Cray Fortran Pointers vs. Fortran 90 Pointers and

Porting from the CRAY C90 to the SGI Origin2000

Mark R. Fahey*
Dan Nagle
U.S. Army Corps of Engineers Waterways Experiment Station
Major Shared Resource Center

Vicksburg, MS 39180
April 19, 1999

1 Fortran Pointers

Pointers can be used to access user-managed storage by dynamically associating variables
and arrays to particular locations in a block of storage. Fortran 90 introduced to standard
Fortran the concept of the pointer. Cray Fortran has had pointers for a long time. However,
Fortran 90 pointers and Cray pointers are very different.

Cray’s (nonstandard) pointer is a variable whose value is the address of another entity,
which is called a pointee. The Cray Fortran pointer type statement declares both the pointer
and its pointee, as follows:

POINTER (ptr, ptee)

The pointee may be of any type, but the pointer is always typed a POINTER. A Cray pointer
is a “true” pointer; that is, it is a variable that contains the address of the pointee. The size
of the area pointed to is determined by the size of the pointee. The nonstandard intrinsic
function LOC generates the address of a variable to be used with a Cray pointer, as follows:

ptr = LOC(variable)

The Fortran 90 standard does not provide for the Cray Fortran pointer data-type. Fortran
90 has the pointer and target attributes, for example

integer, POINTER :: iptr
integer, TARGET :: itrgt

*Computational Migration Group, Nichols Research, mfahey@nrcmail.wes.hpc.mil

The pointer and target must be the same type, kind and rank. A Fortran 90 pointer is an
alias for the target; that is, it is a second (or subsequent) name that refers to the variable.
A Fortran 90 pointer may refer to an array section, which need not be contiguous storage.

With pointers (and allocatable arrays) standardized in Fortran 90, the Fortran EQUIVALENCE
statement has become a deprecated feature. The EQUIVALENCE statement specifies that a
given storage area may be shared by two or more objects.

Cray and Fortran 90 pointers can appear in the same program, and point to the same
location in memory. For example, the program

real :: YP

pointer (P, YP)

real, target :: A

real, pointer :: Aptr
data A/1.0/

Aptr => A

P = loc(A)

print*,Aptr,’ ’,A,’ ’,YP

has the output
1. 1. 1.

However, a Cray pointer cannot have the target attribute and a Fortran 90 pointer cannot
have the Cray pointer type. Therefore, a Cray pointer cannot point to a Fortran 90 pointer
and vice versa. Furthermore, a Fortran 90 target cannot be a Cray pointee and a Cray
pointee cannot have the Fortran 90 target attribute. For a more detailed description of Cray
pointers (and pointees) and their restrictions, see [1].

The remainder of this note is organized as follows. Section 2 describes issues relating to
porting Cray pointers from the CRAY C90 to the SGI Origin2000. Section 3 finishes this
note with an example demonstrating use of pointers.

2 Porting Cray Pointers from the CRAY C90 to the
SGI Origin2000

The £77 and £90 compilers on the SGI Origin2000' support the Cray pointer type and the
associated intrinsic function LOC. Thus, a code that has Cray pointers will compile and run
on the SGI Origin2000 in its native 32-bit binary application interface.

If a 64-bit compilation is desired, the code should be compiled with the -64 -i8 -r8
-d16? options when using £90 or £77. If the -i8 option cannot be used® and if a Cray
pointer is passed as an argument to a subprogram, then the user must be sure to specify
that the argument in the receiving subprogram is of Cray pointer type. If this is not specified,

1SGI Origin2000 at CEWES MSRC.

2This is the ~default64 option for the £90 compiler.

3 A 64-bit precompiled library subprogram may expect integers of KIND=4 (in a common block for instance),
but -i8 will force the calling subprograms integers to be of KIND=8.

then the program will crash even though it will compile without warning messages. This is
because upon creation (with -64), a Cray pointer is “like” an INTEGER(KIND=8) variable,
but a receiving subprogram will assume it is an INTEGER (KIND=4). The following program
demonstrates the problem mentioned above and shows how to solve it.

integer :: I

real :: YP

pointer (P, YP)

real :: A

data A/1.0/

P = loc(A)

I =P

print*,’The variables P =’,P,’ and I =’,I,’ in main’
call subprogi(P)

call subprog2(P, I)

subroutine subprogl(P)
printx*,’The variable P =’,P,’ in subprogl’
end

subroutine subprog2(P, I)
pointer (P, ydummy)

integer I
printx*,’The variables P =’,P,’ and I =’,I,’ in subprog2’
end

This code produces the following output when compiled with the -64 option.

