
Network Working Group N. Freed
Request for Comments: 2046 Innosoft
Obsoletes: 1521, 1522, 1590 N. Borenstein
Category: Standards Track First Virtual Holdings

November 1996

Status of this Memo

This document specifies an Internet standards track protocol for the Internet community, and requests
discussion and suggestions for improvements. Please refer to the current edition of the “Internet Official
Protocol Standards” (STD 1) for the standardization state and status of this protocol. Distribution of this memo
is unlimited.

Abstract

STD 11, RFC 822 defines a message representation protocol specifying considerable detail about US-ASCII
message headers, but which leaves the message content, or message body, as flat US-ASCII text. This set of
documents, collectively called the Multipurpose Internet Mail Extensions, or MIME, redefines the format of
messages to allow for

1. textual message bodies in character sets other than US-ASCII,

2. an extensible set of different formats for non-textual message bodies,

3. multi-part message bodies, and

4. textual header information in character sets other than US-ASCII.

These documents are based on earlier work documented in RFC 934, STD 11, and RFC 1049, but extends and
revises them. Because RFC 822 said so little about message bodies, these documents are largely orthogonal to
(rather than a revision of) RFC 822.

The initial document in this set, RFC 2045, specifies the various headers used to describe the structure of
MIME messages. This second document defines the general structure of the MIME media typing system and
defines an initial set of media types. The third document, RFC 2047, describes extensions to RFC 822 to allow
non-US-ASCII text data in Internet mail header fields. The fourth document, RFC 2048, specifies various
IANA registration procedures for MIME-related facilities. The fifth and final document, RFC 2049, describes
MIME conformance criteria as well as providing some illustrative examples of MIME message formats,
acknowledgements, and the bibliography.

These documents are revisions of RFCs 1521 and 1522, which themselves were revisions of RFCs 1341 and
1342. An appendix in RFC 2049 describes differences and changes from previous versions.

https://www.rfc-editor.org/rfc/rfc1521.html
https://www.rfc-editor.org/rfc/rfc1522.html
https://www.rfc-editor.org/rfc/rfc1590.html

RFC 2046 Media Types November 1996

Table of Contents

1 Introduction...3

2 Definition of a Top-Level Media Type...4

3 Overview Of The Initial Top-Level Media Types...5

4 Discrete Media Type Values..6

4.1 Text Media Type... 6
 4.1.1 Representation of Line Breaks... 6
 4.1.2 Charset Parameter...6
 4.1.3 Plain Subtype.. 8
 4.1.4 Unrecognized Subtypes.. 8

4.2 Image Media Type.. 8

4.3 Audio Media Type.. 9

4.4 Video Media Type...9

4.5 Application Media Type..9
 4.5.1 Octet-Stream Subtype...10
 4.5.2 PostScript Subtype..10
 4.5.3 Other Application Subtypes... 12

5 Composite Media Type Values... 13

5.1 Multipart Media Type... 13
 5.1.1 Common Syntax... 13
 5.1.2 Handling Nested Messages and Multiparts..18
 5.1.3 Mixed Subtype..18
 5.1.4 Alternative Subtype.. 18
 5.1.5 Digest Subtype..20
 5.1.6 Parallel Subtype.. 21
 5.1.7 Other Multipart Subtypes... 21

5.2 Message Media Type...21
 5.2.1 RFC822 Subtype...21
 5.2.2 Partial Subtype..21
 5.2.3 External-Body Subtype...24
 5.2.4 Other Message Subtypes.. 29

6 Experimental Media Type Values.. 30

7 Summary..31

8 Security Considerations... 32

9 Authors' Addresses...33

Appendix A Collected Grammar... 34

Freed & Borenstein Standards Track [Page 2]

RFC 2046 Media Types November 1996

1. Introduction

The first document in this set, RFC 2045, defines a number of header fields, including Content-Type. The
Content-Type field is used to specify the nature of the data in the body of a MIME entity, by giving media type
and subtype identifiers, and by providing auxiliary information that may be required for certain media types.
After the type and subtype names, the remainder of the header field is simply a set of parameters, specified in
an attribute/value notation. The ordering of parameters is not significant.

In general, the top-level media type is used to declare the general type of data, while the subtype specifies a
specific format for that type of data. Thus, a media type of "image/xyz" is enough to tell a user agent that the
data is an image, even if the user agent has no knowledge of the specific image format "xyz". Such information
can be used, for example, to decide whether or not to show a user the raw data from an unrecognized subtype
-- such an action might be reasonable for unrecognized subtypes of "text", but not for unrecognized subtypes
of "image" or "audio". For this reason, registered subtypes of "text", "image", "audio", and "video" should not
contain embedded information that is really of a different type. Such compound formats should be represented
using the "multipart" or "application" types.

Parameters are modifiers of the media subtype, and as such do not fundamentally affect the nature of the
content. The set of meaningful parameters depends on the media type and subtype. Most parameters are
associated with a single specific subtype. However, a given top-level media type may define parameters which
are applicable to any subtype of that type. Parameters may be required by their defining media type or subtype
or they may be optional. MIME implementations must also ignore any parameters whose names they do not
recognize.

MIME's Content-Type header field and media type mechanism has been carefully designed to be extensible,
and it is expected that the set of media type/subtype pairs and their associated parameters will grow
significantly over time. Several other MIME facilities, such as transfer encodings and "message/external-body"
access types, are likely to have new values defined over time. In order to ensure that the set of such values is
developed in an orderly, well-specified, and public manner, MIME sets up a registration process which uses the
Internet Assigned Numbers Authority (IANA) as a central registry for MIME's various areas of extensibility.
The registration process for these areas is described in a companion document, RFC 2048.

The initial seven standard top-level media type are defined and described in the remainder of this document.

Freed & Borenstein Standards Track [Page 3]

RFC 2046 Media Types November 1996

2. Definition of a Top-Level Media Type

The definition of a top-level media type consists of:

1. a name and a description of the type, including criteria for whether a particular type would qualify under
that type,

2. the names and definitions of parameters, if any, which are defined for all subtypes of that type (including
whether such parameters are required or optional),

3. how a user agent and/or gateway should handle unknown subtypes of this type,

4. general considerations on gatewaying entities of this top-level type, if any, and

5. any restrictions on content-transfer-encodings for entities of this top-level type.

Freed & Borenstein Standards Track [Page 4]

RFC 2046 Media Types November 1996

3. Overview Of The Initial Top-Level Media Types

The five discrete top-level media types are:

1. text -- textual information. The subtype "plain" in particular indicates plain text containing no formatting
commands or directives of any sort. Plain text is intended to be displayed "as-is". No special software
is required to get the full meaning of the text, aside from support for the indicated character set. Other
subtypes are to be used for enriched text in forms where application software may enhance the appearance
of the text, but such software must not be required in order to get the general idea of the content. Possible
subtypes of "text" thus include any word processor format that can be read without resorting to software
that understands the format. In particular, formats that employ embeddded binary formatting information
are not considered directly readable. A very simple and portable subtype, "richtext", was defined in RFC
1341, with a further revision in RFC 1896 under the name "enriched".

2. image -- image data. "Image" requires a display device (such as a graphical display, a graphics printer, or
a FAX machine) to view the information. An initial subtype is defined for the widely-used image format
JPEG. . subtypes are defined for two widely-used image formats, jpeg and gif.

3. audio -- audio data. "Audio" requires an audio output device (such as a speaker or a telephone) to "display"
the contents. An initial subtype "basic" is defined in this document.

4. video -- video data. "Video" requires the capability to display moving images, typically including
specialized hardware and software. An initial subtype "mpeg" is defined in this document.

5. application -- some other kind of data, typically either uninterpreted binary data or information to be
processed by an application. The subtype "octet- stream" is to be used in the case of uninterpreted binary
data, in which case the simplest recommended action is to offer to write the information into a file for
the user. The "PostScript" subtype is also defined for the transport of PostScript material. Other expected
uses for "application" include spreadsheets, data for mail-based scheduling systems, and languages for
"active" (computational) messaging, and word processing formats that are not directly readable. Note that
security considerations may exist for some types of application data, most notably "application/PostScript"
and any form of active messaging. These issues are discussed later in this document.

The two composite top-level media types are:

1. multipart -- data consisting of multiple entities of independent data types. Four subtypes are initially
defined, including the basic "mixed" subtype specifying a generic mixed set of parts, "alternative" for
representing the same data in multiple formats, "parallel" for parts intended to be viewed simultaneously,
and "digest" for multipart entities in which each part has a default type of "message/rfc822".

2. message -- an encapsulated message. A body of media type "message" is itself all or a portion of some kind
of message object. Such objects may or may not in turn contain other entities. The "rfc822" subtype is used
when the encapsulated content is itself an RFC 822 message. The "partial" subtype is defined for partial
RFC 822 messages, to permit the fragmented transmission of bodies that are thought to be too large to be
passed through transport facilities in one piece. Another subtype, "external-body", is defined for specifying
large bodies by reference to an external data source.

It should be noted that the list of media type values given here may be augmented in time, via the mechanisms
described above, and that the set of subtypes is expected to grow substantially.

Freed & Borenstein Standards Track [Page 5]

RFC 2046 Media Types November 1996

4. Discrete Media Type Values

Five of the seven initial media type values refer to discrete bodies. The content of these types must be handled
by non-MIME mechanisms; they are opaque to MIME processors.

4.1. Text Media Type

The "text" media type is intended for sending material which is principally textual in form. A "charset"
parameter may be used to indicate the character set of the body text for "text" subtypes, notably including
the subtype "text/plain", which is a generic subtype for plain text. Plain text does not provide for or allow
formatting commands, font attribute specifications, processing instructions, interpretation directives, or content
markup. Plain text is seen simply as a linear sequence of characters, possibly interrupted by line breaks or page
breaks. Plain text may allow the stacking of several characters in the same position in the text. Plain text in
scripts like Arabic and Hebrew may also include facilitites that allow the arbitrary mixing of text segments with
opposite writing directions.

