

NBS PUBLICATIONS

NBS SPECIAL PUBLICATION 260-74

U.S. DEPARTMENT OF COMMERCE/National Bureau of Standards

Standard Reference Materials:

PREPARATION AND CHARACTERIZATION OF K-411 AND K-412 MINERAL GLASSES FOR MICROANALYSIS: SRM 470

NATIONAL BUREAU OF STANDARDS

The National Bureau of Standards¹ was established by an act of Congress on March 3, 1901. The Bureau's overall goal is to strengthen and advance the Nation's science and technology and facilitate their effective application for public benefit. To this end, the Bureau conducts research and provides: (1) a basis for the Nation's physical measurement system, (2) scientific and technological services for industry and government, (3) a technical basis for equity in trade, and (4) technical services to promote public safety. The Bureau's technical work is performed by the National Measurement Laboratory, the National Engineering Laboratory, and the Institute for Computer Sciences and Technology.

THE NATIONAL MEASUREMENT LABORATORY provides the national system of physical and chemical and materials measurement; coordinates the system with measurement systems of other nations and furnishes essential services leading to accurate and uniform physical and chemical measurement throughout the Nation's scientific community, industry, and commerce; conducts materials research leading to improved methods of measurement, standards, and data on the properties of materials needed by industry, commerce, educational institutions, and Government; provides advisory and research services to other Government agencies; develops, produces, and distributes Standard Reference Materials; and provides calibration services. The Laboratory consists of the following centers:

Absolute Physical Quantities² — Radiation Research — Thermodynamics and Molecular Science — Analytical Chemistry — Materials Science.

THE NATIONAL ENGINEERING LABORATORY provides technology and technical services to the public and private sectors to address national needs and to solve national problems; conducts research in engineering and applied science in support of these efforts; builds and maintains competence in the necessary disciplines required to carry out this research and technical service; develops engineering data and measurement capabilities; provides engineering measurement traceability services; develops test methods and proposes engineering standards and code changes; develops and proposes new engineering practices; and develops and improves mechanisms to transfer results of its research to the ultimate user. The Laboratory consists of the following centers:

Applied Mathematics — Electronics and Electrical Engineering² — Mechanical Engineering and Process Technology² — Building Technology — Fire Research — Consumer Product Technology — Field Methods.

THE INSTITUTE FOR COMPUTER SCIENCES AND TECHNOLOGY conducts research and provides scientific and technical services to aid Federal agencies in the selection, acquisition, application, and use of computer technology to improve effectiveness and economy in Government operations in accordance with Public Law 89-306 (40 U.S.C. 759), relevant Executive Orders, and other directives; carries out this mission by managing the Federal Information Processing Standards Program, developing Federal ADP standards guidelines, and managing Federal participation in ADP voluntary standardization activities; provides scientific and technological advisory services and assistance to Federal agencies; and provides the technical foundation for computer-related policies of the Federal Government. The Institute consists of the following centers:

Programming Science and Technology — Computer Systems Engineering.

¹Headquarters and Laboratories at Gaithersburg, MD, unless otherwise noted; mailing address Washington, DC 20234. *Some divisions within the center are located at Boulder, CO 80303. Standard Reference Materials:

PREPARATION AND CHARACTERIZATION OF K-411 AND K-412 MINERAL GLASSES FOR MICROANALYSIS: SRM 470

NE print publication

R. B. Marinenko

National Measurement Laboratory National Bureau of Standards Washington, DC 20234

Issued April 1982

U.S. DEPARTMENT OF COMMERCE, Malcolm Baldrige, Secretary
NATIONAL BUREAU OF STANDARDS, Ernest Ambler, Director

MATIONAL BURNAU OF STANDARDS

JUL 7 1982

MATTE TO

Library of Congress Catalog Card Number: 82-600511

National Bureau of Standards Special Publication 260-74
Nat. Bur. Stand. (U.S.), Spec. Publ. 260-74, 25 pages (Apr. 1982)
CODEN: XNBSAV

PREFACE

Standard Reference Materials (SRM's) as defined by the National Bureau of Standards are well-characterized materials produced in quantity and certified for one or more physical or chemical properties. They are used to assure the accuracy and compatibility of measurements throughout the Nation. SRM's are widely used as primary standards in many diverse fields in science, industry, and technology, both within the United States and throughout the world. They are also used extensively in the fields of environmental and clinical analysis. In many applications, traceability of quality control and measurement processes to the national measurement system are carried out through the mechanism and use of SRM's. many of the Nation's scientists and technologists it is therefore of more than passing interest to know the details of the measurements made at NBS in arriving at the certified values of the SRM's produced. An NBS series of papers, of which this publication is a member, called the NBS Special Publication - 260 Series, is reserved for this purpose.

This 260 Series is dedicated to the dissemination of information on different phases of the preparation, measurement, certification and use of NBS-SRM's. In general, much more detail will be found in these papers than is generally allowed, or desirable, in scientific journal articles. This enables the user to assess the validity and accuracy of the measurement processes employed, to judge the statistical analysis, and to learn details of techniques and methods utilized for work entailing the greatest care and accuracy. These papers also should provide sufficient additional information not found on the certificate so that new applications in diverse fields not foreseen at the time the SRM was originally issued will be sought and found.

Inquiries concerning the technical content of this paper should be directed to the author. Other questions concerned with the availability, delivery, price, and so forth will receive prompt attention from:

Office of Standard Reference Materials National Bureau of Standards Washington, D.C. 20234

> George A. Uriano, Chief Office of Standard Reference Materials

OTHER NBS PUBLICATIONS IN THIS SERIES

- Catalog of NBS Standard Reference Materials (1981-83 edition), R. W. Seward, ed., NBS Spec. Publ. 260 (November 1981).
- Michaelis, R. E., and Wyman, L. L. Standard Reference Materials: Preparation of White Cast Iron Spectrochemical Standards. NBS Misc. Publ. 260-1 (June 1964). COM74-11061**
- Michaelis, R. E., Wyman, L. L., and Flitsch, R., Standard Reference Materials: Preparation of NBS Copper-Base Spectrochemical Standards. NBS Misc. Publ. 260-2 (October 1964). COM74-11063**
- Michaelis, R. E., Yakowitz, H., and Moore, G. A., Standard Reference Materials: Metallographic Characterization of an NBS Spectrometric Low-Alloy Steel Standard. NBS Misc. Publ. 260-3 (October 1964). COM74-11060**
- Hague, J. L. Mears, T. W., and Michaelis, R. E., Standard Reference Materials: Sources of Information, NBS Misc. Publ. 260-4 (February 1965), COM74-11059
- Alvarez, R., and Flitsch R., Standard Reference Materials: Accuracy of Solution X-Ray Spectrometric Analysis of Copper-Base Alloys. NBS Misc. Publ. 260-5 (March 1965). PB168068**
- Shultz, J. I., Standard Reference Materials: Methods for the Chemical Analysis of White Cast Iron Standards, NBS Misc. Publ. 260-6 (July 1975). COM74-11068**
- Bell, R. K., Standard Reference Materials: Methods for the Chemical Analysis of NBS Copper-Base Spectrochemical Standards. NBS Misc. Publ. 260-7 (October 1965). COM74-11067**
- Richmond, M.S., Standard Reference Materials: Analysis of Uranium Concentrates at the National Bureau of Standards. NBS Misc. Publ. 260-8 (December 1965). COM74-11066**
- Anspach, S. C., Cavallo, L. M. Garfinkel, S. B. Hutchinson, J. M. R., and Smith, C. N., Standard Reference Materials: Half Lives of Materials Used in the Preparation of Standard Reference Materials of Nineteen Radioactive Nuclides Issued by the National Bureau of Standards NBS Misc. Publ. 260-9 (November 1965). COM74-11065**

