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Abstract: Doradolhp is an implcmentation of the Interlisp 
programming system on a large pcrsonal computer. It has cvolvcd 
from AltoLisp, an implementation on a less powerful machine. 
' h e  major goal of thc Dorado implementation was to eliminate 
the pcrfonnance deficiencies of the previous system. This paper 
describes the currcnt status of the system and discusses some of 
the issues that arose during its implcmentation. Among the 
tcchniques that helped us meet our performance goal were 
transferring much of the kcrncl software into Lisp, intensive use of 
performance measurement tools to detcrminc the areas of worst 
performance, and use of thc Intcrlisp programming environment 
to allow rapid and widespread improvements to the system code. 
The paper lists some areas in which performance was critical acd 
offers some observations on how our cxperiencc might be useful 
to other iinplemcntations of Interlisp. 

I. Background 

Interlisp is a dialect of Lisp whose most striking feature is a very 
extensive set of uscr facilities including, for example, syntax 
extension, error correction, and type declarations. It has been in 
wide use on a variety of time shared machines over the past ten 
years. 

In 1974, an implementation of Interlisp for the Alto, a small 
personal computer, was bcgun at Xerox PARC by Pcter Dcutsch 
and Willie Sue Haugeland [Dcutsch, 19731. 'l'his Alto1,isp 
hplcmentation introduced the idca of providing a microcoded 
target languagc for Lisp compilations which modelled the basic 
operations of Lisp more closcly than a general purposc instruction 
set. A similar instruction set was also implcmentcd for Maxc, a 
microprogrammed machine running the 'TENEX operating system 
[Fiala, 19781. 

The design of AltoLisp is prcsentcd in [Dcutsch, 19781. Its 
characteristics include a vcry largc address space (24 bits); decp 
binding; CDR encoding [Robrow & Clark, 19791; transaction 
garbage collection [Dcutsch & Bobrow. 19761; and an extensive 
kcrncl implemented in a mix of microcode and Bcpl. Although 
AltoLisp was completed and scvcral largc Intcrlisp programs wcre 
run on it, its pcrformancc was ncvcr satisfactory, due prtncipally to 
the lirn~tcd arnotrnt of main memory and the lack of support in 
the processor architectur? for either virtual memory management 
or bytc codc decoding. DoradoLisp is the rc\ult of transfcrring 
AltoLisp to an environment with ncithcr of thesc limitations. 

Thc Dorado [Lampson & Picr, 19801 is a largc, fast, microcodable 
pcrsonal machine with %bit data paths. It has a large main 
memory (-1 megabyte) and hardware support for both instruction 
decoding and virtual memory management. 

'Ihe Dorado had microcode to emulate the Alto, so the initial 
transfer of thc running AltoLisp system to the Dorado was 
straightforward. Although thc microcode to interpret the 1-isp 
instruction set nccded to be rewrittcn, the Dcpl runtime support 
system was transportcd with only minor changcs. However, initial 
pcrformance was far worse than would bc expectcd from a simple 
consideration of machine features. We expected DoradoLisp to 
dorninatc Interlisp running on a DEC KA-10, but in fact, some 
computations took 10 to 100 times longer on thc Dorado. Ihe 
primary goal of thc Doradol-isp implcmentation, then, was to 
improve the pcrformancc of thc existing system. First, careful 
tneasurcments wcrc taken of the system doing a variety of tasks. 
Functions which took inordinate amounts of timc wcre examined 
in detail. Additional microcode was writtcn, and major portions of 
the Lisp codc were redone. 

Thc most surprising thing to us was that we obtaincd considerable 
pcrfonnance improvements by moving largc parts of the system 
from Bcpl into Lisp. This allowed us to use a numbcr of 
programming tools in thc Interlisp system, and allowed us to put 
nlorc structure into the laycrs of the system's kernel. Dorado1.isp 
is now supporting a uscr community. While spccd ratios vary 
widely across different classes of computation, it appcars that 
DoradoIdsp runs fivc times fastcr than a single-uscr 1)EC KA-10. 

