
NDN, Technical Report NDN-0031, 2015. http://named-data.net/techreports.html
Revision 1: April 30, 2015

1

NDNlive and NDNtube: Live and Prerecorded
Video Streaming over NDN

Lijing Wang
Tsinghua University

wanglj11@mails.tsinghua.edu.cn

Ilya Moiseenko
UCLA

iliamo@cs.ucla.edu

Lixia Zhang
UCLA

lixia@cs.ucla.edu

ABSTRACT
Named Data Networking offers significant advantages for
media distribution applications: in-network caching and mul-
ticast capabilities. This technical report provides a detailed
view on two video streaming applications: NDNlive and
NDNtube. NDNlive is capable of streaming live video cap-
tured by the camera and handling network problems by drop-
ping individual video or audio frames. NDNtube prototypes
Youtube-like user experience by serving dynamically gen-
erated playlist and streaming the media in its original qual-
ity. Both applications were developed on top of Consumer /
Producer API providing a convenient way of publishing and
fetching ADUs of any size, and Gstreamer library providing
media decoding/encoding functionality.

1. INTRODUCTION
The Named Data Networking (NDN) was proposed as a

new Internet architecture that aims to overcome the weak-
nesses of the current host-based communication architec-
ture in order to naturally accommodate emerging patterns of
communication [1, 2, 3]. By naming data instead of their lo-
cations, NDN transforms data into a first class entity, which
offers significant promise for content distribution applica-
tions, such as video playback application. NDN reduces
network traffic by enabling routers to cache data packets. If
multiple users request the same video file, the router can for-
ward the same packet to them instead of requiring the video
publisher to generate a new packet every time.

NDN applications work with Application Data Units (ADU)
— units of information represented in a most suitable form
for each given use-case (e.g. Application Level Framing [4]).
For example, a multi-user game’s ADUs are objects repre-
senting current user’s status; for an intelligent home appli-
cation, ADUs represent current sensor readings; and for a
video playback application, data is typically handled in the
unit of video frames.

NDN publisher applications publishes ADUs as a series
of Data packets according to the design of the namespace.
NDN consumer applications send Interest packets carrying
application level names to request ADUs, and the network
returns the requested Data packets following the path of the
Interests.

Some of the existing techniques, such as MPEG-DASH
partly adopt the principles of Application Level Framing by
breaking multiplexed or unmultiplexed content into a se-
quence of small file segments of equal time duration [5]. File
segments are later served over HTTP from the origin media
servers or intermediate HTTP caching servers.

Since the file segments have a bigger granularity than in-
dividual video and audio frames, the user of MPEG-DASH
video streaming application still experiences interruptions
and abrupt changes in the media quality.

In this technical report, we talk about two video stream-
ing NDN applications: NDNlive and NDNtube. NDNlive is
capable of streaming live video captured by the camera and
handling network problems by dropping individual video or
audio frames. NDNtube prototypes the user experience of
Youtube by providing dynamically generated playlist and
streaming the media in its original quality (no frames are
dropped). Both applications were developed on top of Con-
sumer / Producer API [6] providing a convenient way of pub-
lishing and fetching ADUs of any size, and Gstreamer [7] li-
brary providing media decoding/encoding functionality (Sec-
tion 2). Architecture and implementation details of both ap-
plications are described in Section 4 and 5. The prior work
is discussed in Section 6, followed by the conclusion in Sec-
tion 7.

2. BACKGROUND
In this section, we talk about how NDNlive and NDNtube

make use of external NDN and media processing libraries
and other major NDN components.

2.1 Consumer / Producer API
Consumer-Producer API [6] provides a generic program-

ming interface to NDN communication protocols and archi-
tectural modules. A consumer context associates an NDN
name prefix with various data fetching, transmission, and
content verification parameters, and integrates processing of
Interest and Data packets on the consumer side. A pro-
ducer context associates an NDN name prefix with various
packet framing, caching, content-based security, and names-
pace registration parameters, and integrates processing of In-
terest and Data packets on the producer side.

