Internet Engineering Task Force (IETF) C. Krasic

Request for Comments. 9204 M. Bishop
Category: Standards Track Akamai Technologies
ISSN: 2070-1721 A. Frindell, Editor
Facebook
June 2022

QPACK: Field Compression for HTTP/3
draft-ietf-quic-qpack-21

Abstract

This specification defines QPACK: a compression format for efficiently representing HTTP fields that is to be
used in HTTP/3. Thisisavariation of HPACK compression that seeks to reduce head-of-line blocking.

Status of ThisMemo

Thisis an Internet Standards Track document.

This document is a product of the Internet Engineering Task Force (IETF). It represents the consensus of

the IETF community. It has received public review and has been approved for publication by the Internet
Engineering Steering Group (IESG). Further information on Internet Standardsis available in Section 2 of RFC
7841,

Information about the current status of this document, any errata, and how to provide feedback on it may be
obtained at https://www.rfc-editor.org/info/rfc9204°.

Copyright Notice

Copyright (c) 2022 IETF Trust and the persons identified as the document authors. All rights reserved.

This document is subject to BCP 78 and the IETF Trust's Legal Provisions Relating to IETF Documents
(https.//trustee.ietf.org/license-info®) in effect on the date of publication of this document. Please review

these documents carefully, as they describe your rights and restrictions with respect to this document. Code
Components extracted from this document must include Revised BSD License text as described in Section 4.e
of the Trust Legal Provisions and are provided without warranty as described in the Revised BSD License.

1 https://www.rfc-editor.org/rfc/rfc7841.html#section-2
2 https://www.rfc-editor.org/info/rfc9204
3 https://trustee.ietf.org/license-info

https://www.rfc-editor.org/rfc/rfc7841.html#section-2
https://www.rfc-editor.org/rfc/rfc7841.html#section-2
https://www.rfc-editor.org/info/rfc9204
https://trustee.ietf.org/license-info

RFC 9204 QPACK June 2022

Table of Contents

O I 0o [Tox oo T 4
1.1 ConventionS aN0 DEFINMITIONS........c.eeiieeieieeieeiee e et e s eesseeesetessseseessabesesassesssseessabesssassessasasasstesssasssssarenesassessans 4
22 \\[o v 1[0 g F= I @(0] 01VL< o110 13RS 4
2 COMPIESSION PrOCESS OVEN VIBW......cuiitiieiieistesieseeeeie et eaeeiesie st stesaesaesbesbeseessesbeseeseeseesee e eseeseeseaaesbesbesbesbesbeseeseanean 6
2 T 0 Too o [6
211 Limits on DYNamiC Table INSEMIONS.......cceieiieiieececieese ettt e se e s s resnesnesreneeseesrenean 6
A T = 10w = o IS (== 1 7
2.1.3 Avoiding FIow-Control DEAOIOCKS.........ccceiuerierierieeieeeieee sttt a e ese e sneeresresnenrenes 7
214 KNOWN RECEIVEU COUNL.......oeiiiiitiiitecetee ettt stteeee et s st e estessabessbessaesssbessasesbessasessbessabessbesssssssbessnsesbessnbesssessatis 7
B B 1< ol o o [(PR 8
221 BIlOCKEA DECOUING......ueueitiueriieetirieierietesiete sttt sttt b ettt b e b e e b et be b e bt e st ea b e e e b et e bt e b et ebe st e b e nbenenbenes 8
222 SEAE SYNCHIONIZALION.cuiietiieeiiieeiiree ettt ettt b et b et b et b et b s e bt e b e b s et e e b e e b eneenan 8
A T 10 \Vz- Lo [< L= (=01 <. TR 9
R = L= = (o ST I o] [T 10
I S 7= (o2l I=o [RS 10
G)V 1 7= 10 1o 1= o = 10
G5t R D)Y/ o= 0 o T o I o =T S 10
3.22 Dynamic Table CapaCity and EVICHION.......ccccciieiriiie ettt e e et e e e e eneeneeneens 10
3.23 Maximum DynamicC Table CapaCity........ccueiriiiierieiiitesiesiesieieee e eeseste e testesreste e seesaesaeae s eseesesseenesresseseens 10
G220 R AN o o 1V (=38 g 1= 1 o O 11
G ST = L= - 1AV 3 g (=1 o OSSR 11
326 POSE-BASE INAEXING........eiiiieiieiieiteieitceeee sttt st e s e ste st e e e e e esaeseeseeseebessesaesbeseeseetanteseensesseneeseesensessennens 12
LV T T 0 = | 13
ot R = 10 01 (A= 13
O 1= 1D o T 010 o [£ TSSO PSPPSR 13
S 1 0o T Y (= = PSSR 13
4.2 ENCOEr N0 DECOUEI SLIEAIMS.......oeiitiiiiiteieiieieeeteeeeeeesseteeessstessssaeessbeessssseesassssssabeesssssessasssessabeesasbessssensssssnes 13
G T oo lo [G 1S U (0] LY 13
431 Set DYNamMIC Tabl@ CaPBCITY......ceieruireerierieieeeieeete ettt ettt e se et aeeae bt s bt sbesbeseesbebese e e e e e e e e eneas 14
4.3.2 INSErt With NAME REFEIENCE........ceeiiieie ettt e s et s st e e s s b e e s s abe s s sabeessabeessbbessssanessabaneans 14
4.3.3 INSErt WIth LITEIrAl NAIME.....oeiiieeie ettt ettt e st e e s e b e e s s bae s s bb e e s sab e e s sabeessabeeessnbesssnreessanens 14
I S B 1U o[o= TR U TP PTOPTPOOI 15
i D 1< oo o (<l 101 (0 (o0 R 15
T RS o o I AN o g 10T =" [0 0= ST 15
S (= g A W O 0 o< | =1 o 15
G T 1 015 = A O 0 | | M 10 (= 1.01< | PSR 16
45 Field LiNe REPIESENTALIONS.......ceeeeuierereeseeeteseseestesieseeseesseseesaeseesessessessessessessessessessessensessessessesssssesessessensessessessens 16
451 ENCOOE FIeld SECHION PrEfIX....cuiiiriiiiiieeie it ctie ettt ettt st sae s st e s sbe s st e s sbeesabe s sbessatessbessaseesbessnbessnessnbens 16
S 1070 (<= o [=T = [[g 18
453 Indexed Field Line With POSE-BaSE INAEX.........cciiiiiieiiirii ettt ettt s st e s sreesnb s saesebeesbesens 18
454 Literd Field Line With NamMeE REFEIENCE........ccuieiei ettt ettt s sraesre e sba s s sreesresaares 19
455 Literal Field Line with POSt-Base NamME REFEIENCE.......c..ciuiiiieiei ettt sttt et be s seeebee e 19
456 Litera Field Line With LIiteral NAIME.......cceiieiiiii ettt ettt sbe s e s tessbes st e s sseesabessaessnreesresens 20

Krasic, et al. Expires December 2022 [Page 2]

RFC 9204 QPACK June 2022

LI o T 8 = 4 o] o TSRS 21
L = o = T | o 22
7 SECUTITY CONSIAEN ALIONS.......eiteieiteeiteeete ettt sttt ettt e et e et b et b et b et b se b e se e b e s e e b e s e eb e e e e bt et e st e b e nesbe e e b et et e e e 23
7.1 Probing DYNamiC Tahl@ SEALE.........coiiiiiiiiiiee ettt ettt et b e et s be b se e e e e s 23
7.1.1 Applicability t0 QPACK @nd HTTP...c.oiiiiiiriiiriiises ettt sttt 23
4% T |V 1 (o = (o o OSSOSOV PRURO 23
A T \\ (=Y = 1 010 [(S o WL (< = £ 24
FAZS - (Lol o 10 0 T Voo Lo] o 25
2 T = 10To YA ©o 0’ U1 01070 o PR 25
7.4 IMPIEMENTALION LiMITS.....c.iiiiieiiriiiitterieee bbbttt bbb bbbt st 25
R AN AN VAN O 0 g = Lo [l = A) [T 27
8.1 SEHINGS REGISIIAION. ... e tiitiiiie ettt ettt ettt b et e et e e se e e et et e st eheebesaeehesbesbesbebe s b saeneenee e eneeneeneenenbens 27
LS (= 0 T Y] 0 ST R L= [= 1 o OO 27
TG T 1 o @00 (ST = = [1 - 1 o O 27
L R L= L= = 1[0 28
0.1 NOIMEALIVE REFEIEINCES.eeeeiteieeetie e eee ettt e ettt e s et e e st e e etae s s beesssateesasssessabees s seessasseesssseesanbesssbeesssbeeesastesssanns 28
L I 1 0| {0 40Tz AV S R S L= (=101 R 28
F N] o= T D NS - [1= o = 29
Appendix B Encoding and Decoding EXAMPIES.......c.cviirieiririsene s ese e seeeeae e e sessessessessessessesseseeseessensesenns 32
B.1 Literal Field Ling With NamME REFEIENCE.........ooi ettt et e st e e s s e e s e s e e s s et e s s sanessarene s 32
B.2 DYNAMIC TADIE. ..ttt b b et et e e e e e e e st e he e bt e Rt eh e e b e s bt eb e b e s b sh e b e be e e e eneeneenenreas 32
B.3 SPECUIALIVE INSENT.....eciceicecccecee e e sttt e e ae s ae s bestesee st e beeesee st enteneeneeseeseeseesessesaestestesseseens 33
B.4 Duplicate Instruction, Stream CanCell@tioN............cccveirieiererereseeeeeeee st s e e se e eseesesseenens 34
B.5 DynamicC Table INSErt, EVICHON.........ciiiiieesieiesise e seeeeee ettt s e e e ne e e es e seeseesessesnesseseensesenns 35
Appendix C Sample Single-Pass ENcoding AlgOrithm.........oooeo e 37
F AN T g (TSI AN o [0 [=55 40

Krasic, et al. Expires December 2022 [Page 3]

RFC 9204 QPACK June 2022

1. Introduction

The QUIC transport protocol ([QUIC-TRANSPORT]) isdesigned to support HTTP semantics, and its design
subsumes many of the features of HTTP/2 ([HTTP/2]). HTTP/2 uses HPACK ([RFC7541]) for compression
of the header and trailer sections. If HPACK were used for HTTP/3 ([HTTP/3]), it would induce head-of-line
blocking for field sections due to built-in assumptions of atotal ordering across frames on all streams.

QPACK reuses core concepts from HPACK, but is redesigned to allow correctness in the presence of out-of-
order delivery, with flexibility for implementations to balance between resilience against head-of-line blocking
and optimal compression ratio. The design goals are to closely approach the compression ratio of HPACK with
substantially less head-of-line blocking under the same loss conditions.

