
The Hamilton C shell
A command-line interface

for OS/2 that borrows

the power of Unix

BY KENNETH G. GOUTAL

T he Hamilton C shell is an implemen­
tation under OS/2 version 1.1 of the

Unix C shell. The C shell is a command­
line interpreter with commands for run­
ning programs, spawning threads and
processes, and manipulating directories
and files. It also has high-level program­
ming constructs that allow you to exe­
cute those commands in other than
simple sequential order.

Users who are used to working with
Unix but are totally unfamiliar with OS/2
will find that this tool eases the transition
greatly. With a couple of minor excep­
tions, the Hamilton C shell is an exact
functional duplicate of the C shell found
on Unix systems. The few exceptions are
clearly documented and are mostly a mat­
ter of cleaning up ugly irregularities in
the traditional C shell or adaptirVg to the
OS/2 environment itself.

For example, the character used by
OS/2 to punctuate path names is the back­
slash rather than the forward slash used
by Unix. This precludes the use of the
backslash to mean "take the next charac­
ter literally, and ignore any special mean­
ing it usually has in the Unix C shell."
OS/2 normally uses the caret for this pur­
pose, so the Hamilton C shell follows
suit. As a result, the caret cannot be used
for short-form history substitution as it is
on the Unix C shell, and the percent sign
is used instead. However, these choices
are controlled by environment variables,
so if you really must use the characters
you're used to, you can.

OS/2 users who have never seen Unix
will benefit from the Hamilton C shell's
interface, which is much more powerful
than the CMD.EXE supplied with OS/2.
Control constructs include s w.i. L eh,
un til, and w hi 1 e. Contrary to whatthe
product name suggests, the syntax of these
constructs is not much like that of the C
programming language. It is, however,
faithful to the Unix C shell syntax.

You can store a sequence of commands,
called a shell script, in a file and execute
the sequence with the souree command.
You can also define shell procedures,
which are stored within the shell itself
until you exit from it. A procedure may
be a simple series of commands that you

perform frequently. On the other hand, it
may be complex, its function and behavior
based partly on command-line arguments,
the environment, and user interaction.

A shell procedure may even be recur­
sive. For instance, I wrote a recursive
procedure called "dirt" that pretty-prints
a directory tree using indentation to indi­
cate common parentage. When called with
no arguments, it prints the directory tree
from your current working directory on
down. When called with one argument, it
prints the directory tree from the speci­
fied directory on down. When it calls
itself recursively, it passes a subdirectory
and the current indentation as arguments.

Several commands can be "stacked"
on a single command line. For instance,

cat * .txt >alltxt; we-w
alltxt

mncatenates all the files with the ex­
tension ". txt" into a file called "alltxt." It
then counts the words in that file.

Commands can be "piped" together
with a single command. For example,

eat * . txt I we -w

does the same thing as the previous ex­
ample, but without the need for an inter­
mediate file. The output of the first com­
mand is fed directly into the next.

A "history" mechanism makes short
work of retyping commands either to cor­
rect an error in the command just typed
or to reuse a complicated command is­
sued several minutes or even hours be­
fore. For example, ! eat reexecutes the
entire command line in the previous ex­
ample; ! ! : s / t xt / 1 og does this again,
except that it counts the words in all the
files with the extension ".log" instead of
". txt." ! 23 reexecutes the 23rd command
you had typed since starting the current
copy of the Hamilton C shell.

The Hamilton C shell provides several
useful utility programs as well as several
built-in commands. The most common
Unix commands are proVided either as
built-in commands or as external utilities:
rotd, sleep, SOULee, cat, ehmod,
ep, date, du, Is, mkdir, more,
mY, pwd, rm, rmdir, tee, touch,
and we. Others, such as awk, grep, and
sed, are on the way. Some of these do the
same things as commands in CMD.EXE,
some do the same things as other utilities
supplied with OS/2, while others have no
OS/2 equivalent. For convenience, many
common CMD.EXE commands and OS/2
utility names have been defined as ali­
ases of the built-in commands and of the
utilities included with the shell.

PRODUCT INFORMATION

Hamilton C shell 1.03
Hamilton Laboratories
13 Old Farm Rd.
Wayland, MA 01778-3117
(508) 358-5715
$350; requires IBM AT, PS/2, or compat­

ible; OS/2 1.1 with Presentation
Manager

Inquiry 71

This product appears to work perfectly
and exactly as described in the manual. It
also works blindingly fast, for two rea­
sons. First, it compiles commands and pro­
cedures before executing them, rather than
slavishly interpreting them. Second, it
makes use of the OS/2 threads whenever
the Unix C shell would use processes.

I did encounter some installation diffi­
culties. This was due partly to my unfa­
miliarity with OS/2, partly to some lack of
clarity in the manual, and partly to the
lack of a program to supervise the instal­
lation. It was not due to any bugs in the
software or errors in the manual.

Hamilton Laboratories reports that, to
date, it has a 24-hour turnaround time for
fixing serious bugs, with updates sent out
the next day. Based on the company's
responsiveness when I called with some
questions about installation, I'm inclined
to believe this. The fixes to less serious
bugs are included in subsequent releases.
The company can be reached by phone,
mail, or electronic mail.

In conclusion, it looks like we have a
winner. I expected to be put off by OS/2,
but after I got the Hamilton C shell in­
stalled and tailored to my tastes, it was
just like being back home. I had some
difficulties at first adapting to the minor
incompatibilities with the Unix C shell,
but after that it was smooth sailing. I
expect that someone who is not used to
using the Unix C shell would actually
have an easier time with the Hamilton C
shell than with the Unix C shell. Natu­
rally, it will take a while to learn how to
exploit all of its power, but its features
can be used independently and learned
only when necessary. There are some
improvements that could be made in the
area of installation and in the manual, but
these are not prohibitive and may have
already been made by the time you read
this. All in all, the Hamilton C shell is a
much-needed and well-done product. _

Kenn Goutal is a technical support engineer at
Interhase Software Corp. o/Bedjord, MA. He
can he reached via II11Gp as kenn@rr.MVCOM.

SEPTEMBER 1989
Reprinted with permission of MIPS Magazine © Copyright
1989 by Computer Metrics, Inc. All rights reserved. MIPS

