Named Data Networking Technical Report NDN-0033.
Revision 1: July 2, 2015

NDN-RTC: Real-time videoconferencing
over Named Data Networking

Peter Gusev
UCLA REMAP
peter@remap.ucla.edu

ABSTRACT

NDN-RTC is a real-time videoconferencing library that em-
ploys Named Data Networking (NDN), a proposed future
Internet architecture. It was designed to provide an end-
user experience similar to Skype or Google Hangouts, while
taking advantage of the NDN architecture’s name-based for-
warding, data signatures, caching, and request aggregation.
It demonstrates low-latency HD video communication over
NDN, without direct producer-consumer coordination, which
enables scaling to many consumers through the capacity of
the network rather than the capacity of the producer. Inter-
nally, NDN-RTC employs widely used open source compo-
nents, including the WebRTC library, VP9 codec, and Open-
FEC for forward error correction. This paper presents the
design, implementation in C++, and testing of NDN-RTC
on the NDN testbed, using a demonstration GUI conferenc-
ing application, NdnCon.

1. INTRODUCTION

Named Data Networking (NDN) is a proposed future In-
ternet architecture that shifts the “thin waist” of the Inter-
net from the current host-centered paradigm of IP to data-
centered communication. In NDN; every chunk of data has a
hierarchical name, which can include human-readable com-
ponents, and a cryptographic signature binding name, data,
and the key of the publisher. Consumers of data issue “In-
terest” packets for these “Data” packets by name. Signed,
named Data packets matching the Interest can be returned
by any node on the network, including routers. NDN’s in-
trinsic caching can be leveraged by content distribution ap-
plications and significantly help to reduce the load on data
publishers in multi-consumer scenarios [7]. Additionally, du-
plicate Interests for the same content can be aggregated in
routers, further reducing the load on those publishers and
the network. As a full discussion of NDN is outside the scope
of this paper, please see the publications on the project web-
sitd] including (20} [21} [9].

"http://named-data.net,

Jeff Burke
. UCLA REMAP
jourke@remap.ucla.edu

Efficient content distribution has long been a driver appli-
cation for NDN research, as well as for the broader field of
Information Centric Networking (ICN). Prior work in this
area, including our own, is covered briefly in Section[3] How-
ever, low-latency applications such as “real-time” videocon-
ferencing present particular design and implementation is-
sues that have not been widely explored in publicly avail-
able prototypes or the NDN and ICN literature. For exam-
ple, obtaining the “latest data” from a network with perva-
sive caching, without relying on direct consumer-producer
communication (which impacts scaling potential) and while
trying to keep application-level latency low, is a significant
challenge.

The NDN-RTC library was created to explore this arena
experimentally. It was designed, implemented, and eval-
uated to explore NDN’s potential for scalable low-latency
audio/video conferencing and “real-time” traffic more gen-
erally. The project is ongoing; this paper presents the cur-
rent design and initial evaluation. NDN-RTC provides ba-
sic functionality for publishing audio/video streams, and for
fetching these streams with low latency. This can be lever-
aged by desktop or web applications, such as the NdnCon
sample application, for establishing multi-party conferences.
The NDN network’s caching and Interest aggregation are
leveraged without architectural modification, with the NDN-
RTC library providing low-latency communication.

The project team has been working towards the goal of us-
ing NDN-RTC for all NDN project-related videoconferences
and meetings. To be useful for project communications from
the outset, reasonable CPU and bandwidth efficiency, echo
cancellation, and modern video coding performance were
needed. As a result, NDN-RTC is built in C++ for per-
formance, on top of the NDN Common Client Library [16].
It leverages the widely used WebRTC library, incorporating
its existing audio pipeline (including echo cancellation) and
video codec (VP9).

The remainder of this paper is organized as follows: Section
details main project goals. Section [3] covers background
and prior work. Section[d]describes the architecture of the li-
brary, designed namespace, data structures and algorithms.
Section [f] discusses implementation details. Section [6] evalu-
ates main outcomes. Finally, Section [7] provides a conclusion
and explains future work.

2. DESIGN OBJECTIVES

http://named-data.net

The NDN project uses application-driven research to explore
NDN’s affordances for modern applications and to refine the
architecture itself. Though based on what was learned from
the NDNVideo project |7], NDN-RTC is a clean slate design
with new goals. The initial objectives have been to explore
low-latency audio/video communication over NDN, and to
provide a working multi-party conferencing application that
can be used by NDN project team members across the exist-
ing NDN testbed. The team is also attempting to preserve
network-supported scalability by avoiding direct consumer-
producer communication (e.g., Interests that require new
Data to be generated by the producer for each request).

Over IP, low-latency audio/video conferencing applications
typically establish direct sender-driven peer-to-peer commu-
nication channels for media. However, existing solutions
scale poorly to high numbers of producers and consumers
without dedicated aggregation units. In these scenarios,
they face implementation challenges and inefficiencies re-
lated to the connection-based approach currently used in
most IP conferencing solutions.

The motivating concept of NDN-RTC as a research experi-
ment is to use it to investigate if “real-time” content publish-
ing can be achieved in a manner consistent with most other
NDN data dissemination applications, described as follows.

Bidirectional communication is achieved by having each node
participate as a publisher and consumer. The publisher 1)
acquires and transforms media data, 2) names, packetizes
and signs it, and 3) then passes the packets to an internal or
external component that responds to Interests received from
the “black box” of the NDN network with signed, named
data chunks. The consumer issues Interests with appropri-
ate names and selectors to that “black box” of the NDN
network, at the rate necessary to achieve its objectives and
be a good citizen of the network“l-as informed by the perfor-
mance of the network it observes in response to its requests.
It reassembles and renders them.

Once the namespace is defined, the publishing problem in
the above scenario (and in practice, at least so far) is rela-
tively straightforward. Complexity is at the the consumer,
which must determine what names to issue at what rate, to
get the best quality of experience for the application. For
real-time conferencing, this means low-latency access to the
freshest data that the “black box” of the NDN network can
deliver to a given consumer.

