
knitr: A General-Purpose Tool for Dynamic Report
Generation in R

Yihui Xie

August 11, 2016

The original paradigm of literate programming was brought forward mainly for software development,
or specifically, to mix source code (for computer) and documentation (for human) together. Early systems
include WEB and Noweb; Sweave (Leisch, 2002) was derived from the latter, but it is less focused on
documenting software, instead it is mainly used for reproducible data analysis and generating statistical
reports. The knitr package (Xie, 2016b) is following the steps of Sweave. For this manual, I assume
readers have some background knowledge of Sweave to understand the technical details; for a reference
of available options, hooks and demos, see the package homepage http://yihui.name/knitr/.

1 Hello World

A natural question is why to reinvent the wheel. The short answer is that extending Sweave by hacking
SweaveDrivers.R in the utils package is a difficult job to me. Many features in knitr come naturally as users
would have expected. Figure 1 is a simple demo of some features of knitr.

I would have chosen to hide the R code if this were a real report, but here I show the code just for
the sake of demonstration. If we type qplot() in R, we get a plot, and the same thing happens in knitr.

fit <- lm(dist ~ speed, data = cars) # linear regression
par(mar = c(4, 4, 1, 0.1), mgp = c(2, 1, 0))
with(cars, plot(speed, dist, panel.last = abline(fit)))
text(10, 100, "$Y = \\beta_0 + \\beta_1x + \\epsilon$")
library(ggplot2)
qplot(speed, dist, data = cars) + geom_smooth()

5 10 15 20 25

0
20

40
60

80
12

0

speed

di
st

Y = β0 + β1x + ε

0

40

80

120

5 10 15 20 25
speed

di
st

Figure 1: A simple demo of possible output in knitr: (1) multiple plots per chunk; (2) no need to print()
objects in ggplot2; (3) device size is 4 × 2.8 (inches) but output size is adjusted to .45\textwidth in chunk
options; (4) base graphics and ggplot2 can sit side by side; (5) use the tikz() device in tikzDevice by setting
chunk option dev=’tikz’ (hence can write native LATEX expressions in R plots); (6) code highlighting.

1

http://www.literateprogramming.com/web.pdf
http://www.cs.tufts.edu/~nr/noweb/
http://yihui.name/knitr/

If we draw two plots in the code, knitr will show two plots and we do not need to tell it how many
plots are there in the code in advance. If we set out.width=’.49\\textwidth’ in chunk options, we get
it in the final output document. If we say fig.align=’center’, the plots are centered. That’s it. Many
enhancements and new features will be introduced later. If you come from the Sweave land, you can take
a look at the page of transition first: http://yihui.name/knitr/demo/sweave/.

2 Design

The flow of processing an input file is similar to Sweave, and two major differences are that knitr provides
more flexibility to the users to customize the processing, and has many built-in options such as the support
to a wide range of graphics devices and cache. Below is a brief description of the process:

1. knitr takes an input file and automatically determines an appropriate set of patterns to use if they
are not provided in advance (e.g. file.Rnw will use knit_patterns$get(’rnw’));

2. a set of output hooks will also be set up automatically according to the filename extension (e.g. use
LATEX environments or HTML elements to wrap up R results);

3. the input file is read in and split into pieces consisting of R code chunks and normal texts; the former
will be executed one after the other, and the latter may contain global chunk options or inline R code;

4. for each chunk, the code is evaluated using the evaluate package (Wickham, 2016), and the results
may be filtered according to chunk options (e.g. echo=FALSE will remove the R source code)

(a) if cache=TRUE for this chunk, knitr will first check if there are previously cached results under
the cache directory before really evaluating the chunk; if cached results exist and this code chunk
has not been changed since last run (use MD5 sum to verify), the cached results will be (lazy-)
loaded, otherwise new cache will be built; if a cached chunk depends on other chunks (see
the dependson option) and any one of these chunks has changed, this chunk must be forcibly
updated (old cache will be purged)

(b) there are six types of possible output from evaluate, and their classes are character (normal
text output), source (source code), warning, message, error and recordedplot; an internal
S3 generic function wrap() is used to deal with different types of output, using output hooks
defined in the object knit_hooks