Beyond plain text, there are many formats for representing what might be known as "rich text". An interesting
characteristic of many such representations is that they are to some extent readable even without the software
that interprets them. It is useful, then, to distinguish them, at the highest level, from such unreadable data as
images, audio, or text represented in an unreadable form. In the absence of appropriate interpretation software,
it is reasonable to show subtypes of "text" to the user, while it is not reasonable to do so with most nontextual
data. Such formatted textual data should be represented using subtypes of "text".

4.1.1. Representation of Line Breaks

The canonical form of any MIME "text" subtype MUST always represent a line break as a CRLF sequence.
Similarly, any occurrence of CRLF in MIME "text" MUST represent a line break. Use of CR and LF outside of
line break sequences is also forbidden.

This rule applies regardless of format or character set or sets involved.

NOTE: The proper interpretation of line breaks when a body is displayed depends on the media type. In
particular, while it is appropriate to treat a line break as a transition to a new line when displaying a "text/
plain" body, this treatment is actually incorrect for other subtypes of "text" like "text/enriched" [RFC-1896].
Similarly, whether or not line breaks should be added during display operations is also a function of the media
type. It should not be necessary to add any line breaks to display "text/plain" correctly, whereas proper display
of "text/enriched" requires the appropriate addition of line breaks.

NOTE: Some protocols defines a maximum line length. E.g. SMTP [RFC-821] allows a maximum of 998
octets before the next CRLF sequence. To be transported by such protocols, data which includes too long
segments without CRLF sequences must be encoded with a suitable content-transfer-encoding.

4.1.2. Charset Parameter

A critical parameter that may be specified in the Content-Type field for "text/plain" data is the character set.
This is specified with a "charset" parameter, as in:

 Content-type: text/plain; charset=iso-8859-1

Unlike some other parameter values, the values of the charset parameter are NOT case sensitive. The default
character set, which must be assumed in the absence of a charset parameter, is US-ASCII.

The specification for any future subtypes of "text" must specify whether or not they will also utilize a "charset"
parameter, and may possibly restrict its values as well. For other subtypes of "text" than "text/plain", the
semantics of the "charset" parameter should be defined to be identical to those specified here for "text/plain",
i.e., the body consists entirely of characters in the given charset. In particular, definers of future "text" subtypes
should pay close attention to the implications of multioctet character sets for their subtype definitions.

Freed & Borenstein Standards Track [Page 6]

RFC 2046 Media Types November 1996

The charset parameter for subtypes of "text" gives a name of a character set, as "character set" is defined in
RFC 2045. The rules regarding line breaks detailed in the previous section must also be observed -- a character
set whose definition does not conform to these rules cannot be used in a MIME "text" subtype.

An initial list of predefined character set names can be found at the end of this section. Additional character
sets may be registered with IANA.

Other media types than subtypes of "text" might choose to employ the charset parameter as defined here,
but with the CRLF/line break restriction removed. Therefore, all character sets that conform to the general
definition of "character set" in RFC 2045 can be registered for MIME use.

Note that if the specified character set includes 8-bit characters and such characters are used in the body, a
Content-Transfer-Encoding header field and a corresponding encoding on the data are required in order to
transmit the body via some mail transfer protocols, such as SMTP [RFC-821].

The default character set, US-ASCII, has been the subject of some confusion and ambiguity in the past. Not
only were there some ambiguities in the definition, there have been wide variations in practice. In order
to eliminate such ambiguity and variations in the future, it is strongly recommended that new user agents
explicitly specify a character set as a media type parameter in the Content-Type header field. "US-ASCII"
does not indicate an arbitrary 7-bit character set, but specifies that all octets in the body must be interpreted
as characters according to the US-ASCII character set. National and application-oriented versions of ISO
646 [ISO-646] are usually NOT identical to US-ASCII, and in that case their use in Internet mail is explicitly
discouraged. The omission of the ISO 646 character set from this document is deliberate in this regard. The
character set name of "US-ASCII" explicitly refers to the character set defined in ANSI X3.4-1986 [US-
ASCII]. The new international reference version (IRV) of the 1991 edition of ISO 646 is identical to US-
ASCII. The character set name "ASCII" is reserved and must not be used for any purpose.

NOTE: RFC 821 explicitly specifies "ASCII", and references an earlier version of the American Standard.
Insofar as one of the purposes of specifying a media type and character set is to permit the receiver to
unambiguously determine how the sender intended the coded message to be interpreted, assuming anything
other than "strict ASCII" as the default would risk unintentional and incompatible changes to the semantics
of messages now being transmitted. This also implies that messages containing characters coded according to
other versions of ISO 646 than US-ASCII and the 1991 IRV, or using code-switching procedures (e.g., those
of ISO 2022), as well as 8bit or multiple octet character encodings MUST use an appropriate character set
specification to be consistent with MIME.

The complete US-ASCII character set is listed in ANSI X3.4- 1986. Note that the control characters including
DEL (0-31, 127) have no defined meaning in apart from the combination CRLF (US-ASCII values 13 and 10)
indicating a new line. Two of the characters have de facto meanings in wide use: FF (12) often means "start
subsequent text on the beginning of a new page"; and TAB or HT (9) often (though not always) means "move
the cursor to the next available column after the current position where the column number is a multiple of 8
(counting the first column as column 0)." Aside from these conventions, any use of the control characters or
DEL in a body must either occur

1. because a subtype of text other than "plain" specifically assigns some additional meaning, or

2. within the context of a private agreement between the sender and recipient. Such private agreements are
discouraged and should be replaced by the other capabilities of this document.

NOTE: An enormous proliferation of character sets exist beyond US-ASCII. A large number of partially or
totally overlapping character sets is NOT a good thing. A SINGLE character set that can be used universally for
representing all of the world's languages in Internet mail would be preferrable. Unfortunately, existing practice
in several communities seems to point to the continued use of multiple character sets in the near future. A small
number of standard character sets are, therefore, defined for Internet use in this document.

The defined charset values are:

1. US-ASCII -- as defined in ANSI X3.4-1986 [US-ASCII].

2. ISO-8859-X -- where "X" is to be replaced, as necessary, for the parts of ISO-8859 [ISO-8859]. Note that
the ISO 646 character sets have deliberately been omitted in favor of their 8859 replacements, which are the

Freed & Borenstein Standards Track [Page 7]

RFC 2046 Media Types November 1996

designated character sets for Internet mail. As of the publication of this document, the legitimate values for
"X" are the digits 1 through 10.

Characters in the range 128-159 has no assigned meaning in ISO-8859-X. Characters with values below 128 in
ISO-8859-X have the same assigned meaning as they do in US-ASCII.

Part 6 of ISO 8859 (Latin/Arabic alphabet) and part 8 (Latin/Hebrew alphabet) includes both characters
for which the normal writing direction is right to left and characters for which it is left to right, but do not
define a canonical ordering method for representing bi-directional text. The charset values "ISO-8859-6" and
"ISO-8859-8", however, specify that the visual method is used [RFC-1556].

All of these character sets are used as pure 7bit or 8bit sets without any shift or escape functions. The meaning
of shift and escape sequences in these character sets is not defined.

The character sets specified above are the ones that were relatively uncontroversial during the drafting of
MIME. This document does not endorse the use of any particular character set other than US-ASCII, and
recognizes that the future evolution of world character sets remains unclear.

Note that the character set used, if anything other than US- ASCII, must always be explicitly specified in the
Content-Type field.

No character set name other than those defined above may be used in Internet mail without the publication of
a formal specification and its registration with IANA, or by private agreement, in which case the character set
name must begin with "X-".

Implementors are discouraged from defining new character sets unless absolutely necessary.

The "charset" parameter has been defined primarily for the purpose of textual data, and is described in this
section for that reason. However, it is conceivable that non-textual data might also wish to specify a charset
value for some purpose, in which case the same syntax and values should be used.

In general, composition software should always use the "lowest common denominator" character set possible.
For example, if a body contains only US-ASCII characters, it SHOULD be marked as being in the US-ASCII
character set, not ISO-8859-1, which, like all the ISO-8859 family of character sets, is a superset of US-ASCII.
More generally, if a widely-used character set is a subset of another character set, and a body contains only
characters in the widely-used subset, it should be labelled as being in that subset. This will increase the chances
that the recipient will be able to view the resulting entity correctly.

4.1.3. Plain Subtype

The simplest and most important subtype of "text" is "plain". This indicates plain text that does not contain any
formatting commands or directives. Plain text is intended to be displayed "as-is", that is, no interpretation of
embedded formatting commands, font attribute specifications, processing instructions, interpretation directives,
or content markup should be necessary for proper display. The default media type of "text/plain; charset=us-
ascii" for Internet mail describes existing Internet practice. That is, it is the type of body defined by RFC 822.

No other "text" subtype is defined by this document.

4.1.4. Unrecognized Subtypes

Unrecognized subtypes of "text" should be treated as subtype "plain" as long as the MIME implementation
knows how to handle the charset. Unrecognized subtypes which also specify an unrecognized charset should be
treated as "application/octet- stream".

4.2. Image Media Type

A media type of "image" indicates that the body contains an image. The subtype names the specific image
format. These names are not case sensitive. An initial subtype is "jpeg" for the JPEG format using JFIF
encoding [JPEG].

