NDN Technical Report NDN-0074. http://named-data.net/techreports.html
Revision 1: May, 2021

NSC — Named Service Calls, or a Remote Procedure Call for NDN

Daniel Meirovitch, Lixia Zhang
UCLA Computer Science Department

Abstract

Named Data Networking (NDN) is a potential new internet
architecture which has gained momentum due to its ability to
enable applications in scenarios where the current IP net-
works have struggled. Among these scenarios, mobile ad-hoc
networks or delay tolerant networks. Existing applications
and systems make heavy use of remote procedure calls, or
RPCs, to enable more complex applications. Designing a
framework for remote code execution in NDN could ease de-
velopment of applications and systems in NDN. Named Ser-
vice Call (NSC) answers how to securely process client re-
quests, and timely inform the client of their results within an
NDN architecture.

1. Introduction

Today’s internet has a variety of content types. A large share
of today’s most popular web applications relies on dynamic
content generated by executing code on a remote machine.
Remote Procedure Calls (RPC) are not new technology and
have been used since the beginning stages of the internet.
RPC began by using XML to encode communications and
provide semantics so that code can executed regardless of the
operating system. XML is very verbose compared to JSON,
so eventually, JSON became the common way to encode
RPC communication. Many web applications began to use
RESTful frameworks which borrow many of the RPC con-
cepts for executing remote code with a given set of parame-
ters.

REST [1] was the dominant paradigm for a long time, but
now gRPC [2] and GraphQL [3] are additional new ways to
think of remote code execution. gRPC improves performance
by using protocol buffers and binary encoding, along with
making it easier for developers by machine-generating client
libraries. GraphQL adds more flexibility to resource requests
based on relationship structures. These techniques have be-
come essential for developing applications and systems.

NSC is a proposal to bring a Remote Code Execution frame-
work to NDN. NSC considers potential use cases for complex
NDN applications and answers how they can securely and ef-
fectively communicate between machines.

The main use case considered will involve smart cameras
placed around a city which share videos with a central cluster
for analysis. This use case is common in major cities for sur-
veillance and traffic checking. We investigate this use case
because it stresses some of the main challenges of remote
code execution. Specifically:

e How to protect the remote executors from pro-
cessing garbage data which wastes CPU and
Memory resources.

e How to protect the sensitive input and results (video
frame data and any ML Detection).

e Sending video frame data as input is a network in-
tensive task.

e It may take the central cluster a variable amount of
time to process certain requests.

o The central cluster would require many machines
listening and processing requests in parallel due to
the data requirements.

These security, parallelism, and functional challenges are
common to many applications but do not have a standard way
of being handled in NDN currently. NSC combines learning
from previous research to propose a remote code execution
framework that considers these challenges.

The primary contributions are in the NSC design. NSC’s first
contribution is to create a communication pattern for sharing
input and retrieving remote results, which relies only on com-
munication tools already implemented in NFD. NSC uses
three Interest-Data transactions to match an overall request-
response pattern. The overall pattern will be familiar to most
other developers and is highly compatible with existing NDN
networks.

The proposal also secures the communication pattern to pro-
tect both sides of the transaction. Signed Interests at the start
protect the system from any abusers, and encrypted data pro-
tect the sensitive input and results. Both security techniques
are already common in NDN, to ease implementing NSC into
any NDN applications.

NSC is also inspired by previous works and proposes a mech-
anism for handling results that take a long time to compute.
Some applications require long-lived code execution, and
these requests may not fit well into typical network timeouts.
In NSC, the Caller is informed of any delays and where/when
to retry for data. This application-level solution is preferable
to network-level adjustments.

Finally, we must consider use cases that require complex and
distributed application architectures. So, we discuss how an
application can work with NSC to provide fault tolerance for
remote code execution.

We also implemented a smaller sample use case, which sends
credit card numbers for verification, as a proof of concept for
the NSC framework.

Throughout this paper, we will examine these contributions.
In Section 2, we will look at the motivation and specific chal-
lenges that any NDN Remote Code Execution framework
must answer. In Section 3, we will review previous works in
this area that have informed NSC. In Section 4, we will dis-
cuss the NSC design details. Then in Section 5 and 6, we will
review the current and future states, and finally conclude in
Section 7.