The variables P = 268509264 and I
The variable P = 0 1in subprogl
The variables P = 268509264 and I

268509264 in main

268509264 in subprog2

This shows that one must be sure to type subprogram arguments or pass true integers as
arguments if the -i8 option is not used. The safest and clearest choice is to use explicit
typing for subprogram arguments.

3 A Fast Fourier Transform Example

The rest of this note discusses Fortran array storage order, followed by a discussion to illus-
trate the different pointers via the example of the two-dimensional Fast Fourier Transform
(FFT). We will view the FFT without pointers, with Cray pointers, and with Fortran 90
pointers. The last example is done in C to clarify the issues raised here for C programmers.
(The interested reader is referred to, e.g., [2], for more information on FFT’s.)

3.1 Fortran Storage Order

In the case of a one-dimensional array, storage order is intuitive and in fact every language
supporting arrays handles the situation similarly. If A is an array, then A(I+1) occupies the
next storage location after A(I). A complication arises when discussing multidimensional
arrays. In the case of the two-dimensional array, one has a choice of whether to count down
the columns or count across the rows. Fortran counts down the columns, thus Fortran is
a column-magjor programming language (most other programming languages, e.g., C, are
row-magor languages). Suppose A is declared as

integer, parameter :: N = 1000
complex, dimension(N, N) :: A

Then Fortran storage order is as follows:

A(1,1),A(2,1),...,A(N,1),A(1,2),A(2,2),...,A(N,2),...,ACL,N), ... ,ACN,N)

3.2 The Basic Example

The rest of this paper describes, using an example of the two-dimensional FFT, how to
program the solution using no pointers, Cray pointers, and Fortran 90 pointers. The exam-
ples assume that the “dirty work” is done in a subroutine FOUR1D (), which will compute a
one-dimensional FFT. FOUR1D() has the following interface

interface
subroutine fourld(CDATA, N, INC, ISIGN)
complex, intent(in out), dimension(N*N) :: CDATA
integer, intent(in) :: N, INC, ISIGN
end subroutine
end interface

and computes an in-place one-dimensional FFT of length N with INC words between elements.
ISIGN is the forward /reverse +1 switch.

Note that, in FOUR1D(), the array is declared to be a one-dimensional array. The routine
FOUR1D() will address this one-dimensional array using the size (N) and increment (INC) pro-
vided. As discussed above, addressing columns is done by setting INC = 1, while addressing
rows is done by setting INC = N.

Two things should be noted about the two-dimensional FFT. First, the two-dimensional
FFT will transform each column and each row of the array. Second, the transform of each
column involves consecutive storage locations, while the transform of each row involves
storage locations separated by the size of a column. Thus, the row transform step must
include a gather and scatter of the data in the array. These gather/scatter steps may be
implicit in the call to FOUR1D(), or they may be explicitly done by the program. Note also,
that a row-major language has the same problem in computing the two-dimensional FF'T,
except the step which requires the gather/scatter is the column transform rather than the
row transform.

3.3 Two-Dimensional FFT without Pointers

Here is a straight-forward implementation of the two-dimensional FFT that does not use
pointers.

integer, parameter :: N = 1024
complex, dimension(N, N) :: A

! first, transform the columns
! note that INC = 1, because column elements are consecutive storage locations

doi=1, N
call fourid(AC 1, i), N, 1, 1)
enddo

! now, transform the rows
! note that INC = N, because row elements are N units apart

doi=1, N
call fourid(AC i, 1), N, N, 1)
enddo

The gather/scatter step is done implicitly by passing the value N to the FOUR1D() argu-
ment INC in the row transform step. The value of INC was 1 in the column transform. Note
that the array indices change on each call to FOURID().

3.4 Two-Dimensional FFT with Cray Pointers

Now, let us re-do the previous example using Cray pointers. Here, we set the pointer to the
location of the row or column to be transformed, and pass the pointee array to FOUR1D().

integer, parameter :: N = 1024
complex, dimension(N, N) :: A

declare the Cray pointer

note that *NO* storage is allocated for PA (the pointee array)
PA won’t refer to memory until P is set to the address of some
memory by the LOC() function

complex, dimension(N*N) :: PA
pointer(P, PA)

! first, transform the columns
! note that inc = 1, because column elements are consecutive storage locations

doi=1, N

P =1loc(AC1, i))
call fourid(PA, N, 1, 1)
enddo

! now, transform the rows
! note that inc = n, because row elements are n units apart

doi=1, N

P =1oc(ACi, 1))

call fourid(PA, N, N, 1)
enddo

A number of points should be made clear. First, the size of the pointee array PA really
doesn’t matter. The pointee PA just needs to be declared a one-dimensional array. The data
addressed are controlled by N and INC. Second, the setting of P to a location within A by
the P = LOC(AC ...)) statement involves no data movement. It’s simply a run-time
equivalence of A and PA. Third, where the example in Section 3.3 passed the array A with
indices (and in fact the indices vary with each call to FOUR1D()), the Cray pointers example
passed PA without indices. This is because the location of PA is changed by resetting P at
each iteration (i.e., the run-time equivalencing changes as the program executes).