1.1. Conventions and Definitions

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD", "SHOULD
NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and "OPTIONAL" in this document are

to be interpreted as described in [RFC2119] [RFC8174] when, and only when, they appear in all capitals, as
shown here.

The following terms are used in this document:

HTTPfields: Metadata sent as part of an HTTP message. The term encompasses both
header and trailer fields. Colloquially, the term "headers' has often been used
to refer to HTTP header fields and trailer fields; this document uses "fields"

for generality.

HTTPfield line: A name-value pair sent as part of an HTTP field section. See Sections 6.3 and
6.5 of [HTTP].

HTTP field value: Data associated with a field name, composed from all field line values with

that field name in that section, concatenated together with comma separators.

Field section: An ordered collection of HTTP field lines associated with an HT TP message.
A field section can contain multiple field lines with the same name. It can
also contain duplicate field lines. An HT TP message can include both header
and trailer sections.

Representation; An instruction that represents afield line, possibly by reference to the
dynamic and static tables.

Encoder: An implementation that encodes field sections.

Decoder: An implementation that decodes encoded field sections.

Absolute Index: A uniqueindex for each entry in the dynamic table.

Base: A reference point for relative and post-Base indices. Representations that

reference dynamic table entries are relative to a Base.
Insert Count: The total number of entriesinserted in the dynamic table.
Note that QPACK is aname, not an abbreviation.

1.2. Notational Conventions
Diagrams in this document use the format described in Section 3.1 of [RFC2360], with the following additional

conventions:

X (A) Indicatesthat x is A bitslong.

X (A+) Indicates that x uses the prefixed integer encoding defined in Section 4.1.1, beginning with an A-bit
prefix.

Krasic, et al. Expires December 2022 [Page 4]

https://www.rfc-editor.org/rfc/rfc9110.html#section-6.3
https://www.rfc-editor.org/rfc/rfc9110.html#section-6.5
https://www.rfc-editor.org/rfc/rfc2360.html#section-3.1

RFC 9204 QPACK June 2022

X . Indicates that x is variable length and extends to the end of the region.

Krasic, et al. Expires December 2022 [Page 5]

RFC 9204 QPACK June 2022

2. Compression Process Overview

Like HPACK, QPACK usestwo tables for associating field lines ("headers') to indices. The static table
(Section 3.1) is predefined and contains common header field lines (some of them with an empty value). The
dynamic table (Section 3.2) is built up over the course of the connection and can be used by the encoder to
index both header and trailer field lines in the encoded field sections.

QPACK defines unidirectional streams for sending instructions from encoder to decoder and vice versa.

2.1. Encoder

An encoder converts a header or trailer section into a series of representations by emitting either an indexed
or aliteral representation for each field linein the list; see Section 4.5. Indexed representations achieve high
compression by replacing the literal name and possibly the value with an index to either the static or dynamic
table. References to the static table and literal representations do not require any dynamic state and never

risk head-of-line blocking. References to the dynamic table risk head-of-line blocking if the encoder has not
received an acknowledgment indicating the entry is available at the decoder.

An encoder MAY insert any entry in the dynamic table it chooses; it is not limited to field linesit is
compressing.

QPACK preserves the ordering of field lines within each field section. An encoder MUST emit field
representations in the order they appear in the input field section.

QPACK isdesigned to place the burden of optional state tracking on the encoder, resulting in relatively simple
decoders.

2.1.1. Limitson Dynamic TableInsertions
Inserting entries into the dynamic table might not be possibleif the table contains entries that cannot be evicted.

A dynamic table entry cannot be evicted immediately after insertion, even if it has never been referenced. Once
the insertion of a dynamic table entry has been acknowledged and there are no outstanding references to the
entry in unacknowledged representations, the entry becomes evictable. Note that references on the encoder
stream never preclude the eviction of an entry, because those references are guaranteed to be processed before
the instruction evicting the entry.

If the dynamic table does not contain enough room for a new entry without evicting other entries, and the
entries that would be evicted are not evictable, the encoder MUST NOT insert that entry into the dynamic
table (including duplicates of existing entries). In order to avoid this, an encoder that uses the dynamic table
has to keep track of each dynamic table entry referenced by each field section until those representations are
acknowledged by the decoder; see Section 4.4.1.

2.1.1.1. Avoiding Prohibited Insertions

To ensure that the encoder is not prevented from adding new entries, the encoder can avoid referencing entries
that are close to eviction. Rather than reference such an entry, the encoder can emit a Duplicate instruction
(Section 4.3.4) and reference the duplicate instead.

Determining which entries are too close to eviction to reference is an encoder preference. One heuristic is

to target a fixed amount of available space in the dynamic table: either unused space or space that can be
reclaimed by evicting non-blocking entries. To achieve this, the encoder can maintain a draining index, which
isthe smallest absolute index (Section 3.2.4) in the dynamic table that it will emit areference for. As new
entries are inserted, the encoder increases the draining index to maintain the section of the table that it will

not reference. If the encoder does not create new references to entries with an absolute index lower than

the draining index, the number of unacknowledged references to those entries will eventually become zero,
allowing them to be evicted.

Krasic, et al. Expires December 2022 [Page 6]

RFC 9204 QPACK June 2022

<-- Newer Entries O der Entries -->
(Larger | ndices) (Smal | er | ndices)
S S Fom oo E R +
| Unused | Ref er enceabl e | Draining |
| Space | Entries | Entries |
S S Fom oo E R +
N N N
I I I
I nsertion Point Drai ni ng I ndex Dropping
Poi nt

Figure 1: Draining Dynamic Table Entries

2.1.2. Blocked Streams

Because QUIC does not guarantee order between data on different streams, a decoder might encounter a
representation that references a dynamic table entry that it has not yet received.

Each encoded field section contains a Required Insert Count (Section 4.5.1), the lowest possible value for the
Insert Count with which the field section can be decoded. For afield section encoded using referencesto the
dynamic table, the Required Insert Count is one larger than the largest absolute index of all referenced dynamic
table entries. For afield section encoded with no references to the dynamic table, the Required Insert Count is
zero.

When the decoder receives an encoded field section with a Required Insert Count greater than its own Insert
Count, the stream cannot be processed immediately and is considered "blocked"; see Section 2.2.1.

The decoder specifies an upper bound on the number of streams that can be blocked using the

SETTINGS QPACK_BLOCKED_STREAMS setting; see Section 5. An encoder MUST limit the number of
streams that could become blocked to the value of SETTINGS_QPACK_BLOCKED_STREAMS at all times.
If adecoder encounters more blocked streams than it promised to support, it MUST treat this as a connection
error of type QPACK_DECOMPRESSION_FAILED.

Note that the decoder might not become blocked on every stream that risks becoming blocked.

An encoder can decide whether to risk having a stream become blocked. If permitted by the value of

SETTINGS QPACK_BLOCKED_STREAMS, compression efficiency can often be improved by referencing
dynamic table entries that are still in transit, but if there isloss or reordering, the stream can become blocked

at the decoder. An encoder can avoid the risk of blocking by only referencing dynamic table entries that have
been acknowledged, but this could mean using literals. Since literals make the encoded field section larger, this
can result in the encoder becoming blocked on congestion or flow-control limits.

2.1.3. Avoiding Flow-Control Deadlocks

Writing instructions on streams that are limited by flow control can produce deadlocks.

A decoder might stop issuing flow-control credit on the stream that carries an encoded field section until the
necessary updates are received on the encoder stream. If the granting of flow-control credit on the encoder
stream (or the connection as awhole) depends on the consumption and release of data on the stream carrying
the encoded field section, a deadlock might result.

More generally, a stream containing a large instruction can become deadlocked if the decoder withholds flow-
control credit until theinstruction is completely received.

To avoid these deadlocks, an encoder SHOULD NOT write an instruction unless sufficient stream and
connection flow-control credit is available for the entire instruction.
2.1.4. Known Received Count

The Known Received Count is the total number of dynamic table insertions and duplications acknowledged by
the decoder. The encoder tracks the Known Received Count in order to identify which dynamic table entries

Krasic, et al. Expires December 2022 [Page 7]

RFC 9204 QPACK June 2022

can be referenced without potentially blocking a stream. The decoder tracks the Known Received Count in
order to be able to send Insert Count Increment instructions.

A Section Acknowledgment instruction (Section 4.4.1) implies that the decoder has received all dynamic table
state necessary to decode the field section. If the Required Insert Count of the acknowledged field section is
greater than the current Known Received Count, the Known Received Count is updated to that Required Insert
Count value.

An Insert Count Increment instruction (Section 4.4.3) increases the Known Received Count by its Increment
parameter. See Section 2.2.2.3 for guidance.

2.2. Decoder

Asin HPACK, the decoder processes a series of representations and emits the corresponding field sections. It
also processes instructions received on the encoder stream that modify the dynamic table. Note that encoded
field sections and encoder stream instructions arrive on separate streams. Thisis unlike HPACK, where
encoded field sections (header blocks) can contain instructions that modify the dynamic table, and thereis no
dedicated stream of HPACK instructions.

The decoder MUST emit field linesin the order their representations appear in the encoded field section.

2.2.1. Blocked Decoding

Upon receipt of an encoded field section, the decoder examines the Required Insert Count. When the Required
Insert Count isless than or equal to the decoder's Insert Count, the field section can be processed immediately.
Otherwise, the stream on which the field section was received becomes blocked.

While blocked, encoded field section data SHOULD remain in the blocked stream's flow-control window.
This datais unusable until the stream becomes unblocked, and rel easing the flow control prematurely makes
the decoder vulnerable to memory exhaustion attacks. A stream becomes unblocked when the Insert Count
becomes greater than or equal to the Required Insert Count for all encoded field sections the decoder has
started reading from the stream.

When processing encoded field sections, the decoder expects the Required Insert Count to equal the lowest
possible value for the Insert Count with which the field section can be decoded, as prescribed in Section 2.1.2.
If it encounters a Required Insert Count smaller than expected, it MUST treat this as a connection error of type
QPACK_DECOMPRESSION_FAILED:; see Section 2.2.3. If it encounters a Required Insert Count larger than
expected, it MAY treat this as a connection error of type QPACK_DECOMPRESSION_FAILED.

2.2.2. State Synchronization

The decoder signas the following events by emitting decoder instructions (Section 4.4) on the decoder stream.

2.2.2.1. Completed Processing of a Field Section

After the decoder finishes decoding afield section encoded using representations containing dynamic table
references, it MUST emit a Section Acknowledgment instruction (Section 4.4.1). A stream may carry multiple
field sectionsin the case of intermediate responses, trailers, and pushed requests. The encoder interprets each
Section Acknowledgment instruction as acknowledging the earliest unacknowledged field section containing
dynamic table references sent on the given stream.