- Yakowitz, H., Vieth, D. L., Heinrich, K. F. J., and Michaelis, R. E., Standard Reference Materials: Homogeneity Characterization on NBS Spectrometric Standards II: Cartridge Brass and Low-Alloy Steel, NBS Misc. Publ. 260-10 (December 1965). COM74-11064**
- Napolitano, A., and Hawkins, E. G., Standard Reference Materials: Viscosity of Standard Lead-Silica Glass, NBS Misc. Publ. 260-11 (November 1966). NBS Misc. Publ. 260-11**
- Yakowitz, H., Vieth, D. L., and Michaelis, R. E., Standard Reference Materials: Homogeneity Characterization of NBS Spectrometric Standards III: White Cast Iron and Stainless Steel Powder Compact, NBS Misc. Publ. 260-12 (September 1966). NBS Misc. Publ. 260-12**
- Spijkerman, J. L., Snediker, D. K., Ruegg, F. C., and DeVoe, J. R., Standard Reference Materials: Mossbauer Spectroscopy Standard for the Chemical Shift of Iron Compounds, NBS Misc. Publ. 260-13 (July 1967). NBS Misc. Publ. 260-13**
- Menis, O., and Sterling, J. T., Standard Reference Materials: Determination of Oxygen in Ferrous Materials - SRM 1090, 1091, and 1092, NBS Misc: Publ. 260-14 (September 1966). NBS Misc. Publ. 260-14**
- Passaglia, E., and Shouse, P. J. Standard Reference Materials: Recommended Method of Use of Standard Light-Sensitive Paper for Calibrating Carbon Arcs Used in Testing Textiles for Colorfastness to Light, NBS Misc. Publ. 260-15 (June 1967). (Replaced by NBS Spec. Publ. 260-41.)
- Yakowitz, H., Michaelis, R. E., and Vieth, D. L., Standard Reference Materials: Homogeneity Characterization of NBS Spectrometric Standards IV: Preparation and Microprobe Characterization of W-20% MO Alloy Fabricated by Powder Metallurgical Methods, NBS Spec. Publ. 260-16 (January 1969). COM74-11062**
- Catanzaro, E. J., Champion, C. E., Garner, E. L., Marinenko, G., Sappenfield, K. M., and Shields, W. R. Standard Reference Materials: Boric Acid; Isotopic and Assay Standard Reference Materials, NBS Spec. Publ. 260-17 (February 1970). Out of Print

- Geller, S. B., Mantek, P.A., and Cleveland, N. G., Standard Reference Materials: Calibration of NBS Secondary Standard Magnetic Tape (Computer Amplitude Reference) Using the Reference Tape Amplitude Measurement "Process A, "NBS Spec. Publ. 260-18 (November 1969). (See NBS Spec. Publ. 260-29.)
- Paule, R. C., and Mandel, J., Standard Reference Materials: Analysis of Interlaboratory Measurements on the Vapor Pressure of Gold (Certification of Standard Reference Material 745). NBS Spec. Publ. 260-19 (January 1970). PB190071**
- Paule, R. C., and Mandel, J., Standard Reference Materials: Analysis of Interlaboratory Measurements on the Vapor Pressures of Cadmium and Silver, NBS Spec. Publ. 260-21 (January 1971). COM74-11359**
- Yakowitz, H., Fiori, C. E., and Michaelis, R. E., Standard Reference Materials: Homogeneity Characterization of Fe-3 Si Alloy, NBS Spec. Publ. 260-22 (February 1971). COM74-11357**
- Napolitano, A., and Hawkins, E. G., Standard Reference Materials: Viscosity of a Standard Borosilicate Glass, NBS Spec. Publ. 260-23 (December 1970). COM71-00157**
- Sappenfield, K. M., Marineko, G., and Hague, J. L., Standard Reference Materials: Comparison of Redox Standards, NBS Spec. Publ. 260-24 (January 1972). COM72-50058**
- Hicho, G. E., Yakowitz, H., Rasberry, S. D., and Michaelis, R. E., Standard Reference Materials:
 A Standard Reference Material Containing Nominally Four Percent Austenite, NBS Spec.
 Publ. 260-25 (February 1971), COM74-11356**
- Martin, J. F., Standard Reference Materials: National Bureau of Standards-US Steel Corportion Joint Program for Determining Oxygen and Nitrogen in Steel, NBS Spec. Publ. 260-26 (February 1971), 85 cents* PB 81176620
- Garner, E. L., Machlan, L. A., and Shields, W. R., Standard Reference Materials: Uranium Isotopic Standard Reference Materials, NBS Spec. Publ. 260-27 (April 1971). COM74-11358**
- Heinrich, K. F. J., Myklebust, R. L., Rasberry, S. D., and Michaelis, R. E., Standard Reference Materials: Preparation and Evaluation of SRM's 481 and 482 Gold-Silver and Gold-Copper Alloys for Microanalysis, NBS Spec. Publ. 260-28 (August 1971). COM71-50365**

- Geller, S. B., Standard Reference Materials: Calibration of NBS Secondary Standard Magnetic Tape (Computer Amplitude Reference) Using the Reference Tape Amplitude Measurement "Process A-Model 2," NBS Spec. Publ. 260-29 (June 1971), COM71-50282
- Gorozhanina, R. S., Freedman, A. Y., and Shaievitch, A. B. (translated by M. C. Selby), Standard Reference Materials: Standard Samples Issued in the USSR (A Translation from the Russian). NBS Spec. Publ. 260-30 (June 1971), COM71-50283**
- Hust, J. G., and Sparks, L. L., Standard Reference Materials: Thermal Conductivity of Electrolytic Iron SRM 734 from 4 to 300 K, NBS Spec. Publ. 260-31 (November 1971). COM71-50563**
- Mavrodineanu, R., and Lazar, J. W., Standard Reference Materials: Standard Quartz Cuvettes, for High Accuracy Spectrophotometry, NBS Spec. Publ. 260-32 (December 1973). 55 cents* SN003-003-01213-1
- Wagner, H. L., Standard Reference Materials: Comparison of Original and Supplemental SRM 705, Narrow Molecular Weight Distribution Polystyrene, NBS Spec. Publ. 260-33 (May 1972). COM72-50526**
- Sparks, L. L., and Hust, J. G., Standard Reference Materials: Thermoelectric Voltage, NBS Spec. Publ. 260-34, (April 1972). COM72-50371**
- Sparks, L. L., and Hust, J. G., Standard Reference Materials: Thermal Conductivity of Austenitic Stainless Steel, SRM 735 from 5 to 280 K, NBS Spec. Publ. 260-35 (April 1972.) 35 cents* COM72-50368**
- Cali, J. P., Mandel, J., Moore, L. J., and Young, D. S., Standard Reference Materials: A Referee Method for the Determination of Calcium in Serum, NBS SRM 915, NBS Spec. Publ. 260-36 (May 1972). COM72-50527**
- Shultz, J. I. Bell., R. K. Rains, T. C., and Menis, O., Standard Reference Materials: Methods of Analysis of NBS Clay Standards, NBS Spec. Publ. 260-37 (June 1972). COM72-50692**
- Richmond, J. C., and Hsia, J. J., Standard Reference Materials: Preparation and Calibration of Standards of Spectral Specular Reflectance, NBS Spec. Publ. 260-38 (May 1972). COM72-50528**
- Clark, A. F., Denson, V.A., Hust, J. G., and Powell, R. L., Standard Reference Materials The Eddy Current Decay Method for Resistivity Characterization of High-Purity Metals, NBS Spec. Publ. 260-39 (May 1972). COM72-50529**

- McAdie, H. G., Garn, P.D., and Menis, O., Standard Reference Materials: Selection of Thermal Analysis Temperature Standards Through a Cooperative Study (SRM 758, 759, 760), NBS Spec. Publ. 260-40 (August 1972.) COM72-50776**
- Wood, L. A., and Shouse, P. J., Standard Reference Materials: Use of Standard Light-Sensitive Paper for Calibrating Carbon Arcs Used in Testing Textiles for Colorfastness to Light, NBS Spec. Publ. 260-41 (August 1972) COM72-50775**
- Wagner, H. L. and Verdier, P. H., eds., Standard Reference Materials: The Characterization of Linear Polyethylene, SRM 1475, NBS Spec. Publ. 260-42 (September 1972). COM72-50944**
- Yakowitz, H., Ruff, A. W., and Michaelis, R. E., Standard Reference Materials: Preparation and Homogeneity Characterization of an Austenitic Iron-Chromium-Nickel Alloy, NBS Spec. Publ. 260-43 (November 1972). COM73-50760**
- Schooley, J. F., Soulen, R. J., Jr., and Evans, G. A., Jr., Standard Reference Materials: Preparation and Use of Superconductive Fixed Point Devices, SRM 767, NBS Spec. Publ. 260-44 (December 1972). COM73-50037**
- Greifer, B., Maienthal, E. J. Rains, T. C., and Rasberry, S. D., Standard Reference Materials: Powdered Lead-Based Paint, SRM 1579, NBS Spec. Publ. 260-45 (March 1973). COM73-50226**
- Hust, J. G., and Giarratano, P. J., Standard Reference Materials: Thermal Conductivity and Electrical Resistivity Standard Reference Materials: Austenitic Stainless Steel, SRM's 735 and 798, from 4 to 1200 k, NBS Spec. Publ. 260-46 (March 1975). SN003-003-01278-5
- Hust, J. G., Standard Reference Materials: Electrical Resistivity of Electrolytic Iron, SRM 797, and Austenitic Stainless Steel, SRM 798, from 5 to 280 K, NBS Spec. Publ. 260-47 (February 1974). COM74-50176**
- Mangum, B. W., and Wise, J. A., Standard Reference Materials: Description and Use of Precision Thermometers for the Clinical Laboratory, SRM 933 and SRM 934, NBS Spec. Publ. 260-48 (May 1974). 60 cents* SN003-003-01278-5
- Carpenter, B. S., and Reimer, G. M., Standard Reference Materials Calibrated Glass Standards for Fission Track Use, NBS Spec. Publ. 260-49 (November 1974), COM74-51185

