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Abstract. This paper presents a complete decision procedure for the entire quantifier-
free fragment of Separation Logic (SL) interpreted over heaplets with data ele-
ments ranging over a parametric multi-sorted (possibly infinite) domain. The al-
gorithm uses a combination of theories and is used as a specialized solver inside
a DPLL(T ) architecture. A prototype was implemented within the CVC4 SMT
solver. Preliminary evaluation suggests the possibility of using this procedure as
a building block of a more elaborate theorem prover for SL with inductive pred-
icates, or as back-end of a bounded model checker for programs with low-level
pointer and data manipulations.

1 Introduction

Separation Logic (SL) [21] is a logical framework for describing dynamically allocated
mutable data structures generated by programs that use pointers and low-level memory
allocation primitives. The logics in this framework are used by a number of academic
(Space Invader [4]), and industrial (Infer [7]) tools for program verification. The main
reason for choosing to work within the SL framework is its ability to provide composi-
tional proofs of programs, based on the principle of local reasoning: analyzing different
parts of the program (e.g. functions, threads), that work on disjoint parts of the heap,
and combining the analysis results a posteriori.

The main ingredients of SL are: (i) the separating conjunction φ∗ψ, which asserts
that φ and ψ hold for separate portions of the memory (heap), and (ii) the magic wand
ϕ −−∗ ψ, which asserts that any extension of the heap by a disjoint heap that satisfies ϕ
must satisfy ψ. Consider, for instance, a memory configuration (heap), in which two
cells are allocated, and pointed to by the program variables x and y, respectively, where
the x cell has an outgoing selector field to the y cell, and vice versa. The heap can
be split into two disjoint parts, each containing exactly one cell, and described by an
atomic proposition x 7→ y and y 7→ x, respectively. Then the entire heap is described by
the formula x 7→ y∗y 7→ x, which reads “x points to y and, separately, y points to x”.

The expressive power of SL comes with the inherent difficulty of automatically
reasoning about the satisfiability of its formulae, as required by push-button program
analysis tools. Indeed, SL becomes undecidable in the presence of first-order quantifi-
cation, even when the fragment uses only points-to predicates, without the separating
conjunction or the magic wand [9]. Moreover, the quantifier-free fragment with no data
constraints, using only points-to predicates x 7→ (y,z), where x,y and z are interpreted as



memory addresses, is PSPACE-complete, due to the implicit quantification over mem-
ory partitions, induced by the semantics of the separation logic connectives [9].

This paper presents a decision procedure for quantifier-free SL which is entirely
parameterized by a base theory T of heap locations and data, i.e. the sorts of memory
addresses and their contents can be chosen from a large variety of available theories
handled by Satisfiability Modulo Theories (SMT) solvers, such as linear integer (real)
arithmetic, strings, sets, uninterpreted functions, etc. Given a base theory T , we call
SL(T ) the set of separation logic formulae built on top of T , by considering points-to
predicates and the separation logic connectives.

Contributions First, we show that the satisfiability problem for the quantifier-free frag-
ment of SL(T ) is PSPACE-complete, provided that the satisfiability of the quantifier-
free fragment of the base theory T is in PSPACE. Our method is based on a semantics-
preserving translation of SL(T ) into second-order T formulae with quantifiers over a
domain of sets and uninterpreted functions, whose cardinality is polynomially bound
by the size of the input formula. For the fragment of T formulae produced by the
translation from SL(T ), we developed a lazy quantifier instantiation method, based on
counterexample-driven refinement. We show that the quantifier instantiation algorithm
is sound, complete and terminates on the fragment under consideration. We present
our algorithm for the satisfiability of quantifier-free SL(T ) logics as a component of
a DPLL(T ) architecture, which is widely used by modern SMT solvers. We have im-
plemented the technique as a subsolver of the CVC4 SMT solver [2] and carried out
experiments that handle non-trivial examples quite effectively. Applications of our pro-
cedure include:
1. Integration within theorem provers for SL with inductive predicates. Most induc-

tive provers for SL use a high-level proof search strategy relying on a separate
decision procedure for entailments in the non-inductive fragment, used to sim-
plify the proof obligations, by discharging the non-inductive parts of both left- and
right-hand sides, and attain an inductive hypothesis [6]. Due to the hard problem of
proving entailments in the non-inductive fragment of SL, these predicates use very
simple non-inductive formulae (a list of points-to propositions connected with sep-
arating conjunction), for which entailments are proved by syntactic substitutions
and matching. Our work aims at extending the language of inductive SL solvers, by
outsourcing entailments in a generic non-inductive fragment to a specialized proce-
dure. To this end, we conducted experiments on several entailments corresponding
to finite unfoldings of inductive predicates used in practice (Section 6).

2. Use as back-end of a bounded model checker for programs with pointer and data
manipulations, based on a complete weakest precondition calculus that involves the
magic wand connective [15]. To corroborate this hypothesis, we tested our proce-
dure on verification conditions automatically generated by applying the weakest
precondition calculus described in [15] to several program fragments (Section 6).

Related Work The study of the algorithmic properties of Separation Logic [21] has
produced an extensive body of literature over time. We need to distinguish between
SL with inductive predicates and restrictive non-inductive fragments, and SL without
inductive predicates, which is the focus of this paper.

2



Regarding SL with fixed inductive predicates, Perez and Rybalchenko [16] define a
theorem proving framework relying on a combination of SL inference rules dealing with
singly-linked lists only, and a superposition calculus dealing with equalities and aliasing
between variables. Concerning SL with generic user-provided inductive predicates, the
theorem prover Cyclist [6] builds entailment proofs using a sequent calculus. More
recently, the tool Slide [14] reduces the entailment between inductive predicates to an
inclusion between tree automata. The great majority of these inductive provers focus on
applying induction strategies efficiently, and consider a very simple fragment of non-
inductive SL formulae, typically conjunctions of equalities and disequalities between
location variables and separated points-to predicates, without negations or the magic
wand. On a more general note, the tool Spen [10] considers also arithmetic constraints
between the data elements in the memory cells, but fixes the shape of the user-defined
predicates.

The idea of applying SMT techniques to decide satisfiability of SL formulae is not
new. In their work, Piskac, Wies and Zufferey translate from SL with singly-linked list
segments [17] and trees [18], respectively, into first-order logics (Grass and Grit) that
are decidable in NP. The fragment handled in this paper is incomparable to the log-
ics Grass [17] and Grit [18]. On one hand, we do not consider predicates defining
recursive data structures, such as singly-linked lists. On the other hand, we deal with
the entire quantifier-free fragment of SL, including arbitrary nesting of the magic wand,
separating conjunction and classical boolean connectives. As a result, the decision prob-
lem we consider is PSPACE-complete, due to the possibility of arbitrary nesting of the
boolean and SL connectives. To the best of our knowledge, our implementation is also
the first to enable theory combination involving SL, in a fine-grained fashion, directly
within the DPLL(T ) loop.

