
T
he promise of OS/2 is to release
users and developers alike from
the shackles of8088-compliant
environments. Lifting the 640K­

byte memory restriction opened the door
to all kinds of more potent applications.
In this case, the applications are a pair of
Unix-type shells that add command-line
and interpreted language-processing ca­
pabilities to OS/2.

Hamilton Laboratories has created its
own version of the popular Berkeley C
shell, the Hamilton C Shell 1.04. Its
name is derived from the C-like syntax of
its shell scripts. Mortice Kern Systems'
MKS OS/2 Toolkit 3. 1 includes a port of
AT&T's Kornshell (named for the shell's
original author, David Korn). This shell
is a superset of an older AT&T invention,
the Bourne shell.

Both packages include a variety of
Unix-like commands to make the OS/2
environment a bit more palatable. Hamil­
ton ships 22 additional executable files
with its C shell, while MKS provides
102. Still, the Unix user trained to type
ls and pwd will derive great comfort
from the availability of these and other
frequently used Unix commands.

To install the C Shell, you manually
copy its executable files to their own
directory on the hard disk. The binary
files are in a subdirectory (\ bin) on the
floppy disk. Next, you execute a utility,
dumpenv; it resides in the floppy disk's
root directory and must be copied sepa­
rately.

The MKS Toolkit includes an installa­
tion utility, but it also offers the option of
copying the files manually. The auto­
matic installation places files in Unix­
like directories under the directory that
is named in the environment variable
ROOTDIR.

Using the Shells
Both shells run in either full-screen or
windowed mode, and it's easy to set up
selections for them in the Start Programs
window. As in Unix, both shells read

INTERNATIONAL

EXTRA REVIEW

OS/2,
Unix Style

Tom Yager

Hamilton C Shell

andMKSOSI2

Toolkit provide

Unix-like shells

!orOS12

start-up commands from a home direc­
tory. OS/2 has no concept of separate
users, so this home directory is defined
through an environment variable. The
shells also require the definition of a sep­
arate command search path, usually via
the start-up files.

Several commands that OS/2 users
take for granted are implemented inside
CMD.EXE, the default OS/2 command
interpreter, and disappear when an al­
ternative shell is used. The Hamilton C
Shell is shipped with aliases that invoke
CMD.EXE to execute the built-in com­
mands, such as DIR and COPY. You can
modify the MKS Toolkit shell similarly,
but the· standard configuration includes
no predefined aliases for OS/2 com­
mands.

This brings up an interesting point
about the differences between the two
shells. The MKS Toolkit shell mimics a
Unix environment as closely as possible.
When a decision had to be made between
Unix behavior and that of OS/2, Unix
frequently won out. As a result, file­
names are built with forward slashes (I)
instead of backslashes, and the escape
(or "next character is literal") character
is the backslash, not OS/2's caret C). In
contrast, the Hamilton C Shell is built to
let experienced OS/2 users adapt with
little hassle. The default filename, es­
cape, and command option characters
are those of OS/2.

This rule doesn't always apply, how­
ever. While both shells provide the abil­
ity to run processes in the background,
the Hamilton C Shell offers a more Unix­
like implementation. With the C Shell,
you can list background jobs with ps and
terminate them with kill (Unix com­
mandsthat the MKS Toolkit does not
provide). In fact, background jobs
started from the MKS Toolkit shell seem
unstoppable.

Command-Line Processing
The ability to interactively edit the com­
mand line is something relatively new,
even to Unix. The standard Unix C shell
doesn't have this capability, although
modified versions exist that can handle
it. The Hamilton C Shell features a com­
fortable mix of command history and
editing, using the editing keys. The up
and down arrow keys scroll through pre­
viously entered commands, and other
keys act as labeled. The MKS Toolkit
shell follows the lead of its implementer,
providing command-line editing in the
style of either vi, the standard Unix full­
screen editor, or EMACS, a popular al­
ternative. In this case, only the arrow
keys have significance. Other functions
must be invoked through editor-specific
commands or control sequences. Users
familiar with either vi or EMACS will
feel right at home.

Both shells maintain a running history
of shell commands, and you can reinvoke
previously executed command lines by
reference, using either the command's
sequence number or a portion of its con­
tent. The C Shell is a little better at this,
since a command line can refer to any
number. of previous commands. For in­
stance, to reexecute the first three com­
mands of the session, the C Shell se­
quence would be !1; !2; !3. The MKS
Toolkit shell mechanism provides no
such straightforward way to combine
previous commands. It does, however,
allow editing the history file so that you

continued

Reprinted with permission from the February 1990 issue of BYTE Magazine.
Copyright © by McGraw-Hill, Inc., New York 10020. All rights reserved.

Company
Hamilton Laboratories
13 Old Farm Rd.
Wayland, MA 01778
(508) 358-5715

Hardware Needed
IBM PC, AT, PS/2, or compatible

Software Needed
OS/2 1.1 or higher, or SDK 1.06 or
higher

Documentation
User's guide; reference manual

Price
$350

can modify a range of commands and
then reexecute them in modified form.