2. Motivation

Remote Code Execution is a critical feature for new applica-
tions and systems, but NDN does not currently have a stand-
ardized model for how to execute remote code. Different ap-
plications or systems developed with NDN define their way
to communicate. The lack of standardized solutions makes it
difficult for software engineers new to NDN, since they may
not have the expertise necessary to create an application and
communication patterns. Proposing a flexible model for re-
mote code execution in NDN, using Named Service Calls
(NSC), may open future use cases.

In traditional point-to-point IP networks, RPC works using
the request-response communication pattern. shown in Fig-
ure 1. The client establishes a bidirectional communication
channel to a server. Then the client will send all the input to
the server. The server acknowledges receipt, and then the cli-
ent will wait until the server eventually sends the results.

Client Server
—+ bind_service
setup_srvinfo —+ 4 get_request
=1 (remote procedure is executed)
reply - put_reply
teardown_srv - 2k -+ get_request
-+ release_service

Figure 1: Current [P-Based RPC Model [4]

There are some variations in RPC behavior in IP networks.
Some tasks which take a long execution time, such as VM
creation on Cloud Services, may only return a task handle at
the start. The user must periodically check the status of their
original request using the task handle. This flow has useful
applications which informs our NSC design in Section 4.

To implement RPC in NDN, a naive solution would make the
RPC request an Interest packet, and the response a Data

packet. However, data is generated dynamically based on the
request parameters and that creates new challenges for NDN.
These challenges were presented earlier in the Introduction
and can be generalized as:

1. Servers may handle computationally intensive tasks,
so they need to protect themselves from rogue cli-
ents.

2. Clients and Servers need to protect sensitive data,
such as inputs and results, from unauthorized access.

3. Clients need to rely on Servers without worrying
about the internal architecture details that they may
use to provide high availability.

4. Clients need to send potentially large amounts of in-
put data, but NDN interests need to be small.

5. Clients need to know how and when to retrieve their
results, without a reliable bidirectional channel like
TCP.

Our NSC Proposal attempts to answer each of these chal-
lenges.

3. Related Work

There have been previous works that tackled the need for re-
mote code execution frameworks in NDN. They attempted to
answer some of the same questions outlined above, and the
NSC design is heavily inspired by their solutions.

3.1. RICE — Remote Method Invocation in ICN

RICE [5] proposed a general framework for ICN architec-
tures that answers the challenges in Section 2.

e Servers authenticate Clients with a 4-way hand-
shake. During this handshake, they exchange secu-
rity information (such as passwords or keys) to fa-
cilitate encryption. After, Clients will possess a se-
curity token that they can use to invoke remote
functions without repeating the handshake.

e Instead of sending input parameters directly in an
Interest, Clients will publish their input parameters.
Then as part of the 4-way handshake, Servers can
learn how to retrieve the Client’s input.

e At the end of a function invocation, Servers return a
“thunk” to the Client. The thunk includes a name
and a time estimate for the Client to retrieve the re-
sult. If the time estimate is incorrect, a revised esti-
mate is sent back to the Client.

3.2. DNMP - Secure Network Measurement Framework for
NDN

DNMP is part of a larger effort to create a set of libraries that
could be used for distributed measurement of NDN network
devices [6]. A publisher-subscriber (pub/sub) protocol is used
to send commands to network nodes and receive

measurements back. The prototype DNMP answered the
challenges by:

e Signing all commands and data while using NDN
Trust Schemas to establish the security model.

e Clients publish RPC Requests as data, and any
Server will learn of this new RPC Request via an
NDN Sync protocol. In this case, they use the syncps
protocol.

e After Clients publish RPC Parameters as named
data, they subscribe to a result name. All Servers
publish their results to the result name and the Client
retrieves the results when ready. Clients learn of the
results via an NDN Sync Protocol.

3.3. Lessons from Previous Works

Each previous work offers a different solution to the chal-
lenge of retrieving dynamic content, but there are valuable
lessons to learn.

First, the Client should publish input parameters as named
data, instead of directly including those parameters in the In-
terest packet. It is necessary to keep Interest packets below
the 8 kb max size, and large input parameters may affect In-
terest packet size. As another benefit, publishing input pa-
rameters makes them auditable and reviewable later.