(c) note plots are recorded as R objects before they are really saved to files, so graphics devices will
not be opened unless plots have really been produced in a chunk

(d) a code chunk is evaluated in a separate empty environment with the global environment as its
parent, and all the objects in this environment after the evaluation will be saved if cache=TRUE

(e) chunk hooks can be run before and/or after a chunk

5. for normal texts, knitr will find inline R code (e.g. in \Sexpr{}) and evaluate it; the output is
wrapped by the inline hook;

The hooks play important roles in knitr: this package makes almost everything accessible to the users.
Consider the following extremely simple example which may demonstrate this freedom:

1 + 1

[1] 2

There are two parts in the final output: the source code 1 + 1 and the output [1] 2; the comment
characters ## are from the default chunk option comment. Users may define a hook function for the source
code like this to use the lstlisting environment:

2

http://yihui.name/knitr/demo/sweave/
http://yihui.name/knitr/patterns
http://yihui.name/knitr/hooks
http://yihui.name/knitr/options

knit_hooks$set(source = function(x, options) {
paste("\\begin{lstlisting}\n", x, "\\end{lstlisting}\n", sep = "")

})

Similarly we can put other types of output into other environments. There is no need to hack at
Sweave.sty for knitr and you can put the output in any environments. What is more, the output hooks
make knitr ready for other types of output, and a typical one is HTML (there are built-in hooks). The
website has provided many examples demonstrating the flexibility of the output.

3 Features

The knitr package borrowed features such as tikz graphics and cache from pgfSweave and cacheSweave
respectively, but the implementations are different. New features like code reference from an external
R script as well as output customization are also introduced. The feature of hook functions in Sweave
is re-implemented and hooks have new usage now. There are several other small features which are
motivated from my everyday use of Sweave. For example, a progress bar is provided when knitting a
file so we roughly know how long we still need to wait; output from inline R code (e.g. \Sexpr{x[1]})
is automatically formatted in TEX math notation (like 1.2346 × 108) if the result is numeric. You may
check out a number of specific manuals dedicated to specific features such as graphics in the website:
http://yihui.name/knitr/demos.

3.1 Code Decoration

The highr package (Qiu and Xie, 2016) is used to highlight R code, and the formatR package (Xie, 2016a) is
used to reformat R code (like keep.source=FALSE in Sweave but will also try to retain comments). For LATEX
output, the framed package is used to decorate code chunks with a light gray background. If this LATEX
package is not found in the system, a version will be copied directly from knitr. The prompt characters
are removed by default because they mangle the R source code in the output and make it difficult to copy
R code. The R output is masked in comments by default based on the same rationale. It is easy to revert to
the output with prompts (set option prompt=TRUE), and you will quickly realize the inconvenience to the
readers if they want to copy and run the code in the output document:

> x <- rnorm(5)
> x
[1] 0.2649 -0.4324 -2.5270 -0.3021 1.4652
> var(x)
[1] 2.103

The example below shows the effect of tidy=TRUE/FALSE:

option tidy=FALSE
for(k in 1:10){j=cos(sin(k)*k^2)+3;print(j-5)}

option tidy=TRUE
for (k in 1:10) {

j <- cos(sin(k) * k^2) + 3
print(j - 5)

}

Note = is replaced by <- because options(’formatR.arrow’) was set to be TRUE in this document; see
the documentation of tidy.source() in formatR for details.

3

http://yihui.name/knitr/demos

Many highlighting themes can be used in knitr, which are borrowed from the highlight package by
Andre Simon1; it is also possible to use themes from http://www.eclipsecolorthemes.org/ by providing
a theme id to knitr2. See ?knit_theme for details.

3.2 Graphics

Graphics is an important part of reports, and several enhancements have been made in knitr. For example,
grid graphics may not need to be explicitly printed as long as the same code can produce plots in R (in
some cases, however, they have to be printed, e.g. in a loop, because you have to do so in an R terminal).