Conference setup and multi-party chat could be handled by

applying techniques such as those developed in ChronoChat [18].

Multiple bitrates for consumers to use in adaptation are ini-
tially handled by publishing in multiple namespaces corre-
sponding to multiple bitratesﬂ Based on this high-level con-
cept, specific design goals were developed:

e Low-latency audio/video communication. The li-

2While work on congestion control and defining proper be-
haviour of such applications on the network is underway, it
is future work with respect to this paper.

3 Adaptive solutions based on scalable coding present some
additional challenges that remain as future work.

brary should be capable of maintaining low-latency (ap-
prox. 250-750ms) communication for audio and video,
similar to consumer videoconferencing applications, such
as Microsoft Skype, Cisco WebEx and Google Hangouts.

e Adaptive bitrate. The library and namespace should
support multiple bitrates (from which consumers will se-
lect) and lay the groundwork for research on adaptive
schemes in the future.

e Multi-party conferencing. Publishing and fetching
several media streams simultaneously should be straight-
forward.

e Passive consumer & cacheability. There should be
no explicit negotiation or coordination between publisher
and consumer for the media transmission itself, to allow
future explorations of highly scalable consumers to pro-
ducer ratios.

e Data verification. The library should provide content
verification using existing NDN signature capabilities.

e Encryption-based access control. While not imple-
mented in the current version, nothing should preclude
the addition of encryption-based access control in the fu-
ture, including the use of broadcast and group encryption
schemes.

3. BACKGROUND AND PRIOR WORK

Most video streaming work on ICN has focused on stream-
ing playout with buffers larger than what can be used for
videoconferencing. For example, NDNVideo was success-
fully tested and deployed over NDN [7], scaling to approx-
imately one thousand consumers from a single, straight-
forward publisher over plain-vanilla NDN. [6] The project
focused on developing random-access pre-recorded and live
video for location-based and mixed reality applications. Au-
dio and video content, sliced into data chunks, was pub-
lished into an NDN repository for online and offline ac-
cess. The data chunks were named sequentially according
to NDN naming conventions [19]. Additionally, the applica-
tion namespace provided a time-based index which mapped
individual data chunks to the media stream timeline and al-
lowed the consumer to seek easily inside the stream. Even
though the project worked well for live and pre-recorded me-
dia streaming, it did not meet requirements for low-latency
communication, and its architecture was not immediately
extensible for use as a conferencing solution.

This work has been extended by others in [17], which de-
scribes the details of two applications, NDNlive and ND-
Ntube, that are designed to work with the latest NFD (NDN
Forwarder Daemon) and use repo-ng [1] for offline media
storage. These applications employ a new API for appli-
cation developers, the Consumer/Producer API [12], which
works with higher-level “Application Data Units” rather than
Interests/Data packets.

Other streaming video work includes [11] and [14], which
explore the advantages of using ICN networks for MPEG
Dynamic Adaptive Streaming over HT'TP. Although not di-
rectly related to low-latency streaming, these works also
leverage ICN networks’ caching ability for efficiently serv-
ing chunks of video files to multiple consumers.

The Voice-over-CCN project [8] was an early exploration of
real-time communication over ICN, providing a similar level

0O RAW frame O El d F» E ded
ame codel coded frame
' a a

%00 - l

%00%01 _1<— Segmenter

%00%NN &

vy 76

Cache

(a) Producer

Interest pipeliner

%00%N1
%00%N2

%00%NN

Buffer
o o
RAW”ame% Decader H “Frame.
o [m] Frame

(b) Consumer

Figure 1: NDN-RTC producer and consumer oper-
ation.

of quality compared to VoIP solutions with much greater
scalability potential and simpler, more flexible architecture.
Early in the NDN project, an audio conferencing application
(ACT) was developed in [22]. It leveraged use of Mumble
VoIP software and successfully used NDN as a transport.
Initial effort for conference and user discovery was made
in this work as well, which was continued in ChronoChat
(mentioned above). However, echo cancellation did not work
well, which made ACT difficult to use in real world scenar-
ios. Therefore, we elected to build NDN-RTC on top of the
WebRTC library, despite the additional, significant imple-
mentation complexity, in order to use its audio-processing
capabilities and video codecs, and potentially give an oppor-
tunity for easier integration with supported web browsers.
No significant modifications to WebRTC are needed to be
used for NDN-RTC, which means that so far new versions
of that library have been incorporated as needed.

4. APPLICATION ARCHITECTURE

There are two application roles in NDN-RTC: producer and
consumer. In bidirectional communication, applications play
both roles, but a variety of other multi-party and one-to-
many scenarios can be achieved with the same abstraction.
The paradigm of real-time communication shifts from the
sender-driven approach of the IP network, where the pro-
ducer writes data to a destination host and the consumer
reads it as it arrives, to a receiver-driven approach, in which
the producer publishes data to network-connected storage
at its own pace, while the consumer requests data as needed
and manages the relationship between outgoing Interests,
incoming data segments, and buffer fill.

4.1 Producer

The producer’s main tasks are to acquire video and audio
data from media inputs, encode them, name them, mar-
shal the named data into network packets, sign the pack-
ets, and store them in an application-level cachﬁ that will
asynchronously respond to incoming Interests. In this way,
flow control responsibility shifts to the consumer, and scal-
ing can be supported by network caches downstream rather
than publishing infrastructure at the application level.

4.2 Namespace

A primary design question of this project asks how the data
should be named so it can be retrieved by the consumer
with desired properties. The NDN-RTC namespace defines
names for media (segmented video frames and bundled au-
dio samples), error correction data, and metadata, as shown
in Figure As there is no direct consumer-producer com-
munication, the namespace is designed to support the type
of fetching operations performed by the consumer, as intro-
duced in Section [l and detailed in Section [£.4l

4.2.1 Media

The NDN-RTC producer abstracts the published media for
a given source as a collection of media streams. A media
stream represents a flow of media data, such as video frames
or audio samples, coming from a source—currently, an input
device on the producer. (For now, names for streams are de-
rived from their corresponding device information.) A typi-

cal publisher will publish several media streams simultaneously—

e.g., a camera and a microphone, and also a separate stream
for screenshots. The data from a stream is encoded at one or
more bitrates configured on the producer, so in the name hi-
erarchy, each stream has child threads corresponding to dif-
ferent encoder instances called media threads. Media threads
allow the producer to, for example, provide the same me-
dia stream in several quality levels, such as low, medium
and high quality, so that the consumer can choose the me-
dia thread suitable for its requirements and current network
conditions.