Shell Programming
In addition to their regular duties as
command-launching platforms, these
shells are potent, capable, interpreted
languages. Aside from original pro­
grams, several scripts in the public do­
main serve a variety of useful functions.
However, since the C Shell and MKS'
Toolkit shell are both native to Unix,
most available scripts would expect to
make use of Unix features and com­
mands not available under OS/2. The
MKS Toolkit, which includes nearly all
the most widely used Unix commands, is
better suited to adapting existing scripts;
most of them should run with few modi­
fications.

The C Shell, however, because of its
more limited Unix command selection
and OS/2-style filename conventions, is
less likely to accommodate a Unix script
without major reworking. This does not
diminish its value as a vehicle for ori­
ginal work, however. The C Shell is
much richer than its BSD Unix counter­
part, so any shell programmer would do
well to rework scripts to take advantage
of this greater functionality.

To illustrate the relative usefulness of
the shells as programming languages, I
selected a simple task: a multiuser mail
system. Working through a primitive
menu-driven interface, this shell script
(or, in the case of the C Shell, scripts)
lets you send mail to other users and to
list and read incoming mail. Each mes­
sage is kept in a separate, numbered file,
and each user has a mail directory.

Using too many Unix commands
would have given the MKS Toolkit a de-

OS/2, UNIX STYLE

cided edge; it's likely that the size of the
shell script could have been cut by a
third. Instead, I used only features inter­
nal to each shell, plus selected external
commands that I couldn't do without.

Both scripts make use of defined func­
tions, string arrays, and other program­
oriented features of the languages. The
options list, read, delete, and send are
themselves separate functions. Listing
message headers requires reading every
message file and displaying lines starting
with From: , Subj ect: , and Date: .

The MKS Toolkit shell script came to­
gether quickly and ran smoothly at the
first attempt. This shell's ability to open
and. close files from within a script made
programming easier. While the syntax
took some getting used to, this capability
allowed the entire mail system to fit into
a single script.

The C Shell was only a little niore dif­
ficult to manage, lacking the ability to
open and close files on the fly. It is, how­
ever, robust in its own right, and al­
though the "list headers" function had to
be split into a separate script, control
passed to and from it quickly and unno­
ticeably.

There was no significant difference in
speed. Both shells hesitated for a bit be­
fore executing while they cached the
function definitions, but once the func­
tions began running, performance was
satisfactory.

The effort required to pull together
working scripts was minimal: The MKS
Toolkit shell version took about 2 hours
to produce, and the C Shell took a bit
longer. The MKS Toolkit shell script
was only slightly smaller at 150 lines,
compared to the C Shell's 187 lines.
Most of the time needed to produce the
scripts was spent flipping through the
documentation.

Unix-Like Documentation
The MKS Toolkit shell has more docu­
mentation than the Hamilton C Shell.
The reference pages alone for the dozens
of additional commands in the MKS
Toolkit account for a lot of space, but
there is also a noticeable difference in
quality. Someone unfamiliar with Unix
and its shells would have a much easier
time learning from the MKS Toolkit
manuals, even though there's more to
read.

Still, the Hamilton C Shell manual is
complete enough, and the company states
that it intends to appeal to "relatively
technically oriented computer users"
and software developers. Anyone expect­
ing to graduate from batch files directly

to the C shell might be better off finding
another tutorial. I'm familiar with the
Unix versions of the C shell but was con­
fused by some of the manual's tutorial
sections. Even so, it would be possible
for a newcomer to grasp the shell, armed
with the manual and plenty of time to try
the examples and permute them into use­
ful variations.

The MKS Toolkit manuals show ex­
cellent organization, but the content
needs work. The reference manual is laid
out as Unix documentation, so anyone fa­
miliar with Unix should find his or her
way easily. In the case of the MKS Tool­
kit shell, however, built-in commands
like fc and export have their own refer­
ence·pages and little or no mention (ex­
cept to "see also") on the shell page it­
self. This forces the reader to jump

. around the document, when all the shell­
related information should have been
presented under sh, the command used
to invoke the MKS Toolkit shell. This
scattering also hampers application de­
velopment and seems to be a throwback
to DOS and OS/2 manuals. Users of
these environments might enjoy MKS
Toolkit's layout.
. The MKS Toolkit user's guide is bet­

ter. The most complex of the MKS Tool­
kit's commands are covered by tutorials
in this manual, and they are reasonably
good. The coverage is limited, and you
shouldn't expect to be introduced to all,
or even most, of a command's features.
Upon finishing the tutorial, you'll have a
good feel for the command.

Worthwhile Shells
I consider very few products, as a class,
indispensable. These shells fit comfort­
ably in that category. No programmers or
systems integrators should consider sad­
dling themselves or their clients with the
incompetent CMD.EXE with these fine
alternatives available.

The MKS OS/2 Toolkit delivers a
healthy dose of Unixness. The whole
MKS Toolkit is well done and feels, with
few exceptions, just like the real thing.
Still, if what the doctor ordered is simply
a better shell for OS/2, then the C Shell
stands out as a finely crafted choice.

IfI were to shop today for an OS/2 sys­
tem, I'd make sure that my budget in­
cluded room for one of these shells. For
those things that you cannot do through
Presentation Manager, these shells and
their accompanying commands make
short work of what can be hours of cod­
ing in a compiled language .•

Tom Yager is a technical editor for BYTE.
You can reach him on BIX as "tyager. "