Freed & Borenstein Standards Track [Page 8]

RFC 2046 Media Types November 1996

The list of "image" subtypes given here is neither exclusive nor exhaustive, and is expected to grow as more
types are registered with IANA, as described in RFC 2048.

Unrecognized subtypes of "image" should at a miniumum be treated as "application/octet-stream".
Implementations may optionally elect to pass subtypes of "image" that they do not specifically recognize to a
secure and robust general-purpose image viewing application, if such an application is available.

NOTE: Using of a generic-purpose image viewing application this way inherits the security problems of the
most dangerous type supported by the application.

4.3. Audio Media Type

A media type of "audio" indicates that the body contains audio data. Although there is not yet a consensus
on an "ideal" audio format for use with computers, there is a pressing need for a format capable of providing
interoperable behavior.

The initial subtype of "basic" is specified to meet this requirement by providing an absolutely minimal lowest
common denominator audio format. It is expected that richer formats for higher quality and/or lower bandwidth
audio will be defined by a later document.

The content of the "audio/basic" subtype is single channel audio encoded using 8bit ISDN mu-law [PCM] at a
sample rate of 8000 Hz.

Unrecognized subtypes of "audio" should at a miniumum be treated as "application/octet-stream".
Implementations may optionally elect to pass subtypes of "audio" that they do not specifically recognize to a
robust general-purpose audio playing application, if such an application is available.

4.4. Video Media Type

A media type of "video" indicates that the body contains a time- varying-picture image, possibly with color
and coordinated sound. The term 'video' is used in its most generic sense, rather than with reference to any
particular technology or format, and is not meant to preclude subtypes such as animated drawings encoded
compactly. The subtype "mpeg" refers to video coded according to the MPEG standard [MPEG].

Note that although in general this document strongly discourages the mixing of multiple media in a single
body, it is recognized that many so-called video formats include a representation for synchronized audio, and
this is explicitly permitted for subtypes of "video".

Unrecognized subtypes of "video" should at a minumum be treated as "application/octet-stream".
Implementations may optionally elect to pass subtypes of "video" that they do not specifically recognize to a
robust general-purpose video display application, if such an application is available.

4.5. Application Media Type

The "application" media type is to be used for discrete data which do not fit in any of the other categories, and
particularly for data to be processed by some type of application program. This is information which must
be processed by an application before it is viewable or usable by a user. Expected uses for the "application"
media type include file transfer, spreadsheets, data for mail-based scheduling systems, and languages for
"active" (computational) material. (The latter, in particular, can pose security problems which must be
understood by implementors, and are considered in detail in the discussion of the "application/PostScript"
media type.)

For example, a meeting scheduler might define a standard representation for information about proposed
meeting dates. An intelligent user agent would use this information to conduct a dialog with the user, and might
then send additional material based on that dialog. More generally, there have been several "active" messaging
languages developed in which programs in a suitably specialized language are transported to a remote location
and automatically run in the recipient's environment.

Such applications may be defined as subtypes of the "application" media type. This document defines two
subtypes:

Freed & Borenstein Standards Track [Page 9]

RFC 2046 Media Types November 1996

octet-stream, and PostScript.

The subtype of "application" will often be either the name or include part of the name of the application for
which the data are intended. This does not mean, however, that any application program name may be used
freely as a subtype of "application".

4.5.1. Octet-Stream Subtype

The "octet-stream" subtype is used to indicate that a body contains arbitrary binary data. The set of currently
defined parameters is:

• TYPE -- the general type or category of binary data. This is intended as information for the human recipient
rather than for any automatic processing.

• PADDING -- the number of bits of padding that were appended to the bit-stream comprising the actual
contents to produce the enclosed 8bit byte-oriented data. This is useful for enclosing a bit-stream in a body
when the total number of bits is not a multiple of 8.

Both of these parameters are optional.

An additional parameter, "CONVERSIONS", was defined in RFC 1341 but has since been removed. RFC 1341
also defined the use of a "NAME" parameter which gave a suggested file name to be used if the data were to be
written to a file. This has been deprecated in anticipation of a separate Content-Disposition header field, to be
defined in a subsequent RFC.

The recommended action for an implementation that receives an "application/octet-stream" entity is to simply
offer to put the data in a file, with any Content-Transfer-Encoding undone, or perhaps to use it as input to a
user-specified process.

To reduce the danger of transmitting rogue programs, it is strongly recommended that implementations NOT
implement a path-search mechanism whereby an arbitrary program named in the Content-Type parameter (e.g.,
an "interpreter=" parameter) is found and executed using the message body as input.

4.5.2. PostScript Subtype

A media type of "application/postscript" indicates a PostScript program. Currently two variants of the
PostScript language are allowed; the original level 1 variant is described in [POSTSCRIPT] and the more
recent level 2 variant is described in [POSTSCRIPT2].

PostScript is a registered trademark of Adobe Systems, Inc. Use of the MIME media type "application/
postscript" implies recognition of that trademark and all the rights it entails.

The PostScript language definition provides facilities for internal labelling of the specific language features
a given program uses. This labelling, called the PostScript document structuring conventions, or DSC, is
very general and provides substantially more information than just the language level. The use of document
structuring conventions, while not required, is strongly recommended as an aid to interoperability. Documents
which lack proper structuring conventions cannot be tested to see whether or not they will work in a given
environment. As such, some systems may assume the worst and refuse to process unstructured documents.

The execution of general-purpose PostScript interpreters entails serious security risks, and implementors are
discouraged from simply sending PostScript bodies to "off- the-shelf" interpreters. While it is usually safe to
send PostScript to a printer, where the potential for harm is greatly constrained by typical printer environments,
implementors should consider all of the following before they add interactive display of PostScript bodies to
their MIME readers.

The remainder of this section outlines some, though probably not all, of the possible problems with the
transport of PostScript entities.

1. Dangerous operations in the PostScript language include, but may not be limited to, the PostScript
operators "deletefile", "renamefile", "filenameforall", and "file". "File" is only dangerous when applied to
something other than standard input or output. Implementations may also define additional nonstandard file

Freed & Borenstein Standards Track [Page 10]

RFC 2046 Media Types November 1996

operators; these may also pose a threat to security. "Filenameforall", the wildcard file search operator, may
appear at first glance to be harmless.

Note, however, that this operator has the potential to reveal information about what files the recipient
has access to, and this information may itself be sensitive. Message senders should avoid the use of
potentially dangerous file operators, since these operators are quite likely to be unavailable in secure
PostScript implementations. Message receiving and displaying software should either completely disable
all potentially dangerous file operators or take special care not to delegate any special authority to their
operation. These operators should be viewed as being done by an outside agency when interpreting
PostScript documents. Such disabling and/or checking should be done completely outside of the reach of
the PostScript language itself; care should be taken to insure that no method exists for re-enabling full-
function versions of these operators.

2. The PostScript language provides facilities for exiting the normal interpreter, or server, loop. Changes made
in this "outer" environment are customarily retained across documents, and may in some cases be retained
semipermanently in nonvolatile memory. The operators associated with exiting the interpreter loop have
the potential to interfere with subsequent document processing. As such, their unrestrained use constitutes
a threat of service denial. PostScript operators that exit the interpreter loop include, but may not be limited
to, the exitserver and startjob operators. Message sending software should not generate PostScript that
depends on exiting the interpreter loop to operate, since the ability to exit will probably be unavailable in
secure PostScript implementations. Message receiving and displaying software should completely disable
the ability to make retained changes to the PostScript environment by eliminating or disabling the "startjob"
and "exitserver" operations. If these operations cannot be eliminated or completely disabled the password
associated with them should at least be set to a hard-to-guess value.

3. PostScript provides operators for setting system-wide and device-specific parameters. These parameter
settings may be retained across jobs and may potentially pose a threat to the correct operation of the
interpreter. The PostScript operators that set system and device parameters include, but may not be limited
to, the "setsystemparams" and "setdevparams" operators. Message sending software should not generate
PostScript that depends on the setting of system or device parameters to operate correctly. The ability to set
these parameters will probably be unavailable in secure PostScript implementations. Message receiving and
displaying software should disable the ability to change system and device parameters. If these operators
cannot be completely disabled the password associated with them should at least be set to a hard-to-guess
value.

4. Some PostScript implementations provide nonstandard facilities for the direct loading and execution of
machine code. Such facilities are quite obviously open to substantial abuse. Message sending software
should not make use of such features. Besides being totally hardware-specific, they are also likely to be
unavailable in secure implementations of PostScript. Message receiving and displaying software should not
allow such operators to be used if they exist.

5. PostScript is an extensible language, and many, if not most, implementations of it provide a number of
their own extensions. This document does not deal with such extensions explicitly since they constitute an
unknown factor. Message sending software should not make use of nonstandard extensions; they are likely
to be missing from some implementations. Message receiving and displaying software should make sure
that any nonstandard PostScript operators are secure and don't present any kind of threat.

6. It is possible to write PostScript that consumes huge amounts of various system resources. It is also possible
to write PostScript programs that loop indefinitely. Both types of programs have the potential to cause
damage if sent to unsuspecting recipients. Message-sending software should avoid the construction and
dissemination of such programs, which is antisocial. Message receiving and displaying software should
provide appropriate mechanisms to abort processing after a reasonable amount of time has elapsed. In
addition, PostScript interpreters should be limited to the consumption of only a reasonable amount of any
given system resource.

7. It is possible to include raw binary information inside PostScript in various forms. This is not recommended
for use in Internet mail, both because it is not supported by all PostScript interpreters and because it
significantly complicates the use of a MIME Content-Transfer-Encoding. (Without such binary, PostScript

Freed & Borenstein Standards Track [Page 11]

RFC 2046 Media Types November 1996

may typically be viewed as line-oriented data. The treatment of CRLF sequences becomes extremely
problematic if binary and line-oriented data are mixed in a single Postscript data stream.)