Graphical Devices

Over a long time, a frequently requested feature for Sweave was the support for other graphics devices,
which has been implemented since R 2.13.0. Instead of using logical options like png or jpeg (this list can
go on and on), knitr uses a single option dev (like grdevice in Sweave) which has support for more than
20 devices. For instance, dev=’png’ will use the png() device, and dev=’CairoJPEG’ uses the CairoJPEG()
device in the Cairo package (it has to be installed first, of course). If none of these devices is satisfactory,
you can provide the name of a customized device function, which must have been defined before it is
called.

Plot Recording

As mentioned before, all the plots in a code chunk are first recorded as R objects and then “replayed”
inside a graphical device to generate plot files. The evaluate package will record plots per expression basis,
in other words, the source code is split into individual complete expressions and evaluate will examine
possible plot changes in snapshots after each single expression has been evaluated. For example, the code
below consists of three expressions, out of which two are related to drawing plots, therefore evaluate will
produce two plots by default:

par(mar = c(3, 3, 0.1, 0.1))
plot(1:10, ann = FALSE, las = 1)
text(5, 9, "mass $\\rightarrow$ energy\n$E=mc^2$")

2 4 6 8 10

2

4

6

8

10

2 4 6 8 10

2

4

6

8

10
mass → energy

E = mc2

This brings a significant difference with traditional tools in R for dynamic report generation, since
low-level plotting changes can also be recorded. The option fig.keep controls which plots to keep in the
output; fig.keep=’all’ will keep low-level changes as separate plots; by default (fig.keep=’high’), knitr
will merge low-level plot changes into the previous high-level plot, like most graphics devices do. This
feature may be useful for teaching R graphics step by step. Note, however, low-level plotting commands
in a single expression (a typical case is a loop) will not be recorded accumulatively, but high-level plotting

1not the R package mentioned before; for a preview of these themes, see http://www.andre-simon.de/dokuwiki/doku.php?id=
theme_examples

2many thanks to Ramnath Vaidyanathan for the work on themes

4

http://www.andre-simon.de/
http://www.eclipsecolorthemes.org/
http://www.andre-simon.de/dokuwiki/doku.php?id=theme_examples
http://www.andre-simon.de/dokuwiki/doku.php?id=theme_examples
https://github.com/ramnathv

commands, regardless of where they are, will always be recorded. For example, this chunk will only
produce 2 plots instead of 21 plots because there are 2 complete expressions:

plot(0, 0, type = "n", ann = FALSE)
for (i in seq(0, 2 * pi, length = 20)) points(cos(i), sin(i))

But this will produce 20 plots as expected:

for (i in seq(0, 2 * pi, length = 20)) {
plot(cos(i), sin(i), xlim = c(-1, 1), ylim = c(-1, 1))

}

As I showed in the beginning of this manual, it is straightforward to let knitr keep all the plots in a
chunk and insert them into the output document, so we no longer need the cat(’\\includegraphics{}’)
trick.

We can discard all previous plots and keep the last one only by fig.keep=’last’, or keep only the first
plot by fig.keep=’first’, or discard all plots by fig.keep=’none’.

Plot Rearrangement

The option fig.show can decide whether to hold all plots while evaluating the code and “flush” all of
them to the end of a chunk (fig.show=’hold’), or just insert them to the place where they were created
(by default fig.show=’asis’). Here is an example of fig.show=’asis’:

contour(volcano) # contour lines

 100

 100

 100

 1
10

 110

 110

 110

 120

 130

 140

 150

 160

 160

 170

 180

 1
90

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

filled.contour(volcano) # fill contour plot with colors

100

120

140

160

180

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

Beside hold and asis, the option fig.show can take a third value: animate, which makes it possible to
insert animations into the output document. In LATEX, the package animate is used to put together image
frames as an animation. For animations to work, there must be more than one plot produced in a chunk.
The option interval controls the time interval between animation frames; by default it is 1 second. Note
you have to add \usepackage{animate} in the LATEX preamble, because knitr will not add it automatically.
Animations in the PDF output can only be viewed in Adobe Reader.