The first theoretical results on decidability and complexity of SL without induc-
tive predicates were given by Calcagno, Yang and O’Hearn [9]. They show that the
quantifier-free fragment of SL without data constraints is PSPACE-complete by an ar-
gument that enumerates a finite (yet large) set of heap models. Their argument shows
also the difficulty of the problem, however it cannot be directly turned into an effec-
tive decision procedure, because of the ineffectiveness of model enumeration. Building
up on this small model property for the quantifier-free fragment of SL, a translation
to first-order logic over uninterpreted sorts with empty signature is described in [8].
This translation is very similar to our translation to multi-sorted second-order logic,
the main difference being using bounded tuples instead of sets of bounded cardinality.
It also provides a decision procedure, though no implementation is available for com-
parison. A more elaborate tableau-based decision procedure is described by Méry and
Galmiche [11]. This procedure generates verification conditions on-demand, but here
no data constraints are considered, either.

Our procedure relies on a decision procedure for quantifier-free parametric theory
of sets and on-demand techniques for quantifier instantiation. Decision procedures for
the theory of sets in SMT are given in [23, 1]. Techniques for model-driven quantifier
instantiation were introduced in the context of SMT in [13], and have been developed
recently in [19, 5].
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2 Preliminaries

We consider formulae in multi-sorted first-order logic, over a signature Σ consisting of a
countable set of sort symbols and a set of function symbols. We assume that signatures
always include a boolean sort Bool with constants > and ⊥ denoting true and false
respectively, and that each sort σ is implicitly equipped with an equality predicate ≈
over σ×σ. Moreover, we may assume without loss of generality that equality is the
only predicate belonging to Σ, since we can model other predicate symbols as function
symbols with return sort Bool4.

We consider a set Var of first-order variables, with associated sorts, and denote by
ϕ(x) the fact that the free variables of the formula ϕ belong to x⊆Var. Given a signature
Σ, well-sorted terms, atoms, literals, and formulae are defined as usual, and referred to
respectively as Σ-terms. We denote by φ[ϕ] the fact that ϕ is a subformula (subterm) of
φ and by φ[ψ/ϕ] the result of replacing ϕ with ψ in φ. We write ∀x.ϕ to denote universal
quantification over variable x, where x occurs as a free variable in ϕ. If x = 〈x1, . . . , xn〉

is a tuple of variables, we write ∀xϕ as an abbreviation of ∀x1 · · ·∀xnϕ. We say that a
Σ-term is ground if it contains no free variables. We assume that Σ contains an if-then-
else operator ite(b, t,u), of sort Bool×σ×σ→ σ, for each sort σ, that evaluates to t if
b is true, and to u, otherwise.

A Σ-interpretation I maps: (i) each set sort symbol σ ∈ Σ to a non-empty set
σI, the domain of σ in I, (ii) each function symbol f ∈ Σ of sort σ1 × . . .×σn → σ
to a total function f I of sort σI1 × . . .×σ

I
n → σI if n > 0, and to an element of σI

if n = 0, and (iii) each variable x ∈ x to an element of σIx , where σx is the sort symbol
associated with x. We denote by tI the interpretation of a term t induced by the mapping
I. The satisfiability relation between Σ-interpretations and Σ-formulae, written I |= ϕ,
is defined inductively, as usual. We say that I is a model of ϕ if I |= ϕ.

A first-order theory is a pair T = (Σ,I) where Σ is a signature and I is a non-
empty set of Σ-interpretations, the models of T . For a formula ϕ, we denote by [[ϕ]]T =

{I ∈ I | I |= ϕ} its set of T -models. A Σ-formula ϕ is T-satisfiable if [[ϕ]]T , ∅, and T-
unsatisfiable otherwise. A Σ-formula ϕ is T-valid if [[ϕ]]T = I, i.e. if¬ϕ is T -unsatisfiable.
A formula ϕ T-entails a Σ-formula ψ, written ϕ |=T ψ, if every model of T that satisfies
ϕ also satisfies ψ. The formulae ϕ and ψ are T-equivalent if ϕ |=T ψ and ψ |=T ϕ, and
equisatisfiable (in T ) if ψ is T -satisfiable if and only if ϕ is T -satisfiable. Furthermore,
formulas ϕ and ψ are equivalent (up to k) if they are satisfied by the same set of models
(when restricted to the interpretation of variables k). The T -satisfiability problem asks,
given a Σ-formula ϕ, whether [[ϕ]]T , ∅, i.e. whether ϕ has a T -model.

2.1 Separation Logic

In the remainder of the paper we fix a theory T = (Σ,I), such that the T -satisfiability
for the language of quantifier-free boolean combinations of equalities and disequalties
between Σ-terms is decidable. We fix two sorts Loc and Data from Σ, with no restriction
other than the fact that Loc is always interpreted as a countably infinite set. We refer to

4 For brevity, we may write p(t) as shorthand for p(t) ≈ >, where p is a function into Bool.
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Separation Logic for T , written SL (T ), as the set of formulae generated by the syntax:

φ := t ≈ u | t 7→ u | emp | φ1 ∗φ2 | φ1 −−∗ φ2 | φ1∧φ2 | ¬φ1

where t and u are well-sorted Σ-terms and that for any atomic proposition t 7→ u, t is of
sort Loc and u is of sort Data. Also, we consider that Σ has a constant nil of sort Loc,
with the meaning that t 7→ u never holds when t ≈ nil. In the following, we write φ∨ψ
for ¬(¬φ∧¬ψ) and φ⇒ ψ for ¬φ∨ψ.

Given an interpretation I, a heap is a finite partial mapping h : LocI⇀fin DataI. For
a heap h, we denote by dom(h) its domain. For two heaps h1 and h2, we write h1#h2 for
dom(h1)∩dom(h2) = ∅ and h = h1]h2 for h1#h2 and h = h1∪h2. For an interpretation
I, a heap h : LocI⇀fin DataI and a SL(T ) formula φ, we define the satisfaction relation
I,h |=SL φ inductively, as follows:

I,h |=SL emp ⇐⇒ h = ∅

I,h |=SL t 7→ u ⇐⇒ h = {(tI,uI)} and tI 6≈ nilI

I,h |=SL φ1 ∗φ2 ⇐⇒ ∃h1,h2 . h = h1]h2 and I,hi |=SL φi, for all i = 1,2
I,h |=SL φ1 −−∗ φ2 ⇐⇒ ∀h′ if h′#h and I,h′ |=SL φ1 then I,h′]h |=SL φ2

The satisfaction relation for the equality atoms t ≈ u and the Boolean connectives ∧, ¬
are the classical ones from first-order logic. In particular t ≈ t is always true, denoted by
>, for any given heap. The (SL,T )-satisfiability problem asks, given an SL formula ϕ,
if there is a T -model I such that (I,h) |=SL ϕ for some heap h.

