
Microprocessor Verification
Using Efficient Decision Procedures

for a Logic of Equality
with Uninterpreted Functions

�

Randal E. Bryant
�

, Steven German
�

, and Miroslav N. Velev
�

�

Computer Science, Carnegie Mellon University, Pittsburgh, PA
Randy.Bryant@cs.cmu.edu

�

IBM Watson Research Center, Yorktown Hts., NY
german@watson.ibm.com

�

Electrical and Computer Engineering, Carnegie Mellon University, Pittsburgh, PA
mvelev@ece.cmu.edu

Abstract. Modern processors have relatively simple specificationsbased on their
instruction set architectures. Their implementations, however, are very complex,
especially with the advent of performance-enhancing techniques such as pipelin-
ing, superscalar operation, and speculative execution. Formal techniques to ver-
ify that a processor implements its instruction set specification could yield more
reliable results at a lower cost than the current simulation-based verification tech-
niques used in industry.
The logic of equality with uninterpreted functions (EUF) provides a means of
abstracting the manipulation of data by a processor when verifying the correct-
ness of its control logic. Using a method devised by Burch and Dill [BD94], the
correctness of a processor can be inferred by deciding the validity of a formula
in EUF describing the comparative effect of running one clock cycle of processor
operation to that of executing a small number (based on the processor issue rate)
of machine instructions.
This paper describes recent advances in reducing formulas in EUF to proposi-
tional logic. We can then use either Binary Decision Diagrams (BDDs) or sat-
isfiability procedures to determine whether this propositional formula is a tau-
tology. We can exploit characteristics of the formulas generated when modeling
processors to significantly reduce the number of propositional variables, and con-
sequently the complexity, of the verification task.

1 Introduction

Microprocessors are among the most complex electronic systems created today. High
performance processors require millions of transistors and employ exotic techniques

�

This research was supported at Carnegie Mellon University by SRC Contract 98-DC-068 and
by grants from Fujitsu, Motorola, and Intel. This paper will be presented at Tableaux ’99, June,
1999.

2

such as pipelining, multiple instruction issue, branch prediction, speculative and/or out-
of-order execution, register renaming, and many forms of caching [HP96]. When cor-
rectly implemented, these implementation artifacts should be invisible to the user. The
processor should produce the same results as if it had executed the machine code in
strict, sequential order.

Design errors can often lead to violations of the sequential semantics. For example,
an update to a register or memory location by one instruction may not be detected by an
instruction following too closely in the pipeline. An instruction following a conditional
branch may be executed prematurely, modifying a register even though the processor
later determines that the branch is taken. Such hazard possibilities increase dramatically
as the instruction pipelines increase in both depth and width.

Historically, microprocessor designs have been validated by extensive simulation.
Instruction sequences are executed, in simulation, on two different models: a high-level
model describing the desired effect of each instruction and a low-level model capturing
the detailed pipeline structure. The results from these simulations are then compared
for discrepancies. The instruction sequences may be taken from actual programs or
synthetically generated to exercise different aspects of the pipeline structure [KN96].

Validation by simulation becomes increasingly costly and unreliable as processors
increase in complexity. The number of tests required to cover all possible pipeline in-
teractions becomes overwhelming. Furthermore, simulation test generators suffer from
a fundamental limitation due to their use of information about the pipeline structure in
determining the possible interactions in an instruction sequence that need to be simu-
lated. A single conceptual design error can yield both an improperly-designed pipeline
and a failure to test for a particular instruction combination.

As an alternative to simulation, a number of researchers have investigated using for-
mal verification techniques to prove that a pipelined processor preserves the semantics
of the instruction set model. Formal verification has the advantage that it demonstrates
correct execution for all possible instruction sequences. Given the large amount of re-
sources currently spent simulating processors, formal verification tools hold the promise
of producing more reliable results at a lower cost.

Most of the complexity in modern processors comes from their control logic. The
processing of data is localized to a few subsystems such as the arithmetic logic unit and
the floating point unit. These can be formally verified separately. We can therefore cre-
ate an abstract model of the processor that captures the complexities of the control logic
while ignoring the details of the data processing. We view program data and addresses
as symbolic “terms” having no specified mathematical properties other than the ability
to compare two values for equality. We abstract the functionality of data processing
blocks as uninterpreted functions, with no specified properties other than “functional
consistency,” i.e., that applications of a function to equal arguments yield equal results:
���������
	��
������	���� .