11. 'I'he "lispificntion" of I)or;~doI,isp 

Much of thc Interlisp system is writtcn in Lisp itself, resting on a 
kcrnel not defincd in Lisp. The Interlisp virtual machine 
specification [Moore, 19761 attcmptcd to idcntify a set of kcrncl 
facilitics which would support t l~c  fidl Interlisp system. 'I'his was 
donc by carefully documenting thosc parts of thc PDP-10 Interlisp 
system that wcre writtcn in asscmbly language or importcd from 
the opcrating system. This spcciticatiotl is quitc large. AltoLisp 
rcduced this kernel by irnplcmcnting sotnc of tllc VM facilitics in 
1,isp; DoradoLisp accclcrated this dcvcloprncnt. In addition to 
improving the trnnsportnbilily of thc implenvmtation, thc move 
also improved pcrfonnnnce, gavc thc iotplcmcntors acccss to more 
a more powerful implementation languagc and programming tools, 
and lirnitcd the breadth of cxpcrtisc requircd of system 
hnplemcntors. 



Efficiency 

Programs written in a higher level language are often less.efficient 
than equivalent assembly language programs, because they cannot 
exploit known invariances and optimizations which would violate 
the strict semantics of the target language. Moving code from 
Lisp into the kernel has been a traditional way of improving the 
performance of Lisp systems. Substantial sections of the PDP-10 
implementation of Interlisp, for example, are in machine code for 
this reason. When a large proportion of AltoLisp was moved from 
Bcpl into Lisp in order to improve memory utilization and aid 
modification, the speed of the system decreased by nearly a factor 
of three [Deutsch, 1978]. Thus, to improve DoradoLisp 
performance, we first looked for Lisp-coded sections of the system 
that could be incorporated into the Bcpl'kerne[,.However,'~,e soon 
discovered that the poor performance was due more to the design 
of the algorithms in the kernel than to the language in which they 
were implemented. Since we did not wish to carry out a large- 
scale redesign in the limited Bcpl programming environment, we 
decided to go in the other direction: we would move code out of 
the extended Bcpl kernel and into Lisp so that we would be better 
able to change the algorithms. Specific targets for replacement 
were large sections of the Bcpl kernel with known performance 
problems whose functionality could easily be expressed in Lisp; 
one of the major areas was the I /O system. 

Language power and tools 

A primary reason for implementing the bulk of  a programming 
system in itself is that one obtains the advantage of programming 
in a (presumably) more expressive and powerful language. In 
addition, we felt that the major modifications and tuning that 
would be necessary to provide adequate performance would be far 
more tractable in Interlisp. In lntcrlisp we had both a first rate 
programming environment and instrumentation tools, and we had 
no other system implementation language which had either. Our 
subsequent experience has sustained this view. 

Linguistic uniformity 

An important sociological benefit of  having a programming system 
described in the language it implements is that the system's 
hnplementors and users share the same culture. Users can inspect 
the system code, comment on it, adapt it for their own purposes, 
and sometimes even change it. This involves the users of the 
system in its design and maintenance f i !a  way that would not be 
possible if system construction took l~lac~ in a different language 
culture. Specifically, the availability of the system source code 
allows the system to grow and adapt much more rapidly than 
environments in which a formal documentation phase is a 
prerequisite to the development and distribution of new facilities. 
In turn, the users can explore the behavior of the system "all the 
way to the .edges", as there are no sharp language barriers. The 
value of this linguistic uniformity has been confirmed by its 
successful use in other language cultures, such as Smalltalk 
[Goldberg, 1980]. 