In this paper we tackle the (SL,T )-satisfiability problem, under the assumption
that the quantifier-free data theory T = (Σ,I) has a decidable satisfiability problem for
constraints involving Σ-terms. It has been proved [9] that the satisfiability problem is
PSPACE-complete for the fragment of separation logic in which Data is interpreted as
the set of pairs of sort Loc. We generalize this result to any theory whose satisfiability
problem, for the quantifier-free fragment, is in PSPACE. This is, in general, the case of
most SMT theories, which are typically in NP, such as the linear arithmetic of integers
and reals, possibly with sets and uninterpreted functions, etc.

3 Reducing SL (T ) to Multisorted Second-Order Logic

It is well-known [21] that separation logic cannot be formalized as a classical (unsorted)
first-order theory, for instance, due to the behavior of the ∗ connective, that does not
comply with the standard rules of contraction φ⇒ φ ∗ φ and weakening φ ∗ ϕ⇒ φ5.
The basic reason is that φ∗ϕ requires that φ and ϕ hold on disjoint heaps. Analogously,
φ −−∗ ϕ holds on a heap whose extensions, by disjoint heaps satisfying φ, must satisfy ϕ.
In the following, we leverage from the expressivity of multi-sorted first-order theories
and translate SL(T ) formulae into quantified formulae in the language of T , assuming
that T subsumes a theory of sets and uninterpreted functions.

The integration of separation logic within the DPLL(T) framework [12] requires the
input logic to be presented as a multi-sorted logic. To this end, we assume, without loss

5 Take for instance φ as x 7→ 1 and ϕ as y 7→ 2.
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of generality, the existence of a fixed theory T = (Σ,I) that subsumes a theory of sets
Set(σ) [1], for any sort σ of set elements, whose functions are the union ∪, intersection
∩ of sort Set(σ)×Set(σ)→ Set(σ), singleton {.} of sort σ→ Set(σ) and emptyset ∅
of sort Set(σ). We write ` ⊆ `′ as a shorthand for `∪ `′ ≈ `′ and t ∈ ` for {t} ⊆ `, for any
terms ` and `′ of sort Set(σ) and t of sort σ. The interpretation of the functions in the
set theory is the classical (boolean) one.

Also, we assume that Σ contains infinitely many function symbols pt,pt′, . . . ∈ Σ
of sort Loc→ Data, where Loc and Data are two fixed sorts of T , such that for any
interpretation I ∈ I, LocI is an infinite countable set.

The main idea is to express the atoms and connectives of separation logic in multi-
sorted second-order logic by means of a transformation, called labeling, which intro-
duces (i) constraints over variables of sort Set(Loc) and (ii) terms over uninterpreted
points-to functions of sort Loc→ Data. We describe the labeling transformation using
judgements of the form φ/[`,pt], where φ is a SL(T ) formula, `= 〈`1, . . . , `n〉 is a tuple of
variables of sort Set(Loc) and pt =

〈
pt1, . . . ,ptn

〉
is a tuple of uninterpreted function sym-

bols occurring under the scopes of universal quantifiers. To ease the notation, we write `
and pt instead of the singleton tuples 〈`〉 and 〈pt〉. In the following, we also write

⋃
` for

`1∪ . . .∪ `n, `′∩ ` for 〈`′∩ `1, . . . , `
′∩ `n〉, `′ · ` for 〈`′, `1, . . . , `n〉 and ite(t ∈ `,pt(t) = u)

for ite(t ∈ `1,pt1(t) = u, ite(t ∈ `2,pt2(t) = u, . . . , ite(t ∈ `n,ptn(t) = u,>) . . .)).
Intuitively, a labeled formula φ/[`,pt] says that it is possible to build, from any of its

satisfying interpretations I, a heap h such that I,h |=SL φ, where dom(h) = `I1 ∪ . . .∪ `
I
n

and h = ptI1↓`I1
∪ . . .∪ptIn↓`In

6. More precisely, a variable `i defines a slice of the domain
of the heap, whereas the restriction of pti to (the interpretation of) `i describes the heap
relation on that slice. Observe that each interpretation of ` and pt, such that `Ii ∩ `

I
j = ∅,

for all i , j, defines a unique heap.
First, we translate an input SL(T ) formula φ into a labeled second-order formula,

with quantifiers over sets and uninterpreted functions, defined by the rewriting rules in
Figure 1. A labeling step φ[ϕ] =⇒ φ[ψ/ϕ] applies if ϕ and ψ match the antecedent and
consequent of one of the rules in Figure 1, respectively. It is not hard to show that this
rewriting system is confluent, and we denote by φ⇓ the normal form of φ with respect
to the application of labeling steps.

(φ∗ψ) / [`,pt]

¬∀`1∀`2 . ¬(`1∩ `2 ≈ ∅∧ `1∪ `2 ≈
⋃
`∧φ/ [`1∩ `,pt]∧ψ/ [`2∩ `,pt])

(φ∧ψ) / [`,pt]

φ/ [`,pt]∧ψ/ [`,pt]

(φ −−∗ ψ) / [`,pt]

∀`′∀pt′ . (`′∩ (
⋃
`) ≈ ∅∧φ/ [`′,pt′])⇒ ψ/ [`′ · `,pt′ ·pt]

(¬φ) / [`,pt]

¬(φ/ [`,pt])

t 7→ u / [`,pt]⋃
` ≈ {t}∧ ite(t ∈ `,pt(t) ≈ u)∧ t 6≈ nil

emp / [`,pt]⋃
` ≈ ∅

ϕ/ [`,pt]
ϕ ϕ is pure

Fig. 1. Labeling Rules
6 We denote by F↓D the restriction of the function F to the domain D ⊆ dom(F).
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Example 1. Consider the SL(T ) formula (x 7→ a −−∗ y 7→ b) ∧ emp. The reduction to
second-order logic is given below:

((x 7→ a −−∗ y 7→ b)∧emp) / [`,pt] =⇒∗

` ≈ ∅∧∀`′∀pt′ . `′∩ ` ≈ ∅∧ `′ ≈ {x}∧ ite(x ∈ `′,pt′(x) ≈ a,>)∧ x 6≈ nil⇒
`′∪ ` ≈ {y}∧ ite(y ∈ `′,pt′(y) ≈ b, ite(y ∈ `,pt(y) ≈ b,>))∧ y 6≈ nil �

The following lemma reduces the (SL,T )-satisfiability problem to the satisfiability
of a quantified fragment of the multi-sorted second-order theory T , that contains sets
and uninterpreted functions. For an interpretation I, a variable x and a value s ∈ σIx ,
we denote by I[x← s] the extension of I which maps x into s and behaves like I for
all other symbols. We extend this notation to tuples x = 〈x1, . . . , xn〉 and s = 〈s1, . . . , sn〉

and write I[x← s] for I[x1← s1] . . . [xn← sn]. For a tuple of heaps h = 〈h1, . . . ,hn〉 we
write dom(h) for 〈dom(h1), . . . ,dom(hn)〉.

