
RAL-TR-2008-002

January 4, 2008

D. J. Worth

State of the Art in Object Oriented

Programming with Fortran



c© Science and Technology Facilities Council

Enquires about copyright, reproduction and requests for additional copies of this report should
be addressed to:

Library and Information Services

SFTC Rutherford Appleton Laboratory
Harwell Science and Innovation Campus
Didcot
OX11 0QX
UK

Tel: +44 (0)1235 445384
Fax: +44(0)1235 446403
Email: library@rl.ac.uk

The STFC ePublication archive (epubs), recording the scientific output of the Chilbolton,
Daresbury, and Rutherford Appleton Laboratories is available online at:

http://epubs.cclrc.ac.uk/

ISSN 1358-6254

Neither the Council nor the Laboratory accept any responsibility for loss or
damage arising from the use of information contained in any of their reports
or in any communication about their tests or investigation



Abstract

To define the “state of the art” in object oriented (OO) programming with Fortran we

bring together a number of disparate resources and try to distill from them recommendations

for an OO approach. We begin by defining what the author means by “object oriented” and

give details of the particular context in which this paper is set. With this background in

place we present a survey of tools and techniques (including the Fortran 2003 standard) that

allow Fortran programmers to develop their software in an object oriented way. The thorny

question of whether efficiency must be sacrificed with object orientation is tackled later in the

paper showing that some key elements of OO design can be used successfully with the right

compiler.

3



1 Introduction

Fortran has been the language of choice for scientific programmers for 50 years, primarily be-

cause it handles arrays well and compilers produce code that runs quickly. During Fortran’s life

many new programming languages have come (and some gone) and new software engineering

methods have been introduced. Most Fortran programmers know and love the procedural design

methodology the language brings with it, and can produce well structured codes that are easy

to maintain. In the last 20 years the notion of object oriented (OO) design has taken off in the

world of commercial software engineering with its promises of short development time, flexible

architectures and code reuse. The Fortran standard has developed from Fortran 77 through

90, 95 and now to 2003 and at each revision has added more object oriented concepts to the

language. Fortran programmers however have not been so quick to take these new features on

board in their coding. There are a number of reasons for this, the most prominent and powerful

being the amount of legacy code that exists that it would be too expensive in time and money to

transform. The author knows of one project that re-wrote their software from scratch to make

use of new features in Fortran 90 but this is a very rare event.

So what are new Fortran programmers to do? Should they ignore the object oriented features

and continue procedural programming or should they start on a process to transform their code

to this new design paradigm? The answer of course is a project management decision but in this

document we will present the “state of the art” in object oriented programming with Fortran

and suggest ways in which it can be used to improve the quality and maintainability of software.

This report cannot go in to details on object oriented design techniques - the web would be

a better place to start - but we do give a brief description of the concepts of OO design and

the benefits that may accrue from using them in Section 2. Following this we present techniques

and tools for object oriented programming in Fortran in Section 3 and then consider the effect

of data hiding on efficiency in Section 4. Some recommendations on the use of OO programming

conclude the report.

There are code fragments throughout the report and a set of appendices with more complete

examples can be found at the back of the report.

2 What is “Object Oriented”?

There are many many definitions of “object oriented” in software engineering referring to software

analysis and design and implementation. Analysis and design is the most important area in which

to apply object oriented techniques as it will lead naturally to implementing software in an object

oriented way. There are many books on object oriented analysis and design, one which gives a

good introduction and includes material on OO analysis and design with non-OO languages is

[1]. Other references are [2], [3] and [4] and a web search for “object oriented design” will reveal

good introductory pages.

Both design and implementation need to be addressed for software to be considered object

oriented and we make it clear from the outset that the implementation language does not define

whether software is OO, as it is possible to write procedural code in C++, Java or any other

language that supports objects.

The references cited above will give good definitions of “object oriented” but for the purposes
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of this report we will give a quick summary of the concepts involved in OO here.

Classification This is the use of domain specific knowledge to define the “objects” from the

domain in which the software operates. Objects contain data that describe or are properties

of the object and methods (functions) to act on this data. Examples could include:

• A sparse matrix in which the row, column and value are stored for non-zero elements

along with the dimensions of the matrix. Methods could include access to elements

via row and column, matrix-vector and matrix-matrix multiplication, factorisation and

possibly solution of Ax = b.

• A radioactive element that has a name and half life and knows the names of its

daughter(s).

Objects are often implemented as classes in OO languages and the terms are interchangeable

in non-technical discussion of OO.

Encapsulation The objects we wish to use will store their data in a particular way and the

idea of encapsulation is to hide this choice. Methods are provided for other objects to use

to access data and perform operations on the data. These methods define the interface

of the object. The methods use inside knowledge to be as efficient as possible and also

hide details of the data storage. This means that the details can be changed or methods

improved without impacting other objects.

Inheritance This allows objects to share data and methods among a group of related objects

and is commonly achieved in one of the following two ways:

“is-a” For example a Student object may inherit from Person because a student is a

person with name, date of birth, sex etc. but adds more information such as subjects

studied and results. This is also known as public inheritance.

“has-a” For example a Molecule object may use an Atom object because a molecule has

a (is composed of) a number of atoms. This is also known as delegation.

In both cases existing code is reused with consequent saving in implementation and main-

tenance time.

Polymorphism The concept of polymorphism comes in two strands.

static polymorphism In this case the type of the object is known at compile time and

the correct method is called depending on the type and objects can overload methods.

This is already in Fortran 95 via a generic interface in a module.

run-time polymorphism This follows from the idea of inheritance. Sub-objects can over-

ride methods on the base objects with methods of their own (with the same signature)

and the particular method called will be chosen at run time based on the object type.

This means we can write code that works on the base object using base object methods

and know that if the code comes across a sub-object it will call the correct method on

the sub-object. (This is also known as dynamic dispatch.)
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For example: circle, square and triangle could all inherit a method from shape to

translate them in 2D. The implementation would be different in each case (because

the data in each class are different) but code written using shape would work correctly

when given a circle, square or triangle.

That will do for the purposes of this document but much more could be included, though such

material is often language dependent. The four facets given above are enough to take forward

into the next section which looks at object oriented programming with Fortran 95.

3 A Survey of Techniques and Tools

Many languages (e.g. C++ and Java) have been designed with object oriented programming

in mind and as a consequence provide inheritance and polymorphism as part of the language.

Currently Fortran does not - in fact it lacks the concept of methods being bound to objects

although this has been changed in the Fortran 2003 standard, see [5].

So if we want to use OO features then we must code them ourselves. In the following sections

we discuss how this may be done and take a look at tools that may help simplify or reduce the

work.

Our focus is on implementation and that being so we address the OO concepts of encapsu-

lation, inheritance and polymorphism. The remaining concept, classification, is a simple one to

grasp and so we will not go into it any further except to say that it involves knowledge of the

problem domain and that it provides our starting point – a design comprising objects and their

interfaces.

3.1 Techniques

There are many references concerning object oriented development with Fortran (the ACM elec-

tronic library lists 200). Many are concerned with explaining how to implement object-oriented

features in Fortran 95 [6, 7, 8, 9, 10, 11, 12, 13] and then others report on software developed

in an OO manner with Fortran [14, 15, 16, 17, 18]. The work of Decyk, Norton and Szyman-

ski is available via the oft cited http://www.cs.rpi.edu/~szymansk/oof90.html. The ideas

presented in the following sections are based on these references.

3.1.1 Encapsulation

Our object oriented design contains objects (classes) and it is obvious that we are going to

represent them with Fortran modules. The module will in all likelihood contain a type definition

that encapsulates the data of the object which means that the object can be passed easily in

sub-program calls. The methods of the object will be contained in the module.

It would be possible to make the components of the data type private and provide functions

and subroutines in the module to get and set the data. These sub-programs define the interface

to the data and separate the user of the data from details of how data is stored allowing changes

to the storage without affecting the user. This “data hiding” may be over the top for some but

others will consider it worthwhile. We will see in Section 4 that the correct choice of compiler

and options eliminates any overhead of using the interface.
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3.1.2 Inheritance

In Fortran 95 there is no language feature that allows one object to “extend” another to implement

“is-a” inheritance. We are left with what is technically delegation – one object using another –

to cover both forms of inheritance.

One example of extending one class to another is given in [11] using the person/student

example. The person object (with identification number, first and last names) is implemented in

a module as follows (omitting the methods)

module Personnel_class

type Personnel

integer :: ssn

character*12 :: firstname, lastname

end type Personnel

contains

! Methods omitted for this discussion

end module Personnel_class

The student object extends person with the subjects (classes) that it takes as follows:

module Student_class

! Bring Personnel_class into scope

use Personnel_class

! Define the student type

type Student

private

type(Personnel) :: personnel

integer :: nclasses

character*12, dimension(10) :: classes

end type Student

contains

! Methods omitted for this discussion

end module Student_class

Note here three things

• The data for each object is stored in a derived type defined within a module.
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• The module will also contain the methods so that the data and methods can be brought

into scope together.

• The Student type defines all its data as private and so its containing module must provide

methods to access the data and data from its associated Personnel object.

3.1.3 Run-time Polymorphism

We defined run-time polymorphism as the ability to call the correct method based on the type

of an object when that type is only known during execution. As an example consider the shape

classes in Appendix A. We define a Shape class base class for Circle class and Square class

subclasses. These subclasses have “constructors” (the new) and methods to move and print out

their data. The interface mechanism provides some run-time polymorphism, for example we

can call print on a circle or square and the correct subroutine will be executed.

To achieve true run-time polymorphism we need an object which can represent either a circle

or square when used in a subroutine, be assigned to either of these types, and know which actual

type it represents so the correct routine can be called at run-time. This is implemented in the

poly Shape class module which contains a poly Shape type that has a pointer to each of the

Circle and Square objects only one of which will be associated at a time. The interfaces in the

module defines methods to initialise one of these polymorphic objects (both pointers nullified),

new; assign a circle or square to a polymorphic object, poly; and implement dynamic dispatch

for methods on the subclasses, print and move.

Assignment of a square object to the polymorphic object sets the pSquare pointer and nul-

lifies the pCircle pointer. Assignment of a circle object is similar. Dynamic dispatch is then

implemented by checking the associated status of each pointer and calling the method on the

associated one.

This implementation is based on the student/teacher/database example in [11]. A second,

simplified implementation is described by the same authors in [12]. Instead of creating separate

types for each of the polymorphic objects they propose creating a single type to hold the combined

data of every object plus a flag to determine exactly which object the type is representing. This

amalgamated type can be thought of as a base object whose methods other classes can override

or add to. We implement constructors for the various objects (defined in their own modules) that

set the flag appropriately along with the overriding or additional methods for those objects. A

separate polymorphic type is still implemented that defines interfaces and implementations for

the polymorphic functions (and only those functions) using the flag to determine which actual

routine to call. A full description of this method can be found in [12].

The advantage of this second implementation is that only the methods that override methods

in the base, amalgamated object need have a polymorphic implementation in the polymorphic

object since we could just call the method on the base class if it was not modified. The first

implementation requires that all methods to be used polymorphically have an implementation

in the polymorphic object. The disadvantage however is that encapsulation of data in separate

objects has been lost and extending the inheritance hierarchy with new objects becomes more

difficult. Not because there is more coding, simply because it is more difficult to see what the

designed inheritance hierarchy was that gave rise to the amalgamated object.

We feel that this disadvantage outweighs the advantages especially in the light of the Forpedo
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tool introduced in the next section.

3.2 Tools

The previous section shows what can be done. The next question is “Are there any tools to help

us?”

3.2.1 Forpedo

Forpedo (http://www.macanics.net/forpedo/index.php) is a preprocessor for Fortran 95 code

and supports templates and polymorphism as well as more typical preprocessing tasks. Templates

are used widely in C++ and allow programmers to write a class that operates on a generic object

and then create such a class for a specific object without having to re-create the code for each

particular object. This is also known as generic programming . For example we could write a

linked list module for a generic object and use it to store integers, real numbers or other user

defined types. Templates are built in to C++ but not in to Fortran and this is where Forpedo

comes in. By writing modules that use some generic name enclosed by ’<’ and ’>’ and defining

the various values for the generic object Forpedo can create code for each value. Forpedo is

written in Python. A small example of templates taken from [19] is given in Appendix B.

As we saw in Section 3.1.3 the implementation of polymorphism is complex in Fortran and

requires a great deal of coding to get working. Forpedo seeks to reduce the effort by writing the

polymorphic dispatch code for us in a superclass module. The user has to write the code for each

of the modules defining the concrete polymorphic types (subclasses) and special code that defines

the superclass. This special code is processed by Forpedo to produce Fortran 95 code for the

superclass containing the dynamic dispatch code. This module can then be used in subprograms

that know nothing about the concrete types. An example from the web site is given in Appendix

C.

One point to note here is that the superclass module defines the assignment operator so that

subclass objects can easily be assigned to superclass objects for passing to routines written only

in terms of the superclass.

3.2.2 Ideas from the CÆSAR Code

The CÆSAR code package (http://www.lanl.gov/Caesar/Caesar.html) is a computational

physics environment allowing users to model the physics of real systems by solving systems

of partial differential equations. Its main focus is on equation sets, discretisation on meshes,

nonlinear solvers and preconditioners, leaving linear solvers, mesh generation and partitioning,

communication and visualisation to external packages. CÆSAR is written in Fortran 90 and

makes use of m4 macros in the preprocessing stage.

One set of macros is the “superclass” set and this is used to automatically create a superclass

module to take care of the dynamic dispatching of function calls among a set of subclasses. Details

are given in Section 6.5 of [20] and summarised below.

• Define the subclass modules (each must be called subclassname Class) and the subclass

types contained therein (each must be called subclassname type).

• Define functions and subroutines in the subclasses (each must be called routinename subclassname).
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• Define interfaces in the subclasses for the functions and subroutines (each must be called

routinename).

• Define the superclass module using the “superclass” m4 macros.

• Create the Fortran code for the superclass module by running m4 on the definition from

above.

This is not such a neat solution as Forpedo, partly because of the naming and coding con-

ventions but also for the lack of the simple assignment from subclass to superclass available in

Forpedo.

3.3 Fortran 2003

In the previous sections we have mentioned features of Fortran 95 that enable object oriented

programming, for example the use of interfaces to achieve compile-time polymorphism, and we

have introduced techniques to emulate inheritance and run-time polymorphism. In the new

Fortran standard (Fortran 2003) features have been introduced to enhance the object oriented

nature of the language. An excellent review of the new features of Fortran 2003 is provided in

[5] and we provide details of the particular OO features in this section. The latest “Fortran

Explained” book [21] also includes a chapter on object oriented programming.

3.3.1 Type extension

We have shown above how inheritance among objects may be implemented in Fortran 95 but

Fortran 2003 includes inheritance as a language feature. One type may extend another, its [parent

(so long as the parent does not have the SEQUENCE or BIND(C) attribute). For example the circle

object in Section 3.1.3 may be defined to extend the shape object as follows.

! Define Circle type

type, extends(Shape) :: Circle

private

real :: centre_x, centre_y ! centre coordinates

real :: radius ! radius

end type ! Circle

All the type parameters, components and bound procedures (see later) of the parent type and

are known by the same names. They may be accessed using the component selection syntax, %.

The whole of a parent type may be accessed using its name, for example with type(Circle) :: c

we can access the Shape part by c%Shape.

There is an assumed order of variables for structure constructors and for input/output. It

consists of inherited components in component order of the parent type followed by new compo-

nents.

Another new feature is increased control of access to components of derived types. Individual

components may be declared PUBLIC or PRIVATE, including procedures bound to types (see next

sections).
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3.3.2 Procedure pointers

A pointer variable, whether a component of a derived type or not may now be a procedure

pointer. The declaration

PROCEDURE (proc), POINTER :: p => NULL()

defines the pointer p to be a procedure pointer, initially null and having the same interface

as the procedure proc. If there is no procedure to act as the interface template then an abstract

interface can be defined without there being an actual function with that interface. The interface

template may be omitted and the function pointer has an implicit interface and may be associated

with a function or subroutine. Alternatively the template may be replaced by a function return

type and then the pointer may only be associated with a function with that return type.

The addition of procedure pointers gives Fortran programmers the ability to bind procedures

to derived types allowing methods to be carried with objects. This is not the typical OO language

idea of methods since a function pointer may be associated with different functions throughout

the lifetime of the object, whereas methods remain the same. The latter situation is catered for

by binding a function to a type described in the next section.

3.3.3 Procedures bound by name to a type

A procedure may now be contained in a derived type and be accessed from an instance of that

type by the component selection syntax. Several of these bound procedures can be made available

via a single generic name using the GENERIC keyword, for example

GENERIC :: gen => proc1, proc2, proc3

where proc1, proc2 and proc3 are names of specific procedures. The disambiguation of the

procedures follows the usual rules.

Usually a procedure bound to a derived type in this way requires access to data contained

in the instance of the type. The default is to assume that the instance is passed as the first

argument and the other arguments move along. In this case the procedure is said to have the

PASS attribute (this is the default but may be explicitly confirmed in the procedure declaration).

If this behaviour is not required the procedure must be declared with the NOPASS attribute.

The procedures may be bound to a type as an operator or defined assignment and uses the

GENERIC statement to provide the operators and assignment for various contexts.

3.3.4 Procedure overriding

A procedure bound to an object that extends another may have the same name and attributes

as a procedure bound to the parent. Such a procedure must not be PRIVATE if the procedure

on the parent is PUBLIC. We can stop the overriding of a procedure by declaring it as follows:

PROCEDURE, NON_OVERRIDABLE :: proc
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3.3.5 Finalization

With derived types now looking more like objects with data and methods contained in them the

new standard has introduced the idea of final subroutines. Their purpose is to clean up when the

type ceases to exist, for example to deallocate targets of pointer components or close a file. Final

subroutines must be module procedures and take a single argument which is the object about to

be destroyed. The syntax for declaring module subroutines to be final is

type T

: ! Component declarations

contains

FINAL :: finish1, finish2

end type ! T

The final subroutines form a generic set and follow the usual rules for disambiguation. Each

one will be used for different ranks of variables of type T or for variables of different kind type

parameter (see next section).

When a finalizable derived type T1 has a component of another finalizable derived type (T2)

the finalization subroutine is called for T1 first followed by finalization for T2. This means that

the final subroutine of an object only has to concern itself with the object’s components that are

not finalizable.

The final subroutines of a type are not inherited by types that extend it, although they are

run when an instance of the extended type ceases to exist. Final subroutines can be implemented

for the extended type and they are invoked before the final subroutine of the parent type.

3.3.6 Parameterised derived types

Derived types may be parameterised by kind and length parameters. The parameterisation by

kind is akin to the idea of templates in C++ which can currently be implemented using Forpedo.

The kind parameter is fixed at compile time and may be used as the kind in any component of

the derived type (including another parameterised derived type).

3.3.7 Polymorphic entries

We have seen above how Fortran 2003 has made object oriented programming easier, especially

the construction of inheritance hierarchies. All that remains is a way to define variables able to

represent the base class or any of its extensions during execution. These are known as polymorphic

entries. We can define such object by using the CLASS keyword in place of the TYPE keyword in the

declaration. The entity must have the pointer or allocatable attribute or be a dummy argument.

It will get its type via pointer assignment, allocation or argument association at run-time.

Now we can write code for objects of one type and have them work for objects that extend this

type automatically. Within such code we will have access only to type parameters, components

and bound procedures of the declared type. This is as it should be – we are writing code to

manipulate the base object so we should only need information about that object. Strictly, if we

wanted to do something with an extension of that object we should write different code. However

this is not always the best option so the SELECT TYPE construct has been introduced to select
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one of its blocks of code to be executed depending on the type of a variable or an expression. An

example of this with the Shape and Circle types introduced in Section 3.1.3 is given below.