Earlier work on formal verification of processors requires detailed analysis of the
pipelined structure, e.g., using automated theorem provers [SB90]. Our interest is in
developing automated techniques that apply powerful symbolic evaluation techniques to
analyze the behavior of the processor over all possible operating conditions. We believe
that high degrees of automation are essential to gaining acceptance by chip designers.

3

Burch and Dill [BD94] were the first to demonstrate that automated decision proce-
dures for a logic of equality with uninterpreted functions (EUF) could be used to verify
pipelined processors. They assume there are two abstract models of the processor—
a “program” model providing a direct implementation of the instruction set, and a
“pipeline” model that captures the complexities of the actual implementation. Veri-
fying that the pipelined processor has behavior matching that of the program model
can be performed by constructing a formula in EUF that compares for equality the
terms describing the modifications to the programmer-visible state (i.e., the registers,
data memory, and program counter) produced by the two models and then proving the
validity of this formula.

In their 1994 paper, Burch and Dill also described the implementation of a deci-
sion procedure for this logic based on theorem proving search methods. Their proce-
dure builds on ones originally described by Shostak [Sho79] and by Nelson and Oppen
[NO80], using combinatorial search coupled with algorithms for maintaining a parti-
tioning of the terms into equivalence classes based on the equalities that hold at a given
step of the search. More details of their decision procedure are given in [BDL96].

This paper describes some of our recent results in reducing formulas in EUF to
propositional logic in the context of verifying pipelined processors. We show that char-
acteristics of the formulas generated can be exploited to significantly reduce the number
of propositional variables and consequently the complexity of proving that the formula
is a tautology. By reducing the validity condition to propositional logic, we can apply
powerful Boolean methods such as Binary Decision Diagrams (BDDs) [Bry86] as well
as highly-optimized satisfiability checkers. By this approach we have achieved much
better performance than more classical decision procedures for formulas with uninter-
preted functions. More of the technical details are presented in [BGV99b,BGV99a].

2 Verification Methodology

Qpipe

Qprog Q'progδk
prog

Q'pipeδpipe

Abs Abs

Fig. 1. Correctness criterion for verifying that pipelined processor “pipe” preserves the sequential
semantics of the machine-level language program “prog”.

Our task is to verify that a processor will execute all possible instruction sequences
properly. Since there is an infinite number of possible sequences, this condition can-
not be proved directly. Instead, we show that each possible individual instruction will

4

be executed correctly, regardless of the preceding and following instruction sequences.
The correct execution of a complete sequence then follows by induction on its length.
One approach to proving the correctness of individual instructions is based on prov-
ing the invariance of an abstraction function between processor and program states by
each instruction execution. A similar method was proposed by Hoare for proving the
correctness of each operation in the implementation of an abstract data type [Hoa72].

We model the processor as having states in the set ����� ��� , and the behavior of the
processor for each clock cycle of operation by a next-state function ����� �	��
	����� �	��
����� ��� . Similarly, the state visible to the assembly language programmer (typically the
main memory, integer and floating point registers, program counter, and other status
registers) is modeled by a state set � ������� and the execution of a single program instruc-
tion by a next-state function � �������
�� �������
�� ������� . In our simplified formulation, we
we do not consider the input or output to the processor, but rather that the action taken
on each step is determined by the program or pipeline state.

Our task is to show a correspondence between the transformations on the pipeline
state by the processor and on the program state by the instruction execution model.
This correspondence can be described by an abstraction function ������
������ ����
����������
identifying which program state is represented by a given pipeline state. Typically, this
corresponds to the effect of completing any instructions in the pipeline without fetching
any new instructions. For each pipeline state, there must be a value indicating the
number of program instructions fetched in a given cycle that are ultimately executed.
For example, classical RISC pipelines have "!$# , while superscalar pipelines have
bounded by their “issue rate,” typically between 2 and 8. In some pipeline states, we
will have a value of less than its maximum (including possibly �&%). This can
occur when instructions must be stalled due to resource conflicts or data dependencies.
It also occurs when instructions are fetched and partially executed, but their results are
discarded, e.g., due to a mispredicted branch.