Lemma 1. Given a SL(T ) formula ϕ and tuples ` = 〈`1, . . . , `n〉 and pt =
〈
pt1, . . . ,ptn

〉
for n > 0, for any interpretation I of T and any heap h: I,h |=SL ϕ if and only if
1. for all heaps h = 〈h1, . . . ,hn〉 such that h = h1] . . .]hn,
2. for all heaps h

′
=

〈
h′1, . . . ,h

′
n

〉
such that h1 ⊆ h′1, . . . ,hn ⊆ h′n,

we have I[`← dom(h)][pt← h
′
] |=T ϕ/ [`,pt]⇓ .

Although, in principle, satisfiability is undecidable in the presence of quantifiers and
uninterpreted functions, the result of the next section strengthens this reduction, by
adapting the labeling rules for ∗ and −−∗ (Figure 1) to use bounded quantification over
finite (set) domains.

4 A Reduction of SL (T ) to Quantifiers Over Bounded Sets

In the previous section, we have reduced any instance of the (SL,T )-satisfiability prob-
lem to an instance of the T -satisfiability problem in the second-order multi-sorted the-
ory T which subsumes the theory Set(Loc) and contains several quantified uninter-
preted function symbols of sort Loc 7→ Data. A crucial point in the translation is that
the only quantifiers occurring in T are of the forms ∀` and ∀pt, where ` is a variable
of sort Set(Loc) and pt is a function symbol of sort Loc 7→ Data. Leveraging from
a small model property for SL over the data domain Data = Loc× Loc [9], we show
that it is sufficient to consider only the case when the quantified variables range over a
bounded domain of sets. In principle, this allows us to eliminate the universal quanti-
fiers by replacing them with finite conjunctions and obtain a decidability result based
on the fact that the quantifier-free theory T with sets and uninterpreted functions is de-
cidable. Since the cost of a-priori quantifier elimination is, in general, prohibitive, in
the next section we develop an efficient lazy quantifier instantiation procedure, based
on counterexample-driven refinement.

For reasons of self-containment, we quote the following lemma [24] and stress the
fact that its proof is oblivious of the assumption Data = Loc×Loc on the range of heaps.
Given a formula φ in the language SL(T ), we first define the following measure:

|φ∗ψ| = |φ|+ |ψ| |φ −−∗ ψ| = |ψ| |φ∧ψ| = max(|φ|, |ψ|) |¬φ| = |φ|
|t 7→ u| = 1 |emp| = 1 |φ| = 0 if φ is a Σ-formula

7



Intuitively, |φ| gives the maximum number of invisible locations in the domain of a heap
h, that are not in the range of I and which can be distinguished by φ. For instance, if
I,h |=SL ¬emp∗¬emp and the domain of h contains more than two locations, then it is
possible to restrict dom(h) to |¬emp∗¬emp| = 2 locations only, to satisfy this formula.

Let Pt(φ) be the set of terms (of sort Loc∪Data) that occur on the left- or right-
hand side of a points-to atomic proposition in φ. Formally, we have Pt(t 7→ u) = {t,u},
Pt(φ ∗ψ) = Pt(φ −−∗ ψ) = Pt(φ)∪ Pt(ψ), Pt(¬φ) = Pt(φ) and Pt(emp) = Pt(φ) = ∅, for a
Σ-formula φ. The small model property is given by the next lemma:

Lemma 2. [24, Proposition 96] Given a formula φ ∈ SL(T ), for any interpretation I of
T , let L ⊆ LocI \Pt(φ)I be a set of locations, such that ||L|| = |φ| and v ∈ DataI \Pt(φ)I .
Then, for any heap h, we have I,h |=SL φ iff I,h′ |=SL φ, for any heap h′ such that:
- dom(h′) ⊆ L∪Pt(φ)I,
- for all ` ∈ dom(h′), h′(`) ∈ Pt(φ)I∪{v}

Based on the fact that the proof of Lemma 2 [24] does not involve reasoning about
data values, other than equality checking, we refine our reduction from the previous
section, by bounding the quantifiers to finite sets of constants of known size. To this
end, we assume the existence of a total order on the (countable) set of constants in
Σ of sort Loc, disjoint from any Σ-terms that occur in a given formula φ, and define
Bnd(φ,C) = {cm+1, . . . ,cm+|φ|}, where m = max{i | ci ∈C}, and m = 0 if C = ∅. Clearly, we
have Pt(φ)∩Bnd(φ,C) = ∅ and also C∩Bnd(φ,C) = ∅, for any C and any φ.

We now consider labeling judgements of the form ϕ / [`,pt,C], where C is a finite
set of constants of sort Loc, and modify all the rules in Figure 1, besides the ones with
premises (φ ∗ψ) / [`,pt] and (φ −−∗ ψ) / [`,pt], by replacing any judgement ϕ/ [`,pt] with
ϕ/ [`,pt,C]. The two rules in Figure 2 are the bounded-quantifier equivalents of the (φ∗
ψ) / [`,pt] and (φ −−∗ ψ) / [`,pt] rules in Figure 1. As usual, we denote by (ϕ/ [`,pt,C])⇓
the formula obtained by exhaustively applying the new labeling rules to ϕ/ [`,pt,C].

Observe that the result of the labeling process is a formula in which all quantifiers
are of the form ∀`1 . . .∀`n∀pt1 . . .∀ptn.

∧n
i=1 `i ⊆ Li∧

∧n
i=1 pti ⊆ Li×Di⇒ ψ(`,pt), where

Li’s and Di’s are finite sets of terms, none of which involves quantified variables, and
ψ is a formula in the theory T with sets and uninterpreted functions. Moreover, the
labeling rule for φ −−∗ ψ/ [`,pt,C] uses a fresh constant d that does not occur in φ or ψ.