2.2.2.2. Abandonment of a Stream

When an endpoint receives a stream reset before the end of a stream or before all encoded field sections

are processed on that stream, or when it abandons reading of a stream, it generates a Stream Cancellation
instruction; see Section 4.4.2. This signals to the encoder that all references to the dynamic table on that stream
are no longer outstanding. A decoder with a maximum dynamic table capacity (Section 3.2.3) equal to zero
MAY omit sending Stream Cancellations, because the encoder cannot have any dynamic table references. An
encoder cannot infer from this instruction that any updates to the dynamic table have been received.

Krasic, et al. Expires December 2022 [Page §]

RFC 9204 QPACK June 2022

The Section Acknowledgment and Stream Cancellation instructions permit the encoder to remove references to
entries in the dynamic table. When an entry with an absolute index lower than the Known Received Count has
zero references, then it is considered evictable; see Section 2.1.1.

2.2.2.3. New TableEntries

After receiving new table entries on the encoder stream, the decoder chooses when to emit Insert Count
Increment instructions; see Section 4.4.3. Emitting this instruction after adding each new dynamic table entry
will provide the timeliest feedback to the encoder, but could be redundant with other decoder feedback. By
delaying an Insert Count Increment instruction, the decoder might be able to coalesce multiple Insert Count
Increment instructions or replace them entirely with Section Acknowledgments; see Section 4.4.1. However,
delaying too long may lead to compression inefficiencies if the encoder waits for an entry to be acknowledged
before using it.

2.2.3. Invalid References

If the decoder encounters areference in afield line representation to a dynamic table entry that has already
been evicted or that has an absolute index greater than or equal to the declared Required Insert Count (Section
4.5.1), it MUST treat this as a connection error of type QPACK_DECOMPRESSION_FAILED.

If the decoder encounters a reference in an encoder instruction to a dynamic table entry that has already been
evicted, it MUST treat this as a connection error of type QPACK_ENCODER_STREAM_ERROR.

Krasic, et al. Expires December 2022 [Page 9]

RFC 9204 QPACK June 2022

3. Reference Tables

Unlike in HPACK, entriesin the QPACK static and dynamic tables are addressed separately. The following
sections describe how entries in each table are addressed.

3.1. Static Table

The static table consists of a predefined list of field lines, each of which has a fixed index over time. Its entries
are defined in Appendix A.

All entriesin the static table have a name and a value. However, values can be empty (that is, have alength of
0). Each entry isidentified by a unique index.

Note that the QPACK static tableisindexed from 0, whereas the HPACK static table isindexed from 1.

When the decoder encounters an invalid static table index in afield line representation, it MUST treat this as
aconnection error of type QPACK_DECOMPRESSION_FAILED. If thisindex is received on the encoder
stream, this MUST be treated as a connection error of type QPACK_ENCODER_STREAM_ERROR.

3.2. Dynamic Table

The dynamic table consists of alist of field lines maintained in first-in, first-out order. A QPACK encoder and
decoder share adynamic table that isinitially empty. The encoder adds entries to the dynamic table and sends
them to the decoder viainstructions on the encoder stream; see Section 4.3.

The dynamic table can contain duplicate entries (i.e., entries with the same name and same value). Therefore,
duplicate entries MUST NOT be treated as an error by the decoder.

Dynamic table entries can have empty values.

3.2.1. Dynamic Table Size
The size of the dynamic tableis the sum of the size of its entries.

The size of an entry isthe sum of its name's length in bytes, its value's length in bytes, and 32 additional bytes.
The size of an entry is calculated using the length of its name and value without Huffman encoding applied.

3.2.2. Dynamic Table Capacity and Eviction

The encoder sets the capacity of the dynamic table, which serves as the upper limit on its size. Theinitial
capacity of the dynamic table is zero. The encoder sends a Set Dynamic Table Capacity instruction (Section
4.3.1) with anon-zero capacity to begin using the dynamic table.

Before a new entry is added to the dynamic table, entries are evicted from the end of the dynamic table until the
size of the dynamic table isless than or equal to (table capacity - size of new entry). The encoder MUST NOT
cause adynamic table entry to be evicted unless that entry is evictable; see Section 2.1.1. The new entry is then
added to thetable. It isan error if the encoder attemptsto add an entry that is larger than the dynamic table
capacity; the decoder MUST treat this as a connection error of type QPACK_ENCODER_STREAM_ERROR.

A new entry can reference an entry in the dynamic table that will be evicted when adding this new entry
into the dynamic table. Implementations are cautioned to avoid deleting the referenced name or value if the
referenced entry is evicted from the dynamic table prior to inserting the new entry.

Whenever the dynamic table capacity is reduced by the encoder (Section 4.3.1), entries are evicted from the
end of the dynamic table until the size of the dynamic table is less than or equal to the new table capacity. This
mechanism can be used to completely clear entries from the dynamic table by setting a capacity of 0, which can
subsequently be restored.

Krasic, et al. Expires December 2022 [Page 10]

RFC 9204 QPACK June 2022

3.2.3. Maximum Dynamic Table Capacity

To bound the memory requirements of the decoder, the decoder limits the maximum value the encoder

is permitted to set for the dynamic table capacity. In HTTP/3, thislimit is determined by the value of

SETTINGS QPACK_MAX_TABLE_CAPACITY sent by the decoder; see Section 5. The encoder MUST
NOT set adynamic table capacity that exceeds this maximum, but it can choose to use alower dynamic table
capacity; see Section 4.3.1.

For clientsusing O-RTT datain HTTP/3, the server's maximum table capacity is the remembered value of
the setting or zero if the value was not previously sent. When the client's O-RTT value of the SETTING is
zero, the server MAY set it to anon-zero value in its SETTINGS frame. If the remembered value is non-zero,
the server MUST send the same non-zero valuein its SETTINGS frame. If it specifies any other value, or
omits SETTINGS QPACK_MAX_TABLE_CAPACITY from SETTINGS, the encoder must treat thisas a
connection error of type QPACK_DECODER_STREAM_ERROR.

For clients not using O-RTT data (whether O-RTT is not attempted or isrejected) and for all HTTP/3 servers,
the maximum table capacity is 0 until the encoder processes a SETTINGS frame with a non-zero value of
SETTINGS QPACK_MAX_TABLE_CAPACITY.

When the maximum table capacity is zero, the encoder MUST NOT insert entries into the dynamic table and
MUST NOT send any encoder instructions on the encoder stream.

3.2.4. Absolute Indexing

Each entry possesses an absolute index that is fixed for the lifetime of that entry. The first entry inserted has an
absolute index of 0; indices increase by one with each insertion.

3.2.5. RelativeIndexing

Relative indices begin at zero and increase in the opposite direction from the absolute index. Determining
which entry has arelative index of 0 depends on the context of the reference.

In encoder instructions (Section 4.3), arelative index of O refersto the most recently inserted valuein
the dynamic table. Note that this means the entry referenced by a given relative index will change while
interpreting instructions on the encoder stream.

A= oe= dfmcoccocccocooooo dfmcocooe +
| n-1 | [d | Absol ute | ndex
b = = dmcccccocoocsoocoo + - - - +
| 0 | | n-d-1 | Relative |ndex
A= oe= dfmcoccocccocooooo dfmcocooe +
n I
| Vv

I nsertion Point Dr oppi ng Poi nt

count of entries inserted
count of entries dropped

n
d

Figure 2: Example Dynamic Table Indexing - Encoder Stream

Unlike in encoder instructions, relative indicesin field line representations are relative to the Base at the
beginning of the encoded field section; see Section 4.5.1. This ensures that references are stable even if
encoded field sections and dynamic table updates are processed out of order.

In afield line representation, arelative index of O refers to the entry with absolute index equal to Base - 1.

Krasic, et al. Expires December 2022 [Page 11]

RFC 9204 QPACK June 2022

Base
I
V
dh===oo dh===oo dh===oo dh===oo dmc==occ +
| n-1 | n-2] n-3 | [d | Absol ute | ndex
dh===oo dh===oo = dmeoooo + - +
| 0 | | n-d-3 | Relative |ndex
dh===oo dh===oo dmc==occ +

count of entries inserted
count of entries dropped
n this exanple, Base = n - 2

n
d
I
Figure 3: Example Dynamic Table Indexing - Relative Index in Representation

3.2.6. Post-Base Indexing

Post-Base indices are used in field line representations for entries with absolute indices greater than or equal
to Base, starting at O for the entry with absolute index equal to Base and increasing in the same direction as the
absolute index.

Post-Base indices allow an encoder to process a field section in asingle pass and include references to entries
added while processing this (or other) field sections.

Base
I
\Y
e - - e - - e - - e - - e - - +
| n-1 | n-2| n-3| ... | d | Absolute |Index
e - - e - - e - - e - - e - - +
| 12 | 0 | Post - Base | ndex
e - - e - - +
n = count of entries inserted
d = count of entries dropped

In this exanple, Base = n - 2

Figure 4: Example Dynamic Table Indexing - Post-Base Index in Representation

Krasic, et al. Expires December 2022 [Page 12]

RFC 9204 QPACK June 2022

4. Wire Format

4.1. Primitives

4.1.1. Prefixed Integers

The prefixed integer from Section 5.1 of [RFC7541] is used heavily throughout this document. The format
from [RFC7541] is used unmodified. Note, however, that QPACK uses some prefix sizes not actually used in
HPACK.

QPACK implementations MUST be able to decode integers up to and including 62 bits long.

4.1.2. StringLiterals

The string literal defined by Section 5.2 of [RFC7541] is aso used throughout. This string format includes
optional Huffman encoding.

HPACK defines string literals to begin on a byte boundary. They begin with a single bit flag, denoted as'H' in
this document (indicating whether the string is Huffman encoded), followed by the string length encoded as a
7-hit prefix integer, and finally the indicated number of bytes of data. When Huffman encoding is enabled, the
Huffman table from Appendix B of [RFC7541] is used without modification and the indicated length isthe size
of the string after encoding.

This document expands the definition of string literals by permitting them to begin other than on a byte
boundary. An "N-bit prefix string literal" begins mid-byte, with the first (8-N) bits allocated to a previous field.
The string uses one bit for the Huffman flag, followed by the length of the encoded string as a (N-1)-hit prefix
integer. The prefix size, N, can have a value between 2 and 8, inclusive. The remainder of the string literal is
unmodified.

A string literal without a prefix length noted is an 8-bit prefix string literal and follows the definitionsin
[RFC7541] without modification.