The first verification condition [Bur96], is the “correspondence” property illustrated
in Figure 1:')(��� �	��* � ��� ����+ -,.�0/������� 	 ����� 	 (��� �	� � � � ����� 	 � ��� ��� 	 (��� ��� � �21 (1)

where � /������� denotes the -fold composition of � ������� . Since is bounded by a small
integer, we can eliminate the existential quantification in this equation by forming a
disjunction over the possible values of . For example, a dual-issue pipeline would
have the verification condition:

'3(��� �	� * ����� �	�
45 ����� 	 (��� �	� ��� ����� 	 � ��� ��� 	 (��� ��� � � 6� ������� 	 ����� 	 (��� ��� � � � ����� 	 � ��� ��� 	 (��� �	� � � 6� ������� 	 � ������� 	 ����� 	 (��� �	� � � ��� ����� 	 � ��� ��� 	 (��� �	� � �

78
(2)

We require as a second verification condition that ����� be surjective to guarantee
that all program behaviors can be realized. That is, for every program state

(������� , there
must be a state

(��� �	� such that ����� 	 (��� �	� � � (������� .
We require as a third verification condition a “liveness” property that guarantees the

processor can always make forward progress. Otherwise we could successfully “ver-
ify” a processor that never changes state, giving �9% . This can be expressed by the

5

verification condition:

')(��� ����* � ��� ���
45�� ��������� 	 ����� 	 (��� ��� � ���� ����� 	 (��� ��� ���
�+ � ����� 	 (��� ��� ���� ����� 	 � /��� ��� 	 (��� �	� � ���

78
(3)

That is, as long as the corresponding program state is one in which the program makes
forward progress (e.g., it is not repeatedly executing an instruction that jumps to it-
self), the pipeline will make forward progress within cycles for some value of . In
this paper, as with most of the research on processor verification, we will focus on the
correspondence property given by Equation 1.

Observe that the abstraction function can be arbitrary, as long as it satisfies the three
properties listed above. The soundness of the verification is not compromised by an
incorrect abstraction function. That is, an invalid abstraction function will not cause the
verifier yield a “false positive” result, declaring a faulty pipeline to be correct. We can
let the user provide us with the abstraction function [BF89,NJB97], but this becomes
very cumbersome with increased pipeline complexity. Alternatively, we can attempt
to derive the abstraction function directly from the pipeline structure [BD94]. Unlike
simulation-based test generation, using information about the pipeline structure does
not diminish the integrity of the verification.

Burch and Dill [BD94] first proposed using the pipeline description to automatically
derive its own abstraction function. They do this by exploiting two properties found in
many pipeline designs. First, the programmer-visible state is usually embedded within
the overall processor state. That is, there are specific register and memory arrays for the
program registers, the main memory, and the program counter. Second, the hardware
has some mechanism for “flushing” the pipeline, i.e., to complete all instructions in
the pipeline without fetching any new ones. For example, this would occur when the
instruction cache misses and hence no new instructions could be fetched. A symbolic
simulator, which computes the behavior of the circuit over symbolically-represented
states, can automatically derive the abstraction function. First, we initialize the circuit
to an arbitrary, symbolic state, covering all the states in ����� ��� . We then symbolically
simulate the behavior of a processor flush. We then examine the state in the program
visible register and memory elements and declare these symbolic values to represent
the mapping ����� . Using similar symbolic simulation techniques, we can also compute
the effect of the processor on an arbitrary pipeline state � ��� ��� and the effect of executing
an arbitrary program instruction � ������� . Thus, a symbolic simulator can solve the key
problems related to verifying pipeline processors.

3 Logic of Equality with Uninterpreted Functions (EUF)

The logic of Equality with Uninterpreted Functions (EUF) presented by Burch and Dill
[BD94] can be expressed by the following syntax:

term

 � ITE 	 formula � term � term ��
function-symbol 	 term �
	�	
	�� term �

formula

 ��

����� ��������� � � 	 term � term �

6

� 	 formula � formula �
� 	 formula 6 formula�

���
formula�

predicate-symbol 	 term �
	�	
	�� term �

In this logic, formulas have truth values while terms have values from some arbitrary
domain. Terms are formed by application of uninterpreted function symbols and by
applications of the ITE (for “if-then-else”) operator. The ITE operator chooses between
two terms based on a Boolean control value, i.e., ITE 	
������ � � � � � � � yields � � while
ITE 	

������� � � � � � � � � yields � � . Formulas are formed by comparing two terms for equality,
by applying an uninterpreted predicate symbol to a list of terms, and by combining
formulas using Boolean connectives. A formula expressing equality between two terms
is called an equation.