φ∗ψ/ [`,pt,C]

¬∀`1∀`2 . `1∪ `2 ⊆C∪Pt(φ∗ψ)⇒
¬(`1∩ `2 ≈ ∅∧ `1∪ `2 ≈

⋃
`∧φ/ [`1∩ `,pt,C]∧ψ/ [`2∩ `,pt,C])

φ −−∗ ψ/ [`,pt,C]

∀`′∀pt′ . `′ ⊆C′∪Pt(φ −−∗ ψ) ∧
pt′ ⊆ (C′∪Pt(φ −−∗ ψ))× (Pt(φ −−∗ ψ)∪{d})⇒
(`′∩ (

⋃
`) ≈ ∅ ∧ φ/ [`′,pt′,C′])⇒ ψ/ [`′ · `,pt′ ·pt,C]

C′ = Bnd(φ∧ψ,C)
d < Pt(φ −−∗ ψ)

Fig. 2. Bounded Quantifier Labeling Rules

8



Example 2. We revisit below the labeling of the formula (x 7→ a −−∗ y 7→ b)∧emp:

((x 7→ a −−∗ y 7→ b)∧emp) / [`,pt,C] =⇒∗

` ≈ ∅∧∀`′ ⊆ {x,y,a,b,c}∀pt′ ⊆ {x,y,a,b,c}× {x,y,a,b,d}) .
`′∩ ` ≈ ∅∧ `′ ≈ {x}∧ ite(x ∈ `′,pt′(x) ≈ a,>)∧ x 6≈ nil⇒

`′∪ ` ≈ {y}∧ ite(y ∈ `′,pt′(y) ≈ b, ite(y ∈ `,pt(y) ≈ b,>))∧ y 6≈ nil .

where Pt((x 7→ a −−∗ y 7→ b)∧ emp) = {x,y,a,b}. Observe that the constant c was intro-
duced by the bounded quantifier labeling of the term x 7→ a −−∗ y 7→ b. �

The next lemma states the soundness of the translation of SL(T ) formulae in a frag-
ment of T that contains only bounded quantifiers, by means of the rules in Figure 2.

Lemma 3. Given a formula ϕ in the language SL(T ), for any interpretation I of T ,
let L ⊆ LocI \ Pt(ϕ)I be a set of locations such that ||L|| = |ϕ| and v ∈ DataI \ Pt(ϕ)I

be a data value. Then there exists a heap h such that I,h |=SL ϕ iff there exist heaps
h
′
=

〈
h′1, . . . ,h

′
n

〉
and h

′′
=

〈
h′′1 , . . . ,h

′′
n

〉
such that:

1. for all 1 ≤ i < j ≤ n, we have h′i#h′j,
2. for all 1 ≤ i ≤ n, we have h′i ⊆ h′′i and
3. I[`← dom(h

′
)][pt← h

′′
][C← L][d← v] |=T ϕ/ [`,pt,C]⇓ .

5 A Counterexample-Guided Approach for Solving SL (T ) Inputs

This section presents a novel decision procedure for the (SL,T )-satisfiability of the
set of quantifier-free SL (T ) formulae ϕ. To this end, we present an efficient decision
procedure for the T -satisfiability of (ϕ / [`,pt,C])⇓, obtained as the result of the trans-
formation described in Section 4. The main challenge in doing so is treating the uni-
versal quantification occurring in (ϕ / [`,pt,C])⇓. As mentioned, the key to decidabil-
ity is that all quantified formulae in (ϕ / [`,pt,C])⇓ are equivalent to formulas of the
form ∀x.(

∧
x ⊆ s)⇒ ϕ, where each term in the tuple s is a finite set (or product of

sets) of ground Σ-terms. For brevity, we write ∀x ⊆ s.ϕ to denote a quantified formula
of this form. While such formulae are clearly equivalent to a finite conjunction of in-
stances, the cost of constructing these instances is in practice prohibitively expensive.
Following recent approaches for handling universal quantification [13, 19, 5, 20], we use
a counterexample-guided approach for choosing instances of quantified formulae that
are relevant to the satisfiability of our input. The approach is based on an iterative pro-
cedure maintaining an evolving set of quantifier-free Σ-formulae Γ, which is initially a
set of formulae obtained from ϕ by a purification step, described next.

We associate with each closed quantified formula a boolean variable A, called the
guard of ∀x.ϕ, and a (unique) set of Skolem symbols k of the same sort as x. We write
(A,k)� ∀x.ϕ to denote that A and k are associated with ∀x.ϕ. For a set of formulae Γ,
we write Q(Γ) to denote the set of quantified formulae whose guard occurs within a for-
mula in Γ. We write bψc for the result of replacing in ψ all closed quantified formulae
(not occurring beneath other quantifiers in ψ) with their corresponding guards. Con-
versely, we write dΓe to denote the result of replacing all guards in Γ by the quantified
formulae they are associated with. Then bψc∗ denotes the smallest set of Σ-formulae:
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solveSL(T)(ϕ):

Let C be a set of fresh constants of sort Loc such that ||C|| = |ϕ|.
Let ` and pt be a fresh symbols of sort Set(Loc) and Loc⇒ Data respectively.
Return solveT(b(ϕ/ [`,pt,C])⇓c∗).

solveT(Γ):

1. If Γ is T -unsatisfiable,
return “unsat”,

else let I be a T -model of Γ.
2. If Γ,A |=T bψ[k/x]c for all ∀x.ψ ∈ Q(Γ), where (A,k)� ∀x.ψ and AI = >,

return “sat”,
else let J be a T -model of Γ∪{A,¬bψ[k/x]c} for some ≺Γ,I-minimal ∀x ⊆ s.ψ,

where (A,k)� ∀x ⊆ s.ψ.
3. Let t be a vector of terms, such that t ⊆ s, and tJ = kJ .

Return solveT( Γ∪bA⇒ ψ[t/x]c∗).

Fig. 3. Procedure solveSL(T) for deciding (SL,T )-satisfiability of SL (T ) formula ϕ.

bψc ∈ bψc∗

(¬A⇒ b¬ϕ[k/x]c) ∈ bψc∗ if ∀x.ϕ ∈ Q(bψc∗) where (A,k)� ∀x.ϕ.

In other words, bψc∗ contains clauses that witness the negation of each universally quan-
tified formula occurring in ψ. It is easy to see that if ψ is a Σ-formula possibly containing
quantifiers, then bψc∗ is a set of quantifier-free Σ-formulae, and if all quantified formulas
in ψ are of the form ∀x ⊆ s.ϕ mentioned above, then all quantified formulas in Q(bψc∗)
are also of this form.

Example 3. If ψ is the formula ∀x.(P(x)⇒¬∀y.R(x,y)), then bψc∗ is the set:

{A1,¬A1⇒¬(P(k1)⇒ A2),¬A2⇒¬R(k1,k2)}

where (A1,k1)� ∀x.(P(x)⇒¬∀y.R(x,y)) and (A2,k2)� ∀y.R(k1,y). �

Our algorithm solveSL(T) for determining the (SL,T )-satisfiability of input ϕ is given
in Figure 3. It first constructs the set C based on the value of |ϕ|, which it computes
by traversing the structure of ϕ. It then invokes the subprocedure solveT on the set
b(ϕ/ [`,pt,C])⇓c∗ where ` and pt are fresh free symbols.

At a high level, the recursive procedure solveT takes as input a (quantifier-free)
set of T -formulae Γ, where Γ is T -unsatisfiable if and only if (ϕ / [`,pt,C])⇓ is. On
each invocation, solveT will either (i) terminate with “unsat”, in which case ϕ is T -
unsatisfiable, (ii) terminate with “sat”, in which case ϕ is T -satisfiable, or (iii) add the
set corresponding to the purification of the instance bA⇒ ψ[t/x]c∗ to Γ and repeats.

In more detail, in Step 1 of the procedure, we determine the T -satisfiability of Γ
using a combination of a satisfiability solver and a decision procedure for T 7. If Γ is

7 Non-constant Skolem symbols k introduced by the procedure may be treated as uninterpreted
functions. Constraints of the form k ⊆ S 1 ×S 2 are translated to

∧
c∈S 1 k(c) ∈ S 2. Furthermore,
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T -unsatisfiable, since Γ is T -entailed by dΓe, we may terminate with “unsat”. Other-
wise, there is a T -model I for Γ and T . In Step 2 of the procedure, for each A that is
interpreted to be true by I, we check whether Γ∪{A} T -entails bψ[k/x]c for fresh free
constants k, which can be accomplished by determining whether Γ∪ {A,¬bψ[k/x]c} is
T -unsatisfiable. If this check succeeds for a quantified formula ∀x.ψ, the algorithm has
established that ∀x.ψ is entailed by Γ. If this check succeeds for all such quantified
formulae, then Γ is equivalent to dΓe, and we may terminate with “sat”. Otherwise, let
Q+
I

(Γ) be the subset of Q(Γ) for which this check did not succeed. We call this the set
of active quantified formulae for (I,Γ). We consider an active quantified formula that
is minimal with respect to the relation ≺Γ,I over Q(Γ), where:

ϕ ≺Γ,I ψ if and only if ϕ ∈ Q(bψc∗)∩Q+
I

(Γ)

By this ordering, our approach considers innermost active quantified formulae first.
Let ∀x.ψ be minimal with respect to ≺Γ,I, where (A,k)� ∀x.ψ. Since Γ,A does not
T -entail bψ[k/x]c, there must exist a model J for Γ∪ {b¬ψ[k/x]c} where AJ = >. In
Step 3 of the procedure, we choose a tuple of terms t = (t1, . . . , tn) based on the model
J , and add to Γ the set of formulae obtained by purifying A⇒ ψ[t/x], where A is the
guard of ∀x ⊆ s.ψ. Assume that s = (s1, . . . , sn) and recall that each si is a finite union of
ground Σ-terms. We choose each t such that ti is a subset of si for each i = 1, . . .n, and
tJ = kJ . These two criteria are the key to the termination of the algorithm: the former
ensures that only a finite number of possible instances can ever be added to Γ, and the
latter ensures that we never add the same instance more than once.

Theorem 1. For all SL (T ) formulae ϕ, solveSL(T)(ϕ):

1. Answers “unsat” only if ϕ is (SL,T )-unsatisfiable.
2. Answers “sat” only if ϕ is (SL,T )-satisfiable.
3. Terminates.

By Theorem 1, solveSL(T) is a decision procedure for the (SL,T )-satisfiability of the
language of quantifier-free SL (T ) formulae. The following corollary gives a tight com-
plexity bound for the (SL,T )-satisfiability problem.

Corollary 1. The (SL,T )-satisfiability problem is PSPACE-complete for any theory T
whose satisfiability (for the quantifier-free fragment) is in PSPACE.

In addition to being sound and complete, in practice, the approach solveSL(T) termi-
nates in much less time that its theoretical worst-case complexity, given by the above
corollary. This fact is corroborated by our evaluation of our prototype implementation
of the algorithm, described in Section 6, and in the following example.

Example 4. Consider the SL(T ) formula ϕ ≡ emp∧ (y 7→ 0 −−∗ y 7→ 1)∧ y 6≈ nil. When
running solveSL(T)(ϕ), we first compute the set C = {c}, and introduce fresh symbols `

the domain of k may be restricted to the set {cI | c ∈ S 1} in models I found in Steps 1 and 2
of the procedure. This restriction comes with no loss of generality since, by construction of
(ϕ/ [`,pt,C])⇓, k is applied only to terms occurring in S 1.
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and pt of sorts Set(Loc) and Loc→ Data respectively. The formula (ϕ / [`,pt,C])⇓ is
` ≈ ∅∧∀`4∀pt′.ψ∧ y 6≈ nil, where after simplification ψ is:

ψ4 ≡ (`4 ⊆ {y,0,1,c}∧pt′ ⊆ {y,0,1,c}× {y,0,1,d})⇒
(`4∩ ` ≈ ∅∧ `4 ≈ {y}∧pt′(y) ≈ 0∧ y 6≈ nil)⇒
(`4∪ ` ≈ {y}∧ ite(y ∈ `4,pt′(y) ≈ 1,pt(y) ≈ 1)∧ y 6≈ nil)

Let (A4, (k1,k2))� ∀`4∀pt′.ψ4. We call the subprocedure solveT on Γ0, where:

Γ0 ≡ b(ϕ/ [`,pt,C])⇓c∗ ≡ {` ≈ ∅∧A4∧ y 6≈ nil,¬A4⇒¬ψ4[k1,k2/`4,pt′]}.

The set Γ0 is T -satisfiable with a model I0 where AI0
4 = >. Step 2 of the procedure

determines a model J for Γ0∪{A4,¬ψ4[k1,k2/`4,pt′]}.
Let t1 be {y}, where we know tJ1 = kJ1 sinceJ must satisfy k1 ≈ {y} as a consequence

of ¬ψ4[k1,k2/`4,pt′]. Let t2 be a well-sorted subset of {y,0,1,c} × {y,0,1,d} such that
tJ2 = kJ2 . Such a subset exists since J satisfies k2 ⊆ {y,0,1,c} × {y,0,1,d}. Notice that
t2(y)J = 0J since J must satisfy k2(y) ≈ 0. Step 3 of the procedure recursively invokes
solveT on Γ1, where:

Γ1 ≡ Γ0∪bA4⇒ ψ4[t1, t2/`4,pt′]c∗

≡ Γ0∪{A4⇒ y 6≈ nil⇒ ({y} ≈ {y}∧ ite(y ∈ {y},0 ≈ 1,pt(y) ≈ 1)∧ y 6≈ nil)}
≡ Γ0∪{A4⇒ y 6≈ nil⇒⊥}

The set Γ1 is T -unsatisfiable, since the added constraint contradicts A4∧ y 6≈ nil. �

5.1 Integration in DPLL(T )

We have implemented the algorithm described in this section within the SMT solver
CVC4 [2]. Our implementation accepts an extended syntax of SMT-LIB version 2 for-
mat [3] for specifying SL (T ) formulae. In contrast to the presentation so far, our imple-
mentation does not explicitly introduce quantifiers, and instead treats SL atoms natively
using an integrated subsolver that expands the semantics of these atoms in lazy fashion.

