

NBS SPECIAL PUBLICATION 260-97

U.S. DEPARTMENT OF COMMERCE/National Bureau of Standards

Standard Reference Materials:

Summary of the Coal, Ore, Mineral, Rock, and Refractory Standards Issued by the National Bureau of Standards

Radu Mavrodineanu and Thomas E. Gills

he National Bureau of Standards¹ was established by an act of Congress on March 3, 1901. The Bureau's overall goal is to strengthen and advance the nation's science and technology and facilitate their effective application for public benefit. To this end, the Bureau conducts research and provides: (1) a basis for the nation's physical measurement system, (2) scientific and technological services for industry and government, (3) a technical basis for equity in trade, and (4) technical services to promote public safety. The Bureau's technical work is performed by the National Measurement Laboratory, the National Engineering Laboratory, the Institute for Computer Sciences and Technology, and the Institute for Materials Science and Engineering.

The National Measurement Laboratory

Provides the national system of physical and chemical measurement; coordinates the system with measurement systems of other nations and furnishes essential services leading to accurate and uniform physical and chemical measurement throughout the Nation's scientific community, industry, and commerce; provides advisory and research services to other Government agencies; conducts physical and chemical research; develops, produces, and distributes Standard Reference Materials; and provides calibration services. The Laboratory consists of the following centers:

The National Engineering Laboratory

Provides technology and technical services to the public and private sectors to address national needs and to solve national problems; conducts research in engineering and applied science in support of these efforts; builds and maintains competence in the necessary disciplines required to carry out this research and technical service; develops engineering data and measurement capabilities; provides engineering measurement traceability services; develops test methods and proposes engineering standards and code changes; develops and proposes new engineering practices; and develops and improves mechanisms to transfer results of its research to the ultimate user. The Laboratory consists of the following centers:

The Institute for Computer Sciences and Technology

Conducts research and provides scientific and technical services to aid Federal agencies in the selection, acquisition, application, and use of computer technology to improve effectiveness and economy in Government operations in accordance with Public Law 89-306 (40 U.S.C. 759), relevant Executive Orders, and other directives; carries out this mission by managing the Federal Information Processing Standards Program, developing Federal ADP standards guidelines, and managing Federal participation in ADP voluntary standardization activities; provides scientific and technological advisory services and assistance to Federal agencies; and provides the technical foundation for computer-related policies of the Federal Government. The Institute consists of the following centers:

The Institute for Materials Science and Engineering

Conducts research and provides measurements, data, standards, reference materials, quantitative understanding and other technical information fundamental to the processing, structure, properties and performance of materials; addresses the scientific basis for new advanced materials technologies; plans research around cross-country scientific themes such as nondestructive evaluation and phase diagram development; oversees Bureau-wide technical programs in nuclear reactor radiation research and nondestructive evaluation; and broadly disseminates generic technical information resulting from its programs. The Institute consists of the following Divisions:

Basic Standards²

- Radiation Research
- · Chemical Physics
- Analytical Chemistry

- · Applied Mathematics
- Electronics and Electrical Engineering²
- Manufacturing Engineering
- Building Technology
- · Fire Research
- Chemical Engineering²
- Programming Science and Technology
- Computer Systems Engineering

- Inorganic Materials
- Fracture and Deformation³
- Polymers
- Metallurgy
- Reactor Radiation

¹Headquarters and Laboratories at Gaithersburg, MD, unless otherwise noted; mailing address Gaithersburg, MD 20899.

Some divisions within the center are located at Boulder, CO 80303

Standard Reference Materials:

NATIONAL BUREAU OF STANDARDS LIDRARY

Summary of the Coal, Ore, Mineral, Rock, and Refractory Standards Issued by the National Bureau of Standards

R. Mavrodineanu¹

Center for Analytical Chemistry National Measurement Laboratory National Bureau of Standards Gaithersburg, MD 20899

and

T. E. Gills

Office of Standard Reference Materials National Measurement Laboratory National Bureau of Standards Gaithersburg, MD 20899

¹Present Address: 227 Almeria Road West Palm Beach, FL 33405

U.S. DEPARTMENT OF COMMERCE, Malcolm Baldrige, Secretary NATIONAL BUREAU OF STANDARDS, Ernest Ambler, Director

Issued September 1985

Library of Congress Catalog Card Number: 85-600577

National Bureau of Standards Special Publication 260-97 Natl. Bur. Stand. (U.S.), Spec. Publ. 260-97, 134 pages (Sept. 1985) CODEN: XNBSAV

> U.S. GOVERNMENT PRINTING OFFICE WASHINGTON: 1985

Preface

Standard Reference Materials (SRM's) as defined by the National Bureau of Standards (NBS) are well-characterized materials, produced in quantity and certified for one or more physical or chemical properties. They are used to assure the accuracy and compatibility of measurements throughout the Nation. SRM's are widely used as primary standards in many diverse fields in science, industry, and technology, both within the United States and throughout the world. They are also used extensively in the fields of environmental and clinical analysis. In many applications, traceability of quality control and measurement processes to the national measurement system is carried out through the mechanism and use of SRM's. For many of the Nation's scientists and technologists it is therefore of more than passing interest to know the details of the measurements made at NBS in arriving at the certified values of the SRM's produced. An NBS series of papers, of which this publication is a member, called the <u>NBS Special Publication - 260 Series</u>, is reserved for this purpose.

This 260 Series is dedicated to the dissemination of information on different phases of the preparation, measurement, certification and use of NBS SRM's. In general, much more detail will be found in these papers than is generally allowed, or desirable, in scientific journal articles. This enables the user to assess the validity and accuracy of the measurement processes employed, to judge the statistical analysis, and to learn details of techniques and methods utilized for work entailing the greatest care and accuracy. These papers also should provide sufficient additional information not found on the certificate so that new applications in diverse fields not foreseen at the time the SRM was originally issued will be sought and found.

Inquiries concerning the technical content of this paper should be directed to the author(s). Other questions concered with the availability, delivery, price, and so forth, will receive prompt attention from:

Office of Standard Reference Materials National Bureau of Standards Gaithersburg, MD 20899

> Stanley D. Rasberry, Chief Office of Standard Reference Materials

- Catalog of NBS Standard Reference Materials (1984-85 edition), Catherine H. Hudson, ed., NBS Spec. Publ. 260 (February 1984). \$5.50* SN003-003-0258-5.
- Michaelis, R. E., and Wyman, L. L. Standard Reference Materials: Preparation of White Cast Iron Spectrochemical Standards. NBS Misc. Publ. 260-1 (June 1964). COM74-11061**
- Michaelis, R. E., Wyman, L. L., and Flitsch, R., Standard Reference Materials: Preparation of NBS Copper-Base Spectrochemical Standards. NBS Misc. Publ. 260-2 (October 1964). COM74-11063³⁰
- Michaelis, R. E., Yakowitz, H., and Moore, G. A., Standard Reference Materials: Metallographic Characterization of an NBS Spectrometric Low-Alloy Steel Standard. NBS Misc. Publ. 260-3 (October 1964). COM74-11060**
- Hague, J. L. Mears, T. W., and Michaelis, R. E., Standard Reference Materials: Sources of Information, NBS Misc. Publ. 260-4 (February 1965). COM74-11059
- Alvarez, R., and Flitsch R., Standard Reference Materials: Accuracy of Solution X-Ray Spectrometric Analysis of Copper-Base Alloys. NBS Misc. Publ. 260-5 (March 1965). PB168068**
- Shultz, J. I., Standard Reference Materials: Methods for the Chemical Analysis of White Cast Iron Standards, NBS Misc. Publ. 260-6 (July 1965). COM74-11068** Bell, R. K., Standard Reference Materials:
- Methods for the Chemical Analysis of NBS Copper-Base Spectrochemical Standards. NBS Misc. Publ. 260-7 (October 1965). COM74-11067**
- Richmond, M.S., Standard Reference Materials: Analysis of Uranium Concentrates at the National Bureau of Standards. NBS Misc. Publ. 260-8 (December 1965). COM74-11066**
- Anspach, S. C., Cavallo, L. M. Garfinkel, S. B. Hutchinson, J. M. R., and Smith, C. N., Standard Reference Materials: Half Lives of Materials Used in the Preparation of Standard Reference Materials of Nineteen Radioactive Nuclides Issued by the National Bureau of Standards NBS Misc. Publ. 260-9 (November 1965). COM74-110659*
- Yakowitz, H., Vieth, D. L., Heinrich, K. F. J., and Michaelis, R. E., Standard Reference Materials: Homogeneity Characterization of NBS Spectrometric Standards 11: Cartridge Brass and Low-Alloy Steel, NBS Misc. Publ. 260-10 (December (1965). COM74-11064**
- Napolitano, A., and Hawkins, E. G., Standard Reference Materials: Viscosity of Standard Lead-Silica Glass, NBS Misc. Publ. 260-11 (November 1966). NBS Misc. Publ. 260-11*
- Yakowitz, H., Vieth, D. L., and Michaelis, R. E., Standard Reference Materials: Homogeneity Characterization of NBS Spectrometric Standards III: White Cast Iron and Stainless Steel Powder Compact, NBS Misc. Publ. 260-12* (September 1966). NBS Misc. Publ. 260-12*

- Spijkerman, J. L., Snediker, D. K., Ruegg, F. C., and DeVoe, J. R., Standard Reference Materials: Mossbauer Spectroscopy Standard for the Chemical Shift of Iron Compounds, NBS Misc. Publ. 260-13 (July 1967). NBS Misc. Publ. 260-13**
- Menis, O., and Sterling, J. T., Standard Reference Materials: Determination of Oxygen in Ferrous Materials - SRM 1090, 1091, and 1092, NBS Misc. Publ. 260-14 (September 1966). NBS Misc. Publ. 260-14**
- Passaglia, E., and Shouse, P. J., Standard Reference Materials: Recommended Method of Use of Standard Light-Sensitive Paper for Calibrating Carbon Arcs Used in Testing Textiles for Colorfastness to Light, NBS Misc. Publ. 260-15 (June 1967). (Replaced by NBS Spec. Publ. 260-41.)
- Yakowitz, H., Michaelis, R. E., and Vieth, D. L., Standard Reference Materials: Homogeneity Characterization of NBS Spectrometric Standards IV: Preparation and Microprobe Characterization of W-20% MO Alloy Fabricated by Powder Metallurgical Methods, NBS Spec. Publ. 260-16 (January 1969). COM74-11062**
- Catanzaro, E. J., Champion, C. E., Garner, E. L., Marinenko, G., Sappenfield, K. M., and Shields, W. R., Standard Reference Materials: Boric Acid; Isotopic and Assay Standard Reference Materials, NBS Spec. Publ. 260-17 (February 1970). Out of Print.
- Geller, S. B., Mantek, P.A., and Cleveland, N. G., Standard Reference Materials: Calibration of NBS Secondary Standard Magnetic Tape (Computer Amplitude Reference) Using the Reference Tape Amplitude Measurement "Process A," NBS Spec. Publ. 260-18 (November 1969). (See NBS Spec. Publ. 260-29.)
- Paule, R. C., and Mandel, J., Standard Reference Materials: Analysis of Interlaboratory Measurements on the Vapor Pressure of Gold (Certification of Standard Reference Material 745). NBS Spec. Publ. 260-19 (January 1970). PB190071**
- Paule, R. C., and Mandel, J., Standard Reference Materials: Analysis of Interlaboratory Measurements on the Vapor Pressures of Cadmium and Silver, NBS Spec. Publ. 260-21 (January 1971). COM74-11359**
- Yakowitz, H., Fiori, C. E., and Michaelis, R. E., Standard Reference Materials: Homogeneity Characterization of Fe-3 Si Alloy, NBS Spec. Publ. 260-22 (February 1971). COM74-11357**
- Napolitano, A., and Hawkins, E. G., Standard Reference Materials: Viscosity of a Standard Borosilicate Glass, NBS Spec. Publ. 260-23 (December 1970). COM71-00157**
- Sappenfield, K. M., Marineko, G., and Hague, J. L., Standard Reference Materials: Comparison of Redox Standards, NBS Spec. Publ. 260-24 (January 1972). COM72-50058**

- Hicho, G. E., Yakowitz, H., Rasberry, S. D., and Michaelis, R. E., Standard Reference Materials: A Standard Reference Material Containing Nominally Four Percent Austenite, NBS Spec. Publ. 260-25 (February 1971). COM74-11356**
- Martin, J. F., Standard Reference Materials: National Bureau of Standards-US Steel Corporation Joint Program for Determining Oxygen and Nitrogen in Steel, NBS Spec. Publ. 260-26 (February 1971). 85 cents* PB 81176620
- Garner, E. L., Machlan, L. A., and Shields, W. R., Standard Reference Materials: Uranium Isotopic Standard Reference Materials, NBS Spec. Publ. 260-27 (April 1971). COM74-11358**
- Heinrich, K. F. J., Myklebust, R. L., Rasberry, S. D., and Michaelis, R. E., Standard Reference Materials: Preparation and Evaluation of SRM's 481 and 482 Gold-Silver and Gold-Copper Alloys for Microanalysis, NBS Spec. Publ. 260-28 (August 1971). COM71-50365**
- Geller, S. B., Standard Reference Materials: Calibration of NBS Secondary Standard Magnetic Tape (Computer Amplitude Reference) Using the Reference Tape Amplitude Measurement "Process A-Model 2," NBS Spec. Publ. 260-29 (June 1971). COM71-50282
- Gorozhanina, R. S., Freedman, A. Y., and Shaievitch, A. B. (translated by M. C. Selby), Standard Reference Materials: Standard Samples Issued in the USSR (A Translation from the Russian). NBS Spec. Publ. 260-30 (June 1971). COM71-50283**
- Hust, J. G., and Sparks, L. L., Standard Reference Materials: Thermal Conductivity of Electrolytic Iron SRM 734 from 4 to 300 K, NBS Spec. Publ. 260-31 (November 1971). COM71-50563**
- Mavrodineanu, R., and Lazar, J. W., Standard Reference Materials: Standard Quartz Cuvettes, for High Accuracy Spectrophotometry, NBS Spec. Publ. 260-32 (December 1973). 55 cents* SN003-00-10121-1
- Wagner, H. L., Standard Reference Materials: Comparison of Original and Supplemental SRM 705, Narrow Molecular Weight Distribution Polystyrene, NBS Spec. Publ. 260-33 (May 1972). COM72-50526**
- Sparks, L. L., and Hust, J. G., Standard Reference Materials: Thermoelectric Voltage, NBS Spec. Publ. 260-34, (April 1972). COM72-50371**
- Sparks, L. L., and Hust, J. G., Standard Reference Materials: Thermal Conductivity of Austenitic Stainless Steel, SRM 735 from 5 to 280 K, NBS Spec. Publ. 260-35 (April 1972.) 35 cents* COM72-50368**
- Cali, J. P., Mandel, J., Moore, L. J., and Young, D. S., Standard Reference Materials: A Referee Method for the Determination of Calcium in Serum, NBS SRM 915, NBS Spec. Publ. 260-36 (May 1972). COM72-50527**
- Shultz, J. I. Bell., R. K. Rains, T. C., and Menis, O., Standard Reference Materials: Methods of Analysis of NBS Clay Standards, NBS Spec. Publ. 260-37 (June 1972). COM72-50692**

- Richmond, J. C., and Hsia, J. J., Standard Reference Materials: Preparation and Calibration of Standards of Spectral Specular Reflectance, NBS Spec. Publ. 260-38 (May 1972). COM72-50528**
- Clark, A. F., Denson, V.A., Hust, J. G., and Powell, R. L., Standard Reference Materials: The Eddy Current Decay Method for Resistivity Characterization of High-Purity Metals, NBS Spec. Publ. 260-39 (May 1972). COM72-50529*
- McAdie, H. G., Garn, P.D., and Menis, O., Standard Reference Materials: Selection of Thermal Analysis Temperature Standards Through a Cooperative Study (SRM 758, 759, 760), NBS Spec. Publ. 260-40 (August 1972.) COM72-50776**
- Wood, L. A., and Shouse, P. J., Standard Reference Materials: Use of Standard Light-Sensitive Paper for Calibrating Carbon Arcs Used in Testing Textiles for Colorfastness to Light, NBS Spec. Publ. 260-41 (August 1972) COM72-50775**
- Wagner, H. L. and Verdier, P. H., eds., Standard Reference Materials: The Characterization of Linear Polyethylene, SRM 1475, NBS Spec. Publ. 260-42 (September 1972). COM72-50944*
- Yakowitz, H., Ruff, A. W., and Michaelis, R. E., Standard Reference Materials: Preparation, and Homogeneity Characterization of an Austenitic Iron-Chromium-Nickel Alloy, NBS Spec. Publ. 260-43 (November 1972). COM73-50760**
- Schooley, J. F., Soulen, R. J., Jr., and Evans, G. A., Jr., Standard Reference Materials: Preparation and Use of Superconductive Fixed Point Devices, SRM 767, NBS Spec. Publ. 260-44 (December 1972). COM73-50037*8
- Greifer, B., Maienthal, E. J., Rains, T. C., and Rasberry, S. D., Standard Reference Materials: Powdered Lead-Based Paint, SRM 1579, NBS Spec. Publ. 260-45 (March 1973). COM73-50226**
- Hust, J. G., and Giarratano, P. J., Standard Reference Materials: Thermal Conductivity and Electrical Resistivity Standard Reference Materials: Austenitic Stainless Steel, SR M's 735 and 798, from 4 to 1200 K, NBS Spec. Publ. 260-46 (March 1975). SN003-003-01278-59
- Hust, J. G., Standard Reference Materials: Electrical Resistivity of Electrolytic Iron, SRM 797, and Austenitic Stainless Steel, SRM 798, from 5 to 280 K, NBS Spec. Publ. 260-47 (February 1974). COM74-50176**
- Mangum, B. W., and Wise, J. A., Standard Reference Materials: Description and Use of Precision Thermometers for the Clinical Laboratory, SRM 933 and SRM 934, NBS Spec. Publ. 260-48 (May 1974). 60 cents⁶ SN003-003-01278-5
- Carpenter, B. S., and Reimer, G. M., Standard Reference Materials: Calibrated Glass Standards for Fission Track Use, NBS Spec. Publ. 260-49 (November 1974). COM74-51185

- Hust, J. G., and Giarratano, P. J., Standard Reference Materials: Thermal Conductivity and Electrical Resistivity Standard Reference Materials: Electrolytic Iron, SRM's 734 and 797 from 4 to 1000 K, NBS Spec. Publ. 260-50 (June 1975). 51.00° SN003-003-01425-7
- Mavrodineanu, R., and Baldwin, J. R., Standard Reference Materials: Glass Filters As a Standard Reference Material for Spectrophotometry; Selection; Preparation; Certification; Use-SRM 930, NBS Spec. Publ. 260-51 (November 1975). 51.90° SN003-003-01481-8
- Hust, J. G., and Giarratano, P. J., Standard Reference Materials: Thermal Conductivity and Electrical Resistivity Standard Reference Materials 730 and 799, from 4 to 3000 K, NBS Spec. Publ. 260-52 (September 1975). \$1.05* SN003-003-01464-8
- Durst, R. A., Standard Reference Materials: Standardization of pH Measurements, NBS Spec. Publ. 260-53 (December 1975, Revised). \$1.05 SN003-003-01551-2
- Burke, R. W., and Mavrodineanu, R., Standard Reference Materials: Certification and Use of Acidic Potassium Dichromate Solutions as an Ultraviolet Absorbance Standard, NBS Spec. Publ. 260-54 (August 1977). \$3.00° SN003-003-01828-7
- Ditmars, D. A., Cezairliyan, A., Ishihara, S., and Douglas, T. B., Standard Reference Materials: Enthalpy and Heat Capacity; Molybdenum SRM 781, from 273 to 2800 K, NBS Spec. Publ. 260-55 (September 1977). \$2.20* SN003-003-01836-8
- Powell, R. L., Sparks, L. L., and Hust, J. G., Standard Reference Materials: Standard Thermocouple Materials, Pt.67: SRM 1967, NBS Spec. Publ. 260-56 (February 1978). \$2.20* SN003-003-018864
- Cali, J. P. and Plebanski, T., Guide to United States Reference Materials, NBS Spec. Publ. 260-57 (February 1978). \$2.20* PB 277173
- Barnes, J. D., and Martin, G. M., Standard Reference Materials: Polyester Film for Oxygen Gas Transmission Measurements SRM 1470, NBS Spec. Publ. 260-58 (June 1979) \$2.00* SN003-003-02077
- Chang, T., and Kahn, A. H. Standard Reference Materials: Electron Paramagnetic Resonance Intensity Standard; SRM 2601, NBS Spec. Publ. 260-59 (August 1978) \$2.30* SN003-003-01975-5
- Velapoldi, R. A., Paule, R. C., Schaffer, R., Mandel, J., and Moody, J. R., Standard Reference Materials: A Reference Method for the Determination of Sodium in Serum, NBS Spec. Publ. 260-60 (August 1978). \$3.00* SN003-003 01978-0
- Verdier, P. H., and Wagner. H. L., Standard Reference Materials: The Characterization of Linear Polyethylene (SRM 1482, 1483, 1484), NBS Spec. Publ. 260-61 (December 1978). \$1.70° SN003-0003-02006-1

- Soulen, R. J., and Dove, R. B., Standard Reference Materials: Temperature Reference Standard for Use Below 0.5 K (SRM 768). NBS Spec. Publ. 260-62 (April 1979). \$2.30* SN003-003-02047-8
- Velapoldi, R. A., Paule, R. C., Schaffer, R. Mandel, J., Machlan, L. A., and Gramitch, J. W., Standard Reference Materials: A Reference Method for the Determination of Potassium in Serum. NBS Spec. Publ. 260-63 (May 1979). \$3.75* SN003-003-02068
- Velapoldi, R. A., and Mielenz, K. D., Standard Reference Materials: A Fluorescence Standard Reference Material Quinine Sulfate Dihydrate (SRM 936), NBS Spec. Publ. 260-64 (January 1980). \$4.25* SN003-003-02148-2
- Marinenko, R. B., Heinrich, K. F. J., and Ruegg, F. C., Standard Reference Materials: Micro-Homogeneity Studies of NBS Standard Reference Materials, NBS Research Materials, and Other Related Samples. NBS Spec. Publ. 260-65 (September 1979). \$32:30° SN003-003-02114-]
- Venable, W. H., Jr., and Eckerle, K. L., Standard Reference Materials: Didymium Glass Filters for Calibrating the Wavelength Scale of Spectrophotometers (SRM 2009, 2010, 2013). NBS Spec. Publ. 260-66 (October 1979). \$3.50° SN003-003-02127-0
- Velapoldi, R. A., Paule, R. C., Schaffer, R., Mandel, J., Murphy, T. J., and Gramlich, J. W., Standard Reference Materials: A Reference Method for the Determination of Chloride in Serum, NBS Spec. Publ. 260-67 (November 1979). \$3.75* SN003-003-02136-9
- Mavrodineanu, R. and Baldwin, J. R., Standard Reference Materials: Metal-On-Quartz Filters as a Standard Reference Material for Spectrophotometry-SRM 2031, NBS Spec. Publ. 260-68 (April 1980), \$4.25° SN003-003-02167-9
- Velapoldi, R. A., Paule, R. C., Schaffer, R., Mandel, J., Machlan, L. A., Garner, E. L., and Rains, T. C., Standard Reference Materials: A Reference Method for the Determination of Lithium in Servm, NBS Spec. Publ. 260-69 (July) 1980), 54.25° SN003-030-2214-4
- Marinenko, R. B., Biancaniello, F., Boyer, P. A., Ruff, A. W., DeRobertis, L., Standard Reference Materials: Preparation and Characterization of an Iron-Chromium-Nickel Alloy for Microanalysis, NBS Spec. Publ. 260-70 (May 1981), 52.50* SN003-003-02328-1
- Seward, R. W., and Mavrodineanu, R., Standard Reference Materials: Summary of the Clinical Laboratory Standards Issued by the National Bureau of Standards, NBS Spec. Publ. 260-71 (November 1981). 56-50* SN003-003-02381-7
- Reeder, D.J., Coxon, B., Enagonio, D., Christensen, R. O., Schaffer, R., Howell, B. F., Paule, R. C., Mandel, J., Standard Reference Materialis: SRM 900, Antiepilepsy Drug Level Assay Standard, NBS Spec. Publ. 260-72 (June 1981). \$4.25* SN003-003-02329-9

- Interrante, C. G., and Hicho, G. E., Standard Reference Materials: A Standard Reference Material Containing Nominally Fifteen Percent Austenite (SRM 486), NBS Spec. Publ. 260-73 (January 1982). 52.75* SN003-003-02386-8
- Marinenko, R. B., Standard Reference Materials: Preparation and Characterization of K-411 and K-414 Mineral Glasses for Microanalysis: SRM 470. NBS Spec. Publ. 260-74 (April 1982). 33.50 SN003-003-023-95-7
- Weidner, V. R., and Hsia, J. J., Standard Reference Materials: Preparation and Calibration of First Surface Aluminum Mirror Specular Reflectance Standards (SRM 2003a), NBS Spec. Publ. 260-75 (May 1982). 33.75 SN003-003-023-99-0
- Hicho, G. E. and Eaton, E. E., Standard Reference Materials: A Standard Reference Material Containing Nominally Five Percent Austenite (SRM 485a), NBS Spec. Publ. 260-76 (August 1982), \$3,50 SN003-003-024-33-3
- Furukawa, G. T., Riddle, J. L., Bigge, W. G., and Pfieffer, E. R., Standard Reference Materials: Application of Some Metal SRM's as Thermometric Fixed Points, NBS Spec. Publ. 260-77 (August 1982). \$6.00 SN003-003-024-34-1
- Hicho, G. E. and Eaton, E. E., Standard Reference Materials: Standard Reference Material Containing Nominally Thirty Percent Austenite (SRM 487), NBS Spec. Publ. 260-78 (September 1982). \$3.75* SN003-003-024-35-0
- Richmond, J. C., Hsia, J. J. Weidner, V. R., and Wilmering, D. B., Standard Reference Materials: Second Surface Mirror Standards of Specular Spectral Reflectance (SRM's 2023, 2024, 2025), NBS Spec. Publ. 260-79 (October 1982). \$4.50* SN003-003-024-47-3
- Schaffer, R., Mandel, J., Sun, T., Cohen, A., and Hertz, H. S., Standard Reference Materials: Evaluation by an ID/M S Method of the AACC Reference Method for Serum Glucose, NBS Spec. Publ. 260-80 (October 1982). \$4.75* SN003-003-024-43-1
- Burke, R. W., and Mavrodineanu, R. (NBS retired), Standard Reference Materials: Accuracy in Analytical Spectrophotometry, NBS Spec. Publ. 260-81 (April 1983). \$6.00 \$ SN03-03-024-8
- Weidner, V. R., Standard Reference Materials: White Opal Glass Diffuse Spectral Reflectance Standards for the Visible Spectrum (SR M's 2015 and 2016). NBS Spec. Publ. 260-82 (April 1983). 53.75* SN003-003-024-89.9**
- Bowers, G. N., Jr., Alvarez, R., Cali, J. P. (NBS retired), Eberhardt, K. R., Reeder, D. J., Schaffer, R., Uriano, G. A., Standard Reference Materials: The Measurement of the Catalytic (Activity) Concentration of Seven Enzymes in NBS Human Serum SRM 909, NBS Spec. Publ. 260-63 (June 1983). \$4,50* SN003-003-024-99-6
- Gills, T. E., Seward, R. W., Collins, R. J., and Webster, W. C., Standard Reference Materials: Sampling, Materials Handling, Processing, and Packaging of NBS Sulfur in Coal Standard Reference Materials, 2682, 2683, 2684, and 2685, NBS Spec. Publ. 260-84 (August 1983), \$4.50* SN003-003-025-20-8

- Swyt, D. A., Standard Reference Materials: A Look at Techniques for the Dimensional Calibration of Standard Microscopic Particles, NBS Spec. Publ. 260-85 (September 1983). \$5,50° SN003-003-025-21-6
- Hicho, G. E. and Eaton, E. E., Standard Reference Materials: A Standard Reference Material Containing Two and One-Half Percent Austenite, SRM 488, NBS Spec. Publ. 260-86 (December 1983). 51.75° SN003-003-025-41-1
- Mangum, B. W., Standard Reference Materials: SRM 1969: Rubidium Triple-Point - A Temperature Reference Standard Near 39.30 °C, NBS Spec. Publ. 260-87 (December 1983). \$2.25* SN003-003-025-44-5
- Gladney, E. S., Burns, C. E., Perrin, D. R., Roelandts, I., and Gills, T. E., Skandard Reference Materials: 1982 Compilation of Elemental Concentration Data for NBS Biological, Geological, and Environmental Standard Reference Materials. Spec. Publ. 260-88 (March 1984). 57.00° SN003-003-02565-8
- Hust, J. G., Standard Reference Materials: A Fine-Grained, Isotropic Graphite for Use as NBS Thermophysical Property RM's from 5 to 2500 K, NBS Spec. Publ. 260-89 (September 1984). \$4.50° SN003-003-02608-5
- Hust, J. G., and Lankford, A. B., Standard Reference Materials: Update of Thermal Conductivity and Electrical Resistivity of Electrolytic Iron, Tungsten, and Stainless Steel, NBS Spec. Publ. 260-90 (September 1984), \$3.00* SN003-00-302609-3
- Goodrich, L. F., Vecchia, D. F., Pittman, E. S., Ekin, J. W., and Clark, A. F., Standard Reference Materials: Critical Current Measurements on an NbTi Superconducting Wire Standard Reference Material, NBS Spec. Publ. 260-91 (September 1984), 52,75 SN030-302614-0
- Carpenter, B. S., Standard Reference Materials: Calibrated Glass Standards for Fission Track Use (Supplement to NBS Spec. 260-49). NBS Spec. Publ.. 260-92 (September 1984). \$1.50* SN003-003-02610-7
- Ehrstein, J., Preparation and Certification of Standard Reference Materials for Calibration of Spreading Resistance Probes, NBS Spec. Publ. 260-93 (January 1985).
- Gills, T. E., Koch, W. F. Stolz, J. W., Kelly, W. R., Paulsen, P. J., Colbert, J. C. Kirklin, D. R., Pei, P.T.S., Weeks, S., Lindstrom, R. M. Fleming, R. F., Greenberg, R. R., and Paule, R. C., Methods and Procedures Used at the National Bureau of Standards to Certify Sulfur in Coal SRM's for Sulfur Content, Calorific Value, Ash Content, NBS Spee, Publ. 260-94 (December 1984).
- Mulholland, G. W., Hartman, A. W., Hembree, G. G., Marx, E., and Lettieri, T. R., Standard Reference Materials: Development of a 1 m Diameter Particle Size Standard, SRM 1690, NBS Spec. Publ. 260-95 (May 1985).

- Carpenter, B. S., Gramlich, J. W., Greenberg, R. R., and Machlan, L. A., Standard Reference Materials: Uranium-235 lostopic Abundance Standard Reference Materials for Gamma Spectrometry Measurements, NBS Spec. Publ. 260-96 (In Press).
- Mavrodineanu, R. and Gills, T. E., Standard Reference Materials: Summary of the Coal, Ore, Mineral, Rock, and Refractory Standards Issued by the National Bureau of Standards, NBS Spec. Publ. 260-97 (In Press).
- Hust, J. G., Standard Reference Materials: Glass Fiberboard SRM for Thermal Resistance, NBS Spec. Publ. 260-98 (In Press).
- Callanan, J. E., Sullivan, S. A., and Vecchia, D. F., Standard Reference Materials: Feasibility Study for the Development of Standards Using Differential Scanning Calorimetry, NBS Spec. Publ. 260-99 (In Press).
- Taylor, J. K., Standard Reference Materials: Handbook for SRM Users, NBS Spec. Publ. 260-100 (In Press).
- Send order with remittance to Superintendent of Documents, US Government Printing Office Washington, DC 20402. Remittance from foreign countries should include an additional one-fourth of the purchase price for postage.
- May be ordered from: National Technical Information Services (NTIS). Springfield Virginia 22161.

TABLE OF CONTENTS

Page

Preface .	•••••••••••	•	•	• •	•	٠	•	iii
Abstract		•	•	• •		•	•	x
Introduct	ion		•	• •		•		1
Table 1.	Category Index of Standards available from the National	Bu	re	ลบ				
	of Standards				•	•	•	2
Coal, Ore	, Mineral, Rock, and Refractory Standards	•	•					4
Table 2.	Summary of Coal, Ore, Mineral, Rock, and Refractory Star	nda	rd	s.				6
	A. Coals		•	•••				6
	B. Rocks, Minerals, and Refractories							8
	C. Ores		•					14
Table 3.	Composition of SRM's Prepared from Ores, Minerals, Rocks							
Table 3.	Refractories						•	22
Table 4.	NBS Publications in the "260 Series" Related to Coal, On	-0						
Table 4.	Mineral, Rock, and Refractory Standards			•••		•	•	26
Acknowled	gment						•	26
Appendix	I. Alphabetical Index by Standard Reference Material Nam	ne						27
Appendix	II. Certificates for Coal, Ore, Mineral, Rock, and Refra							
	Standards (listed in numerical order)							40

Abstract

This publication is a summary of the coal, ore, mineral, rock, and refractory standards issued by NBS as Standard Reference Materials (SRM's). The material, composition, certification, use, and remarks concerning each of the SRM's described are presented in tabular form. Copies of the certificates of these SRM's are contained in the appendix for more detailed information.

Key Words: Chemical composition; coals; ores; refractories; rocks; Standard Reference Materials.

Introduction

Since its inauguration in 1901, the National Bureau of Standards (NBS) has issued nearly 2000 different Standard Reference Materials (SRM's). Many of these have been renewed several times, many have been replaced or discontinued as technology changed. Today, over 900 SRM's are available, together with a large number of scientific publications related to the fundamental and applied characteristics of these materials. Each material is certified for chemical composition, chemical properties, or its physical or mechanical characteristics. Each SRM is provided with a Certificate or Certificate of Analysis that contains the essential data concerning its properties or characteristics. The SRM's currently available cover a wide range of chemical, physical, and mechanical properties, and a corresponding wide range of measurement interests in practically all aspects of fundamental and applied science. These SRM's constitute a unique and invaluable means of transferring to the user accurate data obtained at NBS, and provide essential tools that can be used to improve accuracy in practically all areas where measurements are performed.

In addition to SRM's, the National Bureau of Standards issues a variety of Research Materials (RM's) having various properties described in individual "Reports of Investigation." They are intended primarily to further the scientific or technical research on that particular material. Other materials, called Special Reference Materials (GM's), are also available from NBS. These are materials produced and certified by other Government agencies, standard organizations, or other nonprofit organizations, that are considered useful to the public and for which no alternate method of national distribution exists.

The various categories of materials available from NBS are given in Table 1. This table lists these materials according to their chemical composition, physical properties, or engineering characteristics. A more detailed alphabetic enumeration of these materials is given in Appendix I. Table 1 and Appendix I were taken from NBS Special Publication 260, NBS Standard Reference Materials.

Further information on the reference materials available from NBS may be obtained from the Office of Standard Reference Materials, National Bureau of Standards, Gaithersburg, MD 20899. Information on other NBS services may be obtained from the Technical Information and Publications Division, National Bureau of Standards, Gaithersburg, MD 20899.

In addition to these types of materials, NBS provides many additional services. These include: Measurement Assurance Programs, Calibration and Related Measurement Services, Proficiency Sample Programs, a National Voluntary Laboratory Accreditation Program, Standards Information Services, Standard Reference Data, and Technical Information and Publications.

¹For sale by the Superintendent of Documents, U.S. Government Printing Office, Washington, DC 20402, under Stock No. 003-003-02558-5 (Price \$5.50, add 25 percent for foreign orders.)

CERTIFIED CHEMICAL COMPOSITION STANDARDS

Steels (chip form)

Plain carbon Low alloy High alloy Stainless Tool

Steels (granular form)

Steels (solid form)

Ingot iron and low alloy Special ingot irons and low alloy Stainless Specialty High-temperature alloys Tool

Steelmaking Alloys

Cast Irons (chip form)

Cast Steels, White Cast Irons, Ductile Irons, and Blast Furnace Irons (solid form)

Nonferrous Alloys (chip form)

Aluminum "Benchmarks" Cobalt Copper Copper "Benchmarks" Lead Magnesium Nickel Nickel Superalloy, Trace Elements Nickel oxide Selenium Tin Titanium Zinc Zirconium

Nonferrous Alloys (solid form)

Aluminum "Benchmarks" Copper "Benchmarks" Lead Nickel Titanium Zinc Zirconium Gases in Metals High-Purity Metals Electron Probe Microanalytical Standards Primary, Working, and Secondary Standard Chemicals Microchemical Standarde Clinical Laboratory Standards Biological Standards Environmental Standards Analyzed gases Analyzed liquids and solids Permeation tubes Industrial Hygiene Standards Forensic Standards Hydrocarbon Blends Metallo-Organic Compounds Fertilizers Ores Minerals, Refractories, Glasses, and Carbides Cement Trace Element Standards Nuclear Materials Special nuclear materials Plutonium assay Plutonium isotopic Uranium assay Uranium isotopic Neutron density standards Fission track glass standards Isotopic Reference Standards

CERTIFIED PHYSICAL PROPERTY STANDARDS

Ion Activity Standards

pH standards pD standards Ion selective electrodes

Mechanical and Metrology Standards

Magnification Coating thickness Glass Elasticity Density Polymer Rheology

Heat Standards

Superconductive thermometric fixed point devices Freezing Points

Defining fixed points Determined reference points

Melting points Calorimetric

> Combustion Solution Heat source Enthalpy and heat capacity

Vapor pressure Thermal expansion Thermocouple materials Thermal resistance

Magnetic Standards

Magnetic susceptibility Magnetic moment Paramagnetic resonance Optical Standards Spectrophotometric Thermal emittance Refractive index Radioactivity Standards Alpha-particle standards Beta-particle and gamma-ray gas standards Alpha-particle, beta-particle, gamma-ray, and electron-capture solution standards Contemporary standard for carbon-14 dating laboratories Environmental standards Low energy photon sources Gamma-ray "point-source" standards Radium gamma-ray solution standards Radium solution standards for random analysis Radioactivity standard reference materials currently not in stock Metallurgical Mössbauer X-ray Diffraction

Gas Transmission

Permittivity

Reference Fuels

Resistivity

ENGINEERING TYPE STANDARDS

Standard Rubber and Rubber- Compounding Materials	X-ray and Photographic Standards
Reference Magnetic Tapes	Surface Flammability Standards
Centerline Drawings, OCR-B	Smoke Density Chamber Standards
Sizing Standards	Water Vapor Permeance
Glass spheres for particle size	Tape Adhesion Testing Standards
Turbidimetric and fineness (cement)	Color Standards
RESEARCH MATERIALS	SPECIAL REFERENCE MATERIALS

The accurate determination of major and minor constituents in coals, ores, minerals, rocks, and refractories is important to our nation's scientific and industrial community as well as to commerce and trade. In many industries, traceability of quality control to the national measurement system is achieved through the use of Standard Reference Materials (SRM's). This publication is an attempt to describe, in general terms, the composition, certification, and use of such SRM's.

Essential information concerning the material composition, the certification parameters, and use is given in Table 2. Under "Remarks," additional data are provided. All the data and information contained in this table were extracted from the Certificates or Certificates of Analysis issued for the included SKM's. An examination of the table gives the reader a general view of these SRM's. For more detailed information, the individual Certificates reproduced in Appendix II should be consulted as well as any references cited in each certificate. The composition of the same SRM's, excepting the coals, by chemical elements are listed in Table 3. In the tables, similar types of SRM's are grouped together to facilitate comparisons of their properties. The Certificates in Appendix II, however, are arranged in numerical order. The SRM's listed in the tables include all of the coal, ore, mineral, rock, and refractory standards that were in stock as of January 1, 1984. These SRM's are the result of the concerted efforts of a number of scientists from the NBS National Measurement Laboratory, Center for Analytical Chemistry, and from industry. Each Certificate lists the individuals and laboratories who contributed to the preparation and certificate lists (SRM) and the SRM.

In addition to the SRM's and their Certificates, NBS issues a series of Special Publications (SP), call the "260 Series," that relate directly to Standard Reference Materials as stated in the preface. The list of available publications in the "260 Series" is given at the beginning of this publication.

Table 4 lists several NBS SP 260 publications directly related to the SRM's described in this work. They should be of value to the user of these particular materials. Also, NBS SP 260-54 contains in its appendices three reprints on: "Standard Quartz Cuvettes for High-Accuracy Spectrophotometry" (Appendix III); "Testing of Glass Volumetric Apparatus, 1959" (Appendix V); and "The Calibration of Small Volumetric Laboratory Glassware, 1974" (Appendix VI). The last two publications have been out of print for several years.

Other NBS publications, not in the "260 Series," and a number of NBS staff authored papers have been published that deal with specific SRM's or measurement techniques used in analytical chemistry. Some of these are: SP 148, The Role of Standard Reference Materials in Measurement Systems; SP 378, Accuracy in Spectrophotometry and Luminescence Measurements (155 pp., 1973); and SP 466, Standardization in Spectrophotometry and Luminescence Measurements (150 pp., 1977). NBS Monograph 100, Trace Characterization, Chemical and Physical (580 pp., 1967); SP 422, Accuracy in Trace Analysis, Sampling, Sample Handling, Analysis, Vol. 1 and 2 (1304 pp., 1976); and SP 464, Proceedings of the Eighth Materials Research Symposium, Wethods and Standards for Environmental Measurements (691 pp., 1977), provide further information on methodology for the analysis of a variety of materials and the determination of numerous constituents. They all should be of particular interest to the analytical chemist.

¹NOTE: The use of proprietary designations in Table 2 is for information only, and should not be construed as an endorsement of the product by either the Department of Commerce or the National Bureau of Standards. Table 3 was taken from an article by S. D. Rasberry published in <u>Amer.</u> Lab., <u>15</u> (5), 96 (1983).

²For complete bibliographic reference and ordering information, see "Other NBS Publications in This Series," pp. iv.

Table 2. Summary of Coal, Ore, Mineral, Rock, and Refractory Standards

A. Coals

SRM	Material		
1632b Trace Elements in Coal (Bituminous)	Obtained from Humphrey No. 7 mine and coal preparation plant of the Consolidation Coal Co., Christopher Coal Co. Div., Osage, W.V. The coal was reduced in size to -60 mesh and sieved prior to blending. The coal was then blended in a stainless steel coal blender.	Material should be vacuum dried at ambient temperature for 24 hours prior to use. Values based on a minimum sample size of 250 mg. C (total) 78.11; H 5.07; N 1.56; S 1.89; Volatile matter 35.4; Al 0.855; Ca .204; Fe .759; Mg .0383; K .0748; Na .0515; Ti .0454; values $%$ by wt. As 3.72; Ba 67.5; Cd 0.0573; Co 2.29; Cu 6.28; Pb 3.67; Mn 12.4; Ni 6.10; Rb 5.05; Se 1.29; Th 1.342; U 0.436; Zn 11.89; values g/g . Not certified: 17 additional constituents (see certificate).	
1633a Trace Elements in Coal Fly Ash	Supplied by a coal fired power plant and is a product of Pennsylvania and West Virginia coals. Material was sieved through a #170 sieve and blended in a Vee blender.	Material should be dried to a constant weight before use. Values based on a 250-mg or more sample size. Ca 1.11; Fe 9.40; K 1.88; Mg 0.455; Na 0.17; Si 22.8, values $\%$ by wt. As 145; Cd 1.0; Cr 196; Cu 118; Hg 0.16; Ni 127; Pb 72.47; Rb 131; Se 10.3; Sr 830; Th 24.7; Tl 5.7; U 10.2; Zn 220, values µg/g. Not certified: 15 additional constituents (see certificate)	
1635 Trace Elements in Coal (Sub-bituminous)	Provided by the Eagle Mine of the Imperial Coal Company, Erie, Colorado. Ground and sieved through a 230 m sieve by the Colorado School of Mines Research Institute.	Material should be dried with- out heat to constant weight before use. Values based on 250-mg or more sample size. As $0.42;$ Cd $0.03;$ Cr $2.5;$ Cu $3.6;$ Pb $1.9;$ Mg $21.4;$ Ni $1.74;$ Se $0.9;$ Th $0.62;$ U $0.24;$ V $5.2;$ Zn $4.7,$ values $\mu g/g$. Fe $0.239;$ S $0.33,$ values % by wt. Not certified 10 additional constitutents (see certificate).	
2682 Sulfur in Coal (Sub-bituminous)	Obtained from Bell Ayr Mine, Gillette, Wyoming The coal was reduced in size to -60 mesh and screened prior to blending. The -60 mesh coal was then blended in a stainless steel cone blender.	Sample vacuum dried at ambient temperature for 24 hours or oven drying for 24 hours at 105 °C. Values based on 250- mg or more sample size. Sulfur (wt. %) 0.47; Furnace Ash (wt. %) 6.37; Calorific Content 27.45 MJ.Kg ⁻¹ . Not certified: 32 inorganic con- stituents (see certificate).	

*National Bureau of Standards, Center for Analytical Chemistry. $^\circ American$ Society for Testing and Materials.

Certification	Use	Remarks
Analyses performed in the NBS CAC.* Estimated uncertainty 0.0008 TO 2.1 depending on con-	For the calibration of appa- ratus and the evaluation of techniques employed in the	Should be kept in its original bottle. Should not be exposed to intense sources of radia-
stituent.	analysis of coal or similar	tion, including ultraviolet

materials.

Analyses performed in the NBS CAC. Estimated uncertainty 0.010 to 30 depending on constituent. For the calibration of apparatus and methods used in analyses of coal fly ash and other materials with similar matrices for trace elements. Should be kept in a tightly sealed bottle.

lamps or sunlight.

Analyses performed in the NBS CAC. Estimated uncertainty 0.15 to 1.5 depending on constituent. Same as SRM 1632a.

Same as SRM 1632a.

Analyses performed in the Inorganic Analytical Research Division and Chemical Thermodynaics Division of NBS. Calorific values were determined by procedures recommended in standard ASTM^o methods. For the determination of sulfur in coal.

The Sulfur in Coal SRM's are sold individually rather than in sets; however, only one Certificate of Analysis is provided. Therefore, the user must be careful to use the data specific to the SRM being used. Material should be stored in a tightly sealed bottle away from sunlight and intense sources of radiation.

Table 2. A. Coals - continued.

SRM	Material	Composition
2683 Sulfur in Coal (Bituminous)	Obtained from Humphrey Mine, Osage, West Virginia. Processing same as SRM 2682.	Same as SRM 2682 except: Sulfur (wt. %) 1.85; Furnace Ash (wt. %) 6.85; Calorific Content 32.70 MJ.Kg
2684 Sulfur in Coal (Bituminous)	Obtained from Delta Mine, Marion, Illinois. Processing same as SRM 2682.	Same as SRM 2682 except: Sulfur (wt. %) 3.00; Furnace Ash (wt. %) 11.09; Calorific Content 29.68 MJ.Kg ⁻¹ .
2685 Sulfur in Coal (Bituminous)	Obtained from McElroy Mine, Captina, West Virgnia. Processing same as SRM 2682.	Same as SRM 2682 except: Sulfur (wt. %) 4.62; Furnace Ash (wt. %) 16.53; Calorific Content 28.15 MJ.Kg

B. Rocks, Minerals, and Refractories

lc Argillaceous Limestone	Provided by Lone Star Ind., Inc., Cement and Construction Materials Group, Houston, Texas.	Limestone, ground, sieved, blended. Analyses performed on 0.5-g or more sample. Dried 2 hours at 110 °C. SiO, 6.84; Fe ₂ O, 0.55; Al.O ₃ 1.30; TiO ₂ 0.07; P ₂ O ₅ 0.04; MnO 0.025; CaO 50.3; STO 0.030; MgO 0.42; Na ₂ O 0.02; K ₂ O 0.28; loss on ignition 39.9; all values % by wt.
70a Feldspar	Feldspar, sample dried 2 hours at 105 ℃.	SiO ₂ 67.1; Al ₂ O ₃ 17.9; Fe ₂ O ₂ 0.07; TiO ₂ 0.01; CaO 0.11; BaO 0.02; Na ₂ O 2.5; K ₂ O 11.8; Rb ₂ O 0.06; loss on ignition 0.40; all values % by wt.
76a Burnt Refractory	Provided by Harbison-Walker Refractories Co., Garber Research Center, Pittsburgh, Pennsylvania. Dobles were air dried at 120 °C, then fired at 1427 °C for 10 hours. The ground material was converted to a fine powder (95%, 325 mesh) and was thoroughly mixed.	SiO ₂ 54.9; Al ₂ O ₃ 38.7; Fe ₂ O ₂ 1.6; TiO ₂ 2.0; ZrO ₂ 0.15; MgO 0.52; CaO 0.22; K ₂ O 1.33; Na ₂ O 0.07; P ₂ O ₅ 0.12; Li ₂ O 0.042; SrO 0.037; loss on ignition 0.34; all values % by wt.
77a Burnt Refractory	Same as SRM 76a.	SiO ₂ 35.0; Al ₂ O ₃ 60.2; Fe ₂ O ₂ 1.0; TiO ₂ 2.6; ZrO ₂ 0.21; MgO 0.38; CaO 0.05; K ₂ O 0.09; Na ₂ O 0.037; P ₂ O ₅ 0.092; Li ₂ O 0.02; SrO 0.009; Loss on ignition 0.22; all values % by wt.