4.2. Encoder and Decoder Streams
QPACK defines two unidirectional stream types:
* Anencoder stream isaunidirectional stream of type 0x02. It carries an unframed segquence of encoder
instructions from encoder to decoder.
e A decoder stream isaunidirectional stream of type 0x03. It carries an unframed sequence of decoder
instructions from decoder to encoder.

HTTP/3 endpoints contain a QPACK encoder and decoder. Each endpoint MUST initiate, at most, one encoder
stream and, at most, one decoder stream. Receipt of a second instance of either stream type MUST be treated as
aconnection error of type H3_ STREAM_CREATION_ERROR.

The sender MUST NOT close either of these streams, and the receiver MUST NOT request that the sender
close either of these streams. Closure of either unidirectional stream type MUST be treated as a connection
error of type H3_ CLOSED_CRITICAL_STREAM.

An endpoint MAY avoid creating an encoder stream if it will not be used (for example, if its encoder does not
wish to use the dynamic table or if the maximum size of the dynamic table permitted by the peer is zero).

An endpoint MAY avoid creating a decoder stream if its decoder sets the maximum capacity of the dynamic
table to zero.

An endpoint MUST allow its peer to create an encoder stream and a decoder stream even if the connection's
Settings prevent their use.

Krasic, et al. Expires December 2022 [Page 13]

https://www.rfc-editor.org/rfc/rfc7541.html#section-5.1
https://www.rfc-editor.org/rfc/rfc7541.html#section-5.2
https://www.rfc-editor.org/rfc/rfc7541.html#appendix-B

RFC 9204 QPACK June 2022

4.3. Encoder Instructions

An encoder sends encoder instructions on the encoder stream to set the capacity of the dynamic table and add
dynamic table entries. Instructions adding table entries can use existing entries to avoid transmitting redundant
information. The name can be transmitted as a reference to an existing entry in the static or the dynamic table
or asastring literal. For entries that already exist in the dynamic table, the full entry can also be used by
reference, creating a duplicate entry.

4.3.1. Set Dynamic Table Capacity

An encoder informs the decoder of a change to the dynamic table capacity using an instruction that starts with
the'001' 3-bit pattern. Thisis followed by the new dynamic table capacity represented as an integer with a 5-bit
prefix; see Section 4.1.1.

0 1 2 3 4 5 6 7
frocodim oo s oo dhs oo 9k o o 9F o o drs © @ 4o o o 9F

| 0] O] 1| Capacity (5+) [
dfecodimoodmcodimcnoomoco oo a0 oo oo +

Figure 5: Set Dynamic Table Capacity

The new capacity MUST be lower than or equal to the limit described in Section 3.2.3. In HTTP/3, this limit
isthe value of the SETTINGS_QPACK_MAX_TABLE_CAPACITY parameter (Section 5) received from the
decoder. The decoder MUST treat a new dynamic table capacity value that exceeds this limit as a connection
error of type QPACK_ENCODER_STREAM_ERROR.

Reducing the dynamic table capacity can cause entries to be evicted; see Section 3.2.2. ThisMUST NOT cause
the eviction of entries that are not evictable; see Section 2.1.1. Changing the capacity of the dynamic tableis
not acknowledged as this instruction does not insert an entry.

4.3.2. Insert with Name Reference

An encoder adds an entry to the dynamic table where the field name matches the field name of an entry stored
in the static or the dynamic table using an instruction that starts with the '1' 1-bit pattern. The second ('T") bit
indicates whether the reference is to the static or dynamic table. The 6-bit prefix integer (Section 4.1.1) that
followsis used to locate the table entry for the field name. When T=1, the number represents the static table
index; when T=0, the number is the relative index of the entry in the dynamic table.

The field name reference is followed by the field value represented as a string literal; see Section 4.1.2.

0 1 2 3 4 5 6 7
dho = o dbe o o 4bo o o 4Fe o o 4Fe o o 4he o o 4R o o 46 = o 4

| 2| T | Nanme | ndex (6+) |
T +
| H| Val ue Length (7+) |
e +
| Value String (Length bytes) |
T +

Figure 6: Insert Field Line -- Indexed Name

4.3.3. Insert with Literal Name

An encoder adds an entry to the dynamic table where both the field name and the field value are represented as
string literals using an instruction that starts with the '01' 2-bit pattern.

Thisis followed by the name represented as a 6-bit prefix string literal and the value represented as an 8-bit
prefix string literal; see Section 4.1.2.

Krasic, et al. Expires December 2022 [Page 14]

RFC 9204 QPACK June 2022

o 1 2 3 4 5 6 7
drmccdsccdm oo oo dhs oo dhs o = 4k o o dhs o = 9E
| 0| 1| H| Nane Length (5+) |

e +
| Name String (Length bytes) |
Foo e deo e +
| H| Val ue Length (7+) |
Foo e deo e +
| Value String (Length bytes) |
Fom e +

Figure 7: Insert Field Line -- New Name

4.3.4. Duplicate

An encoder duplicates an existing entry in the dynamic table using an instruction that starts with the ‘000" 3-bit
pattern. Thisisfollowed by the relative index of the existing entry represented as an integer with a 5-bit prefix;
see Section 4.1.1.

0 1 2 3 4 5 6 7
L E ST E IS S
| O] O] O | I ndex (5+) |
e +

Figure 8: Duplicate

The existing entry is reinserted into the dynamic table without resending either the name or the value. Thisis
useful to avoid adding areference to an older entry, which might block inserting new entries.

4.4. Decoder Instructions

A decoder sends decoder instructions on the decoder stream to inform the encoder about the processing of field
sections and table updates to ensure consistency of the dynamic table.

4.4.1. Section Acknowledgment

After processing an encoded field section whose declared Required Insert Count is not zero, the decoder emits
a Section Acknowledgment instruction. The instruction starts with the '1' 1-bit pattern, followed by the field
section's associated stream |D encoded as a 7-bit prefix integer; see Section 4.1.1.

Thisinstruction is used as described in Sections 2.1.4 and 2.2.2.

0 1 2 3 4 5 6 7
Fomm e e ot e e e e oo - o - -

| 1] Stream | D (7+) [
focodmcococcocococococcoocooooooa +

Figure 9: Section Acknowledgment

If an encoder receives a Section Acknowledgment instruction referring to a stream on which every encoded
field section with a non-zero Required Insert Count has already been acknowledged, thisMUST be treated as a
connection error of type QPACK_DECODER_STREAM_ERROR.

The Section Acknowledgment instruction might increase the Known Received Count; see Section 2.1.4.

Krasic, et al. Expires December 2022 [Page 15]

RFC 9204 QPACK June 2022

4.4.2. Stream Cancdllation

When a stream is reset or reading is abandoned, the decoder emits a Stream Cancellation instruction. The
instruction starts with the '01' 2-bit pattern, followed by the stream ID of the affected stream encoded as a 6-bit
prefix integer.

Thisinstruction is used as described in Section 2.2.2.

0 1 2 3 4 5 6 7
frocodim oo s oo dhs oo 9k o o 9F o o drs © @ 4o o o 9F

| 0] 1| Stream | D (6+) [
ecodmoodmcooocmoooocooos a0 oo oo +

Figure 10: Stream Cancellation

4.4.3. Insert Count Increment

The Insert Count Increment instruction starts with the '00' 2-bit pattern, followed by the Increment encoded as
a 6-hit prefix integer. Thisinstruction increases the Known Received Count (Section 2.1.4) by the value of the
Increment parameter. The decoder should send an Increment value that increases the Known Received Count to
the total number of dynamic table insertions and duplications processed so far.

0 1 2 3 4 5 6 7
e et e o oo e o — o - -

| O] 0| I ncrement (6+) [
dfzcodimccdscccococscccococoooooos +

Figure 11: Insert Count Increment

An encoder that receives an Increment field equal to zero, or one that increases the Known
Received Count beyond what the encoder has sent, MUST treat this as a connection error of type
QPACK_DECODER_STREAM_ERROR.

4.5. Field Line Representations

An encoded field section consists of a prefix and a possibly empty sequence of representations defined in this
section. Each representation corresponds to asingle field line. These representations reference the static table or
the dynamic table in a particular state, but they do not modify that state.

Encoded field sections are carried in frames on streams defined by the enclosing protocol.

45.1. Encoded Field Section Prefix

Each encoded field section is prefixed with two integers. The Required Insert Count is encoded as an integer
with an 8-bit prefix using the encoding described in Section 4.5.1.1. The Base is encoded as a Sign bit ('S) and
aDeltaBase value with a 7-hit prefix; see Section 4.5.1.2.

0 1 2 3 4 5 6 7
dbocodio oo dio o o din o o 4in o o 4kn o o 4k o o 45 o o 4

[Required Insert Count (8+) |

LT +
| S| Delta Base (7+) |
LT +
[Encoded Fi el d Lines

dm o +

Figure 12: Encoded Field Section

Krasic, et al. Expires December 2022 [Page 16]

RFC 9204 QPACK June 2022

45.1.1. Required Insert Count

Required Insert Count identifies the state of the dynamic table needed to process the encoded field section.
Blocking decoders use the Required Insert Count to determine when it is safe to process the rest of the field
section.

The encoder transforms the Required Insert Count as follows before encoding:

i f Regl nsertCount ==
Encl nsert Count = 0
el se:
Encl nsert Count

(Regl nsertCount nod (2 * MaxEntries)) + 1

Here MaxEnt ri es isthe maximum number of entries that the dynamic table can have. The smallest entry has
empty name and value strings and has the size of 32. Hence, MaxEnt r i es iscalculated as:

MaxEntries = fl oor(MaxTabl eCapacity / 32)

MaxTabl eCapaci ty isthe maximum capacity of the dynamic table as specified by the decoder; see Section
3.2.3.

This encoding limits the length of the prefix on long-lived connections.

The decoder can reconstruct the Required Insert Count using an algorithm such as the following. If the decoder
encounters a value of EncodedInsertCount that could not have been produced by a conformant encoder, it
MUST treat this as a connection error of type QPACK_DECOMPRESSION_FAILED.

Tot al Nurber OF | nser t s isthetotal number of insertsinto the decoder's dynamic table.