In more detail, given a SL (T ) input ϕ, our implementation lazily computes the ex-
pansion of (ϕ / [`,pt,C])⇓ based on the translation rules in Figures 1 and 2 and the
counterexample-guided instantiation procedure in Figure 3. This is accomplished by a
module, which we refer to as the SL solver, that behaves analogously to a DPLL(T )-
style theory solver, that is, a dedicated solver specialized for the T -satisfiability of a
conjunction of T -constraints.

The DPLL(T ) solving architecture [12] used by most modern SMT solvers, given
as input a set of quantifier-free T -formulae Γ, incrementally constructs of set of liter-
als over the atoms of Γ until either it finds a set M that entail Γ at the propositional
level, or determines that such a set cannot be found. In the former case, we refer to M
as a satisfying assignment for Γ. If T is a combination of theories T1 ∪ . . .∪ Tn, then
M is partitioned into M1 ∪ . . .∪Mn where the atoms of Mi are either Ti-constraints or
(dis)equalities shared over multiple theories. We use a theory solver (for Ti) to deter-
mine the Ti-satisfiability of the set Mi, interpreted as a conjunction. Given Mi, the solver
will either add additional formulae to Γ, or otherwise report that Mi is Ti-satisfiable.
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For SL (T ) inputs, we extend our input syntax with a set of functions:

7→: Loc×Data→ Bool ∗n : Booln→ Bool emp : Bool
−−∗: Bool×Bool→ Bool lbl : Bool×Set(Loc)→ Bool

which we call spatial functions 8. We refer to lbl as the labeling predicate, which can
be understood as a placeholder for the / transformation in Figures 1 and 2. We refer to
p(t) as an unlabeled spatial atom if p is one of {emp, 7→,∗n,−−∗} and t is a vector of terms
not containing lbl. If a is an unlabeled spatial atom, We refer to lbl(a, `) as a labeled
spatial atom, and extend these terminologies to literals. We assume that all occurrences
of spatial functions in our input ϕ occur only in unlabeled spatial atoms. Moreover,
during execution, our implementation transforms all spatial atoms into a normal form,
by applying associativity to flatten nested applications of ∗, and distributing Σ-formulae
over spatial connectives, e.g. ((x 7→ y∧ t ≈ u)∗z 7→ w) ⇐⇒ t ≈ u∧ (x 7→ y∗z 7→ w).

When constructing satisfying assignments for ϕ, we relegate the set of all spatial lit-
erals Mk to the SL solver. For all unlabeled spatial literals (¬)a, we add to Γ the formula
(a⇔ lbl(a, `0)), where `0 is a distinguished free constant of sort Set(Loc). Henceforth,
it suffices for the SL solver to only consider the labeled spatial literals in Mk. To do so,
firstly, it adds to Γ formulae based on the following criteria, which model one step of
the reduction from Figure 1:

lbl(emp, `)⇔ ` ≈ ∅ if (¬)lbl(emp, `) ∈ Mk
lbl(t 7→ u, `)⇔ ` ≈ {t}∧pt(t) ≈ u∧ t 6≈ nil if (¬)lbl(t 7→ u, `) ∈ Mk
lbl((ϕ1 ∗ . . .∗ϕn), `)⇒ (ϕ1[`1]∧ . . .∧ϕn[`n]) if lbl((ϕ1 ∗ . . .∗ϕn), `) ∈ Mk
¬lbl((ϕ1 −−∗ ϕ2), `)⇒ (ϕ1[`1]∧¬ϕ2[`2]) if ¬lbl((ϕ1 −−∗ ϕ2), `) ∈ Mk

where each `i is a fresh free constant, and ϕi[`i] denotes the result of replacing each
top-level spatial atom a in ϕi with lbl(a, `i). These formulae are added eagerly when
such literals are added to Mk. To handle negated ∗-atoms and positive −−∗-atoms, the SL
solver adds to Γ formulae based on the criteria:

¬lbl((ϕ1 ∗ . . .∗ϕn), `)⇒ (¬ϕ1[t1]∨ . . .∨¬ϕn[tn]) if ¬lbl((ϕ1 ∗ . . .∗ϕn), `) ∈ Mk
lbl((ϕ1 −−∗ ϕ2), `)⇒ (¬ϕ1[t1, f1]∨ϕ2[t2, f2]) if lbl((ϕ1 −−∗ ϕ2), `) ∈ Mk

where each ti and fi is chosen based on the same criterion as described in Figure 3. For
wand, we write ϕi[ti, fi] to denote ϕ′i [ti], where ϕ′i is the result of replacing all atoms of
the form t 7→ u where t ∈ t1 in ϕi by fi(t) ≈ u.

CVC4 uses a scheme for incrementally checking the T -entailments required by
solveT, as well as constructing models J satisfying the negated form of the literals
in literals in Mk before choosing such terms [20]. The formula of the above form are
added to Γ lazily, that is, after all other solvers (for theories Ti) have determined their
corresponding sets of literals Mi are Ti-satisfiable.
Partial Support for Quantifiers In many practical cases it is useful to check the va-
lidity of entailments between existentially quantified SL(T ) formulae such as ∃x . φ(x)
and ∃y . ψ(y). Typically, this problem translates into a satisfiability query for an SL(T )

8 These functions are over the Bool sort. We refer to these functions as taking formulae as input,
where formulae may be cast to terms of sort Bool through use of an if-then-else construct.
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formula ∃x∀y . φ(x)∧¬ψ(y), with one quantifier alternation. A partial solution to this
problem is to first check the satisfiability of φ. If φ is not satisfiable, the entailment holds
trivially, so let us assume that φ has a model. Second, we check satisfiability of φ∧ψ.
Again, if this is unsatisfiable, then the entailment cannot hold, because there exists a
model of φ which is not a model of ψ. Else, if φ∧ψ has a model, we add an equality
x = y for each pair of variables (x,y) ∈ x× y that are mapped to the same term in this
model, the result being a conjunction E(x,y) of equalities. Finally, we check the sat-
isfiability of the formula φ∧¬ψ∧ E. If this formula is unsatisfiable, the entailment is
valid, otherwise, the test is inconclusive. In section 6, we applied this method manually,
to test entailments between existentially quantified variables — general procedure for
quantifier instantiation for SL(T ) is envisaged in the near future.