An example: the IO system 

A high level language I/O system consists of both low level device 
handlers and device independent sequential and random access. In 
most Interlisp implementations, the entire I /O system, up to and 
including the functions defined in the virtual machine, is provided 
by the host operating system. In DoradoLisp, all of the logical 
I /O system and a substantial proportion of the device dependent 

code is written in Lisp. The logical I /O system implements the 
Interlisp user program I/O facilities and the underlying operations 
in terms of which these are implemented. These include 
sequential and random access operations (i.e., read and write a 
byte, query end of file, reposition file pointer, etc.), buffer 
management (both for system only and directly user accessible 
buffers) and a device independent treatment of file properties. The 
logical level is in turn implemented in terms of the notion of an 
I /O device. This is an object which provides a standard set of low 
level, device dependent fimctions, such as those to read and write 
a page, create and delete files, etc. Using this interface, the 
addition of a new device is simply a matter of writing a new set of 
these functions. The DoradoLisp I /O system design is extensively 
described in [Kaplan et aL, 1980]. 

III. Implementation techniques 

Measuremen ts 

In tuning the performance of a program, it is crucial to be able to 
determine exactly where time is being spent. With a large body of 
code and limited manpower, it is not possible to "optimize 
everything." Our performance measurement system has proved 
invaluable in tracking down specific (and unforeseen) problems. 

The measurement system was originally developed for Alt0Lisp by 
Deutsch and Haugeland. It operates in two stages. First, the 
computation of interest is run with event logging enabled. This 
produces a (very large) file of log events, which is later analyzed. 
The log events are put out by both the microcode and the run 
time support system and include time-stamped events for function 
call and return, entry and exit from the Bcpl routines, I /O activity, 
and other events of interest. Alternatively, the microcode can also 
collect counts of opcode frequencies and a frequency sample of 
the microcode PC. 

Statistics gathering can be enabled at any time that Lisp is 
running. One can decide spontaneously to take measurements 
whenever performance unexpectedly degrades. Comparison of  
these measurements with those taken during a similar run that 
exhibited normal performance can be used to identify the source 
of intermittent performance problems. This technique was used, 
for example, to track down an intermittent slowdown in the code 
that handled stack frame overflow. 

The analysis phase reads the log file and computes summary 
statistics from it. From call and return events, the time spent in 
individual functions can be computed, either including or 
excluding the time spent in the functions called by them. The 
accumulated times (including the times spent by called functions) 
locate the higher level functions which are the root of a large 
amount of time and which may be a candidates for redesign. The 
individual time (excluding called functions' times) are useful for 
isolating what improvement can be expected from optimizing or 
microcoding the body of that function. 
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function 
NTHCHC 
\HT.FIND 
LITLEN 
LITBASE 

Function performance data is presented in tables which show the 
number of times each function was called and the time spent in 
each function. For example: 

#ofCalls Time %ofTime PerCall 
1977 236702 10.6 119 
1729 168492 7 .6  97 
2111 131708 5 .9  61 
2141 118902 5 .3  56 

Tables such as this isolate very accurately those functions which 
are worth rewriting as well as identifying those which are not. In 
this example, NTHCHC, which calls both LITLEN and LI,TBASE, is 
an obvious candidate. In another run we discovered that 15 
percent of the time was being spent adding one to a counter which 
had overflowed the small number range. This prompted a redesign 
of the large number arithmetic. 

Additional controls on the analysis routines allow more specific 
questions to be answered. The analysis can be restricted to that 
part of the computation within any particular function. For 
example, only that part of the computation that takes place within 
READ can be analysed. The analysis can also be limited to a set of 
functions, in which case only these functions will appear in the 
table-of results. Any time spent in a function not in the set will be 
charged to the closest bounding function that is. 

The analysis routines extract from the log file useful information 
besides performance data. For example, the dynamic calling 
behavior is captured in the log, so one frequently useful technique 
is to list which functions have called (and been called by) other 
functions, and even how many arguments they were passed. The 
flexibility of the analysis routines combined with the wealth of 
informatibfi collected during the logging stage allows a given 
computation to be examined from many points of view. 

Initialization 

There are several areas that cause fundamental problems for the 
implementation of a language system in itself: memory 
management (which requires that the memory manager itself will 
not cause memory faults), stack overflow recovery (where the stack 
manager must itself have some stack), and initialization. 
Initialization is difficult because the initialization program must 
operate when the system is not in a well formed state. The 
problem in initialization can be characterized by the question: "If  
the compiled code reader is itself compiled code, who will read it 
in?" 

Several methods of doing initialization suggest themselves. For 
example, the image can be initialized by a program written in 
some other language. This is the solution adopted in AltoLisp. 

Alternatively, the interpreter can be coded in some other language 
and the compiled code reader can be run interpretively to read 
itself in. Both of these solutions require a substantial body of  non- 
Lisp code either for storage allocation or for interpretation. 

We adopted still another solution. The compiled code reader was 
modified to load code into an environment other than that in 
which it is running. The primitive functions that the loader uses to 
manipulate the environment (e.g., fetch and store into specified 
virtual memory locations) are replaced by functions that 

manipulate another memory image stored as a file. To begin with, 
an empty memory image file is created and then ~he "indirect" 
version of  the compiled code reader is used to load into this 
empty image the compiled files that constitute the lowest level of 
the system. We thus avoid the potential problem of maintaining 
two different programs which embody knowledge of system data 
structures. 

An appropriate programming environment 

One of the strong advantages of writing most of the kernel in Lisp 
is that Interlisp provides a very powerful programming 
environment. Some of the tools we found particularly useful are: 

Language features: The advantages of  "data-less" or data-structure- 
independent programming have long been known: more readable 
code, fewer bugs, the ability to change data structures without 
having to make major source program modifications. The Interlisp 
record package and data type facility encourages this good practice 
by providing a uniform and efficient way of creating, accessing 
and storing data symbolically, i.e., fields of data structures are 
referred to by name. Because the DoradoLisp implementation 
allows a large number of data types, we have felt free to give 
system data structures (such as file-handles, page buffers, read 
tables) their own data types. In addition, records could be overlaid 
on structures not under Lisp's control (e.g., the leader page of a 
disk file or the format of a network packet) to provide the same 
uniform access. 

Cross compilation: We maintained an Interlisp-10 environment in 
which we could edit, compile and examine functions for the 
Dorado. The function and record definitions for the Dorado 
implementation were kept on property lists instead of defintion 
cells. This allowed us to work on functions such as READ and 
CONS without destroying the environment in which we were 
working. 

Masterscope: Many of our improvements to AltoLisp involved 
massive changes throughout the many system source files. 
Interlisp's Masterscope program was an essential aid in 
determining what would be affected by a proposed improvement 
and in actually performing the necessary edits. Masterscope is an 
interactive program for analyzing and cross-referencing Lisp 
functions. It constructs a database of which fi.mctions call which 
other functions, where variables are bound, used, or set, and where 
record declarations are referenced. Masterscope utilizes the 
information in the database to interpret a variety of English-like 
commands. Our cross-compilation environment incrementally 
updated a database that was shared among all programmers on the 
project, so that with very little overhead the information in the 
database was kept consistent with the current state of  the evolving 
system. 

Masterscope was most helpful in planning and carrying out 
modifications to major system interfaces, which usually meant 
changing the numbers and kinds of arguments to various 
functions. We would first ask Masterscope to simply list the 
callers of those functions to give some estimate of the impact of 
the proposed change, much as one might use a static cross- 
reference program. We would then invoke the SHOW command, 
instructing Masterscope to locate in the source-file definitions of 
all the callers the expressions that actually called the interface 
functions. These expressions were gathered together and displayed 
as a group, so that we could verify our intuitions about what 
assumptions clients were making abonC the interface. In many 
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cases, the rapid source-code exploration that Masterscope made 
possible revealed flaws in our redesign which otherwise would not 
have become apparent until much more effort had been expended. 
Having decided that our modification was acceptable, we used 
Masterscope's EDIT command to actually drive the editing, q'his 
caused Masterscope to load the definitions of all the client 
functions, call the lnterlisp editor on each one, and position the 
editor at each of  the expressions that needed to be changed. 
Masterscope, not the programmer, kept track of which functions 
had been changed and which still needed to be edited. When 
Masterscope finished the editing sequence, the programmer was 
sure that the changes had been made completely and consistently. 

Our redesign of the I /O system [Kaplan et aL, 1980] is a good 
illustration of the power of this interactive tool. We completely 
replaced the lowest-level I /O interface, which involved changes to 
approximately 40 functions on 15 source files. 'I'he major part of 
the revision was accomplished in response to a single EDIT WHERE 
ANY CALLS '(BIN BOUT ,..) command, without ever looking at hard- 
copy source listings. 

Rapid access to system sources: Our cross-compilation environment 
maintained a shared data base which allows the definition of any 
Lisp function to be retrieved for viewing or editing in a few 
seconds. The microcode and Bcpl can be "browsed" using the 
same interface. Rapid online access to system sources lessened the 
need for working from listings. 

Levelling 

One of the original mouvations for having a large part of AltoLisp 
in Bcpl was the belief that it was important not to provide Lisp 
primitives that gave unrestricted access to the implementation data 
structures. This reasoning fails to discriminate between the system 
implementation and user program levels. Allowing system 
programs arbitrary access to memory locations does not at all 
imply that user level code has this access. 

Failing to make the system/user distinction hurt AltoLisp in three 
ways. First, it provided one-motivation for the large Bcpl kernel. 
Second, most of that part of the system which was written in Lisp 
was prohibited from manipulating underlying data structures 
except through overly general functional interfaces. Last, it 
discouraged the use of higher level structuring facilities (such as 
the record package) so that code that required any knowledge of 
system data structures tended to be written entirely in tenns of low 
level primitives. 

Using Lisp as a system implementation language requires very 
careful consideration of the layering of the system into levels of  
access and knowledge. Furthe r , the precision that is needed cannot 
be obtained by simple binary discriminations but must be carefully 
considered for each piece of code. This presents a considerable 
challenge to the implementors' self restraint, as Lisp provides few 
facilities to enforce such a layering. Appropriate use of abstraction 
is essential if layerir/g is to be preserved under the constant 
revision necessitated by intensive performance debugging. 

Diagnostics 

Development of the Lisp microcode was aided by a reasonably 
complete set of microcode diagnostics written in Lisp. Diagnostics 
are difficult because they are most useful when very little can be 
assumed a priori to work. It is also difficult to achieve complete 

coverage of all cases. In addition, extensive knowledge of the Lisp 
system was required to develop diagnostics. For example, every 

opcode needs to be tested when encountering page faults or stack 
overflows. Setting up a situation which will page fault or overflow 
the stack in the next opcode requires a very intimate knowledge of 
the implementation. Having undertaken several mierocode 
revisions, development of a comprehensive set of diagnostics seems 
well worth the effort. 

Important performance issues 

While not strictly a technique, we feel that it is important to 
mention the major areas in which performance has proved to be 
crucial. While some of these are undoubtedly specific to 
DoradolJsp, we fecl that they deserve consideration by those who 
might be building similar l.isp systems. 

The earlier intuition that the hardware assist for decoding byte 
opcodes was important was substantiated. Performance improved 
by nearly a factor of two when this was installed. Implementing 
the decoding and dispatch in microcode is conceding a large 
performance loss. 

q'here are several parts of the system for which it seems important 
to have microcode support. When written in Lisp, the garbage 
collector seems to consume between 10-30% of the processor, 
although the figure varies widely over different computations. 
Further, in a system that uses deep binding, some form of 
microcode assist for free variable lookup is very desirable. A 
speedup factor of between two and four accompanied the 
introduction of microcode support for this in DoradoLisp. 
Statistics show that less than one percent of the execution time is 
now spent in free variable lookup. 

Their heavy use in implementing system code almost mandates 
that the arithmetic functions have complete microcode support. 
Further, we found it to be critical to have a large range of small 
numbers (numbers without boxes), so that the performance critical, 
low level system code did not invoke Lisp's storage management. 

\ 

IV. Why is an lnterlisp implementation so hard? 
-, 

]'he Dorado implementation of Interlisp took many times the 
expected effort to complete, Given the widespread intuition to the 
contrary, it is perhaps worthwhile to reflect on why it has proved 
so difficult. The answer is painfully simple: lnterlisp is a very large 
software system and large software systems are not easy to 
construct. DoradoLisp has 17,000 lines of Lisp code, 6,000 lines of 
l~pl, and 4,000 lines of microeode. In many ways, the more 

interesting question is why does it look so straightforward? 

Without a doubt, the perceived ease of implementing lnterlisp 
springs from the existence of the virtual machine (VM). 
specification. This admirable document purports to give a 
complete description of the facilities that are assumed by the 
higher level lnterlisp software, and does a remarkable job of laying 
out the foundations of this very large software confederation. It is 
difficult to resist the implication that a straightforward 
implementation of this mere 120 pages of specification, much of 
which is already described in programmatic form, will constitute a 
new implementation of lnterlisp. The issue is rather more 
complicated than that. 
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The VM specification looks small, but it is not, There is no simple 
correspondence between the size of a specification and the volume 
of code required to implement it. Many of the major problems of 
an Interlisp implementation (e.g., performance, the garbage 
collector, the compiler) are simply not addressed at all. We caution 
Interlisp implementets that the slimness of that document is 
misleading. 

Further, while the virtual machine specification is an excellent first 
pass, it is far from complete. Many "incidental" functions and 
variables were left out (e.g. tlOSTNAME). It is occasionally 
ambiguous in places where the system code relies on a specific 
interpretation. Even though once complete, changes in the higher 
level code required that the VM be extended to support new 
facilities. Finding all these variations is an exhausting task. It is 
substantially easier to get 95% compatibility than 99.9%, and 
amazing how many programs are sensitive to the difference. 

One way to look at the Lisp kernel that was written for 
DoradoLisp is as the definition of a new VM specification in Lisp 
code. While much of the code is specific to the Dorado 
environment, a great deal of it simply extends the virtual machine 
downwards by providing a much lower level treatment of 
functions such as PRINT and READ. We hope our work will prove 
useful to others as a firmer foundation for new implementations 
than that provided by the VM document alone. 

Another problem for any very large software system is the 
existence of a long development tail. A version of DoradoLisp was 
"sort of running" years ago. Several other implementations of 
Interlisp have "sort of run" but have never reached production 
status. One of the key problems here is performance. The success 
of the PDP-10 implementation of Interlisp is due to a lot of hand 
tuning. Any obvious clean implementation will prove to be slow, 
and finding performance problems is difficult, even with good 
measurement tools. A large number of design decisions have to be 
made and a large amount of code has to be written. While not all 
of the decisions have to be optimal, none of them can be pessimal. 
While the DoradoLisp experience can provide some guidance, 
many of these decisions will be environment specific. 

Finally, an important issue has been compatability with the PDP- 
10 implementation of Interiisp. In some ways our determination to 
remain compatible has helped. Ambiguities and omissions from 
the VM specification could always be resolved by copying the 
PDP-10 implementation. However, this compatibility requirement 
was also a burden. Complete compatibility with another 
implementation is hard. This is particularly so when the new 
implementation is in a quite different environment (a personal 
rather than a time-shared machine). The tension between 
remaining compatible versus exploring the possibilities of a 
personal machine environment is a continuing issue, which will 
probably be a focus of our further efforts on the DoradoLisp 
system. 
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