8. Finally, bugs may exist in some PostScript interpreters which could possibly be exploited to gain
unauthorized access to a recipient's system. Apart from noting this possibility, there is no specific action to
take to prevent this, apart from the timely correction of such bugs if any are found.

4.5.3. Other Application Subtypes

It is expected that many other subtypes of "application" will be defined in the future. MIME implementations
must at a minimum treat any unrecognized subtypes as being equivalent to "application/octet-stream".

Freed & Borenstein Standards Track [Page 12]

RFC 2046 Media Types November 1996

5. Composite Media Type Values

The remaining two of the seven initial Content-Type values refer to composite entities. Composite entities are
handled using MIME mechanisms -- a MIME processor typically handles the body directly.

5.1. Multipart Media Type

In the case of multipart entities, in which one or more different sets of data are combined in a single body, a
"multipart" media type field must appear in the entity's header. The body must then contain one or more body
parts, each preceded by a boundary delimiter line, and the last one followed by a closing boundary delimiter
line. After its boundary delimiter line, each body part then consists of a header area, a blank line, and a body
area. Thus a body part is similar to an RFC 822 message in syntax, but different in meaning.

A body part is an entity and hence is NOT to be interpreted as actually being an RFC 822 message. To begin
with, NO header fields are actually required in body parts. A body part that starts with a blank line, therefore,
is allowed and is a body part for which all default values are to be assumed. In such a case, the absence
of a Content-Type header usually indicates that the corresponding body has a content-type of "text/plain;
charset=US-ASCII".

The only header fields that have defined meaning for body parts are those the names of which begin with
"Content-". All other header fields may be ignored in body parts. Although they should generally be retained
if at all possible, they may be discarded by gateways if necessary. Such other fields are permitted to appear in
body parts but must not be depended on. "X-" fields may be created for experimental or private purposes, with
the recognition that the information they contain may be lost at some gateways.

NOTE: The distinction between an RFC 822 message and a body part is subtle, but important. A gateway
between Internet and X.400 mail, for example, must be able to tell the difference between a body part that
contains an image and a body part that contains an encapsulated message, the body of which is a JPEG image.
In order to represent the latter, the body part must have "Content-Type: message/rfc822", and its body (after
the blank line) must be the encapsulated message, with its own "Content-Type: image/jpeg" header field. The
use of similar syntax facilitates the conversion of messages to body parts, and vice versa, but the distinction
between the two must be understood by implementors. (For the special case in which parts actually are
messages, a "digest" subtype is also defined.)

As stated previously, each body part is preceded by a boundary delimiter line that contains the boundary
delimiter. The boundary delimiter MUST NOT appear inside any of the encapsulated parts, on a line by itself
or as the prefix of any line. This implies that it is crucial that the composing agent be able to choose and
specify a unique boundary parameter value that does not contain the boundary parameter value of an enclosing
multipart as a prefix.

All present and future subtypes of the "multipart" type must use an identical syntax. Subtypes may differ in
their semantics, and may impose additional restrictions on syntax, but must conform to the required syntax for
the "multipart" type. This requirement ensures that all conformant user agents will at least be able to recognize
and separate the parts of any multipart entity, even those of an unrecognized subtype.

As stated in the definition of the Content-Transfer-Encoding field [RFC 2045], no encoding other than "7bit",
"8bit", or "binary" is permitted for entities of type "multipart". The "multipart" boundary delimiters and header
fields are always represented as 7bit US-ASCII in any case (though the header fields may encode non-US-
ASCII header text as per RFC 2047) and data within the body parts can be encoded on a part-by-part basis,
with Content-Transfer-Encoding fields for each appropriate body part.

5.1.1. Common Syntax

This section defines a common syntax for subtypes of "multipart". All subtypes of "multipart" must use this
syntax. A simple example of a multipart message also appears in this section. An example of a more complex
multipart message is given in RFC 2049.

Freed & Borenstein Standards Track [Page 13]

RFC 2046 Media Types November 1996

The Content-Type field for multipart entities requires one parameter, "boundary". The boundary delimiter line
is then defined as a line consisting entirely of two hyphen characters ("-", decimal value 45) followed by the
boundary parameter value from the Content-Type header field, optional linear whitespace, and a terminating
CRLF.

NOTE: The hyphens are for rough compatibility with the earlier RFC 934 method of message encapsulation,
and for ease of searching for the boundaries in some implementations. However, it should be noted that
multipart messages are NOT completely compatible with RFC 934 encapsulations; in particular, they do
not obey RFC 934 quoting conventions for embedded lines that begin with hyphens. This mechanism was
chosen over the RFC 934 mechanism because the latter causes lines to grow with each level of quoting. The
combination of this growth with the fact that SMTP implementations sometimes wrap long lines made the RFC
934 mechanism unsuitable for use in the event that deeply-nested multipart structuring is ever desired.

WARNING TO IMPLEMENTORS: The grammar for parameters on the Content-type field is such that it
is often necessary to enclose the boundary parameter values in quotes on the Content-type line. This is not
always necessary, but never hurts. Implementors should be sure to study the grammar carefully in order to
avoid producing invalid Content-type fields. Thus, a typical "multipart" Content-Type header field might look
like this:

 Content-Type: multipart/mixed; boundary=gc0p4Jq0M2Yt08j34c0p

But the following is not valid:

 Content-Type: multipart/mixed; boundary=gc0pJq0M:08jU534c0p

(because of the colon) and must instead be represented as

 Content-Type: multipart/mixed; boundary="gc0pJq0M:08jU534c0p"

This Content-Type value indicates that the content consists of one or more parts, each with a structure that is
syntactically identical to an RFC 822 message, except that the header area is allowed to be completely empty,
and that the parts are each preceded by the line

 --gc0pJq0M:08jU534c0p

The boundary delimiter MUST occur at the beginning of a line, i.e., following a CRLF, and the initial CRLF
is considered to be attached to the boundary delimiter line rather than part of the preceding part. The boundary
may be followed by zero or more characters of linear whitespace. It is then terminated by either another CRLF
and the header fields for the next part, or by two CRLFs, in which case there are no header fields for the next
part. If no Content-Type field is present it is assumed to be "message/rfc822" in a "multipart/digest" and "text/
plain" otherwise.

NOTE: The CRLF preceding the boundary delimiter line is conceptually attached to the boundary so that it is
possible to have a part that does not end with a CRLF (line break). Body parts that must be considered to end
with line breaks, therefore, must have two CRLFs preceding the boundary delimiter line, the first of which is
part of the preceding body part, and the second of which is part of the encapsulation boundary.

Boundary delimiters must not appear within the encapsulated material, and must be no longer than 70
characters, not counting the two leading hyphens.

The boundary delimiter line following the last body part is a distinguished delimiter that indicates that no
further body parts will follow. Such a delimiter line is identical to the previous delimiter lines, with the addition
of two more hyphens after the boundary parameter value.

 --gc0pJq0M:08jU534c0p--

Freed & Borenstein Standards Track [Page 14]

RFC 2046 Media Types November 1996

NOTE TO IMPLEMENTORS: Boundary string comparisons must compare the boundary value with the
beginning of each candidate line. An exact match of the entire candidate line is not required; it is sufficient that
the boundary appear in its entirety following the CRLF.

There appears to be room for additional information prior to the first boundary delimiter line and following
the final boundary delimiter line. These areas should generally be left blank, and implementations must ignore
anything that appears before the first boundary delimiter line or after the last one.

NOTE: These "preamble" and "epilogue" areas are generally not used because of the lack of proper typing of
these parts and the lack of clear semantics for handling these areas at gateways, particularly X.400 gateways.
However, rather than leaving the preamble area blank, many MIME implementations have found this to be a
convenient place to insert an explanatory note for recipients who read the message with pre-MIME software,
since such notes will be ignored by MIME-compliant software.

NOTE: Because boundary delimiters must not appear in the body parts being encapsulated, a user agent must
exercise care to choose a unique boundary parameter value. The boundary parameter value in the example
above could have been the result of an algorithm designed to produce boundary delimiters with a very low
probability of already existing in the data to be encapsulated without having to prescan the data. Alternate
algorithms might result in more "readable" boundary delimiters for a recipient with an old user agent, but
would require more attention to the possibility that the boundary delimiter might appear at the beginning of
some line in the encapsulated part. The simplest boundary delimiter line possible is something like "---", with a
closing boundary delimiter line of "-----".

As a very simple example, the following multipart message has two parts, both of them plain text, one of them
explicitly typed and one of them implicitly typed:

 From: Nathaniel Borenstein %lt;nsb@bellcore.com>
 To: Ned Freed <ned@innosoft.com>
 Date: Sun, 21 Mar 1993 23:56:48 -0800 (PST)
 Subject: Sample message
 MIME-Version: 1.0
 Content-type: multipart/mixed; boundary="simple boundary"

 This is the preamble. It is to be ignored, though it
 is a handy place for composition agents to include an
 explanatory note to non-MIME conformant readers.

 --simple boundary

 This is implicitly typed plain US-ASCII text.
 It does NOT end with a linebreak.
 --simple boundary
 Content-type: text/plain; charset=us-ascii

 This is explicitly typed plain US-ASCII text.
 It DOES end with a linebreak.

 --simple boundary--

 This is the epilogue. It is also to be ignored.

The use of a media type of "multipart" in a body part within another "multipart" entity is explicitly allowed. In
such cases, for obvious reasons, care must be taken to ensure that each nested "multipart" entity uses a different
boundary delimiter. See RFC 2049 for an example of nested "multipart" entities.

The use of the "multipart" media type with only a single body part may be useful in certain contexts, and is
explicitly permitted.