NDN-RTC packetizes the WebRTC video encoder output di-
rectly. Encoded media segments are published under the hi-
erarchical names described above, with video frames further
separated into two namespaces per frame type, (delta and
key), and each numbered sequentially and independently.
For reasons described in Section [f] the namespace distin-
guishes in this way between these two types of encoded video
frames. Key frames do not depend on any previous frames
to be decoded. Delta frames are dependent on the previ-
ous frames (received after the last key frame), and cannot
be decoded without significant visual artifacts if any of the
key frames are missing. As needed, frame data is segmented
with continuous sequence numbers per frame time

4Currently, this cache is provided to the application by the
NDN-CCL library.

SFor example, the average sizes of frames for a 1000 kbps
stream using VP8/VPO: key frames are ~ 30KB, and delta
frames are =~ 3-7TKB. Therefore, depending on the under-
lying transport’s performance for delivering objects of this
size, the producer may need to segment encoded frames
into smaller chunks and name them in a way that makes
reassembly straightforward. Based on our current observa-
tions of performance and the prevalence of UDP as a trans-

/<root>/ndnrtc/user/<producer-id>/ root

streams session info

cam ‘

screen media streams

[
]

‘ pmcu

| ow || mia || ni]

media threads

packet_type
N ‘ frame
’ parity ‘ data_type
l
‘ %00 ‘ %01 ‘ ‘ ‘ %MM‘ ‘ %00 ‘ ‘ %01 ‘ segment

Figure 2: NDN-RTC namespace

The next level in the tree separates data by type, either me-
dia or parity. Parity data for forward error correction, if
the producer opts to publish it, can be used by a consumer
to recover frames that miss one or more segments. In the
case of both parity and regular frames, the deepest level of
the namespace defines individual data segments. These seg-
ments are numbered sequentially, and their names conform
to NDN naming conventions [19].

Audio streams are handled more simply, as their samples are
much smaller than the maximum payload size, and there
is no equivalent to the key/delta frame distinction in the
audio codecs in use. All audio packets are published under
the delta namespace. Multiple audio samples are bundled
into one data packet, until the size of one data segment is
reached, and published only after that.

4.2.2 Metadata

NDN-RTC uses both stream-level and packet-level meta-
data. Consumers need to know the producer’s specific names-
pace structure in order to fetch data successfully. To save
consumers from traversing the producer’s namespace, the
producer publishes meta-information about current streams
under the session info at the rate of 1Hz. Thus, con-
sumers can retrieve current information about the producer’s
publishing state. Additionally, data names carry further
metadata as part of each packet, which can be used by con-
sumers regardless of which frame segment was received first.
Four components are added at the end of every data segment
name:

seg_name /num_seg/playback_pos/paired_seq#/num_parity

num_seg - total number of segments for this frame;
playback_pos - absolute playback position for current frame;
this is different from the frame, which is a sequence number
for the frame in its domain (i.e. key or delta);

port for the NDN testbed, NDN-RTC currently packetizes
media into segments that are less than the typical 1500 byte
MTU.

| Header |q’}| Frame N |
| Header | \ | Frame N \ |

I S N

Header |%00 | | %01 | | %02 | | %03 |

& = g2 g

.../frames/N/delta/%00/meta0 .../frames/N/delta/%01/meta1 " .../frames/N/delta/%02/meta2 .../frames/N/delta/%03/meta3

Hdro Header %00 Hdr1 %01 | Hdr2 | %02 || Hdr3 | %03

(a) Video frame segmentation.

| Header

Sl e e L]

.../frames/N/delta/%00
T T T
101 2 1 3 1 4 |
| [} [}

| Header

(b) Audio sample bundling.

Figure 3: Segmentation and bundling

paired_seq - sequence number of the corresponding frame
from other domain (i.e., for delta frames, it is the sequence
number of the corresponding key frame required for decod-
ing);

num_parity - number of parity segments for the frame.

Metadata in the name, rather than in the packet, is expected
to be useful for application components or services that may
not need to understand or with to decode the packet pay-
load.

4.3 Data objects

The producer generates signed data objects from input me-
dia streams and places them in an in-memory, application-
level cache. These objects contain stream data and meta-
data.

4.3.1 Media stream

Each media packet payload consists of two types of data — a
chunk from the media stream and metadata that describes
it. Video stream data contains raw bytes received from the
WebRTC library’s video encoder, which represent the en-
coded frame. For audio, NDN-RTC captures and encapsu-
lates RTP and RTCP packets coming from the WebRTC
audio processing pipeline, in order to obtain echo cancella-
tion, gain control and other features, which are then fed into
a similar pipeline on the consumer side for proper rendering
and corrections

4.3.2 Metadata

5This is an artifact of the current implementation to benefit
from the full audio pipeline of WebRTC; features of these
protocols are not used, and would be eliminated in the fu-
ture.

The receiver-driven architecture of NDN-RTC and our ex-

perimental approach’s deliberate avoidance of explicit consumer-

producer synchronization (to explore network scaling sup-
port) have suggested the importance of providing sufficient
meta information from the producer. The most critical and
potentially most useful for a variety of applications and
services is provided in the namespace, as described above.
Other information is provided in the data objects them-
selves. Such separation is currently experimental and pro-
vides some benefits, e.g., quickly being able to retrieve the
total number of segments in the frame without the need for
content decoding or knowledge of the exact payload format.

Packet-level metadata is applied to video as a header prepended

to segment #0 (see Figure[3(a)). Each audio bundle (packet)
is prepended by the same frame header, as seen in Figure
There are two header types: frame and segment. The
frame header contains media-specific information (such as

frame size), timestamp, current rate and Unix timestamlﬂ

(see Figure [4]).