As a simple demonstration, here is a Mandelbrot animation taken from the animation package (Xie,
2015); note the PNG device is used because PDF files are too large. You should be able to see the animation
immediately with Acrobat Reader since it was set to play automatically:

5

http://en.wikipedia.org/wiki/Mandelbrot_set

library(animation)
demo("Mandelbrot", echo = FALSE, package = "animation")

Plot Size

The fig.width and fig.height options specify the size of plots in the graphics device, and the real size
in the output document can be different (see out.width and out.height). When there are multiple plots
per chunk, it is possible to arrange more than one plot per line in LATEX – just specify out.width to be less
than half of the current line width, e.g. out.width=’.49\\linewidth’.

The tikz Device

Beside PDF, PNG and other traditional R graphical devices, knitr has special support to tikz graphics
via the tikzDevice package (Sharpsteen and Bracken, 2016), which is similar to pgfSweave. If we set the
chunk option dev=’tikz’, the tikz() device in tikzDevice will be used to save plots. Options sanitize and
external are related to the tikz device: see the documentation of tikz() for details. Note external=TRUE in
knitr has a different meaning with pgfSweave – it means standAlone=TRUE in tikz(), and the tikz graphics
output will be compiled to PDF immediately after it is created, so the “externalization” does not depend
on the tikz package; to maintain consistency in (font) styles, knitr will read the preamble of the input
document and use it in the tikz device. At the moment, I’m not sure if this is a faithful way to externalize
tikz graphics, but I have not seen any problems so far. The assumption to make, however, is that you
declare all the styles in the preamble; knitr is agnostic of local style changes in the body of the document.

Below is an example taken from StackOverflow3; we usually have to write R code like this to obtain a
math expression dxt = α[(θ − xt)dt + 4]dBt in R graphics:

qplot(1:10, 1:10) + opts(title = substitute(paste(d * bolditalic(x)[italic(t)] ==
alpha * (theta - bolditalic(x)[italic(t)]) * d * italic(t) + lambda *

d * italic(B)[italic(t)]), list(lambda = 4)))

With the tikz device, it is both straightforward and more beautiful:

library(ggplot2)
qplot(1:10, 1:10) + labs(title = sprintf("$\\mathrm{d}\\mathbf{x}_{t} = \\alpha[(\\theta - \\mathbf{x}_{t})\\mathrm{d}t + %d]\\mathrm{d}B_{t}$",

4))

3http://stackoverflow.com/q/8190087/559676

6

http://stackoverflow.com/q/8190087/559676

2.5

5.0

7.5

10.0

2.5 5.0 7.5 10.0
1:10

1:
10

dxt = α[(θ − xt)dt + 4]dBt

The advantage of tikz graphics is the consistency of styles4, and one disadvantage is that LATEX may
not be able to handle too large tikz files (it can run out of memory). For example, an R plot with tens of
thousands of graphical elements may fail to compile in LATEX if we use the tikz device. In such cases, we
can switch to the PDF or PNG device, or reconsider our decision on the type of plots, e.g., a scatter plot
with millions of points is usually difficult to read, and a contour plot or a hexagon plot showing the 2D
density can be a better alternative (they are smaller in size).

The graphics manual contains more detailed information and you can check it out in the website.

3.3 Cache

The feature of cache is not a new idea – both cacheSweave and weaver have implemented it based on
Sweave, with the former using filehash and the latter using .RData images; cacheSweave also supports
lazy-loading of objects based on filehash. The knitr package directly uses internal base R functions to save
(tools:::makeLazyLoadDB()) and lazy-load objects (lazyLoad()). These functions are either undocumented or
marked as internal, but as far as I understand, they are the tools to implement lazy-loading for packages.
The cacheSweave vignette has clearly explained lazy-loading, and roughly speaking, lazy-loading means
an object will not be really loaded into memory unless it is really used somewhere. This is very useful for
cache; sometimes we read a large object and cache it, then take a subset for analysis and this subset is also
cached; in the future, the initial large object will not be loaded into R if our computation is only based on
the object of its subset.