Ful | Range = 2 * MaxEntries
i f Encodedl nsert Count ==
Reqgl nsert Count = 0O
el se:
i f Encodedl nsert Count > Ful | Range:
Error
MaxVal ue = Tot al Nunber Of I nserts + MaxEntries

MaxW apped is the | argest possible val ue of
ReqlnsertCount that is 0 nod 2 * MaxEntries
MaxW apped = fl oor(MaxVal ue / Full Range) * Ful | Range
Reql nsert Count = MaxW apped + Encodedl nsert Count - 1

| f Reql nsert Count exceeds MaxVal ue, the Encoder's val ue
nmust have w apped one fewer tine
i f ReglnsertCount > MaxVal ue:
i f Reqgl nsertCount <= Ful | Range:
Error
Reql nsert Count -= Ful | Range

Val ue of 0 nust be encoded as O.
i f ReqglnsertCount == O:
Error

For example, if the dynamic table is 100 bytes, then the Required Insert Count will be encoded modulo 6. If a
decoder has received 10 inserts, then an encoded value of 4 indicates that the Required Insert Count is 9 for the
field section.

Krasic, et al. Expires December 2022 [Page 17]

RFC 9204 QPACK June 2022

45.1.2. Base
The Base is used to resolve references in the dynamic table as described in Section 3.2.5.

To save space, the Base is encoded relative to the Required Insert Count using a one-bit Sign ('S’ in Figure

12) and the Delta Base value. A Sign bit of 0 indicates that the Base is greater than or equal to the value of the
Reguired Insert Count; the decoder adds the value of Delta Base to the Required Insert Count to determine the
value of the Base. A Sign bit of 1 indicates that the Base is less than the Required Insert Count; the decoder
subtracts the value of Delta Base from the Required Insert Count and al so subtracts one to determine the value
of theBase. That is:

if Sign ==
Base = Regl nsert Count + DeltaBase
el se:
Base = ReglnsertCount - DeltaBase - 1

A single-pass encoder determines the Base before encoding afield section. If the encoder inserted entriesin
the dynamic table while encoding the field section and is referencing them, Required Insert Count will be
greater than the Base, so the encoded difference is negative and the Sign bit is set to 1. If the field section was
not encoded using representations that reference the most recent entry in the table and did not insert any new
entries, the Base will be greater than the Required Insert Count, so the encoded difference will be positive and
the Sign bitisset to O.

The value of Base MUST NOT be negative. Though the protocol might operate correctly with a negative Base
using post-Base indexing, it is unnecessary and inefficient. An endpoint MUST treat afield block with a Sign
bit of 1 asinvalid if the value of Required Insert Count is less than or equal to the value of Delta Base.

An encoder that produces table updates before encoding a field section might set Base to the value of Required
Insert Count. In such a case, both the Sign bit and the Delta Base will be set to zero.

A field section that was encoded without references to the dynamic table can use any value for the Base; setting
DeltaBase to zero is one of the most efficient encodings.

For example, with a Required Insert Count of 9, a decoder receives a Sign hit of 1 and a Delta Base of 2. This
sets the Base to 6 and enables post-Base indexing for three entries. In this example, arelative index of 1 refers
to the fifth entry that was added to the table; a post-Base index of 1 refers to the eighth entry.

45.2. Indexed Field Line

An indexed field line representation identifies an entry in the static table or an entry in the dynamic table with
an absolute index less than the value of the Base.

0 1 2 3 4 5 6 7
T

| 1] T| I ndex (6+) [
foccdimcodimcccccocococccoocoooooes +

Figure 13: Indexed Field Line

This representation starts with the '1' 1-bit pattern, followed by the T' bit, indicating whether the referenceis
into the static or dynamic table. The 6-bit prefix integer (Section 4.1.1) that follows is used to locate the table
entry for thefield line. When T=1, the number represents the static table index; when T=0, the number isthe
relative index of the entry in the dynamic table.

45.3. Indexed Field Linewith Post-Base | ndex

An indexed field line with post-Base index representation identifies an entry in the dynamic table with an
absolute index greater than or equal to the value of the Base.

Krasic, et al. Expires December 2022 [Page 18]

RFC 9204 QPACK June 2022

0 1 2 3 4 5 6 7
e

| 0] 0] O] 1| Index (4+) |
fooodmoodoocdmoodboooooooooooooo +

Figure 14: Indexed Field Line with Post-Base Index

This representation starts with the '0001' 4-bit pattern. Thisisfollowed by the post-Base index (Section 3.2.6)
of the matching field line, represented as an integer with a4-bit prefix; see Section 4.1.1.

454, Literal Field Linewith Name Reference

A literal field line with name reference representation encodes a field line where the field name matches the
field name of an entry in the static table or the field name of an entry in the dynamic table with an absolute
index less than the value of the Base.

0 1 2 3 4 5 6 7
o oo dho oo dhs oo dhe o o 4Fn © o 4R o GRs o o 9hs o o 95

| 0] 1] N| T |[Name Index (4+)]

ffeccdieccdeocdimo o coc oo s oo oo +
| H| Val ue Length (7+) |
ffeccdfeccococoocomocococooomoooeoe +
| Value String (Length bytes) |
ffecccecocococoocomocococooomoooooe +

Figure 15: Literal Field Line with Name Reference

This representation starts with the '01' 2-bit pattern. The following bit, 'N', indicates whether an intermediary
is permitted to add this field line to the dynamic table on subsequent hops. When the 'N' it is set, the encoded
field line MUST aways be encoded with aliteral representation. In particular, when a peer sends afield

line that it received represented as aliteral field line with the 'N' bit set, it MUST use aliteral representation
to forward thisfield line. This bit isintended for protecting field values that are not to be put at risk by
compressing them; see Section 7.1 for more details.

The fourth ('T") bit indicates whether the reference is to the static or dynamic table. The 4-bit prefix integer
(Section 4.1.1) that followsis used to locate the table entry for the field name. When T=1, the number
represents the static table index; when T=0, the number is the relative index of the entry in the dynamic table.

Only the field name is taken from the dynamic table entry; the field value is encoded as an 8-bit prefix string
literal; see Section 4.1.2.

455, Literal Field Linewith Post-Base Name Reference

A literal field line with post-Base name reference representation encodes afield line where the field name
matches the field name of a dynamic table entry with an absolute index greater than or equal to the value of the
Base.

0 1 2 3 4 5 6 7
fromodioocdhn oo dhs o o dhs o o dhe o o dhe o = 4k o o 4
| 0] 0] O] O N |Naneldx(3+)]

T e e e +
| H| Val ue Length (7+) |
e +
| Value String (Length bytes) |
T +

Figure 16: Literal Field Line with Post-Base Name Reference

Krasic, et al. Expires December 2022 [Page 19]

RFC 9204 QPACK June 2022

This representation starts with the '0000' 4-bit pattern. The fifth bit isthe 'N' bit as described in Section 4.5.4.
Thisisfollowed by apost-Base index of the dynamic table entry (Section 3.2.6) encoded as an integer with a 3-
bit prefix; see Section 4.1.1.

Only the field name is taken from the dynamic table entry; the field value is encoded as an 8-bit prefix string
literal; see Section 4.1.2.
45.6. Literal Field Linewith Literal Name

Theliteral field line with literal name representation encodes a field name and afield value as string literals.

0 1 2 3 4 5 6 7
e

| O] O] 1] N| H|NaneLen(3+)]|

G ocdbcccdimocdmcodeoo it o s oo oo +
| Nanme String (Length bytes) |
ffeocdfcccccoccocccocococoocccocoooe +
| H| Val ue Length (7+) |
ffeocdfcccccoccocccocococoocccocoooe +
| Value String (Length bytes) |
ffeocccoccccococccocococoocccocoooe +

Figure 17: Literal Field Linewith Literal Name
This representation starts with the '001' 3-bit pattern. The fourth bit isthe 'N' bit as described in Section 4.5.4.

The name follows, represented as a 4-bit prefix string literal, then the value, represented as an 8-bit prefix string
literal; see Section 4.1.2.

Krasic, et al. Expires December 2022 [Page 20]

RFC 9204 QPACK June 2022

5. Configuration

QPACK defines two settings for the HTTP/3 SETTINGS frame:

SETTINGS_QPACK_MAX_TABLE_CAPACITY (0x01): The default value is zero.

See Section 3.2 for usage.

Thisisthe equivalent of the
SETTINGS HEADER TABLE_SIZE
from HTTP/2.

SETTINGS QPACK_BLOCKED_STREAMS (0x07): The default value is zero. See
Section 2.1.2.

Krasic, et al. Expires December 2022 [Page 21]

RFC 9204 QPACK June 2022

6. Error Handling

The following error codes are defined for HTTP/3 to indicate failures of QPACK that prevent the stream or
connection from continuing:
QPACK_DECOMPRESSION_FAILED (0x0200): The decoder failed to interpret an

encoded field section and is not able to
continue decoding that field section.

QPACK_ENCODER_STREAM_ERROR (0x0201): The decoder failed to interpret an

encoder instruction received on the
encoder stream.

QPACK_DECODER_STREAM_ERROR (0x0202): The encoder failed to interpret a

decoder instruction received on the
decoder stream.

Krasic, et al. Expires December 2022 [Page 22]

RFC 9204 QPACK June 2022

7. Security Considerations

This section describes potential areas of security concern with QPACK:

» Use of compression as alength-based oracle for verifying guesses about secrets that are compressed into a
shared compression context.

» Denial of service resulting from exhausting processing or memory capacity at a decoder.

7.1. Probing Dynamic Table State

QPACK reduces the encoded size of field sections by exploiting the redundancy inherent in protocols like
HTTP. The ultimate goal of thisis to reduce the amount of datathat is required to send HT TP requests or
responses.

The compression context used to encode header and trailer fields can be probed by an attacker who can both
define fields to be encoded and transmitted and observe the length of those fields once they are encoded. When
an attacker can do both, they can adaptively modify requestsin order to confirm guesses about the dynamic
table state. If aguessis compressed into a shorter length, the attacker can observe the encoded length and infer
that the guess was correct.

Thisis possible even over the Transport Layer Security Protocol ([TLS]) and the QUIC Transport Protocol
([QUIC-TRANSPORT]), because while TLS and QUIC provide confidentiality protection for content, they
only provide alimited amount of protection for the length of that content.

Note: Padding schemes only provide limited protection against an attacker with these capabilities,
potentially only forcing an increased number of guesses to learn the length associated with agiven
guess. Padding schemes also work directly against compression by increasing the number of bits that are
transmitted.

Attacks like CRIME ([CRIME]) demonstrated the existence of these general attacker capabilities. The specific
attack exploited the fact that DEFLATE ([RFC1951]) removes redundancy based on prefix matching. This
permitted the attacker to confirm guesses a character at atime, reducing an exponential-time attack into a
linear-time attack.

7.1.1. Applicability to QPACK and HTTP

QPACK mitigates, but does not completely prevent, attacks modeled on CRIME ([CRIME]) by forcing a guess
to match an entire field line rather than individual characters. An attacker can only learn whether aguessis
correct or not, so the attacker is reduced to a brute-force guess for the field values associated with agiven field
name.