Additionally, as an aid for experimentation and for optimiz-
ing two-way conversations, the segment header also carries
the producer’s observations of Interest arrival that can be
used by consumers to hint fetching and playback choices.
The latter makes use of the Interest nonce value, and thus
may not be as useful in larger multi-party calls. For this
reason, at this time, the following are considered primarily
for debugging and experimental purposes:

Interest nonce: Nonce of the Interest which first requested
this particular segment. Example interpretations include
the following: 1) Value belongs to an Interest issued pre-
viously: consumer received non-cached data requested by
previously issued Interest; 2) Value is non-zero, but it does
not belong to any of the previously issued Interests: con-
sumer received data requested by some other consumer;
data may be cached.

Interest arrival timestamp: Timestamp of the Interest ar-
rival. Monitoring publisher arrival timestamps may give
consumers information about how long it takes for Inter-
ests to reach the producer. This value is only valid when
the nonce value belongs to one of a given consumer’s Inter-
ests.

Generation delay: Time interval in milliseconds between
Interest arrival and segment publishing. A consumer can
use this value in order to control the number of outstanding
Interests. Again, this value is only valid when the nonce
value belongs to one of the consumer’s Interests.

4.4 Consumer

While the data is published in the above scheme, in NDN-
RTC’s receiver-driven architecture, the consumer then aims
to 1) choose the most appropriate media stream bandwidth
from those provided by the producer (by monitoring network
conditions); 2) fetch (and, if necessary, reassemble) media in
the correct order for playback; 3) mitigate, as far as possi-
ble, the impact of network latency and packet drops on the
viewer’s quality of experience.

"Producer timestamp is not required but can be used for cal-
culating actual delay between NTP-synchronized producers
and consumers.

Frame header Segment header

- media-specific info;
- packet rate;

- timestamp (ms);

- unix timestamp.

- interest nonce;

- interest arrival
timestamp;

- generation delay.

Figure 4: Frame and (experimental) segment head-
ers.

4.4.1 |Interest pipelining and Data buffering

The consumer implements Interest pipelining and data buffer-
ing, as shown in Figure @ to fetch and reassemble video

and audio data while allowing for out-of-order arrival and

interest reexpression. An asynchronous Interest pipeline

issues Interests for individual segments. Independently, a

frame buffer handles re-ordering of packets and informs the

pipeline of its status to prompt interest reexpression.

4.4.2 Frame fetching

The consumer obtains the number of segments per frame
from metadata in the received segment; however, to mini-
mize latency, it should issue a pipeline of Interests simulta-
neously. Therefore, at first, the consumer uses an estimate
of the number of segments it must fetch for a given frame,
issuing M Interests, as illustrated in Figure [5] If Interests
arrive too early, they will be held in the producer’s PIT and
stay there until the frame is captured and packetized. The
delay between Interest arrival and availability of the media
data is called the generation delay, dgen. Conceptually,
this interval should be kept low, to avoid accumulating out-
standing Interests with short lifetimes. However, Interests
should not arrive after data is published, as this increases
latency from the end-user’s perspective. Once the encoded
frame is segmented into N segments and published, Interests
0 — M are answered, and the Data returns to the requestor

(s)-

Upon receiving the first data segment, the consumer knows
from the metadata the exact number of segments for the cur-
rent frame, and issues N — M more Interests for the missing
segments, if any. These segments will be satisfied by data
with no generation delay, as the frame has been published al-
ready by the producer. The time interval between receiving
the very first segment and when the frame is fully assembled
is represented by d,sm and called assembly time. Note
that for frames that are smaller than the estimate, some In-
terests may go unanswered; this is currently a tradeoff made
to try to keep latency low for the frame as a whole. These
Interests have low lifetimes, of about 300ms.

Of course, additional round trips for requesting missing data
segments increase overall frame assembly time and the possi-
bility that the frame will be incomplete by the time it should
be played back. This problem can be mitigated if the con-
sumer is able to make more accurate estimates of the num-
ber of initial Interests. The latest versions of the library use
different namespaces for bitrates for key frames and delta
frames, making it straightforward for the consumer to keep
Interests outstanding for the next frame in each and to es-
timate the number of Interests needed per frame, as the
average number of segments varies greatly for the two frame
types. Additionally, the consumer tracks the average num-

Consumer

tea(n,) - request time

interests for [0,M] segments

generation delay dgen(n)

frame N, timestamp T(n)

%00 | %00... Pb00%N | publishing . waiting time
time A w(n) - segment arrival time
Tous(n)
M assembling
N | time, dasm(n)
1
\I
—Y Y o) - frame arrval tmo

Figure 5: Fetching frame

ber of segments per frame type, adapting its estimates over
time. A similar process is used for fetching audio, though
for now, audio bundles are represented by just one segment.

4.4.3 Buffering

As in sender-driven delivery, the consumer uses a “jitter
buffer” to manage out-of-order data arrivals and variations
in network delay, and as a place to assemble segments into
frames (see Figure[d). However, the role of such a buffer has
some NDN-specific aspects. In sender-driven video delivery,
buffer slots can be allocated per segment using sequential
numbering. A pull-based paradigm, however, requires the
consumer to request data by name explicitly, and organizes
it by frame as well as segment. Therefore, after expressing
an Interest, the consumer “knows” that new data is com-
ing, and a named frame slot can be reserved in the buffer,
though the number of segments is not known. Practically,
this means that there will always be some number of reserved
empty slots in the buffer.

Thus, the NDN-RTC jitter buffer’s size is expressed in terms
of two values measured in milliseconds. Its playback size is
the playback duration (in milliseconds) of all complete or-
dered frames by the moment of retrieving the next frame
from the buffer. Its estimated size is playback size + number
of reserved slots x 1/producer rate, which reflects an esti-
mated size of the buffer when all reserved slots have data.