The ITE operator distinguishes this logic from other logics of uninterpreted func-
tions, e.g., that used by Shostak [Sho79]. It can be used to model the behavior of “mul-
tiplexors” in hardware as well as the effect of a conditional operation in a program.
Observe also that this operation has a formula as an argument. We use truth values
to represent control values rather than introducing a separate Boolean data type. As a
consequence, our logic allows terms to contain formulas, and vice-versa. Although this
nesting of operations can be “flattened” into a more conventional form such as conjunc-
tive normal form, this process can cause the formula to grow exponentially. Instead, we
prefer to devise decision procedures that can operate directly on our logic.

Every function symbol � has an associated order, denoted ����� 	�� � , indicating the
number of terms it takes as arguments. Function symbols of order zero are referred to as
domain variables. We use the shortened form � rather than � 	�� to denote an instance of a
domain variable. Similarly, every predicate 	 has an associated order ����� 	 	 � . Predicates
of order zero are referred to as propositional variables.

The truth of a formula is defined relative to a nonempty domain
 of values and an
interpretation � of the function and predicate symbols. Interpretation � assigns to each
function symbol of order a function from
 / to
 , and to each predicate symbol of
order a function from
 / to �
������ � ������� ��
 . Given an interpretation � of the function
and predicate symbols and an expression � , we can define the valuation of � under � ,
denoted � � � � , according to its syntactic structure. � � � � will be an element of the domain
when � is a term, and a truth value when � is a formula.

A formula � is said to be true under interpretation � when � � � � equals
������ . It is
said to be valid over domain
 when it is true for all interpretations over domain
 . �
is said to be universally valid when it is valid over all domains.

4 Reducing EUF to Propositional Logic

Ackermann has shown [Ack54] that the universal validity of any EUF formula � can be
decided by considering only interpretations over a finite domain. In particular, it suffices
to have a domain as large as the number of syntactically distinct function application
terms occurring in � . Such a domain provides enough distinct values to capture all
possible combinations of equalities and inequalities between terms—the only property
of terms that our logic considers.

Ackermann also described a technique for eliminating all applications of function
and predicate symbols having nonzero order. Each function application is replaced by

7

a domain variable and then constraints are added to enforce functional consistency. For
example, if formula � includes terms ��	�� � � and ��	�� � � , we would introduce domain
variables ��� � and ��� � . We would modify � to use these domain variables rather than
their respective function application terms, giving formula ��� . The verification condi-
tion would then be expressed as

� � � � � � � ��� �
� ��� �

��� ��� . Observe how the
antecedent enforces functional consistency. By this method, any EUF formula � can be
transformed into a formula ��� containing only domain and propositional variables.

In principle we can therefore reduce any EUF formula � having � distinct function
application terms to a propositional logic formula by considering as domain the set of all
bit vectors of length 	 , for some value 	�

����� � � . Each term is then represented as a
vector of � formulas, with each domain variable encoded as a vector of 	 propositional
variables. We implemented a variation on this scheme using ordered Binary Decision
Diagrams (BDDs) [Bry86] to represent the Boolean functions encoding the terms and
formulas symbolically [VB98]. We were able to verify a simple RISC processor imple-
menting only arithmetic instructions. Unfortunately, we found that the BDDs became
too complex as we added memory load and store instructions or branch instructions.
The interactions between the terms representing successive instructions created circu-
lar constraints on the variable ordering that precluded having a good variable ordering.
More recent work by Pnueli et al [PRSS99] has shown that by examining the detailed
structure of the equations in a formula, much tighter bounds can be obtained on the size
of the domain associated with each domain variable.