6 Evaluation

We tested our implementation of the (SL,T )-satisfiability procedure in CVC4 (ver-
sion 1.5 prerelease) 9 on two kinds of benchmarks: (i) finite unfoldings of inductive
predicates with data constraints, mostly inspired by existing benchmarks, such as SL-
COMP’14 [22], and (ii) verification conditions automatically generated by applying the
weakest precondition calculus of [15] to the program loops in Figure 4 several times.
All experiments were run on a 2.80GHz Intel(R) Core(TM) i7 CPU machine with with
8MB of cache 10. For a majority of benchmarks, the runtime of CVC4 is quite low, with
the exception of the n = 4,8 cases of the entailments between treen

1 and treen
2 formu-

lae, which resulted in a timeout after 300 seconds. For benchmarks where CVC4 times
out, the performance bottleneck resides in its ground decision procedure for finite sets,
indicating efficient support for this theory is important for our approach to separation
logic.

1: while w , nil do
2: assert(w.data = 0)
3: v := w;
4: w := w.next;
5: dispose(v);
6: do

(z)disp

1: while u , nil do
2: assert(u.data = 0)
3: w := u.next;
4: u.next := v;
5: v := u;
6: u := w;
7: do

(z)rev
ls0(x) , emp∧ x = nil zls0(x) , emp∧ x = nil
lsn(x) , ∃y . x 7→ y∗ lsn−1(y) zlsn(x) , ∃y . x 7→ (0,y)∗zlsn−1(y)

Fig. 4. Program Loops

The first set of experiments is reported in Table 1. We have considered inductive
predicates commonly used as verification benchmarks [22]. Here we check the validity

9 Available at http://cvc4.cs.nyu.edu/web/.
10 The CVC4 binary and examples used in these experiments are available at http://cvc4.cs.
nyu.edu/papers/ATVA2016-seplog/.
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lhs rhs n = 1 n = 2 n = 3 n = 4 n = 8
Unfoldings of inductive predicates

lseg1(x,y,a),emp∧x=y∨∃z∃b . lseg2(x,y,a),emp∧x=y∨∃z∃b . unsat unsat unsat unsat unsat
x 7→(a,z)∗lseg1(z,y,b)∧b=a+10 x 7→(a,z)∗lseg2(z,y,b)∧a≤b < 0.01s < 0.01s < 0.01s 0.01s 0.01s

tree1(x,a),emp∧x=nil∨∃y∃z∃b∃c . tree2(x,a),emp∧x=nil∨∃y∃z∃b∃c . unsat unsat unsat timeout timeout
x 7→(a,y,z)∗tree1(y,b)∗tree1(z,c)∧ x 7→(a,y,z)∗tree2(y,b)∗tree2(z,c)∧ < 0.01s 0.06s 1.89s > 300s > 300s

b=a−10∧c=a+10 b≤a∧a≤c

pos1(x,a),x 7→a∨∃y∃b . neg1(x,a),¬x 7→a∨∃y∃b . unsat unsat unsat unsat unsat
x 7→a∗pos1(y,b) x 7→a∗neg1(y,b) 0.02s 0.04s 0.11s 0.25 s 3.01s

pos1(x,a),x 7→a∨∃y∃b . neg2(x,a),x 7→a∨∃y∃b . unsat unsat unsat unsat unsat
x 7→a∗pos1(y,b) ¬x 7→a∗neg2(y,b) 0.01s 0.05s 0.11s 0.23s 2.10s

pos1(x,a),x 7→a∨∃y∃b . neg3(x,a),x 7→a∨∃y∃b . unsat unsat unsat unsat unsat
x 7→a∗pos1(y,b) x 7→a∗¬neg3(y,b) 0.02s 0.07s 0.24s 0.46s 4.05s

pos1(x,a),x 7→a∨∃y∃b . neg4(x,a),x 7→a∨∃y∃b . unsat sat unsat sat sat
x 7→a∗pos1(y,b) ¬x 7→a∗¬neg4(y,b) 0.05s 0.24s 0.33s 2.77s 24.72s

pos2(x,a),x 7→a∨∃y . neg5(x,a),¬x 7→a∨∃y . unsat unsat unsat unsat unsat
x 7→a∗pos2(a,y) x 7→a∗neg5(a,y) 0.02s 0.05s 0.14s 0.32s 3.69s

pos2(x,a),x 7→a∨∃y . neg6(x,a),x 7→a∨∃y . sat unsat unsat unsat unsat
x 7→a∗pos2(a,y) ¬x 7→a∗neg6(a,y) 0.02s 0.04s 0.13s 0.27s 2.22s

Verification conditions
lsn(w) wp(disp,lsn−1(w)) < 0.01s 0.02s 0.05s 0.12s 1.97s

lsn(w) wpn(disp,emp∧w=nil) < 0.01s 0.02s 0.12s 0.41s 22.97s

zlsn(w) wp(zdisp,zlsn−1(w)) 0.01s 0.02s 0.05s 0.11s 1.34s

zlsn(w) wpn(zdisp,emp∧w=nil) 0.01s 0.02s 0.11s 0.43s 24.13s

lsn(u)∗ls0(v) wp(rev,lsn−1(u)∗ls1(v)) 0.06s 0.08s 0.14s 0.30s 2.83s

lsn(u)∗ls0(v) wpn(rev,u=nil∧lsn(v)) 0.06s 0.12s 0.56s 1.75s 27.82s

zlsn(u)∗zls0(v) wp(zrev,zlsn−1(u)∗zls1(v)) 0.22s 0.04s 0.12s 0.25s 2.16s

zlsn(u)∗zls0(v) wpn(zrev,u=nil∧zlsn(v)) 0.04s 0.10s 0.41s 1.27s 20.26s

Table 1. Experimental results

of the entailment between lhs and rhs, where both predicates are unfolded n = 1,2,3,4,8
times. The second set of experiments, reported in Table 1, considers the verification
conditions of the forms ϕ ⇒ wp(l,φ) and ϕ ⇒ wpn(l,φ), where wp(l,φ) denotes the
weakest precondition of the SL formula φ with respect to the sequence of statements l,
and wpn(l,φ) = wp(l, . . .wp(l,wp(l,φ)) . . .) denotes the iterative application of the weak-
est precondition n times in a row. We consider the loops depicted in Figure 4, where,
for each loop l we consider the variant zl as well, which tests that the data values con-
tained within the memory cells are 0, by the assertions on line 2. The postconditions are
specified by finite unfoldings of the inductive predicates ls and zls (Figure 4).

7 Conclusions

We have presented a decision procedure for quantifier-free SL (T ) formulas that relies
on a efficient, counterexample-guided approach for establishing the T -satisfiability of
formulas having quantification over bounded sets. We have described an implemen-
tation of the approach as an integrated subsolver in the DPLL(T )-based SMT solver
CVC4, showing the potential of the procedure as a backend for tools reasoning about
low-level pointer and data manipulations.
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