3.5 Two-Dimensional FFT with Fortran 90 Pointers

Now, let us re-do the previous example using Fortran pointers. Here, the pointee array must
be declared with the TARGET attribute. This enables the compiler to better optimize the
routine because the compiler assumes that only variables declared with the POINTER, or
TARGET attribute may be aliased.

integer, parameter :: N = 1024
complex, dimension(N, N), target :: A

! declare the Fortran pointer
! note that *NOx storage is allocated for PA (the pointer array)
! PA won’t refer to memory until it is assigned (=>) to a target

complex, dimension(N), pointer :: PA

! first, transform the columns
! PA points to a different column on each iteration

doi=1, N

PA => A(C :, i)

call fourid(PA, N, 1, 1)
enddo

! now, transform the rows

! PA points to a different row on each iteration
I INC is set to 1 rather than N because the gather/scatter
! is done explicitly by the pointer assignment

doi=1, N

PA => AC i, :)

call fourid(PA, N, 1, 1)
enddo

The biggest difference between the Fortran 90 pointer example and the others is that the
gather/scatter is done explicitly by the pointer assignment, not implicitly by changing INC.
If the programmer wants to use the array features of Fortran 90, an interface block should
be provided so the compiler knows to pass an array descriptor rather than an array address.
If the programmer does use an interface block for FOUR1D(), the chances of a copy being
done are lower, because the compiler can tell how the FOUR1D() subroutine is declared. The
interface also enables usage checking, so the compiler may catch additional errors at compile
time.

3.6 Two-Dimensional FFT with C Pointers

Here we have the FF'T example in C. Note that this is closest to the Cray Fortran example.
We define a type complex and the function prototype analogous to FOUR1D()

void fourld(complex* a, int n, int inc, int sign)

The differences with the Cray Fortran example are: C is row-major where Fortran is column-
major, a pointer in C need not be declared with its pointee (a fact that causes some difficulties
with optimization), the DO-loops are replaced by for-loops, the arrays are constrained to have
lower limits in each dimension of zero, and type complex must be defined by the programmer.

##define N 1024

typedef struct complex {
float r;
float i;

} complex;

complex al N J[N 1;

/* define the pointer to a */
complex* pa;

/* first, transform the columns
note that inc = N, because column elements are N storage locations apart */
for (int i = 0; i < N; i++)

{

pa =&l 01[1il];
fourld(pa, N, N, 1);
}
/* now, transform the rows
note that inc = 1, because row elements are consecutive storage units */
for (1 =0; i < N; i++)
{
pa = &l i J[0 1;
fourld(pa, N, 1, 1);
}

In this example, the pointer pa does not refer to memory until it is assigned the address
of an array element via the pa = &al[... 1 statement. This example could also have
been written so that the array a was declared as a pointer to complex. In fact, since all this
example shows is pa being passed to a function, a[...] could have been passed directly.

4 Conclusion

Cray Fortran pointers and Fortran 90 pointers are two entirely different ways of dynamically
associating variables to particular blocks of storage. Codes written for Cray machines like
the CRAY C90 before the Fortran 90 standard may contain Cray pointers. When migrating
these codes to the SGI Origin2000, one should be aware that the Fortran compilers on the
SGI Origin2000 support Cray pointers and will not warn the user of their presence. If a
Cray pointer is passed as an argument and the receiving subroutine does not specify the
variable as a pointer, then the code may crash. Such bugs are difficult to find and can be
easily averted by either explicitly specifying the pointer type in the subprogram, using the
-i8 option, passing true integers instead, or, as a last resort, rewriting the code (possibly
using Fortran 90 pointers.)

References

[1] Fortran Language Reference Manual, Volume 1. Silicon Graphics, Document Number
007-3692-002 (http://techpubs.sgi.com/library).

[2] Numerical Recipes in Fortran: The Art of Scientific Computing, Second edition. William
H. Press, et al, Cambridge University Press, 1992.