Therefore, the viability of recovering specific field values depends on the entropy of values. Asaresult,
values with high entropy are unlikely to be recovered successfully. However, values with low entropy remain
vulnerable.

Attacks of this nature are possible any time that two mutually distrustful entities control regquests or responses
that are placed onto asingle HTTP/3 connection. If the shared QPACK compressor permits one entity to add
entries to the dynamic table, and the other to refer to those entries while encoding chosen field lines, then the
attacker (the second entity) can learn the state of the table by observing the length of the encoded outpui.

For example, requests or responses from mutually distrustful entities can occur when an intermediary either:

« sends requests from multiple clients on a single connection toward an origin server, or
» takes responses from multiple origin servers and places them on a shared connection toward a client.

Web browsers also need to assume that requests made on the same connection by different web origins
([RFC6454]) are made by mutually distrustful entities. Other scenarios involving mutually distrustful entities
are also possible.

Krasic, et al. Expires December 2022 [Page 23]

RFC 9204 QPACK June 2022

7.1.2. Mitigation

Users of HTTP that require confidentiality for header or trailer fields can use values with entropy sufficient to
make guessing infeasible. However, thisisimpractical as ageneral solution becauseit forces al usersof HTTP
to take steps to mitigate attacks. It would impose new constraints on how HTTPis used.

Rather than impose constraints on users of HT TP, an implementation of QPACK can instead constrain how
compression is applied in order to limit the potential for dynamic table probing.

An ideal solution segregates access to the dynamic table based on the entity that is constructing the message.
Field values that are added to the table are attributed to an entity, and only the entity that created a particular
value can extract that value.

To improve compression performance of this option, certain entries might be tagged as being public. For
example, aweb browser might make the values of the Accept-Encoding header field availablein all requests.

An encoder without good knowledge of the provenance of field values might instead introduce a penalty for
many field lines with the same field name and different values. This penalty could cause alarge number of
attemptsto guess afield value to result in the field not being compared to the dynamic table entriesin future
messages, effectively preventing further guesses.

This response might be made inversely proportional to the length of the field value. Disabling access to the
dynamic table for a given field name might occur for shorter values more quickly or with higher probability
than for longer values.

This mitigation is most effective between two endpoints. If messages are re-encoded by an intermediary
without knowledge of which entity constructed a given message, the intermediary could inadvertently merge
compression contexts that the original encoder had specifically kept separate.

Note: Simply removing entries corresponding to the field from the dynamic table can be ineffectual if the
attacker has areliable way of causing values to be reinstalled. For example, arequest to load an image in
aweb browser typically includes the Cookie header field (a potentially highly valued target for this sort of
attack), and websites can easily force an image to be loaded, thereby refreshing the entry in the dynamic
table.

7.1.3. Never-Indexed Literals

Implementations can also choose to protect sensitive fields by not compressing them and instead encoding their
value asliterals.

Refusing to insert afield line into the dynamic tableis only effectiveif doing so isavoided on all hops. The
never-indexed literal bit (see Section 4.5.4) can be used to signal to intermediaries that a particular value was
intentionally sent asaliteral.

Anintermediary MUST NOT re-encode a value that uses a literal representation with the 'N' bit set with
another representation that would index it. If QPACK is used for re-encoding, aliteral representation with
the'N' bit set MUST be used. If HPACK is used for re-encoding, the never-indexed literal representation (see
Section 6.2.3 of [RFC7541]) MUST be used.

The choice to mark that a field value should never be indexed depends on several factors. Since QPACK does
not protect against guessing an entire field value, short or low-entropy values are more readily recovered by an
adversary. Therefore, an encoder might choose not to index values with low entropy.

An encoder might also choose not to index values for fields that are considered to be highly valuable or
sensitive to recovery, such as the Cookie or Authorization header fields.

On the contrary, an encoder might prefer indexing values for fields that have little or no value if they were
exposed. For instance, a User-Agent header field does not commonly vary between requests and is sent to any
server. In that case, confirmation that a particular User-Agent value has been used provides little value.

Note that these criteria for deciding to use a never-indexed literal representation will evolve over time as new
attacks are discovered.

Krasic, et al. Expires December 2022 [Page 24]

https://www.rfc-editor.org/rfc/rfc7541.html#section-6.2.3

RFC 9204 QPACK June 2022

7.2. Static Huffman Encoding

Thereis no currently known attack against a static Huffman encoding. A study has shown that using a static
Huffman encoding table created an information |eakage; however, this same study concluded that an attacker
could not take advantage of thisinformation leakage to recover any meaningful amount of information (see
[PETAL]).

7.3. Memory Consumption

An attacker can try to cause an endpoint to exhaust its memory. QPACK is designed to limit both the peak and
stable amounts of memory allocated by an endpoint.

QPACK uses the definition of the maximum size of the dynamic table and the maximum

number of blocking streamsto limit the amount of memory the encoder can cause the decoder to

consume. In HTTP/3, these values are controlled by the decoder through the settings parameters

SETTINGS _QPACK_MAX_TABLE_CAPACITY and SETTINGS QPACK_BLOCKED_STREAMS,
respectively (see Section 3.2.3 and Section 2.1.2). The limit on the size of the dynamic table takes into account
the size of the data stored in the dynamic table, plus asmall allowance for overhead. The limit on the number
of blocked streams is only a proxy for the maximum amount of memory required by the decoder. The actual
maximum amount of memory will depend on how much memory the decoder uses to track each blocked
stream.

A decoder can limit the amount of state memory used for the dynamic table by setting an appropriate value
for the maximum size of the dynamic table. In HTTP/3, thisis realized by setting an appropriate value for
the SETTINGS_QPACK_MAX_TABLE_CAPACITY parameter. An encoder can limit the amount of state
memory it uses by choosing a smaller dynamic table size than the decoder allows and signaling this to the
decoder (see Section 4.3.1).

A decoder can limit the amount of state memory used for blocked streams by setting an appropriate value for
the maximum number of blocked streams. In HTTP/3, thisis realized by setting an appropriate value for the
SETTINGS QPACK_BLOCKED_STREAMS parameter. Streams that risk becoming blocked consume no
additional state memory on the encoder.

An encoder allocates memory to track all dynamic table referencesin unacknowledged field sections. An
implementation can directly limit the amount of state memory by only using as many references to the dynamic
table as it wishes to track; no signaling to the decoder is required. However, limiting references to the dynamic
table will reduce compression effectiveness.

The amount of temporary memory consumed by an encoder or decoder can be limited by processing field lines
sequentially. A decoder implementation does not need to retain a complete list of field lines while decoding a
field section. An encoder implementation does not need to retain a complete list of field lines while encoding
afield sectionif it isusing a single-pass algorithm. Note that it might be necessary for an application to

retain acomplete list of field lines for other reasons; even if QPACK does not force thisto occur, application
constraints might make this necessary.

While the negotiated limit on the dynamic table size accounts for much of the memory that can be consumed

by a QPACK implementation, data that cannot be immediately sent due to flow control is not affected by this
limit. Implementations should limit the size of unsent data, especially on the decoder stream where flexibility to
choose what to send is limited. Possible responses to an excess of unsent data might include limiting the ability
of the peer to open new streams, reading only from the encoder stream, or closing the connection.

7.4. Implementation Limits

An implementation of QPACK needs to ensure that large values for integers, long encoding for integers, or
long string literals do not create security weaknesses.

An implementation has to set alimit for the values it accepts for integers, aswell as for the encoded length; see
Section 4.1.1. In the same way, it hasto set alimit to the length it accepts for string literals; see Section 4.1.2.

Krasic, et al. Expires December 2022 [Page 25]

RFC 9204 QPACK June 2022

These limits SHOULD be large enough to process the largest individual field the HTTP implementation can be
configured to accept.

If an implementation encounters avalue larger than it is able to decode, this MUST be treated as a stream error
of type QPACK_DECOMPRESSION_FAILED if on arequest stream or a connection error of the appropriate
type if on the encoder or decoder stream.

Krasic, et al. Expires December 2022 [Page 26]

RFC 9204 QPACK June 2022

8. IANA Considerations

This document makes multiple registrations in the registries defined by [HTTP/3]. The allocations created by
this document are all assigned permanent status and list a change controller of the IETF and a contact of the
HTTP working group (ietf-http-wg@w3.org).

8.1. Settings Registration

This document specifies two settings. The entries in the following table are registered in the "HTTP/3 Settings'
registry established in [HTTP/3].

Setting Name Code Specification Default
QPACK_MAX_TABLE_CAPACIT®x01 Section 5 0
QPACK_BLOCKED_STREAMS 0x07 Section 5 0

Table 1: Additions to the HTTP/3 Settings Registry
For formatting reasons, the setting names here are abbreviated by removing the 'SETTINGS_' prefix.

8.2. Stream Type Registration

This document specifies two stream types. The entries in the following table are registered in the "HTTP/3
Stream Types' registry established in [HTTP/3].

Stream Type Code Specification Sender
QPACK Encoder 0x02 Section 4.2 Both
Stream

QPACK Decoder 0x03 Section 4.2 Both
Stream

Table 2: Additionsto the HTTP/3 Stream Types Registry

8.3. Error Code Registration

This document specifies three error codes. The entriesin the following table are registered in the "HTTP/3
Error Codes' registry established in [HTTP/3].

Name Code Description Specification

QPACK_DECOMPRESSIIX0PBd L ED Decoding of afield Section 6
section failed

QPACK_ENCODER_STRBX020ERROR Error on the encoder Section 6
stream

QPACK_DECODER_STRBX020FRROR Error on the decoder Section 6
stream

Table 3: Additions to the HTTP/3 Error Codes Registry

Krasic, et al. Expires December 2022 [Page 27]

RFC 9204 QPACK June 2022

9. References

9.1. Normative References

[HTTPR] Fielding, R., Ed., Nottingham, M., Ed., and J. Reschke, Ed., "HTTP Semantics', STD
97, RFC 9110, DOI 10.17487/RFC9110, June 2022, <https://www.rfc-editor.org/info/rf
c9110>.

[HTTP/3] Bishop, M., Ed., "HTTP/3", RFC 9114, DOI 10.17487/RFC9114, June 2022, <https.//w

ww.rfc-editor.org/info/rfc9114>.

[QUIC-TRANSPORT] lyengar, J., Ed. and M. Thomson, Ed., "QUIC: A UDP-Based Multiplexed and Secure
Transport”, RFC 9000, DOI 10.17487/RFC9000, May 2021, <https.//www.rfc-editor.or
g/info/rfc9000>.