The paths of cache files are determined by the chunk option cache.path; by default all cache files are
created under a directory cache relative to the current working directory, and if the option value contains
a directory (e.g. cache.path=’cache/abc-’), cache files will be stored under that directory (automatically
created if it does not exist). The cache is invalidated and purged on any changes to the code chunk,
including both the R code and chunk options5; this means previous cache files of this chunk are removed
(filenames are identified by the chunk label). Unlike pgfSweave, cache files will never accumulate since
old cache files will always be removed in knitr. Unlike weaver or cacheSweave, knitr will try to preserve
these side-effects:

1. printed results: meaning that any output of a code chunk will be loaded into the output document
for a cached chunk, although it is not really evaluated. The reason is knitr also cache the output of
a chunk as a character string. Note this means graphics output is also cached since it is part of the
output. It has been a pain for me for a long time to have to lose output to gain cache;

2. loaded packages: after the evaluation of each cached chunk, the list of packages used in the current R
session is written to a file under the cache path named __packages; next time if a cached chunk needs
to be rebuilt, these packages will be loaded first. The reasons for caching package names are, it can

4Users are encouraged to read the vignette of tikzDevice, which is the most beautiful vignette I have ever seen in R packages:
http://cran.r-project.org/web/packages/tikzDevice/vignettes/tikzDevice.pdf

5One exception is the include option, which is not cached because include=TRUE/FALSE does not affect code evaluation; mean-
while, the value getOption(’width’) is also cached, so if you change this option, the cache will also be invalidated (this option
affects the width of text output)

7

http://yihui.name/knitr/demo/graphics/
http://cran.r-project.org/web/packages/tikzDevice/vignettes/tikzDevice.pdf

be slow to load some packages, and a package might be loaded in a previous cached chunk which
is not available to the next cached chunk when only the latter needs to be rebuilt. Note this only
applies to cached chunks, and for uncached chunks, you must always use library() to load packages
explicitly;

Although knitr tries to keep some side-effects, there are still other types of side-effects like setting par()
or options() which are not cached. Users should be aware of these special cases, and make sure to clearly
separate the code which is not meant to be cached to other chunks which are not cached, e.g., set all global
options in the first chunk of a document and do not cache that chunk.

Sometimes a cached chunk may need to use objects from other cached chunks, which can bring a
serious problem – if objects in previous chunks have changed, this chunk will not be aware of the changes
and will still use old cached results, unless there is a way to detect such changes from other chunks. There
is an option called dependson in cacheSweave which does this job. We can explicitly specify which other
chunks this chunk depends on by setting an option like dependson=’chunkA;chunkB’ or equivalently
dependson=c(’chunkA’, ’chunkB’). Each time the cache of a chunk is rebuilt, all other chunks which
depend on this chunk will lose cache, hence their cache will be rebuilt as well.

Another way to specify the dependencies among chunks is to use the chunk option autodep and the
function dep_auto(). This is an experimental feature borrowed from weaver which frees us from setting
chunk dependencies manually. The basic idea is, if a latter chunk uses any objects created from a previous
chunk, the latter chunk is said to depend on the previous one. The function findGlobals() in the codetools
package is used to find out all global objects in a chunk, and according to its documentation, the result is an
approximation. Global objects roughly mean the ones which are not created locally, e.g. in the expression
function() {y <- x}, x should be a global object, whereas y is local. Meanwhile, we also need to save
the list of objects created in each cached chunk, so that we can compare them to the global objects in latter
chunks. For example, if chunk A created an object x and chunk B uses this object, chunk B must depend
on A, i.e. whenever A changes, B must also be updated. When autodep=TRUE, knitr will write out the
names of objects created in a cached chunk as well as those global objects in two files named __objects
and __globals respectively; later we can use the function dep_auto() to analyze the object names to figure
out the dependencies automatically. See http://yihui.name/knitr/demo/cache/ for examples.

Yet another way to specify dependencies is dep_prev(): this is a conservative approach which sets the
dependencies so that a cached chunk will depend on all its previous chunks, i.e. whenever a previous
chunk is updated, all later chunks will be updated accordingly.