Certification	Use	Remarks
Same as SRM 2682.	Same as SRM 2682.	Same as SRM 2682.
ame as SRM 2682.	Same as SRM 2682.	Same as SRM 2682.
Same as SRM 2682.	Same as SRM 2682.	Same as SRM 2682.
Chemical analysis performed by eight cooperating laboratories including NBS-CAC. The esti- nated uncertainty: 0.005 to 0.3 depending on constituent.	For calibration and standardi- zation of analytical methods and instrumentation.	Issued in cooperation with ASTM.
		Revision of Certificate dated 3-26-65.
Chemical analyses performed by hree cooperating laboratories including NBS-CAC. The values are not expected to deviate from the accurate value by more than 1 in the last significant	For verifying the chemical and instrumental methods of analysis.	The loss on ignition is not a certified value but is given for information only. Issued in cooperation with ASTM.
figure reported.		

Table 2. B. Rocks, Minerals, and Refractories - continued.

SRM	Material	Composition
78a Burnt Refractory	Same as SRM 76a.	Si0, 19.4; Al ₂ O ₃ 71.7; Fe ₂ O ₃ 1.2; TiO ₂ 3.2; ZrO ₂ 0.31; MgO 0.70; CaO 0.11; K ₂ O 1.22; Na ₂ O 0.078; P ₂ O ₂ 1.3; Li ₂ O 0.12; SrO 0.25; Ioss on ignition 0.42; all vaues % by wt.
81a Glass Sand	Ground glass sand powder 95% less than 106 µm. Blended and dried at 105 °C for 2 hours before use.	Al ₂ O ₃ 0.66; Fe ₂ O ₃ 0.082; TiO ₂ 0.12; ZrO ₂ 0.034; all values % by wt. Cr ₂ O ₃ 46 µg/g.
88a Dolomitic Limestone	Limestone	Sample dried 2 hours at 110 °C. SiO, 1.20; Al ₂ O ₃ 0.19; Fe ₂ O ₄ 0.28; TiO ₅ °O.20; MnO 0.03; CaO 30.1; SFO 0.01; MgO 21.3; Na ₂ O 0.01; K ₂ O 0.12; P ₂ O ₅ 0.01; CO ₅ 46.6; 105s on ignition 46.7; all values expressed as percent.
97a Flint Clay	Provided by A. P. Creen Fire Brick Co., Mexico, Missouri.	Sample dried 2 hours at 140 °C. SiO_2 43.67; $A1_2O_3$ 38.79; Fe_0O_3 0.45; TiO_2 1.90; P_0O_4 0.36; K_0O 0.50; Na_2O 0'037; Li ₂ O 0.11; BaO 0.07; MgO 0.15; ² CaO 0.11; SrO 0.18; Cr ₂ O ₄ 0.03; loss on ignition 13.32; all values are % by wt.
98a Plastic Clay	Same as SRM 97a.	Sample dried for 2 hours at 140 °C. SiO ₂ 48.94; Al ₂ O ₃ 33.19; Fe ₂ O ₃ 1.34; TiO ₂ 1.61; P_{2O_2} 0.11; K ₂ O 1.04; Na ₂ O 0.082; Li ₂ O 6.070; BaO 6.03; MgO 0.42; CaO 0.31; SrO 0.039; C_{2O_3} 0.03; loss on igni- tion 12.44; all values % by wt.
99a Feldspar		Sample dried at 105 °C for 2 hours. SiO ₂ 65.2; Al ₂ O ₃ 20.5; Fe ₂ O ₃ °0.06; TiO ₃ °0.007; CaO 2.14; BaO 0.26; MgO 0.02; Na ₂ O 6.2; K ₂ O 5.2; P ₂ O ₅ 0.02; loss on ignition 0.26; all values are % by wt.

Certification	Use	Remarks
Same as SRM 76a.	Same as SRM 76a.	Same as SRM 76a.
Chemical analyses performed by sight cooperating laboratories including NBS-CAC.	Same as SRM 76a.	The recommended data is the best estimate of the true value based on data from the cooperators and NBS. Issued in cooperation with ASTM.
		Revision of Certificate dated 1-31-67.
Chemical analyses performed by hree cooperating laboratories ncluding NBS-CAC.	Same as SRM 76a.	ZrO ₂ was determined by only one of the cooperating labora- tories and found to be 0.063 % by wt.
Chemical analyses performed by hree laboratories including IBS-CAC.	Same as SRM 76a.	ZrO2 was determined by only one of the cooperating labora- tories and found to be 0.042 % by wt.
		Revision of Certificate dated 3-26-65.

Table	2.	в.	Rocks,	Minerals,	and	Refractories	-	continued.
-------	----	----	--------	-----------	-----	--------------	---	------------

S RM	Material	Composition
103a Chrome Refractory		Sample dried at 110 °C for 2 hours. $Cr_{0,0}$ 32.06; Al _{0,0} 29.96; Fe0 ² 12.43; MnO 0.11; MgO 18.54; CaO 0.69; S10 ₂ 4.63; Tio ₂ 0.22; ZrO ₂ 0.01; P ₂ O ₅ 0.01; all values are $\frac{7}{2}$ by wt.
154b Titanium Dioxide	Prepared by the National Lead Industries, Research and Development Dept., St. Louis, Missouri.	TiO ₂ 99.74% by wt. on samples dried 2 hours at 110 °C.
ló5a Glass Sand	Glass sand blended to insure homogeneity. Should be dried for 2 hours at 105 °C.	A1,0, 0.059; Fe,0, 0.012; T10, 0.011; ZrO 0.006; all values are % by wt.
198 Silica Brick		Al.03 0.16; Fe.03 0.66; Ti02 0.02; P.02 0.022; Mn0 0.008; Ca0 2771; Mg0 0.07; Na20 0.012; K20 0.017; L120 0.001; L0ss on ignition 0.21; all values % by wt.
199 Silica Brick		Al ₂ O ₃ 0.48; Fe ₂ O ₃ 0.74; TiO ₂ 0.06; P ₂ O ₂ 0.015; MnO 0.007; CaO 2.41; MnO 0.13; Na ₂ O 0.015, K ₂ O 0.094; Li ₂ O 0.002; Loss of ignition 0.17; all values % by wt.
278 Obsidian Rock	Natural glass obtained from Clear lake, Newberry Crater, Oregon, and processed by the Colorado School of Mines, Golden, Colorado, to a powder of <200 mesh.	The material should be dried to constant weight at $350-600$ °C. Al_{20} , 14.15 ; CaO 0.983; FeO 1.36; FeO_Q 2.04; K,O 4.16; MnO 0.052; Na,O 4.84; P,Oc 0.036; S1O, 73.05; TiO ₂ 0.2245; all data wt %. Cu 5.9; Ni 3.6; Rb 127.5; Sr 63.5; Th 12.4; Tl 0.54; U 4.58; Pb 16.4; data wt (µg/g).

Use	Remarks
Certified primarily for use in the analysis of ores and geo- logical materials containing chromium.	For additional information on methods used for analysis and certification of constituent elements see certificate.
Certified primarily for appli- cation in the paint and ceramic industries.	For additional information on the material and its composi- tion see Certificate.
	The certified data is the best estimate of the true value based on the measurements from the cooperators and NBS. SRM 165a was issued in cooper- ation with ASTM.
	One cooperating laboratory has reported a content of less than 0.01 $\rm ZrO_2$ % by wt.
	One cooperating laboratory has reported a content of 0.01 0.01 ZrO ₂ % by wt.
For evaluation of the accuracy of analytical methods and instrumentation used in the analysis of geological type materials.	Additional 21 constituents given but not certified (see certificate).
	Certified primarily for use in the analysis of ores and geo- logical materials containing chromium. Certified primarily for appli- cation in the paint and ceramic industries.

SRM	Material	Composition		
688 Basalt Rock	Obtained from a Cenozoic basalt flow near Jackpot, Nevada, and processed by the Colorado School of Mines, Golden, Colorado.	Sample dried at 105 °C for 24 hours. Al ₀₃ 17.36; FeO 7.64; Fe ₀₃ 10.35, K ₂ O 0.187; MnO 0.167; Na ₂ O 2.15, P ₂ O ₃ O 0.134; SiO ₂ 48.4; TiO ₃ 1.17, all % by wt. Cr 332; KB 1.91; Sr 169.2 Th 0.33; Pb 3.3, all µg/g.		
C. Ores				
27f Iron Ore (Sibley)	The iron ore was provided by the U.S. Steel Corp., Pittsburgh, Pennsylvania. The ore was crushed, dry ground, and sleved at the Colorado School of Mine Research Institute, Golden, Colorado, to pass a 150 mesh sieve with about 50% passing a 200 mesh sieve. Analytical samples were dried l hour at 105 °C.	Total Fe 65.97; SiO, 4.17; Al ₂ O, 0.82; P 0.041; S 0.405; TiO, 0.019; MnO 0.011; Cao 002039; MgO 0.019; Na ₂ O 0.012; K ₂ O 0.008; all values % by wt.		
69b Bauxite (Arkansas)	Provided by the Aluminum Company of America, Bauxite, Arkansas. The material was processed at the Colorado School of Mine Research Institute. Mineral- ogical composition: 30% kaolinite, 60% gibbsite, 10% siderite (semiquantitative).	The bauxite powder (<0.08 mm) was dried at 140 °C for 2 hours. Analytical sample of 1-g or more. Al 0. 48.8; Fe.0. 7.14; S10. 213.43; Ti0. 1.90; Zr0. 0.29; P.0. 0.118; V.0. 0.028; Cr.0. 0.011; CaO 0.13; MgO 0.085; MnO 0.110; ZnO 0.0035; K_2O 0.068; SO 0.63; loss of ignition 27.2 at 1050 °C; all values \mathbb{X} by wt. Estimated uncertainty 0.0005 to 0.2 depending on element.		
79a Fluorspar	Provided by American Smelting and Refining Co., El Paso, Texas, and ground to pass an 80 mesh screen.	CaF ₂ 97.39 <u>+</u> 0.06 % by wt.		

Analyses performed by three cooperating laboratories including NBS-CAC. Uncertainties for % by wt. constituents: from 0.1 to 0.002; for yg/g constituents: 9 to 0.01. For verifying the accuracy of chemical and instrumental methods of analysis used in the analysis of geological type materials.

Chemical analyses performed by seven cooperating laboratories including NBS-CAC using the methods described in Part 12, Chemical Analysis of Metals and Metal Bearing Ores, Annual Book of ASTM Standards. For use in verifying chemical methods of analysis and in calibrating instrumental methods of analysis. Issued in cooperation with ASTM.

Chemical analyses performed by eleven cooperating laboratories including NBS-CAC. For verification of chemicals and instrumental methods of analysis. Additional composition (not certified): BaO (0.008); Na₀O (0.025); Ce (0.024); Co²(0.0001); Hf (0.0063); Sc (0.0008). Issued in cooperation with ASTM.

Chemical analyses performed in cooperation with the U.S. Customs Laboratories, Division of Technical Services, following a standard procedure described in detail in the Certificate. To assay imported fluorspar for industrial applications.

Additional percent composition (not certified): Fe (0.05-0.1) Al and Sr (0.01-0.1); Mg (0.01-0.05); Na (0.001-0.01); Ba (0.001-0.005); K (<0.005); Cu, Li, Mn, Pb, and Ti (<0.001); Si0₂ (0.67); all are % values. Revision of Certificate dated 12-6-71.

SRM	Material	Composition
113a Zinc Concentrate	Provided by Cominco American Inc., Spokane, Washington, and prepared at the Magmont Mines, Bixby, Missouri, in the form of powder (<0.15 mm).	Sample dried 1 hour at 105 °C. Zn 57.3; Co (0.11); Ni (0.07); S 30.6; Cd 0.78; Cu 0.31; Pb 2.80; Fe 2.08; Ca0 1.1; Mg0 0.75; Si0 ₂ (1.54); Ag 0.046, all values are % by wt.
120b Phosphate Rock (Florida)	Provided by American Cyanamid Co. as a powder to pass 200 mesh sieve.	Sample dried 1 hour at 105 °C. P ₂ O ₅ 34.57; CaO 49.40; SiO ₂ 4:68; F 3.84; Fe ₂ O ₃ 1.10; Al ₂ O ₃ 1.06; MgO 0.28; Na ₂ O 0.33; MnO 0.032; K ₂ O 0.12- 0.090; TiO ₂ 0.15; Co ₂ 2.79; CdO 0.002; all values are Z by wt. Uranium 128.4 µg/g.
180 High-Grade Fluorspar	Provided by Minera Frisco of San Francisco Del Oro, Chih., Mexico.	CaF ₂ 98.80 <u>+</u> 0.03 % by wt.
181, 182, 183 Lithium Ores	Fine powder of spodumene (SRM 181), petalite (SRM 182), and lepidolite (SRM 183).	L1 ₂ 0 wt. % in SRM 181 - 6.3 ₉ ; SRM 182 - 4.3 ₄ ; and SRM 183 ⁹ - 4.1 ₂ .
277 Tungsten Concentrate	Provided by GTE Sylvania, Towanda, Pennsylvania, as a powder sieved (<0.15 mm) and blended. It is a mixture of con- centrates from China, Thailand, and USA.	WO ₃ - 67.4 wt. %, determined on ³ l-g or more sample.
329 Zinc Concentrate	Provided by Cominco American Inc., Spokane, Washington, and prepared at the Sullivan Mine, Trail, B.C., Canada, in the form of powder (<0.15 mm).	Sample dried 1 hour at 105 °C. Zn 45.5; Pb 6.06; Fe 12.94; Ca0 0.08; Mg0 0.16; Cd 0.14; Cu 0.13; Co (0.009); Ni (0.006); S (31.7); SiO ₂ (0.61) In 0.019; Ag 0.0089; all values are % by wt.

Certification	Use	Remarks		
Chemical analyses performed by four cooperating laboratories including NBS-CAC. The data are not expected to deviate from the true value by more than +1 in the last signifi- cant figures reported.	Intended for the verification of chemical and instrumental methods of analysis.	Figures in parentheses are not certified. Should be kept tightly closed except when in direct use. Store in a desiccator over desiccant.		
Chemical analyses performed by six cooperating laboratories including NBS-CAC. Uranium was determined at NBS by thermal ionization mass spectrometry.	For the verification of chemical optical emission and x-ray spec- trometric methods of analysis.	For potassium values see Certificate.		
Additional trace elements detected but not certified: Fe 0.1-1.0; Al, Ba, Mg, Pb, Si, and Sr 0.01-0.1; Cu, K, Mn, Na, Ti, and V 0.001-0.01; Ag and Li less than 0.001; all values expressed in percent.	Issued primarily for geochemical use.	Detailed information on the method used for the determina- tion of CaF ₂ is given in the Certificate.		
The deviation from given values is not expected to be more than +5 subscript number.	For verifying the accuracy of assay methods.	Revision of Certificate dated 2-24-58.		
Chemical analyses performed in cooperation with 13 labora- tories including NBS-CAC. The estimated uncertainty 0.3 wt. %. Additional elements indi- cated but not certified are: Ca, Fe, Pb, Mn, Nb, P, Si, S, Sn, Ti, As, Mo, Bi, Ce, Cr, Cu, Gd, La, Nd, O, Sc, Ta, Th, U, Y, and Zr.	To verify the accuracy of chemical and instrumental methods of analysis.	Issued in cooperation with ASTM.		
Chemical analyses performed by four cooperating laboratories including NBS-CAC. The data are not expected to deviate from the true value by more than ± 1 in the last significant figure reported.	Intended for the verification of chemical and instrumental methods of analysis.	Figures in parentheses are not certified.		

Table	2.	C.	Ores	-	continued.
-------	----	----	------	---	------------

SRM	Material	Composition		
330 Copper Ore, Mill Heads	Provided by Magma Copper Co., San Manuel, Arizona. It was sieved and blended at NBS.	Sample dried at 105 °C for 2 hours. Cu 0.84; Mo 0.018; both values % by wt. Re 0.30 ppm by wt. Not certified: Au (0.093); Ag (1.51) ppm by wt.		
331 Copper Ore, Mill Tails	Provided by Magma Copper Co., San Manuel, Arizona.	Cu 0.091; Mo 0.0022; both % by wt. Re 0.04 ppm by wt. on samples dried at 105 $^{\circ}$ C for 2 hours. Not certified: Au (0.034); Ag (0.243) ppm by wt.		
332 Copper Concentrate	Provided by Magma Copper Co., San Manuel, Arizona.	Cu 28.4; Mo 0.64 % by wt. Re 10.2 ppm by wt. on samples dried at 105 °C for 2 hours. Not certified: Au (2.14); Ag (38.7) ppm by wt.		
333 Molybdenum Concentrate	Provided by Magma Copper Co., San Manuel, Arizona. Homo- geneity obtained by special blending and mixing procedures.	Cu 1.038; Mo 55.3; Re 0.087; all % by wt. on samples "as received." Not certified: Au (8.9); Ag (25.0) ppm by wt.		
690 Iron Ore Concentrate (Canada)	Provided by the Iron Ore Company of Canada, Labrador City, Newfoundland, Canada, as a powder (<0.1 mm).	Fe 66.85; S10, 3.71; A1,0, 0.18; P 0.011; S 0.003; TTO, 0.02; MnO 0.23; CaO 0.20; MgO 0.18; Na,0 0.003; K,0 0.0030, on sâmples dried at 105 °C for 1 hours. All values are % by wt.		
691 Reduced Iron Oxide	Provided by Allis-Chalmers, Reduction Systems Div., Milwaukee, Wisconsin, and processed as a powder (-200 mesh) at the Colorado School of Mines Research Institute, Golden, Colorado.	Values based on 0.5-g or more sample size. Fe, total 90.8; Fe, metallic 84.6; SiO ₂ 3.7; Al ₀₂ 1.22; TiO ₂ 0.27; CaO 0.63; MnO 0.043; MgO 0.52; Na ₂ 0 0.186; Cu 0.032; Co 0.030 P 0.006; S 0.008; C 0.12; all values <i>X</i> by wt. Not certified ll additional constituents (see certificate).		
692 Iron Ore (Labrador)	Prepared by the Bethlehem Steel Corp., Bethlehem, Pennsylvania, as a fine powder (200 mesh).	Sample dried 1 hour at 105 °C, values based on 0.5-g or more sample. Fe 59.58; S10, 10.14; Al.03, 1.41; P 0.039; S'0.005; Ti6, 0.045; Ma0 0.46; Ca0 0.023; Mg0 0.035; Na20 0.008; K20 0.039, all values % by wt.		

Certification	Use	Remarks
Analyses performed by two coop- erating laboratories including NBS-CAC. Estimated uncertainty 0.01 and 0.001 for Cu and Mo, and 0.06 for Re.	For verifying the accuracy of chemical and instrumental methods of analysis, and for evaluation of the material balance in copper mining and metallurgical industries.	Keep the material tightly closed in a desiccator over desiccant. Revision of Certificate of 2-20-73.
Estimated uncertainty 0.001 for Cu; 0.0002 for Mo; and 0.02 for Re.	Same as SRM 330.	Same as SRM 330.
Estimated uncertainty 0.1 for Cu; 0.01 for Mo; and 0.2 for Re.	Same as SRM 330.	Same as SRM 330, except revision of Certificate dated 2-20-73 and 1-20-77.
Analyses performed by two cooperating laboratories in- cluding NBS-CAC. Estimated uncertainty 0.010 for Cu; 0.1 for Mo; 0.001 for Re.	Same as SRM 330.	Same as SRM 330.
Analyses performed by six cooperating laboratories in- cluding NBS-CAC. Estimated uncertainty from 0.0005 to 0.01 depending on constituent.	For verifying the chemical and instrumental methods of analysis.	Issued in cooperation with ASIM.
Analyses' performed by six cooperating laboratories in- cluding NBS-CAC. Estimated uncertainty 0.001 to 0.6 depending on constituent.	For the evaluation of chemical and spectroscopic methods of analysis.	Material packaged in dry nitrogen to prevent oxidation. Should be stored in desiccator over desiccant. Issued in cooperation with ASTM.
Analyses performed by six cooperating laboratories in- cluding NBS-CAC. Estimated uncertainty 0.001 to 0.06 depending on constituent.	For verifying the chemical and instrumental methods of analysis.	Issued in cooperation with ASTM.

Table 2. C. Ores - continued.

SRM	Material	Composition		
693 Iron Ore (Nimba)	Prepared by the Bethlehem Steel Corp., Bethlehem, Pennsylvania, as a fine powder (200 mesh).	Sample dried 1 hour at 105 °C, values based on 0.5-g or more sample. Fe 65.11; SiO ₂ 3.87; Al ₂ O ₃ 1.02; P 0.056; S'0.005; TiO ₂ 0.035; MmO 0.091; CaO 0.016; MgO 0.013; Na ₂ O 0.0028; K ₂ O 0.0028; all values % by wt		
696 Bauxite (Surinam)	Same as SRM 69b. The material was mined in Surina, South America. Mineralogical compo- sition: 5% kaolinite, 80% gibbsite, 10% pyrite, 5% anatase (semiquantitative).	The bauxite powder (<0.08 mm) was dried at 140 °C for 2 hours. Analytical sample of 1-g or more. Al $_{0.3}$ 54.5; Fe $_{0.8}$ 8.70; SiO, 3.779; TiO, 2.64; ZrO, 0.14; P.O, 0.050; VO, 0.072; CrO, 0.047; CaO 0.018; MgO 0.012; MnO 0.004; ZnO 0.0014; K_O 0.009; SO 0.21; loss on ignition 29.9 at 1050 °C; all values χ by wt. Estimated uncertainty 0.0007 to 0.3 depending on element.		
697 Bauxite (Dominican)	Same as SRM 69b. The material was mined in the Dominican Republic. Mineralogical compo- sition: 15% kaolinite, 50% gibbsite, 10% boehmite, 5% anatase; 20% hematite (semi- quantitative).	The bauxite powder (< 0.08 mm) was dried at 140 °C for 2 hours. Analytical sample of l-g or more. Al.O. 45.8; Fe.O. 20.0; SiO. 638; TiO. 2.52; ZrO.0.065; P.O. 0.97; V.O. 0.065; CrO. 0.100; CaO 0.71; MgO 0.18; MnO 0.41; ZnO 0.037; K.O. 0.062; SO. 0.13; loss on ignition 22.1 at 1050 °C. All values % by wt. Estimated uncertainty 0.2 to 0.003 depending on element.		
698 Bauxite (Jamaican)	Mined in Jamaica, provided by Reynolds Metals Co., Bauxite, Arkansas, processed at the Colorado School of Mines Research Institute. Mineral- ogical composition: 75% gibbsite, 20% hematite, 5% anatase (semiquantitative).	The bauxite powder (<0.08 mm) was dried at 140 °C for 2 hours. Analytical sample of l-g or more. Al_0, 48.2; Fe.0, 19.6; SiO.20.69; TiO. 2.38; ZrO, 0.061; P_0, 0.37; V_0, 0.063; Cr_0, 0.080; CaO 0.62; MgO 0.058; MnO 0.38; ZnO 0.029; K_0 0.010; SO, 0.22; loss on Ignition 27.3 at 1050 °C. All values $%$ by wt. Estimated uncertainty 0.002 to 0.4 depending on element.		

Certification	Use	Remarks		
Analyses performed in coopera- tion with five laboratories including NBS-CAC. Estimated uncertainty 0.0005 to 0.07 depending on constituent.	Same as SRM 692.	Same as SRM 692.		
Same as SRM 69b.	Same as SRM 69b.	Additional composition (not certified): BaO (0.004); Na ₂ O (0.007); Ce (0.0041); Co ² (0.0009); Hf (0.0032); Sc (0.0008). Issued in coop- eration with ASTM.		
Same as SRM 69b.	Same as SRM 69b.	Additional composition (not certified): BaO (0.015); Na ₂ O (0.036); Ce (0.069); Co ² (0.0013); Hf (0.0014); Sc (0.0058). Issued in coop- eration with ASTM.		
Same as SRM 69b.	Same as SRM 69b.	Additional composition (not certified): BaO (0.008); Na ₂ O (0.015); Ce (0.030); Co ² (0.0045); Hf (0.0015); Sc (0.0051). Issued in coop- eration with ASTM.		

Table 3. Composition of SRM's Prepared from Ores, Minerals, Rocks, and Refractories (listed by chemical constituents and category).

	SRM type, wt/unit							
	27f Iron ore, Sibley,	690 Iron ore, Canada,	691 Iron oxide, reduced,	692 Iron ore, Labrador,	693 Iron ore, Nimba,	69b Bauxite, Ark.		
Constituents	100 g	150 g	100 g	150 g	150 g	60 g		
Al ₂ O ₃	0.82	0.18	1.22	1.41	1.02	48.8		
BaO	-	-	-	-	-	(0.008) ^b		
C (Total)	-	-	.12	-	-	-		
Cd	-	_	-	-	_	-		
CdO	-	-	-	-	-	_		
CaO	.039	.20	.63	.023	.016	.13		
Co	-	-	.030	-	_	(.0001)		
CO2	-	-	-	-	-	-		
Cu	-	-	.032	_	-	-		
Cr ₂ O ₃	-	-	-	-	_	.011		
F	-	-	-	-	-	-		
in	-	-	-	-	-	-		
Hf	-	-	-	-	-	(.0063)		
Fe (Total)	65.97	66.85	90.8	59.58	65.11	_		
Fe ₂ O ₃	-	-	-	-	-	7.14		
Pb	-	-	-	-	-	-		
Ce	_	_	_	-	-	(0.024)		
MgO	0.019	0.18	0.52	0.035	0.013	.085		
MnO	.011	.23	.043	.46	.091	.110		
P	.041	.011	.006	.039	.056	-		
Ni	-	-	-		-	-		
P2Os	-	-	-	-	-	.118		
K2O	.008	.0030	-	.039	.0028	.068		
SiO ₂	4.17	3.71	3.7	10.14	3.87	13.43		
Ag	_	-	-	-	-	-		
Na ₂ O	0.012	0.003	0.186	0.008	0.0028	(0.025)		
s	.005	.003	.008	.005	.005	-		
Sc	-	-	-	-	-	(.0008)		
SO1	-	-	-	-		.63		
TiO ₂	.019	.022	.27	.045	.035	1.90		
U	-	-	-	-	-	-		
V2O5	-	-	-	-	-	0.028		
WO3	-	-	-	-	-	-		
Zn	-	-	-	-	-	-		
ZnO	-	-	-	-	-	.0035		
ZrO2	-	-	-	-	-	.29		
Loss on ignition	-	-	-	-	-	27.2		
Moisture	-	-	-	-	-	-		

Composition of ore SRMs^a

			S	RM type, wt/unit				
	696 Bauxite, Surinam,	697 Bauxite, Dominican,	698 Bauxite, Jamaican,	120b Phosphate rock, Fla.,	0	277 ngsten conc.,	113a Zinc ore conc.,	329 Zinc conc.,
Constituents	60 g	60 g	60 g	90 g		100 g	100 g	100 g
Al ₂ O ₃	54.5	45.8	48.2	1.06	_	-	-	-
BaO	(0.004)	(0.015)	(0.008)	-	Та	(0.20)	-	-
C (Total)	-	-	-	-		-	-	-
Cd		-	-	-		-	0.78	0.14
CdO	_	_	_	0.002		-		_
CaO	0.18	.71	.62	49.40	Ca	(.37)	1.19	.08
Co	(.00009)	(.0013)	(.0045)	_		-	(0.11)	(.009)
CO:	-	-	-	2.79		-		
Cu			-	-		-	0.31	13 ₂
Cr2O3	.047	.100	.080		Nb	(1.00)	-	-
F	-	-	-	3.84		-	-	-
in	-	-	-	-		-	-	.019
Hf	(.0032)	(.0014)	(.0015)	-		-		
Fe (Total)	-	-	_			(7.4)	2.08	12.9 ₄
Fe ₂ O ₃	8.70	20.0	19.6	1.10		-		
Pb	_	-	_	-		(0.07)	2.80	6.0 ₆
Ce	(0.0041)	(0.069)	(0.030)	_		-		
MgO	.012	.18	.058	0.28		-	0.75	0.165
MnO	.004	.41	.38	.032	Mn		-	-
P	-	-	-	-		(0.03)	-	
Ni	_	_	_			-	(.07)	(.006)
P ₂ O ₅	.050	.97	.37	34.57		-	-	-
K₂O	.009	.062	.010	0.12		-	-	
SiO ₂	3.79	6.81	.69	4.68	Si	(.85)	(1.54)	(.61)
Ag		-	-	-		-	0.0467	.0089
Na ₂ O	(0.007)	(0.036)	(.015)	0.35		-	_	_
s	_	_	_	-		(.25)	30.6	(31.7)
Sc	(8000.)	(.0058)	(.0051)	-		_	-	-
SO3	.21	.13	.22		01	(21.4)	-	-
TiO ₂	2.64	2.52	2.38	. 15	Ti	(2.2)	-	-
U				128.4 µg/g		-	-	-
V2O5	0.072	0.063	0.064	-	Мо	(0.06)	-	-
WO3		-	-	-		67.4	_	
Zn		_		-		-	57. ₃	45. ₅
ZnO	.0014	.037	.029	-	Sn	(0.54)	-	-
ZrO ₂	.14	.065	.061	-		-	-	-
Loss on Ignition	29.9	22.1	27.3	-		-	-	-
Moisture	-	-	-	-		-	0.08	0.45

^aConcentrations expressed in wt% unless noted otherwise. ^bValues in parentheses are not certified, but are given for information only.

					-			
Constituents	1c Limestone, argilieceous, 50 g	88e Limestone, dolomitic, 50 g	70e Feidspar, potash, 40 g	SRM type 99e I [≄] eidspar, soda, 40 g	e, wt/unit 97e Cley, fiint 60 g	98a Ciay, piastic 60 g	81a Giass send, 75 g	165a Giass sand, (iow iron), 75 g
Al ₂ O ₃	1.30	0.19	17.9	20.5	38.79	33.19	0.66	0.059
BaO	-	-	0.02	0.26	0.075	0.03	_	_
CaO	50.3	30.1 ₅	.11	2.14	.11	.31	_	_
Cr ₂ O ₃	-	_	-	-	.03	.03	46 µg/g	(1.1) ^ø µg/g
CO3	-	46.6	_	-	-	-		
FeO	-	-	-	-	_	-	-	-
Fe ₂ O ₃	0.55	0.28	0.075	0.065	0.45	1.34	0.082	0.012
Li2O	. –	-	-	- "	.11	0.070	-	-
MgO	0.42	21.3	-	.02	.15	.42	-	-
MnO	.025	0.03	-	-	_	-	·_	-
P ₂ O ₅	.04	.01		.02	.36	.11	-	-
K₂O	.28	.12	11.8	5.2	.50	1.04	-	-
Rb ₂ O	-	-	0.06	-	-	-	-	-
SiO2	6.84	1.20	67.1	65.2	43.67	48.94	-	-
Na₂O	0.02	0.01	2.55	6.2	0.037	0.082		-
SrO	.030	.010	_	-	.18	.039	-	-
TiO2	.07	.02	0.10	0.007	1.90	1.61	.12	.011
ZrO2	-	-	-	-	-	-	.034	.006
Loss on ignition	39.9	46.7	.40	.26	13.32	12.44	-	-

Composition of rock, mineral, and refractory SRMs"

					SRM type, wt/ut	nit			
	154b	278	688	76a Burnt	77a Burnt	78a Burnt	103a	198	199
Constituents	Titanium dioxide, 90 g	Obsidian rock, 35 g	Basait rock, 60 g	refractory, (AlsOs—40%) 75 g	refractory, (Al ₂ O ₃ —60%) 75 g	refractory, (AizO:-70%) 75 g	Chrome refractory, 60 g	Silica refractory, 45 g	Silica refractory, 45 g
Al ₂ O ₃	_	14.15	17.36	38.7	60.2	71.7	29.96	0.16	0.48
BaO	-	-	-	-	-	-	~	-	-
CaO	-	0.983	-	0.22	0.05	0.11	0.69	2.71	2.41
Cr ₂ O ₃	-	-	-	-	-	-	32.06	-	~
CO ₂	_		-	-	-	-	-	-	-
FeO	-	-	-	-	_	-	12.43	-	-
Fe ₂ O ₃	-	2.04	10.35	1.6 ₀	1.0 ₀	1.2	-	0.66	0.74
Li ₂ O	-	-	-	0.042	0.2 ₅	0.12	-	.001	.002
MgO	-	-	-	.52	.38	.70	18.54	.07	.13
MnO	-	0.052	0.167	-	-	-	0.11	.008	.007
P ₂ O ₅	-	.036	.134	0.12 ₀	0.092	1.3	.01	.022	.015
K₂O	-	4.16	.187	1.33	.09 ₀	1.22	-	.017	.094
Rb₂O	-		-	-	_	-	-	-	-
SiO ₂	-	73.05	48.4	54.9	35.0	19.4	4.63	-	-
Na₂O	-	4.84	2.15	0.07	0.037	0.078	-	.012	.015
SrO		-	-	.037	.009	.25	-	-	-
TiO ₂	99.74	0.245	1.17	2.03	2.66	3.2 ₂	0.22	.02	.06
ZrO ₂	-	-	-	0.15	0.21	0.31	0.01		
Loss on ignition	-	-	-	(0.34)	(0.22)	(0.42)	-	.21	.17

Concentrations expressed in wt% unless noted otherwise. Numbers in parentheses are not certified, but are given for information only.

Composition of ore standard reference materials*

					SRM, Type, wti	unit			
	79a Fluorspar,	180 Fluorspar,	181 Lithium	182 Lithium	183 Lithium	330 Copper	331 Copper	332	333 Molyb-
Constitu- ents	customs grade, 120 g	high grade, 120 g	ore (spodumene), 45 g	ore (petalite), 45 g	ore (lepidolite), 45 g	ore mill heads, 100 g	ore mill tails, 100 g	Copper conc., 50 g	denum conc., 35 g
CaF:	97.39	98.80	-	-	-	-	-	-	-
LizO	-	-	6.3 ₉	4.3	4.1	-	-	-	-
Cu		-	_	-	-	0.84	0.091	28.4	1.038
Re	-	-	-	-	-	.30 ppm	.04 ppm	10.2 ppm	.087
Mo	-	-	-	-	-	.018	.0022	.64	55.3
Au	-	-	-	-	-	(0.93) ppm ^b	(.034) ppm	(2.14) ppm	(8.9) ppm
Ag	-	-	-	-	-	(1.51) ppm	(.243) ppm	(38.7) ppm	(25) ppm

^aConcentrations expressed in wt percent unless noted otherwise. ^bValues in parentheses are not certified, but are given for information only.

Table 4. NBS Publications in the "260 Series" Related to Coal, Ore, Mineral, Rock, and Refractory Standards

Publication	Title	SRM No.
260-8	Analysis of Uranium Concentrates at the National Bureau of Standards	
260-37	Methods of Analysis of NBS Clay Standards	97a, 98a
260-94	Methods and Procedures Used at the National Bureau of Standards to Certify Sulfur in Coal SRM's for Sulfur Content, Calorific Value, Ash Content	2682, 2683, 2684, 2685

ACKNOWLEDGMENT

The authors gratefully acknowledge the contributions of Ms. Julie Frum who prepared this manuscript for publication.

Appendix I.

Alphabetical Index by Standard Reference Material Name

Name	SRM
Acetanilide	141c
Acid Open-Hearth Steel, 0.2% Carbon	19G
Acid Potassium Phthalate	84j
AISI 1045 Steel	20g
AISI 4340 Steel	361
AISI 4340 Steel	1261a
AISI 94B17 Steel (Modified)	362
AISI 94B17 Steel (Modified)	1262a
Albacore Tuna	RM 50
Alkali Lead Silicate Glass	712
Alpha Quartz	1878
Alumina (Reduction Grade)	699
Alumina Silicate Glass	714
Aluminosilicate Glass	715
Aluminum Alloy	85B
Aluminum Alloy 6011 (Modified)	858
Aluminum Alloy 6011 (Modified)	1258
Aluminum Alloy 7075	859
Aluminum Alloy 7075	1259
Aluminum Block, Eddy Current	1860
Conductivity	
Aluminum Block, Eddy Current	1861
Conductivity	
Aluminum Block, Eddy Current	1862
Conductivity	
Aluminum Block, Eddy Current	1863
Conductivity	
Aluminum Brass Standard for	1118
Optical Emission and X-ray	
Spectroscopic Analysis	
Aluminum Brass Standard for	C1118
Optical Emission and X-ray	
Spectroscopic Analysis	
Aluminum Brass Standard for	1119
Optical Emission and X-ray	
Spectroscopic Analysis	
Aluminum Brass Standard for	C1119
Optical Emission and X-ray	
Spectroscopic Analysis	
Aluminum Casting Alloy 356	855
Aluminum Casting Alloy 380	856
Aluminum Cube Ultra Purity	RM 10
Aluminum 2-Ethylhexanoate	1075a

Name	SRM
Aluminum, Freezing Point Standard	44f
Aluminum, Magnetic Gram Susceptibility	763
Aluminum Oxide, Melting Point	742
Aluminum Rod Ultra Purity	RM IF
Aluminum-26 Radioactivity Standard	4229
Americium-241 Alpha-Particle Standard	4904F
Americium-241 Gamma-ray Standard	4213
Ammonium Dihydrogen Phosphate	194
Angiotensin I (Human)	998
Anisic Acid	142
Anticonvulsant Drug Level Assay Standard	1599
Antiepilepsy Drug Level Assay Standard	900
Antimony-125-Tellurium-125m, Europium-154, Europium-155 Mixed-	4275B
Radionuclide Point-Source Standard Antimony-125-Tellurium-125m, Europium-154, Europium-155 Mixed-	4276B
Radionuclide Solution Standard A.O.H., 0.4C Spectrographic Steel Standard	413
Argillaceous Limestone	1C
Arsenic Trioxide Reductometric Standard	83d
Assay-Isotopic Standard for Potassium	985
Assay-Isotopic Standard for Rhenium	989
Assay-Isotopic Standard for Silicon	990
Assay-Isotopic Standard for Strontium	987
2% Austenite in Ferrite	488
5% Austenite in Ferrite	485a
15% Austenite in Ferrite	486
30% Austenite in Ferrite	487

Name	SRM	Name
Austenitic Stainless Steel, Thermal Conductivity and Electrical	1460	Beryllium on Filter Media Bessemer Steel (Simulated)
Resistivity		0.1% Carbon
Austenitic Stainless Steel, Thermal	1461	Bilirubin
Conductivity and Electrical Resistivity		Bis(1-phenyl-1, 3-butanediono) copper (II)
Austenitic Stainless Steel, Thermal	1462	Bis(1-phenyl-1, 3-butanediono)
Conductivity and Electrical		oxovanadium (IV)
Resistivity		Black Porcelain Enamel for Direction
Barium Crown Glass	713	Hemispherical Reflectance
Barium Cyclohexanebutyrate	1051b	Black Porcelain Enamel for Direction
Barrium-133 Radioactivity Point-Source	4241B	Hemispherical Reflectance
Standard		Blast Furnace Iron Standard
Barium-133 Radioactivity Standard	4251B	(Chill Cast White)
Basalt Rock	688	Blast Furnace Iron Standard
Base Oil	1083	(Chill Cast White)
Basic Electric Spectrographic Steel Standard	404a	B.O.H., 0.4C Spectrographic Steel Standard
Basic Open-Hearth Steel, 0.1% Carbon	15g	Boric Acid
Basic Open-Hearth Steel, 0.1% Carbon	335	Boron-Doped Silicon Slices for
Basic Open-Hearth Steel, 0.1% Carbon	1228	Resistivity Measurements
Basic Open-Hearth Steel, 0.2% Carbon	11h	Borosilicate Glass
Basic Open-Hearth Steel, 0.4% Carbon	12H	Borosilicate Glass
Basic Open-Hearth Steel, 0.5% Carbon	152A	Borosilicate Glass
Basic Open-Hearth Steel, 0.8% Carbon	14f	Borosilicate Glass
Basic Open-Hearth Steel, 1% Carbon	1227	Borosilicate Glass, Thermal Expansi
(Disk)		Bovine Liver
Basic Open-Hearth Steel, 1.1% Carbon	16f	Bovine Serum Albumin
Basic Open-Hearth Steel, 1.1% Carbon	337	Bovine Serum Albumin (7% Solution
0.4C Basic Oxygen Furnace Steel	178	Branched Polyethylene
Bauxite (Arkansas)	69Ь	Brewers Yeast
Bauxite (Dominican)	697	Bright Copper Microhardness
Bauxite (Jamaican)	698	Standard
Bauxite (Surinam)	696	Bright Nickel Microhardness Standa
Benzene in Nitrogen	1805	Bromobenzoic Acid
Benzene in Nitrogen	1806	Burnt Refractory
Benzene Permeation Device	1911	Burnt Refractory
Benzoic Acid	140ь	Burnt Refractory
Benzoic Acid	350a	Cadmium Cyclohexanebutyrate
Benzoic Acid Calorimetric Standard	39i	Cadmium, Vapor Pressure
Benzothiazyl Disulfide Rubber	373f	Calcium Carbonate
Compound		Calcium 2-Ethylhexanoate
Beryllium-Copper Standard	1122	Calcium in Low-Alloy (Silicon) Ste
Beryllium-Copper Standard	CI 122	Calcium Molybdate
Beryllium Copper Standard	C1123	Calibrated Glass Beads
		Calibrated Glass Beads
		Calibrated Glass Beads

Binruoin	910
Bis(1-phenyl-1, 3-butanediono)	1080a
copper (II)	
Bis(1-phenyl-1, 3-butanediono)	1052b
oxovanadium (IV)	2021
Black Porcelain Enamel for Directional	2021
Hemispherical Reflectance	2022
Black Porcelain Enamel for Directional Hemispherical Reflectance	2022
Blast Furnace Iron Standard	1143a
(Chill Cast White)	1145a
Blast Furnace Iron Standard	1144a
(Chill Cast White)	11448
B.O.H., 0.4C Spectrographic Steel	417a
Standard	41/a
Boric Acid	951
Boron-Doped Silicon Slices for	1521
Resistivity Measurements	1521
Borosilicate Glass	93a
Borosilicate Glass	623
Borosilicate Glass	717
Borosilicate Glass	1825
Borosilicate Glass, Thermal Expansion	731
Bovine Liver	1577a
Bovine Serum Albumin	926
Bovine Serum Albumin (7% Solution)	927
Branched Polyethylene	1476
Brewers Yeast	1569
Bright Copper Microhardness	1894
Standard	
Bright Nickel Microhardness Standard	1895
Bromobenzoic Acid	2142
Burnt Refractory	76a
Burnt Refractory	77a
Burnt Refractory	78a
Cadmium Cyclohexanebutyrate	1053a
Cadmium, Vapor Pressure	746
Calcium Carbonate	915
Calcium 2-Ethylhexanoate	1074a
Calcium in Low-Alloy (Silicon) Steel	1254
Calcium Molybdate	71
Calibrated Glass Beads	1004
Calibrated Glass Beads	1017a
Calibrated Glass Beads	I018a
Calibrated Glass Spheres	1003a
Carbon Dioxide in Air	1670
Carbon Dioxide in Air	1671
Carbon Dioxide in Air	1672
Carbon Dioxide in Nitrogen	1674b
Carbon Dioxide in Nitrogen	1675b
Carbon Dioxide in Nitrogen	2619a
(Combustion Efficiency Gas Standard)	
Carbon Dioxide in Nitrogen	2620a
(Combustion Efficiency Gas Standard)	

SRM 2675 8j

Name	SRM
Carbon Dioxide in Nitrogen	2621a
(Combustion Efficiency Gas Standard)	
Carbon Dioxide in Nitrogen	2622a
(Combustion Efficiency Gas Standard)	2(22.
Carbon Dioxide in Nitrogen	2623a
(Combustion Efficiency Gas Standard)	2624a
Carbon Dioxide in Nitrogen (Combustion Efficiency Gas Standard)	2024a
Carbon Dioxide in Nitrogen	2625a
(Combustion Efficiency Gas Standard)	20254
Carbon Dioxide in Nitrogen	2626a
(Combustion Efficiency Gas Standard)	
Carbon Dioxide in Nitrogen (Mobile	2632
Source Emission Gas Standard)	
Carbon Dioxide in Nitrogen (Mobile	2633
Source Emission Gas Standard)	
Carbon Monoxide in Air (Ambient	2612a
Air Quality Gas Standard)	
Carbon Monoxide in Air (Ambient	2613a
Air Quality Gas Standard)	
Carbon Monoxide in Air (Ambient	2614a
Air Quality Gas Standard)	
Carbon Monoxide in Nitrogen	16770
Carbon Monoxide in Nitrogen Carbon Monoxide in Nitrogen	1678c
Carbon Monoxide in Nitrogen	
Carbon Monoxide in Nitrogen	1680
Carbon Monoxide in Nitrogen (Mobile	16816
Source Emission Gas Standard)	2635
Carbon Monoxide in Nitrogen (Mobile	2636
Source Emission Gas Standard)	2030
Carbon Monoxide in Nitrogen (Mobile	2637
Source Emission Gas Standard)	2001
Carbon Monoxide in Nitrogen (Mobile	2638
Source Emission Gas Standard)	
Carbon Monoxide in Nitrogen (Mobile	2639
Source Emission Gas Standard)	
Carbon Monoxide in Nitrogen (Mobile	2640
Source Emission Gas Standard)	
Carbon Monoxide in Nitrogen (Mobile	2641
Source Emission Gas Standard)	
Carbon Monoxide in Nitrogen (Mobile	2642
Source Emission Gas Standard)	
Carbon-14 Radioactivity Standard Carbon-14 Radioactivity Standard	4245
Carbon Steel	4246
Carbon Steel, 0.6%	1224
Cast Iron	13g 4k
Cast Iron	4K 5L
Cast Iron	6g
Cast Iron	og 7G
Cast Iron Car Wheel	122h
Cast Steel 3	C117
Cast Steel Standard	1138a
Cast Steel Standard	1139a

Name	SRM
Catalyst Package for Lubricant Oxidation	1817
Centerline Drawings for Optical Character Recognition, B Characters	1901
Centroid Color Chart	2106
Centroid Color Kit	2107
Cesium-137, Barium-137m Point-Source Radioactivity Standard	4200B
Cesium 137, Barium 137m Point Source Radioactivity Standard	4207
Cesium-137 Burn-Up Standard	4233B
Cesium-134 Radioactivity Standard	4250B
Channel Black Rubber Compound	375g
Chlorine-36 Beta-ray Standard	4943
Chlorine 36 Radioactivity Standard	4422L
Chlorobenzoic Acid	2144
Chrome Refractory	103a 106B
Chromium Molybdenum Aluminum Steel	
Chromium-Molybdenum Steel Chromium-Molybdenum Steel	36b 133B
Chromium-Nickel-Molybdenum Steel	133D 139b
Chromium-Nickel-Molybdenum Steel	1222
17Chromium-9 Nickel-0.2 Selenium Steel	339
Chromium-Nickel Spectrographic Steel Standard	408a
15 Chromium-7 Nickel Steel	344
16 Chromium-4 Nickel Steel	345
Chromium-51 Radioactivity Standard	4400L-J
Chromium Steel	163
Chromium-Tungsten Steel	155
Chromium-Vanadium Spectrographic Steel Standard	407a
Cholesterol	911a
Chrysotile Asbestos Fibers	1876
Citrus Leaves	1572
Clinical Laboratory Thermometer Cobalt Cyclohexanebutyrate	934
Cobalt Cyclonexanebutyrate Cobalt-Molybdenum-Tungsten Steel	1055b 153A
Cobalt-Molybdenum-Tungsten Steel Cobalt-57 Radioactivity Standard	4408L-0
Cobalt-60 Radioactivity Standard	4915D
Commerical Bronze Standard for	1115
Optical Emission and X-ray Spectroscopic Analysis	1115
Commercial Bronze Standard for Optical Emission and X-ray	C1115
Spectroscopic Analysis Commercial Bronze Standard for Optical Emission and X-ray Spectroscopic Analysis	1116