The second, is that NDN security primitives are the preferred
means for securing remote code execution. Trust Schemas
and Signed Interests offer great flexibility along with their
data security guarantees. There is a potential performance
loss compared to token-based approaches like RICE [5].
However, DNMP [6] showed the ease of use for NDN prim-
itives, which is important for adoption by other application
and system engineers.

The third is how the use cases can influence communication
patterns. In DNMP, NDN Sync Protocols are used to update
Clients and Servers about new data or commands for remote
execution. However, the DNMP use case is specific to net-
work management where nodes publish a command for all
other subscribed nodes to execute. NSC needs to handle the
use case where Clients only need a single result from a single
Server. NSC also needs to be prepared for other scenarios
such as a significantly distanced Client and Server (edge cam-
era to central cluster) or a high number of Clients (edge cam-
eras placed throughout the city). These scenarios would not
be able to use a sync group, like in DNMP. Because current
sync protocols are limited by how fast and far they can prop-
agate updates.

So, in the absence of a sync protocol, the Client needs some
way to learn when the Server results are finished. Whether
due to difficult tasks or Server compute failures. Network
layer solutions, such as extending the Interest lifetime, can

cause severe performance degradation. Interests do not guar-
antee reliable delivery, so a lost Interest with a 60 second life-
time would not be detected for 60 seconds. Instead, NSC
needs a dynamic system to keep the Client informed of the
results processing.

4. Design

This section will review each aspect of NSC’s design. Spe-
cifically, we will how examine the design attempts to solve
the main challenges of remote code execution in NDN.

4.1. NSC Design Assumptions

NSC makes several design assumptions which are common
to other NDN applications. The first is that there may be a
distributed and redundant application architecture. Clients
may be far away from the servers, and there may be many
servers listening for requests. So, clients should be able to
work with any server.

Considering the distributed application architecture, NSC
also assumes that all servers are reachable. The servers make
routing announcements, which creates routes for clients to
reach them via Interest anycasts. If servers control their own
reachability, that means they can potentially share a name.

Finally, NSC assumes that all entities in the system have gone
through the necessary NDN bootstrapping process. That
means all entities have obtained trust anchors, their own cer-
tificate, and security policies as trust schemas. These are all
necessary components of any NDN application, and NSC
will rely on them for its own security assumptions.

4.1. NSC Overall Communication Design

The NSC traffic flow is visualized in Figure 2. We rename
the Client to NSC Caller and Server to NSC Executor, since
at different moments they switch roles in the traditional NDN
definition of Client and Server. Each number and description
below correspond to a numbered step in Figure 2.

1. The Client (NSC Caller) sends a notification interest
to the Server (NSC Executor).

a. This notification interest is signed to prove
identity.

b. The notification interest contains an Inter-
est parameter for the location name where
the Input Parameters can be retrieved.

c. The notification interest can optionally in-
clude a forwarding hint. In case the Input
Parameter location prefix is not well
known.

2. The Server (NSC Executor) responds and acknowl-
edges the notification interest. This response in-
cludes:

a. The name where the result will be stored.

CALLER L

b. An estimated time when the results will be
available.

The Server (NSC Executor) sends an interest to re-
trieve the input parameters based on the name pro-
vided in step 1b and receives the data back.
The Client (NSC Caller) sends an interest for re-
trieving the result data.
If the data is not yet ready, the Server (NSC Execu-
tor) responds with the name where to retrieve the re-
sult from and with new timing estimates.

These steps meet our goals, and we will examine each one in
more detail.

4.2. NSC Security Design

NSC’s security design mainly aims to secure Servers and Cli-
ents from malicious attacks. The main security challenges
that were identified earlier are restated below:

1.

Executors may handle computationally intensive
tasks, so they need to protect themselves from rogue
Clients.

Callers and Executors need to protect sensitive data
from unauthorized access.

One of the lessons learned from the DNMP is that NDN’s
security primitives, such as trust schemas and signed packets,

Signed Notification Interest
To: /executor/function
Interest Parameters:

(Optional) Forwarding Hint
Digital Signature with Caller Identity

Input parameter location: /caller/function/inputs

EXECUTOR

Data Contents:

2. Data - Ack of Notification Interest

Authorized or Rejected
Final Result Location: /executor/function/results/1

3. Interest for Input Parameters

Data containing input to NSC Function

4. Interest for Results
To: Result location provided in Step 2
/executor/function/results/1

Data Contents:

5. Data—Results or Delay Code

Status: Ready, Error, Delay

(If Ready) — Results

(If Delay) — New Location and estimated time for
next result retrieval attempt
/executor/function/results/1

Figure 2: NSC Proposed Design and Communication Order

4

are easy to use for application developers [6] [7]. So, NSC
addresses these challenges with these techniques.

Without security, an executor can be overwhelmed by com-
puting garbage interests. For example, in our use case, unau-
thorized parties could send executors a high number of fake
interests of video frames for processing. The central cluster
would use all available resources and could no longer process
valid data traffic.

So, to protect the Executor’s compute resources, NSC re-
quires the first interest to be signed. The Executor then veri-
fies the source of the request before any function execution.

The next issue is about protecting the actual data. In our use
case, video frame data could include private information such
as personal movement data. Similarly, results may contain
sensitive information. So, we need to protect the data when
published at the NSC Caller and Executor for retrieval. Oth-
erwise, any malicious actor scanning names or intercepting
traffic along the forwarding plane could have unauthorized
access to the data.

As a solution, NSC encrypts all data exchanges. The Caller
encrypts the input data in step 1B before publishing. The Ex-
ecutor encrypts its result data in step 2b. So, the encrypted
data is secure for the entire set of transactions.

Encryption can be handled in different ways depending on
the use case. NSC supports more complex use cases via
Named Access Control (NAC) [8]. These use cases can in-
volve multiple callers and executors, in comparison to RICE
which only supports a single caller and executor [5]. For ex-
ample, NAC could make raw video frames only accessible to
administrators, while the analytics results could be viewable
by all traffic and law enforcement personnel.

The application owners who want to secure their data will
need to provide a way for users and NSC Callers to enroll
themselves into the service. This enrollment process includes
out-of-band bootstrapping of trust anchors and the distribu-
tion of trust schemas. At this point, the NSC Executors would
be able to authenticate the NSC Caller’s initial Signed Inter-
est. This is like enrollment and setup procedures that need to
be done today for IP-based RPC clients. Such as Point of Sale
devices at retail stores, or Cloud API Clients which require
configuring identities and trust anchors. The exact trust
schema used, like in most NDN applications, would then be
variable on the application.

This security design addresses our challenges, although per-
formance may be a concern. Verifying signed interests and
their intermediate trust anchors can take time. However, this
is not a unique problem for NSC, and all NDN applications
should consider their trust anchors. In exchange, developers
can easily incorporate NSC into their applications. Many of
these security steps, such as encrypting data at rest,

enrollment, and trust-schemas, are required anyways for a se-
cure application. The new security challenge is protecting the
Executor's compute resources. NSC uses signed interests, an
already existing feature in NDN, to meet this challenge.

4.3. NSC Input and Results Location Design
The next two questions that the NSC design must answer are:

1. Callers need to send potentially large amounts of in-
put data, but NDN interests need to be small.

2. Callers need to know how and when to retrieve their
requested data, without a reliable bidirectional chan-
nel like TCP.

NSC again uses NDN fundamentals, namely Interest param-
eters, to carry this information.

The Caller first must publish their input parameters so they
can be retrieved. Then they begin step 1 of the communica-
tion process and notify a given function hosted by the Server
to begin executing. The Caller’s signed notification interest
will carry with it, the name of the published input parameters
created just before. We choose to carry this information as an
Interest parameter because its small data size will not have a
large impact on the NDN forwarding plane. And the Caller is
the one in the best position to alert the Executor to the loca-
tion of the input parameters. An example of the content car-
ried in this Interest Parameter can be seen in Figure 3. The
exact formatting can vary depending on application choice.

Next, the Executor can use the information provided in the
notification Interest to send its own interest and retrieve the
parameters in step 2. At this point, the Executor will have al-
ready allocated a name for the final published results. The
Executor will attach the final published result name as an In-
terest Parameter as well, as described in step 2.

Finally, the Caller can use the provided result name to initiate
step 3 and retrieve the function results. In the next section, we
will explore what happens if the results are not ready
quickly.

The data names may not be in the NDN Forwarding Plane's
FIB. So, in that case, a Forwarding-Hint can be included in
the parameter field. The Forwarding-Hint is separated by a
human-readable separator name which is surrounded by extra
‘/’. The extra /> delimit the separator because two // in a row
is an invalid name. So, our choice of separator names cannot
be confused for any application parameters, and do not acci-
dentally limit the application’s namespace options. The For-
warding Hint in a more distributed use case could be an edge
gateway for the Caller or Executor [9].

Ultimately both Caller and Executor are responsible for in-
forming the other about the next name in the sequence. Only

after receiving the Interest carrying the relevant parameters,
can they move on to the next step in the NSC sequence.

Interest Parameter

/caller/inputs/1//loc-to-hint//consumerEdge

) I ’
\'/ \ |‘
/caller/inputs/1 H /_/ /callerEdge
Input Location \/ Forwarding Hint
/loc-to-hint/
Separator

Figure 3: Interest Parameter Example

4.4. NSC Result Retrieval Timing

Most NDN applications today serve static content or content
generated within a single Interest lifetime. However, some
application requests may take much longer. For example, our
use case requires sending a set of video frames for object de-
tection analysis. NSC’s design then must consider results that
are ready quickly and results that take extra time.

The first case we consider is the simpler one, where the NSC
results are ready within the lifetime of a single interest. In that
case, we do not want to add a delay. So, the Executor will

is lost, no node in the forwarding plane can recover until the
timeout expires.

NSC uses a dynamic system to handle delayed responses,
similar to RICE [4]. The Executor processes the result in a
separate thread, and the Executor can check if the results are
ready before the Caller Interest timeout expires. If not, the
Executor will send a message indicating this state and the
next location for data retrieval. The Executor and Caller can
iterate as many times as required until the result is finally
ready. NSC reuses the same name for the result data to main-
tain the idempotence of a single request.

The current implementation offers a naive solution to notify
the Caller to retry every 4 seconds if the result is not ready.
However, a more complex application using NSC could esti-
mate itself and provide more accurate wait times to the Caller.
This timing estimate needs to come from the application code
and may require significant statistics on past application be-
havior. The executor may even need to communicate with an-
other system to retrieve a timing estimate. However, even
with a simple timer that stays constant at 4 seconds (the de-
fault Interest timeout), we do not expect heavy congestion.
That is because the Interest packet itself is small and does not
contain any extra information at this stage in communication.

The application-level code is responsible for sending the de-
lay message since the application is the cause of the delay.
That puts the application in the best position to handle the
issue. An example delay message is shown in Figure 4 that
includes the key requirements: the delay status code (NOT-
READY), the retrieval location, and the next retry time.

Delayed Results Message

publish the named location in Step 2 and begin processing the { NOT-READY//status-to-loc//executor/function/result/1//loc-to-time//4s]
input parameters as soon as it receives a data response. The ‘ T T T I

|
. . e

Caller sends their Interest in step 3 for the result, and the Ex- |
ecutor responds as soon as the result is ready.

A benefit of publishing the result location ahead of time in
step 2, is that the Caller will not have any extra waiting before
moving from step 2 to step 3. The Caller can send an interest
immediately, and it will not be rejected. The Executor is al-
ready listening for that result name, while the Executor pro-
cesses input data in a separate thread. So the Caller will re-
ceive results when they are ready and within the lifespan of
the interest timeout, which defaults to 4 seconds.

The second case we consider is when the result data is not
ready in time. The 4-second default timeout can be too short
for processing large datasets. A simple solution would be to
increase the Interest lifetime to a longer value. This may be
set for specific transactions in an application that expects long
processing times, or at the network level for all Interests.
However, this naive solution is risky. Primarily, if the Interest

\ Y ‘ "/ Y \“ ‘
NOT-READY H /_// [/executor/.../result/1] \ H

Retry Time

Status \ Result Location \[

/status-to-loc/ /loc-to-time/

Separator Separator

Figure 4: Delayed Results Message

4.5. NSC Scalability Design

NSC needs to assume that application and system engineers
will want to create scaled-out and highly available systems
for processing requests. Specifically, there may be many
Executors listening in parallel to a shared name, some
Executors may fail intermittently, and some tasks may have

CALLER

EXECUTOR

e 4. Interest for Results

To: Result location provided in Step 2
/executor/function/results/1

Data Contents:
Status: Delay

4 seconds

5. Data—Delay Code

Result name and estimated time
Jexecutor/function/results/1

4. (Cont.) Interest to Delay Location
Jexecutor/function/results/1

4 seconds

5. (Cont.) Data Delay
Result name and Time:
Jexecutor/function/results/1

4. (Cont.) Interest to Delay Location
Jexecutor/function/results/1

5. (Cont.) Data Delay
Now Final Results

Figure 5: NSC Delay Handling for Results

nternal dependencies. Many internal architectures can satisfy
these requirements, but the main impact to NSC is that we
cannot assume a single Caller is speaking to a single Executor
for the entire sequence.

To accommodate a scaled-out Executor infrastructure, NSC
handles failures by assuming each transaction in the overall
sequence is atomic. So once a transaction is deemed success-
ful, that state is stored, and the Caller will only retry the cur-
rent step as needed. We define a transaction as a single re-
quest-response at the application layer, which requires an

Interest-Data exchange at the network layer. NSC has a total
of three transactions as seen in Figure 6.

The below steps show how it would look in our sample use-
case of video frame analysis:

1. The Caller initiates the NSC sequence by sending a
Signed Notification Interest to a shared name, man-
aged by multiple Executors.

2. One Executor processes the Interest and responds
with a timing estimate plus result location if the In-
terest is authorized. Internally the Executor adds the

details of this task to a task queue to be picked up by
itself or any other Executor later.

At this point, the first atomic transaction is complete. The
Caller knows that the central cluster has received its request,
and another node can pick up the sequence if that single Ex-
ecutor fails. All the necessary data has been received from the
Signed Notification Interest.

The next transaction is to retrieve the input data:

3. An Executor picks up the task from the queue and
sends a request to the Caller to retrieve the Input pa-
rameter.

4. The Caller responds with the input parameters, and
the Executor saves the parameters to a distributed
data store. It will then add a task to a pool to process
the input parameters.

At this point, the second atomic transaction is complete If
there is a network failure and the Executor never retrieves the
input parameters within the Interest lifetime, then it can keep
retrying. If a single Executor fails after sending the Interest,
then the task is never marked as completed so another Exec-
utor can attempt the same task and retrieve the input.

The final transaction is to retrieve the result.

5. The Caller sends an Interest to the location provided
by the Executor in the first transaction with a given
Interest lifetime.

Atomic Transaction1
Notify Executors
Named function to execute
Where to fetch input
Receive Result Location

6. The Executor picks up the task from the pool and
retrieves the parameters from the datastore. It re-
sponds to the pending Interest as soon as possible,
or with new locations and time estimates if the re-
sults are not yet ready.

If this transaction is successful, then NSC completes. If there
is a failure, we can safely repeat this transaction knowing that
the only step missing is for the Caller to retrieve the result
data.

4.6. NSC Naming Design

Naming design is normally application specific, but NSC
proposes guidelines to simplify an implementation. NSC re-
quires at least 2 parties and 3 namespaces:

e Executor

o Function Name

o Result Namespace (includes Delays)
e Client

o Input Namespace

To simplify implementation, both Executor namespaces
share a prefix. The Result Namespace also includes where
delayed data is stored.

The next challenge is that each input and result need to be
named with a unique identifier. The current design and im-
plementation use a monotonically increasing number for both
input and results. For high-scale systems though, that may be
an issue once it reaches large number data names. So, an

D

Central Cluster

Atomic Transaction 2
Fetch Input Parameters

A@

Atomic Transaction3

Datastores
Task Queues

Retrieve Results
Handle delays as necessary

and Pools

Executors

Figure 6: NSC Scalability Design

8

advanced implementation may breakdown the namespace by
day, hour, or Client to limit name overlap and make it easier
to generate a unique identifier.

So, the current design uses the following namespaces:
e Executor
o /Executor/function
o /Executor/function/results/1
e Caller

o /Caller/function/inputs/1

5. Current Implementation

NSC was implemented using ndn-cxx [10] on an Ubuntu
18.04 Virtual Machine. A demo, featuring a credit-card
checking function, shows NSC being used in a simple appli-
cation.

The Caller emulates a Point-of-Sale (POS) device, which
needs to validate credit-card numbers by sending them to an
Executor. There is also an Executor which artificially adds a
10 second delay for all results, to simulate a long-running
process.

The demo application makes the following simplifications:

1. The Caller and Executor identities and their trust an-
chor have been manually signed and bootstrapped
on to the test device.

2. There are no Forwarding Hints used since each
Caller and Executors knows how to navigate to the
others namespace.

3. There is no timer estimation for results, so the Exec-
utor delays by a constant amount of 4 seconds each
iteration.

All the implementation code can be accessed at:
https://github.com/UCLAzlo/NDN_NSC

6. Future Goals

We believe NSC at this stage provides a framework for the
most common remote code execution cases. However, there
are many other use cases and NSC can be improved to meet
other requirements.

6.1. Future Design Goals

The Signed Interest v0.3 spec will make the Interest Signa-
ture a separate TLV-Value, which means that it could be ac-
cessed and potentially stored to check against future transac-
tions. That would mean that only the original Client could
request their specific results, which enforces stronger pri-
vacy.

New authentication mechanisms, like EL PASSO, allows
asynchronous and privacy-preserving authentication which
might be useful for NSC as well [11]. That will help preserve

the security of NSC while maintaining Client privacy, which
is a desired feature in NDN applications.

For future performance improvements, it would be ideal if
NSC had alternative communication patterns for smaller re-
quests. If it is known that both the input parameter size and
code execution time is small, then it would be preferable to
have a single Interest-Data transaction which sends the input
and retrieves the result at the same time. In select situations
it would still be generally reliable and much more perfor-
mant. This will require more measurements to detect when
these performance improvements can be made reliably, and
more communication infrastructure for how to fall back to the
current NSC proposal when needed.

6.2. Future Implementation Goals

The current NSC implementation demo does not use encryp-
tion, and it would be beneficial for others if NSC already had
encryption using NAC built into the example. Similarly, the
current example assumes that identities and trust anchors are
bootstrapped ahead of time, but it would be good to use some
of the NDN configuration research for an automated enroll-
ment example.

Finally, NSC would need to be converted into a standardized
library to improve adoption. The current implementation pro-
vides a framework and design but takes significant work to
implement into an application. Organizing NSC into a set of
importable library functions would contribute more to the
growing NDN codebase.

One way to accelerate NSC’s usage is by fully implementing
the example into the new NDN Python language. By having
a CXX and Python use-case, NSC would attract a broader au-
dience of application developers.

7. NDN Development — Lessons Learned

The demo implementation for NSC was our first experience
developing for NDN with ndn-cxx. During the implementa-
tion, we learned several lessons.

The most valuable tools for developing NSC were the Cli-
ent/Server examples included in ndn-cxx itself. The five lec-
tures in 217B were also critical to become familiar with NDN
development. Especially the lectures that showed the security
model, and the general use of the ndn-cxx continuation pass-
ing style. Sharing the tempsensor/aircon/controller example
on GitHub was another great reference for a simple NDN ap-
plication. We believe that simple NDN applications like this
should be formally documented and included with the built-
in examples, as an aid to future application developers.

The first place we struggled, was with the Signed Interests.
The Signed Interest spec on the NDN website described the
latest spec version of Signed Interests v0.3, which includes
the signature as a separate TLV-Value. However, we saw a
different behavior in practice with our ndn-cxx application

[12]. Specifically, that the signature was being appended to
the Interest name itself, which meant that we had to include
the signature in the Data response name as well. This mis-
match between the NDN documentation and ndn-cxx caused
some confusion. Fortunately, help from another NDN re-
searcher, Zhiyi Zhang, resolved this quickly.

The next struggle we had was using the ndn-cxx scheduler
that comes from the boost asio event handler. The scheduler
is required so the Server and Client respond to events asyn-
chronously. There is an example of this in the ndn-cxx Server
example, so we thought it would be simple to implement.
However, we immediately had runtime crashes. We deter-
mined the cause was that our variables were declared in a dif-
ferent order. We were not familiar with the Boost library, and
it did not seem obvious from the code or documentation that
the declaration order of the Face and Scheduler should mat-
ter. Even when both objects are initialized later. We believe
a small comment on the ndn-cxx example would be helpful
to avoid this.

The last struggle was implementing multi-threaded code for
results processing. This is partially due to our own lack of
knowledge about the Boost Library that is used throughout
ndn-cxx, but we ran into issues integrating Boost and C++
STL functions. Specifically, the Boost asio event handler was
not compatible with STL asynchronous functions like prom-
ises. So, any multi-threaded code using the STL version of
promises, would block instead of running in parallel. We im-
plemented a fix by using the equivalent Boost function in all
cases. Based on our experience, we do not think this requires
separate documentation, but learning Boost is part of the
learning curve for developing with ndn-cxx.

Our last comment is that the ndn-cxx documentation [13] was
comprehensive and appreciated. The one area for improve-
ment we can see is to provide more example uses for func-
tions, like in other language libraries. We created many short
programs to become more familiar with the proper usage of
functions and type casting, and we believe others may have
similar development questions.

8. Conclusion

Named Service Call, or NSC, provides a framework for Cli-
ents to execute code remotely on a given Server. NSC pro-
vides a security model to authenticate Clients, a method for
sharing input parameter data and result data, and a dynamic
system to allow Clients to correctly adjust for requests which
take a long time to process. NSC’s demo implementation
proved that the idea is also technically feasible, even if there
are still more steps required to make NSC a plugin type li-
brary for all applications.

NSC is theoretically slower than RICE, which created a hand-
shake mechanism with passwords. And NSC is also slower
than the secure DNMP framework which discovers new input

10

data with an NDN Sync protocol. However, NSC is more
generalized than both other frameworks, and works for a
larger number of applications, and can be easy to adopt by
new NDN developers.

9. References

[1] Fielding, R. T. (2000). Architectural Styles and the De-
sign of Network-based Software Architectures.
https://www.ics.uci.edu/~fielding/pubs/dissertation/top.htm.

[2] gRPC. (n.d.). https://grpc.io/.
[3] GraphQL. (n.d.). https://graphql.org/.

[4] Rosenband, D. L. (1997, April 18). A Remote Procedure
Call Library. http://web.mit.edu/6.033/1997/reports/dp1-
danlief.html.

[5] Michat Krél, Karim Habak, David Oran, Dirk Kutscher,
and Ioannis Psaras. 2018. RICE: Remote Method Invocation
in ICN. In ICN ’18: 5th ACM Conference on Information-
Centric Networking (ICN *18), September 21-23, 2018, Bos-
ton, MA, USA. ACM, New York, NY, USA, 11 pages.
https://doi.org/10. 1145/3267955.3267956

[6] Kathleen Nichols. 2019. Lessons Learned Building a Se-
cure Network Measurement Framework using Basic NDN. In
6th ACM Conference on InformationCentric Networking
(ICN °19), September 24-26, 2019, Macao, China. ACM,
New York, NY, USA, 11 pages.
https://doi.org/10.1145/3357150.3357397

[7] Yingdi Yu, Alexander Afanasyev, David Clark, ke claffy,
Van Jacobson, Lixia Zhang, Schematizing Trust in Named
Data Networking. 2015 ACM

[8] Zhang, Z., Yu, Y., Ramani, S.j., Afanasyev, A., & Zhang,
L. (2018). NAC: Automating access control via Named Da-
ta. In MILCOM 2018-2018 IEEE Military Com-munications
Conference (MILCOM) (pp. 626—633).

[9] Yu Zhang, Zhongda Xia, Alexander Afanasyev, Lixia
Zhang. A Note on Routing Scalability in Named Data Net-
working. 2019 ICC

[10] ndn-cxx https://github.com/named-data/ndn-cxx

[11] Zhang, Z., Krol, M., Son-nino, A., Zhang, L., &
Rivi\ere, E. (2021). EL PASSO: Efficient and Lightweight
Privacy-preserving Single Sign On. Proceedings on Privacy
Enhancing Technolo-gies, 2021(2), 70-87.

[12] ndn signed interest documentation https://named-
data.net/doc/ndn-cxx/current/specs/signed-interest.html

[13] ndn-cxx: NDN C++ Library with eXperimental eXten-
sions 0.7.0 documentation https://named-data.net/doc/ndn-
cxx/0.7.0/doxygen/annotated.html