[RFC2119] Bradner, S., "Key words for usein RFCs to Indicate Requirement Levels', BCP 14,
RFC 2119, DOI 10.17487/RFC2119, March 1997, <https.//www.rfc-editor.org/info/rfc2
119>,

[RFC2360] Scott, G., "Guide for Internet Standards Writers*, BCP 22, RFC 2360, DOI 10.17487/
RFC2360, June 1998, <https://www.rfc-editor.org/info/rfc2360>.

[RFC7541] Peon, R. and H. Ruellan, "HPACK: Header Compression for HTTP/2", RFC 7541, DOI
10.17487/RFC7541, May 2015, <https://www.rfc-editor.org/info/rfc7541>.

[RFC8174] Leiba, B., "Ambiguity of Uppercase vs Lowercasein RFC 2119 Key Words", BCP 14,
RFC 8174, DOI 10.17487/RFC8174, May 2017, <https.//www.rfc-editor.org/info/rfc81
74>,

9.2. Informative References

[CRIME] Wikipedia, "CRIME", May 2015, <http://en.wikipedia.org/w/index.php?title=CRIME&
ol did=660948120>.

[HTTP/2] Thomson, M., Ed. and C. Benfield, Ed., "HTTP/2", RFC 9113, DOI 10.17487/
RFC9113, June 2022, <https.//www.rfc-editor.org/info/rfc9113>.

[PETAL] Tan, J. and J. Nahata, "PETAL: Preset Encoding Table Information L eakage", April
2013, <http://www.pdl.cmu.edu/PDL -FTP/associated/ CMU-PDL-13-106.pdf>.

[RFC1951] Deutsch, P., "DEFLATE Compressed Data Format Specification version 1.3", RFC
1951, DOI 10.17487/RFC1951, May 1996, <https.//www.rfc-editor.org/info/rfc1951>.

[RFC6454] Barth, A., "The Web Origin Concept", RFC 6454, DOI 10.17487/RFC6454, December
2011, <https://www.rfc-editor.org/info/rfc6454>.

[TLY] Rescorla, E., "The Transport Layer Security (TLS) Protocol Version 1.3", RFC 8446,

DOI 10.17487/RFC8446, August 2018, <https://www.rfc-editor.org/info/rfc8446>.

Krasic, et al. Expires December 2022 [Page 28]

https://www.rfc-editor.org/rfc/rfc9110.html
https://www.rfc-editor.org/info/std97
https://www.rfc-editor.org/info/std97
https://dx.doi.org/10.17487/RFC9110
https://www.rfc-editor.org/rfc/rfc9114.html
https://dx.doi.org/10.17487/RFC9114
https://www.rfc-editor.org/rfc/rfc9000.html
https://www.rfc-editor.org/rfc/rfc9000.html
https://dx.doi.org/10.17487/RFC9000
https://www.rfc-editor.org/rfc/rfc2119.html
https://www.rfc-editor.org/info/bcp14
https://dx.doi.org/10.17487/RFC2119
https://www.rfc-editor.org/rfc/rfc2360.html
https://www.rfc-editor.org/info/bcp22
https://dx.doi.org/10.17487/RFC2360
https://dx.doi.org/10.17487/RFC2360
https://www.rfc-editor.org/rfc/rfc7541.html
https://dx.doi.org/10.17487/RFC7541
https://dx.doi.org/10.17487/RFC7541
https://www.rfc-editor.org/rfc/rfc8174.html
https://www.rfc-editor.org/info/bcp14
https://dx.doi.org/10.17487/RFC8174
http://en.wikipedia.org/w/index.php?title=CRIME&oldid=660948120
https://www.rfc-editor.org/rfc/rfc9113.html
https://dx.doi.org/10.17487/RFC9113
https://dx.doi.org/10.17487/RFC9113
http://www.pdl.cmu.edu/PDL-FTP/associated/CMU-PDL-13-106.pdf
https://www.rfc-editor.org/rfc/rfc1951.html
https://dx.doi.org/10.17487/RFC1951
https://www.rfc-editor.org/rfc/rfc6454.html
https://dx.doi.org/10.17487/RFC6454
https://www.rfc-editor.org/rfc/rfc8446.html
https://dx.doi.org/10.17487/RFC8446

RFC 9204

Appendix A. Static Table

QPACK

June 2022

This table was generated by analyzing actual Internet traffic in 2018 and including the most common header
fields, after filtering out some unsupported and non-standard values. Due to this methodology, some of the
entries may be inconsistent or appear multiple times with similar but not identical values. The order of the
entries is optimized to encode the most common header fields with the smallest number of bytes.

Index

P OoO~NOUOITA,WNEO

oooosgwwwwmmmmmmmmmmn—w—w—w—w—w—w—w—w—\
o O1 WNPOOO~NOOULRARWNPOOO~NOOUI WN PP O

GRESBEEBEY

Krasic, et al.

Name

:authority

:path

age
content-disposition
content-length
cookie

date

etag
if-modified-since
if-none-match
last-modified

link

location

referer
set-cookie
:method

:method

:method

:method

:method

:method

:method

:scheme

:scheme

.status

.status

.status

.Status

.Status

accept

accept
accept-encoding
accept-ranges
access-control-allow-headers
access-control-allow-headers
access-control-allow-origin
cache-control
cache-control
cache-control
cache-control
cache-control
cache-control
content-encoding
content-encoding
content-type
content-type

Expires December 2022

Value

/
0

0

CONNECT

DELETE

GET

HEAD

OPTIONS

POST

PUT

http

https

103

200

304

404

503

/
application/dns-message
gzip, deflate, br
bytes

cache-control
content-type

*

max-age=0
max-age=2592000
max-age=604800
no-cache

no-store

public, max-age=31536000
br

gzip
application/dns-message
application/javascript

[Page 29]

RFC 9204

Index
46
47

49
50
51
52
53

55
56
57

58

59
60
61
62
63

65
66
67
68
69
70
71
72
73

74

75
76
77
78
79
80
8l
82
83

85

86
87
88
89
90
91
92

Krasic, et al.

QPACK

Name
content-type
content-type

content-type
content-type
content-type
content-type
content-type
content-type
content-type

range
strict-transport-security
strict-transport-security

strict-transport-security

vary
vary

X-content-type-options
X-XSs-protection

.status

.status

.status

.status

.status

.status

.status

.status

.status

accept-language
access-control-allow-
credentials
access-control-allow-
credentials
access-control-allow-headers
access-control-allow-methods
access-control-allow-methods
access-control-allow-methods
access-control-expose-headers
access-control -request-headers
access-control -request-method
access-control -request-method
alt-svc

authorization
content-security-policy

early-data
expect-ct
forwarded
if-range
origin
purpose
server

Expires December 2022

June 2022

Value

application/json

appli cation/x-www-form-
urlencoded

image/gif

image/jpeg

image/png

text/css

text/html; charset=utf-8
text/plain
text/plain;charset=utf-8
bytes=0-
max-age=31536000
max-age=31536000;
includesubdomains
max-age=31536000;
includesubdomains; preload
accept-encoding

origin

nosniff

1; mode=block

100

204

206

302

400

403

421

425

500

FALSE

TRUE

*

get
get, post, options
options
content-length
content-type

get

post

clear

script-src 'none’; object-src
'none’; base-uri 'none
1

prefetch

[Page 30]

RFC 9204 QPACK June 2022

Index Name Value

93 timing-allow-origin *

9 upgrade-insecure-requests 1

95 user-agent

96 x-forwarded-for

97 x-frame-options deny

98 x-frame-options sameorigin

Table 4: Static Table

Any line breaks that appear within field names or values are due to formatting.

Krasic, et al. Expires December 2022 [Page 31]

RFC 9204 QPACK June 2022

Appendix B. Encoding and Decoding Examples

The following examples represent a series of exchanges between an encoder and a decoder. The exchanges are
designed to exercise most QPACK instructions and highlight potentially common patterns and their impact on
dynamic table state. The encoder sends three encoded field sections containing one field line each, aswell as
two speculative inserts that are not referenced.

The state of the encoder's dynamic table is shown, along with its current size. Each entry is shown with the
Absolute Index of the entry (Abs), the current number of outstanding encoded field sections with references to
that entry (Ref), along with the name and value. Entries above the ‘acknowledged' line have been acknowledged
by the decoder.

B.1. Literal Fied Linewith Name Reference

The encoder sends an encoded field section containing aliteral representation of afield with a static name

reference.
Dat a | I'nterpretation

| Encoder's Dynamic Table
Stream O
0000 | Required Insert Count = 0, Base = 0
510b 2f69 6e64 6578 | Literal Field Line with Nane Reference
2e68 746d 6¢ | Static Table, |ndex=1

| (:path=/index. htm)

Abs Ref Nane Val ue
A-- acknow edged --~
Si ze=0

B.2. Dynamic Table

The encoder sets the dynamic table capacity, inserts a header with a dynamic name reference, then sends a
potentially blocking, encoded field section referencing this new entry. The decoder acknowledges processing
the encoded field section, which implicitly acknowledges all dynamic table insertions up to the Required Insert
Count.

Krasic, et al. Expires December 2022 [Page 32]

RFC 9204

Stream Encoder

3f bd01

c00f 7777 772e 6578
616d 706c 652e 636f
6d

cl1l0c 2f73 616d 706¢c
652f 7061 7468

Stream 4
0381
10

11

St ream Decoder
84

B.3. Speculative Insert

QPACK

Set Dynani ¢ Tabl e Capacity=220
Insert Wth Nane Reference
Static Table, |ndex=0

(:aut hority=www. exanpl e. com
Insert Wth Nane Reference

Static Table, |ndex=1

(: pat h=/ sanpl e/ pat h)

Abs Ref Nane Val ue

A-- acknow edged --~
0 0 :authority waw exanple.com
1 0 :path [sanmpl e/ pat h

Si ze=106

Required Insert Count = 2, Base = 0

I ndexed Field Line Wth Post-Base | ndex
Absol ute I ndex = Base(0) + Index(0) =0
(: aut hority=ww\. exanpl e. com

I ndexed Field Line Wth Post-Base | ndex
Absol ute Index = Base(0) + Index(1) =1
(: pat h=/ sanpl e/ pat h)

Abs Ref Nane Val ue

A-- acknow edged --~
0 1 :authority ww.exanple.com
1 1 :path / sanpl e/ pat h

Si ze=106

Secti on Acknow edgnent (stream=4)

Abs Ref Nane Val ue
0 0 :authority waw exanple.com
1 0 :path [sanmpl e/ pat h

A-- acknow edged --~

Si ze=106

June 2022

The encoder inserts a header into the dynamic table with aliteral name. The decoder acknowledges receipt of
the entry. The encoder does not send any encoded field sections.