			1
Name	SRM	Name	SRM
Commercial Bronze Standard for	C1116	Cupro-Nickel, 10% (CDA 706) High	874
Optical Emission and X-ray		Purity	
Spectroscopic Analysis		Cystine	143c
Commercial Bronze Standard for	1117	Dextrose	41ь
Optical Emission and X-ray		D-Glucose	917
Spectroscopic Analysis		Dibutyltin Bis(2-ethylhexanoate)	1057Ь
Commercial Bronze Standard for	C1117	Didymium Glass Filter for Checking	2009
Optical Emission and X-ray		the Wavelength Scale of	
Spectroscopic Analysis		Spectrophotometers	2010
Common Lead Isotopic Standard	981	Didymium Glass Fitler for Checking the Wavelength Scale of	2010
Copper Concentrate	332		
Copper Heat Capacity Test Specimen	RM5	Spectrophotometers Disodium Hydrogen Phosphate	186 H c
Copper-Nickel-Chromium Cast Iron	115A	Disodium Hydrogen Phosphate	2186II
Copper Ore, Mill Heads	330 331	D-Mannitol	920
Copper Ore, Mill Tails Copper-Thermal Expansion	736a	Dolomitic Limestone	88a
Copper, Secondary Freezing Point	730a 45d	Doped Platinum	681L1
Standard	450	Doped Platinum	681L2
Cortisol (Hydrocortisone)	921	Ductile Cast Iron	341
Creatinine	914	Electrical Residual Resistivity Ratio	769
Cr-Mo Low Alloy Steel	1270	Standard	105
Cr-Mo Steel (ASTM A-213)	291	Electrolytic Iron	365
Cr-Mo (SAE 4140) Spectrographic	414	Electrolytic Iron	1265a
Steel Standard	414	Electrolytic Iron, Thermal	1463
Cr-Mo (SAE 4150) Spectrographic	427	Conductivity and Electrical	
Steel Standard		Resistivity	
Cr-Mo (SAE X4130) Spectrographic	418a	Electrolytic Iron, Thermal	1464
Steel Standard		Conductivity and Electrical	
Cr-Ni-Mo Steel (AISI 8620)	293	Resistivity	
18Cr-10Ni Steel (AISI 304L)	101f	Electronic and Magnetic Alloy	1159
Cr-V Steel (Modified)	363	Standard	
Cr-V Steel (Modified)	1263a	Electronic and Magnetic Alloy	1160
Cr-V Steel (SAE 6150)	30f	Standard	
Crystalline Potassium Dichromate	935	Enriched Boric Acid	952
Crystalline Potassium Iodide,	2032	Equal-Atom Lead Isotopic Standard	982
Heterochromatic Stray Radiant		Estuarine Sediment	1646
Energy Standard		Europium 152 Point-Source Standard	4218E
Crystalline (Ruby) Electron	2601	Europium-152 Radioactivity Standard	4370B
Paramagnetic Resonance		Extra Dense Lead Glass	709
Absorption Intensity Standard		Fe-Cr-Ni Alloy Microprobe Standard	479a
Cupro-Nickel (CDA 706)	1275	Fe-3Si Alloy Microprobe Standard	483
Cupro-Nickel (CDA 715)	1276	Feldspar	70a
Cupro-Nickel, 10% (CDA 706) Doped	875	Feldspar	99a
		Ferrochromium (Low Carbon)	196
		Ferrochromium Silicon	689
		Ferroniobium	340
		Ferrophosphorus	90
		Ferrosilicon Ferrosilicon	58a 59a
		Ferrosilicon Ferrosilicon (75% Si)	59a 195
		First Surface Aluminum Mirror for	2003a
		Specular Reflectance	2005a
		First Surface Mirror, Gold on Glass	2008a
		the outlate harron, cone on olass	20004

-

Name	SRM
Fission Track Glass Standard	961
Fission Track Glass Standard	962a
Fission Track Glass Standard	963a
Fission Track Glass Standard	964
Flint Clay	97a
Fluorobenzoic Acid	2143
Fluorspar	79a
Free-Cutting Brass	1103
Free-Cutting Brass	C1104
Freeze-Dried Urine	2670
Freeze-Dried Urine Certified for Fluoride	2671a
Freeze-Dried Urine Certified for Mercury	2672a
Fused Silica Thermal Expansion	739
Gadolinium-148 Alpha-Particle	4907
Standard	1707
Gallium Melting-Point Standard	1968
Gallium-67 Radioactivity Standard	4416L-D
Gas Furnace Black Rubber Compound	382a
Gasometric Set (1095-1099)	1089
Gasometric Standard for Unalloyed	357
Zirconium	
Gasometric Standard for Unalloyed	358
Zirconium	
Generator Columns for Polynuclear	1644
Aromatic Hydrocarbons	
Gilding Metal	1112
Gilding Metal	C1112
Gilding Metal	1113
Gilding Metal	C1113
Gilding Metal	1114
Gilding Metal	C1114
Glasses for Microchemical Analysis	1871
Glasses for Microchemical Analysis	1872
Glasses for Microchemical Analysis	1873
Glasses for Microchemical Analysis	1874
Glasses for Microchemical Analysis	1875
Glass Fibers for Microanalysis	RM 31
Glass Filter for Transmittance	2030
Measurement	
Glass Filters for Spectrophotometry	930D
Glass Fluorescence Source	477
Glass Sand	81a
Glass Sand	165a
Glass Spheres	1019a
Gold Coating on Glass Sealing Alloy	1398a
Gold Coating on Nickel	1379
Gold Coating on Nickel	1380
Gold Coating on Nickel	1399b
Gold-Copper Wires for Microprobe Analysis	482
Gold-195 Radioactivity Standard	4421L
Gold-175 Radioactivity Standard	4421L

Name	SRM
Gold-198 Radioactivity Standard	4405L-B
Gold-Silver Wires for Microprobe	481
Analysis	
Gold, Vapor Pressure	745
Gray Cast Iron	334
Halocarbons (in methanol) for Water Analysis	1639
High-Alloy Steel (A-743)	C1288
High-Alloy Steel (AISI 310 Mod.)	C1287
High-Alloy Steel, (AISI 414 Mod.)	C1289
High-Alloy White Cast	892
High-Alloy White Cast Iron	890
High-Alloy White Cast Iron	891
High-Carbon Ferrochromium	64c
High-Carbon Ferromanganese	68c
High-Carbon Steel (Modified)	364
High-Carbon Steel (Modified) High-Grade Fluorspar	1264a 180
High-Nickel Steel	180 126c
High-Nickel Steel	1158
High-Purity Gold	685
High-Purity Platinum	680L1A
High-Purity Platinum	680L2A
High-Purity Platinum Thermoelement	1967
High-Purity Zinc	682
High-Silicon Steel	179
High-Silicon Steel	1134
High-Silicon Steel	1135
High-Silicon Steel (Calcium Bearing)	125b
High-Sulfur Steel	105
High-Sulfur Steel	129c
High-Sulfur Steel	1136
High Temperature Alloy A286	348
High Temperature Alloy M308	1197
High Temperature Alloy L605 and S816	\$1199
High-Temperature Alloy	1206-2
High-Temperature Alloy	1207-1
High-Temperature Alloy	1207-2
High-Temperature Alloy	1208-1
High-Temperature Alloy	1208-2
Homogeneous River Sediment for Radioactivity Measurements	RM 45B
Human Liver, Environmental Radioactivity	4352
Human Lung, Environmental Radioactivity	4351
Human Serum	909

Name	SRM	Name	
Hydrogen in Unalloyed Titanium	352b	Iron Ore (Sibley)	2
Hydrogen in Unalloyed Titanium	1086	Iron Ore Concentrate (Canada)	6
Hydrogen in Unalloyed Titanium	1087	Iron-59 Radioactivity Standard	4
Hydrogen in Unalloyed Titanium	1088	Isobutylene-Isoprene (Butyl) Rubber	- i
Hydrogen-3 Radioactivity Standard	4361	Isobutylene-Isoprene (Butyl) Rubber	3
Hydrogen-3 Radioactivity Standard	4926C	Isotopic Standard for Bromine	ģ
Hydrogen-3 Toluene Radioactivity	4947	Isotopic Standard for Chlorine	9
Standard		Isotopic Standard for Chromium	ģ
4-Hydroxy-3 methoxy-DL-mandelic	925	Isotopic Standard for Copper	ģ
Acid (VMA)		Isotopic Standard for Magnesium	ģ
ICTA High Temperature Set	GM 760	Isotopic Standard for Silver	ġ
Differential Thermal Analysis	0111 / 00	Krypton-85 Gaseous Radioactivity	4
ICTA Low Temperature Set Differen-	GM 757	Standard	
tial Thermal Analysis	0.11 /0/	Krypton-85 Radioactivity Standard	4
ICTA Mod Temperature Set Differen-	GM 759	Krypton-85 Radioactivity Standard	4
tial Thermal Analysis	0.11 / 0/	Lead-Barium Glass	ş
ICTA Mid Temperature Set Differen	GM 758	Lead-Base Bearing Metal	4
tial Thermal Analysis	0.01 100	Lead-Base Bearing Metal	1
ICTA Polystyrene Differential	GM 754	Lead Cyclohexanebutyrate	1
Thermal Analysis	011111	Lead in Reference Fuel	1
ICTA Thermogravimetry Set	GM 761	Lead in Reference Fuel	1
Incoloy, 901 and Hastelloy X	S1198	Lead in Reference Fuel	1
Inconels, Alloy 600 (Chips)	864	Lead Nitrate	ç
Inconels, Alloy 600 (Solid)	1244	Lead on Filter Media	2
Inconels, Alloy 625 (Chips)	865	Lead-203 Radioactivity Standard	4
Inconels, Alloy 625 (Solid)	1245	Lead, Secondary Freezing Point	4
Incoloy, Alloy 800 (Chips)	866	Standard	
Incoloy, Alloy 800 (Solid)	1246	Lead-Silica Glass	1
Incoloy, Alloy 825 (Chips)	867	Lead-Silica Glass (Viscosity)	
Incoloy, Alloy 825 (Solid)	1247	Lead-Silica Glass for dc Volume	
Indium-111 Radioactivity Standard	4417L-C	Resistivity	
Ingot Iron Spectrographic Steel	420a	Lead-Silica Glass for Dielectric Constant	
Standard Intermediate Purity Selenium	726	Lead 206 Spike Assay and Isotopic	
Intermediate Purity Selemum Intermediate-Purity Zinc	728	Solution Standard	
	4414L-C	Leaded-Tin Bronze Alloy	
Iodine 123 Radioactivity Standard		Light-Sensitive Paper	
Iodine-125 Radiactivity Standard	4407L-H	Light-Sensitive Paper	
Iodine 129 Radioactivity Standard	4949B	Light-Sensitive Plastic Chip	
Iodine 131 Radioactivity Standard	4401L-I 1541	Linear Polyethylene	
Iron Foil Mössbauer Standard		Linear Polyethylene	
Iron 55 Low Energy Photon Standard	4260C	Linear Polyethylene	
Iron Metal (Clinical Standard)	937	Linear Polyethylene	
Iron Ore (Labrador)	692	Linear Polyethylene Linerboard, Standard for Tape	
Iron Ore (Nimba)	693	Adhesion Testing	
		Adnesion Testing	

Name	SRM
Iron Ore (Sibley)	27f
Iron Ore Concentrate (Canada)	690
Iron-59 Radioactivity Standard	
Iron-39 Kadioactivity Standard	4411L-B
Isobutylene Isoprene (Butyl) Rubber	1495
Isobutylene-Isoprene (Butyl) Rubber	388L
Isotopic Standard for Bromine	977
Isotopic Standard for Chlorine	975
Isotopic Standard for Chromium	979
Isotopic Standard for Copper	976
Isotopic Standard for Magnesium	980
Isotopic Standard for Silver	978
Krypton-85 Gaseous Radioactivity	4308C
Standard	
Krypton-85 Radioactivity Standard	4235
Krypton-85 Radioactivity Standard	4935C
Lead-Barium Glass	89
Lead-Base Bearing Metal	53e
Lead-Base Bearing Metal	1132
Lead Cyclohexanebutyrate	1059c
Lead in Reference Fuel	1636a
Lead in Reference Fuel	1636a 1637a
Lead in Reference Fuel	1638a
Lead Nitrate	928
Lead on Filter Media	2674
Lead-203 Radioactivity Standard	4420L
Lead, Secondary Freezing Point	49e
Standard	
Lead-Silica Glass	1827
Lead-Silica Glass (Viscosity)	711
Lead-Silica Glass for dc Volume	624
Resistivity	
Lead-Silica Glass for Dielectric	774
Constant	
Lead 206 Spike Assay and Isotopic	991
Solution Standard	
Leaded-Tin Bronze Alloy	1035
Light-Sensitive Paper	700d
	701d
Light-Sensitive Paper	703
Light-Sensitive Plastic Chip	
Linear Polyethylene	1475
Linear Polyethylene	1482
Linear Polyethylene	1483
Linear Polyethylene	1484
Linerboard, Standard for Tape	1810
Adhesion Testing	
Liquid Absorbance Standard for	931c
Ultraviolet and Visible	
Spectrophotometry	
Lithium Carbonate	924
Lithium Ore	181
Lithium Ore	182
Lithium Ore	183
	1225
Low-Alloy Steel, (AISI 4130)	
Low Alloy Steel	1226
Low Alloy Steel (A242 Mod.)	C1285
Low-Alloy Steel, AISI 4130	72g
Low Alloy Steel (AISI 1526, Modified)	1269
Low-Alloy Steel (Hy 80)	1286

SRM

Name	SRM
Low-Alloy Steel Set (661-665)	S668
Low-Carbon Silicon Steel	131c
Low-Carbon Silicon Steel	1036
Low-Carbon Stainless Steel (AISI 316L)	166c
Magnesium-base Alloy	171
Magnesium Cyclohexanebutyrate	1061c
Magnesium Gluconate Dihydrate	929
Magnetic Coating on Magnetic Substrate (Nickel on Steel)	1365a
Magnetic Coating on Magnetic Substrate (Nickel on Steel)	1366a
Magnetic Coating on Non-Magnetic	1367a
Substrate (Nickel and Chromium on brass	
Magnetic Tape, High Density	6250
Manganese Fluoride, Magnetic Gram Susceptibility	766
Manganese Ore	25d
Manganese-54 Point-Source Radioactivity Standard	4997E
Manganese-54 Radioactivity Standard	4257
Manganese Steel	100B
Manganous Cyclohexanebutyrate	1062b
Maraging Steel	1156
Metal on Quartz Filters for Spectrophotometry	2031
Metals on Filter Media	2676b
Methane in Air	1658a
Methane in Air	1659a
Methane in Air	1660a
Medium Manganese Spectrographic Steel Standard	405a
Mercaptobenzothiazole	383a
Mercury, Freezing Point	743
Mercury-203 Radioactivity Standard	4418L
Mercury in Water, µg/mL Mercury in Water, ng/mL	164lb
Mercury in Water, ng/mL	1642b
Microcopy Resolution Test Chart Microprobe Standard - Cartridge Brass	1010a
	478
Mineral Glasses for Microanalysis	470
Molybdenum Concentrate Molybdenum, Heat Capacity	333 781
Molybdenum-99 Radioactivity	4412L-H
Standard Molybdenum-Tungsten-Chromium-	134A
Vanadium Steel Naval Brass Standards for Optical	1106
Emission and Spectroscopic Analysis	
Naval Brass Standards for Optical Emission and Spectroscopic Analysis	C1106
Naval Brass Standards for Optical Emission and Spectroscopic	1107
Analysis Naval Brass Standards for Optical Emission and Spectroscopic Analysis	C1107
Anarysis	

Name	SRM
Naval Brass Standards for Optical Emission and Spectroscopic Analysis	1108
Naval Brass Standards for Optical Emission and Spectroscopic Analysis	C1108
Neutral Glass	716
Neutron Density Monitor Wire	953
Nickel-Chromium Cast Iron	82b
Nickel-Chromium-Molybdenum Cast Iron	
Nickel-Chromium Steel	32E
Nickel-Copper Alloy	882
Nickel Cyclohexanebutyrate	1065b
Nickel Oxide, No. 1	671
Nickel Oxide, No. 2	672
Nickel Oxide, No. 3	673
Nickel-63 Radioactivity Standard	4226
Nickel Silver (CDA 762)	879
Nickel Siver (CDA 770)	880
Nickel Spectrographic Steel Standard	409b
Nickel Sphere, Magnetic Moment	772
Nickel Steel	33d
Ni-Cr-Mo-V Steel	1173
Nicotinic Acid	148
Niobium-94 Gamma-ray Standard	4201B
Nitric Oxide in Nitrogen	1683b
Nitric Oxide in Nitrogen	1684b
Nitric Oxide in Nitrogen	1685b
Nitric Oxide in Nitrogen	1686b
Nitric Oxide in Nitrogen	1687b
Nitric Oxide in Nitrogen (Mobile	2627
Source Emission Gas Standard)	
Nitric Oxide in Nitrogen (Mobile	2628
Source Emission Gas Standard)	
Nitric Oxide in Nitrogen (Mobile Source Emission Gas Standard)	2629
	2620
Nitric Oxide in Nitrogen (Mobile Source Emission Gas Standard)	2630
Nitric Oxide in Nitrogen (Mobile	2631
Source Emission Gas Standard)	2031
Nitrogen Dioxide in Air (Stationary	2653
Source Emission Gas Standard)	2055
Nitrogen Dioxide in Air (Stationary	2654
Source Emission Gas Standard)	2004
Nitrogen Dioxide in Air (Stationary	2655
Source Emission Gas Standard)	
Nitrogen Dioxide in Air (Stationary	2656
Source Emission Gas Standard)	
Nitrogen Dioxide Permeation Device	1629a
4-Nitrophenol	938

Name	SRM	Name
Nodular Cast Iron	342a	Organics in Shale Oil
Nominal One Micrometer Polystyrene	1690	Oxalic Acid
Spheres		Oxygen in Ferrous Materials
Non-Fat Powdered Milk	1549	Ingot Iron
Nonmagnetic Coating on Magnetic	1359	Oxygen in Ferrous Materials
Substrate (Copper and Chromium		(Stainless Steel AISI 431)
on Steel)		Oxygen in Ferrous Materials Vac
Nonmagnetic Coating on Magnetic	1360	Melted Steel
Substrate (Copper and Chromium		Oxygen in Maraging Steel
on Steel)		Oxygen in Nitrogen (Gas Standa
Nonmagnetic Coating on Magnetic	1361b	Oxygen in Nitrogen (Gas Standa Oxygen in Nitrogen (Gas Standa
Substrate (Copper and Chromium		Oxygen in Titanium-Base Materia
on Steel)		Oxygen in Valve Steel
Nonmagnetic Coating on Magnetic	1362a	Oyster Tissue
Substrate (Copper and Chromium		Palladium, Magnetic Gram
on Steel)	12/2	Susceptibility
Nonmagnetic Coating on Magnetic	1363a	Penetrant Test Block
Substrate (Copper and Chromium		Peruvian Soil, Environmental
on Steel)	1364a	Radioactivity
Nonmagnetic Coating on Magnetic Substrate (Copper and Chromium	130 4 a	Petroleum Crude Oil
on Steel)		Phosphate Rock (Florida)
NPL GM Alpha Alumina	8005	Phosphor Bronze (CDA 521)
NPL GM Alpha Alumina	8006	Phosphor Bronze (CDA 544)
NPL GM Alpha Alumina	8007	Phosphorized Copper, Cu VIII
NPL GM Alpha Alumina	8008	Phosphorized Copper, Cu IX
NPL GM Graphitized Carbon Black	8001	Phosphorized Copper, Cu X
NPL GM Graphitized Carbon Black	8002	Phosphorus-32 Radioactivity Sta
NPL GM Melting Point Set	8000	Photographic Step Tablet
NPL GM Non-porous Silica	8003	Pine Needles
NPL GM Non-porous Silica	8004	Plastic Clay
N-tertiary-Butyl-2-benzothiazolesulfen-	384d	Platinum, Magnetic Gram
amide Rubber Compound		Susceptibility
Obsidian Rock	278	Plutonium-238 Alpha-Particle Sta
Octaphenylcyclotetrasiloxane	1066a	Plutonium 240 Alpha-Particle En
Oil Furnace Black Rubber Compound	378b	Rate Solution Standard
Opal Glass Powder	91	Plutonium-239 Alpha-Particle So
Optical Emission and X-ray	1102	Standard
Spectroscopic Analysis		Plutonium-242 Alpha-Particle So
Optical Microscope Linewidth	474	Standard
Measurement Standard		Plutonium Isotopic Standard
Optical Microscope Linewidth	475	Plutonium Isotopic Standard
Measurement Standard		Plutonium Isotopic Standard
Optical Microscope Linewidth	476	Plutonium Metal Plutonium Metal (Standard Matr
Measurement Standard		Material)
		Plutonium-244 Spike Assay and

-

1091 acuum 1092 1094 ard) 2657 lard) 2658 lard) rials 2659 355 1093 1566 765 1850 4355 1582 120b 871 872 C1251 C1252 C1253 andard 4406L-G 1008 1575 98a 764 tandard 4906B Emission- 4338 olution 4331 Solution 4334B 946 947 948 949f trix 945 996 Isotopic Standard Polychlorinated Biphenyls in Oil Polycrystalline Alumina Elasticity 1581 718 Standard Polyester Plastic Film for Oxygen 1470 Gas Transmission Polyisobutylene Solution in Cetane 1490 Polystyrene 1478 1479 706 Polystyrene (Broad Molecular Weight) Polystyrene (Narrow Molecular Weight) Polystyrene (Narrow Molecular Polystyrene 705 Polystyrene Spheres Portland Cement (Black) 1691 1880

SRM 1580 4990C 1090

Name	SRM
Portland Cement (Blue)	635
Portland Cement (Clear)	639
Portland Cement (Gold)	634
Portland Cement (Green)	638
Portland Cement (Pink)	637
Portland Cement (Red)	633
Portland Cement (White)	1881
Portland Cement (Yellow)	636
Portland Cement Fineness Standard	114n
Potassium Chloride	2202
Potassium Chloride (Clinical Standard)	918
Potassium Chloride (Primary	999
Chemical)	1655
Potassium Chloride for Solution	1655
Calorimetry Diskuration	136d
Potassium Dichromate Potassium Dihydrogen Phosphate	200
Potassium Dihydrogen Phosphate	1861
Potassium Dihydrogen Phosphate	2186
Potassium Erucate	1076
Potassium Feldspar	607
Potassium Fluoride	2203
Potassium Hydrogen Phthalate	185e
Potassium Hydrogen Tartrate	188
Potassium Iodide with Attenuator	2033
Potassium Nitrate	193
Potassium Tetroxalate	189
Powdered Lead Based Paint	1579
Priority Pollutant Polynuclear	1647
Aromatic Hydrocarbons (in	
Acetonitrile)	
Propane in Air	1665
Propane in Air	1666
Propane in Air	16671
Propane in Air	1669
Propane in Air Propane in Nitrogen (Mobile Source	2643
Emission Gas Standard)	2043
Propane in Nitrogen (Mobile Source	2644
Emission Gas Standard)	2044
Propane in Nitrogen (Mobile Source	2645
Emission Gas Standard)	2015
Propane in Nitrogen (Mobile Source	2646
Emission Gas Standard)	
Propane in Nitrogen (Mobile Source	2647
Emission Gas Standard)	
Propane in Nitrogen (Mobile Source	2648
Emission Gas Standard)	
Propane in Nitrogen (Mobile Source	2649
Emission Gas Standard)	
Propane in Nitrogen (Mobile Source	2650
Emission Gas Standard)	
Propane in Nitrogen and Oxygen	2651
(Mobile Source Emission Gas	
Standard)	2452
Propane in Nitrogen and Oxygen	2652
(Mobile Source Emission Gas	
Standard)	932
Quartz Cuvette for Spectrophotometry Quartz for Hydrofluoric Acid	932
Solution Calorimetry	10.54
containing Caroninetry	

Name	SRM
Quartz on Filter Media	2679a
Quinine Sulfate Dihydrate	936
Radiogenic Lead Isotopic Standard	983
Radium-226 Gamma-ray Standard	4956
Radium-226 Gamma-ray Standard	4957
Radium-226 Gamma-ray Standard	4958
Radium-226 Gamma-ray Standard	4959
Radium-226 Gamma-ray Standard	4960
Radium-226 Gamma-ray Standard	4961
Radium-226 Gamma-ray Standard	4962
Radium-226 Gamma-ray Standard	4963
Radium-226 Gamma-ray Standard	4964B
Radium Standard (Blank Solution)	4952B
Radon-226 for Radon Analysis	4953C
Red Brass	1109
Red Brass	C1109
Red Brass	1110
Red Brass	C1110
Red Brass	1111
Red Brass	C1111
Reduced Iron Oxide	691
Reference Fuel Isooctane	1816a
Reference Fuel n Heptane	1815a
Reflection Step Tablet Refractive Index Glass	2061
	1820 1823
Refractive Index Silicone Liquids Refractive Index, Soda-Lime Glass	1823
Relative Stress-Optical Coefficient	708
Glass	/08
Resulfurized-Rephosphorized Steel	C1221
Rice Flour	1568
River Sediment	1645
River Sediment, Environmental	4350B
Radioactivity	10000
Rocky Flats Soil Number 1,	4353
Environmental Radioactivity	
Rubidium Melting Point	1969
Rutile Ore	670
Scanning Electron Microscope	484c
Magnification Standard	
Scanning Electron Microscope	2069
Performance Standard	
Secondary Standard Flexible Disk	3210
Cartridge (Computer Amplitude	
Reference)	
Secondary Standard Magnetic Tape	3200
Secondary Standard Magnetic Tape	1600
Cassette	
Secondary Standard Magnetic Tape	3216
Cartridge (Computer Amplitude	
Reference)	
Second Surface Aluminum Mirror for	2023
Specular Reflectance	

and the second second

Name	SRM	Name	SRM
Second Surface Aluminum Mirror for	2024	Soda-Lime Sheet Glass	1831
Specular Reflectance		Soda-Lime Silica Glass	622
Second Surface Aluminum Mirror with	2025	Soda-Lime Silica Glass	710
Wedge for Specular Reflectance		Soda-Lime Silica Glass for Liquidus	773
Selenium-Bearing Steel	1170ь	Temperature	
Selenium-75 Radioactivity Standard	4409L-D	Sodium Bicarbonate	191a
Sheet Brass	37E	Sodium Bicarbonate	2191
Silica Brick	198	Sodium Carbonate	192a
Silica Brick	199	Sodium Carbonate	2192
Silicon-Aluminum Alloy	87a	Sodium Chloride	2201
Silicon Bronze	158A	Sodium Chloride (Clinical Standard)	919 1069b
Silicon Density Standard	1840	Sodium Cyclohexanebutyrate Sodium Oxalate Reductometric	40h
Silicon Density Standard Silicon Metal	1841	Standard	401
Silicon Powder, Spacing Standard	57a 640a	Sodium Pyruvate	910
for X-ray Diffraction	640a	Sodium Tetraborate Decahydrate	187b
Silicon Power Device Level	1522	(Borax)	1070
Resistivity Standard	1322	Solder	127b
Silicon Resistivity Standard for Eddy	1523	Solder	1131
Current Testers	1525	Special Nuclear Container DOT 6M,	9940
Silver 2-Ethylhexanoate	1077a	15 gal.	
Silver-Gold Thermocouple Wire	733	Special Nuclear Container, 55 gal.	9941
Silver, Vapor Pressure	748	Special Nuclear Container Type A,	9942
Sintered and Arc-Cast Tungsten,	1465	10 gal.	
Thermal Conductivity and		Special Nuclear Container, Type A,	9943
Electrical Resistivity		55 gal.	
Sintered and Arc-Cast Tungsten,	1466	Special Nuclear Material Package	9910
Thermal Conductivity and		Spectrographic Ingot Iron and	461
Electrical Resistivity		Low-Alloy Steel Standard (Rod)	
Sintered and Arc-Cast Tungsten,	1467	Spectrographic Ingot Iron and	462
Thermal Conductivity and		Low-Alloy Steel Standard (Rod)	
Electrical Resistivity		Spectrographic Ingot Iron and	463
Sintered and Arc-Cast Tungsten,	1468	Low-Alloy Steel Standard (Rod)	
Thermal Conductivity and		Spectrographic Ingot Iron and	464
Electrical Resistivity		Low Alloy Steel Standard (Rod)	
Smoke Density Chamber Standard	1007a	Spectrographic Ingot Iron and	465
(Flaming Exposure Condition)		Low-Alloy Steel Standard (Rod)	
Smoke Density Chamber Standard	1006ь	Spectrographic Ingot Iron and	466
(Non-flaming Exposure Condition)	(21	Low-Alloy Steel Standard (Rod)	467
Soda-Lime Container Glass Soda-Lime Flat Glass	621	Spectrographic Ingot Iron and Low-Alloy Steel Standard (Rod)	40/
Soda-Lime Float Glass	620 1830	Spectrographic Ingot Iron and	468
Soda-Line Float Glass	1826	Low-Alloy Steel Standard (Rod)	400
Soda-Line Glass Powder	92	Spectrograhic Ingot Iron and	1166
Soda-Ellife Glass Fowder	92	Low-Alloy Steel Standard	1100
		Spectrographic Stainless Steel	442
		Standard	
		Spectrographic Stainless Steel	443
		Standard	
		Spectrographic Stainless Steel	444
		Standard	
		Spectrographic Stainless Steel	D849
		Standard (Disc)	
		Spectrographic Stainless Steel	D850
		Standard (Disc)	
		Spectrographic Stainless Steel	445
		Standard (Group II)	

Name SRM Spectrographic Stainless Steel 446 Standard (Group II) Spectrographic Stainless Steel 447 Standard (Group II) Spectrographic Stainless Steel 448 Standard (Group II) Spectrographic Stainless Steel 449 Standard (Group II) Spectrographic Stainless Steel 450 Standard (Group II) Spectrographic Stainless Steel 849 Standard (Rod) Spectrographic Stainless Steel 850 Standard (Rod) Spectrographic Steel Standard (Disc) D803a Spectrographic Steel Standard (Disc) D807a Spectrographic Steel Standard (Disc) 803. Spectrographic Steel Standard (Rod) 804a Spectrographic Steel Standard (Rod) 805a Spectrographic Steel Standard (Rod) 807a Spectrographic Steel Standard (Rod) 808a Spectrographic Steel Standard (Rod) 809a Spectrographic Steel Standard (Rod) 817b Spectrographic Steel Standard (Rod) 820a Spectrographic Steel Standard (Rod) 821 Spectrographic Steel Standard (Rod) 827 Spectrographic Tool Steel Standard 436 Spectrographic Tool Steel Standard 437 Spectrographic Tool Steel Standard 438 Spectrographic Tool Steel Standard 439 Spectrographic Tool Steel Standard 440 Spectrographic Tool Steel Standard 441 Spectrographic Tool Steel Standard 837 Spectrographic Tool Steel Standard 840 Spectrographic Tool Steel Standard D837 (Disc) Spectrographic Tool Steel Standard D840 (Disc) Spectrographic Tool Steel Standard D841 (Disc) Spectrographic Zinc-Base Die-Casting 625 Alloy A Spectrographic Zinc-Base Die-Casting 626 Alloy B Spectrographic Zinc-Base Die-Casting 627 Alloy C Spectrographic Zinc-Base Die-Casting 628 Alloy D Spectrographic Zinc-Base Die-Casting 629 Alloy E Spectrographic Zinc-Base Die-Casting 630 Alloy F Spectrographic Zinc Spelter Standard 631 Spectroscopic Titanium-Base Standard 641 Spectroscopic Titanium-Base Standard 642 Spectroscopic Titanium-Base Standard 643

Name	SRM
Spectroscopic Titanium-Base Standard	644
Spectroscopic Titanium-Base Standard	645
Spectroscopic Titanium-Base Standard	646
Spheroidized Iron Carbide in Ferrite	493
Spreading Resistance Calibration	2529
(100) n-Type Silicon	
Spreading Resistance Calibration	2528
(100) p-Type Silicon	
Spreading Resistance Calibration	2527
(111) n-Type Silicon	
Spreading Resistance Calibration	2526
(111) p-Type Silicon	
Stabilized Wine	1590
Stainless Steel	121d
Stainless Steel	123c
Stainless Steel	160b
Stainless Steel (AISI 446)	367
Stainless Steel (AISI 446)	1267
Stainless Steel, 13% Chromium	73c
Stainless Steel, Cr-Ni	C1151
Stainless Steel, Cr-Ni	1151a
Stainless Steel, Cr-Ni	C1152
Stainless Steel, Cr-Ni	1152a
Stainless Steel, Cr-Ni	C1153
Stainless Steel, Cr-Ni	1153a
Stainless Steel, Cr-Ni	C1154
Stainless Steel, Cr-Ni	1154a
Stainless Steel, Cr-Ni-Mo	1155
Stainless Steel, Cr-Ni-Nb	1172
Stainless Steel, Cr-Ni-Ti	1171
Stainless Steel for Pitting or Crevice	1890
Corrosion	
Stainless Steel Thermal Expansion	738
Stearic Acid Rubber Compound	372h
Steel (AISI 1211)	368
Steel (Lead-Bearing)	1169b
Strontium Cyclohexanebutyrate	1070a
Strontium-85 Radioactivity Standard	4403L-
Strontium-89 Radioactivity Standard	4945D 386h
Styrene-butadiene Rubber (Type 1500)	
Succinonitrile Freezing Point	1970 17c
Sucrose	2673
Sulfate and Nitrate on Filter Media	2673 1661a
Sulfur Dioxide in Nitrogen	
Sulfur Dioxide in Nitrogen	1662a
Sulfur Dioxide in Nitrogen	1663a
Sulfur Dioxide in Nitrogen	1664a
Sulfur Dioxide in Nitrogen	1693
Sulfur Dioxide in Nitrogen	1694