http://named-data.net/techreports.html


2

Camera 
& MIC Gstreamer Consumer/Producer API

NDN
Network

raw 
data

Consumer/Producer APIGstreamerPlayer

decoded 
data

video & audio
frame

video 
streaming

Producer
Host

Consumer
Host

video & audio
frame

video 
streaming

Figure 1: NDNlive Architecture

In NDNlive and NDNtube, the video publisher consists of
multiple producers generating video and audio frames sep-
arately. The corresponding video players consist of mul-
tiple consumers sending Interests for the video and audio
frames. Consumer / Producer API simplifies the application
logic at both sides: media production and media consump-
tion. Since video frames are too large to be encapsulated by
a single Data packet, the media production pipeline has to
include a content segmentation step in order to split the con-
tent into multiple Data packets. Producer API provides this
segmentation functionality. At the same time, since a video
frame cannot be retrieved by a single Interest packet, UDR
and RDR protocols behind the Consumer API automatically
pipeline Interest packets and solve other tasks related to the
retrieval of the application frame. We will talk about the im-
plementation details in Section 5.

2.2 Gstreamer
We use Gstreamer [7] to handle the media processing part.
In NDNlive, raw video images captured by the camera

are transferred to the Encoder_v component and are encoded
into H264 format. Then the encoded video is passed to the
Parser_v to be parsed into frames (B, P or I frame). The
microphone captures the raw audio, which is passed to the
Encoder_a. The encoder component encodes the raw audio
into AAC format. The encoded audio stream is transferred
to the Parser_a to be parsed into audio frames, which are
passed to the Producer API for any possible segmentation.
Video and audio data is retrieved frame by frame that are
passed to the video Decoder_v and audio Decoder_a for the
decoding into the format which the video Player_v or audio
Player_a can play.

In NDNtube, the source for video and audio streams is an
mp4 file containing H264 video and AAC audio. Gstreamer

opens the file and passes it to the Demuxer component to
separate video and audio streams. Since the video file is al-
ready encoded, the media processing pipeline does not have
an Encoder component in it. The encoded video or audio
streams are separately pushed into the Parser to generate
video and audio frames.

2.3 Repo
NDNlive streams the captured video and audio non-stop.

Therefore, the media publisher just keeps producing new
frames and does not care about the data it produced several
minutes ago. The consumer is also interested only in recent
video and audio frames. As long as the producer is attached
to the NDN network, it will serve the incoming Interests.

NDNtube publishes the video only once — all Data pack-
ets corresponding to audio and video frames are permanent
and never change after the initial publication. Since the same
video could be requested multiple times by different users, it
is reasonable to store the produced Data packets in a ‘database’
which is exposed to the requests from the network. Other-
wise, every time a different user requests the same video, the
corresponding video and audio Data packets would have to
be republished (and signed) in case NDN cache has not been
able to satisfy these Interests.

Repo-ng [8] is used as a permanent storage for the video
and audio content. Repo-ng (repo-new generation) is an im-
plementation of NDN persistent in-network storage, which
exposes a Repo protocol [9] allowing write access to appli-
cations. Repo insertion is natively supported by the Producer
API with LOCAL_REPO option (if repo is running on the lo-
cal host) or REMOTE_REPO_PREFIX option to point to the
right remote repo by its name prefix.



3

Video 
Source Gstreamer Consumer/Producer API

NDN
Network

raw 
data

playlist update

Consumer/Producer APIGstreamerPlayer

decoded 
data

video & audio
frame

playlist update
& video streaming

Producer
Host

Consumer
Host

video & audio
frame Repo

video streaming

video 
data

Figure 2: NDNtube Architecture

3. DESIGN GOALS
UCLA REMAP lab put efforts in building NDNVideo [10]

that was one of the first showcases in support of the claim
of the possibility of video streaming over NDN. The later
changes in the packet format and the development of the new
NDN forwarding daemon (NFD [11]) made this implemen-
tation of video streaming software obsolete.

NDNlive and NDNtube is the new effort of UCLA IRL lab
to have similar functionality to NDNvideo compatible with
the new packet format, new forwarder and new application
libraries, such as Consumer / Producer API. The secondary
goal of developing these application is to provide more com-
plete examples for application developers learning the new
Consumer / Producer API.

The following list contains the key features of NDNlive
and NDNtube applications:

• “Live and pre-recorded video&audio streaming to mul-
tiple users”

NDNlive provides the live video&audio streaming to
multiple users and guarantees the fluency of the stream-
ing. NDNtube prototypes a Youtube-like user experi-
ence: 1) selection of a media from the list of available
media resources, and 2) smooth buffered playback.