Goel et al [GSZAS98] describe an alternate approach to reducing formulas in a logic
of equality with uninterpreted functions to propositional logic. They first use Acker-
mann’s method to replace all function applications with domain variables coupled with
constraints to impose functional consistency. They then introduce a propositional vari-
able ����� � for each pair of domain variables � � and � � in the formula, encoding whether
or not the two variables are equal. Based on these variables they generate a proposi-
tional formula for each equation encoding the conditions under which the two argument
terms will have equal valuations. From this they can generate a propositional formula
describing the conditions under which the original formula evaluates to

��� � . This for-
mula must include constraints to enforce the transitivity of equality among the terms.
Their BDD-based implementation of this approach was able to verifying only relatively
simple pipelines.

5 Positive Equality

We have recently shown that major improvements can be obtained by exploiting the
polarity of the equations in the original formula � before replacing any function appli-
cations with domain variables. Let us introduce some notation regarding the polarity of
equations and their dependent function symbols. For a formula � of the form � � � � � ,
we say this equation is a positive equation of � . For formula � of the form

� � � , any
positive equation of � � is a negative equation of � , and any negative equation of � � is
a positive equation of � . For formula � of the form � � � � � or � � 6 � � , any positive
(respectively, negative) equation of either � � or � � is a positive (resp., negative) equa-
tion of � as well. As we consider all of the equations occurring in � , we will also have

8

those that appear as part of the formulas controlling ITE operations. We label these to
be both positive and negative.

For term � of the form ��	 � � �
	�	
	���� / � , function symbol � is said to be a data symbol
of � . For term � of the form ITE 	 � ��� � ��� � � , any function symbol that is a data symbol
of either � � or � � is a data symbol of � .

A function symbol � is said to be a p-function symbol of formula � if there are
no negative equations occurring in � for which � is a data symbol of one of the ar-
gument terms. Typically these will be symbols that either are not data symbols of any
equation or are data symbols only of the top-level verification conditions. For verifying
the correspondence property given by Equation 1, we will see that we can represent
all operations involving program data and addresses with p-function symbols. The only
function symbols that do not qualify as p-function symbols in our application are those
representing register identifiers.

We can exploit the presence of p-function symbols to greatly reduce the number of
interpretations that must be considered to determine universal validity. Let � denote a
subset of the function symbols occurring in � . We say that interpretation � is diverse
with respect to � for � when for any function application term �
	�� � ��	
	�	�� � / � where
� * � and any other function application term � 	�� � �
	�	
	�� ��� � we have � � ��	�� � �
	
	�	�� � / ��� �� � � 	�� � ��	
	�	�� ��� ��� iff � � � and � � � � �
� � � � � � for # !
	 ! . Interpretation � is said to
be “maximally diverse” if it is diverse with respect to the set of all p-function symbols
in � .

Theorem 1. P-formula � is universally valid if and only if it is true in all maximally
diverse interpretations.

The essential idea behind this theorem is that a maximally diverse interpretation
forms a worst case as far as determining the validity of a formula. For any less diverse
interpretation � , we can systematically derive a maximally diverse � � such that among
the equations, only the positive ones can change their valuations under � � , and these can
only change from

��� � to

����� � � . Therefore the valuation of � under the two interpre-
tations must either be equal or have � � � � �

��� � and � � � � � � ������� � .

6 Eliminating Function Applications

We have devised a method of eliminating function application terms from a formula
that differs from that of Ackermann [Ack54]. Our method uses a nested ITE structure to
capture the functional consistency constraints rather than imposing these as antecedents
to the formula. Our method has the advantage that it leads to a direct method to exploit
positive equality.

We illustrate our technique for replacing function applications by domain variables
with a small example. Let � be an EUF formula containing three terms applying func-
tion symbol � : �
	�� � � , �
	�� � � , and �
	�� � � , which we identify as terms � � , � � , and � � ,
respectively. Let � � � , � � � , and ��� � be domain variables that do not occur in � . We
generate new terms � � , � � , and � � as follows:

� � 	� � � � (4)

9

� � 	� ITE 	�� � � � � � ��� � � ��� � �
� � 	� ITE 	�� � � � � � ��� � � ITE 	�� � � � � � ��� � � � � �

� �

We then eliminate the function applications by replacing each instance of � � in � by
� � for # ! 	 ! �

. Observe that as we consider interpretations with different values
for variables ��� � , � � � , and ��� � , we implicitly cover all values that an interpretation of
function symbol � may yield for the three arguments. The nested ITE structure shown
in Equation 4 enforces functional consistency.