3.4 Code Externalization

It can be more convenient to write R code in a separate file, rather than mixing it into a LATEX document; for
example, we can run R code successively in a pure R script from one chunk to the other without jumping
through other texts. Since I prefer using LYX to write reports, Sweave is even more inconvenient because I
have to recompile the whole document each time, even if I only want to know the results of a single chunk.
Therefore knitr introduced the feature of code externalization to a separate R script. Currently the setting
is like this: the R script also uses chunk labels (marked in the form ## ---- chunk-label by default); if
the code chunk in the input document is empty, knitr will match its label with the label in the R script
to input external R code. For example, suppose this is a code chunk labelled as Q1 in an R script named
homework1-xie.R which is under the same directory as the Rnw document:

---- Q1 ---------------------
gcd <- function(m, n) {

while ((r <- m%%n) != 0) {
m <- n
n <- r

}
n

}

In the Rnw document, we can first read the script using the function read_chunk():

8

http://yihui.name/knitr/demo/cache/

read_chunk("homework1-xie.R")

This is usually done in an early chunk, and we can use the chunk Q1 later in the Rnw document:

<<Q1, echo=TRUE, tidy=TRUE>>=
@

Different documents can read the same R script, so the R code can be reusable across different input
documents.

3.5 Evaluation of Chunk Options

By default knitr uses a new syntax to parse chunk options: it treats them as function arguments instead
of a text string to be split to obtain option values. This gives the user much more power than the old
syntax; we can pass arbitrary R objects to chunk options besides simple ones like TRUE/FALSE, numbers
and character strings. The page http://yihui.name/knitr/demo/sweave/ has given two examples to
show the advantages of the new syntax. Here we show yet another useful application.

Before knitr 0.3, there was a feature named “conditional evaluation”6. The idea is, instead of setting
chunk options eval and echo to be TRUE or FALSE (constants), their values can be controlled by global
variables in the current R session. This enables knitr to conditionally evaluate code chunks according to
variables. For example, here we assign TRUE to a variable dothis:

dothis <- TRUE

In the next chunk, we set chunk options eval=dothis and echo=!dothis, both are valid R expressions
since the variable dothis exists. As we can see, the source code is hidden, but it was indeed evaluated:

[1] "you cannot see my source because !dothis is FALSE"

Then we set eval=dothis and echo=dothis for another chunk:

dothis

[1] TRUE

If we change the value of dothis to FALSE, neither of the above chunks will be evaluated any more.
Therefore we can control many chunks with a single variable, and present results selectively.

This old feature requires knitr to treat eval and echo specially, and we can easily see that it is no
longer necessary with the new syntax: eval=dothis will tell R to find the variable dothis automatically
just like we call a function foobar(eval = dothis). What is more, all options will be evaluated as R
expressions unless they are already constants which do not need to be evaluated, so this old feature has
been generalized to all other options naturally.

3.6 Customization

The knitr package is ready for customization. Both the patterns and hooks can be customized; see the
package website for details. Here I show an example on how to save rgl plots (Adler and Murdoch, 2016)
using a customized hook function. First we define a hook named rgl using the function hook_rgl() in rgl:

library(rgl)
knit_hooks$set(rgl = hook_rgl)
head(hook_rgl) # the hook function is defined as this

6request from https://plus.google.com/u/0/116405544829727492615/posts/43WrRUffjzK

9

http://yihui.name/knitr/demo/sweave/
https://plus.google.com/u/0/116405544829727492615/posts/43WrRUffjzK

##
1 function (before, options, envir)
2 {
3 rglwidgetCheck()
4 rglwidget::.hook_rgl(before, options, envir)
5 }

Then we only have to set the chunk option rgl=TRUE:

library(rgl)
demo("bivar", package = "rgl", echo = FALSE)
par3d(zoom = 0.7)

Due to the flexibility of output hooks, knitr supports several different output formats. The implemen-
tation is fairly easy, e.g., for LATEX we put R output in verbatim environments, and in HTML, it is only
a matter of putting output in div layers. These are simply character string operations. Many demos in
http://yihui.name/knitr/demos show this idea clearly. This manual did not cover all the features of
knitr, and users are encouraged to thumb through the website to know more possible features.

4 Editors

You can use any text editors to write the source documents, but some have built-in support for knitr. Both
RStudio (http://www.rstudio.org) and LYX (http://www.lyx.org) have full support for knitr, and you
can compile the document to PDF with just one click. See http://yihui.name/knitr/demo/rstudio/ and
http://yihui.name/knitr/demo/lyx/ respectively. It is also possible to support other editors like Eclipse,
Texmaker and WinEdt; see the demo list in the website for configuration instructions.