Freed & Borenstein Standards Track [Page 15]

RFC 2046 Media Types November 1996

NOTE: Experience has shown that a "multipart" media type with a single body part is useful for sending non-
text media types. It has the advantage of providing the preamble as a place to include decoding instructions.
In addition, a number of SMTP gateways move or remove the MIME headers, and a clever MIME decoder
can take a good guess at multipart boundaries even in the absence of the Content-Type header and thereby
successfully decode the message.

The only mandatory global parameter for the "multipart" media type is the boundary parameter, which consists
of 1 to 70 characters from a set of characters known to be very robust through mail gateways, and NOT ending
with white space. (If a boundary delimiter line appears to end with white space, the white space must be
presumed to have been added by a gateway, and must be deleted.) It is formally specified by the following
BNF:

 boundary := 0*69<bchars> bcharsnospace

 bchars := bcharsnospace / " "

 bcharsnospace := DIGIT / ALPHA / "'" / "(" / ")" /
 "+" / "_" / "," / "-" / "." /
 "/" / ":" / "=" / "?"

Overall, the body of a "multipart" entity may be specified as follows:

Freed & Borenstein Standards Track [Page 16]

RFC 2046 Media Types November 1996

 dash-boundary := "--" boundary
 ; boundary taken from the value of
 ; boundary parameter of the
 ; Content-Type field.

 multipart-body := [preamble CRLF]
 dash-boundary transport-padding CRLF
 body-part *encapsulation
 close-delimiter transport-padding
 [CRLF epilogue]

 transport-padding := *LWSP-char
 ; Composers MUST NOT generate
 ; non-zero length transport
 ; padding, but receivers MUST
 ; be able to handle padding
 ; added by message transports.

 encapsulation := delimiter transport-padding
 CRLF body-part

 delimiter := CRLF dash-boundary

 close-delimiter := delimiter "--"

 preamble := discard-text

 epilogue := discard-text

 discard-text := *(*text CRLF) *text
 ; May be ignored or discarded.

 body-part := MIME-part-headers [CRLF *OCTET]
 ; Lines in a body-part must not start
 ; with the specified dash-boundary and
 ; the delimiter must not appear anywhere
 ; in the body part. Note that the
 ; semantics of a body-part differ from
 ; the semantics of a message, as
 ; described in the text.

 OCTET := <any 0-255 octet value>

IMPORTANT: The free insertion of linear-white-space and RFC 822 comments between the elements shown
in this BNF is NOT allowed since this BNF does not specify a structured header field.

NOTE: In certain transport enclaves, RFC 822 restrictions such as the one that limits bodies to printable
US-ASCII characters may not be in force. (That is, the transport domains may exist that resemble standard
Internet mail transport as specified in RFC 821 and assumed by RFC 822, but without certain restrictions.) The
relaxation of these restrictions should be construed as locally extending the definition of bodies, for example
to include octets outside of the US-ASCII range, as long as these extensions are supported by the transport
and adequately documented in the Content- Transfer-Encoding header field. However, in no event are headers
(either message headers or body part headers) allowed to contain anything other than US-ASCII characters.

Freed & Borenstein Standards Track [Page 17]

RFC 2046 Media Types November 1996

NOTE: Conspicuously missing from the "multipart" type is a notion of structured, related body parts. It is
recommended that those wishing to provide more structured or integrated multipart messaging facilities should
define subtypes of multipart that are syntactically identical but define relationships between the various parts.
For example, subtypes of multipart could be defined that include a distinguished part which in turn is used to
specify the relationships between the other parts, probably referring to them by their Content-ID field. Old
implementations will not recognize the new subtype if this approach is used, but will treat it as multipart/mixed
and will thus be able to show the user the parts that are recognized.

5.1.2. Handling Nested Messages and Multiparts

The "message/rfc822" subtype defined in a subsequent section of this document has no terminating condition
other than running out of data. Similarly, an improperly truncated "multipart" entity may not have any
terminating boundary marker, and can turn up operationally due to mail system malfunctions.

It is essential that such entities be handled correctly when they are themselves imbedded inside of another
"multipart" structure. MIME implementations are therefore required to recognize outer level boundary
markers at ANY level of inner nesting. It is not sufficient to only check for the next expected marker or other
terminating condition.

5.1.3. Mixed Subtype

The "mixed" subtype of "multipart" is intended for use when the body parts are independent and need to be
bundled in a particular order. Any "multipart" subtypes that an implementation does not recognize must be
treated as being of subtype "mixed".

5.1.4. Alternative Subtype

The "multipart/alternative" type is syntactically identical to "multipart/mixed", but the semantics are different.
In particular, each of the body parts is an "alternative" version of the same information.

Systems should recognize that the content of the various parts are interchangeable. Systems should choose the
"best" type based on the local environment and references, in some cases even through user interaction. As
with "multipart/mixed", the order of body parts is significant. In this case, the alternatives appear in an order of
increasing faithfulness to the original content. In general, the best choice is the LAST part of a type supported
by the recipient system's local environment.

"Multipart/alternative" may be used, for example, to send a message in a fancy text format in such a way that it
can easily be displayed anywhere:

Freed & Borenstein Standards Track [Page 18]

RFC 2046 Media Types November 1996

 From: Nathaniel Borenstein <nsb@bellcore.com>
 To: Ned Freed <ned@innosoft.com>
 Date: Mon, 22 Mar 1993 09:41:09 -0800 (PST)
 Subject: Formatted text mail
 MIME-Version: 1.0
 Content-Type: multipart/alternative; boundary=boundary42

 --boundary42
 Content-Type: text/plain; charset=us-ascii

 ... plain text version of message goes here ...

 --boundary42
 Content-Type: text/enriched

 ... RFC 1896 text/enriched version of same message
 goes here ...

 --boundary42
 Content-Type: application/x-whatever

 ... fanciest version of same message goes here ...

 --boundary42--

In this example, users whose mail systems understood the "application/x-whatever" format would see only the
fancy version, while other users would see only the enriched or plain text version, depending on the capabilities
of their system.

In general, user agents that compose "multipart/alternative" entities must place the body parts in increasing
order of preference, that is, with the preferred format last. For fancy text, the sending user agent should put
the plainest format first and the richest format last. Receiving user agents should pick and display the last
format they are capable of displaying. In the case where one of the alternatives is itself of type "multipart"
and contains unrecognized sub-parts, the user agent may choose either to show that alternative, an earlier
alternative, or both.

NOTE: From an implementor's perspective, it might seem more sensible to reverse this ordering, and have the
plainest alternative last. However, placing the plainest alternative first is the friendliest possible option when
"multipart/alternative" entities are viewed using a non-MIME-conformant viewer. While this approach does
impose some burden on conformant MIME viewers, interoperability with older mail readers was deemed to be
more important in this case.

It may be the case that some user agents, if they can recognize more than one of the formats, will prefer to
offer the user the choice of which format to view. This makes sense, for example, if a message includes both
a nicely- formatted image version and an easily-edited text version. What is most critical, however, is that the
user not automatically be shown multiple versions of the same data. Either the user should be shown the last
recognized version or should be given the choice.

THE SEMANTICS OF CONTENT-ID IN MULTIPART/ALTERNATIVE: Each part of a "multipart/
alternative" entity represents the same data, but the mappings between the two are not necessarily without
information loss. For example, information is lost when translating ODA to PostScript or plain text. It is
recommended that each part should have a different Content-ID value in the case where the information content
of the two parts is not identical. And when the information content is identical -- for example, where several
parts of type "message/external-body" specify alternate ways to access the identical data -- the same Content-
ID field value should be used, to optimize any caching mechanisms that might be present on the recipient's end.
However, the Content-ID values used by the parts should NOT be the same Content-ID value that describes the

Freed & Borenstein Standards Track [Page 19]

RFC 2046 Media Types November 1996

"multipart/alternative" as a whole, if there is any such Content-ID field. That is, one Content-ID value will refer
to the "multipart/alternative" entity, while one or more other Content-ID values will refer to the parts inside it.

5.1.5. Digest Subtype

This document defines a "digest" subtype of the "multipart" Content-Type. This type is syntactically identical
to "multipart/mixed", but the semantics are different. In particular, in a digest, the default Content-Type value
for a body part is changed from "text/plain" to "message/rfc822". This is done to allow a more readable digest
format that is largely compatible (except for the quoting convention) with RFC 934.

Note: Though it is possible to specify a Content-Type value for a body part in a digest which is other than
"message/rfc822", such as a "text/plain" part containing a description of the material in the digest, actually
doing so is undesireble. The "multipart/digest" Content-Type is intended to be used to send collections of
messages. If a "text/plain" part is needed, it should be included as a seperate part of a "multipart/mixed"
message.

A digest in this format might, then, look something like this:

 From: Moderator-Address
 To: Recipient-List
 Date: Mon, 22 Mar 1994 13:34:51 +0000
 Subject: Internet Digest, volume 42
 MIME-Version: 1.0
 Content-Type: multipart/mixed;
 boundary="---- main boundary ----"

 ------ main boundary ----

 ...Introductory text or table of contents...

 ------ main boundary ----
 Content-Type: multipart/digest;
 boundary="---- next message ----"

 ------ next message ----

 From: someone-else
 Date: Fri, 26 Mar 1993 11:13:32 +0200
 Subject: my opinion

 ...body goes here ...

 ------ next message ----

 From: someone-else-again
 Date: Fri, 26 Mar 1993 10:07:13 -0500
 Subject: my different opinion

 ... another body goes here ...

