C), and α -tocopherol (vitamin E) [18].

Laboratory participants in each exercise are identified with a unique code consisting of an alphabetic exercise-specific prefix and a numeric index reflecting the sign-up order.

While all results are provided as-received in the publicly accessible Final Reports of each exercise, the HAMQAP results presented in the following Section have been lightly screened using standard "outlier" detection methods to eliminate technically suspect values. The most common discrepancies apparently arise from misstating or miscalculating the units of measurement by factors of 10 to 1000.


6 **Measurement Results**

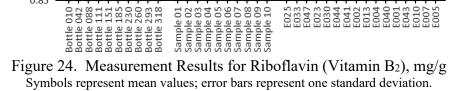
6.1 Vitamin B₁ (Thiamine)

Table 18 lists the thiamine (vitamin B₁) measurement results from the NIST ID-LC-MS/MS, analysis of 10 bottles, the manufacturer's HPLC-UV analysis of 10 samples as provided by their COA, and the 17 accepted results from HAMQAP Exercise 5. Figure 23 displays these values. See Section 3 of [15] for information regarding the HAMQAP results and summary statistics.

NIST Manufacturer HAMQAP Exercise	HAMQAP Exercise 5					
Bottle A B Mean SD Sam %Lbl mg/g Lab A B C	Mean	SD				
10 1.12 1.13 1.125 0.007 1 90.5 0.954 E001 1.540 1.550 1.640	1.577	0.055				
42 1.14 1.17 1.155 0.021 2 105.6 1.113 E002 1.374 1.486 1.457	1.439	0.058				
88 1.19 1.28 1.235 0.064 3 101.5 1.070 E004 1.171 1.148 1.153	1.157	0.012				
111 1.27 1.16 1.215 0.078 4 101.1 1.066 E005 1.280 1.240 1.250		0.021				
151 1.17 1.12 1.145 0.035 5 106.5 1.123 E006 1.440 1.340 1.420		0.053				
185 1.11 1.11 1.110 0.000 6 111.2 1.172 E007 1.440 1.450 1.421	1.437	0.015				
230 1.12 1.29 1.205 0.120 7 108.2 1.141 E010 1.366 1.328 1.358	1.351	0.020				
260 1.27 1.16 1.215 0.078 8 98.2 1.035 E013 0.740 0.765 0.739		0.015				
293 1.12 1.28 1.200 0.113 9 111.3 1.173 E016 0.872 0.905 0.821		0.042				
<u>318 1.16 1.12 1.140 0.028 10 103.0 1.086</u> E023 1.090 1.010 1.060	1.053	0.040				
Mean: 1.175 Mean: 1.093 E025 1.179 1.118 1.116		0.036				
SD: 0.044 SD: 0.067 E030 1.236 1.298 1.291	1.275	0.034				
N: 10 N: 10 E033 0.730 0.740		0.007				
E040 1.220 1.205 1.208	1.211	0.008				
E041 1.315 1.330 1.340		0.013				
E043 1.295 1.253 1.296	1.281	0.025				
E044 1.167 1.297 1.309		0.079				
Consensus Mean:	1.240					
Consensus SD:						
Accepted N:	17					
1.6 -	4					
1.5						
1.4 -						
	-					
E 0.9						
	er					
► 0.8]						
	⊷					
E0123 E012 E012 E012 E012 E013 E014 E013 E013 E013 E013 E013 E013 E013 E013	E001					
Bottle 010 Bottle 011 Bottle 011 Bottle 101 Bottle 101 Bottle 101 Bottle 101 Bottle 101 Bottle 101 Bottle 101 Bottle 101 Bottle 101 Bottle 200 Sample 00 Sample 00 F001 E001 E001 E001 E001 E001 E001 E0						
8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8						

Table 18. Measurement Results for Thiamine (Vitamin B₁), mg/g

Page 36 of 55


6.2 Vitamin B₂ (Riboflavin)

0.85

Table 19 lists the riboflavin (vitamin B₂) measurement results from the NIST ID-LC-MS/MS, analysis of 10 bottles, the manufacturer's HPLC-UV analysis of 10 samples as provided by their COA, and the 16 accepted results from HAMQAP Exercise 5. Figure 24 displays these values. See Section 3 of [15] for information regarding the HAMQAP results and summary statistics.

	NIST					Manufac	turer		HAMQAP Exercise 5				
Bottle	Α	В	Mean	SD	Sam	%Lbl	mg/g	Lab	Α	В	С	Mean	SD
10	1.38	1.46			1	118.4	1.248	E001	1.540	1.550			
42	1.47	1.52	1.495		2	119.3	1.258	E002	1.374	1.486	1.457		
88	1.54	1.52	1.530		3	111.3	1.173	E004	1.171	1.148	1.153		0.012
111	1.47	1.40	1.435		4	114.6	1.208	E005	1.280		1.250		0.021
151	1.48	1.50			5	114.2	1.204	E006	1.440	1.340			0.053
185	1.50	1.47			6	123.6	1.303	E007	1.440		1.421		0.015
230	1.35	1.52	1.435		7	127.1	1.340	E010		1.328			0.020
260	1.54	1.52			8	127.6	1.345	E013		0.765			
293	1.41	1.43			9	130.8	1.379	E016		0.905			0.042
318	1.48		1.470	0.014	10	128.3	1.353	E023	1.090	1.010			0.040
			1.471			Mean:	1.281	E030		1.298	1.291		0.034
			0.042			SD:	0.072	E033	0.730			0.735	
		N:	10			N:	10	E040		1.205			
								E041		1.330			
								E043	1.295	1.253	1.296		
								E044		1.297			0.079
												1.327	
									C			0.058	
										Accep	oted N:	16	
		Г											
		1.55 -	-										
	50	-	.	••							I ▲ ≜ :		
	g/gr	1.45 -		• •	•						T		
	2), n	1.35 -) —		¢▲▲♠		-	
	in B	1.25 -											
	tam	1.25					3		—				
	l (Vit	1.15 -				u							
	Riboflavin (Vitamin B₂), mg/g	1.05 -						I.		NIST			
	Joc	0.95 -						1			iufactur 1QAP	er	
	Rik	0.95							_	-Med			

Table 19. Measurement Results for Riboflavin (Vitamin B₂), mg/g

260 293 318

151 185 230

E025

E033 E047 E023

503(104 Ö

2

010

4

8 00

6.3 Vitamin B₃ (Niacin)

Table 20 lists the niacin (vitamin B₃) measurement results from the NIST ID-LC-MS/MS, analysis of 10 bottles, the manufacturer's HPLC-UV analysis of 10 samples as provided by their COA, and the 13 accepted results from HAMQAP Exercise 5. Figure 25 displays these values. See Section 3 of [15] for information regarding the HAMQAP results and summary statistics.

		NIST]	Manufac	turer		HAI	MQAP	Exerci	se 5	
Bottle	Α	В	Mean	SD	Sam	%Lbl	mg/g	Lab	Α	В	С	Mean	SD
10	11.38	12.57	11.98	0.84	1	117.6	12.40	E001	11.20	11.30	11.00	11.17	0.15
42	12.20	12.12	12.16	0.06	2	118.7	12.51	E002	12.36	12.37	12.36	12.36	0.01
88	12.62	12.40	12.51	0.16	3	114.7	12.09	E004	12.58	12.71	12.69	12.66	0.07
111	12.34	12.87	12.60	0.37	4	116.6	12.29	E006	12.50	13.10	12.40	12.67	0.38
151	12.20	12.81	12.50	0.43	5	114.4	12.06	E007	12.31	12.14	12.39	12.28	0.12
185	12.91	12.67	12.79	0.17	6	116.5	12.28	E010	13.32	13.01	13.19	13.17	0.16
230	12.95	12.45	12.70	0.35	7	118.6	12.50	E030	12.19	12.37	12.67	12.41	0.25
260	11.91	12.24	12.08	0.24	8	115.6	12.19	E033	11.14	11.67		11.41	0.37
293	12.05	12.42	12.23	0.26	9	117.7	12.41	E040	12.46	12.98	12.35	12.60	0.34
318	12.27	11.78	12.02	0.35	10	117.7	12.41	E043	12.20	11.95	12.15	12.10	0.13
		Mean:	12.36			Mean:	12.32	E044	11.64	11.98	11.79	11.80	0.17
		SD:	0.30			SD:	0.16	E046	12.37	12.16	12.27	12.26	0.11
		N:	10			N:	10	E047	11.55	11.36	11.37	11.43	0.11
									Con	sensus	Mean:	12.18	
									0		an	0.00	

Table 20. Measurement Results for Niacin (Vitamin B₃), mg/g

Consensus SD: 0.22

Accepted N: 13

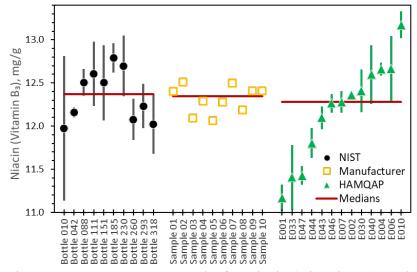


Figure 25. Measurement Results for Niacin (Vitamin B₃), mg/g Symbols represent mean values; error bars represent one standard deviation.

6.4 Vitamin B₅ (Pantothenic Acid)

Table 21 lists the pantothenic (vitamin B₅) measurement results from the NIST ID-LC-MS/MS, analysis of 10 bottles as provided by their COA, the manufacturer's HPLC-UV analysis of 10 samples, and the 13 accepted results from HAMQAP Exercise 5. Figure 26 displays these values. See Section 3 of [15] for information regarding the HAMQAP results and summary statistics.

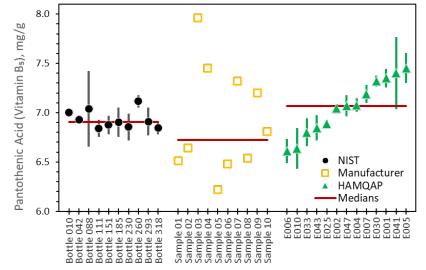
Table 21. Measurement Results for Pantothenic Acid (Vitamin B5), mg/g

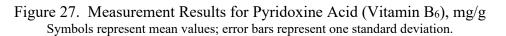
	NIST					Manufac	turer	HAMQAP Exercise 5					
Bottle	А	В	Mean	SD	Sam	%Lbl	mg/g	Lab	А	В	С	Mean	SD
10	7.00	7.00	7.00	0.00	1	123.4	6.51	E001	7.36	7.44	7.25	7.35	0.10
42	6.95	6.91	6.93	0.03	2	125.9	6.64	E002	7.01	7.09	7.04	7.05	0.04
88	6.77	7.31	7.04	0.38	3	151.0	7.96	E004	7.11	7.00	7.12	7.08	0.07
111	6.90	6.78	6.84	0.08	4	141.4	7.45	E005	7.51	7.57	7.28	7.45	0.15
151	6.94	6.81	6.88	0.09	5	118.0	6.22	E006	6.64	6.72	6.48	6.61	0.12
185	7.01	6.80	6.91	0.15	6	122.9	6.48	E007	7.19	7.28	7.10	7.19	0.09
230	6.95	6.76	6.86	0.13	7	138.8	7.32	E010	6.44	6.62	6.85	6.64	0.21
260	7.16	7.07	7.12	0.06	8	124.0	6.54	E025	6.92	6.90	6.85	6.89	0.04
293	6.81	7.01	6.91	0.14	9	136.6	7.20	E030	7.34	7.26	7.36	7.32	0.05
318	6.80	6.89	6.85	0.06	10	129.1	6.81	E033	6.90	6.70		6.80	0.14
]	Mean:	6.93			Mean:	6.91	E041	7.42	7.76	7.03	7.04	7.77
	SD: 0.09					SD:	0.55	E043	6.92	6.70	6.92	6.72	6.97
	N: 10					N:	10	E047	7.10	7.16	6.95	6.96	7.18

Consensus Mean: 6.99

Consensus SD: 0.13

Accepted N: 13




Figure 26. Measurement Results for Pantothenic Acid (Vitamin B₅), mg/g Symbols represent mean values; error bars represent one standard deviation.

6.5 Vitamin B₆ (Pyridoxine)

Table 22 lists the pyridoxine (vitamin B₆) measurement results from the NIST ID-LC-MS/MS, analysis of 10 bottles, the manufacturer's HPLC-UV analysis of 10 samples as provided by their COA, and the 11 accepted results from HAMQAP Exercise 5. Figure 27 displays these values. See Section 3 of [15] for information regarding the HAMQAP results and summary statistics.

NIST Manufacturer HAMQAP Exercise 5 SD Bottle В Mean %Lbl mg/g Lab A В Mean SD А Sam С 1.375 0.049 123.0 1.303 E002 1.484 1.488 1.475 0.019 10 1.41 1.34 1 1.453 2 E004 42 1.38 1.43 1.405 0.035 130.5 1.319 1.308 1.296 1.353 1.319 0.030 88 1.39 1.55 1.470 0.113 3 123.6 1.348 E005 1.270 1.310 1.360 1.313 0.045 125.1 E006 111 1.55 1.36 1.455 0.134 4 1.337 1.340 1.440 1.300 1.360 0.072 151 1.40 1.44 1.420 0.028 5 127.9 1.322 E010 1.496 1.349 1.365 1.403 0.081 E023 185 1.43 1.43 1.430 0.000 6 126.8 1.333 1.350 1.320 1.280 1.317 0.035 7 125.4 1.327 E030 230 1.38 1.67 1.525 0.205 1.304 1.367 1.382 1.351 0.041 260 1.53 1.37 1.450 0.113 8 126.4 1.377 E040 1.366 1.472 1.326 1.388 0.076 1.38 1.58 1.480 0.141 9 1.303 E041 293 125.9 1.321 1.307 1.354 1.327 0.024 1.319 E043 1.42 1.38 1.400 0.028 10 130.6 1.344 1.342 1.303 1.329 0.023 318 E044 Mean: 1.441 Mean: 1.334 1.363 1.357 1.335 1.351 0.015 SD: 0.044 SD: 0.027 Consensus Mean: 1.370 Consensus SD: 0.024 N: 10 N: 10 Accepted N: 11 NIST . Manufacturer Pyridoxine (Vitamin B₆), mg/g 1.65 HAMQAP Medians 1.55 1.45 1.35 1.25 Sample 01 Sample 02 Sample 03 Sample 05 Sample 06 Sample 06 Sample 08 Sample 09 Bottle 088 Bottle 111 Bottle 151 Bottle 185 Bottle 230 Bottle 230 Bottle 293 Bottle 293 Bottle 293 010 042 E005 044 006 040 010 02 500 041 E030 E02 Bottle | Bottle |

Table 22. Measurement Results for Pyridoxine Acid (Vitamin B₆), mg/g

6.6 Vitamin B₇ (Biotin)

Table 23 lists the biotin (vitamin B₇) measurement results from the NIST ID-LC-MS/MS, analysis of 10 bottles, the manufacturer's HPLC-UV analysis of 10 samples as provided by their COA, and the 12 accepted results from HAMQAP Exercise 6. Figure 28 displays these values. See Section 3 of [18] for information regarding the HAMQAP results and summary statistics.

	NIST]	Manufac	cturer	HAMQAP Exercise 6					
Bottle	A B	Mean	SD	Sam	%Lbl	µg∕g	Lab	Α	В	С	Mean	SD
10	23.45 23.92	23.69	0.33	1	103.3	21.78	F017	19.80	21.60	24.30	21.90	2.26
42	24.05 22.41	23.23	1.16	2	111.0	23.41	F026	35.05			35.05	
88	22.68 23.93	23.31	0.88	3	103.8	21.89	F030	20.53	19.35	21.30	20.39	0.98
111	23.36 22.54	22.95	0.58	4	103.3	21.78	F034	42.80	44.90	44.40	44.03	1.10
151	23.21 23.92	23.57	0.50	5	111.0	23.41	F036	17.93	20.55	20.53	19.67	1.51
185	23.60 22.55	23.08	0.74	6	106.8	22.52	F039	13.50	14.20	12.50	13.40	0.85
230	24.69 22.49	23.59	1.56	7	103.8	21.89	F040	31.70	29.70	30.50	30.63	1.01
260	22.71 23.15	22.93	0.31	8	101.0	21.30	F046	28.58	24.75	24.80	26.04	2.20
293	25.69 23.48	24.59	1.56	9	102.3	21.57	F059	18.60	19.50	21.40	19.83	1.43
318	25.81 23.45	24.63	1.67	10	99.3	20.94	F073	28.20	27.40	28.50	28.03	0.57
	Mean:	23.56			Mean:	22.05	F075	18.60	23.80	18.80	20.40	2.95
	SD:	0.61			SD:	0.83	F080 16.66 16.89 16.81 16.7				16.79	0.12
	N:	10			N:	10		Con	sensus	Mean:	23.5	
								C	onsens	us SD:	9.2	
									Accep	oted N:	12	
	4	5 -	NIST							1		
		10	Manuf	facture	r					-		
	4	• -	HAMC									
	/g	_ 1 -	– Media	ns								

Table 23. Measurement Results for Biotin (Vitamin B7), µg/g

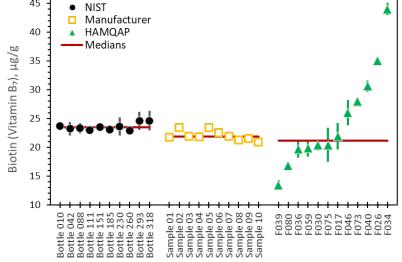


Figure 28. Measurement Results for Biotin (Vitamin B₇), $\mu g/g$ Symbols represent mean values; error bars represent one standard deviation.

6.7 Vitamin B₉ (Folic Acid)

Table 24 lists the folic acid (vitamin B₉) measurement results from the manufacturer's HPLC-UV analysis of 10 samples as provided by their COA and the 16 accepted results from HAMQAP Exercise 3. Figure 29 displays these values. See Section 3 of [16] for information regarding the HAMQAP results and summary statistics.

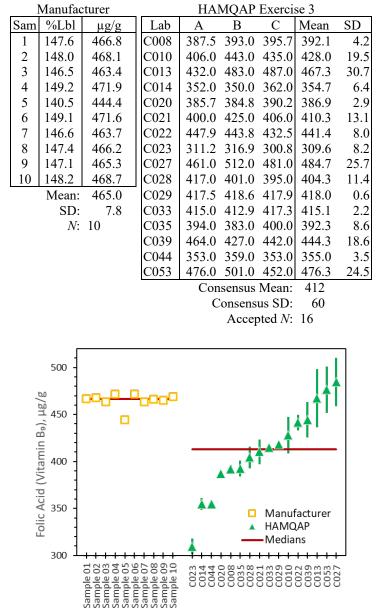
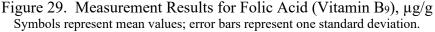



Table 24. Measurement Results for Folic Acid (Vitamin B9), µg/g

6.8 Vitamin B₁₂ (Cyanocobalamin)

Table 25 lists the cyanocobalamin (vitamin B₁₂) measurement results from the NIST ID-LC-MS/MS, analysis of 10 bottles, the manufacturer's HPLC-UV analysis of 10 samples as provided by their COA, and the 13 accepted results from HAMQAP Exercise 4. Figure 30 displays these values. See Section 3 of [17] for information regarding the HAMQAP results and summary statistics.

NIST Manufacturer HAMQAP Exercise 4 SD Bottle А В Mean Sam %Lbl Lab А В С Mean SD µg/g 7 4.58 4.50 0.12 122.2 D001 5.51 5.22 6.50 5.74 4.41 1 5.80 0.67 39 4.92 0.59 2 118.9 D009 5.99 4.08 4.50 5.64 6.75 6.17 6.30 0.40 3 84 4.29 4.49 4.39 0.14 120.0 5.69 D010 7.16 9.40 8.45 8.34 1.12 4.35 123.3 D014 7.48 108 4.26 4.43 0.12 4 5.85 8.80 8.02 8.10 0.66 148 4.88 4.89 4.89 0.01 5 118.9 5.64 D019 4.63 5.19 4.90 4.91 0.28 0.27 D021 179 4.66 5.04 4.85 6 123.3 5.85 4.22 4.50 4.82 4.51 0.30 7 221 4.80 4.88 0.11 121.1 5.75 D024 7.09 7.20 6.64 6.98 0.30 4.96 255 4.11 4.24 4.18 0.09 8 121.4 5.76 D026 3.75 4.64 4.81 4.40 0.57 9 D031 285 4.93 4.92 4.93 0.01 125.6 5.96 4.37 4.17 4.57 4.37 0.20 4.44 4.49 4.47 0.04 124.4 5.90 D036 318 10 4.36 4.44 4.39 4.40 0.04 Mean: 4.59 Mean: 5.78 D048 4.64 4.44 4.42 4.50 0.12 SD: 0.27 SD: 0.11 D049 3.88 3.67 3.60 3.72 0.15 N: 10 N: 10 D050 5.34 5.34 5.53 5.40 0.11

Table 25. Measurement Results for Cyanocobalamin (Vitamin B12), µg/g

Consensus Mean: 5.47

Accepted N: 13

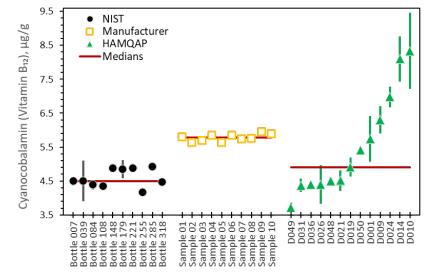
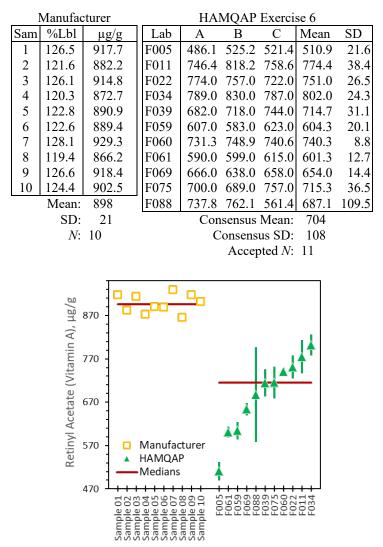


Figure 30. Measurement Results for Cyanocobalamin (Vitamin B₁₂), µg/g Symbols represent mean values; error bars represent one standard deviation.

Consensus SD: 0.43

6.9 Vitamin A (as Retinyl Acetate)

Table 26 lists the retinyl acetate (vitamin A) measurement results from the manufacturer's HPLC-UV analysis of 10 samples as provided by their COA and the 11 accepted results from HAMQAP Exercise 6. Figure 31 displays these values. See Section 3 of [18] for information regarding the HAMQAP results and summary statistics.



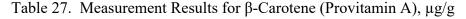
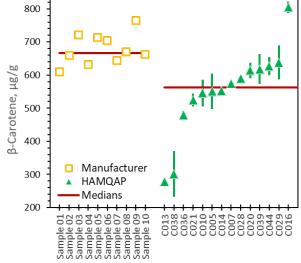

Table 26. Measurement Results for Retinyl Acetate (Vitamin A), µg/g

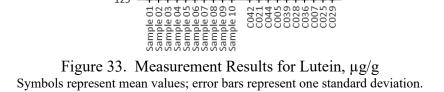
Figure 31. Measurement Results for Retinyl Acetate (Vitamin A), µg/g Symbols represent mean values; error bars represent one standard deviation.

6.10 Provitamin A (β-Carotene)

Table 27 lists the β -carotene (provitamin A) measurement results from the manufacturer's HPLC-UV analysis of 10 samples as provided by their COA and the 14 accepted results from HAMQAP Exercise 3. Figure 32 displays these values. See Section 3 of [16] for information regarding the HAMQAP results and summary statistics.

]	Manufac	turer		HA	MQAP	Exerci	se 3	
Sam	%Lbl	μg/g	Lab	Α	В	С	Mean	SD
1	137.7	609.7	C005	514	613	526	551	54
2	149.0	659.8	C007	574	568	579	574	6
3	162.9	721.3	C010	573	499	565	546	41
4	142.6	631.4	C013	274	281	281	279	4
5	161.3	714.2	C014	554	562	541	552	11
6	159.0	704.1	C016	812	785	816	804	17
7	145.5	644.3	C020	606	639	596	614	23
8	151.4	670.4	C021	512	547	514	524	20
9	172.6	764.3	C028	592	587	589	589	3
10	149.6	662.4	C029	584	646	685	638	51
	Mean:	678	C036	481	490	468	480	11
	SD:	47	C038	372	299	233	301	70
	N:	10	C039	640	566	648	618	45
			C044	600	653	627	627	27
				Cor	isensus	Mean:	532	
				C	Consens	us SD:	153	
					Accep	oted N:	14	
		-						1
	800	+					· · · · · ·	




Figure 32. Measurement Results for β -Carotene (Provitamin A), $\mu g/g$ Symbols represent mean values; error bars represent one standard deviation.

6.11 Lutein

Lutein is a "non-provitamin A" carotenoid believed to have protective health effects [19]. Table 28 lists the lutein measurement results from the manufacturer's HPLC-UV analysis of 10 samples as provided by their COA and the 10 accepted results from HAMQAP Exercise 3. Figure 33 displays these values. See Section 3 of [16] for information regarding the HAMQAP results and summary statistics.

]	Manufac	cturer		HAI	MQAP	Exerci	se 3	
Sam	%Lbl	μg/g	Lab	Α	В	С	Mean	SD
1	100.6	186	C005	166.6	187.7	205.4	187	19
2	115.4	213	C007	195.0	205.0	221.0	207	13
3	103.1	190	C021	165.2	178.0	153.0	165	13
4	93.7	173	C025	209.0	200.0	213.0	207	7
5	113.1	209	C028	210.0	190.0	200.0	200	10
6	102.6	189	C029	218.0	227.0	225.0	223	5
7	104.6	193	C036	200.3	195.9	215.5	204	10
8	112.6	208	C039	186.5	205.6	195.4	196	10
9	110.9	205	C042	128.7	166.0	189.5	161	31
10	113.7	210	C044	187.0	175.0	188.0	183	7
	Mean:	197		Con	sensus	Mean:	193	
	SD:	13		С	onsens	us SD:	33	
	N:	10			Accep	oted N:	10	
		225 -					1	
						- T	•	
			•			чIJ		
		205						
			0			(TT		
	g/g	185 🗖						
	рц	1	•		T			
	Lutein, µg/g	165 -	•					
	Lut				1			

Table 28. Measurement Results for Lutein, µg/g

Manufacturer HAMQAP

Medians

++++

145

125

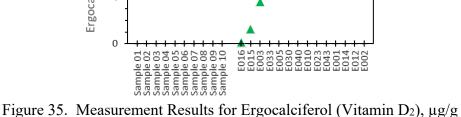
۸

6.12 Vitamin C (Ascorbic Acid)

Table 29 lists the ascorbic acid (vitamin C) measurement results from the manufacturer's HPLC-UV analysis of 10 samples as provided by their COA and the 23 accepted results from HAMQAP Exercise 6. Figure 34 displays these values. See Section 3 of [15] for information regarding the HAMQAP results and summary statistics.

0 2).	2). We as a contract of the second contract o											
		anufac	turer		HAI	MQAP	Exerci	se 6				
Sa		%Lbl	mg/g	Lab	Α	В	С	Mean	SD			
1		26.5	46.68	F011	45.20	45.74	45.49	45.48	0.27			
2	2 1	28.4	47.38	F013	48.08	49.82	48.68	48.86	0.89			
3		27.1	46.90	F014	46.60	44.40	48.70	46.57	2.15			
4		29.2	47.68	F017	48.00	45.00	47.90	46.97	1.70			
5		24.9	46.09	F022	42.37	41.79	38.56	40.91	2.05			
6		25.1	46.16	F026	43.87			43.87				
7		17.9	43.51	F030	48.90	47.20	47.50	47.87	0.91			
8		28.4	47.38	F031	46.18	45.98	42.38	44.85	2.14			
9		25.2	46.20	F034	38.62	38.89	38.02	38.51	0.45			
10		31.5	48.52	F036	46.02	42.28	42.35	43.55	2.14			
	1	Mean:	46.6	F039	44.60	44.90	43.80	44.43	0.57			
		SD:	1.3	F040	41.06	42.80	40.70	41.52	1.12			
		N:	10	F046	47.10	42.96	43.96	44.67	2.16			
				F057	36.77	37.84	36.94	37.19	0.58			
				F059	44.30	44.80	45.00	44.70	0.36			
				F060	49.78	49.33	48.19	49.10	0.82			
				F069	40.09	41.71	45.56	42.45	2.81			
				F070	36.41	34.63	33.75	34.93	1.36			
				F073	45.09	43.87	44.18	44.38	0.64			
				F074	36.10	37.90	38.30	37.43	1.17			
				F075	44.20	42.30	42.10	42.87	1.16			
				F079	46.60	42.00	43.20	43.93	2.39			
				F080	34.99	34.83	34.55	34.79	0.22			
						sensus		42.8				
					С	onsens		5.0				
						Accep	oted N:	23				
				_								
/g	48											
шg				-			- I-	. ▲▲				
Ċ,		-				i						
ic Acid (Vitamin C), mg/g	43	1					T	-	—			
itar	45	-			- 14	≜ ↑	- ·	•				
2		1			∔↑							
Acio		1										
bic	38	-			1							
Ascorbi		1		1	۲			Manufact	urer			
Asi		-					٨	HAMQAP				
	33	1		 				Medians				
	55	01-03-03-03-03-03-03-03-03-03-03-03-03-03-	04 05 07 08 09	le 10 + F080 + F070 + E070 +	F074 - F034 - F022 - F040 -	F075 + F075 + F036 + F026 +	073 146	F011 + F014 + F014 +	F030 - F013 - F060 -			
		Sample 01 Sample 02 Sample 03	Sample 04 Sample 05 Sample 06 Sample 07 Sample 07 Sample 08	a E E E E E E	22222	26666	22223	222222	7 E E			
		Sample 01 Sample 02 Sample 03	Sample 04 Sample 05 Sample 06 Sample 07 Sample 08 Sample 08	San								

Table 29. Measurement Results for Ascorbic Acid (Vitamin C), mg/g


Figure 34. Measurement Results for Ascorbic Acid (Vitamin C), mg/g Symbols represent mean values; error bars represent one standard deviation.

6.13 Vitamin D₂ (Ergocalciferol)

Table 30 lists the ergocalciferol (vitamin D₂) measurement results from the manufacturer's HPLC-MS/MS analysis of 10 samples as provided by their COA and the 14 accepted results from HAMQAP Exercise 5. Figure 35 displays these values. See Section 3 of [18] for information regarding the HAMQAP results and summary statistics.

					<u>ر</u>	/		`	
	Manu	fact	turer		HAI	MQAP	Exerci	se 5	
Sam	%Lł	bl	μg/g	Lab	Α	В	С	Mean	SD
1	138.	0	11.01	E001	8.21	8.31	7.80	8.11	0.27
2	139.	3	10.65	E002	16.51	16.59	18.14	17.08	0.92
3	134.	7	10.75	E003	3.68	3.47	3.69	3.61	0.12
4	136.	0	10.65	E005	5.73	5.74	6.11	5.86	0.22
5	134.	7	10.38	E010	6.18	7.91	8.49	7.53	1.20
6	131.	3	10.86	E012	15.00	15.00	15.30	15.10	0.17
7	137.	3	10.75	E014	11.13	8.53	9.34	9.67	1.33
8	136.	0	10.65	E015	1.23	1.32	1.29	1.28	0.05
9	134.	7	10.65	E016	0.12	0.13	0.11	0.12	0.01
10	134.	7	11.01	E023	7.55	7.82	7.80	7.72	0.15
	Mea	n:	10.73	E030	6.77	6.70	7.05	6.84	0.19
	S	D:	0.18	E033	6.10	5.50		5.80	0.42
		N:	10	E040	7.98	7.17	7.35	7.50	0.43
				E043	8.15	8.03	8.00	8.06	0.08
					Con	sensus	Mean:	7.07	
					С	onsens	us SD:	0.94	
						Accep	ted N:	14	
				<i>c</i> .				,	
		16		ufacture 1QAP	r			↑	
			Med						
	Цġ		inica	lans					
)2),	12	_						
	in [-000	0				
	am							A	
	<it< td=""><td>8</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></it<>	8							
	ol (
	ifer		1						
	alciferol (Vitamin D₂), μg/g	4	4						

Table 30. Measurement Results for Ergocalciferol (Vitamin D₂), $\mu g/g$

Symbols represent mean values; error bars represent one standard deviation.

6.14 Vitamin D₃ (Cholecalciferol)

Table 31 lists the cholecalciferol (vitamin D₃) measurement results from the manufacturer's HPLC-MS/MS analysis of 10 samples as provided by their COA and the 18 accepted results from HAMQAP Exercise 5. Figure 36 displays these values. See Section 3 of [18] for information regarding the HAMQAP results and summary statistics.

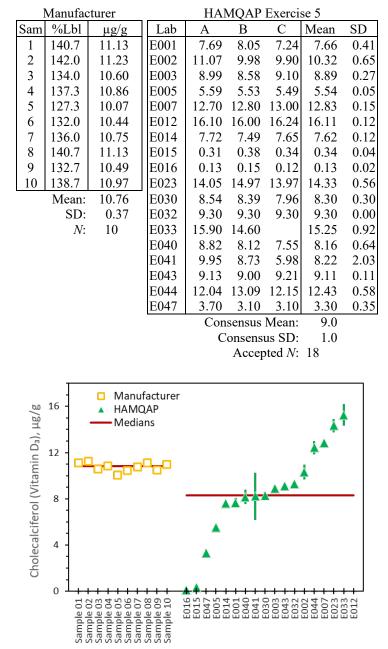


Table 31. Measurement Results for Cholecalciferol (Vitamin D₃), $\mu g/g$

Figure 36. Measurement Results for Cholecalciferol (Vitamin D₃), µg/g Symbols represent mean values; error bars represent one standard deviation.

6.15 Vitamin E (as α-Tocopherol Acetate)

Table 32 lists the α -tocopherol acetate (vitamin E) measurement results from the manufacturer's HPLC-UV analysis of 10 samples as provided by their COA and the 12 accepted results from HAMQAP Exercise 6. Figure 37 displays these values. See Section 3 of [18] for information regarding the HAMQAP results and summary statistics.

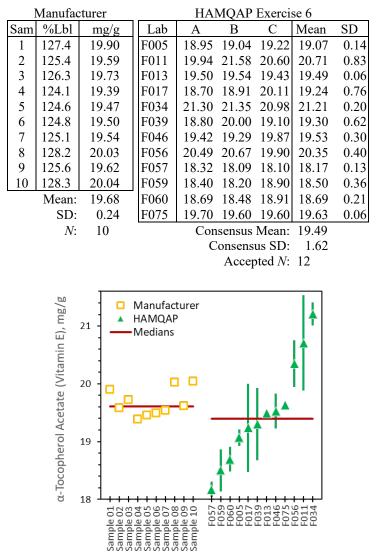


Table 32. Measurement Results for α-Tocopherol Acetate (Vitamin E), mg/g

Figure 37. Measurement Results for α-Tocopherol Acetate (Vitamin E), mg/g Symbols represent mean values; error bars represent one standard deviation.

6.16 Vitamin K₁ (Phylloquinone)

Table 33 lists the phylloquinone (vitamin K_1) measurement results from the manufacturer's HPLC-fluorescence analysis of 10 samples as provided by their COA and the 8 accepted results from HAMQAP Exercise 4. Figure 38 displays these values. See Section 3 of [17] for information regarding the HAMQAP results and summary statistics.

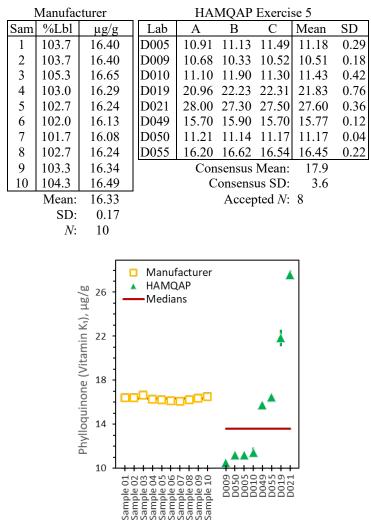


Table 33. Measurement Results for Phylloquinone (Vitamin K₁), $\mu g/g$

Figure 38. Measurement Results for Phylloquinone (Vitamin K₁), $\mu g/g$ Symbols represent mean values; error bars represent one standard deviation.

7 Statistical Analysis

Average mass fractions and associated uncertainties were calculated for each source of data: the mean result for individual methods used by NIST, the mean result of the manufacturer's analyses, and the median of HAMQAP analyses as described below.

7.1 Single-Laboratory Methods

There are measurements from the manufacturer for all analytes. NIST provided ID-LC-MS/MS measurements for six B vitamins (B1, B2, B3, B5, B6, and B7) and LC-ICP-MS measurements for B12. For each analyte, a separate mean is calculated for the results obtained using each method. The uncertainty of each such mean is the standard error of that mean.

7.2 Interlaboratory Studies

For each analyte, the method estimate is the weighted median of the individual laboratory means for that analyte, where the weights are based on a Laplace random effects model [20]. For this SRM, the weighted median is equal to the unweighted median of laboratory means for all analytes in the exercise. The uncertainty of the weighted median is estimated using a bootstrap procedure based on a Laplace random effects model for the between-lab and within-lab effects [8,20,21,22,23].

7.3 Assignment of Values and Uncertainties

For analytes for which there are measurements from NIST, the manufacturer, and HAMQAP, the certified or reference value is the mean of the NIST method mean and the HAMQAP-manufacturer combined mean. The estimate is equal to a weighted mean with the NIST method estimate having 50 % weight. Weights were recommended by the analyst due to NIST using established ID-LC-MS/MS and LC-ICP-MS methods with analyte identity confirmation and purity determinations which are metrologically traceable to the SI unit of mass.

For Vitamin B12, it was determined by the analyst to exclude the HAMQAP data (which is extremely variable), so the estimate is the mean of the NIST and manufacturer means.

For analytes with only measurements from HAMQAP and the manufacturer, the estimated value is the mean of the HAMQAP and manufacturer results.

For vitamin A acetate, which was only measured by the manufacturer, the estimate is the manufacturer mean with the uncertainty calculated as the standard error of that mean.

When the value is based on more than one method, the uncertainty of the combined mean is estimated using a bootstrap procedure based on a Gaussian random effects model for the between-method effects [8,21,22,23].

7.4 Homogeneity Assessment

To address issues of possible inhomogeneity of the SRM, analyses of variance with 5% significance level were run on NIST data where bottle information was available. There was no evidence of significant bottle effects.

7.5 Analysis Results

The results of the statistical analyses are presented in the Certificate of Analysis for SRM 3289. For the most current version of this document, please visit: <u>https://www-s.nist.gov/srmors/view_detail.cfm?srm=3289</u>

8 References

- National Institute of Standards and Technology (2021) Standard Reference Materials Program Certificate of Analysis, Standard Reference Material 3280 Multivitamin/Multielement Tablets. NIST, Gaithersburg, MD, USA <u>https://www-s.nist.gov/srmors/view_detail.cfm?srm=3280</u>
- 2 Sander LC, Sharpless KE, Wise SA, Nelson BC, Phinney KW, Porter BJ, Rimmer CA, Thomas JB, Wood LJ, Yen JH, Duewer DL, Atkinson R, Chen P, Goldschmidt R, Wolf WR, Ho I-P, Betz JM. Certification of Vitamins and Carotenoids in SRM 3280 Multivitamin/Multielement Tablets. Anal Chem, 2011;83(1):99-108 <u>https://doi.org/10.1021/ac101953u</u>
- 3 Food and Nutrition Board, Institute of Medicine. Vitamin A. Dietary Reference Intakes for Vitamin A, Vitamin K, Arsenic, Boron, Chromium, Copper, Iodine, Iron, Manganese, Molybdenum, Nickel, Silicon, Vanadium, and Zinc. Washington, D.C.: National Academy Press; 2001:65-126. <u>https://www.nap.edu/download/10026</u>
- 4 Phinney KW, Rimmer C, Brown Thomas JM, Sander LC, Sharpless KE, Wise SA. Isotope Dilution Liquid Chromatography–Mass Spectrometry Methods for Fat- and Water-Soluble Vitamins in Nutritional Formulations. Anal Chem 2011;83(1):92-98. <u>https://doi.org/10.1021/ac101950r</u>
- 5 NIST PS1 Primary Standard for quantitative NMR (Benzoic Acid), Certificate of Analysis. Date of Issue: 1 January 2018. <u>https://www.nist.gov/document/certificate-analysis</u>
- 6 Nelson MA, Waters JF, Toman B, Lang BE, Rück A, Breitruck K, Obkircher M, Windust A, Lippa KA. A New Realization of SI for Organic Chemical Measurement: NIST PS1 Primary Standard for Quantitative NMR (Benzoic Acid). Anal Chem 2018;90(17):10510-10517. <u>https://doi.org/10.1021/acs.analchem.8b02575</u>
- 7 International Union of Pure and Applied Chemistry, Inorganic Chemistry Division, Commission on Isotopic Abundances and Atomic Weights. Molecular Weight Calculator. Project No. 2015-037-2-200. <u>https://ciaaw.shinyapps.io/calculator/</u> (accessed 9/2/2021)
- 8 Efron B, Tibshirani RJ. (1993) An Introduction to the Bootstrap, Chapman & Hall, UK.
- 9 Toman B, Nelson MA, Lippa KA. Chemical purity using quantitative ¹H-nuclear magnetic resonance: a hierarchical Bayesian approach for traceable calibrations. Metrologia 2016;53:1193-1203. https://iopscience.iop.org/article/10.1088/0026-1394/53/5/1193
- 10 OpenBUGS Home Page. <u>http://www.openbugs.net/w/FrontPage</u> See also: Lunn D, Spiegelhalter D, Thomas A, Best N. The BUGS project: Evolution, critique and future directions (with discussion), Stat Med 2009'28:3049--3082. <u>https://doi.org/10.1002/sim.3680</u>

- 11 Toman B, Nelson MA, Jimenez F, Koepke A. NIST ABACUS, Chemical Analysis Package: qNMR Chemical Purity Assessment, National Institute of Standards and Technology, Gaithersburg, MD. 2019, (accessed 9/14/2021)
- 12 Chinthalapati SKR, Yu LL, Scheel JE, Long SE. A simple and sensitive LC-ICP-MS method for the accurate determination of vitamin B₁₂ in fortified breakfast cereals and multivitamin tablets. J Anal At Spectrom 2013;28:901-907. <u>https://doi.org/10.1039/C3JA30383G</u>
- 13 Kurumaya K, Kajiwara M. Proton Nuclear Magnetic Resonance (¹H-NMR) Signal Assignment of Vitamin B₁₂ Based on Normal Two-Dimensional NMR and Feeding Experiments. Chem Pharm Bull, 1989;37(1),9-12. <u>https://doi.org/10.1248/CPB.37.9</u>
- 14 Anton DL, Hogenkamp HP, Walker TE, Matwiyoff NA. Carbon-13 nuclear magnetic resonance studies of cyanocobalamin and several of its analogues. Biochem 1982;21(10), 2372-2378. <u>https://doi.org/10.1021/bi00539a015</u>
- 15 Barber CA, Burdette CQ, Hayes HV, Luvonga C, Phillips MM, Rimmer CA, Wood LJ, Yu LL (2021) Health Assessment Measurements Quality Assurance Program: Exercise 5 Final Report. NIST Interagency Report (NIST IR) 8343. <u>https://doi.org/10.6028/NIST.IR.8343</u>
- 16 Barber CA, Burdette CQ, Phillips MM, Rimmer CA, Wood LJ, Yu LL, Kotoski SP (2020) Health Assessment Measurements Quality Assurance Program: Exercise 3 Final Report. NIST Interagency Report (NIST IR) 8285. <u>https://doi.org/10.6028/NIST.IR.8285</u>
- 17 Barber CA, Burdette CQ, Hayes HV, Phillips MM, Rimmer CA, Wood LJ, Yu LL, Kotoski SP (2020) Health Assessment Measurements Quality Assurance Program: Exercise 4 Final Report. NIST Interagency Report (NIST IR) 8308. <u>https://doi.org/10.6028/NIST.IR.8308</u>
- 18 Barber CA, Burdette CQ, Hayes HV, Johnson ME, Kotoski SP, Murray JA, Phillips MM, Rimmer CA, Wood LJ, Yarberry AJ (2021) Health Assessment Measurements Quality Assurance Program: Exercise 6 Final Report. NIST Interagency Report (NIST IR) 8394. <u>https://doi.org/10.6028/NIST.IR.8394</u>
- 19 Murillo AG, Fernandez ML. Potential of Dietary Non-Provitamin A Carotenoids in the Prevention and Treatment of Diabetic Microvascular Complications. Adv Nutr 2016;7(1):14-24. <u>https://doi.org/10.3945/an.115.009803</u>
- 20 Rukhin AL, Possolo A. Laplace random effects models for interlaboratory studies, Computational Statistics and Data Analysis 2011;55:1815-1827. <u>https://doi.org/10.1016/j.csda.2010.11.016</u>
- 21 JCGM 100:2008, Evaluation of Measurement Data Guide to the Expression of Uncertainty in Measurement (ISO GUM 1995 with Minor Corrections); Joint Committee for Guides in Metrology (2008); <u>https://www.bipm.org/en/publications/guides</u> See also Taylor, B.N.; Kuyatt, C.E.; Guidelines for Evaluating and Expressing the Uncertainty of NIST Measurement Results; NIST Technical Note 1297; <u>https://doi.org/10.6028/NIST.TN.1297</u>
- 22 JCGM 101:2008, Evaluation of measurement data—Supplement 1 to the "Guide to the expression of uncertainty in measurement"—Propagation of distributions using a Monte

Carlo method; Joint Committee for Guides in Metrology (2008), https://www.bipm.org/en/publications/guides

23 Searle S, Casella G, McCulloch C. Variance Components. John Wiley, Hoboken, NJ (1992)