The difference between estimated buffer size and playback
size corresponds to the effective RT'T, which we call RTT’
(this cannot be smaller than the actual network RTT value).
Monitoring this value over time provides the consumer in-
formation on possible “sync” status with the producer, as
will be described further below.

Another role played by the “jitter buffer” is retransmission
control. As shown in Figure E[, at some point inside the
buffer (J milliseconds from the buffer end), there is a check-
point where every frame is being checked for completeness.
At the checkpoint, when incomplete frames can not be re-
covered using available parity data, Interests for the missing
segments are re-issued.

4.4.4 Interest expression control
This section explores current mechanisms for Interest ex-
pression and re-expression in more detail. A key challenge in

(for i-th segment interest)

i

RTT

(a) Bursty arrival of cached data, which reflects
Interest’s expression pattern and indicates that the

data is not the latest.
i4 i5 i6
\VAVAY,
>

RTT ' Dar

i1 i2 i3

Wi

-

(b) Periodic arrival of fresh data, reflects
publishing pattern and sample rate.

Figure 6: Getting the latest data: arrival patterns
for the cached and most recent data

a consumer-driven model for videoconferencing in a caching
network appears to be how to ensure the consumer gets the
latest data, without (per the project’s design goal) resorting
to direct producer-consumer communication.

To acquire fresh data, the consumer cannot rely on using
such flags in the protocol as AnswerOriginKind and Right-
MostChild. The frame period for streaming video is of the
same order of magnitude of network round-trip time, sug-
gesting there is no guarantee that the data satisfying those
flags received by a consumer will be the most recent one. In-
stead, it is necessary to use other indicators to ensure that
the consumer is requesting and receiving the most up-to-
date stream data possible given its (potentially evolving)
network connectivity.

The project’s current solution is to leverage the known seg-
ment publishing rate, which is available in stream-level meta-
data, and to note that, under normal operation, old, cached
samples are likely to be retrieved more quickly than new
data. EI The interarrival delay (darr) is defined as the
time between receipt of successive samples by a given con-
sumer.

The consumer expects that delays in the most recent sam-
ples follow the publishers’ generation pattern, but cached
data will follow the Interest expression’s temporal pattern.
Therefore, by monitoring inter-arrival delays of consecutive
media samples and comparing them to the timing of its
own Interest expression and the expected generation pat-
tern, consumers can estimate data freshness (see Figure [6).

NDN-RTC interest expression is managed in two modes.
The bootstrapping mode is active when a consumer first initi-
ates data fetching and tries to exhaust cached data by chang-
ing the number of outstanding Interests. After the consumer

81f the consumer is the only consumer of the stream, its
Interests will go directly to the publisher, which also yields
the correct behavior. A more complex challenge, for further
study, is when segments are inconsistently cached in different
ways along the path(s) that Interests take.

— interest
— data

avw s o

f

(b) Interests bursting (A + 3)

VIV VN,

(c) Interests withholding (A — 3)

Figure 7: Managing Interest expression

has exhausted the cache, it switches into the playback mode,
described further below.

During bootstrapping, the consumer “chases” the producer
and aims to exhaust network cache of historical (non-real
time) segments. By increasing the number of outstanding
Interests, the consumer “pulls cached data” out of the net-
work, unless the freshest data begin to arrive.

In order to control Interest expression, the NDN-RTC con-
sumer tracks a quantity called “Interest demand”, A\, which
can be interpreted as how many outstanding Interests should
be sent at the current time (see Figure E[) The consumer
expresses new Interests when the demand is positive, i.e.
A > 0. For example, before the bootstrapping phase, the
consumer initializes A with a value which reflects the con-
sumer’s estimate of how many Interests are needed in order
to exhaust network cache and reach the most recent data.
In playback, every time a new Interest is expressed, A is
decremented, and when new data arrives, A is incremented,
thus enabling the consumer to issue more InterestsEI

Bootstrapping. In the current design, there are two ex-
perimentally determined indicators that are used by the
consumer to adjust \: effective RTT (RTT') and inter-

9While inspired by the TCP congestion window, the Inter-
est demand, as currently employed in NDN-RTC, may play
a different role in ICN networks, which we are exploring
experimentally in this application.

arrival delay dqrr). As described above, at bootstrapping
(and re-acquisition), the consumer interprets dq.. stabiliza-
tion around a relatively constant period, which means that
the consumer receives the freshest data available from the
network. However, it does not necessarily mean that the
consumer issues Interests efficiently. Figure shows
that even though the consumer has exhausted cache rather
quickly, RTT’ is three times larger than the actual RTT
for the network (100ms), which means that the majority of
the issued Interests remain pending while waiting for the
requested data to be produced.

The consumer makes several iterative attempts to adjust A
during bootstrapping, described as follows:

1. The consumer initializes Interest demand with A4z, and
initiates Interest’s expression.

2. If the consumer does not receive freshest data during the
allocated tim it increases Interest demand: A = \ +
0.5Aq; Ad = Ag + 0.5A4.

3. If the consumer receives the freshest data (cache exhausted),
it decreases Interest demand: A = A—0.5\g; A\g = A_0.5\g4
and waits for either of the two possible outcomes: a)
RTT' decreases and the consumer still receives the fresh-
est data — go to step b) the consumer starts to get
cached data (darr fluctuates greatly) — restore previous
value for)4, increase A\ accordingly and stop any further
adjustments as the consumer has achieved sufficient syn-
chronization with the producer.

Note that bootstrapping begins with issuing an Interest with
the enabled RightMostChild selector, in delta namespace for
audio and key namespace for video. The reason this process
differs for video streams is that the consumer is not inter-
ested in fetching delta frames without having corresponding
key frames for decoding. Once an initial data segment of
a sample with number Ss..q has been received, the con-
sumer initializes A with initial value A\gy and asks for the
next sample data Sseeq + 1 in the appropriate namespace.
Upon receiving the first segments of sample Sseeq + 1, the
consumer initiates the fetching process (described above) for
all namespaces (delta and key, if available). The bootstrap-
ping phase stops when the consumer finds the minimal value
of A, which still allows for receiving the most recent data,
and the consumer switches to the playback mode.