 ------ next message ------

 ------ main boundary ------

Freed & Borenstein Standards Track [Page 20]

RFC 2046 Media Types November 1996

5.1.6. Parallel Subtype

This document defines a "parallel" subtype of the "multipart" Content-Type. This type is syntactically identical
to "multipart/mixed", but the semantics are different. In particular, in a parallel entity, the order of body parts is
not significant.

A common presentation of this type is to display all of the parts simultaneously on hardware and software that
are capable of doing so. However, composing agents should be aware that many mail readers will lack this
capability and will show the parts serially in any event.

5.1.7. Other Multipart Subtypes

Other "multipart" subtypes are expected in the future. MIME implementations must in general treat
unrecognized subtypes of "multipart" as being equivalent to "multipart/mixed".

5.2. Message Media Type

It is frequently desirable, in sending mail, to encapsulate another mail message. A special media type,
"message", is defined to facilitate this. In particular, the "rfc822" subtype of "message" is used to encapsulate
RFC 822 messages.

NOTE: It has been suggested that subtypes of "message" might be defined for forwarded or rejected messages.
However, forwarded and rejected messages can be handled as multipart messages in which the first part
contains any control or descriptive information, and a second part, of type "message/rfc822", is the forwarded
or rejected message. Composing rejection and forwarding messages in this manner will preserve the type
information on the original message and allow it to be correctly presented to the recipient, and hence is strongly
encouraged.

Subtypes of "message" often impose restrictions on what encodings are allowed. These restrictions are
described in conjunction with each specific subtype.

Mail gateways, relays, and other mail handling agents are commonly known to alter the top-level header of an
RFC 822 message. In particular, they frequently add, remove, or reorder header fields. These operations are
explicitly forbidden for the encapsulated headers embedded in the bodies of messages of type "message."

5.2.1. RFC822 Subtype

A media type of "message/rfc822" indicates that the body contains an encapsulated message, with the syntax
of an RFC 822 message. However, unlike top-level RFC 822 messages, the restriction that each "message/
rfc822" body must include a "From", "Date", and at least one destination header is removed and replaced with
the requirement that at least one of "From", "Subject", or "Date" must be present.

It should be noted that, despite the use of the numbers "822", a "message/rfc822" entity isn't restricted to
material in strict conformance to RFC822, nor are the semantics of "message/rfc822" objects restricted to the
semantics defined in RFC822. More specifically, a "message/rfc822" message could well be a News article or a
MIME message.

No encoding other than "7bit", "8bit", or "binary" is permitted for the body of a "message/rfc822" entity. The
message header fields are always US-ASCII in any case, and data within the body can still be encoded, in
which case the Content-Transfer-Encoding header field in the encapsulated message will reflect this. Non-US-
ASCII text in the headers of an encapsulated message can be specified using the mechanisms described in RFC
2047.

5.2.2. Partial Subtype

The "partial" subtype is defined to allow large entities to be delivered as several separate pieces of mail
and automatically reassembled by a receiving user agent. (The concept is similar to IP fragmentation and
reassembly in the basic Internet Protocols.) This mechanism can be used when intermediate transport agents

Freed & Borenstein Standards Track [Page 21]

RFC 2046 Media Types November 1996

limit the size of individual messages that can be sent. The media type "message/partial" thus indicates that the
body contains a fragment of a larger entity.

Because data of type "message" may never be encoded in base64 or quoted-printable, a problem might arise if
"message/partial" entities are constructed in an environment that supports binary or 8bit transport. The problem
is that the binary data would be split into multiple "message/partial" messages, each of them requiring binary
transport. If such messages were encountered at a gateway into a 7bit transport environment, there would be
no way to properly encode them for the 7bit world, aside from waiting for all of the fragments, reassembling
the inner message, and then encoding the reassembled data in base64 or quoted-printable. Since it is possible
that different fragments might go through different gateways, even this is not an acceptable solution. For this
reason, it is specified that entities of type "message/partial" must always have a content-transfer-encoding of
7bit (the default). In particular, even in environments that support binary or 8bit transport, the use of a content-
transfer-encoding of "8bit" or "binary" is explicitly prohibited for MIME entities of type "message/partial".
This in turn implies that the inner message must not use "8bit" or "binary" encoding.

Because some message transfer agents may choose to automatically fragment large messages, and because such
agents may use very different fragmentation thresholds, it is possible that the pieces of a partial message, upon
reassembly, may prove themselves to comprise a partial message. This is explicitly permitted.

Three parameters must be specified in the Content-Type field of type "message/partial": The first, "id", is a
unique identifier, as close to a world-unique identifier as possible, to be used to match the fragments together.
(In general, the identifier is essentially a message-id; if placed in double quotes, it can be ANY message-id,
in accordance with the BNF for "parameter" given in RFC 2045.) The second, "number", an integer, is the
fragment number, which indicates where this fragment fits into the sequence of fragments. The third, "total",
another integer, is the total number of fragments. This third subfield is required on the final fragment, and is
optional (though encouraged) on the earlier fragments. Note also that these parameters may be given in any
order.

Thus, the second piece of a 3-piece message may have either of the following header fields:

 Content-Type: Message/Partial; number=2; total=3;
 id="oc=jpbe0M2Yt4s@thumper.bellcore.com"

 Content-Type: Message/Partial;
 id="oc=jpbe0M2Yt4s@thumper.bellcore.com";
 number=2

But the third piece MUST specify the total number of fragments:

 Content-Type: Message/Partial; number=3; total=3;
 id="oc=jpbe0M2Yt4s@thumper.bellcore.com"

Note that fragment numbering begins with 1, not 0.

When the fragments of an entity broken up in this manner are put together, the result is always a complete
MIME entity, which may have its own Content-Type header field, and thus may contain any other data type.

5.2.2.1. Message Fragmentation and Reassembly

The semantics of a reassembled partial message must be those of the "inner" message, rather than of a
message containing the inner message. This makes it possible, for example, to send a large audio message as
several partial messages, and still have it appear to the recipient as a simple audio message rather than as an
encapsulated message containing an audio message. That is, the encapsulation of the message is considered to
be "transparent".

When generating and reassembling the pieces of a "message/partial" message, the headers of the encapsulated
message must be merged with the headers of the enclosing entities. In this process the following rules must be
observed:

Freed & Borenstein Standards Track [Page 22]

RFC 2046 Media Types November 1996

1. Fragmentation agents must split messages at line boundaries only. This restriction is imposed because
splits at points other than the ends of lines in turn depends on message transports being able to preserve the
semantics of messages that don't end with a CRLF sequence. Many transports are incapable of preserving
such semantics.

2. All of the header fields from the initial enclosing message, except those that start with "Content-" and the
specific header fields "Subject", "Message-ID", "Encrypted", and "MIME-Version", must be copied, in
order, to the new message.

3. The header fields in the enclosed message which start with "Content-", plus the "Subject", "Message-ID",
"Encrypted", and "MIME-Version" fields, must be appended, in order, to the header fields of the new
message. Any header fields in the enclosed message which do not start with "Content-" (except for the
"Subject", "Message-ID", "Encrypted", and "MIME-Version" fields) will be ignored and dropped.

4. All of the header fields from the second and any subsequent enclosing messages are discarded by the
reassembly process.

5.2.2.2. Fragmentation and Reassembly Example

If an audio message is broken into two pieces, the first piece might look something like this:

 X-Weird-Header-1: Foo
 From: Bill@host.com
 To: joe@otherhost.com
 Date: Fri, 26 Mar 1993 12:59:38 -0500 (EST)
 Subject: Audio mail (part 1 of 2)
 Message-ID: <id1@host.com>
 MIME-Version: 1.0
 Content-type: message/partial; id="ABC@host.com";
 number=1; total=2

 X-Weird-Header-1: Bar
 X-Weird-Header-2: Hello
 Message-ID: <anotherid@foo.com>
 Subject: Audio mail
 MIME-Version: 1.0
 Content-type: audio/basic
 Content-transfer-encoding: base64

 ... first half of encoded audio data goes here ...

and the second half might look something like this:

 From: Bill@host.com
 To: joe@otherhost.com
 Date: Fri, 26 Mar 1993 12:59:38 -0500 (EST)
 Subject: Audio mail (part 2 of 2)
 MIME-Version: 1.0
 Message-ID: <id2@host.com>
 Content-type: message/partial;
 id="ABC@host.com"; number=2; total=2

 ... second half of encoded audio data goes here ...

Then, when the fragmented message is reassembled, the resulting message to be displayed to the user should
look something like this:

Freed & Borenstein Standards Track [Page 23]

RFC 2046 Media Types November 1996

 X-Weird-Header-1: Foo
 From: Bill@host.com
 To: joe@otherhost.com
 Date: Fri, 26 Mar 1993 12:59:38 -0500 (EST)
 Subject: Audio mail
 Message-ID: <anotherid@foo.com>
 MIME-Version: 1.0
 Content-type: audio/basic
 Content-transfer-encoding: base64

 ... first half of encoded audio data goes here ...
 ... second half of encoded audio data goes here ...

The inclusion of a "References" field in the headers of the second and subsequent pieces of a fragmented
message that references the Message-Id on the previous piece may be of benefit to mail readers that understand
and track references. However, the generation of such "References" fields is entirely optional.

Finally, it should be noted that the "Encrypted" header field has been made obsolete by Privacy Enhanced
Messaging (PEM) [RFC-1421, RFC-1422, RFC-1423, RFC-1424], but the rules above are nevertheless
believed to describe the correct way to treat it if it is encountered in the context of conversion to and from
"message/partial" fragments.

5.2.3. External-Body Subtype

The external-body subtype indicates that the actual body data are not included, but merely referenced. In this
case, the parameters describe a mechanism for accessing the external data.

When a MIME entity is of type "message/external-body", it consists of a header, two consecutive CRLFs, and
the message header for the encapsulated message. If another pair of consecutive CRLFs appears, this of course
ends the message header for the encapsulated message. However, since the encapsulated message's body is
itself external, it does NOT appear in the area that follows. For example, consider the following message:

 Content-type: message/external-body;
 access-type=local-file;
 name="/u/nsb/Me.jpeg"

 Content-type: image/jpeg
 Content-ID: <id42@guppylake.bellcore.com>
 Content-Transfer-Encoding: binary

 THIS IS NOT REALLY THE BODY!

The area at the end, which might be called the "phantom body", is ignored for most external-body messages.
However, it may be used to contain auxiliary information for some such messages, as indeed it is when the
access-type is "mail- server". The only access-type defined in this document that uses the phantom body is
"mail-server", but other access-types may be defined in the future in other specifications that use this area.

The encapsulated headers in ALL "message/external-body" entities MUST include a Content-ID header field
to give a unique identifier by which to reference the data. This identifier may be used for caching mechanisms,
and for recognizing the receipt of the data when the access-type is "mail-server".

Note that, as specified here, the tokens that describe external-body data, such as file names and mail server
commands, are required to be in the US-ASCII character set.

If this proves problematic in practice, a new mechanism may be required as a future extension to MIME, either
as newly defined access-types for "message/external-body" or by some other mechanism.

Freed & Borenstein Standards Track [Page 24]

RFC 2046 Media Types November 1996

As with "message/partial", MIME entities of type "message/external-body" MUST have a content-transfer-
encoding of 7bit (the default). In particular, even in environments that support binary or 8bit transport, the
use of a content- transfer-encoding of "8bit" or "binary" is explicitly prohibited for entities of type "message/
external-body".

5.2.3.1. General External-Body Parameters

The parameters that may be used with any "message/external- body" are:

1. ACCESS-TYPE -- A word indicating the supported access mechanism by which the file or data may be
obtained. This word is not case sensitive. Values include, but are not limited to, "FTP", "ANON-FTP",
"TFTP", "LOCAL-FILE", and "MAIL-SERVER". Future values, except for experimental values beginning
with "X-", must be registered with IANA, as described in RFC 2048. This parameter is unconditionally
mandatory and MUST be present on EVERY "message/external-body".

2. EXPIRATION -- The date (in the RFC 822 "date-time" syntax, as extended by RFC 1123 to permit 4 digits
in the year field) after which the existence of the external data is not guaranteed. This parameter may be
used with ANY access-type and is ALWAYS optional.

3. SIZE -- The size (in octets) of the data. The intent of this parameter is to help the recipient decide whether
or not to expend the necessary resources to retrieve the external data. Note that this describes the size of the
data in its canonical form, that is, before any Content-Transfer-Encoding has been applied or after the data
have been decoded. This parameter may be used with ANY access-type and is ALWAYS optional.

4. PERMISSION -- A case-insensitive field that indicates whether or not it is expected that clients might also
attempt to overwrite the data. By default, or if permission is "read", the assumption is that they are not, and
that if the data is retrieved once, it is never needed again. If PERMISSION is "read-write", this assumption
is invalid, and any local copy must be considered no more than a cache. "Read" and "Read- write" are the
only defined values of permission. This parameter may be used with ANY access-type and is ALWAYS
optional.

The precise semantics of the access-types defined here are described in the sections that follow.

5.2.3.2. The 'ftp' and 'tftp' Access-Types

An access-type of FTP or TFTP indicates that the message body is accessible as a file using the FTP
[RFC-959] or TFTP [RFC- 783] protocols, respectively. For these access-types, the following additional
parameters are mandatory:

1. NAME -- The name of the file that contains the actual body data.

2. SITE -- A machine from which the file may be obtained, using the given protocol. This must be a fully
qualified domain name, not a nickname.

3. Before any data are retrieved, using FTP, the user will generally need to be asked to provide a login id and
a password for the machine named by the site parameter. For security reasons, such an id and password are
not specified as content-type parameters, but must be obtained from the user.

In addition, the following parameters are optional:

1. DIRECTORY -- A directory from which the data named by NAME should be retrieved.

2. MODE -- A case-insensitive string indicating the mode to be used when retrieving the information. The
valid values for access-type "TFTP" are "NETASCII", "OCTET", and "MAIL", as specified by the TFTP
protocol [RFC-783]. The valid values for access-type "FTP" are "ASCII", "EBCDIC", "IMAGE", and
"LOCALn" where "n" is a decimal integer, typically 8. These correspond to the representation types "A"
"E" "I" and "L n" as specified by the FTP protocol [RFC-959]. Note that "BINARY" and "TENEX" are not
valid values for MODE and that "OCTET" or "IMAGE" or "LOCAL8" should be used instead. IF MODE
is not specified, the default value is "NETASCII" for TFTP and "ASCII" otherwise.

Freed & Borenstein Standards Track [Page 25]

RFC 2046 Media Types November 1996

5.2.3.3. The 'anon-ftp' Access-Type

The "anon-ftp" access-type is identical to the "ftp" access type, except that the user need not be asked
to provide a name and password for the specified site. Instead, the ftp protocol will be used with login
"anonymous" and a password that corresponds to the user's mail address.

5.2.3.4. The 'local-file' Access-Type

An access-type of "local-file" indicates that the actual body is accessible as a file on the local machine. Two
additional parameters are defined for this access type:

1. NAME -- The name of the file that contains the actual body data. This parameter is mandatory for the
"local-file" access-type.

2. SITE -- A domain specifier for a machine or set of machines that are known to have access to the data file.
This optional parameter is used to describe the locality of reference for the data, that is, the site or sites at
which the file is expected to be visible. Asterisks may be used for wildcard matching to a part of a domain
name, such as "*.bellcore.com", to indicate a set of machines on which the data should be directly visible,
while a single asterisk may be used to indicate a file that is expected to be universally available, e.g., via a
global file system.

5.2.3.5. The 'mail-server' Access-Type

The "mail-server" access-type indicates that the actual body is available from a mail server. Two additional
parameters are defined for this access-type:

1. SERVER -- The addr-spec of the mail server from which the actual body data can be obtained. This
parameter is mandatory for the "mail-server" access-type.

2. SUBJECT -- The subject that is to be used in the mail that is sent to obtain the data. Note that keying mail
servers on Subject lines is NOT recommended, but such mail servers are known to exist. This is an optional
parameter.

Because mail servers accept a variety of syntaxes, some of which is multiline, the full command to be sent
to a mail server is not included as a parameter in the content-type header field. Instead, it is provided as the
"phantom body" when the media type is "message/external-body" and the access-type is mail-server.

Note that MIME does not define a mail server syntax. Rather, it allows the inclusion of arbitrary mail server
commands in the phantom body. Implementations must include the phantom body in the body of the message it
sends to the mail server address to retrieve the relevant data.

Unlike other access-types, mail-server access is asynchronous and will happen at an unpredictable time in the
future. For this reason, it is important that there be a mechanism by which the returned data can be matched up
with the original "message/external-body" entity. MIME mail servers must use the same Content-ID field on
the returned message that was used in the original "message/external-body" entities, to facilitate such matching.

5.2.3.6. External-Body Security Issues

"Message/external-body" entities give rise to two important security issues:

1. Accessing data via a "message/external-body" reference effectively results in the message recipient
performing an operation that was specified by the message originator. It is therefore possible for the
message originator to trick a recipient into doing something they would not have done otherwise. For
example, an originator could specify a action that attempts retrieval of material that the recipient is not
authorized to obtain, causing the recipient to unwittingly violate some security policy. For this reason, user
agents capable of resolving external references must always take steps to describe the action they are to take
to the recipient and ask for explicit permisssion prior to performing it.

The 'mail-server' access-type is particularly vulnerable, in that it causes the recipient to send a new message
whose contents are specified by the original message's originator. Given the potential for abuse, any
such request messages that are constructed should contain a clear indication that they were generated

Freed & Borenstein Standards Track [Page 26]

RFC 2046 Media Types November 1996

automatically (e.g. in a Comments: header field) in an attempt to resolve a MIME "message/external-body"
reference.

2. MIME will sometimes be used in environments that provide some guarantee of message integrity and
authenticity. If present, such guarantees may apply only to the actual direct content of messages -- they may
or may not apply to data accessed through MIME's "message/external-body" mechanism. In particular, it
may be possible to subvert certain access mechanisms even when the messaging system itself is secure.

It should be noted that this problem exists either with or without the availabilty of MIME mechanisms. A
casual reference to an FTP site containing a document in the text of a secure message brings up similar
issues -- the only difference is that MIME provides for automatic retrieval of such material, and users may
place unwarranted trust is such automatic retrieval mechanisms.

5.2.3.7. Examples and Further Explanations

When the external-body mechanism is used in conjunction with the "multipart/alternative" media type it
extends the functionality of "multipart/alternative" to include the case where the same entity is provided in the
same format but via different accces mechanisms. When this is done the originator of the message must order
the parts first in terms of preferred formats and then by preferred access mechanisms. The recipient's viewer
should then evaluate the list both in terms of format and access mechanisms.

With the emerging possibility of very wide-area file systems, it becomes very hard to know in advance the set
of machines where a file will and will not be accessible directly from the file system. Therefore it may make
sense to provide both a file name, to be tried directly, and the name of one or more sites from which the file is
known to be accessible. An implementation can try to retrieve remote files using FTP or any other protocol,
using anonymous file retrieval or prompting the user for the necessary name and password. If an external body
is accessible via multiple mechanisms, the sender may include multiple entities of type "message/external-
body" within the body parts of an enclosing "multipart/alternative" entity.