- Hust, J. G., and Giarratano, P. J., Standard Reference Materials: Thermal Conductivity and Electrical Resistivity Standard Reference Materials: Electrolytic Iron, SRM's 734 and 797 from 4 to 1000 K, NBS Spec. Publ. 260-50 (June 1975). \$1.00* \$N003-003-01425-7
- Mavrodineanu, R., and Baldwin, J. R., Standard Reference Materials: Glass Filters As a Standard Reference Material for Spectrophotometry; Selection; Preparation; Certification; Use-SRM 930, NBS Spec. Publ. 260-51 (November 1975). \$1,90* \$N003-003-01481-8
- Hust, J. G., and Giarratano, P. J., Standard Reference Materials: Thermal Conductivity and Electrical Resistivity Standard Reference Materials 730 and 799, from 4 to 3000 K, NBS Spec. Publ. 260-52 (September 1975). \$1.05* SN003-003-01464-8
- Durst, R. A., Standard Reference Materials: Standardization of pH Measurements, NBS Spec. Publ. 260-53 (December 1975, Revised). \$1.05 \$N003-003-01551-2
- Burke, R. W., and Mavrodineanu, R. Standard Reference Materials: Certification and Use of Acidic Potassium Dichromate Solutions as an Ultraviolet Absorbance Standard, NBS Spec. Publ. 260-54 (August 1977). \$3.00* \$N003-003-01828-7
- Ditmars, D. A., Cezairliyan, A., Ishihara, S., and Douglas, T. B., Standard Reference Materials: Enthalpy and Heat Capacity; Molybdenum SRM 781, from 273 to 2800 K, NBS Spec. Publ. 260-55 (September 1977). \$2.20* SN003-003-01836-8
- Powell, R. L., Sparks, L. L., and Hust, J. G., Standard Reference Materials: Standard Thermocouple Materials, Pt.67: SRM 1967, NBS Spec. Publ. 260-56 (February 1978). \$2.20* SN003-003-018864
- Cali, J. P. and Plebanski, T., Guide to United States Reference Materials, NBS Spec. Publ. 260-57 (February 1978). \$2.20* PB 277173
- Barnes, J. D., and Martin, G. M., Standard Reference Materials: Polyester Film for Oxygen Gas Transmission Measurements SRM 1470, NBS Spec. Publ. 260-58 (June 1979) \$2.00* SN003-003-02077
- Chang, T., and Kahn, A. H., Standard Reference Materials: Electron Paramagnetic Resonance Intensity Standard; SRM 2601, NBS Spec. Publ. 260-59 (August 1978) \$2.30* SN003-003-01975-5

- Velapoldi, R. A., Paule, R. C., Schaffer, R., Mandel, J., and Moody, J. R., Standard Reference Materials: A Reference Method for the Determination of Sodium in Serum, NBS Spec. Publ. 260-60 (August 1978). \$3.00* SN003-003 01978-0
- Verdier, P. H., and Wagner. H. L., Standard Reference Materials: The Characterization of Linear Polyethylene (SRM 1482, 1483, 1484), NBS Spec. Publ. 260-61 (December 1978). \$1.70* SN003-003-02006-1
- Soulen, R. J., and Dove, R. B., Standard Reference Materials: Temperature Reference Standard for Use Below 0.5 K (SRM 768). NBS Spec. Publ. 260-62 (April 1979). \$2.30* SN003-003-02047-8
- Velapoldi, R. A., Paule, R. C., Schaffer, R., Mandel, J., Machlan, L. A., and Gramlich, J. W., Standard Reference Materials: A Reference Method for the Determination of Potassium in Serum. NBS Spec. Publ. 260-63 (May 1979). \$3.75* SN003-003-02068
- Velapoldi, R. A., and Mielenz, K. D., Standard Reference Materials: A Fluorescence Standard Reference Material Quinine Sulfate Dihydrate (SRM 936), NBS Spec. Publ. 260-64 (January 1980), \$4.25* SN003-003-02148-2
- Marinenko, R. B., Heinrich, K. F. J., and Ruegg, F. C., Standard Reference Materials: Micro-Homogeneity Studies of NBS Standard Reference Materials. NBS Research Materials, and Other Related Samples. NBS Spec. Publ. 260-65 (September 1979). \$3.50* SN003-003-02114-1
- Venable, W. H., Jr., and Eckerle, K. L., Standard Reference Materials: Didymium Glass Filters for Calibrating the Wavelength Scale of Spectrophotometers (SRM 2009, 2010, 2013). NBS Spec. Publ. 260-66 (October 1979). \$3.50* SN003-003-02127-0
- Velapoldi, R. A., Paule, R. C., Schaffer, R., Mandel, J., Murphy, T. J., and Gramlich, J. W., Standard Reference Materials: A Reference Method for the Determination of Chloride in Serum, NBS Spec. Publ. 260-67 (November 1979). \$3.75* SN003-003-02136-9
- Mavrodineanu, R. and Baldwin, J.R., Standard Reference Materials: Metal-On-Quartz Filters as a Standard Reference Material for Spectrophotometry-SRM 2031, NBS Spec. Publ. 260-68 (April 1980). \$4.25* SN003-003-02167-9

- Velapoldi, R. A., Paule, R. C., Schaffer, R., Mandel, J., Machlan, L. A., Garner, E. L., and Rains, T. C., Standard Reference Materials: A Reference Method for the Determination of Lithium in Serum, NBS Spec. Publ. 260-69 (July) 1980), \$4.25* SN003-003-02214-4
- Marinenko, R. B., Biancaniello, F., Boyer, P. A., Ruff, A. W., DeRobertis, L., Standard Reference Materials: Preparation and Characterization of an Iron-Chromium-Nickel Alloy for Microanalysis, NBS Spec. Publ. 260-70 (May 1981). \$2.50*
- Seward, R. W., and Mavrodineanu, R., Standard Reference Materials: Summary of the Clinical Laboratory Standards Issued by the National Bureau of Standards, NBS Spec. Publ. 260-71 (in press).
- Reeder, D.J., Coxon, B., Enagonio, D., Christensen, R. G., Schaffer, R., Howell, B. F., Paule, R. C., Mandel, J., Standard Reference Materials: SRM 900, Antiepilepsy Drug Level Assay Standard, NBS Spec. Publ. 260-72 (June 1981). \$4.25*
- Interrante, C. G., and Hicho, G. E., Standard Reference Materials: A Standard Reference Material
 Containing Nominally Fifteen Percent Austenite
 (SRM 486), NBS Spec. Publ. 260-73 (in press).
- Marinenko, R. B., Standard Reference Materials: Preparation and Characterization of K-411 and K-412 Mineral Glasses for Microanalysis: SRM 470, NBS Spec. Publ. 260-74 (in press).
- * Send order with remittance to Superintendent of Documents, US. Government Printing Office, Washington, DC 20402. Remittance from foreign countries should include an additional one-fourth of the purchase price for postage.
- ** May be ordered from: National Technical Information Services (NTIS), Springfield, Virginia 22151.

TABLE OF CONTENTS

		PAGE
Pre	face	iii
1.	Introduction	1
2.	Preparation	2
3.	Chemical Composition	2
4.	Homogeneity	4
5.	Conclusions	14
6.	References	14
	LIST OF TABLES	
TAB	LE NO.	PAGE
1	. Wet chemical procedures used in the analysis of glasses K-411 and K-412	3
2	. Wet chemical analyses of SRM 470, mineral glasses for microanalysis	4
3	. Mineral standards used for quantitative EPMA of mineral glasses K-411 and K-412	5
4	. Electron probe microanalyses of NBS SRM 470, mineral glasses for microanalysis	6
5	. Comparison of statistical data from homogeneity tests (weight percent)	9
6	. Homogeneity evaluation of five specimens of glass K-411	11
7	. Homogeneity evaluation of five specimens of glass K-412	12
8	. Comparison of uncertainty intervals for glass K-411 in weight percent of oxide	13
9	. Comparison of uncertainty intervals for glass K-412 in weight percent of oxide	13
	LIST OF FIGURES	
FIG	URE NO.	PAGE
1	a. Periodic integrator homogeneity traces of iron and calcium simultaneously recorded from NBS SRM 470, Mineral Glass K-411	7
1	b. Periodic integrator homogeneity traces of iron and calcium simultaneously recorded from NBS SRM 470, Mineral Glass K-412	8
V	lational Bureau of Standards Certificate of Analysis, Standard Reference Material 470, Mineral Glasses for Microanalysis	15

R. B. Marinenko

Center for Analytical Chemistry National Bureau of Standards Washington, DC 20234

The two mineral glasses in SRM 470, K-411 and K-412, were quantitatively analyzed for major constituents. The results of wet chemical analyses from two independent laboratories were in excellent agreement; therefore, these results were used for certification. Quantitative electron probe microanalysis also agrees favorably with the certified compositions. Specimens were evaluated for micro- and macrohomogeneity with the electron microprobe by using random sampling and periodic integrator homogeneity trace techniques. Statistical analyses as well as the homogeneity traces showed no obvious composition fluctuations either within each specimen or among different specimens. These glasses are therefore excellent standards for microanalytical techniques. They are primarily composed of silicon, iron, magnesium, calcium, and aluminum oxides, none of which is present in less than 9 weight percent nor more than 55 weight percent.

Key words: chemical analysis; digital periodic integrator; electron probe microanalysis; glass standards; homogeneity testing; microhomogeneity; mineral glasses; Standard Reference Material.

Introduction

The Mineral Glasses K-411 and K-412 are the first vitreous materials to be certified as micro-analytical standards. At least six other Standard Reference Materials (SRM's) are available for microanalysis [1-6], but these are all binary or tertiary metal alloys. Glasses provide a large number of possibilities for new standard materials. Numerous oxide glass-forming systems offer wide flexibility in selecting matrices in which the elements of analytical interest can be incorporated. Since the resulting glasses are essentially structureless, they can be made homogeneous with a large number of elements present.

The glasses are composed of four and five different oxides, respectively, in concentrations of no less than nine percent by weight for any one oxide. The results of the quantitative analyses and homogeneity evaluation will be described.

2. Preparation

The glasses K-411 and K-412 were developed by D. H. Blackburn and prepared by D. A. Kauffman at NBS. The carbonate and oxides were melted in platinum crucibles and stirred for homogeneity with propeller-type, platinum-10 percent rhodium alloy stirrers. Melting was done in an air atmosphere with electrically heated furnaces. Temperatures for the melting and stirring procedure were in the range of 1450 to 1500 °C. The stirring time was 3 hours. The compounds used in the preparation were high purity crushed quartz, and reagent grade ferric oxide, magnesium oxide, calcium carbonate, and anhydrous aluminum oxide. The glasses were cast into rectangular blocks with approximate dimensions of 9 x 5 x 2 cm. These blocks were annealed at 625 °C.

For SRM distribution, at least 100 specimens were cut from each glass block. Each specimen is approximately $2 \times 2 \times 20$ mm. A precision wafering saw was used with a 0.07×15.2 cm $(0.028 \times 6")$ 100-grit diamond wheel and a petroleum-based coolant. An acetone-soluble adhesive was used to mount the glass block and slices onto the cutting plate. Several 2 mm slices were cut from the glass block. These slices were in turn cut at 2 mm intervals. The glass slices were removed from the cutting plate and rinsed with acetone several times to remove all traces of adhesive.

Chemical Composition

The certified compositions of the glasses K-411 and K-412 are based on classical wet chemical analyses from two independent laboratories. Although the glasses were also analyzed with the electron microprobe (EPMA), the wet chemistry values were selected for certification because they showed consistency between the two analyses and because greater accuracy is usually associated with wet chemical analyses of this type than with EPMA. The accuracy expected from the former is generally better than 1 percent while a conservative estimate of the accuracy associated with the latter is 2 percent. The EPMA results are discussed here for comparative purposes only.

The wet chemical analyses were performed by E. Jarosewich and J. Norberg of the Smithsonian Institution, Washington, D. C. (Lab A) and by J. C. DeVine and N. H. Suhr of the Pennsylvania State University, University Park, Pa. (Lab B). The procedures used are briefly described in Table 1. For a single analysis of each oxide in a glass a 1-gram sample was used. Pieces were broken off the glass bar for this purpose. The results of the analyses from the two independent laboratories and the certified values are in Table 2. There is excellent agreement between the two laboratories.

Lab A did duplicate analyses. Lab B was given only enough sample for a single analysis of each oxide in each glass. The certified values for each oxide are the averages of the two independent results. A 2-sigma (standard deviation) of ± 0.20 weight percent was assigned to each of the certified compositions. This is a pooled value taken from all of the oxides and estimated from the ranges between the two laboratories.

Trace or minor amounts of some elements were found in the glasses. These probably originated in the starting materials. Lab A detected the presence of manganese. This was later verified by Lab B which detected MnO by atomic absorption in concentrations of 0.13 weight percent in K-411 and 0.09 weight percent in K-412. A trace of aluminum was also found by Lab B. Less than 0.1 percent aluminum was detected spectrographically but Lab B was unable to chemically observe this small amount.

Lab A

- SiO₂ Gravimetric. Sample fused with sodium carbonate followed by a double dehydration in hydrochloric acid. The hydrated silica is ignited, weighed, and volatilized with hydrofluoric acid. The residue is ignited and weighed. Loss in weight represents silica (SiO₂).
- $^{\rm Al}_20_3$ Gravimetric. Aluminum is precipitated from an aliquot of $^{\rm R}_20_3$ solution with 8-hydroxy-quinoline and weighed as the precipitate.
- Fe(total)— Volumetric titration. Ferric iron is reduced in a silver reductor and titrated with a and Fe $_2$ 0 $_3$ standard solution of potassium dichromate. Fe $_2$ 0 $_3$ is calculated by subtracting Fe0 from total Fe.
- FeO Volumetric titration. Following dissolution in sulfuric and hydrochloric acids in a non-oxidizing atmosphere, ferrous iron is titrated with a standard solution of potassium dichromate.
- Ca0 Gravimetric. Precipitation in an ammoniacal solution with ammonium oxalate. Precipitate is dissolved in dilute hydrochloric acid and reprecipitated with the oxalate. The precipitate is ignited and weighed as the oxide.
- Mg0 Gravimetric. Double precipitation in an ammoniacal solution with dibasic ammonium phosphate. The residue is ignited at 1100 °C and weighed as $Mg_2P_2O_7$.

Lab B

- SiO₂ Same as Lab A.
- Al $_2$ 0 $_3$ Gravimetric. Double precipitation with ammonia. Al $_2$ 0 $_3$ by difference of total P $_2$ 0 $_3$ and Fe $_2$ 0 $_3$ and Ti0 $_2$. Corrected for Si0 $_2$.
- Fe(total)— Volumetric titration. Ferric iron is reduced with stannous chloride and titrated with a and Fe $_2$ 0 $_3$ are standard solution of potassium dichromate. Fe $_2$ 0 $_3$ is calculated by subtracting the Fe $_2$ 0 $_3$ equivalent of Fe0 from total Fe.
- FeO Volumetric titration. Following dissolution in sulfuric and hydrofluoric acids in a non-oxidizing atmosphere, ferrous iron is titrated with a standard solution of potassium permanganate.
- Ca0 Same as Lab A, but the precipitate is ignited and weighed as calcium carbonate. Calcium recovered from the magnesium precipitate.
- MgO Same as Lab A. Corrected for calcium and manganese.

Table 2. Wet chemical analyses of SRM 470, mineral glasses for microanalysis

			- Composition	n of Oxide in	Weight	Percent -	
	SiO ₂	MgO	Ca0	A1 ₂ 0 ₃	Fe0	Fe ₂ 0 ₃	Total Fe as FeO
Glass K-411							
Lab A	54.25 54.23	14.60 14.67	15.61 15.44		4.04 4.73	11.52	14.47
Lab B	54.36	14.69	15.41		3.95	11.55	14.34
Certified Value	54.30±0.20 ^a	14.67±0.20	15.47±0.20				14.43±0.20
Glass K-412							
Lab A	45.36 45.40	19.32 19.33	15.33 15.24	9.32 9.20	2.61	8.21	10.10
Lab B	45.32	19.32	15.21	9.28	2.77	7.83	9.82
Certified Value	45.35±0.20 ^a	19.33±0.20	15.25±0.20	9.27±0.20			9.96±0.20

 $^{^{\}rm a}$ The uncertainty of ± 0.20 weight percent assigned to the certified values is the 2-sigma value. This error is a pooled value for all oxides estimated from the ranges between the two laboratories using wet chemical techniques.

The two glasses were also analyzed with the electron microprobe by C. E. Fiori at NBS (Lab C). He used an excitation potential of 15 kV, crystal spectrometers, and mineral standards. Matrix corrections were made with COR [7]. The standards used were ENAL 10, Diopside, and Juan de Fuca Basaltic Glass. Their compositions are listed in Table 3. These are well-characterized standards which are used by mineralogists and geologists for quantitative EPMA.

The results of the electron probe analyses are listed in Table 4. The range between experiments for each oxide is less than 2 percent relative except Al_2O_3 which is about 3 percent relative.

4. Homogeneity

The two glasses were tested for both micro- and macrohomogeneity. Periodic integration traces and random sampling techniques were used.

The former procedure which is used to test the transverse microhomogeneity of a specimen is described in detail in a recent NBS Special Publication 260-65 [8]. It uses a stepping motor on the sample stage to move the specimen in a straight line under the electron beam in 1 to 10 μm steps. X-ray counts are accumulated at each step for a preselected time period. The total number of x-ray counts are recorded as an analog signal on a fast strip chart recorder; this signal remains unchanged during the next counting period. In addition, the signal can be digitally multiplied by an appropriate factor and a bias can be applied to subtract any number of counts from the display.

Composition of Standards in Weight Percent

ENAL 10 (from Geophysical Laboratories)^a

 $[MgSiO_3 + 10\% Al_2O_3]$

Mg 21.80 A1 5.29 Si 25.18 0 47.73

Diopside (from Smithsonian Institution)b

[CaMgSi₂0₆]

Ca 18.51 Si 25.93 Mg 11.23 O 44.33

Juan de Fuca Basaltic Glass (from Smithsonian Institution) b

23.75 1.94 Si Na A1 7.44 0.16 Κ Fe 9.20 Τi 1.11 0.0007 Mg 4.05 P 7.95 0.0017 Ca Mn 44.17 0

Jarosevich, E.; Nelen, J. A.; Norberg, J. A. Electron microprobe reference samples for mineral analyses. Mineral Sciences Investigations 1976-1977. Smithsonian Contributions to the Earth Sciences, No. 22. Fudali, R. F., ed. Washington, D.C.; 1979. 73p.

^aA synthetic glass. Composition based on stoichiometry.

^bThese standards were analyzed by wet chemistry; results appear in the following reference.

Table 4. Electron probe microanalyses of NBS SRM 470, mineral glasses for microanalysis

			Compo	sition of Oxide	in Weight Percen	t ^a
	Exp.	SiO ₂	Fe0	Mg0	Ca0	A1 ₂ 0 ₃
Glass K-411						
Lab C	1	54.64(E10)	14.39(JdF)	15.05(D)	15.41(D)	
	2	55.50(D)	14.66(JdF)	15.07(D)	15.51(D)	
	3	54.54(JdF)	14.39(JdF)	15.25(E10)	15.56(JdF)	
Avg. (range)		54.89(0.96)	14.48(0.27)	15.12(0.20)	15.49(0.15)	
Glass K-412						
Lab C	1	45.20(E10)	9.88(JdF)	19.57(D)	15.35(D)	9.26(E10
	2	45.90(D)	10.06(JdF)	19.59(D)	15.46(D)	9.25(E10
	3	45.13(JdF)	9.88(JdF)	19.82(E10)	15.50(JdF)	9.54(JdF
Avg. (range)		45.41(0.77)	9.94(0.18)	19.66(0.25)	15.44(0.15)	9.34(0.2

^aThe standard used for each analysis is noted in parentheses. ENAL 10 (E10); Diopside (D); and Juan de Fuca (JdF).

Examples of homogeneity traces of iron and calcium recorded simultaneously from specimens of glasses K-411 and K-412 are in figures la and lb. Each specimen was moved in $1-\mu m$ steps under a $1-\mu m$ (approximate diameter) electron beam. Counting periods were 10 s and both elements were analyzed with LiF crystal spectrometers. The specimen current was about 5×10^{-8} A and the excitation potential was 20 kV. The theoretical ± 3 -sigma limits about the average number of counts per counting period, \overline{N} , for the trace are delineated by the double-headed arrows to the right of each trace. Deviations outside this 99.7 confidence limit indicates inhomogeneities within the specimen, assuming that there are no serious instrumental fluctuations.

On the left side of each figure is a time-resolved trace made with a 20×20 - μm scanning raster. Signal variations for such a trace are due to expected statistical fluctuations, assuming that no systematic instrumental errors are present. Therefore, the variations should lie within the ± 3 -sigma limits as in fact they do here. For a truly homogeneous specimen, assuming the concentration of an element is high enough to produce a signal above the background, the traces from these moving and stationary specimens should be similar as they are here.

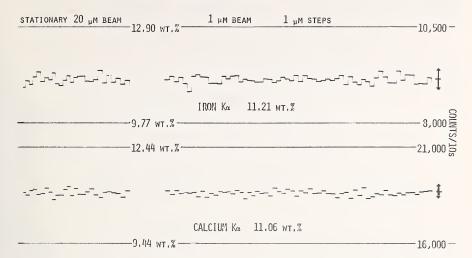


Figure 1a. Periodic integrator homogeneity traces of iron and calcium simultaneously recorded from NBS SRM 470, Mineral Glass K-411 (excitation potential = 20kV, specimen current = 5×10^{-8} A). In the traces on the right, the sample was advanced in $l_{-\mu}$ m steps under a $l_{-\mu}$ m electron beam after each 10-s counting period. To the left, the sample was not moved during repeated l0-s counting periods with a 20 x 20-um scanning raster. The double-headed arrows to the right represent a range of $\pm 3\sqrt{N}$ around the average number of counts per l0 s, \overline{N} , for the entire trace.

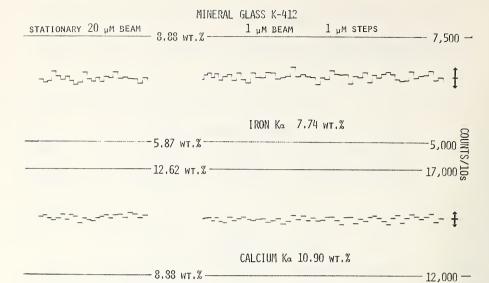


Figure 1b. Periodic integrator homogeneity traces of iron and calcium simultaneously recorded from NBS SRM 470, Mineral Glass K-412 (excitation potential = 20kV, specimen current = 5×10^{-8} A). In the traces on the right, the sample was advanced in $1-\mu m$ steps under a $1-\mu m$ electron beam after each 10-s counting period. To the left, the sample was not moved during repeated 10-s counting periods with a 20 x 20- μm scanning raster. The double-headed arrows to the right represent a range of $\pm 3\sqrt{N}$ around the average number of counts per 10 s, \overline{N} , for the entire trace.

Two homogeneity traces similar to these were prepared for all major elements from one specimen of each glass. The traces were normal to one another and covered a $50-\mu m$ distance across the specimen in $1-\mu m$ steps. Duplicate data were taken on each point. The excitation potential was 15~kV. A specimen current of about 3×10^{-8} A was used. Counting periods were increased to 40~s in order to improve the counting statistics. This was especially necessary for aluminum and magnesium for which the total number of counts per 40~s was only 4000~t o 5000~t counts. Higher currents were not used because the $1-\mu m$ electron beam appeared to disturb the surface of the glass specimens.

No obvious inhomogeneities were observed in these traces. Fluctuations fell within the ± 3 -sigma limits about the average number of counts per 40 s, which indicates that these fluctuations were due to counting statistics only. In addition, no differences were observed between the traces from the moving and the stationary specimen.

A statistical evaluation was done on these traces. The equations used and a complete description of the mathematics are in the U. S. NBS Special Publication 260-65 [9]. Using the duplicate data from each point, two standard deviation components were calculated. These were σ_W , the within point component, and σ_B , the between points component. If significant inhomogeneities exist, σ_B would be noticeably larger than σ_W which primarily reflects the statistical fluctuations associated with the inherent experimental errors. The results in Table 5, where the two components are compared, show that no obvious micro-inhomogeneities are reflected in the σ_B component for these 50- μm traces. In fact, in most cases σ_B is smaller than σ_W . Thus the measurement process seems to have a greater error associated with it than does the specimen inhomogeneity.

Table 5. Comparison of statistical data from homogeneity tests (weight percent)

0xide	Weight Percent	Trace No. or Specimen No.		eneity ace		arison with lom Sampling
			αM	σ _B	^σ RS	$\sqrt{\sigma_W^2 + \sigma_B^2}$
ss K-411						
SiO ₂	54.30	#1 #2	0.37 0.35	0	0.28 0.46	0.37 0.35
Mg0	14.67	#1 #2	0.24 0.21	0.01 0.11	0.28 0.32	0.24 0.24
Ca0	15.47	#1 #2	0.15 0.16	0	0.20 0.17	0.15 0.16
Fe0	14.42	#1 #2	0.18	0	0.13	0.18 0.19
ss K-412		–				
SiO ₂	45.35	#1 #2	0.27 0.29	0.21 0.11	0.35 0.29	0.34 0.31
Mg0	19.33	#1 #2	0.31 0.29	0	0.31 0.33	0.31 0.33
Ca0	15.25	#1 #2	0.17 0.15	0.03 0.06	0.18 0.14	0.17 0.24
Fe0	9.96	#1 #2	0.13 0.13	0.04 0.04	0.15 0.10	0.14 0.14
A1 ₂ 0 ₃	9.27	#1 #2	0.14 0.13	0	0.17 0.14	0.14 0.13

A random sampling test in which two different specimens of each glass were analyzed was also performed to evaluate specimen microhomogeneity. The instrumental parameters, as in the previous tests, were a 15 kV excitation potential and a specimen current of about 3 x 10 $^{-8}$ A. Counting periods were 40 s. Thirty random samplings were made on each glass specimen. One standard deviation, σ_{RS} , was calculated from the thirty points. These values (expressed in weight percent) are listed in Table 5; they agree favorably with the combined components of variance, $\sqrt{\sigma_{\text{W}}^{\ 2} + \sigma_{\text{B}}^{\ 2}}$, obtained from the staticical evaluation of the homogeneity traces.

The errors in Table 5 and in subsequent tables were converted from counts to weight percent concentration. Such a conversion is valid when there is a linear relationship between net counts (background-corrected) and concentration which passes through the origin. For all five elements involved in these analyses such a linear relationship was validated by analyzing several well-characterized minerals containing the elements studied here at concentrations below and above those in the K-411 and K-412 glasses. At least five samplings were taken from each mineral and the average was background-corrected for the plots of net counts vs. weight percent concentration. Wavelength spectrometers were used. A 10 x 10- μ m scanning raster was used and counting periods were 40 s. Analyses for silicon, calcium, magnesium, and aluminum were done at an excitation potential of 15 kV and the two different currents of 1.6 x 10^{-8} A and 3.5 x 10^{-8} A. Iron data were also taken at 20 kV and 1.6×10^{-8} A. All plots were linear, passing through the origin.

For macrohomogeneity tests five specimens of each glass were randomly selected from the 100 or more samples of each glass that make up the stock for SRM 470. These tests were designed to evaluate differences between specimens as well as differences within each specimen. Counting periods were 20 s. For each element in each glass at least two independent tests on different days were run by two different operators, when possible. For each test, each specimen was randomly sampled six times and duplicate readings were taken at each point. After all five specimens had been tested once, the five specimens were again sampled in random order giving a total of twelve random samplings on each specimen. Testing of a specimen in the first half and again in the second half of an experiment is expected to average out instrumental drifts if any occur. Also, such a sampling procedure can help to distinguish between real specimen differences and instrument fluctuations.

For these homogeneity tests, an NBS electron microprobe was used. With three crystal spectrometers, three elements could be simultaneously tested. The excitation potential was 15 or 20 kV and the beam current was 1.6 x 10^{-8} A or 3.0 x 10^{-8} A, depending upon the day of the test. The beam current regulation mode on the instrument was used to minimize current drift during each experiment which took about $1\frac{1}{2}$ hours. A $10 \times 10^{-\mu}$ m scanning raster was used to minimize specimen contamination. Counting periods were 20 s.

With data from this type of testing procedure, three different contributions to the errors can be estimated. These are σ_S^2 , the variance between different specimens, σ_B^2 , the variance within specimens on the micrometer scale, and σ_E^2 the variance of a single measurement error. The equations used to derive these components are described in detail in another recent NBS Special Publication 260-70 [6].

In Tables 6 and 7 the individual standard deviations, expressed in weight percent, are given for each oxide in each glass. These standard deviations are all small. There is apparently no significant experimental error, no significant variation within specimens, and no significant variation between specimens. The standard deviation of a single measurement, σ_p , which combines these individual error components is 1.5 percent (relative) or less for glass K-411 (Table 6) and 1.7 percent (relative) or less for glass K-412 (Table 7). For both glasses, the largest values of σ_p are in the iron oxide experiments which were run at a 15 kV excitation potential and at the lower beam current of 1.6 x 10^{-8} A. A slight improvement in these statistics results when a 20 kV excitation potential is used which is a more favorable overvoltage for iron resulting in more favorable counting statistics. At the lower voltage the total counts per 20 s were about 5000 and 6500 for K-412 and K-411, respectively. At the higher voltage they were about 10,000 and 15,000 respectively. For all other elements, the total counts per 20 s were at least 20,000 in all experiments. The results of better counting statistics can also be seen in experiments G and H for glass K-412 where the higher beam current of

 3×10^{-8} A gave improved results not only for iron oxide but also for the oxides of silicon, magnesium and aluminum.

Table 6. Homogeneity evaluation of five specimens of glass K-411

0xide	Weight Percent	Exp. ^b	Ex. Pot. (kV)	Sta Weig [©] E	ndard ht Per	cent o	cions in f Oxide ^a o _p (rel.%)
 SiO ₂	54.30	A B	15 15	0.15 0.15	0.15 0.30		0.22(0.4) 0.37(0.7)
Mg0	14.67	A B	15 15	0.10 0.10	0.05	0.05	0.12(0.8) 0.11(0.7)
Ca0	15.47	C D	15 15	0.07 0.07	0.10 0.04	0.08	0.15(1.0) 0.08(0.5)
Fe0	14.42	A B C D E F	15 15 15 15 20 20	0.18 0.18 0.14 0.14 0.12 0.11	0.07 0.12 0.10 0.07 0.02 0.04	0.03 0.0 0.04 0.0 0.04 0.0	0.20(1.4) 0.22(1.5) 0.18(1.2) 0.16(1.1) 0.13(0.9) 0.12(0.8)

^aThe standard deviations are defined as follows:

 $\sigma_{\rm F}$ = the error of a single measurement

 σ_{R} = the variation within specimens on a micrometer scale

 σ_{S} = the variation between the different specimens

 σ_p = one standard deviation of a single measurement combining the above errors.

$$\sigma_{P} = \sqrt{\sigma_{E}^{2} + \sigma_{B}^{2} + \sigma_{S}^{2}}$$

 $^{\rm b}$ Beam current for all experiments was 1.6 x 10^{-8} A.

Table 7. Homogeneity evaluation of five specimens of glass K-412

	Ex				Standard Deviations in Weight Percent of Oxide			
0xide	Weight Percent	Exp. ^b	Pot. (kV)	σE	σВ	σS	σ _p (re1.%)	
SiO ₂	45.35	A G H	15 15 15	0.14 0.10 0.10	0.26 0.15 0.10	0.12 0.10 0.03	0.32(0.7) 0.21(0.5) 0.14(0.3)	
Mg0	19.33	A G	15 15	0.11 0.08	0.04	0.02 0.01	0.12(0.6) 0.09(0.5)	
CaO	15.25	C D	15 15	0.09 0.10	0.04 0.18	0.05 0.07	0.11(0.7) 0.22(1.4)	
Fe0	9.96	A C D E F G	15 15 15 20 20 15	0.15 0.15 0.14 0.10 0.10 0.11	0.0 0.02 0.09 0.07 0.04 0.04	0.06 0.06 0.0 0.0 0.02 0.01 0.02	0.16(1.6) 0.16(1.6) 0.17(1.7) 0.12(1.2) 0.11(1.1) 0.12(1.2) 0.11(1.1)	
A1 ₂ 0 ₃	9.27	C H	15 15	0.07 0.05	0.04 0.03	0.02	0.08(0.9) 0.06(0.7)	

aStandard deviations defined the same as in Table 6.

The uncertainties in the average measurement, \overline{P} , for three possible experiments that a user of SRM 470 might perform are summarized in Tables 8 and 9. These uncertainties are calculated for the 99 percent confidence interval for the mean concentration according to the expression $\overline{P} \pm 3\sigma_{\overline{D}}$ where

$$\sigma_{\overline{p}} = \sqrt{\frac{\sigma_S^2}{n_S^2} + \frac{\sigma_B^2}{n_S^n_B} + \frac{\sigma_E^2}{n_S^n_B n_E}}$$

and where n_E independent measurements are made at each of n_B randomly chosen points in each of n_S specimens. More details on this equation can be found in the Appendix of reference [6].

The average of each type of error for each oxide in Tables 6 and 7 is used to calculate $\pm 3\sigma_{\overline{p}}$ for the three possible experiments in Tables 8 and 9. For example, the average values of σ_E , σ_B , and σ_S for SiO $_2$ calculated from experiments A, G, and H for glass K-412 are used to calculate the three different values of $\pm 3\sigma_{\overline{p}}$ (experiments I, II, and III) for SiO $_2$ in Table 9.

The three possible experiments and the results are meant to be of practical use to the electron probe operator. In experiment I, 16 independent random readings are taken from one specimen; in experiment II, 8 independent readings are taken from one specimen; and in experiment III, 8 independent readings are taken from each of two specimens. For all experiments each point was sampled only once. The best results for both glasses are obtained when using two specimens with eight samplings on each. Sixteen samplings on a single specimen is almost as good. But only eight samplings on one specimen gives noticeably higher errors. The number of specimens and samplings used in each laboratory will

 $^{^{\}rm b}$ Beam current for experiments A, C, D, E, and F was 1.6 x 10^{-8} A and for experiments G and H the beam current was 3 x 10^{-8} A.

Table 8. Comparison of uncertainty intervals $(\pm 3\sigma_{\bar p})$ for glass K-411 in weight percent of oxide

	Weight	Ex. Pot.	Experiment I One Specimen 16 samplings n _S =1; n _B =16; n _E =1	Experiment II One Specimen 8 samplings n _S =1; n _B =8; n _E =1	Experiment III Two Specimens 8 samplings n _S =2; n _B =8; n _E =1
0xide	Percent	(kV)	±3σ _P (rel. %)	±3σ _p (rel. %)	±3σ _p (rel. %)
SiO ₂	54.30	15	±0.41(0.7)	±0.46(0.9)	±0.32(0.6)
Mg0	14.67	15	±0.17(1.2)	±0.19(1.3)	±0.13(0.9)
CaO	15.47	15	±0.17(1.1)	±0.19(1.2)	±0.13(0.8)
Fe0	14.42	15	±0.15(1.1)	±0.21(1.4)	±0.15(1.0)
		20	±0.11(0.8)	±0.15(1.1)	±0.10(0.7)

Table 9. Comparison of uncertainty intervals $(\pm 3\sigma_{\overline{p}})$ for glass K-412 in weight percent of oxide

Oxide	Weight Percent	Ex. Pot. (kV)	$\frac{\text{Experiment I}}{\text{One Specimen}}$ $\frac{\text{One Specimen}}{\text{16 samplings}}$ $\frac{n_S=1; n_B=16; n_E=1}{\pm 3\sigma_{\overline{p}} \text{ (rel. \%)}}$	Experiment II One Specimen 8 samplings $n_S=1$; $n_B=8$; $n_E=1$ $\pm 3\sigma_{\overline{p}}$ (rel. %)	Experiment III Two Specimens 8 samplings $n_{S}=2; n_{B}=8; n_{E}=1$ $\pm 3\sigma_{\overline{p}} \text{ (rel. \%)}$
SiO ₂	45.35	15	±0.29(0.6)	±0.33(0.7)	±0.23(0.5)
Mg0	19.33	15	±0.10(0.5)	±0.13(0.7)	±0.09(0.5)
Ca0	15.25	15	±0.22(1.4)	±0.25(1.6)	±0.17(1.2)
Fe0	9.96	15	±0.14(1.4)	±0.17(1.7)	±0.12(1.2)
		20	±0.09(0.9)	±0.13(1.7)	±0.09(0.9)
A1 ₂ 0 ₃	9.27	15	±0.06(0.7)	±0.08(0.9)	±0.06(0.6)

depend upon the acceptable uncertainty interval for the specific analysis and the experimental imprecision of the individual laboratory. The numbers in Tables 8 and 9, however, are only applicable to the NBS electron microprobe used to obtain the estimates of σ_S , σ_B , and σ_E . The value of σ_E will be different for each operator's instrument.

5. Conclusions

These glasses have been shown to be excellent Standard Reference Materials for use in micro-analysis techniques such as EPMA and secondary ion mass spectrometry. Independent wet chemical analyses are in very good agreement and homogeneity tests have shown that all oxides in K-411 and K-412 are homogeneous on both the micrometer level and from specimen to specimen.

The author acknowledges the following associates for their contributions to the quantitative analyses of glasses K-411 and K-412 — E. Jarosewich and J. Norberg of the Smithsonian Institution, Washington, D.C.; J. C. DeVine and N. H. Suhr of the Pennsylvania State University, University Park, Pa.; and C. E. Fiori, presently with the National Institutes of Health, Bethesda, Md. The author also wishes to thank D. H. Blackburn and D. A. Kauffman of the Ceramics, Glass, and Solid State Science Division, NBS, for the fabrication of the bulk glasses. Thanks also to R. L. Myklebust of the Gas and Particulate Science Division, NBS, for writing the computer program for the homogeneity data evaluation and to I. Holl, a summer associate and student at Gettysburg College, Gettysburg, Pa., for her patient assistance in acquiring some of the homogeneity data. Thanks also to K. Kirby of the Office of Standard Reference Materials for his assistance in preparing the certification for this SRM and to H. H. Ku of the Statistical Engineering Division, NBS, for assistance in determining the certification values.

6. References

- [1] Yakowitz, H.; Vieth, D. L.; Heinrich, K. F. J.; Michaelis, R. E. Homogeneity characterization of NBS spectrometric standards II: cartridge brass and low-alloy steel. Nat. Bur. Stand. (U.S.) Misc. Publ. 260-10; 1965 December. 28 p.
- [2] Yakowitz, H.; Michaelis, R. E.; Vieth, D. L. Homogeneity characterization of NBS spectrometric standards IV: preparation and microprobe characterization of W-20%Mo alloy fabricated by powder metallurgical methods. Advances in x-ray analysis. Vol. 12. New York, NY: Plenum Press; 1969. 418-438 and Nat. Bur. Stand. (U.S.) Spec. Publ. 260-16; 1969 January. 24 p.
- [3] Yakowitz, H.; Fiori, C. E.; Michaelis, R. E. Homogeneity characterization of Fe-3Si alloy. Nat. Bur. Stand. (U.S.) Spec. Publ. 260-22; 1971 February. 22 p.
- [4] Heinrich, K. F. J.; Myklebust, R. L.; Rasberry, S. D. Preparation and evaluation of SRM's 481 and 482 goldsilver and gold-copper alloys for microanalysis. Nat. Bur. Stand. (U.S.) Spec. Publ. 260-28; 1971 August. 89 p.
- [5] Yakowitz, H.; Ruff, A. W. Preparation and homogeneity characterization of an austenitic ironchromium-nickel alloy. Nat. Bur. Stand. (U.S.) Spec. Publ. 260-43; 1972 November. 11 p.
- [6] Marinenko, R. B.; Biancaniello, F.; DeRobertis, L.; Boyer, P. A.; Ruff, A. W. Preparation and characterization of an iron-chromium-nickel alloy for microanalysis: SRM 479a. Nat. Bur. Stand. (U.S.) Spec. Publ. 260-70; 1981 May. 25 p.
- [7] Henoc, J., Heinrich, K., F., J.; Myklebust, R. L. A rigorous correction procedure for quantitative electron probe microanalysis (COR 2). Nat. Bur. Stand. (U.S.) Tech. Note 769; 1973 August. 127 p.
- [8] Marinenko, R. B.; Heinrich, K. F. J.; Ruegg, F. C. Microhomogeneity studies of NBS standard reference materials, NBS research materials, and other related samples. Nat. Bur. Stand. (U.S.) Spec. Publ. 260-65; 1979 September. 73 p.

U.S. Department of Commerce Juanita M. Kreps Secretary

National Bureau of Standards Ernest Ambler, Director

National Bureau of Standards Certificate of Analysis

Standard Reference Material 470

Mineral Glasses for Microanalysis

These glasses have been fabricated for use in microanalysis techniques such as electron probe microanalysis (EPMA) and secondary ion mass spectrometry (SIMS). The glasses are homogeneous and are especially useful as standards for the analysis of minerals, glasses, and ceramics.

Composition in Weight Percent

E-0 M-0

Constituent	3102	reO	MgO	CaO	Al2U3
Glass K-411					
Certified Value	54.30 ± 0.20 ^a	14.42 ± 0.20	14.67 ± 0.20	15.47 ± 0.20	
Wet Chemistry					
LAB A ^b	54.24(0.02)	14.49(0.18)	14.64(0.08)	15.53(0.18)	
LAB B	54.36	14.34	14.69	15.41	
EPMA					
LAB C ^c	54.89(0.96)	14.48(0.27)	15.12(0.20)	15.49(0.15)	

Glass K-412

Certified Value	45.35 ± 0.20	9.96 ± 0.20	19.33 ± 0.20	15.25 ± 0.20	9.27 ± 0.20
Wet Chemistry					
LAB A ^b	45.38(0.04)	10.10(0.20)	19.33(0.02)	15.29(0.10)	9.26(0.12)
LAB B	45.32	9.82	19.32	15.21	9.28
EPMA					
LAB C ^c	45.41(0.77)	9.94(0.18)	19.66(0.25)	15.44(0.15)	9.34(0.29)

^a The uncertainty of \pm 0.20 wt.% assigned to the certified values is the 2-sigma value. This error is a pooled value for all oxides estimated from the ranges between the two laboratories using wet chemical techniques.

Washington, D.C. 20234 October 30, 1981 (Revision of Certificate

(over)

George A. Uriano, Chief Office of Standard Reference Materials

dated 4-26-79)

^bThe average and (range) of two analyses.

^cThe average and (range) of three analyses.

The technical measurements were performed by C. E. Fiori and R. B. Marinenko under the direction of K.F.J. Heinrich.

The support aspects involved in the certification and issuance of this Standard Reference Material were coordinated through the Office of Standard Reference Materials by R. Keith Kirby.

These glasses were prepared in the Ceramics, Glass, and Solid State Science Division of the National Bureau of Standards' Center for Materials Science by D. H. Blackburn and D. A. Kauffman.

The two glasses were tested for microhomogeneity by both random sampling and periodic integrator traces. This work was done at NBS by R. B. Marinenko. No evidence of inhomogeneity was observed in these glasses. An NBS 260 Series Special Publication is being-prepared which will describe these microhomogeneity studies and the statistical evaluations.

The wet chemical analyses were performed at the Smithsonian Institution, Washington, D.C. by G. Jarosewich and J. Norberg, and at Pennsylvania State University, University Park, PA, by N. H. Suhr and J. C. Devine.

EPMA was performed at NBS by C. Fiori using different standards where possible. For matrix corrections, the NBS correction procedure, COR (Henoc. J., Henrich, K. F. J., and Myklebust, R. L., National Bureau of Standards Technical Note 769, 1973) was used. While the EPMA results are in good agreement with the wet chemical analyses, they were not included in the determination of the certified values.

A trace of A) O3. (<0.1%) was spectrographically detected in K-411 and a small amount of MnO (approximately 0.1%) was observed in both glasses by atomic absorption.

#U.S. GOVERNMENT PRINTING OFFICE: 1982-360-997/2055

NBS-114A (REV. 2-80) U.S. DEPT. OF COMM. 1. PUBLICATION OR 2.	Performing Organ, Report No. 3. Publ	cation Date
BIBLIOGRAPHIC DATA		i
SHEET (See instructions) NBS SP 260-74	Ар	ril 1982
4. TITLE AND SUBTITLE		
Standard Reference Materials:	1 1/4 430	
Preparation and Characterization of K-411 Mineral Glasses for Microanalysis: SRM 4		
	70	
S. AUTHOR(S) R. B. Marinenko		
6. PERFORMING ORGANIZATION (If joint or other than NBS, se	ee instructions) 7. Contra	ct/Grant No.
NATIONAL BUREAU OF STANDARDS		
DEPARTMENT OF COMMERCE	8. Type o	f Report & Period Covered
WASHINGTON, D.C. 20234	न	inal
9. SPONSORING ORGANIZATION NAME AND COMPLETE ADD		
Same as No. 6	•	
10. SUPPLEMENTARY NOTES		
Library of Congress Catalog Card Number:	82-600511	
Document describes a computer program; SF-185, FIPS S	oftware Summary, is attached.	
11. ABSTRACT (A 200-word or less factual summary of most sign bibliography or literature survey, mention it here)	ificant information. If document includ	es a significant
The two mineral glasses in SRM 470, H	(-411 and K-412, were quant	itatively
analyzed for major constituents. The resu		1
independent laboratories were in excellent		
used for certification. Quantitative elec		1
favorably with the certified compositions		
macrohomogeneity with the electron microp		
integrator homogeneity trace techniques.		
homogeneity traces showed no obvious compo		
specimen or among different specimens. The	nese glasses are therefore	excellent
standards for microanalytical techniques.	They are primarily compos	ed of silicon,
iron, magnesium, calcium, and aluminum ox	ides, none of which is pres	ent in less
than 9 weight percent nor more than 55 we		
shall a margina per adila non mere anan aa ma		
12. KEY WORDS (Six to twelve entries; alphabetical order; capito		
chemical analysis; digital periodic integ standards; homogeneity testing; microhomo		
Reference Material	genercy, minieral glasses; 3	realidat d
13. AVAILABILITY		14. NO. OF
XX Unlimited		PRINTED PAGES
For Official Distribution. Do Not Release to NTIS		25
Order From Superintendent of Documents, U.S. Governmer 20402.	t Printing Office, Washington, D.C.	15. Price
Order From National Technical Information Service (NTIS), Springfield, VA. 22161	

NBS TECHNICAL PUBLICATIONS

PERIODICALS

JOURNAL OF RESEARCH—The Journal of Research of the National Bureau of Standards reports NBS research and development in those disciplines of the physical and engineering sciences in which the Bureau is active. These include physics, chemistry engineering, mathematics, and computer sciences. Papers cover a broad range of subjects, with major emphasis on measurement methodology and the basic technology underlying standardization. Also included from time to time are survey articles on topics closely related to the Bureau's technical and scientific programs. As a special service to subscribers each issue contains complete citations to all recent Bureau publications in both NBS and non-NBS media. Issued six times a year. Annual subscription. domestic 1818; foreign 522.50. Single copy, \$4.25 domestic; \$5.35 foreign.

NONPERIODICALS

Monographs—Major contributions to the technical literature on various subjects related to the Bureau's scientific and technical activities.

Handbooks—Recommended codes of engineering and industrial practice (including safety codes) developed in cooperation with interested industries, professional organizations, and regulatory bodies.

Special Publications—Include proceedings of conferences sponsored by NBS, NBS annual reports, and other special publications appropriate to this grouping such as wall charts, pocket cards, and bibliographies.

Applied Mathematics Series—Mathematical tables, manuals, and studies of special interest to physicists, engineers, chemists, biologists, mathematicians, computer programmers, and others engaged in scientific and technical work.

National Standard Reference Data Series—Provides quantitative data on the physical and chemical properties of materials, compiled from the world's literature and critically evaluated. Developed under a worldwide program coordinated by NBS under the authority of the National Standard Data Act (Public Law 90-396).

NOTE: The principal publication outlet for the foregoing data is the Journal of Physical and Chemical Reference Data (JPCRD) published quarterly for NBS by the American Chemical Society (ACS) and the American Institute of Physics (AIP). Subscriptions, reprints, and supplements available from ACS, 1155 Sixteenth St., NW, Washington, DC 20056. Building Science Series—Disseminates technical information developed at the Bureau on building materials, components, systems, and whole structures. The series presents research results, test methods, and performance criteria related to the structural and environmental functions and the durability and safety characteristics of building elements and systems.

Technical Notes—Studies or reports which are complete in themselves but restrictive in their treatment of a subject. Analogous to monographs but not so comprehensive in scope or definitive in treatment of the subject area. Often serve as a vehicle for final reports of work performed at NBS under the sponsorship of other government agencies.

Voluntary Product Standards—Developed under procedures published by the Department of Commerce in Part 10, Title 15, of the Code of Federal Regulations. The standards establish nationally recognized requirements for products, and provide all concerned interests with a basis for common understanding of the characteristics of the products. NBS administers this program as a supplement to the activities of the private sector standardizing organizations.

Consumer Information Series—Practical information, based on NBS research and experience, covering areas of interest to the consumer. Easily understandable language and illustrations provide useful background knowledge for shopping in today's technological marketplace.

Order the above NBS publications from: Superintendent of Documents, Government Printing Office, Washington, DC 20402.

Order the following NBS publications—FIPS and NBSIR's—from the National Technical Information Services, Springfield, VA 22161.

Federal Information Processing Standards Publications (FIPS PUB)—Publications in this series collectively constitute the Federal Information Processing Standards Register serves as the official source of information in the Federal Government regarding standards issued by NBS pursuant to the Federal Property and Administrative Services Act of 1949 as amended, Public Law 89-306 (79 Stat. 1127), and as implemented by Executive Order 11717 (38 FR 12315, dated May 11, 1973) and Part 6 of Title 15 CFR (Code of Federal Regulations).

NBS Interagency Reports (NBSIR)—A special series of interim or final reports on work performed by NBS for outside sponsors (both government and non-government). In general, initial distribution is handled by the sponsor; public distribution is by the National Technical Information Services, Springfield, VA 22161, in paper copy or microfiche form.

U.S. DEPARTMENT OF COMMERCE National Bureau of Standards Washington, DC 20234

OFFICIAL BUSINESS

Panelty for Private Use, \$300

POSTAGE AND FEES PAID U.S. DEPARTMENT OF COMMERCE COM-215

FIRST CLASS