The general method for eliminating function applications follows that of our ex-
ample formula. For a function symbol � of nonzero order and having � instances, we
generate domain variables � � � � ��� � �
	�	
	�� ����� . Rather than directly replacing function
application term � � with a domain variable, we generate a nested ITE structure compar-
ing the arguments of this application to those of each application term � � for ��� 	 . As
we consider different interpretations for the newly-generated domain variables, these
nested ITE structures implicitly cover all possible interpretations of the function appli-
cation terms while preserving functional consistency. A similar technique can be used
to eliminate all instances of a predicate symbol 	 , using newly-generated propositional
variables �	� � �
��� � ��	
	
	 . This process is repeated for all function and predicate symbols
yielding a formula ��� that contains only domain and propositional variables.

Our method can exploit positive equality by considering only distinct interpretations
of the domain variables that are generated when eliminating the p-function symbols.
Define �
� to be the set of domain variables occurring in � that are p-function symbols,
plus the set of all domain variables of the form ��� � generated when eliminating the
applications of each p-function symbol � .

Theorem 2. EUF formula � is universally valid if and only if its translation � � is true
under all interpretations � � that are diverse over ��� .

This theorem follows by an inductive application of the following argument. Sup-
pose � is in the set of function symbols � , that � is diverse over � for formula � , and
that we replace all instances of � with nested ITE structures involving newly-generated
domain variables ��� � �
	�	
	�� ��� � to give a formula � � . Then we can construct an interpre-
tation � � for ��� that is diverse over ��� � �
�� � ��� � �
	�	
	�� �����
 such that � � � ��� � � � � � � .
Conversely, for any interpretation ��� of � � , we can extend it to an interpretation � in-
cluding an interpretation of function symbol � such that � � � �
� � � � ��� � .

We can further simplify the task of determining universal validity by choosing par-
ticular domains of sufficient size and assigning fixed interpretations to the variables in
��� . Let ��� be the set of variables occurring in ��� that are not in ��� . Let
�� and
��
be disjoint subsets of domain
 such that

�
�� �
 �
��� � and

�
�� �
 �
��� � . Let � be any

1–1 mapping �
 ����

�� .

Corollary 1. Formula � is universally valid if and only if its translation � � is true
for every interpretation � � such that ��� 	 ��� � � � 	 ��� � for every variable �	� in ��� , and
� � 	 �
� � is in
�� for every variable ��� in ��� .

This property follows because any interpretation � � that is diverse with respect to
� � must provide a 1–1 mapping from the variables in � � to domain values. It must
therefore be isomorphic to some interpretation where � � 	 ��� � � � 	 ��� � for every �	� *
��� .

10

7 Generating a Propositional Formula

We have reduced the problem of deciding the universal validity of an arbitrary formula
to one of determining whether a translated formula � � containing only domain and
propositional variables is true under all interpretations that are diverse with respect to
some subset ��� of the domain variables in ��� . Our method borrows from [GSZAS98]
the idea of introducing propositional variables to encode the equalities between domain
variables. In our case, however, we only introduce propositional variables for a subset
of the domain variable pairs.

For each pair of domain variables, � and � occurring in � � , we only need to generate
a propositional variable ��� � � when both � and � are in ��� , and there is some equation
� � � � � in � � such that � appears as a data symbol of � � while � appears as a data
symbol of � � , or vice-versa. This encoding exploits the property that if either � or � is in
��� , we can assume they have distinct interpretations. It also exploits the sparse structure
of the equations—we need only consider the relation between pairs of variables that
appear as data symbols of terms being compared for equality. We can then construct a
propositional formula

�� that is a tautology if and only if formula � � , and consequently
our original EUF formula � , is universally valid.

As with [GSZAS98], formula
�� should include constraints of the form ��� � � �

��� � � � ��� � � to consider only interpretations of these variables that satisfy the transitiv-
ity of equality. We have found in verifying microprocessor designs that these constraints
can often be omitted—hardware designs do not seem to make use of any principles as
mathematically deep as transitivity.