However, the external-body mechanism is not intended to be limited to file retrieval, as shown by the mail-
server access-type. Beyond this, one can imagine, for example, using a video server for external references to
video clips.

The embedded message header fields which appear in the body of the "message/external-body" data must be
used to declare the media type of the external body if it is anything other than plain US-ASCII text, since the
external body does not have a header section to declare its type. Similarly, any Content-transfer-encoding other
than "7bit" must also be declared here. Thus a complete "message/external-body" message, referring to an
object in PostScript format, might look like this:

Freed & Borenstein Standards Track [Page 27]

RFC 2046 Media Types November 1996

 From: Whomever
 To: Someone
 Date: Whenever
 Subject: whatever
 MIME-Version: 1.0
 Message-ID: <id1@host.com>
 Content-Type: multipart/alternative; boundary=42
 Content-ID: <id001@guppylake.bellcore.com>

 --42
 Content-Type: message/external-body; name="BodyFormats.ps";
 site="thumper.bellcore.com"; mode="image";
 access-type=ANON-FTP; directory="pub";
 expiration="Fri, 14 Jun 1991 19:13:14 -0400 (EDT)"

 Content-type: application/postscript
 Content-ID: <id42@guppylake.bellcore.com>

 --42
 Content-Type: message/external-body; access-type=local-file;
 name="/u/nsb/writing/rfcs/RFC-MIME.ps";
 site="thumper.bellcore.com";
 expiration="Fri, 14 Jun 1991 19:13:14 -0400 (EDT)"

 Content-type: application/postscript
 Content-ID: <id42@guppylake.bellcore.com>

 --42
 Content-Type: message/external-body;
 access-type=mail-server
 server="listserv@bogus.bitnet";
 expiration="Fri, 14 Jun 1991 19:13:14 -0400 (EDT)"

 Content-type: application/postscript
 Content-ID: <id42@guppylake.bellcore.com>

 get RFC-MIME.DOC

 --42--

Note that in the above examples, the default Content-transfer-encoding of "7bit" is assumed for the external
postscript data.

Like the "message/partial" type, the "message/external-body" media type is intended to be transparent, that is,
to convey the data type in the external body rather than to convey a message with a body of that type. Thus the
headers on the outer and inner parts must be merged using the same rules as for "message/partial". In particular,
this means that the Content-type and Subject fields are overridden, but the From field is preserved.

Note that since the external bodies are not transported along with the external body reference, they need not
conform to transport limitations that apply to the reference itself. In particular, Internet mail transports may
impose 7bit and line length limits, but these do not automatically apply to binary external body references.
Thus a Content-Transfer-Encoding is not generally necessary, though it is permitted.

Freed & Borenstein Standards Track [Page 28]

RFC 2046 Media Types November 1996

Note that the body of a message of type "message/external-body" is governed by the basic syntax for an RFC
822 message. In particular, anything before the first consecutive pair of CRLFs is header information, while
anything after it is body information, which is ignored for most access-types.

5.2.4. Other Message Subtypes

MIME implementations must in general treat unrecognized subtypes of "message" as being equivalent to
"application/octet-stream".

Future subtypes of "message" intended for use with email should be restricted to "7bit" encoding. A type other
than "message" should be used if restriction to "7bit" is not possible.

Freed & Borenstein Standards Track [Page 29]

RFC 2046 Media Types November 1996

6. Experimental Media Type Values

A media type value beginning with the characters "X-" is a private value, to be used by consenting systems by
mutual agreement. Any format without a rigorous and public definition must be named with an "X-" prefix, and
publicly specified values shall never begin with "X-". (Older versions of the widely used Andrew system use
the "X-BE2" name, so new systems should probably choose a different name.)

In general, the use of "X-" top-level types is strongly discouraged. Implementors should invent subtypes of the
existing types whenever possible. In many cases, a subtype of "application" will be more appropriate than a
new top-level type.

Freed & Borenstein Standards Track [Page 30]

RFC 2046 Media Types November 1996

7. Summary

The five discrete media types provide provide a standardized mechanism for tagging entities as "audio",
"image", or several other kinds of data. The composite "multipart" and "message" media types allow mixing
and hierarchical structuring of entities of different types in a single message. A distinguished parameter syntax
allows further specification of data format details, particularly the specification of alternate character sets.
Additional optional header fields provide mechanisms for certain extensions deemed desirable by many
implementors. Finally, a number of useful media types are defined for general use by consenting user agents,
notably "message/partial" and "message/external-body".

Freed & Borenstein Standards Track [Page 31]

RFC 2046 Media Types November 1996

8. Security Considerations

Security issues are discussed in the context of the "application/postscript" type, the "message/external-body"
type, and in RFC 2048. Implementors should pay special attention to the security implications of any media
types that can cause the remote execution of any actions in the recipient's environment. In such cases, the
discussion of the "application/postscript" type may serve as a model for considering other media types with
remote execution capabilities.

Freed & Borenstein Standards Track [Page 32]

RFC 2046 Media Types November 1996

9. Authors' Addresses

For more information, the authors of this document are best contacted via Internet mail:

Ned Freed
Innosoft International, Inc.
1050 Lakes Drive
West Covina
CA 91790
USA
Phone: +1 626 919 3600
Fax: +1 626 919 3614
EMail: ned.freed@innosoft.com

Nathaniel S. Borenstein
First Virtual Holdings
25 Washington Avenue
Morristown, NJ 07960
US
Phone: +1 201 540 8967
Fax: +1 201 993 3032
EMail: nsb@nsb.fv.com

MIME is a result of the work of the Internet Engineering Task Force Working Group on RFC 822 Extensions.
The chairman of that group, Greg Vaudreuil, may be reached at:

Gregory M. Vaudreuil
Octel Network Services
17080 Dallas Parkway
Dallas, TX 75248-1905
USA
EMail: Greg.Vaudreuil@Octel.Com

Freed & Borenstein Standards Track [Page 33]

tel:+16269193600
fax:+16269193614
mailto:ned.freed@innosoft.com
tel:+12015408967
fax:+12019933032
mailto:nsb@nsb.fv.com

RFC 2046 Media Types November 1996

Appendix A. Collected Grammar

This appendix contains the complete BNF grammar for all the syntax specified by this document.

By itself, however, this grammar is incomplete. It refers by name to several syntax rules that are defined by
RFC 822. Rather than reproduce those definitions here, and risk unintentional differences between the two, this
document simply refers the reader to RFC 822 for the remaining definitions. Wherever a term is undefined, it
refers to the RFC 822 definition.

Freed & Borenstein Standards Track [Page 34]

RFC 2046 Media Types November 1996

 boundary := 0*69<bchars> bcharsnospace

 bchars := bcharsnospace / " "

 bcharsnospace := DIGIT / ALPHA / "'" / "(" / ")" /
 "+" / "_" / "," / "-" / "." /
 "/" / ":" / "=" / "?"

 body-part := <"message" as defined in RFC 822, with all
 header fields optional, not starting with the
 specified dash-boundary, and with the
 delimiter not occurring anywhere in the
 body part. Note that the semantics of a
 part differ from the semantics of a message,
 as described in the text.>

 close-delimiter := delimiter "--"

 dash-boundary := "--" boundary
 ; boundary taken from the value of
 ; boundary parameter of the
 ; Content-Type field.

 delimiter := CRLF dash-boundary

 discard-text := *(*text CRLF)
 ; May be ignored or discarded.

 encapsulation := delimiter transport-padding
 CRLF body-part

 epilogue := discard-text

 multipart-body := [preamble CRLF]
 dash-boundary transport-padding CRLF
 body-part *encapsulation
 close-delimiter transport-padding
 [CRLF epilogue]

 preamble := discard-text

 transport-padding := *LWSP-char
 ; Composers MUST NOT generate
 ; non-zero length transport
 ; padding, but receivers MUST
 ; be able to handle padding
 ; added by message transports.

Freed & Borenstein Standards Track [Page 35]

	Status of this Memo
	Abstract
	Table of Contents
	1 Introduction
	2 Definition of a Top-Level Media Type
	3 Overview Of The Initial Top-Level Media Types
	4 Discrete Media Type Values
	4.1 Text Media Type
	4.1.1 Representation of Line Breaks
	4.1.2 Charset Parameter
	4.1.3 Plain Subtype
	4.1.4 Unrecognized Subtypes

	4.2 Image Media Type
	4.3 Audio Media Type
	4.4 Video Media Type
	4.5 Application Media Type
	4.5.1 Octet-Stream Subtype
	4.5.2 PostScript Subtype
	4.5.3 Other Application Subtypes

	5 Composite Media Type Values
	5.1 Multipart Media Type
	5.1.1 Common Syntax
	5.1.2 Handling Nested Messages and Multiparts
	5.1.3 Mixed Subtype
	5.1.4 Alternative Subtype
	5.1.5 Digest Subtype
	5.1.6 Parallel Subtype
	5.1.7 Other Multipart Subtypes

	5.2 Message Media Type
	5.2.1 RFC822 Subtype
	5.2.2 Partial Subtype
	5.2.2.1 Message Fragmentation and Reassembly
	5.2.2.2 Fragmentation and Reassembly Example

	5.2.3 External-Body Subtype
	5.2.3.1 General External-Body Parameters
	5.2.3.2 The 'ftp' and 'tftp' Access-Types
	5.2.3.3 The 'anon-ftp' Access-Type
	5.2.3.4 The 'local-file' Access-Type
	5.2.3.5 The 'mail-server' Access-Type
	5.2.3.6 External-Body Security Issues
	5.2.3.7 Examples and Further Explanations

	5.2.4 Other Message Subtypes

	6 Experimental Media Type Values
	7 Summary
	8 Security Considerations
	9 Authors' Addresses
	Appendix A Collected Grammar