• “Random access based on actual location in the video”

The video stream is organized as two series of media
frames: video and audio. The relationship between
playback time and the frame number is non-ambiguous,
because both applications use constant frame-rate en-
coding. In other words, the frame number can be easily
calculated from the playback time information and the
video and audio frame rate.

• “Synchronized playback”

At the moment of data production, each frame is ex-
tracted in the form of GstBuffer [12], which contains
playback timestamp information. When audio and video
frames are retrieved at the consumer side, video and
audio streams are synchronized by Gstreamer library
automatically. Another way to achieve synchroniza-
tion without Gstreamer library is to consider the direct
relationship between frame-rate, playback time, and
frame numbers.

• “Connection-less and session-less streaming”

NDNlive and NDNtube consumers do not try to estab-
lish any persistent session or connection with the video
publisher. Video and audio frames are fetched from ei-
ther from in-network cache, or producer’s cache, or the
permanent storage (e.g. Repo), when producer goes
offline.

• “Content verification and provenance”

Every Data packet must be signed with an asymmet-
ric key of the original publisher in order to reliable
authenticate content. Video publishing pipeline out-
puts so many Data packets that the security component
of ndn-cxx library becomes a bottleneck, because of
its limited signing speed. In order to achieve the de-
sired signing throughput, both NDNlive and NDNtube
producers use Producer API with FAST_SIGNING op-
tion.

4. DESIGN
NDNlive and NDNtube consist of two big components:

publisher and consumer (player). Both publisher and player



4

make use of appropriate parts of Consumer / Producer API,
which significantly simplifies the design of the system.

NDNlive architecture.

Figure 1 illustrates the architecture of NDNlive, which
can be summarized as follows:

• Publisher

NDNlive is a live streaming application; the publisher
captures video from camera and audio from microphone
and passes it to the Gstreamer to encode the raw data
and extract individual video and audio frames. The
video and audio frames are published to NDN network
with Consumer / Producer API.

• Player

The video player uses the UDR protocol of Consumer /
Producer API protocol suite to generate Interest pack-
ets for specific video and audio frames, which are later
passed to the Gstreamer for decoding purposes. The
player application is responsible for timing the con-
sumption of individual frames, i.e. pacing of consume()
calls.

NDNtube architecture.

Figure 2 illustrates the architecture of NDNtube, which
can be summarized as follows:

• Publisher

NDNtube is a pre-recorded media streaming applica-
tion, therefore the publisher works with existing video
files stored on the disk. As we described in Section 2.3,
the publisher reads the file from the disk, extracts video
and audio frames from it and publishes these frames to
the Repo. After that, the Repo takes over the duty of
responding to the Interests requesting the frames.

• Player

Comparing to NDNlive, NDNtube player has an ad-
ditional functionality for displaying the list of the cur-
rently available video resources (e.g. playlist). In order
to support this feature, NDNtube publisher keeps pub-
lishing the updated playlist every time a new video is
added to the collection.

4.1 Namespace design
NDNlive and NDNtube separate video and audio streams

from each other. Each stream consists of multiple frames
and every single frame consists of multiple segments carry-
ing unique names. The following examples provide the de-
tails of the naming schemes used in NDNlive and NDNtube
applications.

stream_id

/video /audio

/content /stream_info /content /stream_info

/frame_number /frame_number

/segment_number

/ndn/ucla/ndnlive

/4mestamp /4mestamp

Figure 3: NDNlive namespace

NDNlive namespace.

The following name is a typical name of the Data segment
that corresponds to a video frame.

“/ndn/ucla/NDNlive/stream-1/video/content/8/%00%00”

• Routable Prefix: “/ndn/ucla/NDNlive” is the routable
prefix used by NFD forwarders to direct Interest pack-
ets towards NDNlive publisher.

• Stream_ID: “/stream-1” is a stream identifier used dis-
tinguish among live streams. Note, that stream ID could
be a part of the routable prefix.

• Video or Audio: “/video” is a markup component to
distinguish between video and audio streams.

• Content or Stream_Info: All frames go under “/con-
tent” prefix, and all stream information go under “/stream_info”
prefix.

• Frame number: “/8” is frame number used to identify
each individual video and audio frame.

• Segment number: “%00%00” is the segment number
required to identify each individual Data segment, be-
cause most video frames are too large to fit in a single
Data packet, and have to be broken into segments.

The following name is a typical name of the Data packet
carrying the auxiliary information about the stream.

“/ndn/ucla/NDNlive/stream-1/video/stream_info/
1428725107049”

Since remote participants join the live stream at different
time and are not interested in watching the stream from its
beginning, they must acquire the knowledge about the cur-
rent frame numbers of the video and audio streams. At this
preliminary step, the consumer requests the stream informa-
tion object containing the current frame number of video and
audio streams as well as other media encoding information.
This information is kept up to date by the video publisher,
which continuously publishes the new versions of this ob-
ject. Each new version has a unique name with a different
timestamp component in it (Figure 3).



5

NDNtube namespace.

NDNtube’s namespace is mostly similar to NDNlive, with
the following four differences:

1. Playlist namespace branch

The user of NDNtube can select any video from the list
of available ones (e.g. playlist). The typical name of
the playlist is shown below.

“/ndn/ucla/NDNtube/playlist/1428725107042”

The playlist is identified by the timestamp name com-
ponent, because it is updated every time the new file
is added or the old file is removed from the collection
of media resources. The consumer is interested in the
latests version of it (e.g. rightmost).

2. Video name

Video name must match one of the video names pro-
vided by the playlist. Semantically, the video name
component replaces the stream ID component of the
NDNlive application.

3. Permanent stream information

In NDNtube, the information object carrying auxiliary
video encoding information (e.g. final frame number,
width, height, etc.) is published only once and is not
updated after that, unlike the stream information in NDNlive’s
live streams. As a result, the name of the information
object does not contain a timestamp component.

4. Multi-segment audio frames

Since some mp4 video files that are added to the col-
lection of media resources contain a high quality audio
stream, the audio frames have to be broken into Data
segments that have unique segment name component
(Figure 4).

/ndn/ucla/ndntube

/playlist /video_name

/video /audio

/content /stream_info /content /stream_info

/frame_number /frame_number

/segment_number /segment_number

/6mestamp

Figure 4: NDNtube namespace

5. IMPLEMENTATION
NDNlive and NDNtube are developed using Consumer /

Producer API and Gstreamer 1.4.3 library.1 The supported
platforms are Mac OS X and Linux Ubuntu.2

5.1 NDNlive
As shown in Figure 1, NDNlive consists of two applica-

tions — one is running at the publisher’s host and another
one at the consumer’s host. In this section, we go over im-
plementation details of the publisher’s application and then
continue with consumer’s application.

5.1.1 Publisher
Publisher’s application has four producers: video content

producer, video stream information producer, audio content
producer and audio stream information producer. Figure 5
shows the locations of the producers in the NDNlive names-
pace.

Two content_producers continuously publish video and
audio frames by incrementally increasing the correpsonding
frame numbers (Figure 3).

Two stream_info producers continuously publish up-to-
date information about the live streaming media: current
frame number, frame rate, video width and height, encod-
ing format (Figure 3).

Negative Acknowledgement.

In some situations, the live stream publisher is not able
to satisfy Interests with actual data (e.g. video and audio
frames).

1. The consumer may sometimes miscalculate the pac-
ing of video and audio frames and request the frame
that does not exist at the moment (e.g. ahead of the
production). The publisher can inform the consumer
about this situation using nack() function of the Con-
sumer / Producer API.

As illustrated by the Algorithm 1, producer calls nack()
function with PRODUCER_
DELAY header containing the anticipated time value
after which the data may become available.

2. Consumers join the live stream after the publisher. Since
the publisher of the live stream stores only a limited
number of the most recently produced audio and video
frames, some consumers might request the frames that
has already expired everywhere in the network. In this
case, the publisher calls the nack() operation with textitNO-
DATA header, which informs consumers that a partic-
ular video or audio frame is no longer available.

The pseudocode of NDNlive publisher application is pro-
vided in Algorithm 1.
1Other versions of Gstreamer may not be compatible
2Other Linux platforms are potentially supported



6

/stream_id

/video /audio

/content /stream_info /content /stream_info

/stream_id

/video /audio

/content /stream_info /content /stream_info

/ndn/ucla/ndnlive /ndn/ucla/ndnlive

p1 p2 p3 p4 c1 c2 c3 c4

c3

c2

consumer(/ndn/ucla/ndnlive/stream_id/video/content, UDR)c1

c4

consumer(/ndn/ucla/ndnlive/stream_id/video/stream_info, SDR)

consumer(/ndn/ucla/ndnlive/stream_id/audio/content, SDR)

consumer(/ndn/ucla/ndnlive/stream_id/audio/stream_info, SDR)

p3

p2

producer(/ndn/ucla/ndnlive/stream_id/video/content)p1

p4

producer(/ndn/ucla/ndnlive/stream_id/video/stream_info)

producer(/ndn/ucla/ndnlive/stream_id/audio/content)

producer(/ndn/ucla/ndnlive/stream_id/audio/stream_info)

Figure 5: Locations of producers and consumers in the NDNlive namespace.

5.1.2 Player
NDNlive consumer must fetch the live stream information

to set up the Gstreamer playing pipeline before it can request
any of the audio or video frames. The application has four
consumers: video content consumer, video stream informa-
tion consumer, audio content consumer and audio stream in-
formation consumer.

Data retrieval.

Consumer / Producer API protocol suite offers three data
retrieval protocols: SDR, UDR, RDR. In this section we de-
scribe how NDNlive consumer application uses SDR and
UDR protocols. The pseudocode of the NDNlive consumer
application is provided in the Algorithm 2.

1. Content Retrieval

In the case of the live media streaming, the consumer
application must continue retrieving video and audio
frames at all times in order to keep up with the data
production rate. All segments of each frame must be
retrieved as fast as possible and the fetching process
should not block other frames because of segment losses.

NDNlive video content consumer uses UDR (Unreli-
able Data Retrieval) protocol for video frame retrieval.
Since UDR pipelines Interests transmission and does
not provide ordering, some Data segments may arrive
out of order. NDNlive consumer application takes care
of Data segment reassembly and drops the whole frame
is any of its segments are lost.

NDNlive audio content consumer uses SDR (Simple
Data Retrieval) for audio frame retrieval. UDR does
not pipeline Interest packets, which satisfies our re-
quirements, since the audio frame is small enough to
fit in just one Data segment.

2. Stream Information Retrieval

Stream information is periodically updated by the video
publisher, which essentially means creation of a new
Data packet with a unique name (e.g. new timestamp
name component). The consumer that is trying to join
the live stream does not know the unique name of the
latest stream information object, and therefore cannot
use UDR or RDR protocols which assume such knowl-
edge. A simple solution of this problem is to use SDR
(Simple Data Retrieval) protocol with Right_Most_Child
option set as TRUE. The protocol generates a single
Interest packet with RightmostChildSelector which is
capable of fetching the latest stream info object.

Frame-to-frame interval.
Consumer application should control the Interest sending

speed. If it sends Interests too aggressively and the data is
not yet produced by the publisher application, the playback
may collapse. If it sends Interests too slowly, the playback
may fall behind the video generation. NDNlive uses con-
stant frame rate encoding, therefore for a video, which is en-
coded by 30 frames per second, the interval between frames
is 1000/30 ≈ 33.3 millisecond. In other words, every 33
milliseconds the application calls consume() that attempts to
fetch all segments of the frame as quickly as possible.

Synchronization of video and audio.
Since NDNlive is streaming video and audio separately,

it is a vital problem to keep these streams synced. When
video and audio frames are captured, they are timestamped
by the Gstreamer. The time information is recorded in Gst-
Buffer data structure containing the media data, and trans-
ferred along with every video or audio frame. When the
consumer fetches the video or audio frames separately, the
video and audio frames are pushed into the same GstQueue.
Gstreamer extracts the timestamps present in the video and
audio frames, and displays the content in synchronized mode.



7

Algorithm 1 NDNlive producer
1: hv ← producer(/ndn/ucla/NDNlive/stream-1/video/
2: content)
3: setcontextopt(hv , cache_miss, ProcessInterest)
4: attach(hv)

5: while TRUE do
6: Name suffixv ← video frame number
7: contentv ← video frame captured from camera
8: produce(hv , Name suffixv , contentv)
9: end while

10: ha ← producer(/ndn/ucla/NDNlive/stream-1/audio/
11: content)
12: setcontextopt(ha, cache_miss, ProcessInterest)
13: attach(ha)

14: while TRUE do
15: Name suffixa ← audio frame number
16: contenta ← audio frame captured from mirophone
17: produce(ha, Name suffixa, contenta)
18: end while

19: function PROCESSINTEREST(Producer h, Interest i)
20: if NOT Ready then
21: appNack ← AppNack(i, RETRY-AFTER)
22: setdelay(appNack, estimated_time)
23: nack(h, appNack)
24: end if
25: if Out of Date then
26: appNack ← AppNack(i, NO-DATA)
27: nack(h, appNack)
28: end if
29: end function

5.2 NDNtube
Although the namespace of NDNtube might look very

similar to the namespace of NDNlive, the patterns of the data
production and retrieval are quite different.

5.2.1 Publisher
Publisher’s application has three producers: dynamic playlist

producer, video content producer and audio content producer.
Figure 6 shows the locations of the producers in the ND-
Ntube namespace.

Playlist producer P1 is responsible for generating the latest
playlist every time a video file is added or removed from the
collection of media resources. Producer P1 runs as long as
the whole publisher application.

Video content producer P2 is responsible for publishing
video frames and the stream information object for a each
particular media resource. Since producer P2 is configured
with LOCAL_REPO option, all packets are written to the
repo running on the same local host. After all video frames
as well as stream information object are successfully inserted

Algorithm 2 NDNlive consumer
hv ← consumer(/ndn/ucla/NDNlive//stream-1/video/

2: content, UDR)
setcontextopt(hv , new_segment, ReassambleVideo)

4: while reaching Video_Interval do
Name suffixv ← video frame number

6: consume(hv , Name suffixv)
framenumber ++

8: end while

function REASSEMBLEVIDEO(Data segment)
10: content← reassemble segment

if Final_Segment then
12: video← decode content

Play video
14: end if

end function

16: ha ← consumer(/ndn/ucla/NDNlive/stream-1/audio/
content, SDR)

18: setcontextopt(ha, new_content, ProcessAudio)

while reaching Audio_Interval do
20: Name suffixa ← audio frame number

consume(ha, Name suffixa)
22: framenumber ++

end while

24: function REASSEMBLEAUDIO(Data content)
audio← decode content

26: Play audio
end function

in the repo, producer P2 terminates its execution.3

Audio content producer P3 is responsible for publishing
audio frames and the stream information object for a each
particular media resource. Since producer P3 is configured
with LOCAL_REPO option, all packets are written to the
repo running on the same local host. After all audio frames
as well as stream information object are successfully inserted
in the repo, producer P3 terminates its execution (Preudocode 3).

5.2.2 Player
The application has five consumers: playlist consumer C1,

video content consumer C2, video stream information con-
sumer C3, audio content consumer C4 and audio stream in-
formation consumer C5. Figure 6 shows the locations of the
consumers in the NDNtube namespace.

Data retrieval.
In this section we describe how NDNtube consumer ap-

plication uses SDR and RDR protocols. The pseudocode of
the NDNtube consumer application is provided in the Algo-
rithm 4.
3Publisher process continues to run.



8

/ndn/ucla/ndntube

/playlist /video_name

/video /audio

/ndn/ucla/ndntube

/playlist /video_name

/video /audio

/content /stream_info /content /stream_info

p3

p3

p2

producer(/ndn/ucla/ndntube/video_name/video)p2

p1

producer(/ndn/ucla/ndntube/playlist)p1

producer(/ndn/ucla/ndntube/video_name/audio)

c1

c2 c3 c4 c5

consumer(/ndn/ucla/ndntube/video_name/video/stream_info, SDR)c3

consumer(/ndn/ucla/ndntube/video_name/video/content, RDR)c2

consumer(/ndn/ucla/ndntube/playlist, SDR)c1

consumer(/ndn/ucla/ndntube/video_name/audio/content, RDR)c4

consumer(/ndn/ucla/ndntube/video_name/audio/stream_info, SDR)c5

Figure 6: Locations of producers and consumers in the NDNtube namespace.

Algorithm 3 NDNtube publisher
hv ← producer(/ndn/ucla/NDNtube/video-1234/
video)

3: setcontextopt(hv , local_repo, TRUE)

while NOT Final_Frame do
Name suffixv ← video frame number

6: contentv ← video frame
produce(hv , Name suffixv , contentv)

end while

9: ha ← producer(/ndn/ucla/NDNtube/video-1234/
audio)

setcontextopt(ha, local_repo, TRUE)

12: while NOT Final_Frame do
Name suffixa ← audio frame number
contenta ← audio frame

15: produce(ha, Name suffixa, contenta)
end while

1. Content Retrieval All video and audio frames as well
as stream information objects are retrieved by RDR
(Reliable Data Retrieval) protocol, which provides or-
dered and reliable fetching of Data segments. ND-
Ntube video player does not consume a live stream-
ing media, and consequently can afford much larger
buffering delays in order to preserve the original qual-
ity of the video and audio resources. By default, ND-
Ntube buffers for at least two seconds of video and au-
dio frames of real playback time before it begins (or
resumes) its playback. Buffering allows to soften the
delays of frame retrieval due to possible Interest re-
transmissions done by the RDR protocol.

An expected but nevertheless interesting effect of frame-
by-frame reliable delivery shows itself in rare cases
when a particular video or audio frame cannot be re-

trieved within a reasonable amount of time (e.g. In-
terest retransmissions) and application faces the choice
whether it wants to skip the frame or try to consume() it
again. Since our goal was to prototype a Youtube-like
user experience, in this situation, NDNtube consumer
will try to retrieve the same frame again.

2. Playlist Retrieval

Playlist is periodically updated by the video publisher,
which essentially means creation of a new Data packet
with a unique name (e.g. new timestamp name compo-
nent). The consumer that is trying to obtain the names
of available media resources does not know the unique
name of the latest playlist, and therefore cannot use
UDR or RDR protocols which assume such knowl-
edge. A simple solution of this problem is to use SDR
(Simple Data Retrieval) protocol with Right_Most_Child
option set as TRUE. The protocol generates a single
Interest packet with RightmostChildSelector which is
capable of fetching the latest playlist.

Frame-to-frame interval.
Since all the content and stream information already exists

in the Repo for a long time, consumer can be quite aggres-
sive with fetching video and audio frames. By default, ND-
Ntube player starts fetching (via consume()) the next frame
right after the current was successfully retrieved, which cor-
responds to the frame-to-frame interval of 0 milliseconds.
Having below 0 ms. frame-to-frame interval is also a reality,
because it is possible to fetch multiple frames in parallel.

The NDNtube consumer’s Pseudocode is shown as Algo-
rithm 4.

6. PRIOR WORK
NDNVideo provides live and pre-recorded video stream-

ing over NDN using Gstreamer library for media processing



9

Algorithm 4 NDNtube consumer
hv ← consumer(/ndn/ucla/NDNtube/video-1234/
video, RDR)
setcontextopt(hv , new_content, ProcessVideo)

4: while NOT Final_Frame do
Name suffixv ← video frame number
consume(hv , Name suffixv)
framenumber ++

8: end while

function PROCESSVIDEO(byte[] content)
video← decode content
Play video

12: end function

ha ← consumer(ndn/ucla/NDNtube/video-1234/
audio, RDR)
setcontextopt(ha, new_content, ProcessAudio)

16: while NOT Final_Frame do
Name suffixa ← audio frame number
consume(ha, Name suffixa)
framenumber ++

20: end while

function PROCESSAUDIO(byte[] content)
audio← decode content
Play audio

24: end function

and Repo for permanent storage [10]. Since the new NFD
does not support the previous packet format, this implemen-
tation of video streaming is now obsolete.

The major difference between NDNlive / NDNtube and
NDNVideo is the organization of the video and audio con-
tent. In the NDNVideo, video or audio streams are chopped
into fixed-size segments, which requires a special mapping
between real playback time and segment numbers to keep
video and audio synced, and support “seek” functionality
(Figure 7). Fixed-size segmentation breaks the boundaries of
frames (e.g. Application Data Units), which causes the inter-
dependency between different frames leading to the prob-
lems inherent to TCP/IP such as Head-Of-Line (HOL) block-
ing.

Figure 7: Prior NDNVideo Naming Space

In NDNlive and NDNtube, video and audio streams are
chopped into frames. One frame may contain several seg-
ments. Since segmentation is provided by Consumer / Pro-
ducer API, it is transparent for the application, which has to
focus only at frame level. Since every frame has a unique
name and is independent from any other frames, any miss-
ing frames do not affect other frames, which is highly ben-
eficial for video streaming applications, especially for live
streaming applications. For example, in NDNlive, if the pre-
vious frame can’t be retrieved on time, the consumer can just
skips it and continues with the next frame to keep the video
streaming.

Table 1 illustrates other significant differences such as li-
brary dependencies and versions, and programming languages.

NDNlive & NDNtube NDNVideo

Dependencies
ndn-cxx / NFD

Consumer / Producer API
CCNx / CCNR

pyccn
Gstreamer 1.x 0.1
Framing video & audio frames fixed segments

Language c++ python

Table 1: Comparison with NDNVideo

7. CONCLUSION
This technical report provides a detailed view on two video

streaming applications: NDNlive and NDNtube. NDNlive
is capable of streaming live video captured with the cam-
era, and NDNtube is capable of streaming video from the
mp4 encoded video files. Both applications organize video
and audio streams as sequences of frames, which results in
a big amount of flexibility in decision making process at the
consumer side of the application. Due to the increased flex-
ibility, NDNlive consumer is able to drop the frames which
have not been reassembled by the playback deadline in order
to keep up with the live stream.

NDNlive and NDNtube have different requirements for
the user experience and, therefore, use different data retrieval
protocols — UDR and RDR, respectively. Both applications
serve as good and relatively complete examples of using
Consumer / Producer API for people who are interested in
developing applications with the current implementation of
the library, as well as Consumer / Producer model in gen-
eral.

8. REFERENCES
[1] V. Jacobson, D. K. Smetters, J. D. Thornton, M. F.

Plass, N. H. Briggs, and R. L. Braynard, “Networking
Named Content,” in Proc. of CoNEXT, 2009.

[2] L. Zhang et al., “Named Data Networking (NDN)
Project,” Tech. Rep. NDN-0001, October 2010.

[3] L. Zhang, A. Afanasyev, J. Burke, V. Jacobson,
K. Claffy, P. Crowley, C. Papadopoulos, L. Wang, and
B. Zhang, “Named Data Networking,” ACM



10

SIGCOMM Computer Communication Review, July
2014.

[4] D. D. Clark and D. L. Tennenhouse, “Architectural
Considerations for a New Generation of Protocols,”
SIGCOMM Comput. Commun. Rev., vol. 20, no. 4, pp.
200–208, Aug. 1990.

[5] T. Stockhammer, “Dynamic adaptive streaming over
HTTP: standards and design principles,” in
Proceedings of the second annual ACM conference on
Multimedia systems. ACM, 2011, pp. 133–144.

[6] I. Moiseenko and L. Zhang, “Consumer-producer api
consumer-producer api for named data networking,”
Technical Report NDN-0017, NDN, Tech. Rep.
NDN-0017, August 2014.

[7] [Online]. Available: http://gstreamer.freedesktop.org/
[8] S. Chen, W. Shi, J. Cao, A. Afanasyev, and L. Zhang,

“NDN Repo: An NDN Persistent Storage Model,”
2014. [Online]. Available:
http://learn.tsinghua.edu.cn:
8080/2011011088/WeiqiShi/content/NDNRepo.pdf

[9] [Online]. Available: http://redmine.named-data.net/
projects/repo-ng/wiki/Repo_Protocol_Specification

[10] D. Kulinski and J. Burke, “NDN Video: Live and
Prerecorded Streaming over NDN,” UCLA, Tech.
Rep., 2012.

[11] A. Afanasyev, J. Shi, B. Zhang, L. Zhang,
I. Moiseenko, Y. Yu, W. Shang, Y. Huang, J. P.
Abraham, S. DiBenedetto et al., “NFD developer’s
guide,” Technical Report NDN-0021, NDN, Tech.
Rep., 2014.

[12] [Online]. Available:
http://gstreamer.freedesktop.org/data/doc/gstreamer/
head/gstreamer/html/GstBuffer.html

http://gstreamer.freedesktop.org/
http://learn.tsinghua.edu.cn:8080/2011011088/WeiqiShi/content/NDNRepo.pdf
http://learn.tsinghua.edu.cn:8080/2011011088/WeiqiShi/content/NDNRepo.pdf
http://redmine.named-data.net/projects/repo-ng/wiki/Repo_Protocol_Specification
http://redmine.named-data.net/projects/repo-ng/wiki/Repo_Protocol_Specification
http://gstreamer.freedesktop.org/data/doc/gstreamer/head/gstreamer/html/GstBuffer.html
http://gstreamer.freedesktop.org/data/doc/gstreamer/head/gstreamer/html/GstBuffer.html

	introduction
	background
	Consumer / Producer API
	Gstreamer
	Repo

	design goals
	Design
	Namespace design

	implementation
	NDNlive
	Publisher
	Player

	NDNtube
	Publisher
	Player


	prior work
	conclusion
	References