8 Modeling Microprocessors in EUF

Our verifier starts with a “term-level” model of both the pipeline and the program ver-
sion of the processor. That is, we have already abstracted away details of the datapath,
replacing functional units with uninterpreted functions. We represent control signals
as formulas and multi-bit signals such as operation codes, register identifiers, memory
addresses and data as terms. Each instruction is coded as a collection of formulas and
terms based on an instruction format having a 3-bit instruction type field, an opcode,
two source and one destination register identifiers, and an immediate data value. The
task of proving a formal correspondence between such a model and a more detailed
register-transfer level model remains a challenging research problem.

To model the register file, we use the memory model described by Burch and Dill
[BD94], creating a nested ITE structure to encode the effect of a read operation based on
the history of writes to the memory. That is, suppose at some point we have performed write operations with addresses given by terms

	
� �
	�	
	�� 	 / and data given by terms

� �
	�	
	��
 / . Then the effect of a read with address given by the term

	
is given by the

term:

ITE 	
	 � 	 / �
 / � ITE 	

	 � 	 /�� � �
 /�� � ��
�
�
 ITE 	
	 � 	

� �
 � � ��� 	 	 � �
�
�
 � � (5)

where � � is an uninterpreted function expressing the initial memory state.

11

By careful design of the term-level model, we are able to treat all symbols repre-
senting opcodes, program data, and memory addresses as p-function symbols and hence
the domain variables encoding such values are in � � . The symbols representing register
identifiers, on the other hand, do not satisfy the restrictions we impose on p-function
symbols. In particular, the pipeline control must compare the register identifierss of
successive instructions to determine when stall or register forwarding conditions arise.
The memory model described by Equation 5 involves equations over address terms that
control the outcome of ITE operations, and hence any data symbols occurring in such
terms are not p-function symbols. This causes no problems for the register file, since the
addresses are register identifiers. We cannot use such a memory model to represent the
main data memory, however, or we would be unable to use p-function symbols to repre-
sent instruction and data addresses. Instead, we use a more abstracted memory model in
which the effect of a write operation is to cause an arbitrary change of state (represented
by an uninterpreted “memory update” function) for the entire memory. Such a model is
a conservative abstraction of a true memory, but it suffices for modeling processors that
perform their memory operations in program order.

9 Experimental Results

We have verified a variety of pipelined processor designs ranging from a single-issue,
5-stage pipeline similar to the DLX processor [HP96] to a variety of superscalar dual-
issue pipelines. The most complex of these can handle all instruction types in either
side of the pipeline. Our verification times range from less than 1 second for the single-
issue case up to 50 seconds for the superscalar cases. The memory requirement (often
the limiting factor for BDD-based applications) ranges from 1.5 to 80 Megabytes. The
number of propositional variables ranges from 47 to 189, with between 17 and 129
comprising the � � � � variables encoding the relations between register identifiers.

By contrast, Burch [Bur96] verified a somewhat simpler dual-issue processor only
after devising 3 different commutative diagrams, providing 28 manual case splits, and
using around 30 minutes of CPU time. We have particularly found that our BDD-based
approach can handle the disjunctive verification condition of Equation 2. Methods based
on combinatorial search have unacceptably long run times, unless the disjunction is split
into separate cases.

We have also experimented with using several different Boolean satisfiability (SAT)
packages to prove that the complement of our generated propositional formula is not
satisfiable. We have found these packages perform very well for the single-issue model,
and they can often find counterexamples in complex designs containing errors. However
they do not complete even after running for many hours when attempting to verify a
correct dual-issue design.

10 Conclusions

When verifying pipelined microprocessors using abstracted data paths, we have found
that the properties of the EUF formulas to be proved valid can be exploited to greatly

12

simplify the propositional formulas we generate. As a consequence we have been able
to verify complex superscalar pipelines with a high degree of automation.

Binary Decision Diagrams provide a powerful mechanism for verifying complex
systems. Compared to methods based on combinatorial search, including both decision
procedures for EUF as well as SAT solvers for the propositional translation of the ver-
ification condition, BDDs capture the full structure of a problem as a single data struc-
ture, rather than repeatedly enumerating and disproving possible counterexamples. Our
experience has been that BDDs consistently outperform search-based methods when
verifying complex designs.

BDDs can only be applied to tasks that are reducible to either propositional logic
or to quantified Boolean formulas. An important area of research is to see what other
classes of logic can be efficiently reduced to one of these forms.