About This Document

This manual was written in LYX and compiled with knitr (version 1.14). The LYX source and the Rnw
document exported from LYX can be found under these directories:

system.file("examples", "knitr-manual.lyx", package = "knitr") # lyx source
system.file("examples", "knitr-manual.Rnw", package = "knitr") # Rnw source

You can use the function knit() to knit the Rnw document (remember to put the two .bib files under the
same directory), and you need to make sure all the R packages used in this document are installed:

install.packages(c("animation", "rgl", "tikzDevice", "ggplot2"))

10

http://yihui.name/knitr/demos
http://www.rstudio.org
http://www.lyx.org
http://yihui.name/knitr/demo/rstudio/
http://yihui.name/knitr/demo/lyx/
http://yihui.name/knitr/demo/eclipse/
http://yihui.name/knitr/demo/editors/

Feedback and comments on this manual and the package are always welcome. Bug reports and feature
requests can be sent to https://github.com/yihui/knitr/issues, and questions can be delivered to the
mailing list https://groups.google.com/group/knitr.

References

Adler D, Murdoch D (2016). rgl: 3D Visualization Using OpenGL. R package version 0.95.1441, URL https:
//CRAN.R-project.org/package=rgl.

Leisch F (2002). “Sweave: Dynamic Generation of Statistical Reports Using Literate Data Analysis.” In
COMPSTAT 2002 Proceedings in Computational Statistics, 69, pp. 575–580. Physica Verlag, Heidelberg.

Qiu Y, Xie Y (2016). highr: Syntax Highlighting for R Source Code. R package version 0.6, URL https:
//CRAN.R-project.org/package=highr.

Sharpsteen C, Bracken C (2016). tikzDevice: R Graphics Output in LaTeX Format. R package version 0.10-1,
URL https://CRAN.R-project.org/package=tikzDevice.

Wickham H (2016). evaluate: Parsing and Evaluation Tools that Provide More Details than the Default. R package
version 0.9, URL https://CRAN.R-project.org/package=evaluate.

Xie Y (2015). animation: A Gallery of Animations in Statistics and Utilities to Create Animations. R package
version 2.4, URL https://CRAN.R-project.org/package=animation.

Xie Y (2016a). formatR: Format R Code Automatically. R package version 1.4, URL https://CRAN.R-project.
org/package=formatR.

Xie Y (2016b). knitr: A General-Purpose Package for Dynamic Report Generation in R. R package version 1.14,
URL http://yihui.name/knitr/.

11

https://github.com/yihui/knitr/issues
mailto:knitr@googlegroups.com
https://groups.google.com/group/knitr
https://CRAN.R-project.org/package=rgl
https://CRAN.R-project.org/package=rgl
https://CRAN.R-project.org/package=highr
https://CRAN.R-project.org/package=highr
https://CRAN.R-project.org/package=tikzDevice
https://CRAN.R-project.org/package=evaluate
https://CRAN.R-project.org/package=animation
https://CRAN.R-project.org/package=formatR
https://CRAN.R-project.org/package=formatR
http://yihui.name/knitr/

	1 Hello World
	2 Design
	3 Features
	3.1 Code Decoration
	3.2 Graphics
	3.3 Cache
	3.4 Code Externalization
	3.5 Evaluation of Chunk Options
	3.6 Customization

	4 Editors

	0.0:
	0.1:
	0.2:
	0.3:
	0.4:
	0.5:
	0.6:
	0.7:
	0.8:
	0.9:
	0.10:
	0.11:
	0.12:
	0.13:
	0.14:
	0.15:
	0.16:
	0.17:
	0.18:
	0.19:
	anm0:
	0.EndLeft:
	0.StepLeft:
	0.PauseLeft:
	0.PlayLeft:
	0.PlayPauseLeft:
	0.PauseRight:
	0.PlayRight:
	0.PlayPauseRight:
	0.StepRight:
	0.EndRight:
	0.Minus:
	0.Reset:
	0.Plus:

