
The C Object System ∗

Using C as a High-Level Object-Oriented Language

Laurent Deniau
CERN – European Organization for Nuclear Research

laurent.deniau@cern.ch

Abstract
The C Object System (COS) is a small C library which im-
plements high-level concepts available in CLOS, OBJECTIVE-
C and other object-oriented programming languages: uni-
form object model (class, metaclass and property-metaclass),
generic functions, multi-methods, delegation, properties, ex-
ceptions, contracts and closures. COS relies on the program-
mable capabilities of the C programming language to extend
its syntax and to implement the aforementioned concepts
as first-class objects. COS aims at satisfying several general
principles like simplicity, extensibility, reusability, efficiency
and portability which are rarely met in a single program-
ming language. Its design is tuned to provide efficient and
portable implementation of message multi-dispatch and mes-
sage multi-forwarding which are the heart of code extensi-
bility and reusability. With COS features in hand, software
should become as flexible and extensible as with scripting
languages and as efficient and portable as expected with C
programming. Likewise, COS concepts should significantly
simplify adaptive and aspect-oriented programming as well
as distributed and service-oriented computing.

Categories and Subject Descriptors D.3.3 [C Program-
ming Language]: Language Constructs and Features; D.1.5
[Programming Techniques]: Object-oriented Programming.

General Terms Object-oriented programming.

Keywords Adaptive object model, Aspects, Class cluster,
Closure, Contract, Delegation, Design pattern, Exception,
Generic function, Introspection, High-order message, Mes-
sage forwarding, Meta class, Meta-object protocol, Multi-
method, Open class model, Predicate dispatch, Program-
ming language design, Properties, Uniform object model.

∗COS project: http://sourceforge.net/projects/cos

[Copyright notice will appear here once ’preprint’ option is removed.]

1. Motivation
The C Object System (COS) is a small framework which
adds an object-oriented layer to the C programming lan-
guage [1, 2, 3] using its programmable capabilities1 while
following the simplicity of OBJECTIVE-C [5, 6] and the
extensibility of CLOS [8, 9, 10]. COS aims to fulfill sev-
eral general principles rarely met in a single programming
language: simplicity, extensibility, reusability, efficiency and
portability.

1.1 Context
COS has been developed in the hope to solve fundamen-
tal programming problems encountered in scientific comput-
ing and more specifically in applied metrology [11, 12]. Al-
though this domain looks simple at first glance, it involves
nonetheless numerous fields of computer science; from low-
level tasks like the development of drivers, protocols or state
machines, the control of hardware, the acquisition of data,
the synchronization of concurrent processes, or the numer-
ical analysis and modeling of huge data sets; to high-level
tasks like the interaction with databases or web servers, the
management of remote or distributed resources, the visual-
ization of complex data sets or the interpretation of scripts
to make the system configurable and controllable by non-
programmers [13, 14, 15]. Not to mention that scientific
projects commonly have to rely on sparse human resources
to develop and maintain for the long term such continually-
evolving-systems (i.e. R&D). Therefore the challenge is am-
bitious but I firmly believe that COS provides the required
features to simplify the development and the support of such
systems as well as a wide variety of software projects.

1.2 Principles
Given the context, it is essential to reduce the multiplicity of
the technologies involved, to simplify the development pro-
cess, to enhance the productivity, to guarantee the extensibil-
ity and the portability of the code and to adapt the required
skills to the available resources. Hence, the qualities of the
programming language are essential for the success of such
projects and should focus on the following principles:

1 In the sense of “Lisp is a programmable programming language”, [4].

Draft research paper for OOPSLA’09 1 2009/5/20

Simplicity The language should be easy to learn and use.
The training curve for an average programmer should be as
short as possible what implies in particular a clear and con-
cise syntax. Simplicity should become an asset which guar-
antees the quality of the code and allows to write complex
constructions without being penalized by a complex formal-
ism or by the multiplicity of the paradigms. COS can be
learned within a few days by C programmers with some
knowledge of object-oriented concepts, although exploiting
the full power of COS requires some experience.

Extensibility The language should support the addition of
new features or the improvement of existing features with-
out changing significantly the code or the software archi-
tecture. Concepts like polymorphism, message dispatch and
open class model help to achieve good flexibility and exten-
sibility by reducing coupling. But they usually have a strong
impact on the efficiency. COS dispatches messages with an
efficiency in the range of the C++ virtual member functions.

Reusability The language should support code reusability,
namely the ability to reuse or quickly adapt existing compo-
nents to unforeseen tasks. It is easier to achieve this goal if
the language allows to write generic code, either by param-
eterization, either by abstraction, to ease the componentiza-
tion of design patterns [16, 17, 18]. To support the develop-
ment of generic components, COS provides multi-methods
to handle dynamic and polymorphic collaboration and dele-
gation to handle dynamic and polymorphic composition.

Efficiency A general purpose programming language must
be efficient, that is it must be able to translate all kinds of al-
gorithms into programs running with predictable resource
usage (mainly CPU and memory) consistent with the pro-
cesses carried out. In this respect, programming languages
with an abstract machine close to the physical machine —
a low-level language — offer generally better results. C is
admittedly known to achieve good efficiency.

Portability A general purpose programming language must
be portable, that is it must be widely available on many ar-
chitectures and it must be accessible from almost any other
languages (FFI). This point often neglected brings many ad-
vantages: it improves the software reliability, it reduces the
deployment cost, it enlarges the field of potential users and
it helps to find trained programmers. Regarding this point,
normalized programming languages (ISO) get the advantage.
ISO C89 is normalized and well known for its availability
and portability.

1.3 Proposition
COS extends the C programming language with concepts
[19] mostly borrowed from OBJECTIVE-C and CLOS. The
choice of designing the language as a C library instead of a
compiler allowed to quickly explore various object models,
but R.E. Johnson’s paper on the dynamic object model [20]
definitely focused my research towards the final design:

“If a system is continually changing, or if you want users
to be able to extend it, then the Dynamic Object Model ar-
chitecture is often useful. [...] Systems based on Dynamic
Object Models can be much smaller than alternatives. [...] I
am working on replacing a system with several millions lines
of code with a system based on a dynamic object model that
I predict will require about 20,000 lines of code. [...] This
makes these systems easier to change by experts, and (in
theory) should make them easier to understand and main-
tain. But a Dynamic Object Model is hard to build. [...] A
system based on a Dynamic Object Model is an interpreter,
and can be slow.”.

This adaptive object model [21, 22] is actually what COS
provides, but at the level of the C programming languages
without significant efficiency loss. In particular, COS has
been designed to support efficiently two key concepts —
multi-methods and fast generic delegation — and provides
a uniform object model where classes, generics and meth-
ods are first-class objects. Incidentally, COS strengthens in-
herently all the guidelines stated in [23] to build “flexible,
usable and reusable object-oriented frameworks” as well
as architectural pattern proposed in [24] to design flexible
component-based frameworks.

2. Overview
COS is a small framework entirely written in portable2

C99 which provides programming paradigms like objects,
classes, metaclasses, generic functions, multi-methods, del-
egation, properties, exceptions, contracts and closures. COS
syntax and features are directly available at the C source
code level through the use of the language keywords defined
in the header file <cos/Object.h>.

2.1 Concepts
Polymorphism This concept available in object-oriented
programming languages is the heart of software extensibil-
ity because it postpones to runtime the resolution of methods
invocation and reduces coupling between callers and callees.
Besides, if the polymorphic types are dynamic, the coupling
becomes almost inexistent and code size and complexity
are significantly reduced. On one hand, these simplifications
usually improve the programmer understanding who makes
less conceptual errors, draws simpler designs and increases
its productivity. On the other hand, dynamic typing post-
pones the detection of unknown messages at runtime, with
the risk to see programs ending prematurely. But well tested
software reduce this risk to exceptional situations.

Collaboration Software development is mainly about build-
ing collaborations between entities, namely objects. As soon
as polymorphic objects are involved everywhere to ensure
good software extensibility and reusability, one needs poly-
morphic collaboration implemented by multi-methods. They

2 Namely C89 and C99 variadic macros.

Draft research paper for OOPSLA’09 2 2009/5/20

reduce strong coupling that exist in the Visitor pattern (or
equivalent) as well as the amount of code needed to achieve
the task. COS provides message multi-dispatch with an effi-
ciency in the range of the C++ virtual member function.

Composition The composition of objects and behaviors is
a well known key-concept in software design. It enhances
software flexibility by introducing levels of indirection in
objects and behaviors. Most structural and behavioral design
patterns described in [28] introduce such indirections, but at
the price of an increased code complexity and coupling and
hence a decreased reusability of the components built. The
delegation is an effective mechanism which allows to man-
age the composition of both, objects and behaviors, without
introducing coupling. COS provides delegation with the ef-
ficiency of message dispatch, seemingly a unique feature.

Reflection Reflection is a powerful aspect of adaptive ob-
ject models which, amongst others, allows to mimic the be-
havior of interpreters. COS provides full introspection and
limited intercession on polymorphic types and behaviors,
that is classes, generics and methods, as well as object at-
tributes through the definition of properties. Since all COS
components are first-class objects, it is trivial to replace cre-
ational patterns [28] by generic functions (section 8.1).

Encapsulation Encapsulation is a major concern when de-
veloping libraries and large-scale software. COS enforces
encapsulation of class implementation because encapsula-
tion is not only a matter of managing coupling but also a
design issue. Besides, the object behaviors are represented
by generics which favors the separation of concerns of inter-
faces and reduces cross-interfaces dependencies [23]. More-
over, the open class model of COS allows to extend classes
on need without breaking the encapsulation (i.e. without “re-
opening the box”) and reduces the risk of premature design.

Ownership The management of object life cycles requires
a clear policy of ownership and scope rules. In languages like
C and C++ where semantic by value prevails, the burden is
put on the programmer’s shoulders. In languages like JAVA,
C# and D where semantic by reference prevails, the burden
is put on the garbage collector. In this domain, COS lets the
developer choose between garbage collection (e.g. Boehm
GC [25]) and manual reference counting with rich semantic
(section 3.5).

Concurrency COS has been designed from the beginning
with concurrency in mind and shares only its dictionary of
static components. Per thread resources like message caches
and autorelease pools rely on either thread-local-storage or
thread-specific-key according to the availability.

2.2 Components
The object-oriented layer of COS is based on three compo-
nents (figure 1) borrowed from CLOS which characterize the
open object model described in depth in [8] and [9].

Function/Behavior/Verb

defgeneric

function declaration

(interface)

Type/State/Noun

defclass

structure definition

(definition)

Specialization

defmethod

function definition

(implementation)

1 1..5

Figure 1. Roles of COS components and their equivalent C-
forms. Multi-methods are classes specialization of generics.

Classes Classes play the same role as structures in C and
define object attributes. They are bound to their superclass
and metaclasses and define supertypes-subtypes hierarchies.

Generics Generics play the same role as function declara-
tions in C and define messages. They are essential actors of
code extensibility and ensure correctness of formal parame-
ters of messages between callers and callees.

Methods Methods play the same role as function defini-
tions in C and define specializations of generics. A method
is invoked if the message belongs to its generic and the re-
ceivers match its classes (multi-methods).

The similarities between COS components and their equiv-
alent C-forms let C programmers with some notions of
object-oriented design be productive rapidly. The open ob-
ject model allows to define components in different places
and therefore requires an extra linking iteration to collect
their external symbols: link→ collect3 → re-link. This fast
iteration is automatically performed by the makefiles com-
ing with COS before the final compilation stage that builds
the executable or the dynamic library.

2.3 Syntax
COS introduces new keywords to extend the C language with
a user-friendly syntax half-way between OBJECTIVE-C and
CLOS. COS parses its syntax and generates code with the
help of its functional C preprocessing library4; a module of
a few hundred C macros which was developed for this pur-
pose. It offers limited parsing capabilities, token recognition,
token manipulation and algorithms like eval, map, filter, fold,
scan, split borrowed from functional languages and working
on tuples of tokens. As a rule of thumb, all COS symbols
and macros are mangled to avoid unexpected collisions with
other libraries, including keywords which can be disabled.

Despite of its dynamic nature, COS tries hard to detect
all syntax errors, type errors and other mistakes at compile-

3 COS mangled symbols are collected with the nm command or equivalent.
4 The description of this cpp library is beyond the scope of this paper.

Draft research paper for OOPSLA’09 3 2009/5/20

time by using static asserts or similar tricks and to emit
meaningful diagnostics. The only point that COS cannot
check at compile time is the understanding of a message by
the receivers; an important “feature” to reduce coupling.

The syntax and grammar of COS are summarized in the
figures 2, 7, 8, 9, 10 and 11, following the notation of the
C99 standard [1].

3. Classes (nouns)
COS allows to define and use classes as easily as in other
object-oriented programming languages.

3.1 Using classes
The useclass() declaration allows to access to classes as
first-class objects. The following simple program highlights
the similarities between COS and OBJECTIVE-C:

1 #include <cos/Object.h>

2 #include <cos/generics.h>

3

4 useclass(Counter, (Stdout)out);

5

6 int main(void) {

7 OBJ cnt = gnew(Counter);

8 gput(out,cnt);

9 gdelete(cnt);

10 }

which can be translated line-by-line into OBJECTIVE-C by:

1 #include <objc/Object.h>

2 // Counter interface isn’t exposed intentionally
3

4 @class Counter, Stdout;

5

6 int main(void) {

7 id cnt = [Counter new];

8 [Stdout put: cnt];

9 [cnt release];

10 }

Line 2 makes the standard generics like gnew, gput and
gdelete5 visible in the current translation unit. OBJECTIVE-
C doesn’t need this information since methods are bound
to their class, but if the user wants to be warned for incor-
rect use of messages, the class definition must be visible.
This example shows that COS requires less information than
OBJECTIVE-C to handle compile-time checks what leads to
better code insulation and reduces useless recompilations.
Moreover, it offers fine tuning of exposure of interfaces since
only the used generic functions have to be visible.

Line 4 declares the class Counter6 and the alias out for
local replacement of the class Stdout, both classes being
supposedly defined elsewhere. In line 7, the generic type OBJ
is equivalent to id in OBJECTIVE-C.

5 By convention, the name of generics always starts by a ’g’.
6 By convention, the name of classes always starts by an uppercase letter.

class-declaration:
useclass(class-decl-list);

class-decl-list:
class-decl
class-decl-list , class-decl

class-decl:
class-name
(class-name) local-name

class-definition:
defclass(class-specifier)

↪→ struct-declaration-list (c99)
↪→ endclass

class-instantiation:
makclass(class-specifier);

class-specifier:
class-name
class-name , (root class)
class-name , superclass-name

{class, superclass, local}-name:
identifier (c99)

Figure 2. Syntax summary of classes.

Lines 7 – 9 show the life cycle of objects, starting with
gnew (resp. new) and ending with gdelete (resp. release).
They also show that generics are functions (e.g. one can
take their address). Finally, the line 8 shows an example of
multi-method where the message gput(_,_) will look for
the specialization gput(mStdout,Counter) whose meaning
is discussed in section 5. In order to achieve the same task,
OBJECTIVE-C code has to rely on the Visitor pattern, a bur-
den that requires more coding, creates static dependencies
(strong coupling) and is difficult to extend.

3.2 Defining classes
The definition of a class is very similar to a C structure:

defclass(Counter)

int cnt;

endclass

which is translated in OBJECTIVE-C as:

@interface Counter : Object {

int cnt;

}

// declaration of Counter methods not shown
@end

or equivalently in CLOS as:

Draft research paper for OOPSLA’09 4 2009/5/20

Object

Proxy

Nil

Method Behavior

Generic Class

MetaClass

PropMetaClass

Tracer TrueFalse

FalseTrue

NIL
subclass of

NIL

Property Predicate

Figure 3. Subset of COS core classes hierarchy.

(defclass Counter (Object) ((cnt)))

The Counter class derives from the root class Object — the
default behavior when the superclass isn’t specified — and
defines the attribute cnt.

Class visibility What must be visible and when? In order
to manage coupling, COS provides three levels of visibility:
none, declaration and definition. If you only use the generic
type OBJ, nothing is required (no coupling):

OBJ gnew(OBJ cls) {

return ginit(galloc(cls));

}

If you want to create instances of a class, only the declaration
is required (weak coupling):

OBJ gnewBook(void) {

useclass(Book); // local declaration
return gnew(Book);

}

If you want to define subclasses, methods or instances with
automatic storage duration, the class definition must be visi-
ble (strong coupling).

3.3 Class inheritance
Class inheritance is as easy in COS as in other object-
oriented programming languages. Figure 3 shows the hi-
erarchies of the core classes of COS deriving from the root
classes Object and Nil. As an example, the MilliCounter

class defined hereafter derives from the class Counter to
extend its resolution to thousandths of count:

defclass(MilliCounter, Counter)

int mcnt;

endclass

which gives in OBJECTIVE-C:

@interface MilliCounter : Counter {

int mcnt;

}

// declaration of MilliCounter methods not shown
@end

and in CLOS:

(defclass MilliCounter (Counter) ((mcnt)))

In the three cases, the derived class inherits the attributes and
the methods of its superclass. Since COS aims at insulating
classes as much as possible, it discourages direct access to
superclass attributes by introducing a syntactic indirection
which forces the user to write obj->Super.attribute in-
stead of obj->attribute. The inheritance of multi-methods
has a different meaning and will be discussed in section 5.

Root class Defining a root class is an exceptional task but it
may be a necessity in some rare cases. COS uses the terminal
symbol ⊥7 (represented by ’_’) to declare a class as a root
class. For example, Object is an important root class with
the following simple definition:

defclass(Object,_)

U32 id; // object’s class identity
U32 rc; // reference counting

endclass

But its methods must be defined with care since they provide
all the essential functionalities inherited by other classes.

Class rank COS computes at compile-time the inheritance
depth of each class. The rank of a root class is zero (by
definition) and each successive subclass increases the rank.

Dynamic inheritance COS provides the message gchange-
Class(obj,cls) to change the class of obj to cls iff it is a
superclass of obj’s class; and the message gunsafeChange-
Class(obj,cls,spr) to change the class of obj to cls iff both
classes share a common superclass spr and the instance size
of cls is lesser or equal to the size of obj. These messages are
useful for implementing class clusters, state machines and
adaptive behaviors.

3.4 Meta classes
Like in OBJECTIVE-C, a COS class definition creates a
parallel hierarchy of metaclass which facilitates the use of
classes as first-class objects. Figure 4 shows the complete
hierarchy of the PropMetaClass class, including its meta-
classes.

Class metaclass The metaclasses are classes of classes im-
plicitly defined in COS to ensure the coherency of the type
system: to each class must correspond a metaclass [26]. Both
inheritance trees are built in parallel: if a class A derives from
a class B, then its metaclass mA8 derives from the metaclass mB
— except the root classes which derive from NIL and have
their metaclasses deriving from Class to close the inheri-
tance path. Metaclasses are instances of the class MetaClass.

7⊥ means “end of hierarchy” or NIL, but not the class Nil.
8 The metaclass name is always the class name prefixed by a ’m’.

Draft research paper for OOPSLA’09 5 2009/5/20

Object

Behavior

Class

MetaClass

PropMetaClass

NIL

pmObject

pmBehavior

pmClass

pmMetaClass

pmPropMetaClass

mObject

mBehavior

mClass

mMetaClass

mPropMetaClass

instance of
subclass of

Class

Figure 4. COS core classes hierarchy with metaclasses.

Property metaclass In some design patterns like Singleton
or Class Cluster, or during class initialization (section 3.6),
the automatic derivation of the class metaclass from its su-
perclass metaclass can be problematic as detailed in [27].
To solve the problem COS associates to each class a prop-
erty metaclass which cannot be derived; that is all methods
specialized on the property metaclass can only be reached
by the class itself. In order to preserve the consistency of
the hierarchy, a property metaclass must always derive from
its class metaclass, namely pmA9 (resp. pmB) derives from mA

(resp. mB) as shown in the figure 4. Property metaclasses are
instances of the class PropMetaClass.

Class objects With multi-methods and metaclasses in
hands, it is possible to use classes as common objects. Fig-
ure 5 shows the hierarchy of the core class-objects used
in COS to specialized multi-methods with specific states.
For instance messages like gand, gor and gnot are able to
respond to messages containing the class-predicates True,
False and TrueFalse. The root class Nil is a special class-
object which means no-object but still safe for message dis-
patch: sending a message to Nil is safe, but not to NIL.

Type system The COS type system follows the rules of
OBJECTIVE-C, that is polymorphic objects have opaque
types (ADT) outside their methods and are statically and
strongly typed inside; not to mention that multi-methods re-
duce significantly the need for runtime identification of poly-
morphic parameters. Furthermore, the set of class – meta-
class – property-metaclass forms a coherent hierarchy of
classes and types which offers better consistency and more
flexibility than in OBJECTIVE-C and SMALLTALK where
metaclasses are not explicit and derive directly from Object.

9 The property metaclass name is always the class name prefixed by a ’pm’.

Nil

Predicate

TrueFalse

FalseTrue

subclass of

Ordered

GreaterLesser Equal

Property

sizename

NIL

Figure 5. Subset of COS core class-predicates hierarchy.

3.5 Class instances
Object life cycle The life cycle of objects in COS is very
similar to other object-oriented programming languages,
namely it starts by creation (galloc) followed by initial-
ization (ginit and variants) and ends with deinitialization
(gdeinit) followed by destruction (gdealloc). In between,
the user manages the ownership of objects (i.e. dynamic
scope) with gretain, grelease and gautoRelease like in
OBJECTIVE-C. The copy initializer is the specialization of
the generic ginitWith(_,_) for the same class twice. The
designated initializer is the initializer with the most cover-
age which invokes the designated initializer of the superclass
using next_method. Other initializers are secondary initial-
izers which must invoke the designated initializer [7].

Object type In COS (resp. OBJECTIVE-C), objects are al-
ways of dynamic type because the type of galloc (resp.
alloc) is OBJ (resp. id). Since it is the first step of the life cy-
cle of objects in both languages, the type of objects can never
be known statically, except inside their own multi-methods.
That is why COS (resp. OBJECTIVE-C) provides the mes-
sage gisKindOf(obj,cls) (resp. [obj isKindOf: cls]) to in-
spect the type of objects. But even so, it would be danger-
ous to use a static cast to convert an object into its expected
type because dynamic design patterns like Class Cluster and
Proxy might override gisKindOf for their use. COS also pro-
vides the message gclass(obj) which returns obj’s class.

Object identity In COS, an object is bounded to its class
through a unique 32-bit identifier produced by a linear con-
gruential generator which is also a generator of the cyclic
groups N/2kN for k = 2..32. This powerful algebraic prop-
erty allows to retrieve efficiently the class of an object from
the components table using its identifier as an index (Fig-
ure 6). Comparing to pointer-based implementations, the
unique identifier has four advantages:

It ensures better behavior of cache lookups under heavy
load (uniform hash), it makes the hash functions very fast
(sum of shifted ids), it is smaller than pointers on 64-bit

Draft research paper for OOPSLA’09 6 2009/5/20

obj->id -

Dictionary of behavioral components

table[obj->id & (table_size-1)]

- obj’s class

Figure 6. Lookup to retrieve object’s class from object’s id.

machines and it can store extra information (high bits) like
class ranks to speedup linear lookup in class hierarchies.

Automatic objects Since COS adds an object-oriented
layer on top of the C programming language, it is possi-
ble to create objects with automatic storage duration (e.g.
on the stack) using compound literals (C99). In order to
achieve this, the class definition must be visible and the
developer of the class must provide a special constructor.
For example the constructor aStr(’’a string’’)10 is equiv-
alent to the OBJECTIVE-C directive @’’a string’’. COS al-
ready provides automatic constructors for many common
objects like Char, Short, Int, Long, Float, Complex, Range,
Functor and Array. Automatic constructors allow to create
efficiently temporary objects with local scope and enhance
the flexibility of multi-methods. For example, the initializer
ginitWith(_,_) and its variants can be used in conjunc-
tion with almost all the automatic constructors aforemen-
tioned. Thanks to the rich semantic of COS reference count-
ing, if an automatic object receives the message gretain or
gautoDelete, it is automatically cloned using the message
gclone and the new copy with dynamic scope is returned.

Static objects Static objects can be built in the same way
as automatic objects except that they require some care in
multi-threaded environments. It is worth to note that all COS
components have static storage duration and consequently
are insensitive to ownership and cannot be destroyed.

3.6 Implementing classes
Class instantiations create the class objects using the key-
word makclass and the same class-specifier as the corre-
sponding defclass. COS checks at compile-time if both
definitions match. The counters implementation follows:

makclass(Counter);

makclass(MilliCounter,Counter);

which is equivalent in OBJECTIVE-C to:

@implementation Counter

// definition of Counter methods not shown
@end

@implementation MilliCounter : Counter

// definition of MilliCounter methods not shown
@end

10 By convention, automatic constructors always starts by an ’a’.

Class initialization For the purpose of pre-initialization,
COS ensures to invoke once by ascending class rank (super-
class first) all specializations of the message ginitialize

on property metaclass before the first message is sent. Like-
wise, COS ensures to invoke once by descending class
rank (subclasses first) all specializations of the message
gdeinitialize on property metaclass after exiting main.

4. Generics (verbs)
We have already seen in previous code samples that generics
can be used as functions. But generics take in fact multiple
forms and define each:

• a function declaration (defgeneric) which ensures the
correctness of the signature of its methods (defmethod),
aliases (defalias) and next-methods (defnext).
• a function definition used to dispatch the message and to

find the most specialized method belonging to the generic
and matching the classes of the receivers.
• an object holding the generic’s metadata: the selector.

A generic function has one definition of its semantics and is,
in effect, a verb raised at the same level of abstraction as a
noun [4]. Figure 7 summarizes the syntax of generics, half
way between the syntax of generic’s definition in CLOS and
the syntax of method’s declaration in OBJECTIVE-C.

Generic rank The rank of a generic is the number of re-
ceivers in its param-list. COS supports generics from rank
1 to 5 what should be enough in practice since rank 1 to 4
already cover all the multi-methods defined in the libraries
of CECIL and DYLAN [29, 30, 36].

4.1 Message dispatch
COS dispatch uses global caches (one per generics rank)
implemented with hash tables to speedup method lookups.
The caches solve slot collisions by growing until they reach
a configurable upper bound of slots. After that, they use
packed linked list incrementally built to hold a maximum of
3 cells. Above this length, the caches start to forget cached
methods — a required behavior when dynamic class creation
is supported. The lookup uses fast asymmetric hash func-
tions (sum of shifted ids) to compute the cache slots and en-
sures uniform distribution even when all selectors have the
same type or specializations on permutations exist.

Fast messages COS lookup is simple enough to allow
some code inlining on the caller side to speedup message
dispatch. Fast lookup is enabled up to the generic rank spec-
ified by COS_FAST_MESSAGE — from disabled (0) to all (5,
default) — before the generic definitions (defgeneric).

4.2 Declaring generics
Generic declarations are less common than class declara-
tions but they can be useful when one wants to use gener-
ics as first-class objects. Since generic definitions are more

Draft research paper for OOPSLA’09 7 2009/5/20

generic-declaration:
usegeneric(generic-decl-list);

generic-decl-list:
generic-decl
generic-decl-list , generic-decl

generic-decl:
generic-name
(generic-name) local-name

generic-definition:
defgeneric(generic-specifier);

generic-variadic-definition:
defgenericv(generic-specifier , ...);

generic-specifier:
return-type , generic-def , param-list

generic-def:
generic-name
(class-name) generic-name

param-list:
param-decl
param-list , param-decl

param-decl:
param-nameopt (selector)
(param-type) param-name

{return, param}-type:
type-name (c99)

{generic, param}-name:
identifier (c99)

Figure 7. Syntax summary of generics.

often visible than class definitions, it is common to rename
them locally as in the following short example:

void safe_print(OBJ obj) {

usegeneric((gprint) prn);

if (gunderstandMessage1(obj, prn) == True)

gprint(obj);

}

which gives in OBJECTIVE-C:

void safe_print(id obj) {

SEL prn = @selector(print);

if ([obj respondsToSelector: prn] == YES)

[obj print];

}

4.3 Defining generics
Definitions of generics correspond to function declarations
in C and differ from OBJECTIVE-C method declarations by
the fact that they are neither bound to classes (prefix ’-’) nor
to metaclasses (prefix ’+’). The following definitions:

defgeneric(void, gincr, _1); // rank 1
defgeneric(void, gincrBy, _1, (int)by); // rank 1
defgeneric(OBJ , ginitWith, _1, _2); // rank 2
defgeneric(OBJ , ggetAt, _1, at); // rank 2
defgeneric(void, gputAt, _1, at, what); // rank 3

can be translated into CLOS as:

(defgeneric incr (obj))

(defgeneric incr-by (obj by))

(defgeneric init-with (obj with))

(defgeneric get-at (obj at))

(defgeneric put-at (obj at what))

Selector parameters like at are called open types (no paren-
thesis) since their type can vary for each specialization.
Other parameters like by are called closed types (with paren-
thesis) and have fixed types and names: specializations must
use the same types and names as defined by the generic. This
enforces the semantic of monomorphic parameters which
could be ambiguous otherwise: int offset vs. int index.

5. Methods
Methods are defined using a similar syntax as generics
as summarized in figure 8. The following code defines a
method specialization of the generic gincr for the class
Counter:

defmethod(void, gincr, Counter)

self->cnt++;

endmethod

which in OBJECTIVE-C gives (within @implementation):

- (id) incr {

self->cnt++;

}

Methods specializers The receivers can be equivalently
accessed through selfn11 whose types correspond to their
class specialization (e.g. struct Counter*) and through un-
named parameters _n whose types are OBJ for 1 ≤ n ≤ g,
where g is the rank of the generic. It is important to un-
derstand that selfn and _n are bound to the same object,
but selfn provides a statically typed access which allows to
treat COS objects like normal C structures.

Multi-methods Multi-methods are methods with more
than one receiver and do not require special attention in
COS. The following example defines the assign-sum opera-
tor (i.e. +=) specializations which adds 2 or 3 Counters:

11 self and self1 are equivalent.

Draft research paper for OOPSLA’09 8 2009/5/20

defmethod(OBJ, gaddTo, Counter, Counter)

self->cnt += self2->cnt;

retmethod(_1); // return self
endmethod

defmethod(OBJ, gaddTo2, Counter,Counter,Counter)

self->cnt += self2->cnt + self3->cnt;

retmethod(_1); // return self
endmethod

About half of COS generics have a rank > 1 (multi-methods)
and cover more than 80% of all the methods specializations.

Class methods Class methods are methods specialized for
classes deriving from Class what includes all metaclasses:

defmethod(void, ginitialize, pmMyClass)

// do some initialization specific to MyClass.
endmethod

defmethod(OBJ, gand, mTrue, mFalse)

retmethod(False); // return the class−object False
endmethod

Method aliases COS allows to specialize compatible gener-
ics with the same implementation. The following aliases de-
fine specializations for gpush, gtop and gpop which share
the specializations of gput, gget and gdrop respectively:

defalias(void, (gput)gpush, Stack, Object);

defalias(OBJ , (gget)gtop , Stack, Object);

defalias(void, (gdrop)gpop , Stack, Object);

Method types In order to support fast generic delegation
(section 5.2), COS must use internally the same function
types (i.e. same C function signatures) for methods imple-
mentation belonging to generics of the same rank:

void (*IMP1)(SEL,OBJ,void*,void*);

void (*IMP2)(SEL,OBJ,OBJ,void*,void*);

void (*IMP3)(SEL,OBJ,OBJ,OBJ,void*,void*);

...

The first parameter _sel is the message selector (i.e. generic’s
object) used by the dispatcher, the OBJs _n are the objects
used as selectors (i.e. receivers) by the dispatcher, the penul-
timate parameter _arg is a pointer to the structure storing
the closed arguments of the generic (if any) and the last pa-
rameter _ret is a pointer to the placeholder of the returned
value (if any). The responsibilities are shared as follow:

• The generic functions are in charge to pack the closed
arguments (if any) into the structure pointed by _arg, to
create the placeholder pointed by _ret for the returned
value (if any), to lookup for the method specialization and
to invoke its implementation (i.e.IMPn) with the prepared
arguments _sel, _n, _arg and _ret.
• The methods are in charge to unpack the closed argu-

ments into local variables and to handle the returned
value appropriately.

method-definition:
defmethod(method-specifier)

↪→ method-statement
↪→ endmethod

method-specifier:
return-type , method-def , param-list

method-def:
generic-name
(generic-name) tag-nameopt (around method)

method-statement:
compound-statement (c99)
compound-statement-with-contract (contract)

method-return-statement:
retmethod(expressionopt);

method-alias-definition:
defalias(generic-specifier);

alternate-next-method-definition:
defnext(generic-specifier);

next-method-statement:
next method(argument-expression-list);

forward-message-statement:
forward message(argument-expression-list);

Figure 8. Syntax summary of methods.

5.1 Next method
The next_method principle borrowed from CLOS12 is an
elegant answer to the problem of superclass(es) methods
call (i.e. late binding) in the presence of multi-methods.
The following sample code defines a specialization of the
message gincrBy for the class MilliCounter which adds
thousandths of count to the class Counter:

1 defmethod(void, gincrBy, MilliCounter, (int)by)

2 self->mcnt += by;

3 if (self->mcnt >= 1000) {

4 defnext(void, gincr, MilliCounter);

5 self->mcnt -= 1000;

6 next_method(self); // call gincr(Counter)
7 }

8 endmethod

which is equivalent to the OBJECTIVE-C code:

- (void) incrBy: (int)by {

self->mcnt += by;

if (self->mcnt >= 1000) {

12 Namely call-next-method.

Draft research paper for OOPSLA’09 9 2009/5/20

self->mcnt -= 1000;

[super incr];

}

}

Line 6 shows how COS next_method replaces the message
sent to super in OBJECTIVE-C. By default, next_method
calls the next method belonging to the same generic (e.g.
gincrBy) where next means the method with the highest spe-
cialization less than the current method. But in the example
above, the Counter class has no specialization for gincrBy.
That is why the line 4 specifies an alternate next method
path, namely gincr, to redirect the next_method call to the
appropriate next method. In some cases, it might be safer to
test for the existence of the next method before calling it:

if (next_method_p) next_method(self);

It is worth to note that next_method transfers the returned
value (if any) directly from the called next method to the
method caller. Nevertheless, the returned value can still be
accessed through the lvalue RETVAL.

Methods specialization Assuming for instance the class
inheritance A :> B :> C, the class precedence list for the
set of all pairs of specialization of A, B and C by decreasing
order will be:

(C,C)(C,B)(B,C)(C,A)(B,B)(A,C)(B,A)(A,B)(A,A)

and the list of all next_method paths are:

(C,C)(C,B)(C,A)(B,A)(A,A)

(B,C)(B,B)(B,A)(A,A)

(A,C)(A,B)(A,A)

The algorithm used by COS to build the class precedence
list (i.e. compute methods rank) has some nice properties: it
provides natural asymmetric left-to-right precedence and it
is non-ambiguous, monotonic and totally ordered [35].

Around methods Around methods borrowed from CLOS
provide an elegant mechanism to enclose the behavior of
some primary method by an arbitrary number of around
methods. Around methods are always more specialized than
their primary method but have an undefined precedence:

defmethod(void, gdoIt, A, A)

endmethod

defmethod(void, gdoIt, B, A)

next_method(self1, self2); // call gdoIt(A,A)
endmethod

defmethod(void, (gdoIt), B, A) // around method
next_method(self1, self2); // call gdoIt(B,A)

endmethod

defmethod(void, gdoIt, B, B)

next_method(self1, self2); // call (gdoIt)(B,A)
endmethod

5.2 Delegation
Message forwarding is a major feature of COS which was
developed from the beginning with fast generic delegation
in mind as already mentioned in the previous section.

Unrecognized message Message dispatch performs run-
time lookup to search for method specializations. If no spe-
cialization is found, the message gunrecognizedMessagen is
SUBSTITUTED and sent with the same arguments as the orig-
inal sending, including the selector. Hence these messages
can be overridden to support the delegation or some adaptive
behaviors. The default behavior of gunrecognizedMessagen
is to throw the exception ExBadMessage.

Forwarding message Message forwarding has been bor-
rowed from OBJECTIVE-C and extended to multi-methods.
The sample code below shows a common usage of message
forwarding to protect objects against invalid messages:

1 defmethod(void, gunrecognizedMessage1, MyProxy)

2 if(gundertstandMessage1(self->obj,_sel)==True)

3 forward_message(self->obj); // delegate
4 endmethod

which can be translated line-by-line into OBJECTIVE-C by:

1 - (retval_t) forward:(SEL)sel :(arglist_t)args {

2 if ([self->obj respondsTo: sel] == YES)

3 return [self->obj performv:sel :args];

4 }

Here, forward_message propagates all the arguments, in-
cluding the hidden parameters _sel, _arg and _ret, to a
different receiver. As for next_method, forward_message
transfers the returned value directly to the method caller and
can be accessed through RETVAL in the same way.

Fast delegation Since all methods belonging to generics
with equal rank have the same C function signature and fall
into the same lookup cache, it is safe to cache the message
gunrecognizedMessagen in place of the unrecognized mes-
sage. Hence, the next sending of the latter will result in a
cache hit.

This substitution allows the delegation to be as fast as
message dispatch, seemingly a unique feature.

Intercession of forwarded messages Since the closed ar-
guments of the generic’s param-list are managed by a C
structure, it is possible to access each argument separately. In
order to do this, COS provides introspective information on
generics (i.e. metadata on types and signatures) which allows
to identify and retrieve the arguments and the returned value
efficiently. But this kind of needs should be exceptional and
is beyond the scope of this paper.

5.3 Contracts
To quote Bertrand Meyer [31], the key concept of Design
by Contract is “viewing the relationship between a class and

Draft research paper for OOPSLA’09 10 2009/5/20

compound-statement-with-contract:
declaration-without-initializer (c99)

↪→ pre-statementopt post-statementopt body-statement

pre-statement:
PRE statement

post-statement:
POST statement

body-statement:
BODY statement

test-assert-statement:
test assert(bool-expr)
test assert(bool-expr , cstr)
test assert(bool-expr , func , file , line)
test assert(bool-expr , cstr , func , file , line)

test-invariant-statement:
test invariant(object-expr)
test invariant(object-expr , func , file , line)

Figure 9. Syntax summary of contracts.

its clients as a formal agreement, expressing each party’s
rights and obligations”. Most languages that support Design
by Contract provide two types of statements to express the
obligations of the caller and the callee: preconditions and
postconditions. The caller must meet all preconditions of
the message sent, and the callee (the method) must meet its
own postconditions — the failure of either party leads to a
bug in the software. In that way, Design by Contract (i.e.
developer point of view) is the complementary tool of Unit
Testing [42] (i.e. user point of view) and they both enhance
the mutual confidence between developers and users, help to
better identify the responsibilities and improve the design of
interfaces.

To illustrate how contracts work in COS with the syntax
summarized in figure 9, we can rewrite the method gincr:

defmethod(void, gincr, Counter)

int old_cnt; // no initializer!
PRE old_cnt = self->cnt;

POST test_assert(self->cnt < old_cnt);

BODY self->cnt++;

endmethod

The POST statement test_assert checks for counter over-
flow after the execution of the BODY statement and throws
an ExBadAssert exception on failure, breaking the contract.
The variable old_val initialized in the PRE statement before
the execution of the BODY statement, plays the same role as
the old feature in EIFFEL. As well gincrBy can be improved:

defmethod(void, gincrBy, MilliCounter, (int)by)

PRE test_assert(by >= 0 && by < 1000,

’’millicount out or range’’);
BODY // same code as before

endmethod

The PRE statement ensures that the incoming by is within
the expected range and the next_method call in the BODY

statement ensures that the contract of gincr is also fulfilled.

Assertions and tests In order to ease the writing of con-
tracts and unit tests, COS provides two standard tests:

• test_assert(expr[,str][,func,file,line]) is a replace-
ment for the standard assert and raises an ExBadAssert

exception on failure. The (optional) parameters str, func,
file and line are transfered to THROW for debugging.
• test_invariant(obj[,func,file,line]) checks for the

class invariants of objects. It can only be used inside
methods and is automatically invoked on each receiver if
the invariant contract level is active. The (optional) pa-
rameters func, file and line are transfered to ginvariant.

Class invariants The test_invariant assertion relies on
the message ginvariant which must be specialized for
MilliCounter to be effective in the previous example:

defmethod(OBJ, ginvariant, MilliCounter,

(STR)func, (STR)file, (int)line)

next_method(self); // check Counter invariant
int mcnt = self->mcnt;

test_assert(mcnt >= 0 && mcnt < 1000,

’’millicount out of range’’, func, file, line);

endmethod

Here, test_assert propagates the location of the calling
test_invariant to improve bug tracking.

Contracts and inheritance In the design of EIFFEL, Ber-
trand Meyer recommends to evaluate inherited contracts as
a disjunction of the preconditions and as a conjunction of
the postconditions. But [32] demonstrates that EIFFEL-style
contracts may introduce behavioral inconsistencies with in-
heritance, thus COS prefers to treat both pre and post con-
ditions as conjunctions. This is also the only known solu-
tion compatible with multi-methods where subtyping is su-
perseded by the class precedence list.

Contracts levels The level of contracts can be set by defin-
ing the macro COS_CONTRACT to one of the levels:

• NO disable contracts (not recommended).
• COS_CONTRACT_PRE enables PRE sections. This is the rec-

ommended level for production phases (default level).
• COS_CONTRACT_POST enables PRE and POST sections. This

is the usual level during the development phases.
• COS_CONTRACT_ALL enables PRE and POST sections as well

as test_invariant statements. This is the highest level
usually set during debugging phases.

Draft research paper for OOPSLA’09 11 2009/5/20

property-declaration:
useproperty(property-decl-list);

property-decl-list:
property-decl
property-decl-list , property-decl

property-decl:
property-name
(property-name) local-name

property-definition:
defproperty(property-def);

property-def:
property-name
(super-property-name) property-name

class-property-definition:
defproperty(class-property-def);

class-property-def:
class-name , property-attr
class-name , property-attr , get-funcopt

class-name , property-attr , get-funcopt, put-funcopt

property-attr:
property-name
(object-attributeopt) property-name

{property, super-property}-name, object-attribute:
identifier (c99)

Figure 10. Syntax summary of properties.

5.4 Properties
Property declaration is a useful programming concept which
allows, amongst others, to manage the access of object at-
tributes, to use objects as associative arrays or to make ob-
jects persistent. Figure 10 summarizes the syntax of proper-
ties in COS which are just syntactic sugar on top of the defi-
nition of class-objects and the specialization of the accessors
ggetAt and gputAt already mentioned in section 4.3.

Property definition Properties in COS are defined conven-
tionally with lowercase names:

defproperty(name);

defproperty(size);

defproperty(class);

defproperty(value);

For example, the last property definition is equivalent to:

defclass(P_value, Property)

endclass

Most notably, properties are class-objects deriving from the
class Property (fig. 3) with lowercase names prefixed by P_.

Class properties Once properties have been defined, it is
possible to define some class-properties:

defproperty(Counter, (cnt)value, int2OBJ, gint);

defproperty(Counter, ()class, gclass);

with:
OBJ int2OBJ(int val) { // cannot be a method
return gautoDelete(aInt(val));

}

The value property is associated with the cnt attribute with
read-write semantic and uses user-defined boxing (int2OBJ)
and unboxing (gint). The class property is associated with
the entire object (omitted attribute) with read-only semantic
and uses the inherited message gclass to retrieve it.

Sometimes the abstraction or the complexity of the prop-
erties require handwritten methods. For instance:

defmethod(OBJ, ggetAt, Person, mP_name)

retmethod(gcat(self->fstname, self->lstname));

endmethod

is equivalent to, assuming gname(Person) is doing the gcat:

defproperty(Person, ()name, gname);

Using properties The example below displays the name

property of an object (or raise the exception ExBadMessage):

void print_name(OBJ obj) {

useproperty(name);

gprint(ggetAt(obj, name));

}

6. Exceptions
Exceptions are non-local errors which ease the writing of
interfaces since they allow to solve the problems where the
solutions exist. To state it differently, if an exceptional con-
dition is detected, the callee needs to return an error and let
the caller take over. Applying recursively this behavior re-
quires a lot of boilerplate code on the callers side to check
returned status. Exceptions let the callers choose to either
ignore thrown errors or to catch them and take over.

Implementing an exception mechanism in C on top of the
standard setjmp and longjmp is not new. But it is uncom-
mon to see a framework written in C which provides the
full try-catch-finally statements (figure 11) with the same se-
mantic as in other object-oriented programming languages
(e.g. JAVA, C#). The CATCH declaration relies on the mes-
sage gisKindOf to identify the thrown exception, what im-
plies that the order of CATCH definitions matters, as usual.

The sample program hereafter gives an overview of ex-
ceptions in COS:

1 int main(void) {

2 useclass(String, ExBadAssert, mExBadAlloc);

Draft research paper for OOPSLA’09 12 2009/5/20

try-statement:
TRY

↪→ statement
↪→ catch-statement-listopt

↪→ finally-statementopt

↪→ ENTRY

catch-statement-list:
catch-statement
catch-statement-list catch-statement

catch-statement:
CATCH(class-name , exception-nameopt) statement
CATCH ANY(exception-nameopt) statement

finally-statement:
FINALLY statement

throw-statement:
THROW(object-expr);
THROW(object-expr , func , file , line);
RETHROW();

exception-name:
identifier (c99)

Figure 11. Syntax summary of exceptions.

3 STR s1 = 0;

4 OBJ s2 = Nil;

5

6 TRY

7 s1 = strdup(’’str1’’);
8 s2 = gnewWithStr(String, ’’str2’’);
9 test_assert(0, ’’throw ExBadAssert’’);

10

11 CATCH(ExBadAssert, ex)

12 printf(’’assertion %s failed (%s,%d)\n’’,
13 gstr(ex), ex_file, ex_line);

14 gdelete(ex);

15 CATCH(mExBadAlloc, ex) // catch class ExBadAlloc
16 printf(’’out of memory (%s,%d)\n’’,
17 ex_file, ex_line);

18 gdelete(ex);

19 CATCH_ANY(ex)

20 printf(’’unexpected exception %s (%s,%d)\n’’,
21 gstr(ex), ex_file, ex_line);

22 gdelete(ex);

23 FINALLY // always executed
24 free(s1);

25 gdelete(s2);

26 ENDTRY

27 }

The code above shows some typical usages:

• Line 15 catches the class ExBadAlloc which is thrown
when a memory allocation failure occurs. Throwing an
instance of the class in a such context would not be safe.
• Line 23 destroys the two strings whatever happened.

Their initial states have been set to be neutral for these
operations in case of failure.

COS allows to throw any kind of object but it provides also
a hierarchy of exceptions deriving from Exception: ExBad-
Alloc, ExBadArity, ExBadAssert, ExBadCast, ExBadDomain,
ExBadFormat, ExBadMessage, ExBadProperty, ExBadRange,
ExBadSize, ExBadType, ExBadValue, ExNotFound, ExNot-

Implemented, ExNotSupported, ExErrno, and ExSignal.
Among these exceptions, ExErrno and ExSignal are spe-
cial cases used respectively to convert standard errors (i.e.
test_errno()) and registered signals into exceptions.

7. Performance
In order to evaluate the efficiency of COS, small test suites13

have been written to stress the message dispatcher in various
conditions. The test results summarized in table 1 and fig-
ure 12 have been performed on an Intel DualCore2TM T9300
CPU 2.5 Ghz with Linux Ubuntu 64-bit and the compiler
GCC 4.3 to compile the tests written in the three languages.
The timings have been measured with clock() and aver-
aged over 10 loops of 2 · 108 iterations each. The Param.
column indicates the number of parameters of the message
split by selectors (open types) and arguments (closed types).
The other columns represent the performances in million of
invocations sustained per second for respectively C++ vir-
tual member functions, OBJECTIVE-C messages and COS
messages. The tests stress the dispatcher with messages al-
ready described in this paper: incr increments a counter,
incrBy{2..5}opt accept from 1 to 5 extra closed parameters
(to stress the construction of _arg) and addTo{2..4}opt add
from 2 to 5 Counters together (to stress multiple dispatch).
Multiple dispatch has been implemented with the Visitor de-
sign pattern in C++ and OBJECTIVE-C.

Concerning the performance of single dispatch, COS
shows a good efficiency since it runs in average at about the
same speed as C++ and about ×1.6 faster than OBJECTIVE-
C. On one hand, COS efficiency decreases faster than C++
effciency because it passes more hidden arguments (i.e. _sel
and _arg) and uses more registers to compute the dispatch.
On the other hand, C++ shows some difficulties to manage
efficiently multiple inheritance of abstract classes. Concern-
ing the performance of multiple dispatch, COS outperforms
C++ and OBJECTIVE-C by factors×1.9 and×5.3. Concern-
ing the performance of message forwarding, we have seen
that by design, it runs at the full speed of message dispatch
in COS. Rough measurements of OBJECTIVE-C message
forwarding (linear lookup) shows that COS performs from
×50 to ×100 faster, depending on the tested classes.

13 These testsuites can be browsed on sf.net in the module CosBase/tests.

Draft research paper for OOPSLA’09 13 2009/5/20

Tests Param. C++ OBJC COS

single dispatch
counter incr 1 + 0 176 122 218
counter incrBy 1 + 1 176 117 211
counter incrBy2 1 + 2 176 115 185
counter incrBy3 1 + 3 176 112 171
counter incrBy4 1 + 4 167 111 154
counter incrBy5 1 + 5 167 107 133

multiple dispatch
counter addTo 2 + 0 90 40 150
counter addTo2 3 + 0 66 23 121
counter addTo3 4 + 0 45 16 90
counter addTo4 5 + 0 40 12 77

Table 1. Performances summary in 106 calls/second.

Multi-threading The same performance tests have been
run with POSIX multi-threads enabled. When the Thread-
Local-Storage mechanism is available (Linux), no signif-
icant impact on performance has been observed (<1%).
When the architecture supports only POSIX Thread-Specific-
Key (Mac OS X), the performance is lowered by a factor
×1.6 and becomes clearly the bottleneck of the dispatcher.

Object creation Like other languages with semantic by
reference, COS loads heavily the C memory allocator (e.g.
malloc) which is not very fast. If the allocator is identified
as the bottleneck, it can be replaced with optimized pools
by overriding galloc or by faster external allocators (e.g.
Google tcmalloc). COS also takes care of automatic objects
which can be used to speed up the creation of local objects.

Other aspects Other features of COS do not involve such
heavy machinery as in message dispatch or object creation.
Thereby, they all run at full speed of C. Contracts run at the
speed of the user tests since the execution path is known at
compile time and flattened by the compiler optimizer. Empty
try-blocks run at the speed of setjmp which is a well known
bottleneck. Finally next_method runs at 70% of the speed
of an indirect function call (i.e. late binding) because it also
has to pack the closed arguments into the generic’s _arg

structure.

8. Component-Oriented Design Patterns
This overview of COS shows that the principles stated in the
introduction are already well fulfilled. So far:

• The simplicity can be assumed from the fact that the en-
tire language can be described within few pages, includ-
ing the grammar, some implementation details and few
examples and comparisons with other languages.
• The extensibility comes from the nature of the object

model which allows to extend (methods bound to gener-
ics), wrap (around methods) or rename (method aliases)
behaviors with a simple user-friendly syntax. Besides,

0

50

100

150

200

250

incr
incrBy

incrBy2
incrBy3

incrBy4
incrBy5

addTo
addTo2

addTo3
addTo4

ObjC

C++

COS

Figure 12. Performances summary in 106 calls/second.

encapsulation, polymorphism, low coupling (messages)
and contracts are also assets for this principle.
• The reusability comes from the key concepts of COS

which enhance generic design: polymorphism, collabo-
ration (multi-methods) and composition (delegation).
• The efficiency measurement shows that key concepts per-

form well compared to other mainstream languages.
• The portability comes from its nature: a C89 library.

It is widely acknowledged that dynamic programming
languages simplify significantly the implementation of clas-
sical design patterns [28] when they don’t supersede them
by more powerful dynamic patterns [7, 33, 34]. This section
focuses on how to use COS features to simplify design pat-
terns or to turn them into reusable components, where the
definition of componentization is borrowed from [16, 17]:

Component Orientation = Encapsulation + Polymorphism
+ Late Binding + Multi-Dispatch + Delegation.

8.1 Simple Patterns
Creational Patterns It is a well known fact that these pat-
terns vanish in languages supporting generic types and intro-
spection. We have already seen gnew (p. 5), here is more:

OBJ gnewWithStr(OBJ cls, STR str) {

return ginitWithStr(galloc(cls), str);

}

OBJ gclone(OBJ obj) {

return ginitWith(galloc(gclass(obj)), obj);

}

The Builder pattern is a nice application of property meta-
classes to turn it into the so called Class Cluster pattern:

defmethod(OBJ, galloc, pmString)

retmethod(_1); // lazy, delegate the task to initializers
endmethod

Draft research paper for OOPSLA’09 14 2009/5/20

defmethod(OBJ, ginitWithStr, pmString, (STR)str)

OBJ lit_str = galloc(StringLiteral);

retmethod(ginitWithStr(lit_str, str));

endmethod

This example shows how to delegate the object build to the
initializer which in turn allocates the appropriate object ac-
cording to its arguments, an impossible task for the allocator.
The allocation of the StringLiteral uses the standard allo-
cator inherited from Object, even if it derives from the class
String (thanks to property metaclass). Now, the code:

OBJ str = gnewWithStr(String,’’literal string’’);

will silently return an instance of StringLiteral. This is
the cornerstone of Class Clusters where the front class (e.g.
String) delegates to private subclasses (e.g. StringLiteral)
the responsibility to build the object. It is worth to note that
each pmString specialization needed to handle new subclass
is provided by the subclass itself (thanks to the open class
model), which makes the Builder pattern truly extensible.
Most complex or multi-purpose classes of COS are designed
as class clusters (e.g. Array, String, Functor, Stream).

Garbage Collector This exercise will show how to sim-
plify memory management in COS with only few lines of
code. We start by wrapping the default object allocator such
that it always auto-releases the allocated objects:

defmethod(OBJ, (galloc), mObject) // around method
next_method(self); // allocate
gautoRelease(RETVAL); // auto−release

endmethod

Then we neutralize (auto-)delete and reinforce retain:

defmethod(void, (gdelete), Object)

endmethod

defmethod(OBJ, (gautoDelete), Object)

BOOL is_auto = self->rc == COS_RC_AUTO;

retmethod(is_auto ? gclone(_1) : _1);

endmethod

defmethod(void, (gretain), Object)

next_method(self);

if (self->rc == COS_RC_AUTO)

RETVAL = gretain(RETVAL); // once more for auto
endmethod

Now, the following code:

OBJ pool = gnew(AutoRelease);

for(int i = 0; i < 1000; i++)

OBJ obj = gnewWithStr(String, ’’string’’);
gdelete(pool); // pool specialization, collect the strings

does not create any memory leak, there is no longer the need
to delete or auto-delete your objects. For the first runs, you
can rely on the default auto-release pool managed by COS.
Then a profiler of used memory will show the appropriate
locations where intermediate auto-release pools should be
added to trigger the collects and limit the memory usage.

Key-Value-Coding We have already seen that properties
allow to access to object attributes, but to implement KVC,
we need to translate strings (key) into properties (noun):

defmethod(OBJ, ggetAt, Object, String)

OBJ prp = cos_property_getWithStr(self2->str);

if (!prp) THROW(gnewWith(ExBadProperty,_2));

retmethod(ggetAt(_1, prp));

endmethod

defmethod(void, gputAt, Object, String, Object)

OBJ prp = cos_property_getWithStr(self2->str);

if (!prp) THROW(gnewWith(ExBadProperty,_2));

gputAt(_1, prp, _3);

endmethod

where cos_property_getWithStr is an optimized version of
cos_class_getWithStr for properties from the API of COS,
which also provides cos_class_{read,write}Properties

to retrieve all the properties of a class (and its superclasses).

Key-Value-Observing Adding access notifications of prop-
erties is the next step after KVC, using around methods:

defmethod(OBJ, ggetAt, (Person), mP_name)

useclass(After, Before);

OBJ context = aMthCall(_mth,_1,_2,_arg,_ret);

gnotify(center, context, Before);

next_method(self1, self2); // get property
gnotify(center, context, After);

endmethod

where _mth is the object representing the method itself.
This example assumes that observers and objects observed
have already been registered to some notification center as
commonly done in the Key-Value-Observing pattern.

8.2 Proxies and Decorators
Proxy Almost all proxies in COS derive from the class
Proxy which handles some aspects of this kind of class:

defclass(Proxy);

OBJ obj; // delegate
endclass

#define gum1 gunrecognizedMessage1 // shortcut
#define gum2 gunrecognizedMessage2 // shortcut

defmethod(void, gum2, Proxy, Object)

forward_message(self1->obj, _2);

check_ret(_sel, _ret, self1);

endmethod

defmethod(void, gum2, Object, Proxy)

forward_message(_1, self2->obj);

check_ret(_sel, _ret, self2);

endmethod

// ... other rank specializations

where the small function check_ret takes care to return the
proxy when the forwarded message returns the delegate obj.

Draft research paper for OOPSLA’09 15 2009/5/20

Tracer For the purpose of debugging, COS provides the
simple proxy Tracer to trace the life of an object:

defclass(Tracer,Proxy) // usage: gnewWith(Tracer, obj);
endclass

defmethod(void, gum2, Tracer, Object)

trace_msg2(_sel, self1->Proxy.obj, _2);

next_method(self1, self2); // forward message
endmethod

defmethod(void, gum2, Object, Tracer)

trace_msg2(_sel, _1, self2->Proxy.obj);

next_method(self1, self2); // forward message
endmethod

// ... other rank specializations

where trace_msg2 prints useful information on the console.

Locker The locker is a proxy which avoids synchroniza-
tion deadlock on shared objects that can be encountered in
programming languages supporting only single-dispatch [8]:

defclass(Locker,Proxy) // usage: gnewWith(Locker, obj);
pthread_mutex_t mutex;

endclass

defmethod(void, gum1, Locker) // like smart pointers
lock(self); // lock the mutex
next_method(self); // forward the message
unlock(self); // unlock the mutex

endmethod

defmethod(void, gum2, Locker, Locker)

sorted_lock2(self1, self2); // lock in order
next_method(self1, self2); // forward the message
sorted_unlock2(self1, self2); // unlock in order

endmethod

// ... other rank specializations (total of 63−6 combinations)

For the sake of efficiency, higher ranks use sorting networks.

Multiple Inheritance The first version of COS was na-
tively implementing multiple inheritance using the C3 algo-
rithm [35] to compute the class precedence list on the way
of DYLAN, PYTHON and PERL6. But it was quickly consid-
ered as too complex for the end-user and incidental as far as
fast generic delegation could be achieved. Indeed, multiple
inheritance can be simulated by composition and delegation
with an efficiency close to native support14:

defclass(IOStream, OutStream)

OBJ in_stream;

endclass

defmethod(void, gum1, IOStream)

forward_message(self->in_stream);

endmethod

14 OBJECTIVE-C delegation is too slow to simulate multiple inheritance.

Now, messages of rank one not understood by the IOStreams
(e.g. gget, gread) will be forwarded to their InStream.

Distributed Objects Without going into the details, we can
mention that COS already implements all the key concepts
required to develop a distributed object system on the model
of OBJECTIVE-C and COCOA. A challenge for the future.

8.3 Closures and Expressions
COS provides the family of gevaln messages (equivalent
to COMMON LISP funcall) and the class cluster Functor

to support the mechanism of closures and more generally
lazy expressions and high order messages. The objects rep-
resenting the context of the closure (i.e. the free variables)
are passed to the Functor constructor which handles partial
evaluation and build expressions. The next example shows
another way to create a counter in PERL using a closure:

1 sub counter {

2 my($val) = shift; # seed
3 $cnt = sub { # incr
4 return $val++;

5 };

6 return $cnt; # return the closure
7 }

8

9 $cnt = counter(0);

10 for($i=0; $i<25000000; $i++)

11 &$cnt();

which can be translated into COS as:

1 OBJ counter(int seed) {

2 OBJ fun = aFunctor(gincr, aCounter(seed));

3 return gautoDelete(fun);

4 }

5

6 int main(void) {

7 OBJ cnt = counter(0);

8 for(int i=0; i<25000000; i++)

9 geval(cnt);

10 }

The line 2 creates the closure using the automatic construc-
tor aFunctor which takes the generic function gincr and
deduces its arity (here 1) from the remaining parameters,
namely the seed boxed in the counter. Line 3, the message
gautoDelete extends the lifespan of both the functor and the
counter to the dynamic scope. As one can see, COS achieves
the same task as PERL with about the same amount of code
but runs more than ×15 faster. The example below:

fun = gaddTo(Var,y) // works only with messages
fun = aFunctor(gaddTo,Var,y) // works with functions

create a closure with arity 2 where Var specifies an argu-
ment placeholder and y an argument object. The message
geval1(fun,x) is then equivalent to gaddTo(x,y).

The following example shows a more advanced example
involving lazy expressions and indexed placeholders:

Draft research paper for OOPSLA’09 16 2009/5/20

// return f ′ = (f(x + dx)− f(x))/dx
OBJ ggradient(OBJ f) {

OBJ x = aVar(0); // placeholder #1
OBJ dx = aVar(1); // placeholder #2
OBJ f_x = geval1(f, x); // lazy expression
OBJ f_xpdx = geval1(f, gadd(x, dx)); // idem
return gdiv(gsub(f_xpdx, f_x), dx); // idem

}

// return f ′(x)|dx

OBJ gderivative(OBJ f, OBJ dx) {

return geval2(ggradient(f), Var, dx);

}

Now we can map this function to a bag of values (strict
evaluation) or expressions (lazy evaluation) indifferently:

OBJ fun = gderivative(f, dx);

OBJ new_bag = gmap(fun, bag);

High Order Messages The principle behind HOMs is to
construct on-the-fly an expression from their arguments
composition [37] — a technique known for more than a
decade in C++ meta-programming. Once the expression is
completed, the last built object evaluates the expression and
returns the result. While C++ meta-expressions rely strongly
on static types (i.e. traits) and templates to build and simplify
the expressions, HOMs rely on the delegation mechanism:

• With fast generic delegation, no need to cache the mes-
sage in the HOM objects as in the aforementioned paper.
• With multi-methods, no need to provide multiple HOMs

for similar tasks (i.e. gfilter, gselect and gcollect).
• With lazy expression, no need to construct complex meta-

expressions or to reorder compositions.

HOMs are an important tool for modern framework design
since they play the role of weavers of cross-cutting concerns
otherwise solved by foreign technologies based on subject-
oriented [38] and aspect-oriented programming [39]. Like-
wise, the availability of HOMs simplify drastically the im-
plementation of interpreters reflecting the classes and meth-
ods of the underlying language like in F-SCRIPT [43].

9. Conclusion
Some frameworks, with the help of external preprocessors
or compilers, propose extensions to the C programming lan-
guage, but none of them provide a set of features as consis-
tent, complete and efficient as COS. Besides, even if the fea-
tures of COS are not new, I am not aware of a single program-
ming language which provides the same set of features with
the same simplicity, portability and efficiency. Finally, very
few programming languages target all the principles stated
in the introduction. In particular, modern type systems which
try to improve code flexibility and reusability to ease the de-
sign of generic components, tend to be lazy (static duck typ-
ing), overcomplicated (C++ ADL) and counter productive for
average or occasional developers.

9.1 Related work
Ooc This old framework uses the ooc preprocessor written
in AWK [40] to provide a basic object-oriented layer. It relies
on void pointers and requires much defensive programming
to ensure correct use of objects. Besides, it gives full control
over inheritance like in prototype-based languages.

Dynace This framework includes the dpp preprocessor and
a large library of classes [41]. Dynace features are equivalent
to those of OBJECTIVE-C except that it supports multiple
inheritance. However, Dynace message dispatch is about×3
slower than COS even with jumpTo assembly code enabled
and accessing object attributes is a bit awkward and relies on
fancy macros (e.g. accessIVs, GetIVs, ivPtr, ivType).

Gnome Objects The Gnome/Gtk+ Object System provides
basic object-oriented programming and requires to write un-
safe and unchecked code. Despite that this system cumulates
all the problems of Ooc and Dynace, it is nonetheless simple,
portable and implements a prototype-based object model.

9.2 Summary
COS seems to be unique by the set of features it provides to
the C programming language without requiring a third party
preprocessor or compiler nor any platform or compiler spe-
cific feature. The library approach allowed to explore rapidly
some object models and to select the most appropriate one
fulfilling the best the aimed principles: simplicity, extensi-
bility, reusability, efficiency and portability. Moreover, the
list of features is complete and consistent: augmented syn-
tax to support object-oriented programming, uniform object
model with extended metaclass hierarchy, multi-methods,
fast generic delegation, design by contract, properties and
key-value coding, exceptions, ownership and closures. COS
features have been optimized from the design point of view,
but for the sake of simplicity and portability, code tuning
has never been performed and lets some room for future im-
provement. The 8000 lines of source code of COS can be
downloaded from sourceforge.net under the LGPL license.

References
[1] International Standard. Programming Languages – C.

ISO/IEC 9899:1999.

[2] S.P. Harbison, and G.L. Steele. C: A Reference Manual.
Prentice Hall, 5th Ed., 2002.

[3] D.R. Hanson. C Interfaces and Implementations: Techniques
for Creating Reusable Software. Addison-Wesley, 1997.

[4] J.K. Foderaro. Lisp is a Chameleon. Communication of the
ACM, Vol. 34 No. 9, 1991.

[5] B.J. Cox, and A.J. Novobilski. Object-Oriented Program-
ming: An Evolutionary Approach. Addison-Wesley, 1991.

[6] Developer Guide. The Objective-C 2.0 Programming
Language. Apple Computer Inc., 2008.

[7] Developer Guide. Cocoa Fundamentals Guide. Apple
Computer Inc., 2007.

Draft research paper for OOPSLA’09 17 2009/5/20

[8] S.E. Keene. Object Oriented Programming in Common Lisp:
A Programmers Guide to the Common Lisp Object System.
Addison-Wesley, 1989.

[9] G. Kiczales, J. des Rivières, and D.G. Bobrow. The Art of the
Metaobject Protocol. MIT Press, 1991.

[10] R.P. Gabriel, J.L. White, and D.G. Bobrow. CLOS: Integrat-
ing Object-Oriented and Functional Programming. Commu-
nication of the ACM, Vol. 34 No. 9, 1991.

[11] J. Bosch. Design of an Object-Oriented Framework
for Measurement Systems. Systems Domain-Specific
Application Frameworks, Ch. 11, John Wiley & Sons, 2000.

[12] J. Bosch, P. Molin, M. Mattsson, and P.O. Bengtsson.
Object-Oriented Framework-based Software Development:
Problems and Experiences. ACM, 2000.

[13] J.M. Nogiec, J. DiMarco, H. Glass, J. Sim, K. Trombly-
Freytag, G. Velev and D. Walbridge. A Flexible and
Configurable System to Test Accelarator Magnets. Particle
Accelerator Conference (PAC’01), 2001.

[14] M. Nogiec, J. Di Marco, S. Kotelnikov, K. Trombly-Freytag,
D. Walbridge, M. Tartaglia. A Configurable component-based
software system for magnetic field measurements. IEEE
Trans. On Applied Superconductivity, Vol. 16 No. 2, 2006.

[15] P. Arpaia, L. Bottura, M. Buzio, D. Della Ratta, L. Deniau,
V. Inglese, G. Spiezia, S. Tiso, L. Walckiers. A software
framework for flexible magnetic measurements at CERN.
Instrumentation and Measurement Technology Conference
(IMTC’07), 2007.

[16] K. Rege. Design Patterns for Component-Oriented Software
Development. Euromicro’99 Conference, vol. 2, no. 2, 1999.

[17] B. Meyer, K. Arnout. Pattern Componentization: The Visitor
Example. Computer, vol. 39, no. 7, July 2006.

[18] B. Meyer, K. Arnout. Pattern Componentization: The Factory
Example. Innovations in Systems and Software Engineering,
vol. 2, no. 2, July 2006.

[19] J.C. Mitchell. Concepts in Programming Languages.
Cambridge University Press, 2001.

[20] R.E. Johnson. Dynamic Object Model. http://st-www.

cs.uiuc.edu/users/johnson/papers/dom, 1998

[21] D. Riehle, M. Tilman and R.E. Johnson. Dynamic Object
Model. 7th Conference on Pattern Languages of Programs
(PLoP’2000), 2000.

[22] J.W. Yoder and R.E. Johnson. The Adaptive Object-Model
Architectural Style. 3rd Working IEEE Conference on
Software Architecture (WICSA’2002), 2002.

[23] J. van Gurp, and J. Bosch. Design, Implementation and
Evolution of Object-Oriented Frameworks: Concepts &
Guidelines. Software Practice & Experience, John Wiley
& Sons, March 2001.

[24] D. Parsons, A. Rashid, A. Telea, and A. Speck. An archi-
tectural pattern for designing component-based application
frameworks. Software Practice & Experience, John Wiley &
Sons, November 2005.

[25] H. Boehm. Bounding Space Usage of Conservative

Garbage Collectors. 30th ACM Sigplan Symposium
on Principles of Programming Languages (PoPL’2002).
http://www.hpl.hp.com/personal/Hans_Boehm/gc.

[26] R. Razavi, N. Bouraqadi, J. Yoder, J.F. Perrot, and R. John-
son. Language support for Adaptive Object-Models using
Metaclasses. ESUG Conference 2004 Research Track, 2004.

[27] N.M. Bouraqadi-Saâdani, T. Ledoux, and F. Rivard. Safe
Metaclass Programming. OOPSLA’98, 1998.

[28] E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design
Patterns: Elements of Reusable Object-Oriented Software.
Addison-Wesley, 1995.

[29] E. Dujardin, E. Amiel and E. Simon. Fast Algorithm for
Compressed Multimethod Dispatch Table Generation. ACM
Transactions on Programming Languages and Systems, Vol.
20, January 1998.

[30] Y. Zibin and Y. Gil. Fast Algorithm for Creating Space
Efficient Dispatching Table with Application to Multi-
Dispatching. OOPSLA’02, 2002.

[31] B. Meyer. Object-Oriented Software Construction. Prentice
Hall, 2nd Ed., 1997.

[32] R.B. Findler, M. Latendresse, and M. Felleisen. Behavioral
Contracts and Behavioral Subtyping. 9th ACM Sigsoft
International Symposium on Foundations of Software
Engineering, 2001.

[33] P. Norvig. Design Patterns in Dynamic Programming.
http://www.norvig.com/design-patterns, 1996.

[34] G.T. Sullivan Advanced Programming Language Features
for Executable Design Pattern. Technical Report AIM-2002-
005, MIT Artificial Intelligence Laboratory, 2002.

[35] K. Barrett, B. Cassels, P. Haahr, D.A. Moon, K. Playford, and
P. Tucker Withington. A monotonic superclass linearization
for Dylan. OOPSLA’96, 1996.

[36] The Cecil Group. Cecil Standard Library Manual. Depart-
ment of Computer Science and Engineering, University of
Washington, 2004.

[37] M. Weiher and S. Ducasse. High Order Message. OOP-
SLA’05, 2005.

[38] W. Harrison, H. Ossher. Subject-Oriented Programming (A
Critique of Pure Objects). OOPSLA’93, 1993.

[39] G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda, C. Lopes,
J.M. Loingtier, and J. Irwin. Aspect-Oriented Programming.
European Conference on Object-Oriented Programming
(ECOOP’97), 1997.

[40] A.T. Schreiner. Object-Oriented Programming with ANSI C.
http://www.cs.rit.edu/~ats/books/ooc.pdf, 1994

[41] B. McBride. Dynace: Dynamic C language extension.
http://algorithms.us/, 2006.

[42] K. Beck. Test-Driven Development: By Example. Addison-
Wesley, 2002.

[43] P. Mougin. The F-Script Language, 1998–2006.
http://www.fscript.org/.

Draft research paper for OOPSLA’09 18 2009/5/20