References

[Ack54] W. Ackermann, Solvable Cases of the Decision Problem, North-Holland, Amster-
dam, 1954.

[BDL96] C. Barrett, D. Dill, and J. Levitt, “Validity checking for combinations of theo-
ries with equality,” Formal Methods in Computer-Aided Design (FMCAD ’96),
M. Srivas and A. Camilleri, eds., LNCS 1166, Springer-Verlag, November, 1996,
pp. 187–201.

[BF89] S. Bose, and A. L. Fisher, “Verifying Pipelined Hardware Using Symbolic Logic
Simulation,” International Conference on Computer Design (ICCD ’89), 1989,
pp. 217–221.

[Bry86] R. E. Bryant, “Graph-based algorithms for Boolean function manipulation”, IEEE
Transactions on Computers, Vol. C-35, No. 8 (August, 1986), pp. 677–691.

[BGV99a] R. E. Bryant, S. German, and M. N. Velev, “Processor verifica-
tion using efficient reductions of the logic of uninterpreted func-
tions to propositional logic,” Technical report CMU-CS-99-115,
Carnegie Mellon University, 1999. Available electronically as:
http://www.cs.cmu.edu/˜bryant/pubdir/cmu-cs-99-115.ps.

[BGV99b] R. E. Bryant, S. German, and M. N. Velev, “Exploiting positive equality in a logic
of uninterpreted functions with equality,” Computer-Aided Verification (CAV ’99),
1999.

[BD94] J. R. Burch, and D. L. Dill, “Automated verification of pipelined microproces-
sor control,” Computer-Aided Verification (CAV ’94), D. L. Dill, ed., LNCS 818,
Springer-Verlag, June, 1994, pp. 68–80.

[Bur96] J. R. Burch, “Techniques for verifying superscalar microprocessors,” 33rd Design
Automation Conference (DAC ’96), June, 1996, pp. 552–557.

[GSZAS98] A. Goel, K. Sajid, H. Zhou, A. Aziz, and V. Singhal, “BDD based procedures for
a theory of equality with uninterpreted functions,” Computer-Aided Verification
(CAV ’98), A. J. Hu and M. Y. Vardi, eds., LNCS 1427, Springer-Verlag, June,
1998, pp. 244–255.

[HP96] J. L. Hennessy, and D. A. Patterson, Computer Architecture: A Quantitative Ap-
proach, 2nd edition Morgan-Kaufmann, San Francisco, 1996.

[Hoa72] C. A. R. Hoare, “Proof of Correctness of Data Representations,” Acta Informatica
Vol. 1, 1972, pp. 271–281.

13

[KN96] M. Kantrowitz, and L. M. Noack, “I’m Done Simulating; Now What? Verification
Coverage Analysis and Correctness Checking of the DECchip 21164 Alpha Micro-
processor,” 33rd Design Automation Conference (DAC ’96), 1996, pp. 325–330.

[NO80] G. Nelson, and D. C. Oppen, “Fast decision procedures based on the congruence
closure,” J. ACM, Vol. 27, No. 2 (1980), pp. 356–364.

[NJB97] K. L. Nelson, A. Jain, and R. E. Bryant, “Formal Verification of a Superscalar
Execution Unit,” 34th Design Automation Conference (DAC ’97), June, 1997.

[PRSS99] A. Pnueli, Y. Rodeh, O. Shtrichman, and M. Siegel, “Deciding equality formulas
by small-domain instantiations,” Computer-Aided Verification (CAV ’99), 1999.

[Sho79] R. E. Shostak, “A practical decision procedure for arithmetic with function sym-
bols,” J. ACM, Vol. 26, No. 2 (1979), pp. 351–360.

[SB90] M. Srivas and M. Bickford, “Formal Verification of a Pipelined Microprocessor,”
IEEE Software, Vol. 7, No. 5 (Sept., 1990), pp. 52–64.

[VB98] M. N. Velev, and R. E. Bryant, “Bit-level abstraction in the verification of pipelined
microprocessors by correspondence checking.” Formal Methods in Computer-
Aided Design (FMCAD ’98), G. Gopalakrishnan and P. Windley, eds., LNCS 1522,
Springer-Verlag, November, 1998, pp. 18–35.