Playback. During playback, A provides a manageable mech-
anism to speed up or slow down Interest expression, coupling
the asynchronous interest expression mechanism with the
status of the playback buffer. An increase in A value makes
the consumer issue more Interests (Figure , whereas
any decrease in A holds the consumer back from sending any
new Interests (Figure[7(c)). Larger values of A make the con-
sumer reach a synchronized state with the producer more
quickly. However, a higher value means a larger number
of outstanding Interests and larger RTT’ because of longer
generation delays dg.; the consumer can find minimal RTT”
value while still getting non-cached data, adapting towards
a loose synchronization with the producer.

The consumer continues to observe RTT’ and dgrr in the

1071y the currently implementation, 1000ms.

playback mode. Whenever d,, indicates that no fresh data
is being received, the consumer increases Interest demand
and starts the adjusting process again to find minimal RTT"’
for the new conditions. Such an approach enables consumers
to adjust in cases when data may suddenly start to arrive
from different network hubs, changing the RTT'.

Interest batches. Practically, for video, the consumer con-
trols expression of “batches” of Interests rather than individ-
ual Interests, because video frames are composed of several
segments. A is adjusted on a per-frame basis, rather than
per-segment.

5. IMPLEMENTATION

NDN-RTC is implemented as a library written in C++,
which is available at https://github.com/remap/ndnrtcl
It provides a publisher API for publishing an arbitrary num-
ber of media streams (audio or video) and a consumer API
with a callback for rendering decoded video frames in a host
application. The OS X platform is currently supported;
Linux build instructions will be added soon. The library
distribution also comes with a simple console application
which demonstrates the use of the NDN-RTC library.

NDN-RTC builds on functionality from several third-party
libraries with which it is linked. NDN-CPP [10] is used for
NDN connectivity. The WebRTC framework [3] is used in
two ways: 1) incorporation of the existing video codec; 2)
full incorporation of the existing WebRTC audio pipeline,
including echo cancellation. OpenFEC |2] is used for forward
error correction support.

Some features were incorporated into the library based on
the team’s experience with this application. In most cases,
consumers aim to express Interests for the data not yet
produced, to be immediately satisfied when data is pro-
duced. The current NDN-CPP library provides a producer-
side Memory Content Cache implementation into which data
is published. However, this is only useful when data has
been published and put in the cache before an Interest for
this data has arrived. For the missing data, the Interest is
forwarded to the producer application which stores it in the
internal Pending Interests Table (PIT) unless requested data
is ready. This functionality seems quite common for low-
latency applications, and has now been incorporated into
the NDN-CPP library implementation.

To demonstrate and evaluate the library, a desktop NDN
videconferencing application, NdnCon, [4] was implemented
on top of NDN-RTC. It provides a convenient user inter-
face for publishing and fetching media streams, text chat,
and organizing multi-party audio/video conferences. It was
used, along with a command-line interface, for the evalua-
tion below.

6. EVALUATION & ITERATIVE REFINE-

MENT

During the course of NDN-RTC’s initial development, there
were several design iterations that each introduced improve-
ments in the overall quality of experience for the end user, as
well as in application efficiency in terms of bandwidth and
computation. Each iteration tackled problems that were re-

Overall bitrate results

6
4.5

3

0 - . - L . .

AriEO™® Gaid® L oste S auA T G euh? usTV | erag®

NanCon - low
B NanCon - Mid

Bitrate (Mbit/s)

Figure 8: 2-peer conference tests compared to Skype

vealed during tests. These motivated namespace, applica-
tion packet format and other revisions, which are reflected
in the design detailed above and described further in this
section.

6.1 Video streaming performance

A series of tests were conducted in order to assess band-
width usage and perceived quality compared to Skype video
calls. Each test was comprised of six runs of two-person,
five-minute conference talks using NdnCon, the graphical
conferencing application built on top of NDN-RTC: a) three
runs of audio+video with low, medium and high video band-
widths settings (0.5, 0.7 and 1.5 Mbit/s accordingly); b)
one run of audio-only conference; c) one run of Skype au-
dio+video conference; d) one run of Skype audio-only con-

ference. Tests were conducted across the existing NDN testbed,

between the UCLA REMAP hub and six other hubs. These
tests covered both one-hop and multi-hop (with several in-
termediate hubs) paths.

Figure [shows overall bitrate usage results. Whereas Skype
has adapted to use link capacity between peers, and de-
livered higher bitrate videos, NdnCon did not adjust to the
current network conditions which make adaptive rate control
features highly desirable as future work. Early in these tests,
audio sample bundling was quickly introduced in NDN-RTC
to reduce audio bandwidth (and the number of Interests on
the consumer side), making it comparable to Skype audio
bandwidths.

The results of such testing influenced iterative updates to
the design, two of which are described below.

Separation of key and delta frame namespaces. Video
streaming performance in early versions of NDN-RTC suf-
fered from video “hiccups,” even when being tested on trivial
one-hop topologies. The cause of this problem turned out
to be an inefficient frame fetching process. In early NDN-
RTC versions, the difference in size, and thus segments, of
key frames and delta frames was not reflected in the pro-
ducer’s namespace, and consumers were forced to issue equal
number of initial Interests (M on Figure [5) regardless of
the frame type. This resulted in additional round trips of
missing Interests and, consequently, larger assembling times
(dasm) for key frames that resulted in missed playout dead-
lines. Having a separate namespace for key frames enables
consumers to maintain separate Interest pipelines per frame
type and collect historical data on the average number of
Interests required to retrieve one frame of each type in one

https://github.com/remap/ndnrtc

frames move right
- -
pipeline re-transmit playback
pointer pointer pointer
P |] |

} ' ! .)

,»//HH {I/III{II{II

. should be
interests for data interests for missing assembled,
segments segments missing data otherwise -
segments segments considered missed
Figure 9: Frame buffer
round trip.

6.2 Consumer-Producer synchronization
Bootstrap behavior. In initial library versions based on
the approach taken in NDNVideo, the consumer “chased”
the producer’s time-series data by exhausting cached data
via issuing a large number of outstanding Interests. How-
ever, there was no mechanism for the consumer to figure
out when to issue those Interests and whether Interest ex-
pression should be postponed in order to reduce timeouts.
For two similar test runs (one-hop topology), the number of
timed-out Interests and re-transmissions varied greatly (ei-
ther ~1% or ~50%). One was due to an incorrect consumer’s
synchronization with the producer; Interests were issued too
early, so they timed out before any data had been produced.
This problem was addressed by increasing the Interests’ life-
time.

However, for previous library versions, the mechanism for
buffering (see Figure E[) dictated the Interests’ lifetime. In
fact, in order to maintain the re-transmission checkpoint,
all Interests entering the buffer had a lifetime equal to half
of the current buffer size. This approach resulted in un-
avoidable Interest timeouts, in the cases when the consumer
issued Interests far too early, before the actual data was pro-
duced. This was further complicated by forwarding strate-
gies in NFD that did not handle consumer-initiated retrans-
mission over short periods.

For the current version of the library, the re-transmission
checkpoint is placed at a time estimated to be the effective
RTT from the end of the buffer (J = RT'T on the Figure

This, together with an updated NFD re-transmission
strategy , allows for larger Interests’ lifetimes.

Moreover, the problem described above can not occur if the
consumer knows that it is issuing Interests too early. The
chasing algorithm in older library versions was exhausting
the network cache too aggressively; Interests were issued
constantly until they filled up the buffer. With the intro-
duction of the A concept, the consumer has more useful con-
trol of the Interest expression. Figure [10]shows how a larger
value of A helps to exhaust the cache more quickly. The
number of outstanding Interests is controlled by a consumer
and directly influences how fast consumer can “chase” the
producer. Thus, the consumer can control the “agressive-
ness” of cache exhaustion.

-~ B e ¢ P -
: £
60 200
: 2
_ 30 “ ~ ‘x,NNMVJNNA\VA,,V“MVM/vav‘fwmwmyvvm,w‘wﬁMm*wwuvvvw/v 100 &
0 0
1000 2000 3000 4000 5000
Time (ms) ,
(a) A = 10: short chasing, larger RT'T
120 160
~ 90 - M L\M“m WJ ‘\L% 120 —
g i
60 80
: 2
_ 30 \ "v’\w/\A/‘%wf’\f"V\’\/V’\AA/WM/J.//VVVW»W\/AM/\ 40 &
1000 2000 3000 4000 5000
Time (ms)
(b) A = 4: longer chasing, smaller RTT"
120 120
. 90 I _ﬂ\ AN mAAAA r,“\AJv‘““MW\'V~/‘V ~,wm~\;“‘,w/\w“w/w AN 90 -
£ £
¢t il
a Hu“”‘\wu\m ”‘ ‘\‘ i \‘uu \“\ M“‘\” =
" e i *
1000 3000 5000 7000 9000
Time (ms)

(c) A = 3: consumer can’t exhasut cache, RTT" = RTT

Figure 10: Larger)\ decreases “chasing” phase, but
increases RTT’ for the same network configuration
(RTT =~ 100ms)

6.3 Multi-party use

Initial attempts to deploy the NdnCon conferencing applica-
tion were made in early 2015. NdnCon was used to stream
an NDN seminar over the existing NDN testbed. An au-
dio/video bridge was set up using third-party tools, such
as Soundflower and CamTwist Studio, allowing captured
screen and audio feeds from existing IP-based conferencing
tools to be simulcast. Figure [I1(a) shows an example of
instantaneous NDN testbed utilization during the one-hour
conference call. It is estimated that media streams were con-
sumed by five to eight people. Overall quality was satisfying,
as reported by users.

Other tests of multi-party conferencing ability included four
peers, each publishing three video streams and one audio
stream and fetching one video and one audio stream from
each of the other participants. Participants were distributed
across four NDN testbed hubs - UCLA, REMAP, CAIDA
and WUSTL (Figure . These results were also gener-
ally satisfying. However, for one user, audio cutoffs occurred
more often than for the other participants. The root causes
of this have yet to be found. Many-to-many test scenarios
are complex, and will be included in future work.

NDN Testbed

W20

CAIDA. e — LT \ W00-250
W<

For more info,

dlckon

(a) NDN testbed utilization during biweekly NDN seminar us-

ing NdnCon for simulcast.

NDN Testbed

[
VERISIGN

W>2000

W0

For more info,

(b) NDN testbed utilization during 4-peer call between UCLA,

REMAP, WUSTL and CAIDA hubs.

Figure 11: NDN testbed utilization during one-to-
many and many-to-many scenarios.

Figure 12: NdnCon screenshot.

7. CONCLUSION AND FUTURE WORK

This paper presents the design, implementation, and initial
experimental evaluation of NDN-RTC, a low-latency video-
conferencing library built on Named Data Networking. So
far, the approach to this project has been experimentally
driven, and has generated a functional low-latency stream-
ing tool that can now be used as a platform for exploring
important design challenges in real-time media over NDN.
This is a rich area, and future work identified to date in-
cludes:

Adaptive rate control. In the current design, the pro-
ducer can choose to publish the same video stream at dif-
ferent bitrates, thus requiring the consuming user to man-
ually select the best stream but laying the groundwork for
adaptive rate control as a near-term effort. This work must
determine if monitoring of d,rr and other approaches de-
scribed above can address challenges of adaptation over

Key(kbls)
[1000 - 2000

Ws00- 1000
W250-500

% N NON Testbed label

Key(kbls)

10002000
Ws00- 1000
W2s0-500
W100250

NN Testoed abel

ICN, as suggested in papers such as [15].

Congestion control. Congestion control algorithms and
their impact on the receiver-driven design of NDN-RTC are
open challenges that require collaboration between appli-
cation developers and architecture researchers.

Audio prioritization. For quality of experience in typi-
cal audio/videoconferencing applications, audio should be
prioritized over video. This can be done at the application
level, and such support may be provided in the future.

Scalable video coding. A more efficient way to relieve
the producer from having to publish multiple copies of the
same content at different bandwidths may be to use scal-
able video coding. By reflecting SVC layers in the names-
pace, the consumer will have more freedom for adapting
media streams to the current network. Just as with audio,
the SVC base layer may need to be prioritized.

Encryption-based access control. The current NDN-
RTC design supports basic content signing and verification.
However, a prominent requirement of many types of video-
conferencing is confidentiality, which can be expected to be
supported through encryption-based access control. While
it may appear that encryption could limit the gains offered
by caching, recent work exploring that application of ad-
vanced cryptographic techniques, such as attribute-based
encryption to multimedia in ICN [13], suggest interesting
new directions for balancing benefits of ICN with security
requirements.

8. ACKNOWLEDGEMENTS

This project was partially supported by the National Science
Foundation (award CNS-1345318 and others) and a grant
from Cisco. The authors thank Lixia Zhang, Van Jacob-
son, and David Oran, as well as Eiichi Muramoto, Takahiro
Yoneda, and Ryota Ohnishi, for their input and feedback.
John DeHart, Josh Polterock, Jeff Thompson, Zhehao Wang
and others on the NDN team provided invaluable testing of
NdnCon. The initial forward error correction approach in
NDN-RTC was by Daisuke Ando.

9. REFERENCES

[1] Repo-ng. https://github.com/named-data/repo-ng.

[2] OpenFEC Library. http://openfec.org,

[3] WebRTC Project. http://www.webrtc.org.

[4] NdnCon GiHub Repository.
https://github.com/remap/ndncon, September 2014.

[5] NFD version 0.2.0 release notes. http:
//named-data.net/doc/NFD/0.3.1/RELEASE_NOTES.html,
August 2014.

(6] P. Crowley. Named data networking: Presentation and
demo. In China-America Frontiers of Engineering
Symposium, Frontiers of Engineering, 2013.

[7] J. B. Derek Kulinski. NDNVideo: random-access live and
pre-recorded streaming using ndn. Technical report, UCLA,
September 2012.

[8] V. Jacobson, D. K. Smetters, N. H. Briggs, M. F. Plass,
P. Stewart, J. D. Thornton, and R. L. Braynard. Voccn:
voice-over content-centric networks. In Proceedings of the
2009 workshop on Re-architecting the internet, pages 1-6.
ACM, 2009.

[9] V. Jacobson, D. K. Smetters, J. D. Thornton, M. F. Plass,
N. H. Briggs, and R. L. Braynard. Networking named
content. In Proceedings of the 5th international conference
on Emerging networking experiments and technologies,
pages 1-12. ACM, 2009.

https://github.com/named-data/repo-ng
http://openfec.org
http://www.webrtc.org
https://github.com/remap/ndncon
http://named-data.net/doc/NFD/0.3.1/RELEASE_NOTES.html
http://named-data.net/doc/NFD/0.3.1/RELEASE_NOTES.html

(10]

11]

(12]

(13]

[14]

(15]

[16]

(17]

(18]

(19]

(20]

(21]

(22]

J. B. Jeff Thompson. NDN Common Client Libraries.
NDN, Technical Report NDN-0007, September 2012.

S. Lederer, C. Mueller, and B. Rainer. Adaptive streaming
over content centric networks in mobile networks using
multiple links. déAe (ICC), 2013.

I. Moiseenko and L. Zhang. Consumer-producer api for
named data networking. In Proceedings of the 1st
international conference on Information-centric
networking, pages 177-178. ACM, 2014.

J. P. Papanis, S. I. Papapanagiotou, A. S. Mousas, G. V.
Lioudakis, D. I. Kaklamani, and I. S. Venieris. On the use
of attribute-based encryption for multimedia content
protection over information-centric networks. Transactions
on Emerging Telecommunications Technologies,
25(4):422-435, 2014.

D. Posch, C. Kreuzberger, and B. Rainer. Client starvation:
a shortcoming of client-driven adaptive streaming in named
data networking. Proceedings of the 1st dAuc;, 2014.

D. Posch, C. Kreuzberger, B. Rainer, and H. Hellwagner.
Client starvation: a shortcoming of client-driven adaptive
streaming in named data networking. In Proceedings of the
1st international conference on Information-centric
networking, pages 183-184. ACM, 2014.

J. Thompson and J. Burke. Ndn common client libraries.
Technical Report NDN-0024, Revision 1, NDN, September
2014.

L. Wang, I. Moiseenko, and L. Zhang. Ndnlive and
ndntube: Live and prerecorded video streaming over ndn.
Technical report, UCLA, 2015.

Y. Yu. ChronoChat.
https://github.com/named-data/ChronoChat.

Y. Yu, A. Afanasyev, Z. Zhu, and L. Zhang. Ndn technical
memo: Naming conventions. Technical report, UCLA, July
2014.

L. Zhang, A. Afanasyev, J. Burke, V. Jacobson, K. Claffy,
P. Crowley, C. Papadopoulos, L. Wang, and B. Zhang.
Named data networking. Technical report, 2014.

L. Zhang, D. Estrin, J. Burke, V. Jacobson, J. Thorton,
D. K. Smetters, B. Zhang, G. Tsudik, K. Claffy,

D. Krioukov, D. Massey, C. Papadopoulos, T. Abdelzaher,
L. Wang, P. Crowley, and E. Yeh. Named data networking
tech report 001. Technical report, 2010.

Z. Zhu, S. Wang, X. Yang, V. Jacobson, and L. Zhang. Act:
audio conference tool over named data networking. pages
68-73, 2011.

https://github.com/named-data/ChronoChat

	Introduction
	Design Objectives
	Background and prior work
	Application Architecture
	Producer
	Namespace
	Media
	Metadata

	Data objects
	Media stream
	Metadata

	Consumer
	Interest pipelining and Data buffering
	Frame fetching
	Buffering
	Interest expression control

	Implementation
	Evaluation & Iterative refinement
	Video streaming performance
	Consumer-Producer synchronization
	Multi-party use

	Conclusion and Future Work
	Acknowledgements
	References