Solfur Dioxide in Nitrogen1667Titanium-Bace Aloy (Unalloyed)651Sulfur Dioxide Permeation Tube1626Titanium-Bace Aloy (Unalloyed)651Sulfur Dioxide Permeation Tube1626Titanium-Bace Aloy (Unalloyed)651Sulfur Dioxide Permeation Tube1625Titanium-Bace Aloy (Unalloyed)651Sulfur in Coal2683Tool Steel (AISI M2)1325Sulfur in Coal2684Traceellow (Nickel-Base897Sulfur in Coal2683Tool Steel (AISI M2)1157Sulfur in Coal2684Traceellow (Nickel-Base899Sulfur in Residual Fuel Oil1621bTraceellow (Nickel-Base899Sulfur in Residual Fuel Oil1622bHigh-Temperature Alloy899Sulfur in Residual Fuel Oil1622bTrace Elements in a Glass Matrix610Sulfur in Residual Fuel Oil1624aTrace Elements in a Glass Matrix614Superconductive Thermometric Fixed767aTrace Elements in a Glass Matrix614Superconductive Thermometric Fixed767aTrace Elements in a Glass Matrix616Surface Flammability Standard1002cTrace Elements in a Glass Matrix616Surface Flammability Standard1002cTrace Elements in a Glass Matrix616BattTrace Elements in Cold (Bituminous)1632a1635BoardTrace Sundard1634Trace Elements in Cold (Bituminous)1635BoardTrace Ilements in Cold (Sub-16351635Therman Assistance, Fibrous Glass1430<	Name	SRM	Name	SRM
Sulfur Dioxide Permeation Tube1627Titanium-Base Alloy (Unalloyed)65112 cm tube)Titanium Base Alloy (Unalloyed)652Sulfur Dioxide Permeation Tube1626Titanium Dioxide154b16 cm tube)Toonato Leaves1573Sulfur in Coal2683Tool Steel (AISI M2)1157Sulfur in Coal2684Tracealloy (Nickel-Base897Sulfur in Coal2685High-Temperature Alloy)157Sulfur in Residual Fuel Oil1619Tracealloy (Nickel-Base897Sulfur in Residual Fuel Oil1620High-Temperature Alloy)157Sulfur in Residual Fuel Oil1623aTracealloy (Nickel-Base897Sulfur in Residual Fuel Oil1623aTrace Elements in a Class Matrix610Sulfur in Residual Fuel Oil1623aTrace Elements in a Class Matrix613Sulfur Rubber Compound371gTrace Elements in a Class Matrix614Sulfur Nuber Compound71gTrace Elements in a Class Matrix615Point Device768Trace Elements in Coal Stuartize616Surface Flammability Standard1002cTrace Elements in Coal Stuartize615Surface Flammability Standard1002cTrace Elements in Coal Stuartize616Surface Flammability Standard102bTrace Elements in Coal Stuartize617Surface Stance, Fibrous Class1450Trace Elements in Coal Stuartize616Trace Is Matrix616Charce Elements in Coal Stuartize617Surface Stance, Fi	Sulfur Dioxide in Nitrogen	1696	Titanium-Base Alloy (Unalloyed)	650
Solfar Dioxide Permeation Tube1626Titanium Dioxide1546G em tube)Tool Steel (AISI M2)1157Sulfar Dioxide Permeation Tube1625Tool Steel (AISI M2)1132Sulfar in Coal2683Tool Steel (AISI M2)1157Sulfar in Coal2683Tool Steel (AISI M2)1157Sulfar in Coal2684Tracealloy (Nickel-Base897Sulfar in Residual Fuel Oil1619Tracealloy (Nickel-Base899Sulfar in Residual Fuel Oil1621bTracealloy (Nickel-Base899Sulfar in Residual Fuel Oil1622aTrace Elements in a Olass Matrix610Sulfar in Residual Fuel Oil1623aTrace Elements in a Olass Matrix611Sulfar in Residual Fuel Oil1624aTrace Elements in a Olass Matrix612Sulfar Waber Compound371gTrace Elements in a Olass Matrix614Superconductive Thermometric Fixed767 aTrace Elements in a Olass Matrix616Surface Flammability Standard1002cTrace Elements in a Olass Matrix616Surface Flammability Standard1002cTrace Elements in Coal (Stummoous)1632aTechnetium-99 Radioactivity Standard4206Trace Elements in Coal Stab1635BatTerace Standard1401Diuminous1634aThermal Resistance, Fibrous Glass1451Trace Clements in Coal (Stummoous)1632aTechnetium-99 Radioactivity Standard4206Trace Elements in Coal Stab1635BatTrace Standard175Trage El	Sulfur Dioxide Permeation Tube	1627		651
Solfar Dioxide Permeation Tube1626Titanium Dioxide1546G em tube)Tool Steel (AISI M2)1157Sulfar Dioxide Permeation Tube1625Tool Steel (AISI M2)1132Sulfar in Coal2683Tool Steel (AISI M2)1157Sulfar in Coal2683Tool Steel (AISI M2)1157Sulfar in Coal2684Tracealloy (Nickel-Base897Sulfar in Residual Fuel Oil1619Tracealloy (Nickel-Base899Sulfar in Residual Fuel Oil1621bTracealloy (Nickel-Base899Sulfar in Residual Fuel Oil1622aTrace Elements in a Olass Matrix610Sulfar in Residual Fuel Oil1623aTrace Elements in a Olass Matrix611Sulfar in Residual Fuel Oil1624aTrace Elements in a Olass Matrix612Sulfar Waber Compound371gTrace Elements in a Olass Matrix614Superconductive Thermometric Fixed767 aTrace Elements in a Olass Matrix616Surface Flammability Standard1002cTrace Elements in a Olass Matrix616Surface Flammability Standard1002cTrace Elements in Coal (Stummoous)1632aTechnetium-99 Radioactivity Standard4206Trace Elements in Coal Stab1635BatTerace Standard1401Diuminous1634aThermal Resistance, Fibrous Glass1451Trace Clements in Coal (Stummoous)1632aTechnetium-99 Radioactivity Standard4206Trace Elements in Coal Stab1635BatTrace Standard175Trage El	(2 cm tube)		Titanium Base Alloy (Unalloyed)	652
Solitor Dioxide Permeation Tube16.25Tomato Leaves17.3710 or tube)Tool Steel (A1SI M2)13.2bSolitor in Coal268.2Tool Steel (A1SI M2)11.57Solitor in Coal268.4Traccalloy (Nickel-Base897Sultor in Coal268.5High-Temperature Alloy)898Sultor in Residual Fuel Oil162.1bTracealloy (Nickel-Base898Sultor in Residual Fuel Oil162.1bTracealloy (Nickel-Base899Sultor in Residual Fuel Oil162.2bHigh-Temperature Alloy)899Sultor in Residual Fuel Oil162.2bHigh-Temperature Alloy)81.15Sultor in Residual Fuel Oil162.2aTrace Elements in a Class Matrix610Sultor in Residual Fuel Oil162.4aTrace Elements in a Class Matrix611Sultor in Residual Fuel Oil162.4aTrace Elements in a Class Matrix616Sultor in Residual Fuel Oil162.4aTrace Elements in a Class Matrix616Surface Flammability Standard1002cTrace Elements in Coal (Bituminous)163.2aTechnetium-99 Radioactivity Standard128Trace Elements in Coal (Bituminous)163.2aTace Elements in Coal Standard1401.1bituminous163.3aTanermal Resistance, Fibrous Glass1450Trace Elements in Coal (Bituminous)163.2aTace Elements in Coal Standard1402.1cTrichydroxymethylamiomethane92.3Tin Freezing Point741Trace Elements in Coal Colorimetry72.4aTrace Tamabare Standard5	Sulfur Dioxide Permeation Tube	1626	Titanium Dioxide	154b
(10 cm tube)Tool Steel (AISI M2)1320Suffur in Coal2682Tool Steel (AISI M2)1157Suffur in Coal2684Tracealloy (Nickel-Base897Suffur in Coal2684Tracealloy (Nickel-Base897Suffur in Residual Fuel Oil1619Tracealloy (Nickel-Base898Suffur in Residual Fuel Oil1620Tracealloy (Nickel-Base899Suffur in Residual Fuel Oil1621bTracealloy (Nickel-Base899Suffur in Residual Fuel Oil1622bTrace Elements in a Glass Matrix610Suffur in Residual Fuel Oil1624aTrace Elements in a Glass Matrix612Suffur in Residual Fuel Oil1624aTrace Elements in a Glass Matrix613Suffur in Residual Fuel Oil767aTrace Elements in a Glass Matrix614Superconductive Thermometric Fixed768Trace Elements in a Glass Matrix615Suffur in DeviceTrace Elements in a Glass Matrix616Surface Flammability Standard1002cTrace Elements in Coal Fly Ash1632aTechnetium 990 Radioactivity410H-ITrace Elements in Coal Stub1632aTechnetium 990 Radioactivity Standard4808.Trace Elements in Coal Stub1632aThermal Resistance, Fibrous Glass1451Trace Elements in Coal Stub1632aThermal Resistance, Fibrous Glass1450Trace Elements in Coal Stub1632aThermal Resistance, Fibrous Glass1450Trace Elements in Coal Stub1632aThermal Resistance, Fibrous Glass1450 <td>(5 cm tube)</td> <td></td> <td>Toluene</td> <td>211c</td>	(5 cm tube)		Toluene	211c
Solifur in Coal2682Tool Steel (A1SI M2)1157Sulfur in Coal2683Tool Steel Ansive Wear Standard1887Sulfur in Coal2684Traccalloy (Nickel-Base897Sulfur in Residual Fuel Oil1619Traccalloy (Nickel-Base898Sulfur in Residual Fuel Oil1620Traccalloy (Nickel-Base899Sulfur in Residual Fuel Oil1621bTraccalloy (Nickel-Base899Sulfur in Residual Fuel Oil1622bHigh-Temperature Alloy)80Sulfur in Residual Fuel Oil1623aTrace Elements in a Olass Matrix610Sulfur in Residual Fuel Oil1624aTrace Elements in a Olass Matrix611Sulfur in Residual Fuel Oil171gTrace Elements in a Olass Matrix612Sulfur in Residual Fuel Oil1674aTrace Elements in a Olass Matrix614Superconductive Thermometric Fixed767aTrace Elements in a Olass Matrix616Surface Flammability Standard1002cTrace Elements in Coal (Stutuninous)1632aTechnetium-99 Radioactivity Standard1002cTrace Elements in Coal (Stutuninous)1632aTace Elements in Aciass Matrix616Trace Elements in Coal (Stutuninous)1632aTace Elements in Coal Standard1404L-FTrace Elements in Coal (Stutuninous)1632aTachard Resistance, Fibrous Glass1451Trace Elements in Coal (Stutuninous)1632aTachard Standard1402CTris/hydroxymethylaminomethane923Tin, Freezing Point741Trisce Standard1078b<	Sulfur Dioxide Permeation Tube	1625	Tomato Leaves	1573
Sulfur in Coal2683Tool Steel Abrasive Wear Standard1857Sulfur in Coal2684Tracealloy (Nickel-Base897Sulfur in Residual Fuel Oil1619Tracealloy (Nickel-Base898Sulfur in Residual Fuel Oil1620High-Temperature Alloy)898Sulfur in Residual Fuel Oil1621bTracealloy (Nickel-Base899Sulfur in Residual Fuel Oil1622bHigh-Temperature Alloy)610Sulfur in Residual Fuel Oil1623aTrace Elements in a Glass Matrix611Sulfur in Residual Fuel Oil1624aTrace Elements in a Glass Matrix613Sulfur in Residual Fuel Oil767aTrace Elements in a Glass Matrix614Superconductive Thermometric Fixed768Trace Elements in a Glass Matrix615Point DeviceTrace Elements in a Glass Matrix616Surface Flammability Standard1002cTrace Elements in Coal (Bituminous)1632aTechnetium 99 Radioactivity410H-ITrace Elements in Coal (Sub-1632aTeace Hammability Standard1808Trace Elements in Coal Sub-1633aTernetium 99 Radioactivity440H-FTrace Elements in Coal Sub-1632aTace Tampe Alexance, Fibrous Glass1451Trace Elements in Coal Sub-1633aThermal Resistance, Fibrous Glass1450Trajalnitin1535BoardTrace Mercury in Coal1634a174NydrocNinothylainnomethace227Tin-Base Matring Metal540Trace Mercury in Coal1634aThermal Resistan	(10 cm tube)		Tool Steel (A1SI M2)	132b
Sulfur in Coal265Tracealloy (Nickel Base897Sulfur in Coal265High-Temperture Alloy)Sulfur in Residual Fuel Oil1619Tracealloy (Nickel Base899Sulfur in Residual Fuel Oil1621bTracealloy (Nickel Base899Sulfur in Residual Fuel Oil1622bTrace Elements in a Class Matrix610Sulfur in Residual Fuel Oil1623aTrace Elements in a Class Matrix611Sulfur in Residual Fuel Oil1624aTrace Elements in a Class Matrix611Sulfur Nubber Compound371gTrace Elements in a Class Matrix613Point Device767aTrace Elements in a Class Matrix616Surface Flammability Standard1002cTrace Elements in a Class Matrix616Surface Flammability Standard1002cTrace Elements in Coal (Bituminous)1632aTechnetium-99 Radioactivity Standard44041-FTrace Elements in Coal (Stub1635BatTrace Elements in Fuel Oil1634aTrace Elements in Coal (Bituminous)1632aTechnetium-99 Radioactivity Standard44041-FTrace Elements in Coal (Bituminous)1634aTharemal Resistance, Fibrous Glass1451Trace Elements in Coal (Bituminous)1635BatTarinum-208 Gamma-ray4206CTris, for Solution Calorimetry724aTin-Freezing Point741Tirdydroxymethylaminomethane923Tin, Freezing Point42gTris/hydroxymethylaminomethane923Tinanum-Base Alloy175Tungsten Chromium-Vanadium Steel <td< td=""><td></td><td>2682</td><td></td><td>1157</td></td<>		2682		1157
Sulfur in Coal2685High-Temperature Alloy)Sulfur in Residual Fuel Oit1619Tracealloy (Nickel-Base898Sulfur in Residual Fuel Oit1620High-Temperature Alloy)899Sulfur in Residual Fuel Oit1621bHigh-Temperature Alloy)610Sulfur in Residual Fuel Oit1623bHrace Elements in a Glass Matrix610Sulfur in Residual Fuel Oit1624aTrace Elements in a Glass Matrix612Sulfur in Residual Fuel Oit167aTrace Elements in a Glass Matrix613Sulfur Nebber Compound371gTrace Elements in a Glass Matrix614Superconductive Thermometric Fixed768Trace Elements in a Glass Matrix616Surface Flammability Standard1002cTrace Elements in Coal (Bituminous)1632aTechnetium 99 Radioactivity410H-ITrace Elements in Coal (Sub-1635Technetium 99 Radioactivity410H-ITrace Elements in Coal (Sub-1635Technetium 99 Radioactivity4404L-FTrace Elements in Coal (Sub-1635aTerachorotitylene in Nitrogen1808Trace Elements in Coal (Sub-1635aBatri21,2,4-Trinuchylpentane217c1643aThermal Resistance, Fibrous Glass1451Trace Elements in Water1643aTim-Base Bearing Metal54DTris, for Solution Calorimetry723aTim-Base Bearing Metal54DTris, for Solution Calorimetry723aTim-Base Bearing Metal54DTris/hydroxymethylaminomethae27cTim-Base Alloy1	Sulfur in Coal	2683		
Sulfur in Residual Fuel Oil1619Traccalloy (Nickel-Base898Sulfur in Residual Fuel Oil1620High-Temperature Alloy)Sulfur in Residual Fuel Oil1621High-Temperature Alloy)Sulfur in Residual Fuel Oil1623Trace Elements in a Glass Matrix610Sulfur in Residual Fuel Oil1624Trace Elements in a Glass Matrix613Sulfur Rubber Compound371gTrace Elements in a Glass Matrix613Sulfur Rubber Compound371gTrace Elements in a Glass Matrix613Superconductive Thermometric Fixed768Trace Elements in a Glass Matrix616Surface Flammability Standard1002cTrace Elements in a Glass Matrix616Surface Flammability Standard1002cTrace Elements in Coal (Bituminous)1632aTechnetium-99 Radioactivity Standard4208Trace Elements in Coal (Statuminous)1632aTertachloroethylen in Nitrogen1808Trace Elements in Coal Hy Ash1633aThermal Resistance, Fibrous Glass1451Trace Elements in Coal Fly Ash1633aBattTrace Elements in Coal Glumonous1035a1595Board1404L-FTrace Elements in Vater1633aThermal Resistance, Fibrous Glass1450Trjalmitin1595Board1402L-CTris(hydroxymethyl)aminomethane922Tin, Freezing Point741Tungsten Charoium Vanadium Steel50cTianium Aloy654aTungsten Charomium Vanadium Steel50cTianium Aloy1756Tungsten Char		2684		897
Sulfur in Residual Fuel Oit1620aHigh-Temperature Alloy)Sulfur in Residual Fuel Oit1621bTracealloy (Nickel-Base899Sulfur in Residual Fuel Oit1622bHigh-Temperature Alloy)610Sulfur in Residual Fuel Oit1623aTrace Elements in a Glass Matrix611Sulfur in Residual Fuel Oit167aTrace Elements in a Glass Matrix612Superconductive Thermometric Fixed767aTrace Elements in a Glass Matrix613Point DeviceTrace Elements in a Glass Matrix616Surface Flammability Standard1002cTrace Elements in a Glass Matrix616Surface Flammability Standard1002cTrace Elements in Coal (Bituminous)1632aTechnetium-90 Radioactivity4410H-ITrace Elements in Coal (Sub-1632aTechnetium-90 Radioactivity Standard4404L-FTrace Elements in Coal (Sub-1634aThermal Resistance, Fibrous Glass1451Trace Elements in Fuel Oit1634aThermal Resistance, Fibrous Glass1450Trace Elements in Fuel Oit1634aThermal Resistance, Fibrous Glass1450Trace Elements in Sud Oit1635aTin-Base Bearing Metal54DTrace Stantediono)1078Tin-Base Bearing Metal54DTris (hydroxymethyl)aminomethane222Tin-Base Bearing Metal54DTris (hydroxymethyl)aminomethane222Tin-Base Bearing Metal54DTris (hydroxymethyl)aminomethane276aTin-Il-11 Indium-Ilam Radioactivity4404L-FTrace Elements in Caloron107	Sulfur in Coal	2685		
Sulfur in Residual Fuel Oil 1621b High-Temperature Alloy) Sulfur in Residual Fuel Oil 1623a Trace Elements in a Glass Matrix 611 Sulfur in Residual Fuel Oil 1623a Trace Elements in a Glass Matrix 613 Point Device Thermometric Fixed 767a Trace Elements in a Glass Matrix 613 Point Device Thermometric Fixed 767a Trace Elements in a Glass Matrix 615 Superconductive Thermometric Fixed 768 Trace Elements in a Glass Matrix 615 Point Device Trace Elements in a Glass Matrix 616 Surface Flammability Standard 1002c Trace Elements in a Glass Matrix 617 Synthetic Sapphire 1002c Trace Elements in a Glass Matrix 617 Surface Sapphire 1002c Trace Elements in a Glass Matrix 618 Trace Elements in a Glass Matrix 617 Surface Sapphire 1002c Trace Elements in Goal (Bituminous) 1632a Technetium-990 Radioactivity Standard 4288 Trace Elements in Coal (Bituminous) 1632a Technetium-990 Radioactivity Standard 4404L-F Trace Elements in Coal Fly Ash 1633 Batt Terach Elements in Piel Oil 1634a Thallium-201 Radioactivity Standard 4404L-F Trace Elements in Coal Fly Ash 1633 Batt Trace Elements in Coal Fly Ash 1633 Batt Trace Elements in Coal Fly Ash 1633a Thermal Resistance, Fibrous Glass 1451 Trace Elements in Valer 1634 Trace Elements in Valer 1634 Trace Elements in Coal Fly Ash 1633a Tin, Freezing Point 741 Thermal Resistance, Fibrous Glass 1450 Tris, Basimetric 723a Tin, Freezing Point 741 TinSource Standard 54D Tris, Basimetric 723a Tin, Freezing Point 741 TinSource Gamma-ray 4264B Tris(hydroxymethyl)aminomethane 922 Trishydroxymethyl)aminomethane 923 Tin anum-Base Alloy 173b Tungsten Chromium-Vanaduum Steel 50c Trauium-Base Alloy 173b Tungsten Consentrate 2767 Tuasium-Base Alloy 174 Tungsten Chromium Anaduum Steel 50c Tungsten Chromal Expansion 737 Unalloyed Copper, Cu 'U (Chip) 394 Unal		1619		898
Sulfur in Residual Fuel Oil162bHigh-Temperature AlloySulfur in Residual Fuel Oil162aTrace Elements in a Glass Matrix610Sulfur in Residual Fuel Oil162aTrace Elements in a Glass Matrix612Superconductive Thermometric Fixed76aTrace Elements in a Glass Matrix613Point DeviceTrace Ilements in a Glass Matrix614Superconductive Thermometric Fixed768Trace Elements in a Glass Matrix616Surface Flammability Standard1002cTrace Elements in a Glass Matrix616Surface Flammability Standard1002cTrace Elements in Coal (Bituminous)1632aTechnetium-99 Radioactivity4410H-ITrace Elements in Coal (Sub-1633aTerachborothylene in Nitrogen1808Trace Elements in Coal (Sub-1634aThermal Resistance, Fibrous Glass1451Trace Elements in Coal (Sub-1634aThermal Resistance, Fibrous Glass1450Tris, for Solution Calorimetry723aTin-Base Bearing Metal54DTris, for Solution Calorimetry723aTin-113-Indium-108 Gamma-ray4206CTris, for Solution Calorimetry723aTin-121m Point-Source Gamma-ray4204Tris (hydroxymethyl)aminomethane922Tin-Base Bearing Metal54DTris(hydroxymethyl)aminomethane922Tin-Base Bearing Metal54DTris(hydroxymethyl)aminomethane922Tin-Base Robust Rest StandardTris (hydroxymethyl)aminomethane926Tina-113-Indium-113m Radioactivity4264BTris(hydroxymethyl)	Sulfur in Residual Fuel Oil	1620a		
sulfur in Residual Fuel Oil 1624a Sulfur in Residual Fuel Oil 1624a Frace Elements in a Glass Matrix 611 Sulfur Rubber Compound 371g Frace Elements in a Glass Matrix 613 Point Device Thermometric Fixed 767a Frace Elements in a Glass Matrix 613 Frace Elements in a Glass Matrix 614 Superconductive Thermometric Fixed 768 Frace Elements in a Glass Matrix 615 Frace Elements in a Glass Matrix 616 Surface Flammability Standard 1002c Trace Elements in a Glass Matrix 617 Synthetic Sapphire 720 Trace Elements in a Glass Matrix 617 Surface Sapphire 1002c Trace Elements in a Glass Matrix 617 Frace Elements in a Glass Matrix 617 Trace Elements in a Glass Matrix 618 Trace Elements in a Glass Matrix 617 Trace Elements in a Glass Matrix 618 Trace Elements in a Glass Matrix 617 Trace Elements in a Glass Matrix 618 Trace Elements in Goal (Bituminous) Standard 4404L-F Trace Elements in Coal (Bituminous) 1632a Terchechorechylen in Nitrogen 1808 Trace Elements in Coal (Bituminous) 1632a Tramal Resistance, Fibrous Glass 1451 Trace Elements in Coal Fly Ash 1633a Batt Thermal Resistance, Fibrous Glass 1451 Trace Elements in Valer 1633 Batt Thermal Resistance, Fibrous Glass 1450 Trip Immin 220, Thallium-208 Gamma-ray Point-Source Standard Trin, Freezing Point 741 Thermal Resistance, Fibrous Glass 4400 Trichydroxymethyljaminomethane 923 Trin, Freezing Point 741 Trace Standard 426 Trainum Aloy 654a Trangeten Chromium Aloy 654a Tungsten Chromium Aloy 480 Electron Microprobe Standard Tungsten Chromium Aloy 480 Electron Microprobe Standard 717 Tuanum Base Alloy 176 Tungsten Chromium Aloy 480 Electron Microprobe Call (Chip) 394 Unalloyed Copper, Cu Y (Chip) 394	Sulfur in Residual Fuel Oil	1621b		899
sulfur in Residual Fuel Oii 1634, Trace Elements in a Glass Matrix 611 Sulfur Rubber Compound 371g Trace Elements in a Glass Matrix 613 Soperconductive Thermometric Fixed 767a Trace Elements in a Glass Matrix 614 Superconductive Thermometric Fixed 768 Trace Elements in a Glass Matrix 615 Onin Device Trane Elements in a Glass Matrix 616 Surface Flammability Standard 1002e Trace Elements in a Glass Matrix 616 Surface Flammability Standard 2288 Trace Elements in Coal (Bituminous) 1632a Technetium 990 Radioactivity 4410H-I Trace Elements in Coal (Bituminous) 1632a Technetium 990 Radioactivity 4410H-I Trace Elements in Coal (Bituminous) 1632a Technetium 990 Radioactivity Standard 4404L-F Trace Elements in Coal (Sub- 1635 Technetium 990 Radioactivity Standard 4404L-F Trace Elements in Fole Oil 1634a Thermal Resistance, Fibrous Glass 1451 Trace Merents in Fole Oil 1634a Thermal Resistance, Fibrous Glass 1450 Tripalmitin 1595 Board Tris, for Solution Calorimetry 723a Tin-Face Ing Metal 54D Tripalmitin 232 Tin-Base Bearing Metal 54D Tris for Solution Calorimetry 724a Point-Source Gamma-ray 4264B Tris(t)phenyh1, 3-butanediono) 1078 Standard Tris, Secondary Freezing Point 42g Triphenyl Phosphate 1071 Tun-121m Point-Source Gamma-ray 4264B Tris(t)phenyh1, 3-butanediono) 1078 Batrix Adloy 173b Tungsten Chromium/Vanadum Steel 57 Tunaium-Base Alloy 173b Tungsten Chromium-Vanadum Steel 57 Tuanium-Base Alloy 173b Tungsten Chromium-Vanadum Steel 57 Tunaium-Base Alloy 173b Tungsten Chromium-Vanadum Steel 57 Tunaius-Base Alloy 173b Tungsten Chromium-Vanadum Steel 50 Unailoyed Copper, Cu YI (Chip) 394 Unailoyed Copper, Cu YI (Chip) 394 Unailoyed Copper, Cu YI (Chip) 395 Unailoyed Copper, Cu YI (Chip) 394 Unailoyed Copper, Cu YI (Chip) 394 Unailoyed Copper,	Sulfur in Residual Fuel Oil	1622b		
solfur Rubber Compound i71g Trace Elements in a Glass Matrix 613 Point Device Thermometric Fixed 767a Trace Elements in a Glass Matrix 613 Superconductive Thermometric Fixed 768 Trace Elements in a Glass Matrix 615 Point Device Trace Elements in a Glass Matrix 616 Surface Flammability Standard 1002c Trace Elements in a Glass Matrix 617 Synthetic Sapphire 702 Trace Elements in a Glass Matrix 617 Surface Saphire 702 Trace Elements in a Glass Matrix 617 Trace Elements in a Glass Matrix 618 Trace Elements in a Glass Matrix 617 Trace Elements in Goal (Bituminous) 1632a Technetium-990 Radioactivity Standard 4288 Trace Elements in Coal [FJ Ash 1633a Tetrachorcethylen in Nitrogen 1808 Trace Elements in Coal [FJ Ash 1633a Batt Trace Elements in Coal [FJ Ash 1633a Batt Resistance, Fibrous Glass 1451 Trace Elements in Valer 1643a Thermal Resistance, Fibrous Glass 1451 Trace Elements in Valer 1643 Thermal Resistance, Fibrous Glass 1451 Trace Elements in Valer 1643 Trin, Freezing Point 741 Trace Elements in Valer 710 In 1595 Trin, Freezing Point 741 Tric, for Solution Calorimetry 724a Trin, Hydroxloride Valer 741 Trichydroxymethyljaminomethane 923 Tin, Freezing Point 741 Trichydroxymethyljaminomethane 923 Trin, Freezing Point 741 Trichydroxymethyljaminomethane 923 Trin Jin Secondary Freezing Point 741 Trighter Chromium Vanadium Steel 50c Trigation Aloy 173b Tungsten Consertate 2750 Tungsten Corbider 2760 Tungsten Chromium Alloy 480 Electron Microprobe Standard Tungsten Chromium Aloy 480 Electron Microprobe Call (Chip) 394 Unalloyed Copper, Cu V (Chip) 394	Sulfur in Residual Fuel Oil	1623a		
Superconductive Thermometric Fixed Point Device Superconductive Thermometric Fixed Superconductive Thermometric Fixed Surface Flammability Standard Surface Flammability Standard Surface Flammability Standard Technetium-990 Radioactivity Standard Technetium-990 Radioactivity Standard Technetium-990 Radioactivity Standard Technetium-900 Radioactivity Standard Terashbrorethylene in Nitrogen Base Thermal Resistance, Fibrous Glass Thermal Resistance, Fibrous Glass Thorium-23, Thallium-208 Gamma-ray Point-Source Standard Tim-131-Indium-113m Radioactivity Standard Tim-131-Indium-113m Radioactivity Standard Tim-131-Indium-113m Radioactivity Standard Tim-131-Indium-113m Radioactivity Standard Tim-131-Indium-113m Radioactivity Standard Tim-131-Indium-113m Radioactivity Standard Tim-131-Indium-130 Standard Standard Tim-131-Indium-130 Standard Standard Standard Standard Standard Standard Stan	Sulfur in Residual Fuel Oil	1624a		611
Point DeviceTrace Elements in a Glass Matrix613Superconductive Thermometric Fixed768Trace Elements in a Glass Matrix615Point Device700Trace Elements in a Glass Matrix616Surface Flammability Standard1002cTrace Elements in a Glass Matrix617Synthetic Sapphire720Trace Elements in Coal (Bituminous)1632aTechnetium-990 Radioactivity Standard428Trace Elements in Coal (Bituminous)1632aTechnetium-990 Radioactivity Standard4404L-FTrace Elements in Coal Fly Ash1633aTetrachloroethylene in Nitrogen1808Trace Elements in Coal Fly Ash1633aThermal Resistance, Fibrous Glass1451Trace Elements in Vater1633aBattTrace Elements in Vater1633a12,2,4-Trimethylpentane217cThermal Resistance, Fibrous Glass1450bTris, Basimetric723aTin-Branze Bearing Metal54DTris, Basimetric723aTin-Freezing Point741Tris(hydroxymethyl)aminomethane923Tin, Freezing Point742Tris(hydroxymethyl)aminomethane223Tinanium-Base Alloy173bTungsten Choronium-Vanadium Steel50cTitanium-Base Alloy176Tungsten Choronium-Vanadium Steel50cTungsten Choronium-Anadium Steel50cTungsten Choronium-Vanadium Steel50cTitanium-Base Alloy176Tungsten Choronium-Vanadium Steel50cTungsten Choronium-Vanadium Steel50cTungsten Choronium-Vanadium Steel50c </td <td></td> <td>371g</td> <td></td> <td></td>		371g		
Superconductive Thermometric Fixed 768 For Device Tearmability Standard 1002c Trace Elements in a Glass Matrix, 616 Surface Flammability Standard 228 Technetium-99 Radioactivity Standard 4288 Trace Elements in Coal (Bituminous) 1632a Technetium-99 Radioactivity Standard 4404L-F Trace Elements in Coal (Sub- 1633a Tetrachforethylene in Nitrogen 1808 Trace Elements in Fuel Oil 1634a Trace Elements in Stel Oil 1634 Trace Elements in Stel Oil 1630 Trace Elements in Stel Oil 178 Tra-Datard Trace Tracee	Superconductive Thermometric Fixed	767a		613
Point DeviceTrace Elements in a Glass Matrix, 616Surface Flammability Standard1002eTrace Clements in Coal (Bituminous) 1632aTechnetium-99n Radioactivity Standard4288bituminousStandard4288Trace Elements in Coal (Bituminous)Standard1808Trace Elements in Coal Fly AshTetrachloroethylen in Nitrogen1808Trace Elements in Fuel OilThermal Resistance, Fibrous Glass1451Trace Mercury in CoalBattTrace Elements in Fuel Oil1633aThermal Resistance, Fibrous Glass1450bTrace Elements in Coal Gly AshBattTrace Elements in Coal Cly1632aThorium-228, Thallium-208 Gamma-ray206CTris, BasimetricPoint-Source Standard54DTrisBasimetricTin-113-Indium-113 Radioactivity402L-CTris(hydroxymethyl)aminomethaneStandard54DTrisBasimetricTin-112-Indium-108 Radioactivity402L-CTris(hydroxymethyl)aminomethaneStandard54DTrighenyl Phosphate1071bTin-112-Indium-113 Radioactivity422Trin(henyl Phosphate1071bStandard173bTungsten Chornium-Vanadum Steel50cTiranium-Base Alloy176Tungsten Chornium-Vanadum Steel50cTitanium-Base Alloy176Tungsten Chornium-Vanadum Steel50cTunalicyed Copper, Cu VI454Unalloyed Copper, Cu VI454Unalloyed Copper, Cu VI454Unalloyed Copper, Cu VI454Unalloyed Copper, Cu VI454 <t< td=""><td></td><td></td><td></td><td></td></t<>				
Surface Flammability Standard 1002c Trace Elements in a Class Matrix 617 Synthetic Sapphire 720 Trace Elements in Coal (Bituminous 1632a Technetium-99 Radioactivity Standard 228 Trace Elements in Coal (Bituminous 1632a Tachenetium-99 Radioactivity 4101.1 Trace Elements in Coal (Bituminous 1632a Trace Elements in Coal (Bituminous 1632a Trace Elements in Coal (Bituminous 1632a Trace Elements in Fuel Oil 1634a Tradium-201 Radioactivity Standard 404L-F Trace Elements in Fuel Oil 1634a Thermal Resistance, Fibrous Glass 1451 Trace Elements in Fuel Oil 1634a Thermal Resistance, Fibrous Glass 1451 Trace Elements in Vater 1643 Batt Trace Elements in Fuel Oil 1630a Tris, Basimetric 723 Thorium-223, Thallium-208 Gamma-ray 4206C Tris, for Solution Calorimetry 724a Tris. Hase Bearing Metal 54D Tris/hydroxymethyl)aminomethane 922 Tin-Base Bearing Metal 402L-C Tris(1-phenyl-H, 1-butanediono) 1078b Standard Tris. 121m Point-Source Gamma-ray 4264B Tris(1-phenyl-H, 1-butanediono) 1078b Emission-Rate Standard Trisset 777 Titanium-Base Alloy 173b Tungsten Chromium-Vanadium Steel 50c Trianium-Base Alloy 173b Tungsten Chromium-Vanadium Steel 50c Trianium-Base Alloy 173b Tungsten Chromium-Vanadium Steel 50c Unalloyed Copper, Cu VI (Chip) 394 Unalloyed Copper, Cu VI (Chip) 394	Superconductive Thermometric Fixed	768		615
Synthetic Sapphire720Trace Elements in Coal (Stub.1632Technetium-99 Radioactivity410H.I1635StandardTrace Elements in Coal (Stub.1633Tetrachlorochtylene in Nitrogen1808Trace Elements in Coal (Stub.Thermal Resistance, Fibrous Glass1451Trace Elements in ValBatt2,2,4-Trimehylpentane217cThermal Resistance, Fibrous Glass1450Triace Elements in WaterBoard1450Triace Elements in Goal (Stub.Board1450TrianiuminousThorium-228, Thallium-208 Gamma-ray206CTris, BasimetricPoint-Source Standard54DTrishydroxymethylaminomethane922Tin-Base Bearing Metal54DTrishydroxymethylaminomethane923Tin, Freezing Point741hydrochloride107bTin-113-Indium-113m Radioactivity402L-CTrishydroxymethylaminomethane923Standard54DTrianium, 1.3 butanediono)107bbTinaium-Base Alloy173bTrungsten Chromium (III)107bTitanium-Base Alloy173bTungsten Chromium-Vanadum Steel50cTitanium-Base Alloy173bTungsten Chromium-Vanadum Steel50cTungsten Thereang Devint42gTungsten Chromium-Vanadum Steel50cTitanium-Base Alloy173bTungsten Chromium-Vanadum Steel50cTuanium-Base Alloy173bTungsten Chromium-Vanadum Steel50cTuanium-Base Alloy173bTungsten Chromium-Vanadum Steel50cTu	Point Device		Trace Elements in a Glass Matrix	616
Technetium-99 RadioactivityStandardTrace Elements in Coal (Sub-1635StandardTrace Elements in Coal (Sub-1636Tercholtorethylene in Nitrogen1808Trace Elements in Fuel Oil1634aThallium-201 Radioactivity Standard44041.FTrace Elements in Fuel Oil1636aThermal Resistance, Fibrous Glass1451Trace Elements in Vater1630BattTrace Elements in Vater1630Batt1450Trace Mercury in Coal1630Batt1450Tris, Basimetric723Thorium 223, Thallium-208 Gamma-ray4206CTris, for Solution Calorimetry74aPoint-Source Standard54DTris/hydroxymethyl)aminomethane922Tin-Base Bearing Metal54DTris/hydroxymethyl)aminomethane922Tin-121m Point-Source Gamma-ray4264BTris(1-phenyl-1, 3-butanediono)1078bStandardTrisTrighenyl-1, 3-butanediono)1078bTiranium Aloy654aTungsten Chromium-Vanadium Steel526Tiranium Base Alloy173bTungsten Chromium-Vanadium Steel526Tiranium-Base Alloy176Tungsten Chromium-Vanadium Steel527Tuanium-Base Alloy176Tungsten Chromium-Vanadium Steel526Unalloyed Copper, Cu 'O''393Unalloyed Copper, Cu 'O''393Unalloyed Copper, Cu 'U (Chip)394Unalloyed Copper, Cu 'U (Chip)394Unalloyed Copper, Cu 'U (Chip)395Unalloyed Copper, Cu 'U (Chip)394Unalloyed Copper, Cu 'U (Chip)<	Surface Flammability Standard	1002c	Trace Elements in a Glass Matrix	617
Technetium-99m Radioactivity 4410H-1 bituminous Standard Trace Elements in Coal Fly Ash 1633a Tetrachlorocthylene in Nitrogen 1808 Trace Elements in Coal Fly Ash 1643a Thallium-201 Radioactivity Standard 4404L-F Trace Elements in Water 1643a Thermal Resistance, Fibrous Glass 1451 142-4 Trimethylpentane 127c Thermal Resistance, Fibrous Glass 1450b Tripalmitin 1595 Board 272-4 Trimethylpentane 217c Thornum-228, Thallium-208 Gamma-ray 4206C Tris. Basimetric 723a Thoris Source Standard 54D Tris.thydroxymethyljaminomethane 922 Tin. Freezing Point 741 hydrochloride 107b Tin-111m Point-Source Gamma-ray 4204B Tris.thydroxymethyljaminomethane 922 Tin. Freezing Point 741 hydrochloride 107b Tin-111m Point-Source Gamma-ray 4204B Tris.thydroxymethylaminomethane 925 Tinalium-113m Radioactivity 402L Trip.thydroxymethylaminomethane 925 Tinalium-Base Standard Tron (III) 107b 107b Tinalium-Base Alloy 173b Tungsten Chromium-Vanadium Sted 50c Titanium-Base Alloy 173b Tungsten	Synthetic Sapphire	720	Trace Elements in Coal (Bituminous)	1632a
Technetium-99m Radioactivity 4410H-1 bituminous Standard Trace Elements in Coal Fly Ash 1633a Tetrachlorocthylene in Nitrogen 1808 Trace Elements in Coal Fly Ash 1643a Thallium-201 Radioactivity Standard 4404L-F Trace Elements in Water 1643a Thermal Resistance, Fibrous Glass 1451 142-4 Trimethylpentane 127c Thermal Resistance, Fibrous Glass 1450b Tripalmitin 1595 Board 272-4 Trimethylpentane 217c Thornum-228, Thallium-208 Gamma-ray 4206C Tris. Basimetric 723a Thoris Source Standard 54D Tris.thydroxymethyljaminomethane 922 Tin. Freezing Point 741 hydrochloride 107b Tin-111m Point-Source Gamma-ray 4204B Tris.thydroxymethyljaminomethane 922 Tin. Freezing Point 741 hydrochloride 107b Tin-111m Point-Source Gamma-ray 4204B Tris.thydroxymethylaminomethane 925 Tinalium-113m Radioactivity 402L Trip.thydroxymethylaminomethane 925 Tinalium-Base Standard Tron (III) 107b 107b Tinalium-Base Alloy 173b Tungsten Chromium-Vanadium Sted 50c Titanium-Base Alloy 173b Tungsten	Technetium-99 Radioactivity Standard	4288	Trace Elements in Coal (Sub-	1635
Tetrachlorocthylene in Nitrogen 1808 Trace Elements in Fuel Oil 1643a Thallium-201 Radioactivity Standard 4404L-F Trace Elements in Water 1643a Thermal Resistance, Fibrous Glass 1451 Trace Mercury in Coal 1630 Batt 2,2,4 Trimethylpentane 217c Thermal Resistance, Fibrous Glass 1450 Tripalmitin 1595 Board 27,2 TrimBaxe 773. 73a Thornum-223, Thallium-208 Gamma-ray 4206C Tris(hydroxymethyl)aminomethane 922 Tin-Base Bearing Metal 54D Tris(hydroxymethyl)aminomethane 923 Tin. Freezing Point 741 hydrochloride 1078b Standard Tris(hydroxymethyl)aminomethane 923 Tin. Freezing Point 741 hydrochloride 1078b Standard Trine(Jhenyl-1, 3-butanediono) 1078b Tinsion-Rate Standard Trine(Jhenyl-1, 3-butanediono) 1079b Tin, Freezing Point 42g Triphenyl Phosphate 1071b Standard Tungsten Chromium/Vanadium Steel 50c Titanium-Base Alloy 173b Tungsten Chromium/Vanadium Steel 50c Titanium-Base Alloy 173b Tungsten Chromium/Vanadium Steel 50c Titanium-Base Alloy	Technetium-99m Radioactivity	4410H-I	bituminous	
Thallium-201 Radioactivity Standard 4404.1-F Trace Elements in Water 1630 Batt Trace Mercury in Coal 1630 Batt 2,2,4-Trimethylpentane 21c Thermal Resistance, Fibrous Glass 1451 Trace Mercury in Coal 1630 Board Triphomitin 1595 Board Triphomitin 1595 Torium-28, Thallium-208 Gamma-ray 4206C Triphodynymethylaminomethane 922 Tin Sae Bearing Metal 54D Triphydroxymethylaminomethane 923 Tin, Freezing Point 741 hydrochloride 1078b Standard Trish(hydroxymethylaminomethane 923 Tin, Freezing Point 741 hydrochloride 1078b Standard Trish(hydroxymethylaminomethane 926 Tinalium-Base Alloy 176 Trighenyl Phosphate 1078b Tianium Aloy 654a Tungsten Chromium-Vanadium Steel 50c Tiranium-Base Alloy 176 Tungsten-Chromium-Vanadium 480 Electron Microprobe Standard Tungsten Chromium-Vanadium 640 Tiranium-Base Alloy 176 Tungsten-Chromium-Vanadium 480 Electron Microprobe Standard Tungsten Chromium-Vanadium 480 Electron Microprobe Standard <td>Standard</td> <td></td> <td>Trace Elements in Coal Fly Ash</td> <td>1633a</td>	Standard		Trace Elements in Coal Fly Ash	1633a
Thermal Resistance, Fibrous Glass 1451 Trace Mercury in Coal 1630 Batt 2,2,4 Trinethylpentane 21/c Thermal Resistance, Fibrous Glass 1450 Trijalmitin 1595 Board Tris, Basimetric 723a Thornum-223, Thallium-208 Gamma-ray 4206C Tris, For Solution Calorimetry 724a Point-Source Standard 54D Tris(hydroxymethyl)aminomethane 923 Tin, Freezing Point 741 hydrochloride 1078b Standard 402LC Tris(Hylpenyl-1, 3butanediono) 1078b Standard 11071b Trun (111) 1079b Tin-Tin-151 mobint-13m Radioactivity 4202L Trighenyl Phosphate 1071b Tin-Stource Gamma-ray 4204B Trighenyl Phosphate 1071b Tin-Stource Gamma-ray 4204B Trighenyl Phosphate 1071b Tin-Stource Gamma-ray 173b Tungsten Chromium-Vanadium Steel 50c Titanium-Base Alloy 173b Tungsten Chromium-Vanadium Steel 50c Titanium-Base Alloy 176 Tungsten Chromium-Vanadium Steel 50c Tungsten Chromium-Vanadium Steel 27c 1034 Unalloyed Copper, Cu '0' 393 1034 Unalloyed Copper, Cu '0' 393	Tetrachloroethylene in Nitrogen	1808		1634a
Batt 2,2,4 Trimethylpentane 217 Thermal Resistance, Fibrous Glass 1450b Trjalmitin 1595 Board Tris, Basimetric 723a Thorium-28,5 Thallium-208 Gamma-ray 4206C Tris, for Solution Calorimetry 724a Point-Source Standard 54D Tris(hydroxymethylaminomethane 923 Tin. Freezing Point 741 hydrochloride 923 Tin. Freezing Point 741 hydrochloride 1078b Standard Tris(hydroxymethylaminomethane 924 Tin. J. Indium-113m Radioactivity 402LC Tris(hydroxymethylaminomethane 926 Standard Tris(hydroxymethylaminomethane 927 1078b Standard Tris(hydroxymethylaminomethane 927 1078b Tin. Scondary Freezing Point 428 Tris(hydroxymethylaminomethane 926 Titanium Alloy 654a Tungsten Chromium-Vanadium Steel 276a Titanium-Base Alloy 172b Tungsten Chromium-Vanadium Steel 276a Titanium-Base Alloy 176 Tungsten Chromium-Vanadium Steel 277a Titanium-Base Alloy 172b Tungsten Chromium-Vanadium Steel 277a Tutanium-Base Alloy 172b Tungsten Chromium-Vanadium Steel 278a	Thallium-201 Radioactivity Standard	4404L-F	Trace Elements in Water	1643a
Thermal Resistance, Fibrous Glass 1450b Tripalmitin 1995 Board Tris, Basimetric 723a Thorium-228, Thallium-208 Gamma-ray 4206C Tris, for Solution Calorimetry 724a Point-Source Standard 54D Tris(hydroxymethyl)aminomethane 922 Tin-Base Bearing Metal 54D Tris(hydroxymethyl)aminomethane 923 Tin, Freezing Point 744 744 1076 Standard 4402.L Tris(hydroxymethyl)aminomethane 923 Tin, Freezing Point 744 744 1076 Tin-13 madioactivity 4402.L Tris(hydroxymethyl)aminomethane 923 Tin, Freezing Point 744 744 10716 Tin-11 m Point-Source Gamma-ray 4264B Tris(hydroxymethyl)aminomethane 920 Tin-11 m Point-Source Gamma-ray 4264B Tris(hydroxymethyl)aminomethane 920 Tinaium-Base Alloy 173b Tringsten Chromium (III) 1078b Tiranium-Base Alloy 173b Tungsten Chromium-Vanadium Steel 50c Titanium-Base Alloy 176 Tungsten Chromium-Vanadium Steel 50c Tunaigene Chromium-Vanadium Steel 920 1034 Unalloyed Copper, Cu 'O' 393 Unalloyed Copper, Cu 'O' 393	Thermal Resistance, Fibrous Glass	1451	Trace Mercury in Coal	1630
Board Tris, Basimetric 723a Thorium-28, Thallium-208 Gamma-ray 4206C Tris, for Solution Calorimetry 724a Point-Source Standard 54D Tris/ftydroxymethylaminomethane 923 Tin, Freezing Point 741 hydrochloride 923 Tin-Indium-113m Radioactivity 4402L-C tris/ftydroxymethylaminomethane 923 Tin-Int-11-Indium-113m Radioactivity 4402L-C tris/ftydroxymethylaminomethane 923 Tin-Int-Source Gamma-ray 4264B tris/ftydroxymethylaminomethane 926 Emission-Rate Standard Tris/ftydroxymethylaminomethane 926 1078b Tin Scondard yr Freezing Point 42g Tris/ftydroxymethylaminomethane 926 Titanium-Base Alloy 173b Tungsten Chromium-Vanadium Steel 50c Titanium-Base Alloy 1726 Tungsten Chromium-Vanadium Steel 50c Titanium-Base Alloy 173b Tungsten Chromium-Vanadium Steel 50c Titanium-Base Alloy 1726 Tungsten Chromium-Vanadium Steel 50c Tungsten Chromium-Standard 777 Tungsten Chromium-Vanadium Steel 50c Titanium-Base Alloy 1726 Tungsten Chromium-Vanadium Steel 50c Tungsten Chromium-Base 1726 Tungsten Chromium-Vanadium Steel	Batt		2,2,4-Trimethylpentane	217c
Thorium-228, Thallium-208 Gamma-ray 4206C Tris, for Solution Calorimetry 924 Fin-Base Bearing Metal 54D Tris(hydroxymethyl)aminomethane 922 Tin-Base Bearing Metal 54D Tris(hydroxymethyl)aminomethane 923 Tin-Breezing Point 741 hydrochloride 923 Tin-I13-Indium-113m Radioactivity 4402L-C Tris(hydroxymethyl)aminomethane 923 Standard Tris(1-phenyl-1, 3-butanediono) 1078b Tin-113-Indium-113m Radioactivity 4402L-C Tris(1-phenyl-1, 3-butanediono) 1079b Tin-113-Indium-113m Radioactivity 4264B Tris(1-phenyl-1, 3-butanediono) 1079b Emission-Rate Standard Trin fulpenyl Phosphate 1071b 1071b Tinaium-Base Alloy 173b Tungsten Chromium-Vanadium Steel 50c Titanium-Base Alloy 176 Tungsten Chromium-Vanadium Steel 50c Titanium-Base Alloy 176 Tungsten Chromium-Vanadium Steel 50c Tunaium-Base Alloy 176 Tungsten Chromium-Vanadium Steel 50c Tunaium-Base Alloy 176 Tungsten Chromium-Vanadium Steel 50c Tunaium-Base Alloy 1	Thermal Resistance, Fibrous Glass	1450b	Tripalmitin	1595
Point-Source Standard Tris(hydroxymethy)aminomethane 922 Tin-Base Bearing Metal 54D Tris(hydroxymethy)Jaminomethane 923 Tin, Freezing Point 741 hydrochloride 923 Tin-Hindium-Hills Madioactivity 4402L-C Tris(Hydroxymethy)Jaminomethane 923 Standard Tris(Hydroxymethy)Jaminomethane 923 Tin-Hills Madioactivity 4402L-C Tris(Hydroxymethy)Jaminomethane 926 Standard Tris(Hydroxymethy)Jaminomethane 1078b 1078b Tin-Hillm Point-Source Gamma-ray 4264 Tris(Hydroxymethy)Jaminomethane 926 Standard Tris(Hydroxymethy)Jaminomethane 927 1078b Standard Tris(Hydroxymethy)Jaminomethane 927 1078b Standard Tungsten Chernium (III) 1078b 1078b Tins, Scondary Freezing Point 42g Tringhenyl Phosphate 276 Titanium-Base Alloy 176 Tungsten Chernal Expansion 737 Titanium-Base Alloy 176 Tungsten Expansion 737 Tungsten Thermal Expansion 737 Unalloyed Copper, Cu ''O'' 393 Unalloyed Copper, Cu ''O'' 393 Unalloyed Copper, Cu ''A 454 Unalloyed Copper, Cu ''A 108 Unalloyed Copper, Cu	Board		Tris, Basimetric	723a
Tim-Base Bearing Metal 54D Tris(hydroxymethyl)aminomethane 923 Tim-Freezing Point 741 hydrochloride 1078b Tin-113-Indium-113m Radioactivity 4402L-C Tris(1-phenyl-1, 3-butanediono) 1078b Standard Tris(1-phenyl-1, 3-butanediono) 1079b 1079b Tin-121m Point-Source Gamma-ray 4264B Tris(1-phenyl-1, 3-butanediono) 1079b Standard Tris(normium (III) 1071b 1071b Standard Tungsten Carbide 276a Titanium-Base Alloy 173b Tungsten Chromium/Vanadium Steel 50c Titanium-Base Alloy 173b Tungsten Chromium/Vanadium Steel 50c Tungsten Chromium-Vanadium Steel 276a 71c 71c Titanium-Base Alloy 173b Tungsten Chromium-Vanadium Steel 50c Tungsten Chromium-Vanadium Steel 50c 1071b 782 Tungsten Chromium-Vanadium Steel 50c 1071b 782 Tungsten Chromium-Vanadium Steel 50c 1071b 782 Tungsten Chromium-Vanadium Steel 50c 1001b 782 Tungsten Chromium-Vanadium Steel 50c 1001b 480 Unalloyed Copper, Cu 303 1001b 1071b 1034 Unalloye	Thorium-228, Thallium-208 Gamma-ray	4206C		724a
Tim-Base Bearing Metal 54D Tris(hydroxymethyl)aminomethane 923 Tim-Freezing Point 741 hydrochloride 1078b Tin-113-Indium-113m Radioactivity 4402L-C Tris(1-phenyl-1, 3-butanediono) 1078b Standard Tris(1-phenyl-1, 3-butanediono) 1079b 1079b Tin-121m Point-Source Gamma-ray 4264B Tris(1-phenyl-1, 3-butanediono) 1079b Standard Tris(normium (III) 1071b 1071b Standard Tungsten Carbide 276a Titanium-Base Alloy 173b Tungsten Chromium/Vanadium Steel 50c Titanium-Base Alloy 173b Tungsten Chromium/Vanadium Steel 50c Tungsten Chromium-Vanadium Steel 276a 71c 71c Titanium-Base Alloy 173b Tungsten Chromium-Vanadium Steel 50c Tungsten Chromium-Vanadium Steel 50c 1071b 782 Tungsten Chromium-Vanadium Steel 50c 1071b 782 Tungsten Chromium-Vanadium Steel 50c 1071b 782 Tungsten Chromium-Vanadium Steel 50c 1001b 782 Tungsten Chromium-Vanadium Steel 50c 1001b 480 Unalloyed Copper, Cu 303 1001b 1071b 1034 Unalloye	Point-Source Standard		Tris(hydroxymethyl)aminomethane	922
Tin-113-Indium-113m Radioactivity 4402L-C Tris(1-pheny)-1, 3-butanediono) 1078b Standard Chromium (III) 1079b Tin-121m Point-Source Gamma-ray 4264B Tris(1-pheny)-1, 3-butanediono) 1079b Emission-Rate Standard 276a Tris(1-pheny)-1, 3-butanediono) 1079b Tin-121m Point-Source Gamma-ray 4264B Tris(1-pheny)-1, 3-butanediono) 1071b Standard Tungsten Carbide 276a Titanium-Base Alloy 173b Tungsten Chromium-Vanadium Steel 50c Titanium-Base Alloy 173b Tungsten Chromium-Vanadium Steel 772 Titanium-Base Alloy 173b Tungsten Chromium-Vanadium Steel 80c Electron Microprobe Standard Trugsten Thermal Expansion 737 Unalloyed Copper, Cu 107 393 Unalloyed Copper, Cu 201 454 Unalloyed Copper, Cu 11 454 Unalloyed Copper, Cu 11 454 Unalloyed Copper, Cu 11 454 Unalloyed Copper, Cu 11 454 Unalloyed Copper, Cu 11 1071b 395 Unalloyed Copper, Cu 11 454 Unalloyed Copper, Cu 11 1071b 394 Unalloyed Copper, Cu 11	Tin-Base Bearing Metal	54D	Tris(hydroxymethyl)aminomethane	923
Standard Chromium (III) Tin-121m Point-Source Gamma-ray 4264B Tris(1-phenyl-1) Absutanctiono) 1079b Emission-Rate Standard 42g Trip(henyl Phosphate 2761 Standard 42g Trip(henyl Phosphate 2761 Standard Tungsten Chromium-Nanaduum Steel 50c Titanium-Base Alloy 173b Tungsten Chromium-Nanaduum Steel 50c Titanium-Base Alloy 176 Tungsten Chromium-Nanaduum Steel 50c Tungsten Chromium-Nanaduum Steel 777 772 772 772 773 773 773 773 Unalloyed Copper, Cu 'NO'' 1034 10310 1071b 1071b 1071b Unalloyed Copper, Cu 'NO'' 1034 1071b 1071b 1071b Unalloyed Copper, Cu 'NO'' 1034 1071b 1071b Unalloyed Copper, Cu 'NI 451 1071b 393 Unalloyed Copper, Cu 'NI 454 1071b 394 Unalloyed Copper, Cu 'NI 454 1071b 394 Unalloyed Copper, Cu 'NI 454 1071b 394 Unalloyed Copper, Cu 'NI 1052 1071b 394 Unalloyed Copper, Cu 'NI 1071b 394 Unalloyed Copper, Cu 'NI		741		
Tin-121m Point-Source Gamma-ray 4264B Tris(1-phenyl-1, 3-butanediono) 1079b Emission-Rate Standard Iron (III) 1071b Tin, Secondary Freezing Point 42g Triphenyl Phosphate 1071b Standard Tungsten Carbide 276a Titanium Aloy 654a Tungsten Chromium-Vanadium Steel 50c Titanium-Base Alloy 173b Tungsten Chromium-Vanadium Steel 50c Titanium-Base Alloy 173b Tungsten Chromium-Vanadium Steel 50c Titanium-Base Alloy 173b Tungsten Chromium-Vanadium Steel 50c Tutanium-Base Alloy 173b Tungsten Chromium-Vanadium Steel 50c Electron Microprobe Standard Tungsten Thermal Expansion 737 Unalloyed Copper, Cu 'U' 303 Unalloyed Copper, Cu 'U' 303 Unalloyed Copper, Cu 'U 1034 54 Unalloyed Copper, Cu 'I (Chip) 395 Unalloyed Copper, Cu 'U (Chip) 395 Unalloyed Copper, Cu 'U (Chip) 398 Unalloyed Copper, Cu 'U (Chip) 398 Unalloyed Copper, Cu 'U (Chip) 398 Unalloyed Copper, Cu 'U (Chip) 399 Unalloyed Copper, Cu 'U (Chip)	Tin-113-Indium-113m Radioactivity	4402L-C	Tris(1-phenyl-1, 3-butanediono)	1078b
Emission-Rate Standard Iron (III) Tin, Secondary Frezing Point 42g Triphenyl Phosphate 1071b Standard Carbide 276a Triganium Alloy 654a Tungsten Chronium-Vanadum Steel 50c Titanium-Base Alloy 173b Tungsten Choracinum-Vanadum Steel 277 Titanium-Base Alloy 173b Tungsten Choracinum-Vanadum Steel 277 Titanium-Base Alloy 176 Tungsten, Heat Capacity 782 Tungsten 209% Molybdenum Alloy 480 Electron Microprobe Standard 737 Unalloyed Copper, Cu ''O' 393 Unalloyed Copper, Cu ''O' 393 Unalloyed Copper, Cu '' Unalloyed Copper, Cu '' Hord Hord Hord Hord Hord Hord Hord Hord				
Tin, Secondary Freezing Point 42g Triphenyl Phosphate 1071b Standard Tungsten Carbide 276a Titanium Alloy 654a Tungsten Chromium-Vanadium Steel 50c Titanium-Base Alloy 173b Tungsten Carbide 282 Titanium-Base Alloy 173b Tungsten, Heat Capacity 782 Tungsten Carbide 200 700 700 Tungsten Carbide 200 800 Electron Microprobe Standard 737 Unalloyed Copper, Cu 1034 Unalloyed Copper, Cu 116 Unalloyed Copper, Cu 116 Unalloyed Copper, Cu 117 Unalloyed Copper, Cu 116 Unalloyed Copper,	Tin-121m Point-Source Gamma-ray	4264B	Tris(1-phenyl-1, 3-butanediono)	1079b
Standard Tungsten Carbide 276a Titanium Alloy 654a Tungsten Chronium-Vanadum Steel 50c Titanium-Base Alloy 173b Tungsten Chronium-Vanadum Steel 277 Titanium-Base Alloy 176 Tungsten Teara Capacity 782 Tungsten Zoper, Meal Capacity 176 Tungsten Teara Capacity 480 Electron Microprobe Standard 1034 Unalloyed Copper, Cu '0' 1034 Unalloyed Copper, Cu '0' 393 Unalloyed Copper, Cu '1' 451 Unalloyed Copper, Cu '1' 454 Unalloyed Copper, Cu '1' 195 Unalloyed Copper, Cu '1' 195 Unalloyed Copper, Cu '1' 196 Unalloyed Copper, Cu '1' 195 Unalloyed Copper, Cu '1' 196 Unalloyed Copper, Cu '1' 196 Unalloyed Copper, Cu '1' 196 Unalloyed Copper, Cu '1' 198 Unalloyed Copper, Cu '1' 1				
Titanium Aloy 654a Tungsten-Chromium-Vanadum Steel 50c. Titanium-Base Alloy 173b Tungsten Concentrate 277 Titanium-Base Alloy 176 Tungsten, Heat Capacity 782 Tungsten, Heat Capacity 782 Tungsten, Heat Capacity 480 Electron Microprobe Standard 737 Tungsten Thermal Expansion 737 Unalloyed Copper, Cu 1034 Unalloyed Copper, Cu 1034 Unalloyed Copper, Cu 170 393 Unalloyed Copper, Cu 170 394 Unalloyed Copper, Cu 170 395 Unalloyed Copper, Cu 171 395 Unalloyed Copper, Cu 171 396 Unalloyed Copper, Cu 171 395 Unalloyed Copper, Cu 171 396 Unalloyed Copper, Cu 171 395 Unalloyed Copper, Cu 171 398 Unalloyed Copper, Cu 171 3	Tin, Secondary Freezing Point	42g	Triphenyl Phosphate	1071b
Titanium-Base Alloy 173b Tungsten Concentrate 277 Titanium-Base Alloy 176 Tungsten, Heat Capacity 782 Tungsten Zoper, Melloyed Couplet 480 Electron Microprobe Standard 1034 Unalloyed Copper, Cu '0' 393 Unalloyed Copper, Cu '1V 451 Unalloyed Copper, Cu '1V 454 Unalloyed Copper, Cu II (Chip) 394 Unalloyed Copper, Cu II (Chip) 395 Unalloyed Copper, Cu V (Chip) 398 Unalloyed Copper, Cu V (Chip) 399 Unalloyed Copper, Cu V (Chip) 399 Unalloyed Copper, Cu V (Chip) 398 Unalloyed Copper, Cu V (Chip) 399				276a
Titanium-Base Alloy 176 Tungsten, Heat Capacity 782 Tungsten, Heat Capacity 480 Electron Microprobe Standard 800 Tungsten Thermal Expansion 737 Unalloyed Copper 1034 Unalloyed Copper, Cu '10' 393 Unalloyed Copper, Cu IV 451 Unalloyed Copper, Cu IV 454 Unalloyed Copper, Cu II (Chip) 394 Unalloyed Copper, Cu II (Chip) 395 Unalloyed Copper, Cu II (Chip) 395 Unalloyed Copper, Cu V (Chip) 398 Unalloyed Copper, Cu VI (Chip) 399	Titanium Alloy	654a	Tungsten-Chromium-Vanadium Steel	50c
Tungsten: Jow Molybedenum Alloy 480 Electron Microprobe Standard 737 Tungsten: Thermal Expansion 737 Unalloyed Copper, Cui "O" 393 Unalloyed Copper, Cu "O" 393 Unalloyed Copper, Cu "O" 450 Unalloyed Copper, Cu N 454 Unalloyed Copper, Cu II (Chip) 394 Unalloyed Copper, Cu II (Chip) 395 Unalloyed Copper, Cu II (Chip) 396 Unalloyed Copper, Cu II (Chip) 396 Unalloyed Copper, Cu II (Chip) 398 Unalloyed Copper, Cu V (Chip) 398 Unalloyed Copper, Cu V (Chip) 399 Unalloyed Copper, Cu V (Chip) 398 Unalloyed Copper, Cu V (Chip) 399 Unalloyed Copper, Cu V (Chip) 398 Unalloyed Copper, Cu VI (Chip) 400		173b		277
Electron Microprobe Standard Tungsten Thermal Expansion 737 Unalloyed Copper 1034 Unalloyed Copper, Cu 'O'' 393 Unalloyed Copper, Cu 'O'' 454 Unalloyed Copper, Cu 'IV 454 Unalloyed Copper, Cu 'I(hip) 394 Unalloyed Copper, Cu 'I (Chip) 395 Unalloyed Copper, Cu III (Chip) 395 Unalloyed Copper, Cu V' (Chip) 398 Unalloyed Copper, Cu V'I (Chip) 398 Unalloyed Copper, Cu V'I (Chip) 398 Unalloyed Copper, Cu V'I (Chip) 396 Unalloyed Copper, Cu V'I (Chip) 398 Unalloyed Copper, Cu VI (Chip) 398 Unalloyed Copper, Cu VI (Chip) 398 Unalloyed Copper, Cu VI (Chip) 398	Titanium Base Alloy	176	Tungsten, Heat Capacity	782
Tungsten Thermai Expansion 737 Unalloyed Copper 1034 Unalloyed Copper, Cu '0' 393 Unalloyed Copper, Cu '1V 451 Unalloyed Copper, Cu '1V 454 Unalloyed Copper, Cu '1V 454 Unalloyed Copper, Cu '1 394 Unalloyed Copper, Cu '1 (Chip) 395 Unalloyed Copper, Cu '1 (Chip) 396 Unalloyed Copper, Cu '1 (Chip) 396 Unalloyed Copper, Cu '1 (Chip) 398 Unalloyed Copper, Cu '1 (Chip) 398 Unalloyed Copper, Cu '1 (Chip) 399 Unalloyed Copper, Cu '1 (Chip) 390			Tungsten-20% Molybdenum Alloy	480
Unalloyed Copper, Cu "O" 1034 Unalloyed Copper, Cu "O" 393 Unalloyed Copper, Cu IV 457 Unalloyed Copper, Cu IV 454 Unalloyed Copper, Cu II 454 Unalloyed Copper, Cu II (Chip) 394 Unalloyed Copper, Cu II (Chip) 395 Unalloyed Copper, Cu III (Chip) 396 Unalloyed Copper, Cu VI (Chip) 398 Unalloyed Copper, Cu VI (Chip) 398 Unalloyed Copper, Cu VI (Chip) 399 Unalloyed Copper, Cu VI (Chip) 399 Unalloyed Copper, Cu VI (Chip) 394 Unalloyed Copper, Cu VI (Chip) 395 Unalloyed Copper, Cu VI (Chip) 394 Unalloyed Copper, Cu VI (Chip) 395 Unalloyed Copper, Cu VI (Chip) 395 Unalloyed Copper, Cu VI (Chip) 396 Unalloyed Copper, Cu VI (Chip) 395			Electron Microprobe Standard	
Unalloyed Copper, Cu ''' 393 Unalloyed Copper, Cu IV 457 Unalloyed Copper, Cu XI 454 Unalloyed Copper, Cu XI 594 Unalloyed Copper, Cu II (Chip) 395 Unalloyed Copper, Cu II (Chip) 395 Unalloyed Copper, Cu II (Chip) 396 Unalloyed Copper, Cu VI (Chip) 398 Unalloyed Copper, Cu VI (Chip) 398 Unalloyed Copper, Cu VI (Chip) 399				737
Unalloyed Copper, Cu IV 457 Unalloyed Copper, Cu XI 454 Unalloyed Copper, Cu I (Chip) 394 Unalloyed Copper, Cu II (Chip) 395 Unalloyed Copper, Cu II (Chip) 396 Unalloyed Copper, Cu II (Chip) 396 Unalloyed Copper, Cu II (Chip) 398 Unalloyed Copper, Cu VI (Chip) 398 Unalloyed Copper, Cu VI (Chip) 399 Unalloyed Copper, Cu VI (Chip) 398 Unalloyed Copper, Cu VI (Chip) 390			Unalloyed Copper	1034
Unalloyed Copper, Cu XI 454 Unalloyed Copper, Cu I (Chip) 394 Unalloyed Copper, Cu II (Chip) 395 Unalloyed Copper, Cu II (Chip) 396 Unalloyed Copper, Cu II (Chip) 396 Unalloyed Copper, Cu V (Chip) 398 Unalloyed Copper, Cu VI (Chip) 398 Unalloyed Copper, Cu VI (Chip) 399 Unalloyed Copper, Cu VI (Chip) 399 Unalloyed Copper, Cu VI (Chip) 390				393
Unalloyed Copper, Cu I (Chip) 394 Unalloyed Copper, Cu II (Chip) 395 Unalloyed Copper, Cu II (Chip) 396 Unalloyed Copper, Cu VI (Chip) 398 Unalloyed Copper, Cu VI (Chip) 399 Unalloyed Copper, Cu VI (Chip) 400			Unalloyed Copper, Cu IV	457
Unalloyed Copper, Cu II (Chip) 395 Unalloyed Copper, Cu III (Chip) 396 Unalloyed Copper, Cu V (Chip) 398 Unalloyed Copper, Cu VI (Chip) 399 Unalloyed Copper, Cu VII (Chip) 309			Unalloyed Copper, Cu XI	454
Unalloyed Copper, Cu III (Chip) 396 Unalloyed Copper, Cu V(Chip) 398 Unalloyed Copper, Cu VI (Chip) 399 Unalloyed Copper, Cu VII (Chip) 400			Unalloyed Copper, Cu I (Chip)	394
Unalloyed Copper, Cu V (Chip) 398 Unalloyed Copper, Cu VI (Chip) 399 Unalloyed Copper, Cu VII (Chip) 400				
Unalloyed Copper, Cu V (Chip) 398 Unalloyed Copper, Cu VI (Chip) 399 Unalloyed Copper, Cu VII (Chip) 400			Unalloyed Copper, Cu III (Chip)	396
Unalloyed Copper, Cu VII (Chip) 400			Unalloyed Copper, Cu V (Chip)	
Unalloyed Copper, Cu VII (Chip) 400			Unalloyed Copper, Cu VI (Chip)	399
			Unalloyed Copper, Cu VII (Chip)	
				494

Name	SRM
Unalloyed Copper, Cu II (Rod)	495
Unalloyed Copper, Cu III (Rod)	496
Unalloyed Copper, Cu V (Rod)	498
Unalloyed Copper, Cu VI (Rod)	499
Unalloyed Copper, Cu VII (Rod)	500
Unalloyed Titanium	354
Uranium Isotopic Standard (Nominally	U-0002
depleted to 0.02%)	
Uranium Isotopic Standard	U-005a
Uranium Isotopic Standard	U-010
(Nominally 1% Enriched)	
Uranium Isotopic Standard	U-015
(Nominally 1.5% Enriched)	
Uranium Isotopic Standard	U-020
Uranium Isotopic Standard	U-030a
Uranium Isotopic Standard	U-050
(Nominally 5% Enriched)	11.100
Uranium Isotopic Standard	U-100
(Nominally 10% Enriched)	U-150
Uranium Isotopic Standard	0-150
(Nominally 15% Enriched) Uranium Isotopic Standard	U-200
(Nominally 20% Enriched)	0-200
Uranium Isotopic Standard	U-350
(Nominally 35% Enriched)	0-350
Uranium Isotopic Standard	U-500
(Nominally 50% Enriched)	0-500
Uranium Isotopic Standard	U-750
(Nominally 75% Enriched)	
Uranium Isotopic Standard	U-800
(Nominally 80% Enriched)	
Uranium Isotopic Standard	U-850
(Nominally 85% Enriched)	
Uranium Isotopic Standard	U-900
(Nominally 90% Enriched)	
Uranium Isotopic Standard	U-930
(Nominally 93% Enriched)	
Uranium Isotopic Standard	U-970
(Nominally 97% Enriched)	
Uranium Metal	960
Uranium Oxide	950b
Uranium Oxide	969
Uranium-233 Spike Assay and	995
Isotopic Solution Standard	
Uranium-235 Spike Assay and	993
Isotopic Solution Standard	
Urban Dust/Organics	1649
Urban Particulate Matter	1648
Urea	912a
Urea	2141
Urea	2152
Uric Acid Vanadium and Nickel in Residual	913 1618
Fuel Oil	1010
Vanadium in Curde Oil	8505
Vanadium-49 Low-Energy Photon	4266
Standard	4200
Waspaloy	349
Wear-Metals in Lubricating Oil	1084
(100 ppm)	1001
(Phu)	

Name	SRM
Wear-Metals in Lubricating Oil	1085
(300 ppm)	
Wheat Flour	1567
White Cast Iron	338
White Cast Iron (Disc)	1145
White Cast Iron (Disc)	1146
White Cast Iron (Disc)	1150
White Ceramic Tile for Directional Hemispherical Reflectance	2019Ь
White Ceramic Tile for Directional Hemispherical Reflectance	2020
White Iron	3d
White Opan Glass Diffuse Spectral Reflectance Standard for the Visible Spectrum	2015
Xenon-127 Gaseous Radioactivity Standard	4309G
Xenon-133 Gaseous Radioactivity Standard	43071
Xenon-133 Gaseous Radioactivity Standard	4415L-I
Xenon-133, Xenon-137, Krypton-85 Mixed Gaseous Radioactivity Standard	4310B
X-ray Film Step Tablet	1001
X-ray Powder Diffraction Intensity Standard	674
X-ray Powder Diffraction (Mica) Low 2 Theta	675
Ytterbium-169 Radioactivity Standard	4419L-I
Zinc-Base Alloy (Die Casting)	94c
Zinc Concentrates	113a
Zinc Concentrates	329
Zinc Cyclohexanebutyrate	1073b
Zinc, Freezing Point	740
Zinc, Freezing Point Standard	43h
Zinc Metal	683
Zinc Oxide Rubber Compound	370e
Zircaloy-2	360a
Zircaloy-4 Metal	1237
Zircaloy-4 Metal	1238
Zircaloy-4 Metal	1239
Zirconium Barium Chromate	1651
Formulation for Heat-Source Powder Calorimetry	
Zirconium Barium Chromate Formulation for Heat Source	1652
Powder Calorimetry Zirconium-Barium Chromate	1653
Formulation for Heat-Source Powder Calorimetry	
Zirconium Metal	1234
Zirconium Metal	1235
Zirconium Metal	1236

Appendix II. Certificates for Coal, Ore, Mineral, Rock, and Refractory Standards (listed in numerical order).

U.S. Department of Commerce Juanita M, Kreps Secretary National Burene of Standards Ernest Ambler, Director

National Bureau of Standards Certificate of Analysis Standard Reference Material 1c Argillaceous Limestone

(In Cooperation with the American Society for Testing and Materials)

Constituent	S1O2	Fe ₂ O ₃	Al ₂ O ₃	TiO ₂	P2O5	MnO	CaO	SrO	MgO	Na ₂ O	K ₂ O	Loss on Ignition
Certified Value, % by wt.	6.84	0.55	1.30	0.07	0.04	0.025	50.3	0.030	0.42	0.02	0.28	39.9
Estimated ² Uncertainty	0.08	0.03	0.03	0.01	0.01	0.005	0.3	0.005	0.04	0.01	0.01	0.1
Method ³ Labs	Atomic Absorption	Atomic Absorption	Atomic Absorption	Atomic Absorption	Photometric	Atomic Absorption		Atomic Absorption	Atomic Absorption	Atomic Absorption	Atomic Absorption	
А	a 6.82	b 0.53	^b 1.33	⁶ 0.07	d 0.04	e 0.03	^f 50.40		f 0.45	⁹ 0.03	9 0.28	39.93
в	h _{6.77}	i .61	J 1.31	^c .07	d .03	e .02	k 50.19		1.54		9.29	39.80
C	6.82 ^m 6.77 ^h 6.80	.55	1.27	c .06	d .05	.02 m .03	ⁿ 50.18 50.56 f 50.20	0.03	.38 ^m .43	.02	m ^{.28} .29	39.82 39.85
D	h 6.92	¹ .55	J 1.30	°.066	d .038	.022	50.18	.030	.45	9.02	⁹ .30	39.90
E	6.92	.57	1.29	m.066	d .039	.021	k 50.57	.031	.41	.028	.27	39.87
F	6.76	.57		.08	.04	.027	50.52	.03	.42	.02		39.97
G	P 6.91	.54	1.35	.07	^d .04	.027	^k 50.20	.03	.42	.02	.28	39.89
н						.022	950.58 n 49.96	.034	.38	9 .025	⁹ .30	

(All suchases are based on examples dried 2 hours at 1109C)

1. The certified value listed for a constituent is the present best estimate of the "true" value based on results of the cooperative analytical program for certification

2. The estimated uncertainty of the "true" value is based on judgment and represents an evaluation of the combined effects of method imprecision, possible systematic errors among methods, and material variability for samples of 0.5 g or more. (No attempt was made to derive exact statistical measures of imprecision because several methods were involved in the determination.)

3. Detailed descriptions of many of the methods of analysis employed in the certification program for this SRM may be found in Part 13, Annual Book of ASTM Standards. They are also available as separate reprints, C25 and C114, from ASTM headquarters. ASTM Standard Technical Publication No. 395 also describes methods of analysis used in this certification work

^aSilicomolybdate photometric method.

^bFerron (8 hydroxy7-iodo-5-quinolinesulfonic acid)

photometric method.

Tiron (disodium-1, 2 dihydroxybenzene-3, 5-dBulfonate) photometric method.

Molybdenum blue photometric method.

Peroxydisulfate photometric method.

EDTA titration

Flame emission spectrometry.

^hDehydration with HC1.

Washington, D.C. 20234 December 14, 1978

SnCl2 reduction-K2Cr2O7 titration.

- ¹ By difference between total NH4OH group and oxides of
- iron, phosphorus, and titanium ^k Calcium precipitated as oxalate and titrated with
- standard KMnO4

1 Magnesium determined gravimetrically as Mg2P2O7.

"X-ray fluorescence spectrometry

- " Atomic absorption spectrometry.
- H₂O₂ photometric.
- P Dehydration with HC104

J. Paul Cali, Chief Office of Standard Reference Materials

(over)

PLANNING, PREPARATION, TESTING, AND ANALYSIS:

The material for this SRM was provided by Lone Star Industries, Inc., Cement and Construction Materials Group, Houston, Texas, through the courtesy of C. W. Moore.

At NBS, the material was ground, sieved and thoroughly blended.

Chemical analyses for certification were performed in the following laboratories:

Atlantic Cement Co., Inc., Ravena, N.Y., F. J. Hogan and W. Twiss.

California Portland Cement Co., Colton, Calif., P. Hawkins and N. Norton.

Ideal Basic Industries, Cement Division, Ft. Collins, Colo., J. W. Yule.

Lone Star Industries, Inc., Cement and Construction Materials Group, Houston, Texas, C. W. Moore, L. S. Scheline, and I. Z. Somcio.

Martin Marietta Laboratories, Baltimore, Md., E. H. Scott.

National Bureau of Standards, Center for Analytical Chemistry, Washington, D.C., T. C. Rains, M. B. Blackburn, T. J. Brady, J. D. Messman, and T. A. Rush, and by R. K. Bell, Assistant Research Associate, ASTM-NBS Research Associate Program.

Portland Cement Association, Skokie, Ill., W. F. Mivelaz, R. F. Crow, E. LaBonde, A. G. Mateos, C. P. Palmiano, and H. Seiler.

Universal Atlas Cement, Division of United States Steel Corp., Gary, Ind., Z. T. Jugovic.

The overall direction and coordination of the technical measurements leading to certification were performed by J. I. Shultz, Research Associate, ASTM-NBS Research Associate Program.

The technical and support aspects involved in the preparation, certification, and issuance of this Standard Reference Material were coordinated through the Office of Standard Reference Materials by W. P. Reed. U.S. Department of Commerce Juanite M. Kreps Secretary nal Bureau of Standards

National Bureau of Standards Certificate of Analysis Standard Reference Material 27f **IRON ORE** (Sibley)

(In Cooperation with the American Society for Testing and Materials)

This material is in the form of fine powder, for use in checking chemical methods of analysis and in calibration with instrumental methods of analysis.

	(Results based on sample dried for one hour at 105 °C.)										
Consti- tuent	Total Fe	SiO ₂	Al ₂ O ₃	Р	s	TiO ₂	MnO	CaO	MgO	Na ₂ O	K ₂ O
Certified ¹ Value,% by wt	65.97	4.17	0.82	0.041	0.005	0.019	0.011	0.039	0.019	0.012	• 0.008
Estimated ² Uncertainty	0.05	0.03	0.03	0.001	<u>≤</u> 0.001	0.002	0.002	0.003	0.004	0.003	0.002
Method ³ Labs	SnCl ₂ K ₂ Cr ₂ O ₇	HC104 Dehydration	Atomic Absorption	Photometric	Combustion- Titration	Photometric	Atomic Absorption	Atomic Absorption	Atomic Absorption	Atomic Absorption	Atomic Absorption
А	66.01	a4.12	0.78	^b 0.042	0.005	c0.020	0.009	0.042	0.02	^d 0.012	d _{0.006}
В	e _{65.98}	4.18	.83	.042	.006	f .018	.014 9.012	9.041 9.042	g.013 9.015	d.012 9.010	d .011 9.009
с	65.93	^h 4.18	.87 i.84	.039	ⁱ .005	k.019	¹ .010 .011	d.039	.018	d.009	^d .008
D	65.92	4.14	^m .82	.041	.006	.02	.006	.036	.023	d.016	d.008
E	ⁿ 65.96	4.17	.79	^b .040	j.005	°.021	011. ^q	.035	.021	.010	.009
F	ⁿ 66.04	-	-	^b .042	-	^q .017	.011	•	.027	.015	.007
G	a _{65.96}	4.20	^r 82 .81	.040	j _{.005}	f.018	.011 1.013	.035	.018	.009	.007

1. The certified value listed for a constituent is the present best estimate of the "true" value based on results of the cooperative analytical program for certification.

2. Estimated uncertainty includes method imprecision, bias among methods, and material variability for samples 0.5 g or more.

3. A detailed description of many of the methods of analysis employed in the certification program for this SRM may be found in Part 12, Chemical Analysis of Metals and Metal Bearing Ores, Annual Book of ASTM Standards.

NOTE: Laboratory C reported a value of 0.002 percent ZrO₂ by the pyrocatechol photometric method.

Sample fused in Na2O2

Alkali-molybdate method

X-ray spectrometric method

^d Flame emission spectrometry. H2S reduction-K2Cr2O7 titration.

^f Chromotropic acid photometric.

8 Spectrographic method.

Sample dissolved in HCl, silica removed hy double dehydration with HCl. Ignited silica treated with H2SO4 and HF.

Aluminum separated by anion-exchange and determined by chelometric titration using 1,2 diaminocyclohexanetetraacetic acid and back titration with standard zinc solution

Washington, D.C. 20234 May 31, 1977

¹ Combustion-chromatographic

^k Titanium separated by anion-exchange and determined

photometrically with diantipyrylmethane. Photometric

^mAluminum separated by anion-exchange and determined gravimetrically with phenylhydrazine.

SnCl₂ reduction - KMnO₄ titration.

° H₂O₂ photometric. P Peroxydisulfate-arsenite.

⁹ Atomic absorption spectrometry. Mercury cathode-NH4OH-Cupferron-AlPO4.

J. Paul Cali, Chief Office of Standard Reference Materials

42

(Over)

PLANNING, PREPARATION, TESTING, ANALYSIS: The iron ore material for this SRM was provided to NBS by the United States Steel Corporation, Pittsburgh, Pa., through the courtesy of R. H. Colin.

The "as received" material was crushed, dry ground, and sieved under contract with the Colorado School of Mines Research Institute, Golden, Colorado, under direction of M. G. Pattengill and H. O. VanMale. The final product passed a 150 mesh (105µm) sieve, with about 50% passing a 200 mesh (74µm) sieve.

At NBS the material was sieved and thoroughly blended. Homogeneity testing of selected samples representative of the final lot was performed at NBS by R. K. Bell, Assistant Research Associate, ASTM/NBS Research Associate Program. The observed range of values is as follows:

Constituent	Range, %	No. of determinations	Sample size, grams
Fe	± 0.05	16	0.5
SiO ₂	≤± 0.02	4	1.0
Р	≤± 0.001	4	0.5

It is concluded that the material variability is within the method imprecision.

Chemical analyses for certification were performed in the following laboratories:

Alan Wood Steel Company, Conshohocken, Pa., V. J. Mercaldo.

Andrew S. McCreath and Son, Inc., Harrisburg, Pa., R. F. Lippi.

Booth, Garrett and Blair, Inc., Ambler, Pa., J. H. Ormsbee.

Ledoux and Company, Teaneck, N. J., S. Kallman.

National Bureau of Standards, Analytical Chemistry Division, Washington, D.C. by T. C. Rains and S. A. Wicks, and by R. K. Bell, ASTM Assistant Research Associate.

United States Steel Corporation, Research Laboratory, Monroeville, Pa., by J. D. Selvaggio, D. G. Cunningham, J. DiNardi, J. B. Ferons, A. V. Fioravanti, J. E. Friedline, J. R. Lucas, II, K. G. Mikos, C. W. Ponsonby, D. Shafferman, and R. J. Wargo.

Weirton Steel Division, Weirton, W. Va., R. L. Zickefoose.

The overall direction and coordination of the technical measurements leading to certification were performed jointly by R. E. Michaelis, Office of Standard Reference Materials, and by J. I. Shultz, Research Associate, ASTM/NBS Research Associate Program.

The technical and support aspects involved in the preparation, certification and issuance of this Standard Reference Material were coordinated through the Office of Standard Reference Materials by W. P. Reed. U.S. Department of Commerce Juanita M, Kreps Secretary National Bureau of Standards Ernest Ambler, Director

National Bureau of Standards Certificate of Analysis Standard Reference Material 69b Bauxite (Arkansas)

(In Cooperation with the American Society for Testing and Materials)

(All analyses are based on samples dried 2 hours at 140 °C)

This material is in the form of fine powder (<0.08 mm) for use in checking chemical and instrumental methods of analyses.

Constituent	Certified Value ¹ Percent, by weight	Estimated Uncertainty ²
Al ₂ O ₃	48.8	0.2
Fe ₂ O ₃	7.14	.12
SiO ₂	13.43	.10
TiO ₂	1.90	.05
ZrO ₂	0.29	.07
P2O5	.118	.004
V ₂ O ₅	.028	.003
Cr ₂ O ₃	.011	.002
CaO	.13	.02
MgO	.085	.008
MnO	.110	.005
ZnO	.0035	.0005
K ₂ O	.068	.009
SO3	.63	.02
Loss on Ignition ³	27.2	.2

¹The certified value listed for a constituent is the present best estimate of the "true" value.

²The estimated uncertainty listed for a constituent is based on judgment and represents an evaluation of the combined effects of method imprecision, possible systematic errors among methods, and material variability for samples 1.0 g or more. (No attempt was made to derive exact statistical measures of imprecision because several methods were involved in the determination of most constituents.) Determined by igniting to constant weight at 1050 °C.

Washington, D.C. 20234 August 24, 1979 George A. Uriano, Chief Office of Standard Reference Materials

(over)

ADDITIONAL INFORMATION ON THE COMPOSITION

Elements other than those certified may be present in this material as indicated below. These are not certified but are given as additional information on the composition.

<u>Constituent</u>	Concentration, Percent by weight	Constituent	Concentration, Percent by weight
BaO	(0.008)	Co	(0.0001)
Na ₂ O	(0.025)	Hf	(0.0063)
Ce	(0.024)	Sc	(0.0008)

The mineralogical composition of SRM 69b was determined by x-ray diffraction studies at the Geological Survey, U.S. Department of the Interior, Reston, Va., (J.W. Hosterman) to be 30% kaolinite, 60% gibbsite, and 10% siderite. These results are semiquantitative (to the nearest 5%).

PLANNING, PREPARATION, TESTING, ANALYSIS:

The mine run material for this SRM was provided by the Aluminum Company of America, Bauxite, Arkansas, through the courtesy of T.J. Forbes and by the Alcoa Technical Center, Pittsburgh, Pa., courtesy of H.B. Hartman. It was processed (crushed, ground, sieved, and mixed) at the Colorado School of Mines Research Institute under a contract with the National Bureau of Standards.

Homogeneity testing was performed at NBS by J.S. Maples and T.E. Gills.

Cooperative analyses for certification were performed in the following laboratories:

Aluminum Company of America, Alcoa Center, Pa., R. C. Obbink.

Aluminum Company of Canada, Ltd., Arvida Research Center, Arvida, Quebec, Canada, L. Girolami. Andrew S. McCreath & Son, Inc., Harrisburg, Pa., F. A. Pennington, Jr., R. F. Eakin, and S. L. Miller.

General Refractories Co., U.S. Refractories Division, Research Center, Baltimore, Md., S. Banerjee.

Geological Survey, U.S. Department of the Interior, Reston, Va., H. J. Rose, Jr., and J. W. Hosterman. Kaiser Aluminum and Chemical Corp., Center for Technology, Pleasanton, Calif., H. J. Seim, A. E. McLaughlin, D. F. G. Marten, A. Kermaninejad, R. C. Kinne, J. R. Skarset, J. Boruk, and U. Vogel.

National Bureau of Standards, Washington, D.C., R. K. Bell, ASTM-NBS Assistant Research Associate. National-Southwire Aluminum Co., Hawesville, Ky., N. Robinson and E. Gotzy.

Ormet Corp., Burnside, La., W. L. Brown and A. D. Lafleur.

Reynolds Aluminum Co., Alumina Research Division, Bauxite, Ark., J. B. Ezell, Jr.

University of Kentucky, Institute for Mining and Minerals Research, Center for Energy Research Laboratory, Lexington, Ky., T. V. Rebagay.

The overall coordination of the technical measurements leading to certification were performed under the direction of J. I. Shultz, Research Associate, ASTM-NBS Research Associate Program.

The technical and support aspects involved in the preparation, certification, and issuance of this Standard Reference Material were coordinated through the Office of Standard Reference Materials by R. E. Michaelis and R. Alvarez.

NBS Standard Reference Materials BAUXITE SERIES

September 4, 1979

R. E. Michaelis and R. Alvarez, NBS Office of Standard Reference Materials

and J. I. Shultz, ASTM Research Associate

The following table gives the values for four bauxite SRM's that are available in the form of fine powder (<0.08 mm) for use in chemical and instrumental methods of analysis. They are being issued as a culmination of a major Industry-ASTM-NBS cooperative program.

SRM No. Designation	69b Arkansas	696 Surinam	697 Dominican	698 Jamaican
Constituent		Percent b	y Weight	
Al ₂ O ₃	48.8	54.5	45.8	48.2
Fe ₂ O ₃	7.14	8.70	20.0	19.6
SiO ₂	13.43	3.79	6.81	0.69
TiO ₂	1.90	2.64	2.52	2.38
ZrO ₂	0.29	0.14	0.065	0.061
P ₂ O ₅	0.118	0.050	0.97	0.37
V ₂ O ₅	0.028	0.072	0.063	0.064
Cr ₂ O ₃	0.011	0.047	0.100	0.080
CaO	0.13	0.018	0.71	0.62
MgO	0.085	0.012	0.18	0.058
MnO	0.110	0.004	0.41	0.38
ZnO	0.0035	0.0014	0.037	0.029
BaO	$(0.008)^{a}$	(0.004)	(0.015)	(0.008)
Na ₂ O	(0.025)	(0.007)	(0.036)	(0.015)
K ₂ O	0.068	0.009	0.062	0.010
SO3	0.63	0.21	0.13	0.22
Loss on Ign.	27.2	29.9	22.1	27.3
Ce	(0.024)	(0.0041)	(0.069)	(0.030)
Co	(0.0001)	(0.00009)	(0.0013)	(0.0045)
Hf	(0.0063)	(0.0032)	(0.0014)	(0.0015)
Sc	(0.0008)	(0.0008)	(0.0058)	(0.0051)
Total	(100.0)	(100.1)	(100.1)	(100.1)

"Values in parenthesis are not certified.

The value listed for a certified constituent is the present best estimate of the "true" value based on the results of the analytical program for certification (10-12 laboratories). The individual certificates of analysis list the "estimated uncertainties" associated with the certified values (also listed is a semiquantitative mineralogical composition ($\pm5\%$) as determined by x-ray diffraction studies at the U.S. Geological Survey).

Inquiries regarding the Bauxite SRM's 69b, 696, 697, and 698, should be directed to the Office of Standard Reference Materials, Chemistry Building, B311, National Bureau of Standards, Washington, D.C. 20234. (301) 921-2045.

George A. Uriano, Chief Office of Standard Reference Materials U. S. Department of Commerce Malcolm Buldrige Secretary National Burma of Standards Ernest Amber, Director

Certificate of Analysis

Standard Reference Material 70a

Feldspar

(All Analyses are Based on Samples Dried 2 hours at 105 °C)

	rercen
Silica (SiO ₂)	67.1
Alumina (A12O3)	17.9
Iron (as Fe ₂ O ₄)	0.07
Titania (TiO ₂)	01
Calcium (as CaO)	11
Barium (as BaO)	02
Sodium (as Na ₂ O)	. 2.5,
Potassium (as K ₂ O)	. 11.8
Rubidium (as Rb ₂ O)	. 0.06
Loss on Ignition	40

Washington, D.C. 20234 August 10, 1981 (Revision of Certificate dated 3-26-65) George A. Uriano, Chief Office of Standard Reference Materials U.S. Department of Commerce Juanita M. Kreps Secretary National Bureau of Standards Ernest Ambler, Acting Director

National Bureau of Standards Certificate of Analysis Standard Reference Material 76a, 77a, and 78a Burnt Refractories

(In Cooperation With the American Society for Testing & Materials)

SRM No.	76a	77a	78a		
Constituent	Percent by Weight ^a				
SiO	54.9	35.0	19.4		
Al ₂ O ₃	38.7	60.2	71.7		
Fe ₂ O ₃	1.60	1.00	1.2		
TiO ₂	2.03	2.66	3.22		
ZrO ₂	0.15-	0.21	0.31		
MgO	.52	.38	.70		
CaO	.22	.05	.11		
K ₂ O	1.33	.090	1.22		
Na ₂ O	0.07	.037	.078		
P ₂ O ₅	.120	.092	1.3		
Li ₂ O	.042	.025	0.12		
SrO	.037	.009	.25		
Loss on ignition	(.34) ^b	(.22)	(.42)		
Total	(100.0)	(100.0)	(100.0)		

These materials are in the form of fine powder (<0.15 mm) and are intended for use in checking chemical methods of analysis and in calibration with instrumental methods of analysis.

* Based on samples dried at 105 °C for one hour.

^b A figure in parenthesis is not certified but is given for additional information on the composition.

CERTIFICATION: The value listed for a certified constituent is the present best estimate of the "true" value based on the results of the analytical program. The value is not expected to deviate from the "true" value by more than ± 1 in the last significant figure reported. For a subscript figure, the deviation is not expected to be more than ± 5 . Based on the results of the homogeneity testing, maximum variations within and among samples are estimated to be less than the uncertainty figures given above.

Washington, D.C. 20234 April 5, 1977 (Revision of certificate dated 6-23-76. Only change: SrO values from uncertified to certified.) J. Paul Cali, Chief Office of Standard Reference Materials

(Over)

PLANNING, PREPARATION, TESTING, AND ANALYSIS: These replacements for the original Burnt Refractory SRM's were especially prepared and provided to NBS by Harbison-Walker Refractories Company, Garber Research Center, Pittsburgh, Pa., through the efforts of Dr. R. K. Scott.

Carefully selected raw materials were batched to form extruded dobies. The dobies were air dried, oven dried at 120 °C, and then fired at 1427 °C for ten hours in kilns. The fired dobies were crushed and ground and converted to the fine powder product by air classification (about 95%-325 mesh). The final products were mixed in a blender. At NBS, each of the materials was reblended and resived.

Homogeneity testing by chemical analyses was performed at NBS by K. M. Sappenfield on selected samples representative of each lot of material for the key constituents, SiO₂ and Fe₂O₁.

Standard Deviation of a Single Determination (in wt. %), n = 7

Constituent	. 76a	77a	78a
SiO ₂	0.09	0.06	0.08
Fe ₂ O ₃	.037	.034	.038

Cooperative analyses for certification were performed in the analytical laboratories at Harbison-Walker Refractories Company, Pittsburgh, Pa., R. K. Scott and J. Ryan, and at Pennsylvania State University, College of Earth and Mineral Sciences, University Park, Pa., N. H. Suhr, J. C. Devine, and J. B. Bodkin.

Analyses were performed in the NBS Analytical Chemistry Division by R. K. Bell, O. Menis, T. C. Rains, T. A. Rush, K. M. Sappenfield, M. A. Waguespack, and S. A. Wicks.

The overall responsibility for the technical measurements at NBS was under the direction of W. R. Shields, I. L. Barnes, and O. Menis. The final coordination of the technical measurements was under the direction of J. I. Shultz, Research Associate Associate Associate Stociate and Associate Associate Stociate Associate Ass

The technical and support aspects involved in the preparation, certification, and issuance of these SRM's were coordinated through the Office of Standard Reference Materials by R. E. Michaelis.

U.S. Department of Commerce Juanita M, Kreps Secretary National Bureau of Standards Errort Ambler, Director

National Bureau of Standards Certificate of Analysis Standard Reference Material 79a Fluorspar

This Standard Reference Material is an acid-grade fluorspar concentrate, to be used primarily for the assay of imported fluorspar for industrial applications. The assay value certified is dependent on the U.S. Customs Laboratory Method given in this Certificate; however, two options exist for the determination of soluble fluoride calculated as calcium fluoride in the acetic acid leach solution. Either the spectrophotometric procedure (Part B), which was used for the original certification of this material, or the ion electrode procedure (Part C), which is included on this Certificate, may be used. The results of the two procedures show excellent agreement.

Constituent	Percent by weight
CaF ₂	$97.39^{a} \pm 0.06^{b}$

⁴Mean value based on 32 determinations using the U.S. Customs Laboratory Method of analysis (atlached). The determinations were made by two analysis at each of three Customs taboratories and one NBS laboratory. ^bRatandard deviation of a single determination.

The following values, obtained by quantitative spectrochemical analysis, are given for information only and are not certified: Fe, 0.05-0.1%, A land Sr, 0.01-0.1%; Mg, 0.01-0.05%; Na, 0.001-0.01%; Ba, 0.001-0.005%; K, -0.005%; K, -0.005%; M, -0.

The chemically determined value for SiO2 is 0.67%.

The analytical work leading to certification was performed in the Division of Technical Services, U.S. Customs Laboratories, and by J. R. Moody and K. M. Sappenfield of the NBS Center for Analytical Chemistry. The spectrochemical determinations were made by M. Darr of the NBS Center for Analytical Chemistry.

A comparison of the ion electrode procedure with the spectrophotometric procedure was performed by R. L. Zimmerman, Jr., and H. G. Bertrand of the U.S. Customs Laboratory, New Orleans, La., and by J. R. Moody of the NBS Center for Analytical Chemistry.

This material was supplied by the American Smelting and Refining Company of El Paso, Texas; it was ground to pass a 177 µm (80 mesh) screen.

The technical and support aspects involved in the preparation, certification, and issuance of this Standard Reference Material were coordinated through the Office of Standard Reference Materials by J. L. Hague, R. E. Michaelis, and C. L. Stanley.

Washington, D.C. 20234 January 8, 1980 (Revision of Certificate dated 12-6-71) George A. Uriano, Chief Office of Standard Reference Materials

(over)

Method for the Determination of CaF2 in Fluorspar

A. Calcium Eluoride Determination: Transfer a 0.5 ± 0.01 g sample, previously dried at 100 to 105 °C, to a 60 mL Pt dish. Add 15 mL acetic acid (1:9) and approximately 50 mg of dry, ashless filter pulp. Digest on a steam bath for 30 minutes and stir with a small glass rod at 5-minute intervals. Stir and filter through an 11-cm close-texture filter paper (S&S No. 589 Red Ribbon, or equal) to which has been added approximately 4 mL filter pulp slurry (1 g ash-free pulp in 100 mL of water). Thoroughly wash crucible, stir rod, and paper with small portions of hot water (approximately 35 mL). The filtrate and washings should be collected in a polyethylene bottle for the determination of dissolved fluoride by either the spectrophotometric method described in Part B or the ion-selective electrode method described in Part C. Transfer paper and residue to original crucible, wipe the funnel with as mall piece of filter paper, and add the paper to the crucible to assure recovery of fine particles. Dry crucible and contents, ignite to a dull red heat (600 °C), and cool to room temperature.

Transfer the residue, as completely as possible, from the crucible to a 400-mL beaker by gently tapping the crucible. Add 510 bmL HC1 to the crucible and warm on a steam bath or a temperature-regulated sand bath. Transfer the HC1 to the beaker containing the residue. Police and wash the crucible with a minimum amount of hot water. Repeat adding HC1 and washing 2 or 3 times using a total of 25 mL HC1. Add approximately 0.5 g of crystalline boric acid to beaker, cover with a watch glass, and digest on the steam bath for 15 minutes. Remove the beaker and cool to room temperature. Add 0.5 mL HNO₃ and slowly evaporate on the steam bath to approximately 10 mL. During evaporation, the cover glass should be gradually removed from the beaker. Wash down the sides of the beaker with a fine stream of water and adjust the volume to approximately 75 mL. Heat to 70 to 80 °C, remove from heat, and add 100 mL of precipitating solution [3.8 g ammonium oxalate, 1.1 g oxalic acid, and 0.05 g disodium ethylenediaminetetracetate (EDTA) in 100 mL of water]. If a white precipitate forms at this point, add HC1 dropwise until it dissolves.

Heat to boiling and slowly add NH₄OH (1:) until a heavy white precipitate forms. Add 1 mL of bromocresol green solution (0.1 g soluble salt in 100 mL of water) and continue the addition until the color of the solution changes from yellowish-orange to grayish-green. Digest for 30 minutes on the steam bath, let stand for 60 minutes at room temperature, and filter by decantation through a prepared Gooch crucible (size 3, prepared with 2.1 em glass-fiber filter paper, H. Rever Angel No. X-934AH, ro equivalent). Wash 3 or 4 times with a cold wash solution (0.2 g ammonium oxalate and 0.1 g oxalic add in 100 mL of water) and finally with 3 or 4 10-mL portions of cold water. (The washed precipitate should be free of chloride, ammonium oxalate, or any other contaminant that might reduce the KMnO4 solution.) Transfer the contents of the crucible to a 400-L beaker, add 250 mL. H₂SO₄ (1:19), and adjust the solution temperature to 27 ± 3 °C. While stirring, add approximately 90 percent of the 0.15 N KMnO4 solution to the stand until the pink color disappears, e.g., approximately 35 seconds. (If pink color persists, too much KMnO4 solution has been added ant are of must be repeated.) Heat to 57 ± 3 °C and complete the tirration by slowly adding the last0.5 to 1 mL KMnO4 solution dropwise and allowing each drop to decolorize completely before adding the next drop. The end point is a pink color persisting for 30 seconds or more.

B. Determination of Fluoride in Acetic Acid Leach Solution; Remove all ions from the solution that might cause interference in the spectrophotometric determination of dissolved fluoride, by using either the ione-cschange method, or the fluorine-distillation method described in 2 and 3. Prepare a reagent blank, by substituting 15 mL of acetic acid (1:9), diluted to approximately 55 mL with distilled water and analyze simultaneously with sample.

1. <u>Preparation of calibration curve</u>: Prepare a dilute fluoride standard $(1 \text{ mL} = 0.1 \text{ mg CaF}_3)$ from a Jandard solution $(1 \text{ mL} = 1 \text{ mg CaF}_3)$ from a Jandard di solution $(1 \text{ mL} = 1 \text{ mg CaF}_3)$ of 1.0755 g NaF diluted to one liter in a polypropylene volumetric flask with distilled water. Take a series of aliquots of 1, 2, 4, 6, 8, 11, 16 mL, tec., from the diluted fluoride standard and transfer them to 60-mL polyethylene bottles. Add 15 mL of acetic acid (1:9) and sufficient distilled water to bring the final volume to approximately 55 mL. Proceed to the ion-exchange or fluorine-distillation method.

2. <u>Ion-exchange method</u>: Prepare an anion-exchange column by pouring a slurry of distilled water and Rexyn 201 (OH) resin, or equivalent, sufficient to give a total exchange capacity of 27 to 30 meq, into a 25 mL polystyrene buret plugged with washed absorbent cotton (not glass wool) and drain off the excess water without allowing the water level to fall below the top of the resin column at any time. Continue this procedure until the resin is within about 5 mL of the top of the buret. Wash the resin with 20mL N NaOH, and finally with distilled water (approximately 100 mL), until the effluent is no longer alkaline. Adjust the stopcock to give a flow rate of approximately 100 drops per minute. The flow rate is an indicator of the state of the column. Backwash with distilled water whenever the flow rate falls below 100 drops per minute. Resin must be covered with liquid at all times.

Prepare a cation-exchange column in the same manner as the anion exchange column using a slurry of distilled water and Rexyn 101(H) resin, or equivalent, sufficient to give a total exchange capacity of 40 to 45 meq. Wash the resin with 50 mL of 1N HC1, and finally with distilled water (approximately 200 mL) until the effluent is free of chloride ion. Flow rate should be approximately 100 drops per minute.

Each of the diluted aliquots, as well as the blank, is run separately as follows: After completing both columns, pass the entire volume from the polyethylene bottle through the anion-exchange column, always maintaining the liquid level slightly above the top of resin. Wash the polyethylene bottle with distilled water and pass washings through the column using a total of approximately 60 mL for each sample. Discard the effluent and washings. Recover the fluoride, acetate, and other anions from the column by passing 20 mL of 1N NaOH through the column at a flow rate of approximately 100 drops per minute. Collect the effluent in the original polyethylene bottle. Wash the column with distilled water and collect washings in the same bottle to capacity (60 mL). Pour the contents of this bottle, and water used to rinse it, into the cation column and collect the effluent in a 100-mL volumetric flask. Wash the column with distilled water and collect just short of the mark in the same flask. Bring the liquid to the mark with distilled water. Proceed to the spectrophotometric determination.

3. <u>Distillation method</u>: Have water in a steam generator actively boiling, but do not connect to the fluoride distillation apparatus (Willard and Winter, or equivalent) at this time. Distilleach of the diluted aliquotsas well as the blank,separately as follows: Transfer the entire volume from the polyethylene bottle to the 500-mL Claisen flask of the distillation apparatus using a minimum quantity of water for rinsing. Add 50m L H₅SO₄(1:1) and a few glass beads. Insert a stopper carrying the steam tube and thermometer, and heat the flask with a Bunsen burner or an electric heater. Connect the condenser at once and place a 200-mL polypropylene volumetric flask at the receiving end. Water soon begins to distill over and the temperature of the liquid rises as the H₂SO₄ (1:2) and a concentration increases. When the temperature reaches 120 °C connect the flask to the steam generator by means of the rubber tube. The rate of steam generation and the rate at which the Claisen flask is being heated should be regulated so that the temperature of the liquid rise. Distill using the steam tube with a small portion of water, catching the washings in the flask containing the distillate, and fill to mark with distilled water. Proceed to the speced to the speced to the small.

4. Spectrophotometric determination: Pipette about one-tenth of the volume of the solution from steps B-2 or B-3 containing approximately 0.1 to 0.2 mg CaF₂ (not more than 50 mL) into a 100-mL polypropyleme volumetric flask and add 15 mL 0.1 N soduitm acetate solution and 25 mL mcthyt cellosolve. Bring the solution level in the flask almost to mark with distilled water and allow to cool to room temperature (mixing reaction is slightly exothermic) before making a final volume adjustment. (Resulting solution should have a pH of 3 to 5; ootimum color development occurs in this rane.)

Pour the entire contents of the volumetric flask into a 125-mL stoppered erlenmeyer flask containing 0.1 g of thorium chloranilate (Note 2). Stopper the flask and place on a shaking apparatus. Shake for 55 minutes, remove, and allow the contents of the flask to settle for 5 minutes. Filter through a close-texture filter paper, discarding the first 5 to 10 mL of filtrate.

Read the absorbance of sample against the reagent blank using 1 cm absorption cells in a Beckman DU spectrophotometer, or its equivalent, at a wavelength of 330 nm and a slit width of about 0.2 mm. Plot absorbance vs mg of CaF₂. This should yield a straight line passing through the origin.

 Analysis of acetic acid leach solution: Carry the entire filtrate from the acetic acid digestion through steps B-2 or B-3 and finally B-4. Determine ing of CaF₂ by using the calibration curve and proceed with calculation.

C. Determination of Fluoride in Acetic Acid Leach Solution with an Ion-Selective Electrode.

1. Apparatus, Reagents, and Solutions

- a. Special Apparatus
 - 1) Fluoride specific ion electrode
 - 2) Single junction reference electrode
 - 3) Expanded scale pH meter with millivolt capability
- b. Reagents

ACS Reagent grades of sodium fluoride, glacial acetic acid, sodium chloride, and sodium hydroxide, must be used. For (1,2 Cyclohexylenedinitrilo)- tetraacetic acid (CDTA), a practical grade available from a commercial source may be used.

- c. Solutions
 - 1) TISAB II (Total Ionic Strength Adjustment Buffer)

To 500 mL of distilled water in an 800 mL beaker, add 57 mL of glacial acetic acid, 58 g of sodium chloride, and 4 g of CDTA. Place the beaker in a cold water bath, on a magnetic stirrer. Stir the mixture, while adding concentrated sodium hydroxide, to provide a PH between 5,0 and 5.5. Transfer the contents of the beaker to a 1-liter flask, and dilute to the mark with distilled water. (TISAB II is used to provide a constant ionic strength background, decomplex the fluoride ions, and adjust and buffer the pH of the solution.)

2) Standards

- a) Stock Solution (1900 ppmF) Dissolve 4.199 g of sodium fluoride in a 1-liter polypropylene volumetric flask and dilute to volume with distilled water.
- b) Working stock solution (19.00 ppmF⁻.) Transfer 10 mL of stock solution (a) to a 1-liter polyproplene volumetric flask and dilute to the mark with distilled water.
- c) Working standards Prepare standards according to Table 1.

F ⁻ Conc. (μg/mL)	Working Stock (mL)	TISAB II (mL)	Distilled Water (mL)
9.50	50.0	50	
4.75	25.0	50	25
2.85	15.0	50	35
1.90	10.0	50	40
0.95	5.00	50	45
0.38	2.00	50	48

TABLE 1

If prepared in a 100 mL flask, dilute to mark with distilled water.

Store working standards in polyethylene bottles and refrigerate until use.

2. Procedure

Transfer the contents of the polyethylene bottles containing the acetic acid wash (Section A) to 200 mL polyethylene volumetric flasks and dilute to volume with distilled water. Transfer a 25 mL aliquot to a 50 mL polyethylene volumetric flask and dilute to volume with TISAB II. Place in refrigerator until ready for use. In a polyethylene bottle, prepare a reagent blank consisting of 15 mL of acetic acid (1:9) and approximately 55 mL of distilled water.

Transfer the working standards, test solutions, and the reagent blank to 150 mL polyethylene beakers and allow to come to room temperature. Stir all solutions with magnetic stirrers. Adjust the pH meter to -150 mV by use of the 19.00 ppm F^- working stock solution. Record the values of the solutions beginning with the least concentrated working standard. NOTE: For solutions containing low concentrations of fluoride, the pH meter may require approximately two minutes to stablize (cessation of drift). Rinse and dry the electrodes with tissue paper between readings. Record the values of the test solutions and the reagent blank immediately following the working standards.

Plot a curve from the values obtained for the working standards, and determine the concentration of the test solutions from the curve. Proceed with calculations.

D. Calculations:

First, calculate the % CaF₂ found in Part A. Then calculate the % CaF₂ found in either Part B (spectrophotometric procedure) or Part C (electrode procedure). Add the value calculated for either Part B or C to that calculated for Part A, to determine the total % CaF₂ in the sample.

For Part A: %
$$CaF_2 = \frac{3.904 V_1 N}{W_s}$$

where: $V_1 = Volume of KMnO_4$ solution used (corrected for blank)

N = Normality of KMnO₄ solution

W_s = gram weight of sample

For Part B;
$$\%$$
 CaF₂ = $0.1 W_cF$
W.

where: Wc = milligram weight of CaF2 in aliquot

F = aliquot factor; <u>Total volume from B-2 or B-3</u> volume used

 $W_s = gram$ weight of sample

For Part C:
$$\%$$
 CaF₂ = $\frac{CV_2AG}{W} \times 10^{-4}$

where: C = observed concentration in ppm $F^{-}(\mu g F^{-}/mL)$

 V_2 = volume of test solution A = aliquot factor; <u>total volume</u>

	volume used
G = gravimetric factor;	CaF ₂

2F

Ws = gram weight of sample

For the conditions described in Part C, this formula may be simplified as follows:

1) The sample is diluted to 200 mL and a 25 mL aliquot is taken; thus the aliquot factor, A, is: $A = \frac{200}{25} = 8.00$ 2) The volume of test solution V₂ is always 50 mL; V₂ = 50.0 mL

3) The gravimetric factor, G, is : $G = \frac{CaF_2}{2F} = \frac{78.0768}{37.9968} = 2.055$

by substitution:

 $\% CaF_{2} = \frac{C \times 50.0 \times 8.00 \times 2.055}{W_{s}} \times 10^{-4} \text{ or}$ % CaF_{2} = 0.0822C_

- - Ws

Note 1. The volume of distillate necessary for complete recovery of fluoride will vary with the capacity of the distillation apparatus. Calibrate the apparatus by distilling a known quantity of fluoride to various final volumes to determine the volume necessary for complete recovery.

Note 2. Chloranilates are supplied as dry powders of high stability. However, long storage may reduce activity. Drying at 105 °C for at least 4 hours restores activity. Keep bottles tightly capped to prevent moisture absorption, which reduces activity and hindres the color development. U.S. Department of Commerce Juanita M. Kreps Secretary National Bureau of Standards Ernest Ambler, Acting Director

National Bureau of Standards Certificate of Analysis Standard Reference Material 81a Glass Sand

(In Cooperation with the American Society for Testing and Materials)

This SRM is issued in the form of a ground powder (95% less than 106 μ m) blended to ensure homogeneity. It should be dried for 2 hours at 105 °C before use.

	Recommended Value		
Constituent	Percent by Weight	Range	5
Al ₂ 0 ₃	0.66	0.62 - 0.69	0.011
Fe ₂ 0 ₃	.082	.075089	.0024
Ti0 ₂	.12	.1014	.0064
Zr02	.034	.025042	.0026
Cr ₂ 0 ₃	46 µg/g	33 - 58	3.9

Certification - The recommended value listed for each oxide is the best estimate of the true value based on the analytical data from both cooperators and NBS. The range of values listed is the tolerance interval, constructed such that it will cover at least 95% of the population with a probability of 0.99. It is computed as $\chi \pm Ks$: where s is the standard deviation, K is a factor that depends on n (the number of samples measured), p, the proportion of the total sample covered (95%), and γ , the probability level (99%). In all cases none of the n values used exceeded the range specified. Thus, it includes variability between laboratories and between samples.

The overall direction and coordination of the round-robin analysis leading to certification were performed by Paul Close, Chairman of ASTM Subcommittee C-14.02 on Chemical Analysis of Glass and Glass Products.

The technical and support aspects involved in the preparation, certification, and issuance of this Standard Reference Material were coordinated through the Office of Standard Reference Materials by W. P. Reed.

Washington, D.C. 20234 January, 1978 J. Paul Cali, Chief Office of Standard Reference Materials

(over)

Chemical analyses for certification were performed in the following laboratories:

Anchor Hocking Corp., Lancaster, Ohio, R. E. Carr

Brockway Glass Co., Inc., Brockway, Pa., E. L. McKinley.

Corning Glass Works, Corning, N.Y., Y. S. Su. Ford Motor Co., Lincoln Park, Mich., T. O. LaFramboise.

National Bureau of Standards, Analytical Chemistry Division, E. J. Maienthal, J. D. Messman and T. C. Rains.

Kimble Div. Owens-Illinois, Vineland, N. J., H. S. Moser.

Owens-Illinois, Inc., Toledo, Ohio, P. Close. Penn State Univ., University Park, Pa., J. B. Bodkin.

U. S. Department of Commerce Malcolm Baldrige Secretary National Bareau of Standards Ernest Ambler, Director

Certificate of Analysis

Standard Reference Material 88a

Dolomitic Limestone

(All analyses are based on samples dried two hours at 110 °C)

	Percent
Silica (SiO ₂)	1.20
Alumina (Al ₂ O ₃)	0.19
Total Iron (as Fe ₂ O ₃)	.28
Titania (TiO ₂)	.02
Manganese (as MnO)	.03
Calcium (as CaO)	30.1 5
Strontium (as SrO)	0.01
Magnesium (as MgO)	21.3
Sodium (as Na ₂ O)	0.01
Potassium (as K ₂ O)	.12
Phosphorus (as P_2O_5)	.01
Carbonate (as CO ₂)	46.6
Loss on ignition	46.7

Washington, D.C. 20234 July 22, 1982 (Revision of Certificate dated 1-31-67) George A. Uriano, Chief Office of Standard Reference Materials U. S. Department of Commerce Maurice H. Stans Secretary National Bureau of Standards L. M. Branscomb, Director

Certificate of Analysis

STANDARD REFERENCE MATERIAL 97 a

Flint Clay

Average	43.67	38.79	0.45	1.90	0.36	0.50	0.037	0.11		0.075	0.15	0.11	0.18	0.03	13.32
3	43.60	38.79	.43°	1.87 ^d	.381	.46 ^e									
212]	43.68	38.95	.45	1.95	.35	.51°	.041°	.10*		.07	.14#	.11*	.18*	.03	13.31
1 ⁽¹⁾	43.74	38.65	$\binom{0.45^{\circ}}{.46^{\mathrm{b}}}$	$ \begin{pmatrix} 1.88^c \\ 1.89^d \end{pmatrix}$	0.34	0.53°	0.033°	0.12°	0.0631	0.078°	0.16s	0.11¢	0.17#	0.028 ^h	13,32
Analyst	SiO ₂	Al ₂ O ₃	Fe ₂ O ₃	TiO ₂	P ₂ O ₅	K ₂ O	Na ₂ O	Li ₂ O	ZrO ₂	BaO	MgO	CaO	SrO	Cr ₂ O ₃	Loss on Igni- tion

(Results based on sample dried for two hours at 140 °C)

References: [1] G.E.F. Lundell and J.I. Hoffman, NBS J. Res. 1, 91 (1928) RP5. [2] L. C. Peck, Geological Survey Bulletin 1170, (1964).

*o-phenanthroline photometric method. *Iron reduced with ShCI: and titrated with standard potas-sium dichromate solution. *Cupferron gravimetric method. *HA0: photometric method.

*Flame emission spectrometric method. 'Pyrocatechol violet photometric method. *Atomic absorption method. *Diphenylcarhazide photometric method. *Molyhdenum-hlue photometric method.

List of Analysts

- 1. R. K. Bell, B. B. Bendigo, T. C. Rains, T. A. Rush, E. R. Deardorff, J. R. Baldwin, R. A. Paulson, W. P. Schmidt, and S. D. Rasberry, Analytical Chemistry Division, Institute for Materials Research, National Bureau of Standards.
- 2. L. C. Peck, United States Geological Survey, Denver, Colorado.

3. L. M. Melnick, J. D. Selvaggio, and D. G. Cunningham, Applied Research Laboratory, United States Steel Corporation, Pittsburgh, Pennsylvania.

The material for the preparation of this standard was provided by the A. P. Green Fire Brick Company, Mexico, Missouri.

The overall direction and coordination of the technical measurements leading to certification were performed under the chairmanships of O. Menis and J. I. Shultz.

The technical and support aspects involved in the preparation, certification and issuance of this Standard Reference Material were coordinated through the Office of Standard Reference Materials by J. L. Hague.

Washington, D. C. 20234 October 8, 1969

J. Paul Cali, Acting Chief Office of Standard Reference Materials

U. S. Department of Commerce Maurice H. Stans Secretary

National Bureau of Standards L. M. Branscomb, Director

Certificate of Analysis

STANDARD REFERENCE MATERIAL 98 a

Plastic Clav

(Results based on sample dried for two hours at 140 °C)

Analyst	SiO2	Al ₂ O ₃	Fe ₂ O ₃	'TiO2	P ₂ O ₅	K20	Na ₂ O	Li₂O	ZrO2	BaO	MgO	CaO	SrO	Cr ₂ O ₃	Loss on Igni- tion
1 ^[1]	48.98	33.13	$ \begin{pmatrix} 1.34^{\mathrm{a}} \\ 1.37^{\mathrm{b}} \end{pmatrix} \\$	$\binom{1.56^{\rm e}}{1.63^{\rm d}}$	0.11	1.07°	0.080°	0.075°	0.0421	0.031°	0.42*	0.31#	0.041*	0.030 ^h	12.40
2[2]	48.91	33.31	1.35	1.64	.10	1.08°	.083°	.064s		.03	.43¢	.31*	.037#	.04	12.49
3		33.12	1.28*	1.61 ^d	.11'	0.98°									
Average	48.94	33.19	1.34	1.61	0.11	1.04	0.082	0.070		0.03	0.42	0.31	0.039	0.03	12.44

References: [1] G.E.F. Lundell and J.I. Hoffman, NBS J. Res. 1, 91 (1928) RP5. [2] L.C. Peck, Geological Survey Bulletin 1170, (1964).

*o-phenanthroline photometric method. *Iron reduced with Stalls and titrated with standard potas-sium dichromate solution.

^cCupferron gravimetric method. ^dH₂O₂ photometric method.

*Flame emission spectrometric method. 'Pyrocatechol violet photometric method. «Atomic absorption method. ^bDiphenylearbazide photometric method. 'Molybdenum-blue photometric method.

List of Analysts

- 1. R. K. Bell, B. B. Bendigo, T. C. Rains, T. A. Rush, E. R. Deardorff, J. R. Baldwin, R. A. Paulson, W. P. Schmidt, and S. D. Rasberry, Analytical Chemistry Division, Institute for Materials Research, National Bureau of Standards.
- 2. L. C. Peck, United States Geological Survey, Denver. Colorado
- 3. L. M. Melnick, J. D. Selvaggio, and D. G. Cunningham, Applied Research Laboratory, United States Steel Corporation, Pittsburgh, Pennsylvania.

The material for the preparation of this standard was provided by the A. P. Green Fire Brick Company, Mexico, Missouri.

The overall direction and coordination of the technical measurements leading to certification were performed under the chairmenship of O. Menis and J. I. Shultz.

The technical and support aspects involved in the preparation, certification and issuance of this Standard Reference Material were coordinated through the Office of Standard Reference Materials by J. L. Hague.

Washington, D. C. 20234 October 8, 1969

J. Paul Cali, Acting Chief Office of Standard Reference Materials

Certificate of Analysis

Standard Reference Material 99a

Feldspar

(All Analyses are Based on Samples Dried 2 hours at 105 °C)

Ρ			

Silica (SiO ₂)	65.2
Alumina (A1202)	20.5
Iron (as Fe ₃ O ₃)	0.06
Titania (TiO ₂)	.007
Calcium (as CaO)	2.14
Barium (as BaO)	0.26
Magnesium (as MgO)	.02
Sodium (as Na ₂ O)	6.2
Potassium (as K20)	5.2
Phosphorus (as P ₂ O ₆)	0.02
Loss on Ignition	0.26

Washington, D.C. 20234 August 10, 1981 (Revision of Certificate dated 3-26-65) George A. Uriano, Chief Office of Standard Reference Materials

UNITED STATES DEPARTMENT OF COMMERCE WASHINGTON 25, D.C.

National Bureau of Standards Certificate of Analyses of

Standard Sample No. 103 a

Chrome Refractory

(All results are based on a sample dried for 2 hours at 105 to 110° C)

Analyst	Cr ₂ O ₃	Al ₂ O ₃	Total iron as FeO	MnO	MgO	CaO	SiO ₂	TiO ₂	ZrO ₂	P ₂ O ₅
1	* 32.05	ь 29.95	° 12. 43	d 0. 12	a 18. 57	۰ 0. 70 ¹	# 4 . 68	ь 0.22	i 0. 01	0.007
2	¥ 31.95	{ ¹ 30. 10 ¹⁰ 30. 01	₽ 12. 43	.12	18.50	. 69	• 4. 68	. 21		. 01
3	{ [•] 32.07 • 32.09 }	{ * 30.02 * 29.95 }	¹ 12.45	v. 11	18. 51	<pre>{ *.68</pre>	* 4. 59	*. 22		×<.004
4	₽ 32.08	• 30.05		°'. 10	18.62	⁶ .60	= 4. 58	° '. 20		d'. 013
5	≈ 31.98		° 12. 43				¢ 4.63			
5	₽ 32. 10	1' 29. 91	«' 12. 40	▶′. 09	* 18. 45	1.72	° 4. 64	i'. 21	i. 01	P. 01
7	32.12	29.85		. 10	18.49	.70		.25		
B	Þ. *' 31. 78	^{⊭′} 29.80	۲ 12.43	^m '.10	¤′ 18.63	⁶ ′.74	° 4. 60	•'. 23		{ ∞′.00 ∘′.00
Average	32.06	29.96	12.43	0, 11	18.54	0.69	4.63	0.22	0.01	0.0

Perculate existation and potentionetiti titration with ferrous amonium value. Corrected for vanishim.
 Disolved in potention exist dwilling dramain mither form at eff 35, esparated atunium by extensing R60, comportent in M4 by disolution, and with dynamic market of the state of the state of the state of the state end of the state of the state of the state of the state end of the state of the state of the state of the state end of the state of the state of the state of the state at the state of the state of the state of the state at the state of the state at the state of the state at the state of the state end of the state of the state

des Distance à la conclusion de la procedución de la concentration de la concentrat

Reduced with excess ferrous iron and titrated with permanganate.
 Reduced with excess ferrous iron and titrated with dichromate. Corrected for vanadium.
 "Separated with ammonia and mercury cathode and pre-cipitated with ammonia. Corrected for TiOy.

List of Analysts

Keith M. Sappenfield, National Bureau of Standards.
 Paul J. Byler, Booth, Garrett & Blair, Philadelphia, Pa.
 Andrew S. McCreath & Sons, Inc., Harrisburg, Pa.
 John H. Montague, E. G. Lavino and Co., Norristown,

Pa. 5. George Oplinger, K. A. Lane, and M. S. Budd, Solvay

Process Division, Allied Chemical Corp., Syracuse, NY

WASHINGTON, D.C., September 28, 1962.

6. B. C. Ruprecht and R. P. Lucas, Harbison-Walker Refractories Co., Pittsburgh, Pa.

7. L. J. Trostel, General Refractories Co., Baltimore, Md.

8. C. E. A. Shanahan, Richard Thomas & Baldwins, Ltd., Whitchurch, Aylesbury, Bucks, England.

A. V. ASTIN, Director.

U.S. Department of Commerce Rogers C.H. Morton, Secretary National Bureau of Standards Ernest Ambler, Atting Director

National Bureau of Standards Certificate of Analysis Standard Reference Materials 113a and 329 Zinc Concentrates

These Standard Reference Materials are in the form of fine powder (<.15 mm) and are intended for use both in checking chemical methods of analysis and in calibration with instrumental methods of analysis.

CAUTION: The bottle should be kept tightly closed except when in direct use. Store in a desiccator over desiccant.

<u>SRM No.</u>	<u>113a</u>	329
<u>Element</u>	<u>Percent b</u>	y Weight ^a
Zinc Lead Iron	57. ₃ 2.80	45.5 6.06
Calcium Oxide Magnesium Oxide	2.08 1.19 0.75	12.94 0.08 .165
Cadmium	.78	.14
Copper	.31	.13 ₂
Cobalt	(.11) ^b	(.009)
Nickel	(.07)	(.006)
Sulfur (Total)	30.6	(31.7)
Silicon Dioxide	(1.54)	(0.61)
Indium	^c	.019
Silver	0.046 7 ^d	.0089 ^d

Based on samples dried at 105 $^{\circ}{\rm C}$ for one hour. Moisture loss: for SRM 113a 0.08%; for SRM 329 0.4 $_5$ %. Figures in parenthesis are not certified but are given for information only. Not determined.

d Troy ounces per ton is 13.63 for SRM II3a and 2.60 for SRM 329.

NOTE: The total of constituents reported for SRM 113a is 97.6% and that for SRM 329 is 98.0%. The remainder is expected to consist mainly of oxygen, carbon, and water of crystallization.

CERTIFICATION: The value listed for a certified element is the present best estimate of the "true" value based on the results of the analytical program. The value listed is not expected to deviate from the "true" value by more than ± 1 in the last significant figure reported. For a subscript figure, the deviation is not expected to be more than ± 5. Based on the results of homogeneity testing, maximum variations within and among samples are estimated to be less than the uncertainty figures given above.

Washington, D.C. 20234 December 29, 1975 (Revision of Certificate of May 6, 1974 for change in silver results)

I. Paul Cali, Chief Office of Standard Reference Materials

The material for these standards was supplied by Cominco American Inc., Spokane, Wash. The material for SRM 113a was prepared at the Magmont Mines, Bixby, Mo., and that for SRM 329 at the Sullivan Mine, Trail, B.C., Canada.

Following sieving and blending operations at NBS, homogeneity testing was performed by S. D. Rasherry and J. McKay, (x-ray fluorescence analyses); by E. J. Maienthal, (polarographic analyses); and by R. K. Bell, (chemical analyses).

Selected samples representative of the lot were analyzed and no significant variability was observed when using subsamples of 0.5 g or larger. (Moisture determinations usually were made on larger samples-up to 10 g,)

Cooperative analyses for certification were performed in the analytical laboratories of Cominco, Sullivan Mine, Trail, B.C., Canada, C. J. Mitchell; Cominco American Inc., Magmont Mines, Bixby, Mo., R. J. Gibson; and St. Joe Minerals Corp., Zinc Smelting Division, Moncae, Pa., J. J. Aldrich.

Analyses were performed in the NBS Analytical Chemistry Division by R. K. Bell and E. J. Maienthal.

The overall direction and coordination of the technical measurements at NBS leading to certification were performed under the direction of O. Menis and J. I. Shultz.

The technical and support aspects involved in the preparation, certification, and issuance of these SRM's were coordinated through the Office of Standard Reference Materials by R. E. Michaelis.

v. s. Departer Commerce Peter Commerce National Bureau of Standards Certificate of Analysis Standard Reference Material 120b

Phosphate Rock

(Florida)

This standard is a finely powdered material intended for use in checking chemical methods of analysis and in calibration with optical emission and x-ray spectrometric methods of analysis.

See ADDENDUM* (Over) for Uranium (Radium and Thorium) (All results are based on samples dried for 1 hour at 105 °C.)

Percent by Weight

ANALYST*	P2Os	CaO	SiO2	F	Soluble Fe2O3	Soluble Al ₂ O ₃	MgO	Na ₂ O	MnO	k	L ₂ 0	TiO ₂	CO2	CdO
1	34.51 ^a	49.42 ^b	4.70 ^c	3.82 ^d	1.10 ^e	1.09 ^f .g	0.29 ^h	0.33 ^f	0.032 ⁱ	0.12 ^{f,j}		0.15 ^k		0.002 ¹
2	34.51 m	49.35 ^m	4.73 ⁿ	3.79 ^m	1.10 ^h	1.07 ^h	.28 ^h	.36 ^h	.031 ^h	.12	0.09 ⁰		2.76P	.002 ^h
3	34.66 ⁿ	49.38 ^m	4.679	3.83	1.09 ^h	1.07 ^h	.30	.36 ^h	.032 ^h	.12 ^j	.098 ⁰	.15	2.79	.002 ^h
4	34.67 ^r	49.47 ^m	4.69 ^q	3.81 ^s	1.13 ^h	1.04 ^h	.28 ^h	.35 ^h	.032 ^h		.087 ⁰	.15 ^k	2.78P	.003 ^h
5	34.57	49.32 ^m	4.639	3.86	1.06 ^h	1.05 ^h	.25 ^h	.34 ^h			.085 ⁰		2.83	
6	34.48 ^m	49.45 ^m		3.92 ^s	1.14 ^m	1.07 ^t								
Average	34.57	49.40	4.68	3.84	1.10	1.06	0.28	0.35	0.032	0.12	0.090	0.15	2.79	0.002

 a Phosphorus precipitated with magnesia mixture, ignited and weighed as $Mg_2P_2O_7.$

^b Calcium precipitated as oxalate, ignited and weighed as CaO.

 $^{\rm C}$ Sample fused with Na, CO3, silica precipitated with ZnO and dehydrated with HCl. Traces of SiO2 recovered by H2 SO4 dehydration.

^d Fluorine distilled into NaOH solution and precipitated as lead chlorofluoride. Chloride is precipitated with excess AgNO, and excess AgNO, is titrated with standard KCNS solution.

^e SnCl₂ reduction - K₂Cr₂O₇ titration.

^f Flame emission spectrometry with repetitive optical scanning.

 $^{\rm g}$ A value of 1.13 percent was obtained for total $\rm Al_2\,O_3$ by gravimetry.

^h Atomic absorption spectrometry.

¹ K10, spectrophotometric method.

Washington, D.C. 20234 July 31, 1972 ADDENDUM* (Over) July 31, 1979 j Sample digested with mixed acids for 1 hour. Determination completed by atomic absorption spectrometry.

^k H₂O₂ spectrophotometric method.

¹ Polarographic method.

^mVolumetric method.

ⁿ Gravimetric method.

^o Sample digested with dilute HCl or aqua regia for 15 minutes. Determination completed by atomic absorption spectrometry.

^p CO₂ absorbed and weighed.

^q Dehydration with HClO₄ in presence of boric acid.

^r Molybdovanadophosphate spectrophotometric method.

⁸ Distillation - titration with standard thorium nitrate solution.

^t Aluminum precipitated with 8 hydroxyquinoline and weighed.

J. Paul Cali, Chief Office of Standard Reference Materials

The overall direction and coordination of the technical measurements leading to certification were performed under the chairmanship of O. Menis and J. I. Shultz.

The technical and support aspects involved in the preparation, certification, and issuance of this Standard Reference Material were coordinated through the Office of Standard Reference Materials by R. E. Michaelis and C. L. Stanley.

PREPARATION, TESTING, AND ANALYSIS: The material for this standard was prepared by the American Cyanamid Company. Eighty five percent of the lot was made to pass 200 mesh size and some blending was done at the plant. Final sizeving and blending operations were accomplished at NBS.

Homogeneity testing was performed by S.D. Rasherry, C. E. Fiori, and J. McKay with x-ray fluorescence analysis. Calcium and phosphorus determinations were made on 14 samples representative of the top and the bottom of seven containers. The size of the samples taken for analysis was approximately 35 mg. The maximum variations in concentration among samples were within 0.09 percent for CaO and 0.12 percent for P₂O₂.

The laboratories and analysts cooperating in the analytical program for certification were:

- R. K. Bell, E. R. Deardorff, E. J. Maienthal, T. C. Rains, T. A. Rush, and S. A. Wicks, Analytical Chemistry Division, Institute for Materials Research, National Bureau of Standards.
- 2. J. Padar, Agrico Chemical Co., Division of Continental Oil Company, Pierce, Florida.
- 3. D. B. Underhill, Borden Chemical Co., Plant City, Florida.
- 4. C. C. Thornton, Thornton Laboratories, Inc., Tampa, Florida.
- 5. W. W. Harwood, R. M. Lynch and H. N. Gomez, International Minerals and Chemical Corp., Bartow, Florida.
- 6. J. A. Sielski, American Cyanamid Co., Brewster Plant, Bradley, Florida.

*ADDENDUM

Uranium has been determined at NBS by thermal ionization mass spectrometry, E. L. Garner and L. A. Machlan, and the following certification is made:

	Value, $\mu g/g$	Estimated Uncertainty"
Uranium	128.4	± 0.5

^aThe estimated uncertainty is based on judgment and represents an evaluation of method imprecision and material variability.

(NOTE: On similar phosphate rock materials, a value of 127 $\mu g/g$ for uranium was reported in Ref. 1; additionally, values of 17 $\mu g/g$ for thorium and 43 pCi ²²⁵Ra/g for radium also were reported.)

Ref. 1 Agr. Food Chem., 16, No. 2, 1968 (p232)

U. S. Department of Commerce Frederick B. Dent Secretary National Bureau of Standards Richard W. Roberts, Director

Т

National Bureau of Standards Certificate of Analysis Standard Reference Material 154b Titanium Dioxide

This standard is in the form of fine powder, certified primarily for application in the paint and ceramic industries.

Constituent	Percent by Weight*	<u>Uncertainty</u> ^c
'itanium Dioxide (Ti0 ₂)	99.74 ^b	0.05

^a Based on material dried at 110 °C for two hours.

b The value given in this certificate is based on the following pertinent analytical data:

c The uncertainty figure represents the 95% confidence interval of the mean of all accepted values.

Method	_Average	Standard Deviation ¹	Number of Determinations
Controlled-potential coulometric (0.2g samples)	99.73	0.05	9
Volumetric (0.35g samples)	99.71	0.03	10 ²
	Cooperators ³		
Volumetric (Analyst A) ⁴	99.75	0.04	3
Volumetric (ASTM D1394)	99.78	0.05	3

NBS

¹ Of single determinations.

² Two discrepant results were omitted.

 $^3_{\rm Results}$ from one cooperating laboratory were deemed significantly high and have been omitted. $^4_{\rm d}$

Results from Analyst B at the same laboratory were deemed significantly low and have been omitted.

Washington, D. C. 20234 May 16, 1973

J. Paul Cali, Chief Office of Standard Reference Materials PLANNING, PREPARATION, TESTING, and ANALYSIS: The material for this SRM has been carefully selected and prepared not only to reflect the present composition needs but also the anticipated future requirements.

A particular ilmenite ore was chosen so that, after beneficiation, the material would provide the desired high rutile to anatase ratio (rutile 97+%, anatase about 2%). Bleaching agents were not added; thus the material has the characteristically yellowish color of rutile. The lot was thoroughly blended in the laboratory and then screened through a 44µm (325 mesh) sive. Preliminary testing on 6 samples, representative of the lot, showed no evidence of inhomogeneity. The planning, preparation and preliminary testing were under the supervision of John J. Libera, Research and Development Department, National Lead Industries, St. Louis, Missouri.

Cooperative analyses for certification were performed in the analytical laboratories of E. I. Du Pont De Nemours & Co., Pigments Department, Wilmington, Delaware, T. D. McKinley; National Lead Industries, Titanium Pigment Division, South Amboy, New Jersey, Benjamin S. Sanderson; and Sherwin-Williams Research Center, Chicago, Illinois, R. W. Scott.

Analyses were performed in the Analytical Chemistry Division of the National Bureau of Standards by J. R. Baldwin and G. Marinenko.

The overall direction and coordination of the technical measurements at NBS leading to certification were performed under the direction of O. Menis and J. I. Shultz,

The technical and support aspects involved in the preparation, certification, and issuance of this Standard Reference Material were coordinated through the Office of Standard Reference Materials by R. E. Michaelis and C. L. Stanley.

ADDITIONAL INFORMATION ON THE COMPOSITION:

Certification is made only for the TiO_2 content. Investigations of this material at NBS and at cooperating laboratories provided some additional information that may be useful, but is <u>not</u> certified:

Constituent	Weight Percent
$P_{2}O_{5}$	(0.04)
Si0 ₂	(0.01)
Fe_20_3	(0.006)
Pb	(0.003)
Ca0	(~0.01)
v	(~0.001
Cr	(~0.0005)
Cu	(~0.0005)
Mg0	(~0.01)
Moisture (110 °C-2 hours)	(0.02 to 0.05)
Loss on Ignition (900 °C for one hour under helium)	(0.06 to 0.07)

If in the use of this SRM, determinations are made for any of the uncertified minor and trace constituents, it would be appreciated if the results were forwarded to the Office of Standard Reference Materials. When sufficient information has been received the Certificate will be revised. U.S. Department of Commerce Juanita M. Kreps Secretary National Bureau of Standards Ernest Ambler, Director

National Bureau of Standards Certificate of Analysis Standard Reference Material 165a

Glass Sand

(In Cooperation with the American Society for Testing and Materials)

This SRM has been blended to ensure homogeneity. It should be dried for 2 hours at 105 °C before use.

Constituent	Percent by Weight	Range	<u>_S</u>
Al ₂ O ₃	0.059	0.051 -0.066	0.0024
Fe ₂ O ₃	.012	.007017	.0018
TiO ₂	.011	.0065015	.0016
ZrO ₂	.006	.0005012	.002

Certification - The value listed for each oxide is the best estimate of the 'true'value based on the analytical data from both cooperators and NBS. The range of values listed is the tolerance interval, constructed such that it will cover at least 95% of the population with a probability of 0.99. It is computed as X ± Ks: where s is the standard deviation, K is a factor that depends on n (the number of samples measured), p, the proportion of the total samples covered (95%), and γ , the probability level (99%). In all cases none of the n values used exceeded the range specified. Thus, it includes variability between laboratories and samples.

The overall direction and coordination of the round-robin analysis leading to certification were performed by Paul Close, Chairman of ASTM Subcommittee C-14.02 on Chemical Analysis of Glass and Glass Products.

The technical and support aspects involved in the preparation, certification, and issuance of this Standard Reference Materials were coordinated through the Office of Standard Reference Materials by W. P. Reed.

Washington, D.C. 20234 October 16, 1978 J. Paul Cali, Chief Office of Standard Reference Materials

Additional Information

A content of $1 \mu g/g$ for Cr₂O₃ is not certified but rather is provided for information only.

Chemical analyses for certification were performed in the following laboratories:

Anchor Hocking Corp., Lancaster, Ohio, R. E. Carr.

Brockway Glass Co., Inc., Brockway, Pa., E. L. McKinley.

Corning Glass Works, Corning, N.Y., Y. S. Su. Ford Motor Co., Lincoln Park, Mich., T. L. LaFramboise.

National Bureau of Standards, Analytical Chemistry Division, E. J. Maienthal, J. D. Messman and T. C. Rains.

Kimble Div. Owens-Illinois, Vineland, N.J., H. S. Moser. Owens-Illinois, Inc., Toledo, Ohio, P. Close.

Penn State Univ., University Park, Pa., J. B. Bodkin.

Certificate of Analysis

Standard Reference Material 180

High-Grade Fluorspar

This Standard Reference Material has a high calcium fluoride content and is issued primarily for the geological and geochemical scientific community. [NOTE: This material is not a substitute for the fluorspar standard, SRM 79, used primarily for the assay of fluorspar imported for industrial use.]

Constituent	Percent, by weight
CaF ₂	$98.80^{a} \pm 0.03^{b}$

^aThe value certified is based entirely on the method given in this certificate and is the mean of eight determinations. ^bThe standard deviation of a single determination.

Trace elements: These were determined by a general qualitative spectrochemical method and are given for information only. Fe, 0.1-1.0%; Al, Ba, Mg, Pb, Si, and Sr, 0.01-0.1%; Cu, K, Mn, Na, Ti, and V, 0.001-0.01%; and Ag and Li, less than 0.001%. Analyst - E. K. Hubbard.

The analytical work leading to certification was performed by K. M. Sappenfield, Analytical Chemistry Division, National Bureau of Standards.

This material was supplied by Minera Frisco of San Francisco Del Oro, Chih., Mexico.

The technical and support aspects involved in the preparation, certification, and issuance of this standard reference material were coordinated through the Office of Standard Reference Materials by J. L. Hague, R. E. Michaelis, and C. L. Stanley.

Washington, D. C. 20234 March 31, 1971 J. Paul Cali, Chief Office of Standard Reference Materials

METHOD FOR THE DETERMINATION OF CaF2 IN FLUORSPAR

- *Transfer 0.50 g of fluorspar, previously dried at 100 to 105 °C, to a tared, ignited platinum crucible. Add 15 ml of acetic acid (1:9) containing 0.667 g of $CaCO_3$ per liter. Digest on a steam bath for 30 minutes and stir at five minute intervals. Add about 0.04 g of ashless filter pulp and stir for an additional minute. Filter through a double 12.5 cm extra dense filter paper (S & S No. 589 Red Ribbon) to which has been added about 0.04 g ashless filter pulp. Thoroughly wash the crucible, paper, and stirring rod with 5 ml portions of hot water (40 to 60 °C), using a total of about 35 ml. After washing, wipe the stirring rod with a small piece of wet filter paper and add the paper to the filter. Transfer the paper and residue to the crucible, dry in an oven at 80 °C, char slowly under an infrared lamp, and ignite in a muffle furnace at 600 °C.
- **Add 3 ml of HF to the residue in the crucible and evaporate to dryness. Add 1 to 2 ml of HCl04 and evaporate to dryness under the hood. Cool, wash the inside of the crucible with 1 ml more of HCl04 (to catch any undecomposed particles of calcium fluoride), and again evaporate to dryness. Cool the crucible and immerse in a beaker containing 150 ml of dilute HCl (5:95). Warm the beaker gently and remove the platinum crucible, being sure to remove adhering particles of Ca(Cl04)2.

Boil the contents of the beaker for 10 minutes. If any insoluble matter remains; filter, wash, and ignite it in platinum. Treat the ignited residue with a few drops of HF and HClO₄ and heat to exped the acids. Add 1 to 2 ml of HCl and digest on a steam bath. Transfer the contents to the main filtrate.

Pass H₂S into the clear filtrate for several minutes and then make the solution ammoniacal. Continue with H₂S for 10 minutes and allow the precipitate to settle for 20 to 30 minutes. Filter and wash with NH₄Cl-(NH₄)₂S solution. (Prepare by passing a moderate stream of H₂S for 5 minutes through a solution containing 5 ml of NH₄OH and 10 g of NH₄Cl per liter.)

Neutralize the filtrate and washings with HCl, and add an additional 20 ml of HCL. Boil for 2 to 3 minutes to expel most of the H_2S. Add KBr-Br₂ solution (20% solution of KBr saturated with Br₂) until the solution remains yellow. Boil until the finely divided sulfur has been oxidized and the bromine has been expelled. If the sulfur or sulfides are not removed by the bromine treatment, filter, wash the paper well and discard the residue. Dilute the filtrate to about 200 ml. Precipitate the calcium by adding 2 g of (NH₄)₂ C₂ O₄·H₂O and, while stirring, slowly add NH₄OH until the solution is slightly ammoniacal. Heat on a steam bath for one-half to one hour, stirring occasionally. Cool to room temperature. Filter on a close textured paper. Wash with a cold 0.1 percent solution of (NH₄)₂ C₂ O₄·H₂O. Ignite to constant weight. Calculate the percent CaF₂ from the weight of the CaO.

References:

*Removal of soluble calcium in acetic acid. Interlaboratory study of soluble calcium.

- **Method: Calcium in fluorspar
 - The Analysis of Fluorspar by G. E. F. Lundell and J. I. Hoffman, J. Res. Nat. Bur. Stand. (U.S.), 2 (1929) R.P. 51.

U. S. Department of Commerce Malcolm Baldrige Secretary National Burnaw of Standards Ernest Ambler, Director

Certificate of Analysis STANDARD REFERENCE MATERIALS 181, 182, and 183 Lithium Ores

These SRM's are intended for use in checking the accuracy of assay methods. They are certified for their constituent of economic interest. Additional data for information only appears on page 2. These SRM's are supplied in the form of fine powder.

	SRM 181 (Spodumene)	SRM 182 (Petalite)	SRM 183 (Lepidolite) %
Li ₂ 0	6.39	4.34	4.12

The value listed for Li₂O in the three SRM's is the best estimate of the "true" value. The deviation is not expected to be more than \pm 5 in the subscript number.

Washington, D.C. 20234 October 1, 1981 (Revision of Certificate dated 2/24/58 and Reprinted 8/20/70) George A. Uriano, Chief Office of Standard Reference Materials

Constituent	<u>Wt. %</u>	<u>Wt. %</u>	<u>Wt. %</u>
Na ₂ O	(0.8)	(0.4)	(0.2)
K ₂ O	(.3)	(.1)	(8.)
Rb ₂ O		(.03)	(3.5)
Cs ₂ O			(.3)

The following values are approximate, and are listed only for information.

UNITED STATES DEPARTMENT OF COMMERCE WASHINGTON 25, D.C.

National Bureau of Standards Certificate of Analyses

Standard Sample 198 Silica Brick

(All results are based on samples dried at 105° to 110° C.)

Analyst	$\Lambda l_2 O_3$	Total iron as Fe ₂ O ₈	TiO ₂	ZrO ₂	P_2O_δ	MnO	CaO	MgO	Na ₂ O	K ₂ O	Li ₂ O	*Loss on ignition
1	6.d.17	• 0. 65 (.4. 67)	0, 02	<0.01	ь 0.022	÷0.006	2.72	0.07	i 0.007	i 0. 016	i 0, 001	0. 21
2	¥.19	*. 64	*.01		¥. 012		⊭2,74	* . 0 6	⊧, 009	¥. 010	^k . 001	. 32
3	(⁶ .17 1.15	^m . 67 ⁿ . 65}	. 01		•.011		2.75	. 06	Þ. 02	». O3		. 22
4	٩.17	۲. 69	. 02		°. 026		2.73	. 08	۳.008	k.016	k<.007	. 15
5	ь. 17	*, 66	. 01		۰. 025		2.72	.07	i. 005	i. 012	i, 002	. 23
6		. 68	. 03		. 026		2.72	. 07	i. 005		i. 001	. 23
7	ь. 16	٢, 68	.03		. 025	<.005	2.69	. 09	i. 02	i. 02	ⁱ . 001	. 22
8	u. 16	1.66	. 02		¹ .019		2.70	. 08				. 20
9	k. 15	v. 66	. 02	{	*.024 *.02	¹ .008	2.74	. 07			^k <.01	. 14
10	ь. 16	۰. 66	. 01	nil .			2.67	. 06				. 20
11	u. 16	٢. 68	. 01		t.024	×. 01	2.67	. 09				
12	ч . 16	⁽ . 67	.02		٩. 024	. 008	2.71	. 08	۰. 02	^j . 018		
Average	0.16	0.66	0, 02		0.022	0.008	2, 71	0,07	0.012	0,017	0.001	0.21

*1 g heated at 900° to 1,000° C, iu a covered platinum crucible to constant weight. b Weighed ignited NH,OH precipitate corrected for FeO5, TiO5, and P5O4. * Alumnium separated from iron, titanium, etc., with odium hydroxide, precipitated, and weighted as AHO5, uetbod.

od, hiocyanate photometric method. nCl+KyCroOy method, ame value obtained gravimetrically as FeyOz. folybdenum-blue photometric method.

Periodate photometric method, Panae-boltometric method, Panae-boltometric method, Adminium experiented from ion and titanium by ion-hange, and weighed as aluminam oxyuniolate. "Thos separated from aluminam and titanium loy ion hange, precipitated with ammonium hydroxide, and Gavimetric." Weighed as MaPDO-Titration with AsNOb, holowing ion exclange tepara-nel forsium and Dovision with AsNOb, holowing ion exclange tepara-nel forsium and Dovision alumina.

List of Analysts

U.S. GOVERNMENT PRINTING OFFICE 337563

1. K. M. Sappenfield and R. A. Paulson, National Bureau of Standards.

- Dureau of Standards.
 G. R. Eusner, U. S. Steel Corp., Monroeville, Pa.
 B. E. Gummo, W. O. Osborn, and R. N. Smith, Crescent Division, North American Refractories Co., Curvensville, Pa.
- curvensville, 1/a.
 M. P. Bennett and Falba Whitney, Gladding, McBean & Co., Los Angeles, Calif.
 B. C. Ruprecht, Harbison-Walker Refractories Co., Pittsburgh, Pa.

WASHINGTON 25, D.C., January 6, 1960.

- A. R. Lesar, A. P. Green Fire Brick Co., Mexico, Mo.
 L. J. Trostel, General Refractories Co., Baltimore, Md.
 D. J. Halliscy, Jones & Laughlin Steel Corp., Pitts-

- D. J. Hansey, Jones & Laugnini Steel Corp., Pitts-burgh, Pa.
 J. J. Hazcl, Republic Steel Corp., Cleveland, Ohio.
 Paul Smith, The Refractories Institute, Mellon Insti-tute, Pittsburgh, Pa.
 J. B. Armstrong, Sparrows Point Plant, Bethlchem Steel Co., Sparrows Point, Md.
 W. F. Zollinger, Bethlehem Steel Co., Bethlehem, Pa.

A. V. ASTIN, Director.

*6-Hydroxyquinoliae precipitation. Bromate-thionelfate titration, See Trans. British Ceramic Society 51, No. 9, 15 - Schimm uruly jüle zett-te-parametric method, * Titrated with Tir (SOhle "Biolegical and Biological and Biological Phopophonolybeic-alkalinetic method, * Other and Schime and Schimer and Schimer and Schimer * Stare value obtained by enroknomeryanine-R photo-metric method. * Persultate-ansentin method.

UNITED STATES DEPARTMENT OF COMMERCE WASHINGTON 25, D.C.

National Bureau of Standards Certificate of Analyses

Standard Sample 199 Silica Brick

(All results are based on samples dried at 105° to 110° C.)

Analyst	Al ₂ O ₈	Total iron as Fe ₂ O ₃	TiO ₂	ZrO ₂	P ₂ O ₆	MnO	CaO	MgO	Na ₂ O	K₂O	Li ₂ O	 Loss on ignition
1	⁶ 0. 47 •. 48	4 0. 76) •, 74)	0, 07	0, 01	¹ 0, 010	≈ 0, 005	2. 41	0, 13	+ 0, 015	⊾0,09	[⊾] 0. 001	0, 14
2	1.49	i. 70	1.05		1.016		1 2.45	š. 14	¹ . 010	۰. 07	١. 002	. 23
3	b. 1.48	¥.75	. 05			·····	2. 42	. 12	1, 02	¹ . 11		. 16
4	···. 48	a. 73	. 06		02 6		2, 38	. 14	•.014	b. 11	i<.007	. 12
5	ь. 51	P. 74	, 06		ч. 012		2, 39	. 13	⊾.010	^{1,} 088	▶. 002	. 16
6			. 07		. 015	. 008	2.46	. 14	h. 004	^h . 10	^b .001	. 12
7	Þ. 50	d. 75	. 07		. 025	<.005	2, 43	. 10	ħ. 02	ħ. 09	^h . 002	. 16
8	r. 48	d. 76	. 07	•••••	t. 005		2. 38	. 14				. 13
9		•. 72	. 06		۹. 013 °	s. 007		¹ , 14			i<.01	. 30
10	ь. 49	d. 75	. 06	nil	. 03		2.37	. 13				. 17
11	r. 1 . 48	d. 74	. 06		a. 008	v, 01	2.38	. 14		*. 097		
12	*. 48	d. 74	. 06		٩. 010	s. 007	2.39	. 14	h. 03	^h . 087		
Average	0.48	0.74	0.06		0.015	0.007	2.41	0.13	0.015	0.094	0.002	0.17

g heated at 900° C. to 1,000° C. in a covered platinum

Is heard at 90° C to 1,00° C in a covered platioum only to contain which precipitate coverted platioum (a cover and a strain of the strain of the strain Aluminane spectrol from iros, titanium, and airconium Manihane spectrol from iros, titanium, and airconium sight at AlGO and corrected for PAO.
 Such & KrCh mendd.
 Mohydenum-blare photometric method.
 Periodate photometric method.

ographic

fate titration. 9. 438 (1952).

ng aluminum from iron weighing an aluminum xyquinolate. SnCl+KMnOt method.

ing ion exchange separa

537562

Ceramic Bromate-thiosul-Society 51, No.

Gravimetric. Weighed as MgaPOn. Sodium uranyl zine zereate-gravimetric method. Titrated with TG(SO): Photphomolyhdate-alkalimetric method. Orthopheamtholine photometric method. Same value ohtained by eriochromecyanine-R photo ric method.

* Persultate-arsenite method. * Gravimetric. Decomposition with NH4C1-CaCO1.

List of Analysts

U.S. GOVERNMENT PRINTING OFFICE

- 1. K. M. Sappenfield and R. A. Paulson, National Bureau of Standards.
- Bureau of Standards.
 G. R. Eusner, U.S. Steel Corp., Monroeville, Pa.
 B. E. Gummo, W. O. Osborn, and R. N. Smith, Crescent Division, North American Refractories Co., Curvensville, Pa.
 M. P. Bennett and Falba Whitney, Gladding, McBean & Co., Los Angeles, Calif.
 B. C. Ruprecht, Harbison-Walker Refractories Co., Pittsburgh, Pa.

- WASHINGTON 25, D.C., January 6, 1960.

- A. R. Lesar, A. P. Green Fire Brick Co., Mexico, Mo.
 L. J. Trostel, General Refractories Co., Baltimore, Md.
 D. J. Hallisey, Jones & Laughlin Steel Corp., Pitts-
- burgh, Pa. 9. J. J. Hazel, Republic Steel Corp., Cleveland, Ohio. 10. Paul Smith, The Refractories Institute, Mellon Insti-

- Jan Jama, Jin Kerberger, Pa.
 J. B. Armstrong, Sparrows Point Plant, Bethlehem Steel Co., Sparrows Point, Md.
 W. F. Zollinger, Bethlehem Steel Co., Bethlehem, Pa.

A. V. ASTIN, Director.

76

U.S. Department of Commerce Juanita M. Kreps Secretary

> Sational Bureau of Standards Ernest Ambler, Director

National Bureau of Standards Certificate of Analysis Standard Reference Material 277

Tungsten Concentrate

(In cooperation with the American Society for Testing and Materials)

This material is in the form of powder (<0.15 mm) intended for use in checking chemical methods of analysis and in calibration with instrumental methods of analysis.

Constituent	Certified Value ¹ (wt%)	Estimated Uncertainty ² (wt%)
WO ₃	67.4	0.3

(Results are based on samples dried at 110 °C for one hour)

¹ The certified value is the present best estimate of the "true" value based on the results of the cooperative program for certification.

² The estimated uncertainty is based on judgment and represents an evaluation of the combined effects of method imprecision, possible systematic errors among methods, and material variability for samples of 1 g or more (No attempt was made to derive exact statistical measures of imprecision because several methods were involved in the determination.)

CAUTION: The material for this SRM primarily was derived from wolframite ores. It is, however, a mixture of concentrates from China, Thailand, and USA that contains titanium, niobium, tantalum, and tin in amounts not normally encountered in most wolframite concentrates. These constituents may interfere in the "classis" chemical procedures and may necessitate appropriate changes in methodology. Also, x-ray fluorescence methods of analysis that use SRM 277 to make relative measurements of "pure" wolframite (or scheeltiet) concentrates may exhibit systematic errors because of the unusual constituents contained in this concentrate.

The overall coordination of the technical measurements leading to certification were performed under the direction of J. I. Shultz, Research Associate, NBS-ASTM Research Associate Program.

The technical and support aspects involved in the preparation, certification, and issuance of this Standard Reference Material were coordinated through the Office of Standard Reference Materials by R. E. Michaelis.

Washington, D.C. 20234 October 24, 1978 J. Paul Cali, Chief Office of Standard Reference Materials

PLANNING, PREPARATION, TESTING, ANALYSIS: The material for SRM 277 was carefully selected and provided to NBS by GTE Sylvania, Towanda, Pennsylvania, courtesy of J. Demangone. At Sylvania, the material was crushed and ground to a fine powder. At NBS the material was sieved (<0.15 mm) and thoroughly blended.

Homogeneity testing of selected samples representative of the lot of SRM 277 was performed by an x-ray fluorescence technique by R. E. Michaelis. The material variability was determined to be within ± 0.1 (wt%) of WO₃.

Cooperative analyses for certification were performed in the following analytical laboratories:

Alfred H. Knight International, Ltd., Cheshire, U.K. - J. F. L. Knight,

Benedict Kitto and Sons, London, U.K. - R. Peck.

General Electric Company, Cleveland, Ohio - J. Rynasiewicz and J. W. Fulton.

GTE Sylvania, Towanda, Pa. - R. Dyck; and Waltham, Mass. - J. F. Cosgrove.

Hermann C. Starck, Berlin, Germany - O. Hilmer.

Ledoux & Company, Teaneck, N. J. - S. Kallmann.

National Bureau of Standards, Washington, D.C. - E. R. Deardorff.

Sandvik, A. B., Stockholm, Sweden - K. Käärik; and Sandvik Asia Ltd. - N. R. Sanjana.

Spectro Chem Labs , Inc., Franklin Lakes, N. J. - E. W. Hobart.

Treibacher Chemische Werke, Treibach, Austria - Z. Otto.

Westinghouse Electric Corporation, Bloomfield, N. J. - P. J. Walitsky.

Union Carbide Corporation, Bishop, Calif. - E. C. Gibbs and K. M. Wilder; and Niagara Falls, N. Y. - P. Greenberg.

VEW Ternitz, Austria - A. J. Leeb.

NOTE: Details regarding the methodology employed in the analysis of this SRM, along with other pertinent information, will appear in a separate publication.

ADDITIONAL INFORMATION OF THE COMPOSITION: Certification is made only for the WO1 content; however, SRM 277 contains additional constituents of interest as indicated below. These are *not certified* and are provided for information only. Table 1 lists those constitutents for which data were received from two or more laboratories that were in good agreement. (Most of these are expected to be proposed for certification at a later date and, therefore, an indication of the uncertainty also is given.) Table 2 lists those constituents for which data were received from a single laboratory (or discrepant data from two or more laboratories).

	NOT CERTIFIE	D
	Table 1	
Constituent	Approximate Value (wt%)	Approximate Uncertainty (wt%)
Calcium	(0.37)	(0.02)
Iron	(7.4)	(.1)
Lead	(0.07)	(.01)
Manganese	(10.0)	(.2)
Molybdenum	(0.06)	(.01)
Niobium	(1.00)	(.03)
Phosphorus	(0.03)	(.01)
Silicon	(.85)	(.05)
Sulfur	(.25)	(.03)
Tin	(.54)	(.07)
Titanium	(2.2)	(.2)

NOT OF DEFENSE

NOT CERTIFIED

Table 2

Constituent	Information	Constituent	Information
Constituent	Value (wt%)	Constituent	Value (wt%)
Arsenic	(0.015)	Oxygen	(21.4)
Bismuth	(.07)	Scandium	(0.05)
Cerium	(.03)	Tantalum	(.20)
Chromium	(.04)	Thorium	(.08)
Copper	(.02)	Uranium	(.13)
Gadolinium	(.01)	Yttrium	(.03)
Lanthanum	(.02)	Zirconium	(.01)
Neodymium	(.03)		

In addition to the above, trace concentrations were reported (ppm by wt.) for the following as an indication of the relative amounts observed: Antimony (3), Barium (20), Boron (20), Dysprosium (30), Erbium (20), Europium (10), Holmium (3), Hafnium (20), Indium (20), Lutetium (5), Praseodymium (50), Samarium (40), Tellvirum (2), Terbium (10), Thallium (2), Thulium (10), Vanadium (70), Vitetium (5) and Zinc (20).

NOTE: Although SRM 277, Tungsten Concentrate, is expected to be stable under normal storage conditions, prudent cautions in the laboratory should be observed. The bottle should be kept tightly capped except when in direct use. Store in a desiccant over desiccant. U. S. Department of Commerce Malcolm Baldrige Secretary National Bureau of Standards Erroret Ambler, Director

National Bureau of Standards Certificate

Standard Reference Material 278 Obsidian Rock

This Standard Reference Material (SRM) is intended for use in evaluating the accuracy of analytical methods and instruments used in the analysis of geological type materials. SRM 278 is a finely powdered obsidian rock, which was obtained from Clear Lake, Newberry Crater, Oregon.

Certified Values of Constituents

The concentrations of the constituents were determined by methods that are widely used in the field of geological analysis and have a demonstrated accuracy. The values given are "certificad" values, i.e., those values that were determined by either a definitive method, reference method, or by two or more independent methods, and "information" values that were determined by single or non-reference methods. The certified values are given in Table 1.

Constituent	Content ² (wt %)	Constituent ¹	Content ² wt (µg/g)
Al ₂ O ₃ ^d	14.15 ± 0.15	Cu °	5.9 ± 0.2
CaO ^c	0.983 ± 0.002	Ni °	3.6 ± 0.3
FeO '	1.36 ± 0.02	Rb ^{a,e}	127.5 ± 0.3
Fe ₂ O ₃ ^{1,f} (Total Fe as Fe ₂ O ₃)	2.04 ± 0.02	Sr ^e	63.5 ± 0.1
K ₂ O ^{a,d,e}	4.16 ± 0.02	Th ^{e, ſ}	12.4 ± 0.3
MnO ^{b, f}	0.052 ± 0.002	TI °	0.54 ± 0.04
Na ₂ O ^{a,d,f}	4.84 ± 0.05	U°	4.58 ± 0.04
P ₂ O ₅ ^{h,d}	0.036 ± 0.003	Pb ^e	16.4 ± 0.2
SiO ₂ ^d	73.05 ± 0.13		
TiO2 b,g	0.245 ± 0.007	-	

Table 1. Certified Values of Constituents

¹ Methods of Analysis:	
Atomic Absorption	Neutron Activation Analysis
Colorimetry	⁸ Prompt-gamma Activation Analysis
Emission Spectrometry	^h Specific Ion Electrode Potentiometry
Gravimetry	Titrimetry
Isotope Dilution Mass Spectrometry	Volumetry

²The estimated uncertainties of the certified values are based on judgment and represent an evaluation of the combined effects of method imprecision, possible systematic errors among methods and material variability of 250 mg or more. (No attempt was made to derive exact statistical measures of imprecision because several methods were involved in the determination of most constituents.)

The overall direction and coordination of the technical measurements leading to certification were performed in the Inorganic Analytical Research Division, E. L. Garner, Chief.

The technical and support aspects involved in the preparation, certification, and issuance of this Standard Reference Material were coordinated through the Office of Standard Reference Materials by T. E. Gills.

Washington, D.C. 20234 August 19, 1981 George A. Uriano, Chief Office of Standard Reference Materials

Supplemental Information

Preparation

The material was processed by the Colorado School of Mines, Golden, Colorado. Approximately 350 lbs of obsidian rock were crushed, ground, and sizved to <200 mesh. The material was mixed in a cone blender to ensure homogeneity. For homogeneity testing and certification samples were randomly chosen and analyzed for both major and minor constituents. The inhomogeneity of this material is considered to be <2% relative.

Analysis

SRM 278, a natural glass, is hygroscopic and contains water that cannot be driven off by drying at low temperatures. This material will pick up additional water on exposure to the atmosphere. Thus, exposure time should be kept to a minimum. Furthermore, the sample should be ignited to a constant weight in a muffle furnace or over a small flame at a temperature between 350-600 °C. This procedure will ensure the accurate and precise determination of SiO₂, K₂O, Na₂O, Al₂O, and possibly other major constituents.

The analysts and laboratories cooperating in the analytical program for certification were:

M. J. Blackman, E. L. Garner, J. W. Gramlich, L. A. Machlan, L. J. Moore and R. Zeisler of the Inorganic Analytical Research Division, National Bureau of Standards.

J. B. Bodkin, J. C. DeVine, and N. H. Suhr of the Mineral Constitution Laboratories, The Pennsylvania State University, University Park, Pa.

S. S. Goldich of the Department of Geology, Northern Illinois University, DeKalb, Ill.

M. D. Glascock, C. C. Graham, J. R. Vogt, University of Missouri, Columbia, Mo-

The constituents given in Table 2 are not certified but are included for information only.

	Table 2. Informatio	n Values	
Constituent	Content wt %	Constituent ¹	Content wt (µg/g)
C (Total Carbon) ^j	(0.05)	Ba	(1140)
CO ₂ ^d	(0.01)	B ^g	(25)
F ^h	(0.05)	Ce ^f	(62.2)
MgO ^d	(0.23)	Co f	(1.5)
		Cr	(6.1)
		Cs f	(5.5)
		Eu	(0.84)
		Gd ^g	(5.3)
		Hf ^f	(8.4)
		Lu ^f	(0.73)
		Sb	(1.5)
		Sc	(5.1)
		Sm ^{f,g}	(5.7)
		Ta	(1.2)
		Тb	(1.0)
		Yb ^f	(4.5)
		Zn f	(55)

U.S. Department of Commerce Rogers Call. Morton, Secretary National Bureau of Standards Ernest Ambler, Acting Director

National Bureau of Standards Certificate of Analysis Standard Reference Materials 113a and 329 Zinc Concentrates

These Standard Reference Materials are in the form of fine powder (<15 mm) and are intended for use both in checking chemical methods of analysis and in calibration with instrumental methods of analysis.

CAUTION: The bottle should be kept tightly closed except when in direct use. Store in a desiccator over desiccant.

<u>SRM No.</u> Element	<u>113a</u> <u>Percent by Weight</u> ^a			
Zinc	57.3	45.5		
Lead	2.80	6.06		
Iron	2.08	12.94		
Calcium Oxide	1.19	0.08		
Magnesium Oxide	0.75	.165		
Cadmium	.78	.14		
Copper	.31	.132		
Cobalt	(.11) ^b	(.009)		
Nickel	(.07)	(.006)		
Sulfur (Total)	30.6	(31.7)		
Silicon Dioxide	(1.54)	(0.61)		
Indium	c	.019 .		
Silver	0.046 ₇ d	.0089 ^d		

Based on samples dried at 105 °C for one hour. Moisture loss: for SRM 113a 0.08%; for SRM 329 0.45%. Figures in parenthesia are not certified but are given for information only. Not determined. a b

d Troy ounces per Ion is 13.63 for SRM II3a and 2.60 for SRM 329.

NOTE: The total of constituents reported for SRM 113a is 97.6% and that for SRM 329 is 98.0%. The remainder is expected to consist mainly of oxygen, carbon, and water of crystallization.

CERTIFICATION: The value listed for a certified element is the present best estimate of the "true" value based on the results of the analytical program. The value listed is not expected to deviate from the "true" value by more than ± 1 in the last significant figure reported. For a subscript figure, the deviation is not expected to be more than \pm 5. Based on the results of homogeneity testing, maximum variations within and among samples are estimated to be less than the uncertainty figures given above.

Washington, D.C. 20234 December 29, 1975 (Revision of Certificate of May 6, 1974 for change in silver results)

J. Paul Cali, Chief Office of Standard Reference Materials

The material for these standards was supplied by Cominco American Inc., Spokane, Wash. The material for SRM 113a was prepared at the Magmont Mines, Bixby, Mo., and that for SRM 329 at the Sullivan Mine, Trail, B.C., Canada.

Following sieving and blending operations at NBS, homogeneity testing was performed by S. D. Rasberry and J. McKay, (x-ray fluorescence analyses); by E. J. Maienthal, (polarographic analyses); and by R. K. Bell, (chemical analyses).

Selected samples representative of the lot were analyzed and no significant variability was observed when using subsamples of 0.5 g or larger. (Moisture determinations usually were made on larger samples-up to 10 g.)

Cooperative analyses for certification were performed in the analytical laboratories of Cominco, Sullivan Mine, Trail, B.C., Canada, C. J. Mitchell; Cominco American Inc., Magmont Mines, Bixby, Mo., R. J. Gibson; and St. Joe Minerals Corp., Zine Smelting Division, Monaca, Pa., J. J. Aldrich.

Analyses were performed in the NBS Analytical Chemistry Division by R. K. Bell and E. J. Maienthal.

The overall direction and coordination of the technical measurements at NBS leading to certification were performed under the direction of O. Menis and J. I. Shultz.

The technical and support aspects involved in the preparation, certification, and issuance of .these SRM's were coordinated through the Office of Standard Reference Materials by R. E. Michaelis.

U.S. Department of Commerce Elliot L. Richardson, Secretary

National Bureau of Standards Ernest Ambler, Acting Director

National Bureau of Standards Certificate of Analysis Standard Reference Material 330 Copper Ore, Mill Heads

This material is in the form of fine powder intended for use both in checking chemical methods of analysis and in calibration with instrumental methods of analysis.

This SRM is one of a series of four SRM's issued primarily for use in evaluation of the critically important "material balance" in the copper mining and metallurgical industries. The other three are: SRM 331, Copper Ore, Mill Tails, SRM 332, Copper Concentrate; and SRM 333, Molybedenum Concentrate.

CAUTION: The bottle should be kept tightly closed except when in direct use. Store in a desiccator over desiccant.

Constituent	Certified Value ^{a, 8}	Estimated Uncertainty ^c
	Percen	l t by Weight
Total Copper	0.84	0.01
Molybdenum	.018	.001
	PPM	by Weight
Rhenium	0.30	0.06

* Based on samples dried at 105 °C for two hours. Separate samples are used for rhenium and calculated to a dry-weight basis. * The certified value is the *best estimate* of the "true" value.

Estimated uncertainty includes both method imprecision and material variability with samples 0.5 g (or more) for total copper, 1.0 g (or more) for molybdenum, and 2.5 g (or more) for rhenium.

The following values indicate the results of the analytical tests made at NBS and the Magma Copper Company.

Constituent / Method ¹	Average	Standard Deviation ²	Number of Determinations
Turil Comm	Percent by	Weight	
Total Copper_ Isotopic dilution mass spectrometry ³ (0.5 g samples)	0.837	0.007	8
Polarographic (0.5 g samples)	.85	.01	3
lodometric (2.5 g samples) ⁴	.85	01	21
Molybdenum		Range	
Isotopic dilution mass spectrometry'	.0180	0.0001	2
(1 g samples)			
	PPM by	Weight	
Rhenium		Range	
lsotopic dilution mass spectrometry ¹ (2.5 g samples)	0.303	0.054	6

¹ Details of the methods used, including drying and dissolution procedures, are given in a separate publication [1].

² Of single determinations for total Cu; range given for Mo and Re.

) This method has been studied extensively and the data are considered free from systematic errors [2].

⁴ Results from Magma Copper Company.

Washington, D. C. 20234 January 20, 1977 (Revision of Provisional Certificate of 2-20-73) J. Paul Cali, Chief Office of Standard Reference Materials

(Over)

PLANNING, PREPARATION, TESTING, ANALYSIS: The material for this SRM (330) was carefully selected and provided to NBS by Magma Copper Company, San Manuel, Arizona, through the courtesy of T. L. Young.

At NBS this material was sieved and thoroughly blended, which involved several independent procedures [1].

Homogeneity testing of selected samples representative of the lot of SRM 330 was performed simultaneously with the analytical program for certification. At NBS, 0.5 g samples showed the maximum variability to test to be ± 0.010 percent. At Magma, 2.5 g samples showed the maximum variability to be ± 0.010 percent.

Cooperative analyses were performed at the Magma Copper Company, San Manuel, Arizona, by B. Cripe, R. L. Culder, A. B. Hall, D. A. Shah, J. T. Tadano, and M. Toelkes.

Analyses were performed in the NBS Analytical Chemistry Division by E. L. Garner, J. W. Gramlich, L. A. Machlan, E. J. Maienthal, J. R. Moody, and T. J. Murphy.

The overall direction and coordination of the technical measurements at NBS leading to certification were performed under the direction of W. R. Shields and I. L. Barnes.

The technical and support aspects involved in the preparation, certification, and issuance of this Standard Reference Material were coordinated through the Office of Standard Reference Materials by R. E. Michaelis.

ADDITIONAL INFORMATION ON THE COMPOSITION: Certification is made *only* for total Cu, Mo, and Re. Although <u>NOT</u> <u>CERTIFIED</u>, the following additional information on the composition may be of interest.

Gold and Silver

Fire assay determinations for Au and Ag were made at Magma Copper Company:

	Gold	Silver
	PPM by Weight	
Fire assay	(0.093)	*(1.51)

*Revised 02/28/79

The total copper content includes "recoverable" sulfide copper and "nonrecoverable" oxide copper. Industrial practice is to determine "acid-soluble" copper and to relate this result to the oxide copper content. Investigation at NBS provided additional information on "acid-soluble" copper that may be useful, but is *not certified:*

Constituent/Method	Average	Range	Number of Determinations
"Acid-Soluble" Copper Isotopic dilution mass spectrometry (2.5 g samples)	Percent (0.069)	by Weight. (0.063-0.081)	9

REFERENCES

- J. R. Moody, I. L. Barnes, and R. E. Michaelis, Standard Reference Materials: Copper Ore, Mill Heads -SRM 330: Copper Ore, Mill Tails - SRM 331; Copper Concentrate - SRM 332, and Molybdenum Concentrate - SRM 333, Nat. Bur. Stand. Spec. Publ. 260-xx (in press).
- [2] W. R. Shields, Editor, Nat. Bur. Stand. Tech. Note 546, (1970).

[&]quot;Acid-Soluble" Copper

J.S. Department of Commerce Elliot L. Richardson.

Secretary

National Bureau of Standards National Bureau of Standards Certificate of Analysis Standard Reference Material 331

Copper Ore, Mill Tails

This material is in the form of fine powder intended for use both in checking chemical methods of analysis and in calibration with instrumental methods of analysis.

This SRM is one of a series of four SRM's issued primarily for use in evaluation of the critically important "material balance" in the copper mining and metallurgical industries. The other three are: SRM 330, Copper Ore, Mill Heads; SRM 332, Copper Concentrate; and SRM 333, Molybdenum Concentrate.

CAUTION: The bottle should be kept tightly closed except when in direct use. Store in a desiccator over desiccant

Constituent	Certified Value ^{a, b}	Estimated Uncertainty ^e
Total Copper Molybdenum	<u>Percent b</u> 0.091 .0022	y Weight 0.001 .0002
Rhenium	<u>.04</u>	<u>Weight</u> .02

* Based on samples dried at 105 °C for two hours. Separate samples are used for rhenium and calculated to a dry-weight basis.

" The certified value is the best estimate of the "true" value

⁶ Estimated uncertainty includes both method imprecision and material variability with samples 1.0 g (or more) for total copper and molybdenum, and 2.5 g (or more) for rhenium.

The following values indicate the results of the analytical tests:

Constituent/Method ¹	Average	Standard Deviation ²	Number of Determinations
Total Copper	Percent	by Weight	
Isotopic dilution mass spectrometry ³ (1.0 g samples)	0.0915	0.0005	15
Polarographic (2.5 g samples)	.091	.001	4
Molybdenum Isotopic dilution mass spectrometry ³	.0022	Range 0.0001	2
(1.0 g samples) Rhenium	<u>PPM</u> b	y Weight Range	
Isotopic dilution mass spectrometry ³ (2.5 g samples)	0.043	0.016	6

Details of the methods used, including drying and dissolution procedures, are given in a separate publication [1].

² Of single determinations for total Cu; range given for Mo and Re. ¹ This method has been studied extensively and the data are considered free from systematic errors [2].

Washington, D. C. 20234 January 20, 1977 (Revision of Provisional Certificate of 2-20-73)

J. Paul Cali, Chief Office of Standard Reference Materials

(Over)

PLANNING, PREPARATION, TESTING, ANALYSIS: The material for this SRM (331) was carefully selected and provided to NBS by Magma Copper Company, San Manuel, Arizona, through the courtesy of T. L. Young.

At NBS, this material was sieved and thoroughly blended, which involved several independent procedures [1].

Homogeneity testing of selected samples representative of the lot of SRM 331 was performed simultaneously with the analytical program for certification. At NBS, the maximum variability for total copper was determined to be ±0.0008 percent (15 determinations with 1 g samples).

Analyses were performed in the NBS Analytical Chemistry Division by E. L. Garner, J. W. Gramlich, L. A. Machlan, E. J. Maienthal, J. R. Moody, L. J. Moore, and T. J. Murphy.

The overall direction and coordination of the technical measurements at NBS leading to certification were performed under the direction of W. R. Shields and I. L. Barnes.

The technical and support aspects involved in the preparation, certification, and issuance of this Standard Reference Materials were coordinated through the Office of Standard Reference Materials by R. E. Michaelis.

ADDITIONAL INFORMATION ON THE COMPOSITION: Certification is made *only* for total Cu, Mo, and Re. Although <u>NOT</u> <u>CERTIFIED</u>, the following additional information on the composition may be of interest.

Gold and Silver

Fire assay determinations for Au and Ag were made at Magma Copper Company:

	Gold	Silver
	PPM by Weight	
Fire assay	(0.034)	*(0.243)

*Revised 02/28/79

"Acid-Soluble" Copper_

The total copper content includes "recoverable" sulfide copper and "nonrecoverable" oxide copper. Industrial practice is to determine "acid-soluble" copper and to relate this result to the oxide copper content. Investigation at NBS provided additional information on "acid-soluble" copper that may be useful, but is *not certified*:

Constituent/Method	Average	Range	Number of Determinations
<u>"Acid-Soluble" Copper</u> Isotopic dilution mass spectrometry (2.5 g samples)	Percent (0.051)	(0.051-0.052)	3

REFERENCES

- [1] J. R. Moody, I. L. Barnes, and R. E. Michaelis, Standard Reference Materials: Copper Ore, Mill Heads-SRM 330; Copper Ore, Mill Tails - SRM 331; Copper Concentrate - SRM 332, and Molybdenum Concentrate - SRM 333, Nat. Bur. Stand. Spec. publ. 260-xx (in press).
- [2] W. R. Shields, Editor, Nat. Bur. Stand. Tech. Note 546, (1970).

National Bureau of Standards Ernest Ambler, Acting Director

U.S. Department of Commerce National Bureau of Standards Certificate of Analysis Standard Reference Material 332 **Copper** Concentrate

This material is in the form of fine powder intended for use both in checking chemical methods of analysis and in calibration with instrumental methods of analysis.

This SRM is one of a series of four SRM's issued primarily for use in evaluation of the critically important "material balance" in the copper mining and metallurgical industries. The other three are: SRM 330, Copper Ore, Mill Heads; SRM 331, Copper Ore, Mill Tails; and SRM 333, Molybdenum Concentrate.

CAUTION: The bottle should be kept tightly closed except when in direct use. Store in a desiccator over desiccant.

Constituent	Certified Value ^{a b}	Estimated Uncertainty ^e
	Percent b	y Weight
Total Copper	28.4	0.1
Molybdenum	0.64	.01
	PPM by	Weight
Rhenium	10.2	0.2

^a Based on samples dried at 105 °C for two hours. Separate samples are used for rhenium and calculated to a dry-weight basis

^b The certified value is the best estimate of the "true" value.

^c Estimated uncertainty includes both method imprecision and material variability with samples 0.5 g (or more) for total copper, 0.2 g (or more) for molybdenum and 2.5 g (or more) for rhenium.

The following values indicate the results of the analytical tests:

Constituent/Method ¹	Average	Standard Deviation ²	Number of Determinations
	Percent by	Weight	
Total Copper. Isotopic dilution mass spectrometry ³ (0.5 g samples)	28.40	0.04	12
Electrogravimetry (2 g samples)	28.39	.02	6
Molybdenum Isotopic dilution mass spectrometry ³ (0.2 g samples)	0.639	Range 0.008	3
Rhenium	PPM I	Neight	
Isotopic dilution mass spectrometry ³ (2.5 g samples)	10.20	0.20	3

¹ Details of the methods used, including drying and dissolution procedures, are given in a separate publication [1].

² Of single determinations for total Cu; range given for Mo and Re.

This method has been studied extensively and the data are considered free from systematic errors. [2].

Washington, D.C. 20234 June 26, 1977 (Revision of Provisional Certificate of 2-20-73 and draft certificates of 7-4-76 and 1-20-77)

J. Paul Cali, Chief Office of Standard Reference Materials

(Over)

PLANNING, PREPARATION, TESTING, ANALYSIS: The material for this SRM (332) was carefully selected and provided to NBS by Magma Copper Company, San Manuel, Arizona, through the courtesy of T. L. Young.

At NBS, the material was sieved and thoroughly blended, which involved several independent procedures [1].

Homogeneity testing of selected samples representative of the lot of SRM 332 was performed simultaneously with the analytical program for certification. The maximum variability for total copper was determined to be ±0.06 percent (0.5 g samples).

Analyses were performed in the NBS Analytical Chemistry Division by R. K. Bell, E. L. Garner, J. W. Gramlich, L. A. Machlan, J. R. Moody, L. J. Moore, and T. J. Murphy.

The overall direction and coordination of the technical measurements at NBS leading to certification were performed under the direction of W. R. Shields and I. L. Barnes.

The technical and support aspects involved in the preparation, certification, and issuance of this Standard Reference Material were coordinated through the Office of Standard Reference Materials by R. E. Michaelis.

ADDITIONAL INFORMATION ON THE COMPOSITION: Certification is made *only* for total Cu, Mo, and Re. Although <u>NOT</u> <u>CERTIFIED</u>, the following additional information on the composition may be of interest.

Gold and Silver

Fire assay determinations for Au and Ag were made at Magma Copper Company:

	Gold	Silver
		PPM by Weight
Fire assay	*(2.14)	*(38.7)

*Revised 02/28/79

REFERENCES

 J. R. Moody, I. L. Barnes, and R. E. Michaelis, Standard Reference Materials: Copper Ore, Mill Heads-SRM 330; Copper Ore, Mill Tails - SRM 331; Copper Concentrate - SRM 332; and Molybdenum Concentrate - SRM 333, Nat. Bur. Stand. Spec. Publ. 260+xx (in press).

[2] W. R. Shields, Editor, Nat. Bur. Stand. Tech. Note 546, (1970).

U.S. Department of Commerce Elliot L. Richardson,

Secretary National Bureau of Standards Ernest Ambler. Acting Director **Certificate of Analysis** Standard Reference Material 333

Molybdenum Concentrate

This material is in the form of fine powder intended for use both in checking chemical methods of analysis and in calibration with instrumental methods of analysis.

This SRM is one of a series of four SRM's issued primarily for use in evaluation of the critically important "material balance" in the copper mining and metallurgical industries. The other three are: SRM 330, Copper One, Mill Heads; SRM 331, Copper One, Mill Tails; and SRM 332, Copper Concentrate.

CAUTION: The bottle should be kept tightly closed except when in direct use. Store in a desiccator over desiccant.

Constituent	Certified Value * b	Estimated Uncertainty ^c
	Percent b	by Weight
Total Copper	1.038	0.010
Molybdenum	55.3	.1
Rhenium	0.087	.001

^a Based on samples run "as received." CAUTION: The bottle should be kept tightly closed except when in direct use.
^b The certified value is the *best estimate* of the "true" value.

⁶ Estimated uncertainty includes both method imprecision and material variability with samples 0.25 g (or more) for 101al copper, molybdenum, and rhenium.

The following values indicate the results of the analytical tests made at NBS and the Magma Copper Company.

Constituent/Method	Average	Standard	Number of
Constituent/ Method	~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	Deviation ²	Determinations
	Percentl	by Weight	
Total Copper			
Isotopic dilution mass spectrometry ³	1.038	0.007	11
(0.25 g samples)			
Polarographic	1.034	.011	6
(1.0 g samples)			
Atomic absorption spectrometry ⁴	1.033	.002	3
(1.0 g samples)			
Molybdenum			
Isotopic dilution mass spectrometry ³	55.31	.02	10
(0.25 g samples)			
α-Benzoinoxime gravimetric ⁵	55.43	.04	10
(0.25 g samples)			
Rhenium			
Isotopic dilution mass spectrometry ³	0.0869	0.0003	17
(0.25 g samples)	0.0007	0.0005	17
Thermal neutron activation analysis ⁶	.085	.002	9
(0.15 g samples)	.065	.002	,
(0.15 g samples)			

Details of the methods used are given in a separate publication [1].

Of single determinations

This method has been studied extensively and the data are considered free from systematic errors [2]

* Results from Magma Copper Company.

Average of two independent analysts at NBS.

⁶ Determinations made relative to an industrial molybdenum concentrate reference material containing 0.1140 wt. % of Re, (as determined by a nuniber of industrial laboratories and by isotopic dilution mass spectrometry at NBS.)

Washington, D. C. 20234 January 20, 1977 (Revision of Provisional Certificate of 2-20-73) J. Paul Cali, Chief Office of Standard Reference Materials

(Over)

NOTE: Recommendation is made that this material be analyzed in the "as received" condition. SRM 333 contains a small quantity (about 1%) of fuel oil introduced in the flotation process. Investigations at NBS indicate that the analytical results made on the "as received" samples may be calculated to the dry-weight basis by use of an acetone stripping procedure (includes fuel oil and moisture)[1]. (For information only, a calculated MoS₂ content thus would be 93.2±0.2%.)

ADDITIONAL INFORMATION ON THE COMPOSITION: Although certification is made only for total Cu, Mo, and Re, recommended values for Au and Ag are given below:

	Au	Ag
		ppm by weight
Fire Assay, Magma (14.58 g samples)	8.9	25.0

Neutron activation values at NBS on 0.2 g portions (final blended material) gave values of 12.5 ppm Au and 22.6 ppm Ag. Definite evidence of inhomogeneity was observed for Au on these 0.2 g portions. Recommendation is made that sample sizes of 2.5 g (or more) be used to ensure homogeneity (<5% relative), regardless of the method used.

PLANNING, PREPARATION, TESTING, ANALYSIS: The material for this SRM was carefully selected and provided to NBS by Magma Copper Company, San Manuel, Arizona, through the courtesy of T. L. Young.

At NBS, highly specialized blending and mixing procedures were employed to obtain satisfactory homogeneity. Extensive chemical analyses performed by Magma both for total copper and for molybdenum sulfide demonstrated that homogeneity was not achieved until the total blending and mixing procedures were performed three separate times [1].

Final homogeneity testing was performed at NBS simultaneously with the analytical program for certification. The maximum variability of the accepted lot was determined to be ± 0.010 percent for total copper, ± 0.0010 percent for the 10.06 percent for molybdenum (all using 0.25 g samples).

Cooperative analyses were performed at the Magma Copper Company, San Manuel, Arizona, by Y. Arias, B. Cripe, R. L. Culver, A. B. Hall, D. A. Shah, J. T. Tadano, and M. Toelkes.

Analyses were performed in the NBS Analytical Chemistry Division by R. K. Bell, E. L. Garner, T. E. Gills, J. W. Gramlich, P. D. LaFleur, L. A. Machlan, E. J. Maienthal, J. R. Moody, L. J. Moore, and T. J. Murphy.

The overall direction and coordination of the technical measurements at NBS leading to certification were performed under the direction of W. R. Shields and I. L. Barnes.

The technical and support aspects involved in the preparation, certification, and issuance of this Standard Reference Material were coordinated through the Office of Standard Reference Materials by R. E. Michaelis.

REFERENCES

- J. R. Moody, I. L. Barnes, and R. E. Michaelis, Standard Reference Materials: Copper Ore, Mill Heads-SRM 330; Copper Ore, Mill Tails - SRM 331 Copper Concentrate - SRM 332, and Molybdenum Concen trate - SRM 333, Nat. Bur. Stand. Spec. Publ. 260-xx (in press).
- [2] W. R. Shields, Editor, Nat. Bur. Stand. Tech. Note 546. (1970).

U. S. Department of Commerce Malcolm Baldrige Secretary al Burma of Standards

National Bureau of Standards Dertificate Standard Reference Material 688 Basalt Rock

This Standard Reference Material (SRM) is intended for use in evaluating the accuracy of analytical methods and instruments used in the analysis of geological type materials. SRM 688 is a finely powdered basalt rock that was obtained from a Cenozoic basalt flow near Jackpot, Nevada.

Certified Values of Constituents

The concentrations of the constituents were determined by methods that are widely used in the field of geological analysis and have a demonstrated accuracy. The values given are "certified" values, i.e., those values that were determined by either a definitive method, reference method, or by two or more independent methods, and "information" values that were determined by single or non-reference methods. The certified values are given in Table 1.

Constituent	Content ² wt (%)	Constituent ¹	Content ² wt $(\mu g/g)$
Al ₂ O ₃ ^{c,g}	17.36 ± 0.09	Cr b, c	332 ± 9
FeO ^g	7.64 ± 0.03	Rb ^d	1.91 ± 0.01
Fe ₂ O ₃ ^{e,g}	10.35 ± 0.04	Sr d	169.2 ± 0.7
(Total Fe as Fe ₂ O ₃)		Th ^d	0.33 ± 0.02
K ₂ O ^{b,d}	0.187 ± 0.008	Pb ^d	3.3 ± 0.2
MnO ^{a,b,e}	0.167 ± 0.002		
Na ₂ O ^{b, c, e}	2.15 ± 0.03		
P2O5 4, C	0.134 ± 0.003		
SiO ₂ ^c	48.4 ± 0.1		
TiO2 ^{a,b}	1.17 ± 0.01		

	Table 1	Certified	Values of	Constituents
--	---------	-----------	-----------	--------------

I. Methods of Analysis

^aColorimetry ^bEmission spectrometry

Gravimetry

Isotope dilution mass spectrometry

Neutron activation analysis Specific ion electrode potentiometry

⁸Titrimetry

2. The estimated uncertainties of the certified values are based on judgment and represent an evaluation of the combined effects of method imprecision, possible systematic errors among methods and material variability of 250 mg or more. (No attempt was made to derive exact statistical measures of imprecision because several methods were involved in the determination of most constituents.)

The overall direction and coordination of the technical measurements leading to certification were performed in the Inorganic Analytical Research Division, E. L. Garner, Chief,

The technical and support aspects involved in the preparation, certification, and issuance of this Standard Reference Material were coordinated through the Office of Standard Reference Materials by T. E. Gills.

Washington, D.C. 20234 August 18, 1981

George A. Uriano, Chief Office of Standard Reference Materials

SUPPLEMENTAL INFORMATION

Preparation

The material was processed by the Colorado School of Mines, Golden, Colorado. Approximately 600 pounds of basalt rock were crushed, ground, and sieved to <200 mesh. The material was mixed in a cone blender to ensure homogeneity. The inhomogeneity was tested by taking random samples and analyzing for both major and minor constituents and was found to be <296 relative.

Analysis

SRM 688 may pick up additional water on exposure to the atmosphere. Thus, exposure time should be kept to a minimum. Before analysis, it is recommended that the material be dried at 105 °C for 24 hours. Typical weight loss upon drying is approximately 0.2 percent.

The analysts and laboratories cooperating in the analytical program for certification were:

I. L. Barnes, M. J. Blackman, E. L. Garner, J. W. Gramlich, L. A. Machlan, L. J. Moore, and R. Zeisler of the Inorganic Analytical Research Division, National Bureau of Standards.

J. B. Bodkin, J. C DeVine, and N. H. Suhr of the Mineral Constitution Laboratories, The Pennsylvania State University, University Park, Pa.

S. S. Goldich of the Department of Geology, Northern Illinois University, Dekalb, 111.

The constituents given in Table 2 are not certified, but are included for information only.

Table 2 Information Values

Constituent ¹	Content wt %	Constituent ¹	Content wt (µg/g)
CaO °	(12.17)	Ce °	(13.3)
CO ₂ ^f	(0.05)	Co °	(49.7)
F	(0.02)	Eu ^e	(1.07)
MgO °	(8.4)	Hf ^e	(1.6)
		Lu ^e	(0.34)
		Sc ^e	(38.1)
		Ba	(200)
		V b	(250)
		Cu ^b	(96)
		Ni	(150)
		Sm ^e	(2.79)
		Tb °	(0.448)
		Ud	(0.37)
		Yb °	(2.09)
		Zn ^e	(58.0)

U.S. Department of Commerce Juanita M., Kreps Secretary National Bureau of Standards Ernest Ambler, Director

National Bureau of Standards Certificate of Analysis Standard Reference Material 690

Iron Ore Concentrate (Canada)

(In Cooperation with the American Society for Testing and Materials)

This material is in the form of powder (<0.1 mm) for use in checking chemical methods of analysis and in calibration with instrumental methods of analysis.

Constituent	Total Fe	SiO ₂	Al ₂ O ₃	Р	s	TiO ₂	MnO	CaO	MgO	Na ₂ O	K ₂ O
Certified ¹ Value (wt. %)	66.85	3.71	0.18	0.011	0.003	0.022	0.23	0.20	0.18	0.003	0.0030
Estimated ² Uncertainty	0.07	0.02	0.01	0.002	0.001	0.002	0.01	0.01	0.01	0.001	0.0005
Method ³ Labs	SnCl ₂ – K ₂ Cr ₂ O ₇	HCIO4 Dehydration	Atomic Absorption	Photometric	Combustion- Titration	Photometric	Atomic Absorption	Atomic Absorption	Atomic Absorption	Atomic Absorption	Atomic Absorption
A	[°] 66.91	^b 3.70	0.17	° 0.009	<0.005	d 0.021	0.24	0.20	0.17	0.0026	0.0030
В	66.88	3.76	.17	° .013	.003	.026	.23	.20	.19	.004	.003
с	¹ 66.82	3.70	.19	.011	.006	9.024	h .23	ⁱ .19	i .19	.0023	.0034
D	66.85	3.73	ر 18.	-	-	ر 021.	.23	ر .21	.18	.0028 J.0030	ر 0029.
E	66.83	^h 3.69 3.73	k .20	.009	.002	9 .022	.24	.21	.18	.002	.003

(Results based on samples dried for one hour at 105 °C.)

 The certified value listed for a constituent is the present best estimate of the "true" value based on results of the cooperative analytical program for certification.

2. The estimated uncertainty is based on judgment and represents an evaluation of the combined effects of method imprecision, possible systematic errors among methods, and material variability for samples of 0.2 g or more. (No attempt was made to derive exact statistical measures of imprecision because several methods were involved in the determinations.)

3. A detailed description of many of the methods of analysis employed in the certification program for this SRM may be found in Part 12, Chemical Analysis of Metals and Metal Bearing Ores, Annual Book of ASTM Standards.

- a H₂S reduction b Sample fused in Na₂CO₃
- g Chromotropic acid photometric h Photometric method
- i Spectroscopic method
 - i Flame emission
- k Chromazurol S photometric

d H₂O₂ photometric e Atomic absorption f Silver reductor

c Alkali-molybdate method

Washington, D.C. 20234 October 24, 1978 J. Paul Cali, Chief Office of Standard Reference Materials

PLANNING, PREPARATION, TESTING, ANALYSIS:

The iron ore powder concentrate material for this SRM was prepared in final powder form, minus 74 μ m (200 mesh), by the Iron Ore Company of Canada, Labrador City, Newfoundland, Canada, through the courtesy of L. Rompré.

At NBS, the material was resieved and thoroughly blended.

Homogeneity testing of selected samples representative of the final lot was performed at NBS by R. K. Bell, Assistant Research Associate, ASTM-NBS Research Associate Program. The results for iron indicate that the naterial variability (0.5 g samples) is 52 the method imprecision.

Chemical analyses for certification were performed in the following laboratories:

Bethlehem Steel Corporation, Homer Research Laboratories, Bethlehem, Pa., D. A. Flinchbaugh. Inland Steel Company, Indiana Harbor Works, East Chicago, Indiana, J. E. Joyce. Ledoux and Company, Teaneck, New Jersey, S. Kallman and C. L. Maul.

National Bureau of Standards, Center for Analytical Chemistry, Washington, D.C., T. C. Rains, T. J. Brady, J. D. Messman, and T. A. Rush and by R. K. Bell, ASTM Assistant Research Associate.

STELCO, The Steel Company of Canada, Ltd., Hilton Works, Hamilton, Ontario, Canada, O. P. Bhargava.

The overall direction and coordination of the technical measurements leading to certification were performed jointly by R. E. Michaelis, Office of Standard Reference Materials and by J. I. Shultz, Research Associate Program. ASTM-NBS Research Associate Program.

The technical and support aspects involved in the preparation, certification, and issuance of this Standard Reference Material were coordinated through the Office of Standard Reference Materials by W. P. Reed. U. S. Department of Commerce Malcolm Baldrige Secretary National Bureau of Standards Ernest Ambler, Director

National Bureau of Standards Certificate of Analysis Standard Reference Material 691 Reduced Iron Oxide

(In cooperation with the American Society for Testing and Materials)

This Standard Reference Material (SRM) is intended for use in evaluating chemical methods and in calibrations associated with optical emission and x-ray spectrometric methods of analysis. SRM 691 is a finely powdered material (-200 mesh) and must be kept in a tightly scaled bottle when not in use. It is recommended that the material be stored in a desiccator over a suitable desiccant when not in use. Long term (>3 years) stability of this SRM has not been rigorously established. NBS will continue to monitor this material and any substantive changes will be reported to users.

The certified values given below in Table 1 are based on samples of at least 0.5 g, the minimum amount to be used for analysis. Non-certified values which are given for information only, are listed in Table 2.

Constituent	Certified, Value, ¹ % by wt.	Estimated Uncertainty ²	Constituent	Certified Value, ¹ % by wt.	Estimated Uncertainty ²
Iron (Total)	90.8	± 0.5	Copper	0.032	± 0.003
lron (Metallic) ³	84.6	.6	Cobalt	.030	.007
SiO2	3.7	.2	Phosphorus	.006	.001
At ₂ O ₃	1.22	.07	Sulfur	.008	.001
TiO ₂	0.27	.04	Carbon (Total)	.12	.03
CaO	. 63	.03			
MnO	.043	.002			
MgO	.52	.02			
Na ₂ O	. 186	.002			

Table	

 The certified value listed for a constituent is the present best estimate of the "true" value based on the results of the cooperative program for certification.

 The estimated uncertainty listed for a constituent is based on judgment and represents an evaluation of the combined effects of method imprecision, possible systematic errors among methods, and material variability for samples 0.5 g or more. (No attempt was made to derive exact statistical measures of imprecision because several methods were involved in the determination of most constituents).

3. The metallic iron was determined by the ISO (Bromine-methanol) method.

The overall coordination of the technical measurements leading to certification was performed under the direction of J.I. Shultz, Research Associate, ASTM-NBS Research Associate Program.

The technical and support aspects involved in the preparation, certification, and issuance of this Standard Reference Material were coordinated through the Office of Standard Reference Materials by T.E. Gills.

Washington, D.C. 20234 April 12, 1982 George A. Uriano, Chief Office of Standard Reference Materials

PLANNING, PREPARATION, TESTING, ANALYSIS:

The material for this SRM was provided by Allis-Chalmers, Reduction Systems Division, Milwaukee, Wis., courtesy of L.J. Wrangell. It was processed (crushed, ground, sieved, and mixed) at the Colorado School of Mines Research Institute, Golden, Colorado, under a contract to the National Bureau of Standards. The final product (-200 mesh) was blended at NBS.

Homogeneity testing of selected samples representative of the final lot was performed at Allis-Chalmers, L.J. Wrangell; at Ledoux & Co., Teaneck, New Jersey, by S. Kallmann; and at NBS by E.R. Deardorff.

Stability tests conducted over a seven-month period at NBS, during which samples were exposed to relative humidities of 75 and 90 percent at room temperature, indicated sufficient stability of the material for use as an SRM.

This material was packaged in a dry nitrogen atmosphere to prevent oxidation. If signs of oxidation are detected, please transmit this information to NBS for documentation into the monitoring program.

Cooperative analyses for certification were performed in the following laboratories:

Andrew S. McCreath & Son, Inc., Harrisburg, Pa.; F.A. Pennington, Jr., R.F. Eakin, G.L. Dobbs, J.C. Forney, and L.W. Richards.

Inland Steel Company, Indiana Harbor Works, East Chicago, Indiana; J.E. Joyce.

Institut de Recherches de la Siderurgie, Maizieres-les-Metz, France; G. Jecko.

Ledoux and Company, Teaneck, New Jersey; S. Kailmann.

National Bureau of Standards, Inorganic Analytical Research Division, C.G. Blundell, T.A. Butler, E.R. Deardortf, M.S. Epstein, R.M. Lindstrom, T.C. Rains, M. Sadjadi, and R.M. Stone.

United States Steel Corp., Research Laboratory, Monroeville, Pa.; J.D. Selvaggio, D.S. Shafferman, A.W. Fioravanti, D.G. Cunningham, K.G. Mikos, R.C. Cline, and H.S. Karp.

The values shown below are not certified since they are not based on the results of at least two independent laboratories or methods. These values are included for information only.

Element	Content Wt. Percent	Element	Content µg/g
Cr	(0.03)	As	(14)
Ni	(.3)	Zn	(40)
К	(.06)	Pb	(<20)
		Cd	(< 5)
		Mo	(<20)
		Sn	(<10)
		N	(50)
		V	(135)

Table 2

U.S. Department of Commerce Juanita M, Krep^o Secretary

National Bureau of Standards Ernest Ambler, Director

National Bureau of Standards Certificate of Analysis Standard Reference Material 692 Iron Ore (Labrador)

(In Cooperation with the American Society for Testing and Materials)

This material is in the form of powder (<0.1mm) for use in checking chemical methods of analysis and in calibration with instrumental methods of analysis.

Constituent	Total Fe	SiO ₂	Al ₂ O ₃	Р	s	TiO ₂	MnO	CaO	MgO	Na ₂ O	K2O
Certified ¹ Value (wt. %)	59.58	10.14	1.41	0.039	0.005	0.045	0.46	0.023	0.035	0.008	0.039
Estimated ² Uncertainty	0.06	0.05	0.04	0.002	0.001	0.005	0.01	0.003	0.004	0.002	0.003
Method ³ Labs	SnCl ₂ – K ₂ Cr ₂ O ₇	HCIO4 Dehydration	Atomic Absorption	Photometric	Combustion- Titration	Photometric	Atomic Absorption	A tomic Absorption	Atomic Absorption	Atomic Absorption	Atomic Absorption
A	ຶ 59.55	^b 10.09	1.40	°0.039	<0.005	^d 0.041	0.47	0.022	0.034	0.008	0.040
В	59.58	10.26	1.48	۰.035	.004	e .05	.45	.02	.04	.005	.036
с	59.63 59.62	10.10	1.42	.040	.007	g .048	н .47	i .025	; .028	i .008	J .040 .039
D	59.60	10.16	J 1.40	-	-	J .043	.47	J .021	.033	010. t .009	ر 041.
E	59.50	^h 10.12 10.05	k 1.41	.039	.004	g .050	.46	.01	.038	.008	.041
F	59.58	10.18	¹ 1.37 1.46	.040	.005	9 .043	н .46	.026	.035	.008	.035

(Results based on samples dried for one hour at 105 °C.)

1. The certified value listed for a constituent is the present best estimate of the "true" value based on results of the cooperative analytical program for certification.

2. The estimated uncertainty is based on judgment and represents an evaluation of the combined effects of method imprecision, possible systematic errors among methods, and material variability for samples of 0.5 g or more. (No attempt was made to derive exact statistical measures of imprecision because several methods were involved in the determinations.)

3. A detailed description of many of the methods of analysis employed in the certification program for this SRM may be found in Part 12, Chemical Analysis of Metals and Metal Bearing Ores, Annual Book of ASTM Standards.

a H₂S reduction b Sample fused in Na₂CO₃ d H₂O₂ photometric

e Atomic absorption

f Silver reductor

g Chromotropic acid photometric h Photometric method

- i Spectroscopic method

j Flame emission

k Chromazurol S photometric

1 Mercury cathode-NH4OH-Cupferron-AlPO4

Washington, D.C. 20234 October 24, 1978

c Alkali-molybdate method

J. Paul Cali, Chief Office of Standard Reference Materials

PLANNING, PREPARATION, TESTING, ANALYSIS:

The iron ore material for this SRM was prepared in final powder form, minus 74 μ m (200 mesh), by the Bethlehem Steel Corporation, Bethlehem, Pa. through the courtesy of J. M. Karpinski.

At NBS, the material was resieved and thoroughly blended.

Homogeneity testing of selected samples representative of the final lot was performed at NBS by R. K. Bell, Assistant Research Associate, ASTM-NBS Research Associate Program. The results for iron indicate that the material variability (0.5 g samples) is 54 the method imprecision.

Chemical analyses for certification were performed in the following laboratories:

Bethlehem Steel Corporation, Homer Research Laboratories, Bethlehem, Pa., D. A. Flinchbaugh. Inland Steel Company, Indiana Harbor Works, East Chicago, Indiana, J. E. Joyce. Ledoux and Company, Teaneck, New Jersey, S. Kallman and C. L. Maul. National Bureau of Standards, Center for Analytical Chemistry, Washington, D.C., T. C. Rains, T. J. Brady,

J. D. Messman, and T. A. Rush, and by R. K. Bell, ASTM Assistant Research Associate. STELCO, The Steel Company of Canada, Ltd, Hilton Works, Hamilton, Ontario, Canada, O. P. Bhargava. United States Steel Corporation, Research Laboratory, Monroeville, Pa., L. M. Melnick, J. D. Selvaggio, R. W. Cline, D. G. Cunningham, A. V. Fioravanti, J. R. Lucas II, C. W. Ponsonby, L. E. Povirk,

D. Shafferman and R. J. Wargo.

The overall direction and coordination of the technical measurements leading to certification were performed jointly by R. E. Michaelis, Office of Standard Reference Materials, and by J. I. Shultz, Research Associate, ASTM-NBS Research Associate Program.

The technical and support aspects involved in the preparation, certification, and issuance of this Standard Reference Material were coordinated through the Office of Standard Reference Materials by W. P. Reed. U.S. Department of Commerce Juanita M, Kreps Secretary National Bureau of Standards Ernest Ambler, Director

National Bureau of Standards Certificate of Analysis Standard Reference Material 693

Iron Ore (Nimba)

(In Cooperation with the American Society for Testing and Materials)

This material is in the form of powder (<0.1mm) for use in checking chemical methods of analysis and in calibration with instrumental methods of analysis.

		(*****			inpics un		1				1
Constituent	Total Fe	SiO ₂	Al ₂ O ₃	Р	s	TiO ₂	MnO	CaO	MgO	Na ₂ O	K2O
Certified ¹ Value (wt. %)	65.11	3.87	1.02	0.056	0.005	0.035	0.091	0.016	0.013	0.0028	0.0028
Estimated ² Uncertainty	0.07	0.02	0.04	0.001	0.001	0.003	0.004	0.004	0.002	0.0005	0.0006
Method ³ Labs	SnCl ₂ – K ₂ Cr ₂ O ₇	HCIO4 Dehydration	Atomic Absorption	Photometric	Combustion- Titration	Photometric	Atomic Absorption	Atomic Absorption	Atomic Absorption	Atomic Absorption	Atomic Absorption
А	°65.11	^b 3.87	1.04	° 0.056	<0.005	^d 0.034	0.094	0.016	0.013	0.0029	0.003
В	65.13 65.14	3.83	1.11	.055	.005	f .036	9 .095	ь .020	h .011	h .0023	ь .003
с	65.10	3.89	i 1.06			i .032	.087	i .015	.012	.0030 .0033	i .003
D	65.11	9 3.86 3.88	J 0.98	.056	.005	f .038	.090	.01	.015	.003	.003
E	65.09	3.87	^k 0.98 1.06	.056	.007	۱ .033	9 .091	.018	.015	.002	.002

(Results based on samples dried for one hour at 105 °C.)

 The certified value listed for a constituent is the present best estimate of the "true" value based on results of the cooperative analytical program for certification.

2. The estimated uncertainty is based on judgment and represents an evaluation of the combined effects of method imprecision, possible systematic errors among methods, and material variability for samples of 0.5 g or more. (No attempt was made to derive exact statistical measures of imprecision because several methods were involved in the determinations.)

 A detailed description of many of the methods of analysis employed in the certification program for this SRM may be found in Part 12, Chemical Analysis of Metals and Metal Bearing Ores, Annual Book of ASTM Standards.

a H₂S reduction

e Silver reductor

b Sample fused in Na₂CO₃

c Alkali-molybdate method

d H₂O₂ photometric

i Flame emission

g Photometric method

h Spectroscopic method

j Chromazurol S photometric

k Mercury cathode-NH4OH-Cupferron-AlPO4

f Chromotropic acid photometric

Washington, D.C. 20234 October 24, 1978 J. Paul Cali, Chief Office of Standard Reference Materials

PLANNING, PREPARATION, TESTING, ANALYSIS:

The iron ore material for this SRM was prepared in final powder form, minus 74 μ m (200 mesh), by the Bethlehem Steel Corporation, Bethlehem, Pa. through the courtesy of J. M. Karpinski.

At NBS, the material was resieved and thoroughly blended.

Homogeneity testing of selected samples representative of the final lot was performed at NBS by R. K. Bell, Assistant Research Associate, ASTM-NBS Research Associate Program. The results for iron indicate that the material variability (0.5 g samples) is \leq the method imprecision.

Chemical analyses for certification were performed in the following laboratories:

Bethlehem Steel Corporation, Homer Research Laboratories, Bethlehem, Pa., D. A. Flinchbaugh. Ledoux and Company, Teaneck, New Jersey, S. Kallman and C. L. Maul.

National Bureau of Standards, Center for Analytical Chemistry, Washington, D.C., T. C. Rains, T. J. Brady, J. D. Messman, and T. A. Rush, and by R. K. Bell, ASTM Assistant Research Associate.

STELCO, The Steel Company of Canada, Ltd., Hilton Works, Hamilton, Ontario, Canada, O. P. Bhargava. United States Steel Corporation, Research Laboratory, Monroeville, Pa., L. M. Melnick, J. D. Selvaggio, R. W. Cline, D. G. Cunningham, A. V. Fioravanti, J. R. Lucas II, C. W. Ponsonby, L. E. Povirk, D. Shafferman and R. J. Wargo.

The overall direction and coordination of the technical measurements leading to certification were performed jointly by R. E. Michaelis, Office of Standard Reference Materials and by J. 1. Shultz, Research Associate Program. ASTM-NBS Research Associate Program.

The technical and support aspects involved in the preparation, certification, and issuance of this Standard Reference Material were coordinated through the Office of Standard Reference Materials by W. P. Reed. U.S. Department of Commerce Juanita M, Kreps Secretary National Bureau of Standards Ernest Ambler, Director

National Bureau of Standards Certificate of Analysis Standard Reference Material 696 Bauxite (Surinam)

(In Cooperation with the American Society for Testing and Materials)

(All analyses are based on samples dried 2 hours at 140 °C)

This material is in the form of fine powder (<0.08 mm) for use in checking chemical and instrumental methods of analyses.

Constituent	Certified Value ¹ Percent, by weight	Estimated Uncertainty ²
Al ₂ O ₃	54.5	0.3
Fe ₂ O ₃	8.70	.10
SiO ₂	3.79	.10
TiO ₂	2.64	.05
ZrO ₂	0.14	.02
P ₂ O ₅	.050	.006
V ₂ O ₅	.072	.006
Cr ₂ O ₃	.047	.003
CaO	.018	.002
MgO	.012	.003
MnO	.004	.001
ZnO	.0014	.0007
K ₂ O	.009	.003
SO3	.21	.03
Loss on Ignition ³	29.9	.2

¹The certified value listed for a constituent is the present best estimate of the "true" value.

²The estimated uncertainty listed for a constituent is based on judgment and represents an evaluation of the combined effects of method imprecision, possible systematic errors among methods, and material variability for samples 1.0 g or more. (No attempt was made to derive exact statistical measures of imprecision because several methods were involved in the determination of most constituents.) Determined by igniting to constant weight at 1050 °C.

Washington, D.C. 20234 August 24, 1979 George A. Uriano, Chief Office of Standard Reference Materials

ADDITIONAL INFORMATION ON THE COMPOSITION

Elements other than those certified may be present in this material as indicated below. These are not certified but are given as additional information on the composition.

Constituent	Concentration, Percent by weight	Constituent	Concentration, Percent by weight
BaO	(0.004)	Co	(0.00009)
Na ₂ O	(0.007)	Hf	(0.0032)
Ce	(0.0041)	Sc	(0.0008)

The mineralogical composition of SRM 696 was determined by x-ray diffraction studies at the Geological Survey, U.S. Department of the Interior, Reston, Va., (J.W. Hosterman) to be 5% kaolinite, 80% gibbsite, 10% pyrite, and 5% anatase. These results are semiquantitative (to the nearest 5%).

PLANNING, PREPARATION, TESTING, ANALYSIS:

The material for this SRM was mined in Surinam, South America, and was provided by the Aluminum Company of America, Alcoa Technical Center, Pittsburgh, Pa., through the courtesy of H. B. Hartman. It was processed (crushed, ground, sieved, and mixed) at the Colorado School of Mines Research Institute under a contract with the National Bureau of Standards.

Homogeneity testing was performed at NBS by J.S. Maples and T.E. Gills.

Cooperative analyses for certification were performed in the following laboratories:

Aluminum Company of America, Alcoa Center, Pa., R. C. Obbink.

Aluminum Company of Canada, Ltd., Arvida Research Center, Arvida, Quebec, Canada, L. Girolami.

Andrew S. McCreath & Son, Inc., Harrisburg, Pa., F. A. Pennington, Jr., R. F. Eakin, and S. L. Miller. General Refractories Co., U.S. Refractories Division, Research Center, Baltimore, Md., S. Banerjee.

Geological Survey, U.S. Department of the Interior, Reston, Va., H. J. Rose, Jr., and J. W. Hosterman. Kaiser Aluminum and Chemical Corp., Center for Technology, Pleasanton, Calif, H. J. Seim, A. E. McLaughlin, D. F. G. Marten, A. Kermaninejad, R. C. Kinne, J. R. Skarset, J. Boruk, and U. Vogel. National Bureau of Standards, Washington, D.C., R. K. Bell, ASTM-NBS Assistant Research Associate.

National-Southwire Aluminum Co., Hawesville, Ky., N. Robinson and E. Gotzy.

Ormet Corp., Burnside, La., W. L. Brown and A. D. Lafleur.

Reynolds Aluminum Co., Alumina Research Division, Bauxite, Ark., J. B. Ezell, Jr.

University of Kentucky, Institute for Mining and Minerals Research, Center for Energy Research Laboratory, Lexington, Ky., T. V. Rebagay.

The overall coordination of the technical measurements leading to certification were performed under the direction of J. I. Shultz, Research Associate, ASTM-NBS Research Associate Program.

The technical and support aspects involved in the preparation, certification, and issuance of this Standard Reference Material were coordinated through the Office of Standard Reference Materials by R. E. Michaelis and R. Alvarez.

NBS Standard Reference Materials

BAUXITE SERIES September 4, 1979

R. E. Michaelis and R. Alvarez, NBS Office of Standard Reference Materials

and

J. 1. Shultz, ASTM Research Associate

The following table gives the values for four bauxite SRM's that are available in the form of fine powder (<0.08 mm) for use in chemical and instrumental methods of analysis. They are being issued as a culmination of a major Industry-ASTM-NBS cooperative program.

SRM No. Designation	69b Arkansas	696 Surinam	697 Dominican	698 Jamaican
Constituent		Percent b	y Weight	
Al ₂ O ₃	48.8	54.5	45.8	48.2
Fe ₂ O ₃	7.14	8.70	20.0	19.6
SiO ₂	13:43	3.79	6.81	0.69
TiO ₂	1.90	2.64	2.52	2.38
ZrO ₂	0.29	0.14	0.065	0.061
P2O5	0.118	0.050	0.97	0.37
V2O5	0.028	0.072	0.063	0.064
Cr2O3	0.011	0.047	0.100	0.080
CaO	0.13	0.018	0.71	0.62
MgO	0.085	0.012	0.18	0.058
MnO	0.110	0.004	0.41	0.38
ZnO	0.0035	0.0014	0.037	0.029
BaO	(0.008) ^a	(0.004)	(0.015)	(0.008)
Na ₂ O	(0.025)	(0.007)	(0.036)	(0.015)
K ₂ O	0.068	0.009	0.062	0.010
SO3	0.63	0.21	0.13	0.22
Loss on 1gn.	27.2	29.9	22.1	27.3
Ce	(0.024)	(0.0041)	(0.069)	(0.030)
Co	(0.0001)	(0.00009)	(0.0013)	(0.0045)
Hf	(0.0063)	(0.0032)	(0.0014)	(0.0015)
Sc	(0.0008)	(0.0008)	(0.0058)	(0.0051)
Total	(100.0)	(100.1)	(100.1)	(100.1)

^aValues in parenthesis are not certified.

The value listed for a certified constituent is the *present best estimate* of the "true" value based on the results of the analytical program for certification (10-12 laboratories). The individual certificates of analysis list the "estimated uncertainties" associated with the certified values (also listed is a semiquantitative mineralogical composition (±5%) as determined by x-ray diffraction studies at the U.S. Geological Survey).

Inquiries regarding the Bauxite SRM's 69b, 696, 697, and 698, should be directed to the Office of Standard Reference Materials, Chemistry Building, B311, National Bureau of Standards, Washington, D.C. 20234. (301) 921-2045.

> George A. Uriano, Chief Office of Standard Reference Materials

U.S. Department of Commerce Juanita M, Kreps Secretary National Bureau of Standards Ermest Ambler, Director

National Bureau of Standards Certificate of Analysis Standard Reference Material 697

Bauxite (Dominican)

(In Cooperation with the American Society for Testing and Materials)

(All analyses are based on samples dried 2 hours at 140 °C)

This material is in the form of fine powder (<0.08 mm) for use in checking chemical and instrumental methods of analyses.

Constituent	Certified Value ¹ Percent, by weight	Estimated Uncertainty ²
Al ₂ O ₃	45.8	0.2
Fe ₂ O ₃	20.0	.2
SiO ₂	6.81	.07
TiO ₂	2.52	.05
ZrO ₂	0.065	.007
P ₂ O ₅	.97	.06
V2O5	.063	.005
Cr ₂ O ₃	.100	.005
CaO	.71	.03
MgO	.18	.02
MnO	.41	.03
ZnO	.037	.003
K ₂ O	.062	.007
SO3	.13	.03
Loss on Ignition ³	22.1	.2

¹The certified value listed for a constituent is the present best estimate of the "true" value.

²The estimated uncertainty listed for a constituent is based on judgment and represents an evaluation of the combined effects of method imprecision, possible systematic errors among methods, and material variability for samples 1.0 g or more. (No attempt was made to derive exact statistical measures of imprecision because several methods were involved in the determination of most constituents.) Determined by ignifing to constant weight at 1050 °C.

Washington, D.C. 20234 August 24, 1979 George A. Uriano, Chief Office of Standard Reference Materials

ADDITIONAL INFORMATION ON THE COMPOSITION

Elements other than those certified may be present in this material as indicated below. These are not certified but are given as additional information on the composition.

Constituent	Concentration, Percent by weight	Constituent	Concentration, Percent by weight
BaO	(0.015)	Co	(0.0013)
Na ₂ O	(0.036)	Hf	(0.0014)
Ce	(0.069)	Sc	(0.0058)

The mineralogical composition of SRM 697 was determined by x-ray diffraction studies at the Geological Survey, U.S. Department of the Interior, Reston, Va., (J.W. Hosterman) to be 15% kaolinite, 50% gibbsite, 10% bochmite, 20% hematite, and 5% nataset. These results are semiquantitative (to the nearest 5%).

PLANNING, PREPARATION, TESTING, ANALYSIS:

The material for this SRM was mined in the Dominican Republic and was provided by the Aluminum Company of America, Alcoa Technical Center, Pittsburgh, Pa., through the courtesy of H. B. Hartman. It was processed (crushed, ground, sieved, and mixed) at the Colorado School of Mines Research Institute under a contract with the National Bureau of Standards.

Homogeneity testing was performed at NBS by J.S. Maples and T.E. Gills.

Cooperative analyses for certification were performed in the following laboratories:

Aluminum Company of America, Alcoa Center, Pa., R. C. Obbink.

Aluminum Company of Canada, Ltd., Arvida Research Center, Arvida, Quebec, Canada, L. Girolami.

Andrew S. McCreath & Son, Inc., Harrisburg, Pa., F. A. Pennington, Jr., R. F. Eakin, and S. L. Miller. General Refractories Co., U.S. Refractories Division. Research Center. Baltimore. Md., S. Baneriee.

Geological Survey, U.S. Department of the Interior, Reston, Va., H. J. Rose, Jr., and J. W. Hosterman. Kaiser Aluminum and Chemical Corp., Center for Technology, Pleasanton, Calif., H. J. Seim, A. E. McLaughlin, D. F. G. Marten, A. Kermanineiad, R. C. Kinne, J. R. Skarset, J. Boruk, and U. Vogel.

National Bureau of Standards, Washington, D.C., R. K. Bell, ASTM-NBS Assistant Research Associate. National-Southwire Aluminum Co., Hawesville, Ky., N. Robinson and E. Gotzy.

Ormet Corp., Burnside, La., W. L. Brown and A. D. Lafleur.

Reynolds Aluminum Co., Alumina Research Division, Bauxite, Ark., J. B. Ezell, Jr.

University of Kentucky, Institute for Mining and Minerals Research, Center for Energy Research Laboratory, Lexington, Ky., T. V. Rebagay.

The overall coordination of the technical measurements leading to certification were performed under the direction of J. I. Shultz, Research Associate, ASTM-NBS Research Associate Program.

The technical and support aspects involved in the preparation, certification, and issuance of this Standard Reference Material were coordinated through the Office of Standard Reference Materials by R. E. Michaelis and R. Alvarez.

NBS Standard Reference Materials BAUXITE SERIES

September 4, 1979

R. E. Michaelis and R. Alvarez, NBS Office of Standard Reference Materials

and

J. I. Shultz, ASTM Research Associate

The following table gives the values for four bauxite SRM's that are available in the form of fine powder (<0.08 mm) for use in chemical and instrumental methods of analysis. They are being issued as a culmination of a major Industry-ASTM-NBS cooperative program.

SRM No. Designation	69b Arkansas	696 Surinam	697 Dominican	698 Jamaican
Constituent		Percent b	y Weight	
Al ₂ O ₃	48.8	54.5	45.8	48.2
Fe ₂ O ₃	7.14	8.70	20.0	19.6
SiO ₂	13.43	3.79	6.81	0.69
TiO ₂	1.90	2.64	2.52	2.38
ZrO ₂	0.29	0.14	0.065	0.061
P2O5	0.118	0.050	0.97	0.37
V ₂ O ₅	0.028	0.072	0.063	0.064
Cr ₂ O ₃	0.011	0.047	0.100	0.080
CaO	0.13	0.018	0.71	0.62
MgO	0.085	0.012	0.18	0.058
MnO	0.110	0.004	0.41	0.38
ZnO	0.0035	0.0014	0.037	0.029
BaO	(0.008) ^a	(0.004)	(0.015)	(0.008)
Na ₂ O	(0.025)	(0.007)	(0.036)	(0.015)
K ₂ O	0.068	0.009	0.062	0.010
SO3	0.63	0.21	0.13	0.22
Loss on Ign.	27.2	29.9	22.1	27.3
Ce	(0.024)	(0.0041)	(0.069)	(0.030)
Co	(0.0001)	(0.00009)	(0.0013)	(0.0045)
Hf	(0.0063)	(0.0032)	(0.0014)	(0.0015)
Sc	(0.0008)	(0.0008)	(0.0058)	(0.0051)
Total	(100.0)	(100.1)	(100.1)	(100.1)

^aValues in parenthesis are not certified.

The value listed for a certified constituent is the *present best estimate* of the "true" value based on the results of the analytical program for certification (10-12 laboratories). The individual certificates of analysis list the "estimated uncertainties" associated with the certified values (also listed is a semiquantitative mineralogical composition $(\pm 5\%)$ as determined by x-ray diffraction studies at the U.S. Geological Survey).

Inquiries regarding the Bauxite SRM's 69b, 696, 697, and 698, should be directed to the Office of Standard Reference Materials, Chemistry Building, B311, National Bureau of Standards, Washington, D.C. 20234. (301) 921-2045.

George A. Uriano, Chief Office of Standard Reference Materials U.S. Der artment of Commerce Juanita M. Kreps Secretary National Bureau of Standards Ernest Ambler, Director

National Bureau of Standards Certificate of Analysis Standard Reference Material 698 Bauxite (Jamaican)

(In Cooperation with the American Society for Testing and Materials)

(All analyses are based on samples dried 2 hours at 140 °C)

This material is in the form of fine powder (<0.08 mm) for use in checking chemical and instrumental methods of analyses.

Constituent	Certified Value ¹ Percent, by weight	Estimated Uncertainty ²
Al ₂ O ₃	48.2	0.4
Fe ₂ O ₃	19.6	.2
SiO ₂	0.69	.03
TiO ₂	2.38	.07
ZrO ₂	0.061	.009
P ₂ O ₅	.37	.01
V ₂ O ₅	.064	.005
Cr ₂ O ₃	.080	.006
CaO	.62	.02
MgO	.058	.008
MnO	.38	.03
ZnO	.029	.002
K ₂ O	.010	.002
SO3	.22	.03
Loss on Ignition ³	27.3	.2

The certified value listed for a constituent is the present best estimate of the "true" value.

²The estimated uncertainty listed for a constituent is based on judgment and represents an evaluation of the combined effects of method imprecision, possible systematic errors among methods, and material variability for samples 1.0 g or more. (No attempt was made to derive exact statistical measures of imprecision because several methods were involved in the determination of most constituents.) ³Determined by igniting to constant weight at 1050 °C.

Washington, D.C. 20234 August 24, 1979 George A. Uriano, Chief Office of Standard Reference Materials

ADDITIONAL INFORMATION ON THE COMPOSITION

Elements other than those certified may be present in this material as indicated below. These are not certified but are given as additional information on the composition.

Constituent	Concentration, Percent by weight	Constituent	Concentration, Percent by weight
BaO	(0.008)	Co	(0.0045)
Na ₂ O	(0.015)	Hf	(0.0015)
Ce	(0.030)	Sc	(0.0051)

The mineralogical composition of SRM 698 was determined by x-ray diffraction studies at the Geological Survey, U.S. Department of the Interior, Reston, Va., (J.W. Hosterman) to be 75% gibbsite, 20% hematite, and 5% natase. These results are semiquantitative (to the nearest 5%).

PLANNING, PREPARATION, TESTING, ANALYSIS:

The material for this SRM was mined in Jamaica, and was provided by the Reynolds Metals Company, Bauxie, Arkansas, through the courtesy of J. B. Ezell, Jr. It was processed (crushed, ground, sieved, and mixed) at the Colorado School of Mines Research Institute under a contract with the National Bureau of Standards.

Homogeneity testing was performed at NBS by J.S. Maples and T.E. Gills.

Cooperative analyses for certification were performed in the following laboratories:

Aluminum Company of America, Alcoa Center, Pa., R. C. Obbink.

Aluminum Company of Canada, Ltd., Arvida Research Center, Arvida, Quebec, Canada, L. Girolami. Andrew S. McCreath & Son, Inc., Harrisburg, Pa., F. A. Pennington, Jr., R. F. Eakin, and S. L. Miller. General Refractories Co., U.S. Refractories Division, Research Center, Baltimore, Md., S. Banerjee.

Geological Survey, U.S. Department of the Interior, Reston, Va., H. J. Rose, Jr., and J. W. Hosterman. Kaiser Aluminum and Chemical Corp., Center for Technology, Pleasanton, Calif., H. J. Seim, A. E. McLaughlin, D. F. G. Marten, A. Kermaninejad, R. C. Kinne, J. R. Skarset, J. Boruk, and U. Vogel. National Bureau of Standards, Washington, D.C., R. K. Bell, ASTM-NBS Assistant Research Associate. National-Southwire Aluminum Co., Hawesville, Ky., N. Robinson and E. Goty.

Ormet Corp., Burnside, La., W. L. Brown and A. D. Lafleur.

Reynolds Aluminum Co., Alumina Research Division, Bauxite, Ark., J. B. Ezell, Jr.

University of Kentucky, Institute for Mining and Minerals Research, Center for Energy Research Laboratory, Lexington, Ky., T. V. Rebagay.

The overall coordination of the technical measurements leading to certification were performed under the direction of J. I. Shultz, Research Associate, ASTM-NBS Research Associate Program.

The technical and support aspects involved in the preparation, certification, and issuance of this Standard Reference Material were coordinated through the Office of Standard Reference Materials by R. E. Michaelis and R. Alvarez.

NBS Standard Reference Materials BAUXITE SERIES

September 4, 1979

R. E. Michaelis and R. Alvarez, NBS Office of Standard Reference Materials and

J. I. Shultz, ASTM Research Associate

The following table gives the values for four bauxite SRM's that are available in the form of fine powder (<0.08 mm) for use in chemical and instrumental methods of analysis. They are being issued as a culmination of a major Industry-ASTM-NBS cooperative program.

SRM No. Designation	69b Arkansas	696 Surinam	697 Dominican	698 Jamaican
Constituent		Percent b	y Weight	
Al ₂ O ₃	48.8	54.5	45.8	48.2
Fe ₂ O ₃	7.14	8.70	20.0	19.6
SiO ₂	13.43	3.79	6.81	0.69
TiO ₂	1.90	2.64	2.52	2.38
ZrO ₂	0.29	0.14	0.065	0.061
P ₂ O ₅	0.118	0.050	0.97	0.37
V ₂ O ₅	0.028	0.072	0.063	0.064
Cr ₂ O ₃	0.011	0.047	0.100	0.080
CaO	0.13	0.018	0.71	0.62
MgO	0.085	0.012	0.18	0.058
MnO	0.110	0.004	0.41	0.38
ZnO	0.0035	0.0014	0.037	0.029
BaO	(0.008) ^a	(0.004)	(0.015)	(0.008)
Na ₂ O	(0.025)	(0.007)	(0.036)	(0.015)
K ₂ O	0.068	0.009	0.062	0.010
SO3	0.63	0.21	0.13	0.22
Loss on Ign.	27.2	29.9	22.1	27.3
Ce	(0.024)	(0.0041)	(0.069)	(0.030)
Co	(0.0001)	(0.00009)	(0.0013)	(0.0045)
Hf	(0.0063)	(0.0032)	(0.0014)	(0.0015)
Sc	(0.0008)	(0.0008)	(0.0058)	(0.0051)
Total	(100.0)	(100.1)	(100.1)	(100.1)

^aValues in parenthesis are not certified.

The value listed for a certified constituent is the present best estimate of the "true" value based on the results of the analytical program for certification (10-12 laboratories). The individual certificates of analysis list the "estimated uncertainties" associated with the certified values (also listed is a semiquantitative mineralogical composition ($\pm5\%$) as determined by x-ray diffraction studies at the U.S. Geological Survey).

Inquiries regarding the Bauxite SRM's 69b, 696, 697, and 698, should be directed to the Office of Standard Reference Materials, Chemistry Building, B311, National Bureau of Standards, Washington, D.C. 20234. (301) 921-2045.

George A. Uriano, Chief Office of Standard Reference Materials U. S. Department of Commerce Malcolm Baldrige Secretary National Buress of Standards Ernest Ambler, Director

National Bureau of Standards

Certificate of Analysis

Standard Reference Material 1632b

Trace Elements in Coal

(Bituminous)

This Standard Reference Material (SRM) is intended for use in the calibration of apparatus and the evaluation of techniques employed in the analysis of coal or similar materials. SRM 1632b is a bituminous coal with a nominal sulfur content of 1.9%. It is in the form of a fine powder (-60 mesh).

<u>Certified Values of Constituent Elements</u>: The certified values for the constituent elements are given in Table 1. The certified values are based on measurements using proven techniques and methods. Noncertified values are given in Table 2 and are provided for information only. These values are based on measurements made using a single technique or method. While no reason exists to suspect systematic bias in the information values, no attempt was made to determine if such a bias exists that is attributable to the technique and/or method used. A list of analytical techniques and methods used for the different analyses is given in Table 3. As part of its update certification program, NBS will periodically update many of these values to certification status.

Expiration of Certification: The certification of SRM 1632b will be valid up to 5 years from the purchase date. Should any of the certified constituents become invalid prior to that date, purchasers will be notified by NBS.

Use: This material should be vacuum dried at ambient temperature for 24 hours prior to use. The certified concentrations are reported on a "dry-weight" basis, thus the concentration determined on undried samples should be adjusted for the moisture content of the sample. Typical moisture loss using the drying procedure stated above is 1.3%.

A minimum sample size of 250 mg of the dried material is required for the certified values to be valid.

This SRM should be kept in its original bottle. It should not be exposed to intense source of radiation, including ultraviolet lamps or sunlight.

The statistical analysis of the certification data was performed by R.C. Paule of the National Measurement Laboratory.

The technical and support aspects involved in the preparation, certification, and issuance of this Standard Reference Material were coordinated through the Office of Standard Reference Materials by T.E. Gills.

Gaithersburg, MD 20899 June 20, 1985 Stanley D. Rasberry, Chief Office of Standard Reference Materials

Source and Preparation of Material: The coal for this SRM was obtained from the Humphrey No. 7 mine and coal preparation plant of the Consolidation Coal Company, Christopher Coal Company Division, Osage, West Virginia. This mine produces bituminous coal with a sulfur content of 1.8-1.9 percent (dry basis). This coal was obtained from an underground mine that recovers coal from the Pittsburgh seam, which is considered the single most valuable and extensive coal seam in the United States.

Approximately 900 kg of the coal for SRM 1632b was oven dried prior to processing, in accordance with procedures outlined in ASTM D2013. The coal was reduced in size to -60 mesh and sizeved prior to blending. The coal was then blended in a stainless steel cone blender (approximate capacity 0.85 cubic meter). After blending the coal was packaged in polyethylene-lined aluminum cans and was subsequently repackaged in fifty gram units.

Analysis

<u>Major, Minor, and Trace Constituents:</u> In general, the major, minor, and trace constituents were certified using two or more independent methods of analysis or two or more different laboratories. For those constituents that were determined using a single method, technique, or laboratory, the values are given for information only. (See Table 3).

Calorific Value: The calorific value was determined using measurements made In an isoperibol calorimeter, an isothermal calorimeter, and an adiabatic calorimeter at two different laboratories.

<u>Moisture, Ash, and Volatile Matter:</u> The moisture, ash, and volatile matter values were determined on measurements made using the standard ASTM methods, D3173, D3174, and D3175, respectively. In addition, commercial instruments commonly used for the determination of the parameters provided additional values.

Page 2 SRM 1632b

Table 1. Certified V	alues of Constituen	Elements
----------------------	---------------------	----------

Major Constituents		Minor Constituents				
Elements	Content Wt. Percent	Elements	Content Wt. Percent			
Carbon (Total)	78.11 ± 0.37^{n}	Aluminum	0.855 ± 0.019			
Hydrogen	5.07 ± 0.06	Calcium	0.204 ± 0.006			
Nitrogen	1.56 ± 0.07	Iron	0.759 ± 0.045			
Sulfur	1.89 ± 0.06	Magnesium	0.0383 ± 0.0008			
Volatile matter	35.4 ± 1.1	Potassium	0.0748 ± 0.0028			
		Sodium	0.0515 ± 0.0011			
		Titanium	0.0454 ± 0.0017			

Trace Constituents

	Content		Content
Element	µg/g	Element	µg/g
Arsenic	3.72 ± 0.09	Manganese	12.4 ±1.0
Barium	67.5 ± 2.1	Nickel	6.10 ±0.27
Cadmium	0.0573 ± 0.0027	Rubidium	5.05 ± 0.11
Cobalt	2.29 ± 0.17	Selenium	1.29 ±0.11
Copper	6.28 ± 0.30	Thorium	1.342 ± 0.036
Lead	3.67 ± 0.26	Uranium	0.436 ± 0.012
		Zinc	11.89 ±0.78

Calorific Value ^{b, c}	Ash, wt.%
$14005 \pm 35 \text{ Btu/lb} (32.57 \pm 0.08 \text{ MJ kg}^{-1})$	6.79±0.16

⁶ The listed ± uncertainties for carbon, hydrogen, volatile matter, and calorifie value are two standard deviations of the certified value. The listed ± uncertainties for all other constituents are two standard deviations for the corified values and include an allowance for minor sample heterogeneity. The observed sample variability was generally less than two percent of the constituent value.

tor minor sample necrogeneity. The opervice sample varianous y was generally test nan two percent of the constituent value. ⁸The calorific value (MJ kg⁻¹) may decrease upon aging or normal oxidiation of the coals. MBS will continue to monitor this value and report any substantive change in the certified calorific value to the purchaser. The reference date for the calorific value is May 1983. ⁵The calorific value is determined as HHV2 (Higher Heating Value-Moisture Free).

Table 2. Noncertified	Values for	Constituent Elements	

Trace Constituents

Element	Content µg/g	Element	Content µg/g
Antimony	(0.24)	Lithium	(10)
Bromine	(17)	Molybdenum	(0.9)
Cerium	(9)	Samarium	(0.87)
Cesium	(0.44)	Scandium	(1.9)
Chlorine	(1260)	Silicon, wt %	(1.4)
Chromium	(11)	Strontium	(102)
Europium	(0.17)	Tungsten	(0.48)
Hafnium	(0.43)	Vanadium	(14)
Lanthanum	(5.1)		

Page 3 SRM 1632b

Method/ Element	A	в	с	D	E	F	G	н	ı	J	к	L	м
Al			•	•			1					•	
As		-	•		•								1
Ash Content					1		• 2		•			1	
Ba			•			1	1					-	-
Br			•				1						
C (Total)							• 5		•		•		
Ca	_	•	•	•								•	
Cal Val							<u> </u>	-	•	•			
Cd	•	•			1		-			-		-	-
Ce				1									
CI			•		1		1	<u> </u>		<u> </u>			
Co			•										
Cr			•				-						•
Cs			•			· · ·							-
Cu					•								•
Eu			•								-		-
Fe	•		•									•	
н	-					-	• 5	•	•			-	-
Hſ			•				• 5		-				
K		•	•	•								•	
La		-	•	•								-	
La				•									
	•	•	•	-									-
Mg		•		•									-
Mn			•	•									
Mo		-	•										
N							• 6						<u> </u>
Na			•	•	<u> </u>				L	<u> </u>		<u> </u>	-
Ni	•					<u> </u>							•
РЪ	•	•											
Rb		۰	•	•									
S						•	• 4		•			•	
Sb			•										
Sc			•										
Se			•		÷								
Si			•									•	
Sm			•										
Sr			•										
Th		•	•			1							
Ti			•	•								•	٠
υ		•	•										
v			•			1			1				
Volatile Matter						-	• 3		•				
W						1							
	•	•	•		1				-		-		-

Table 3. Analytical Techniques and Methods Used for the Characterization of SRM 1632b

Page 4 SRM 1632b

Analytical Methods

- A. Atomic absorption spectrometry
- B. Isotope dilution mass spectrometry
- C. Instrumental neutron activation analysis
- D. Flame emission spectrometry
- E. Flameless atomic absorption spectrometry F. Ion chromatography
- G. ASTM Methods: (1)D3173, (2)D3174, (3)D3175, (4)D3177, (5)D3178, (6)D3179
- H. Combustion coulometry
- 1. Commercial coal analyzers: moisture, ash, sulfur, Btu, volatile matter, carbon, hydrogen, nitrogen
- J. Commercial calorimeter
- K. Gas chromatography
- L. X-ray fluorescence
- M. Inductively coupled plasma emission spectrometry

Analysts

NBS

E.S. Beary W.A. Bowman K.A. Brletic T.A. Butler J.D. Fassett J.W. Gramlich R.R. Greenberg W.F. Koch L.A. Machlan A. Marlow D.M. Mo T.J. Murphy P.J. Paulsen P. Pella T.C. Rains T.A. Rush T.A. Sleater S.F. Stone R. Zeisler

Laboratories

E. Huffman Huffman Laboratories Wheat Ridge, Colorado 80034

J.B. Bodkin College Earth & Mineral Science The Pennsylvania State University University Park, Pa. 16802

R. Peck Dickerson Laboratory El Paso, Texas 79912

Page 5 SRM 1632b U.S. Department of Commerce Juanita M. Kreps Secretary National Burent of Standards Errest Amblet, Director

National Bureau of Standards Certificate of Analysis Standard Reference Material 1633a

Trace Elements in Coal Fly Ash

This Standard Reference Material is intended for use in the calibration of apparatus and methods used in analyses of coal fly ash and other materials with similar matrices for trace elements. This material should be dried to a constant weight before using. Recommended procedures for drying are: (1) drying for 24 hours at ambient temperature using a cold trap at or below -50 °C and a pressure not greater than 30 Pa (0.2 mm Hg); (2) drying in a desiccator over P2 0.5 or Mg(C104)). When not in use, the material should be kept in a tightly sealed bottle. Long term (>3 years) stability of this SRM has not been rigorously established. NBS will continue to monitor this material and any substantive change will be reported to purchasers.

The certified values given below are based on at least a 250-mg sample of the dried material, the minimum amount that should be used for analysis.

Calcium ^{a, b, e}	_%_		- 1-
Iron ^{a,b,c} Potassium ^{a,b,e} Magnesium ^{a,b} Sodium ^{a,c} Silicon ^{c,h} Arsenie ^{a,c} Cadmium ^{b,c,d} ,g Chromium ^{b,c,d} ,g Copper ^{a,b,c}	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	Mercury ^{a, e} Nickel ^{a, b, d, e} Lead ^{b, d, e} Rubidium ^{a, b, c, e} Selenium ^{a, c, g} Strontium ^{b, c} Tholium ^{b, e} Thalium ^{b, g} Uranium ^b Zine ^{a, b, d} , e, f	$\begin{array}{cccc} & \underline{\mu g/g} \\ 0.16 \pm & 0.01 \\ 127 \pm & 4 \\ 72.4 \pm & 0.4 \\ 131 \pm & 2 \\ 10.3 \pm & 0.6 \\ 830 \pm & 30 \\ 24.7 \pm & 0.3 \\ 5.7 \pm & 0.2 \\ 10.2 \pm & 0.1 \\ 220 \pm & 10 \end{array}$

1. Methods of Analysis: ^aAtomic Absorption Spectrophotometry or Flame Emission Spectrometry ^bIsotope Dilution Mass Spectrometry

^cX-ray Fluorescence Spectrometry Inductively Coupled Plasma Emission Spectrometry ^gIsotope Dilution Spark Source Mass Spectrometry ^gGravimetry

2. The estimated uncertainty is based on judgment and represents an evaluation of the combined effects of method imprecision, possible systematic errors among methods, and maternal variability for samples of 250-mg or more. (No attempt was made to derive exact statistical measures of imprecision becaus several methods were involved in the determination of most constituents.)

Washington, D.C. 20234 April 18, 1979

^c Neutron Activation ^dPolarography

> George A. Uriano, Chief Office of Standard Reference Materials

The overall direction and coordination of the analytical measurements leading to certification were performed in the Center for Analytical Chemistry under the chairmanship of L. A. Machlan.

The technical and support aspects involved in the preparation, certification, and issuance of this Standard Reference Material were coordinated through the Office of Standard Reference Materials by W. P. Reed.

PREPARATION, TESTING, AND ANALYSIS

This fly ash material was supplied by a coal fired power plant and is a product of Pennsylvania and West Virginia coals. It was selected as a typical fly ash and is not intended as a fly ash from a specific coal or combustion process. The material was sieved through a # 170 sieve and blended for 2 hours in a Vee blender. The material was then removed and placed in a series of bulk containers from which specific samples were taken.

Twelve bottles were selected for homogeneity tests. These samples were analyzed for cobalt, chromium, europium, iron, scandium, and thorium by nondestructive neutron activation analysis. The observed standard deviations for both 50 and 250 mg samples were consistent with counting statistics indicating that the fly ash is homogeneous within ± 5% (relative) based on these elements. The homogeneity analyses were performed in the NBS Center for Analytical Chemistry by R. R. Greenburg and J. S. Maples. Analyses for the various elements were made in the NBS Center for Analytical Chemistry by the following analysts: J. R. Baldwin, T. J. Brady, E. R. Deardorff, M. G. Dias, L. P. Dunstan, M. S. Epstein, E. L. Garner, T. E. Gills, C. A. Grabnegger, J. W. Gramlich, R. R. Greenberg, S. Hanamura, S. H. Harrison, E. F. Heald, H. M. Kingston, E. C. Kuehner, L. A. Machlan, E. J. Maienthal, J. S. Maples, J. D. Messman, L. J. Moore, P. J. Paulsen, P. A. Pella, T. C. Rains, K. J. R. Rosman, T. A. Rush, P. A. Sleeth, and R. L. Waters, Jr.

The following values are <u>not certified</u> because they are based on a non-reference method, or were not determined by two or more independent methods. They are included for information only.

Element	Content	Element	Content
	_%		<u>µg/g</u>
Aluminum	14	Europium	4
Barium	0.15	Gallium	58
Titanium	0.8	Hafnium	7.6
	<u>µg/g</u>	Manganese	190
Beryllium	12	Molybdenum	29
Cerium	180	Antimony	7
Cobalt	46	Scandium	40
Cesium	11	Vanadium	300

U.S. Department of Commerce Juanita M, Kreps Secretary

National Bureau of Standards Ernest Ambler, Director

National Bureau of Standards Certificate of Analysis Standard Reference Material 1635 Trace Elements in Coal (Subbituminous)

This Standard Reference Material is intended for use in the calibration of apparatus and the evaluation of techniques employed in the trace element analysis of coal and similar materials. The material should be dried without heat to constant weight before use.

The recommended procedures for drying are either vacuum drying at ambient temperature for 24 hours, or freeze drying in which the drying chamber is kept at room temperature. The moisture content of this material is approximately 20%. Because of this moisture level, it is recommended that small individual samples be dried immediately before use. Drying of large samples may result in a violent discharge of water vapor and resultant loss of sample. When not in use, the material should be kept in a tightly sealed bottle and stored in a cool, dark place. Long-term (>1 year) stability of this SRM has not been rigorously established. NBS will continue to monitor this material and sy substantive change will be reported to purchasers.

The certified values given below are based on at least a 250-mg sample of the dried material, the minimum amount that should be used for analysis.

Element ¹	Content, $\mu g/g^2$	Element ¹	Content, $\mu g/g^2$
Arsenic ^{a, b}	0.42 ± 0.15	Thorium ^{c, e}	0.62 ± 0.04
Cadmium ^{c, d, e}	0.03 ± 0.01	Uranium ^c	0.24 ± 0.02
Chromium ^{c, e}	2.5 ± 0.3	Vanadium ^{e, g}	5.2 ± 0.5
Copper ^{a, c, c}	3.6 ± 0.3	Zinc ^{c, d}	4.7 ± 0.5
Lead ^{c,d}	1.9 ± 0.2		
Manganese ^{a, c}	21.4 ± 1.5	Element	Wt. % ²
Nickel ^{c,d}	1.74 ± 0.10	Iron ^{c, d, e, f}	0.239 ± 0.005
Selenium ^{a, c}	0.9 ± 0.3	Sulfur ^{f, h}	0.33 ± 0.03

1. Methods of Analysis:

- a. Atomic Absorption Spectrometry
- b. Photon Activationc. Isotope Dilution Mass Spectrometry
- e. Neutron Activation f. Spectrophotometry

g. Flame Emission Spectrometry

George A. Uriano

Office of Standard Reference Materials

- d. Polarography
- h. Gravimetry

2. The estimated uncertainty is based on judgment and represents an evaluation of the combined effects of method imprecision, possible systematic errors among methods, and material variability for samples of 250-mg or more. (No attempt was made to derive exact statistical measures of imprecision because several methods were involved in the determination of most constituents.)

The overall direction and coordination of the analytical measurements leading to this certificate were performed in the Analytical Chemistry Division under the chairmanship of L. J. Moore.

The technical and support aspects involved in the preparation, certification, and issuance of this Standard Reference Material were coordinated through the Office of Standard Reference Materials by W. P. Reed.

Washington, D.C. 20234 August 22, 1979 (Revision of Certificate dated 1-23-78)

(over)

118

PREPARATION, TESTING, and ANALYSIS

This material was prepared from one lot of subbituminous coal from the Eagle Mine of The Imperial Coal Company, Eric, Colorado. The material was ground and sieved thru a No. 65 (230 μ m) sieve by the Colorado School of Mines Research Institute. The material was then blended in a V-type blender.

Samples for homogeneity testing were taken from the top, middle, and bottom of three bulk containers of coal, and analyzed by neutron activation analysis for sodium, scandium, chromium, iron, cobalt, lanthanum, cerium, and thorium. Replicate analyses of 250-mg samples indicated a homogeneity for these elements of $\pm 2.5\%$ (relative) except for chromium, which was homogeneous within counting statistics of $\pm 6\%$. The homogeneity measurements were performed in the NBS Analytical Chemistry Division by R. R. Greenberg. Certification analyses for the various elements were made in the NBS Analytical Chemistry Division by T. J. Brady, B. I. Diamondstone, L. P. Dunstan, M. S. Epstein, M. Gallorini, E. L. Garner, T. E. Gills, J. W. Gramlich, R. R. Greenberg, S. H. Harrison, G. M. Hyde, G. J. Lutz, L. A. Machlan, E. J. Maienthal, J. D. Messman, T. J. Murphy, and T. C. Rains.

The following values are not certified because they were based on a non-reference method, or were not determined by two or more independent methods. They are included for information only.

Content

(0.14)
(3.6)
(0.65)
(0.06)
(1.05)
(0.29)
(0.63)
(wt. %)
(0.32)
(0.24)
(0.02)

U. S. Department of Commerce Malcolm Baldrige Secretary National Bureau of Standards Fringst Ambler, Director

National Bureau of Standards

Certificate of Analysis

Standard Reference Materials 2682, 2683, 2684 and 2685

Sulfur in Coal

These Standard Reference Materials (SRM's) are intended primarily for use as analytical standards for the determination of sulfur in coal. In addition to sulfur they are certified for their calorific value (MJ·Kg⁻¹) and ash content. SRM's 2682-2685 each consists of a 50-g bottle of a different coal composition. Each material was ground to pass a 60-mesh sieve and homogenized. The certification of the materials for sulfur is based on at least a 250-mg sample of the dried material, the minimum amount that should be used for analysis (see drying instructions). The calorific values were determined by procedures recommended in standard ASTM methods (see references in Table 1). The certification data for the four different coals are given in Table 1 along with methods used for certification. Noncertified values for major and minor elements are given in Table 2. These values are provided for information only.

Notice to Users: These SRM's are sold individually rather than in sets; however, only one Certificate of Analysis is provided. Therefore, the user must be careful to use the data specific to the SRM being used.

The uncertainty of a certified value is expressed as two times the standard error and includes observed variability within and between measurement methods and any observed material heterogeneity. For the certified heating values the uncertainty also includes additional allowances for possible limited sample degradation due to aging or normal oxidation.

Certification analyses were performed by W.R. Kelly, W.F. Koch, P.J. Paulsen, and J.W. Stolz of the Inorganic Analytical Research Division and J.C. Colbert and D.R. Kirklin of the Chemical Thermodynamics Division.

Analyses for supplemental information were performed in the Inorganic Analytical Research Division by R. Fleming, R. Greenberg, and R.M.Lindstrom.

The statistical analysis of the certification data was performed by R.C. Paule of the National Measurement Laboratory.

The overall direction and coordination of the technical measurements leading to certification were performed under the chairmanship of E.L. Garner, Chief of the Inorganic Analytical Research Division.

The technical and support aspects involved in the preparation, certification, and issuance of these Standard Reference Materials were coordinated through the Office of Standard Reference Materials by T.E. Gills.

February 7, 1983 (Revision of Certificate dated 12-14-82)

(over)

George A. Uriano, Chief Office of Standard Reference Materials

Table I									
Certified	Values	for	SRM's	2682,	2683,	2684,	and	2685	

SRM No.	Coal Type	Sulfur ^{1,2,3} Wt. %	Furnace ⁴ Ash Wt. %	HHV2 ^{5,6} MJ·Kg ⁻¹ (BTU·Ib ⁻¹)
2682	Sub-bituminous	0.47 ± 0.03	6.37 ± 0.18	27.45 ± 0.56 (11800 ± 240)
2683	Bituminous	1.85 ± 0.06	6.85 ± 0.02	32.70 ± 0.14 (14060 ± 60)
2684	Bituminous	3.00 ± 0.13	11.09 ± 0.18	29.68 ± 0.47 (12760 ± 200)
2685	Bituminous	4.62 ± 0.18	16.53 ± 0.15	28.15±0.42(12100±180)

ASTM D3177 Standard Test Method for Total Sulfur in the Analysis Sample of Coal and Coke

²Ion Chromatography with Bomb Combustion

³Thermal Ionization Mass Spectrometry, Sealed Glass Tube Digestion

ASTM D3174, Standard Test Method for Ash in the Analysis Sample of Coal and Coke

⁵ASTM D2015 Standard Test Method for Gross Calorific Value of Solid Fuel by the Adiabatic Bomb Calorimeter

"ASTM D3180 Standard Test Method for Calculating Coal and Coke Analyses from As-Determined to Different Bases

HHV2-(Higher Heating Value - Moisture Free)

Note: The calorific values $(MJKg^{-1})$ may decrease upon the aging or normal oxidation of the coals. NBS will continue to monitor these calorific values and report any substantive change to the purchaser. The uncertainty of the heating value includes an additional allowance of 0.12 MJKg^{-1} for possible sample degradation. The reference data for the calorific data is October 1992.

PREPARATION AND TESTING

Approximately one ton of coal was obtained from each of four different coal mine locations. All coals were oven dried prior to processing in accordance with procedures outlined in ASTM D2013. At least 1000 pounds of each of the four coals were reduced in size to -60 mesh and screened prior to blending. Each of the -60 mesh coals was blended in a stainless steel cone blender (approximate capacity 0.85 cubic meter). The coals were then packaged into individual 50-g bottled units. Homogeneity testing was done on the bulk materials and 50-g bottled units. The homogeneity analyses were performed using x-ray flucorescence analysis. Replicate analyses indicated the material variability for sulfur to be within ± 2% (relative) for all four SRM's.

The homogeneity studies were performed by T.E. Gills and M. Watson of the Office of Standard Reference Materials and P.A. Pella of the Gas and Particulate Science Division.

ANALYSIS

Sulfur: The certified sulfur content is based upon the results of 3 independent methods of analysis: ion chromatography, gravimetry, and thermal ionization mass spectrometry. A greement with the certified values was found using 2 additional independent techniques, prompt-gamma activation analysis and a combustion IR technique.

Calorific Value (MJ·Kg⁻¹) and Ash Content: The certified values for the calorific values and ash contents were determined using measurements made in an adiabatic bomb calorimeter of the type used in commercial laboratories. This calorimeter is capable of reproducing determinations on benzoic acid to a precision of 0.07% (relative). This statement of precision was arrived at by averaging 5 calibrations made on the calorimeter using a benzoic acid standard that is traccable to the NBS SRM 39i, Benzoic Acid.

Major and Minor Elements: Analyses for major and minor elements were performed by thermal neutron activation analysis and neutron capture gamma-ray activation analysis. These values are not certified but are to be used for information only.

STABILITY

The long-term physical and chemical stability of these SRM's has not been rigorously established. However, NBS recommends that the material be stored in the tightly sealed bottle away from sunlight and intense sources of radiation. NBS will continue to monitor these materials and any substantive change in their certification will be reported to the purchaser.

INSTRUCTIONS FOR DRYING

The certification of sulfur in these SRM's is based upon a properly dried sample. The recommended procedures for drying are vacuum drying at ambient temperature for 24 hours or oven drying for 24 hours at 105 °C. Typical moisture loss using the recommended methods for drying are the following: SRM 2682, 18%; SRM 2683, 1.4%; SRM 2684, 3.6%; and SRM 2685, 1.8%.

SUPPLEMENTAL INFORMATION

The values listed below are based on measurements made using a single method or technique and are given for *information* only. While no reason exists to suspect systematic bias in these numbers, no attempt was made to determine if such bias attributable to the methods exists.

The analyses of SRM's 2682-2685 for major and minor elements were made using NBS SRM's 1632a and 1635, Trace Elements in Coal, as controls.

Table 2

Inorganic Constituents in SRM's 2682, 2683, 2684, and 2685

Mean Concentrations (µg/g) Unless Noted

Element/SR M	2682	2683	2684	2685
AI %	0.46	0.86	1.1	1.7
As	1.0	3.6	3.9	12
В	39	67	114	109
Ba	382	71	41	105
Br	3.7	17	11	5.6
С%	75	79	68	66
Ca %	1.1	0.20	0.44	0.52
Ce	10	9	12	18
Co	1.7	2.2	3.9	4.6
Cr	15	11	17	22
Cs	<0.1	0.4	1.2	1.3
Eu	0.17	0.18	0.23	0.36
Fe %	0.24	0.76	1.5	2.9
Н %	4.7	5.0	4.8	4.6
Hſ	0.60	0.42	0.57	0.91
К %	0.01	0.08	0.20	0.26
La	5.2	5.1	6.7	10
Mg %	0.2	0.05	0.08	0.1
'Mn	26	13	36	41
N %	0.8	1.6	1.6	1.1
Na %	0.10	0.05	0.03	0.08
Rb	<2	5.3	15	17
Sb	0.19	0.28	0.35	0.36
Sc	1.5	1.9	2.7	3.7
Se	0.91	1.2	1.9	1.9
Sm	0.78	0.86	1.1	1.7
Th	1.5	1.4	2.0	2.7
Ti %	0.05	0.04	0.06	0.09
U	0.52	0.42	0.90	0.95
v	15	14	22	31
W	1.8	0.48	0.56	1.2
Zn	8.6	9.5	110	17

Periodical

Journal of Research—The Journal of Research of the National Bureau of Standards reports NBS research and development in those disciplines of the physical and engineering sciences in which the Bureau is active. These include physics, chemistry, engineering, mathematics, and computer sciences. Papers cover a broad range of subjects, with major emphasis on measurement methodology and the basic technology underlying standardization. Also included from time to time are survey articles on topics closely related to the Bureau's technical and scientific programs. Issued six times a year.

Nonperiodicals

Monographs—Major contributions to the technical literature on various subjects related to the Bureau's scientific and technical activities.

Handbooks—Recommended codes of engineering and industrial practice (including safety codes) developed in cooperation with interested industries, professional organizations, and regulatory bodies.

Special Publications—Include proceedings of conferences sponsored by NBS, NBS annual reports, and other special publications appropriate to this grouping such as wall charts, pocket cards, and bibliographies.

Applied Mathematics Series—Mathematical tables, manuals, and studies of special interest to physicists, engineers, chemists, biologists, mathematicians, computer programmers, and others engaged in scientific and technical work.

National Standard Reference Data Series—Provides quantitative data on the physical and chemical properties of materials, compiled from the world's literature and critically evaluated. Developed under a worldwide program coordinated by NBS under the authority of the National Standard Data Act (Public Law 90-396). NOTE: The Journal of Physical and Chemical Reference Data (JPCRD) is published quarterly for NBS by the American Chemical Society (ACS) and the American Institute of Physics (AIP). Subscriptions, reprints, and supplements are available from ACS, 1155 Sixteenth St., NW, Washington, DC 20056.

Building Science Series—Disseminates technical information developed at the Bureau on building materials, components, systems, and whole structures. The series presents research results, test methods, and performance criteria related to the structural and environmental functions and the durability and safety characteristics of building elements and systems.

Technical Notes—Studies or reports which are complete in themselves but restrictive in their treatment of a subject. Analogous to monographs but not so comprehensive in scope or definitive in treatment of the subject area. Often serve as a vehicle for final reports of work performed at NBS under the sponsorship of other government agencies.

Voluntary Product Standards—Developed under procedures published by the Department of Commerce in Part 10, Title 15, of the Code of Federal Regulations. The standards establish nationally recognized requirements for products, and provide all concerned interests with a basis for common understanding of the characteristics of the products. NBS administers this program as a supplement to the activities of the private sector standardizing organizations.

Consumer Information Series—Practical information, based on NBS research and experience, covering areas of interest to the consumer. Easily understandable language and illustrations provide useful background knowledge for shopping in today's technological marketplace.

Order the above NBS publications from: Superintendent of Documents, Government Printing Office, Washington, DC 20402.

Order the following NBS publications—FIPS and NBSIR's—from the National Technical Information Service, Springfield, VA 22161.

Federal Information Processing Standards Publications (FIPS PUB)—Publications in this series collectively constitute the Federal Information Processing Standards Register. The Register serves as the official source of information in the Federal Government regarding standards issued by NBS pursuant to the Federal Property and Administrative Services Act of 1949 as amended, Public Law 89-306 (79 Stat. 1127), and as implemented by Executive Order 11717 (38 FR 12315, dated May 11, 1973) and Part 6 of Title 15 CFR (Code of Federal Regulations).

NBS Interagency Reports (NBSIR)—A special series of interim or final reports on work performed by NBS for outside sponsors (both government and non-government). In general, initial distribution is handled by the sponsor; public distribution is by the National Technical Information Service, Springfield, VA 22161, in paper copy or microfiche form.

U.S. Department of Commerce National Bureau of Standards Gaithersburg, MD 20899

Official Business Penalty for Private Use \$300