Krasic, et al.

Expires December 2022

[Page 33]

RFC 9204

Stream Encoder

QPACK

4a63 7573 746f 6d2d | Insert Wth Literal Name
6b65 790c 6375 7374 | (custom key=cust om val ue)
6f 6d 2d76 616c 7565 |

St ream Decoder
01

Abs Ref Nane Val ue
0 0 :authority waww. exanple.com
1 0 :path / sanmpl e/ pat h

A-- acknow edged --~
2 0 customkey custom val ue
Si ze=160

| Insert Count Increnment (1)

Abs Ref Nane Val ue
0 0 :authority waw exanple.com
1 0 :path [sanmpl e/ pat h

2 0 customkey custom val ue
A-- acknow edged --~
Si ze=160

B.4. Duplicate Instruction, Stream Cancellation

June 2022

The encoder duplicates an existing entry in the dynamic table, then sends an encoded field section referencing
the dynamic table entries including the duplicated entry. The packet containing the encoder stream dataiis
delayed. Before the packet arrives, the decoder cancels the stream and notifies the encoder that the encoded
field section was not processed.

Krasic, et al.

Expires December 2022

[Page 34]

RFC 9204 QPACK

Stream Encoder

02 | Duplicate (Relative |Index

| Absolute Index =

[Insert Count(3) - |ndex(2)

Abs Ref Nane

1 0 :path

2 0 custom key

A-- acknow edged --~
3 0 :authority waw. exanple.com

Si ze=217
Stream 8
0500 | Required Insert Count
80 | I'ndexed Field Line, Dynanic Table
| Absolute Index = Base(4) -
| (:authority=ww. exanpl e. com
cl | I'ndexed Field Line, Static Tabl e | ndex
| (:path=/)
81 | I'ndexed Field Line, Dynanic Table
|

Abs Ref Nane

2)
-1 =0

Val ue
0 0 :authority waww. exanple.com
/ sanpl e/ pat h
cust om val ue

= 4, Base = 4

Absol ute | ndex = Base(4) -
(cust om key=cust om val ue)

0 0 :authority

1 0 :path

2 1 custom key

A-- acknow edged --~
3 1 :authority ww.exanple.com

I ndex(0)

| ndex(1)

Val ue
www, exanpl e. com
/ sanpl e/ pat h

cust om val ue

Si ze=217

St ream Decoder

48 | Stream Cancel | ati on (Streanmr8)
Abs Ref Nane Val ue

0 0 :authority waw exanple.com

1 0 :path [sanpl e/ pat h

2 0 custom key

A-- acknow edged --~
3 0 :authority waww. exanple.com

Si ze=217

B.5. Dynamic Table Insert, Eviction

cust om val ue

June 2022

The encoder inserts another header into the dynamic table, which evicts the oldest entry. The encoder does not

send any encoded field sections.

Krasic, et al. Expires December 2022

[Page 35]

RFC 9204

Stream Encoder
810d 6375 7374 6f6d
2d76 616¢c 7565 32

Krasic, et al.

QPACK

| Insert Wth Nane Reference

| Dynanmic Table, Relative Index = 1

| Absolute Index =

[Insert Count(4) - Index(1l) - 1 =2
| (custom key=cust om val ue2)

Abs Ref Nane Val ue
1 0 :path [sanmpl e/ pat h
2 0 customkey custom val ue
A-- acknow edged --~
3 0 :authority waw exanple.com
4 0 customkey custom val ue2
Si ze=215

Expires December 2022

June 2022

[Page 36]

RFC 9204 QPACK June 2022

Appendix C. Sample Single-Pass Encoding Algorithm

Pseudocode for single-pass encoding, excluding handling of duplicates, non-blocking mode, available encoder
stream flow control and reference tracking.

Krasic, et al. Expires December 2022 [Page 37]

RFC 9204 QPACK June 2022

Kra

Hel per functions:

H# ====

Encode an integer with the specified prefix and | ength
encodel nt eger (buffer, prefix, value, prefixLength)

Encode a dynamic table insert instruction with optional static
or dynanm c nane index (but not both)
encodel nsert (buffer, staticNanel ndex, dynani cNanel ndex, fi el dLi ne)

Encode a static index reference
encodeSt ati cl ndexRef erence(buffer, staticlndex)

Encode a dynamic index reference relative to Base
encodeDynami cl ndexRef erence(buffer, dynam cl ndex, base)

Encode a literal with an optional static nanme index
encodelLi teral (buffer, staticNanelndex, fieldLine)

Encode a literal with a dynanm c nane index relative to Base
encodeDynami cLi teral (buffer, dynam cNanel ndex, base, fi el dLine)

Encodi ng Al gorithm

base = dynani cTabl e. get | nsert Count ()
requiredl nsert Count = 0
for line in fieldLines:
staticlndex = staticTabl e.findl ndex(line)
if staticlndex is not None:
encodeSt ati cl ndexRef erence(streanBuffer, staticlndex)
conti nue

dynam cl ndex = dynam cTabl e. fi ndl ndex(|i ne)
i f dynam cl ndex i s None:
No matching entry. Either insert+index or encode litera
stati cNanel ndex = staticTabl e. fi ndName(!i ne. nane)
i f staticNanel ndex is None:
dynam cNanel ndex = dynam cTabl e. fi ndNane(Il i ne. nane)

i f shoul dl ndex(line) and dynam cTabl e. canl ndex(!li ne):
encodel nsert (encoder Buf fer, stati cNanel ndex,
dynam cNanel ndex, |ine)
dynam cl ndex = dynam cTabl e. add(1i ne)

i f dynam cl ndex i s None:

Could not index it, literal

i f dynam cNanel ndex i s not None:
Encode literal with dynam c name, possibly above Base
encodeDynami cLi t eral (streanBuffer, dynam cNanel ndex,

base, line)
requi redl nsert Count = max(requiredl nsert Count,
dynam cNanel ndex)

el se:
Encodes a literal with a static nane or literal nanme
encodelLi teral (streanBuffer, staticNanmel ndex, |ine)
el se:

Dynam c index reference

assert (dynam clndex is not None)

sic, et d equi redl nsert Count = meg(iREwecadbdserp Count, dynami cl ndex) [Page 39]
Encode dynam cl ndex, possibly above Base

onecndoalMNvynam |l nAdavblPef araencral ct roaan2if fF ar Avinam ~l ndav hacpn)

RFC 9204 QPACK June 2022

Acknowledgments

The IETF QUIC Working Group received an enormous amount of support from many people.

The compression design team did substantial work exploring the problem space and influencing the initial draft
version of this document. The contributions of design team members Roberto Peon, Martin Thomson, and
Dmitri Tikhonov are gratefully acknowledged.

The following people a so provided substantial contributions to this document:
Bence Beky

Alessandro Ghedini

Ryan Hamilton

Robin Marx

Patrick McManus

(Kazuho Oku)

b ucas Pardue

Biren Roy

tan Swett

This document draws heavily on the text of [RFC7541]. The indirect input of those authorsis aso gratefully
acknowledged.

Buck Krasic's contribution was supported by Google during his employment there.
A portion of Mike Bishop's contribution was supported by Microsoft during his employment there.

Krasic, et al. Expires December 2022 [Page 39]

Authors Addresses

Charles'Buck’ Krasic

EMail: krasic@acm.org

Mike Bishop

Akamai Technologies

EMail: mbishop@evequefou.be

Alan Frindell (editor)
Facebook
EMail: afrind@fb.com

mailto:krasic@acm.org
mailto:mbishop@evequefou.be
mailto:afrind@fb.com

	Abstract
	Status of This Memo
	Copyright Notice
	Table of Contents
	1 Introduction
	1.1 Conventions and Definitions
	1.2 Notational Conventions

	2 Compression Process Overview
	2.1 Encoder
	2.1.1 Limits on Dynamic Table Insertions
	2.1.1.1 Avoiding Prohibited Insertions

	2.1.2 Blocked Streams
	2.1.3 Avoiding Flow-Control Deadlocks
	2.1.4 Known Received Count

	2.2 Decoder
	2.2.1 Blocked Decoding
	2.2.2 State Synchronization
	2.2.2.1 Completed Processing of a Field Section
	2.2.2.2 Abandonment of a Stream
	2.2.2.3 New Table Entries

	2.2.3 Invalid References

	3 Reference Tables
	3.1 Static Table
	3.2 Dynamic Table
	3.2.1 Dynamic Table Size
	3.2.2 Dynamic Table Capacity and Eviction
	3.2.3 Maximum Dynamic Table Capacity
	3.2.4 Absolute Indexing
	3.2.5 Relative Indexing
	3.2.6 Post-Base Indexing

	4 Wire Format
	4.1 Primitives
	4.1.1 Prefixed Integers
	4.1.2 String Literals

	4.2 Encoder and Decoder Streams
	4.3 Encoder Instructions
	4.3.1 Set Dynamic Table Capacity
	4.3.2 Insert with Name Reference
	4.3.3 Insert with Literal Name
	4.3.4 Duplicate

	4.4 Decoder Instructions
	4.4.1 Section Acknowledgment
	4.4.2 Stream Cancellation
	4.4.3 Insert Count Increment

	4.5 Field Line Representations
	4.5.1 Encoded Field Section Prefix
	4.5.1.1 Required Insert Count
	4.5.1.2 Base

	4.5.2 Indexed Field Line
	4.5.3 Indexed Field Line with Post-Base Index
	4.5.4 Literal Field Line with Name Reference
	4.5.5 Literal Field Line with Post-Base Name Reference
	4.5.6 Literal Field Line with Literal Name

	5 Configuration
	6 Error Handling
	7 Security Considerations
	7.1 Probing Dynamic Table State
	7.1.1 Applicability to QPACK and HTTP
	7.1.2 Mitigation
	7.1.3 Never-Indexed Literals

	7.2 Static Huffman Encoding
	7.3 Memory Consumption
	7.4 Implementation Limits

	8 IANA Considerations
	8.1 Settings Registration
	8.2 Stream Type Registration
	8.3 Error Code Registration

	9 References
	9.1 Normative References
	9.2 Informative References

	Appendix A Static Table
	Appendix B Encoding and Decoding Examples
	B.1 Literal Field Line with Name Reference
	B.2 Dynamic Table
	B.3 Speculative Insert
	B.4 Duplicate Instruction, Stream Cancellation
	B.5 Dynamic Table Insert, Eviction

	Appendix C Sample Single-Pass Encoding Algorithm
	Acknowledgments
	Authors' Addresses