TYPE(Shape), TARGET :: s

TYPE(Circle), TARGET :: c

CLASS(Shape), POINTER :: p

p => c

SELECT TYPE( p )

TYPE IS (Circle)

print *, ’This is a circle’

CLASS IS (Shape)

print *, ’This is a shape’

END SELECT

The block to be executed is chosen according to the following rules:

1. If a TYPE IS block matches, it is taken.

2. Otherwise, if a single CLASS IS block matches, it is taken.

3. Otherwise, if several CLASS IS blocks match one must be an extension of all the others and

it is taken.

4. Otherwise, take the CLASS DEFAULT block, if it is present.

3.3.8 Deferred bindings and abstract types

There are times when we want to define a base object only as a template for other objects,

specifying the methods the extensions must implement but not implementing them itself. For

example code using the Shape object seen previously may want each shape to be able to report its

area and so we would want to require that every type that extends Shape must have a getArea

function. We can do this by defining an abstract type with abstract interface as follows.

type, abstract :: Shape

contains

procedure (calculate_area), deferred, pass :: getArea

...

end type ! Shape

abstract interface

function calculate_area(theShape)

real :: calculate_area

class(Shape), intent(inout) :: theShape

end function ! calculate_area

end interface
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Note that polymorphic entries may be declared (using CLASS) to be of an abstract type but it

is not permitted to declare, allocate or construct a non-polymorphic object of such a type. Also

deferred binding is only allowed in an abstract type.

4 Efficiency, Efficiency, Efficiency

There is much opposition to object oriented programming within the computational science com-

munity and the objections are three-fold.

• We have a great deal of legacy code (mostly Fortran) and cannot spare the effort to rewrite

it in some other OO language.

• We have a great deal of legacy code and cannot spare the effort to rewrite it in Fortran 95.

• We cannot and must never ever ever let anything get in the way of performance.

The first objection can be accepted but is a spurious reason for not improving the design of a

Fortran code because we can do many good things with Fortran 95. Modularisation and derived

data types can be used to improve code – it is not always straightforward (hence the second

objection) but neither is it impossible, [22, 23, 24].

So we come to the major stumbling block – efficiency. Surely all that data hiding and modular-

isation eats up cycles? Well that may be so for some implementations, but we are not advocating

object orientation for its own sake. The techniques shown above can be useful and, as we will

see, do not impact efficiency. What if a good design made it easier to change linear solvers when

a better one came along? There’s a benefit not to be sniffed at!

Data hiding looks like a problem as far as efficiency is concerned. Lots of function/subroutine

call overhead just to get at data? We conducted an experiment to compare the use of public and

private data in derived types using different compilers and their options.

The simple code used is given below. There are two types, PrivateTestType that declares

its data private and provides functions for access, and PublicTestType in which the data is

freely accessible.

module TestTypes

use precision_module, only : WP

implicit none

! A type that hides data

type PrivateTestType

private

integer :: intValue

real(kind=WP) :: realValue

end type ! PrivateTestType

! A type that has public data
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type PublicTestType

integer :: intValue

real(kind=WP) :: realValue

end type ! PublicTestType

contains

subroutine setIntValue(object, value)

type(PrivateTestType), intent(inout) :: object

integer, intent(in) :: value

object%intValue = value

end subroutine ! setIntValue

subroutine setRealValue(object, value)

type(PrivateTestType), intent(inout) :: object

real(kind=WP), intent(in) :: value

object%realValue = value

end subroutine ! setRealValue

function getIntValue(object)

integer :: getIntValue

type(PrivateTestType), intent(in) :: object

getIntValue = object%intValue

end function ! getIntValue

function getRealValue(object)

real(kind=WP) :: getRealValue

type(PrivateTestType), intent(in) :: object

getRealValue = object%realValue

end function ! getRealValue

end module ! TestTypes

We wrote two tests of interest in order to investigate the overheads of data hiding.

1. Does wrapping raw data in a derived type (with public components) affect performance?

Perform a calculation involving real and integer data 107 times using a subroutine that

takes a derived type containing the data and using a subroutine where the raw data are

supplied.

2. Does making components of a derived type private (meaning we must use procedures to

set and get the data) affect performance? Get and set the data for a PrivateTestType

instance 107 times and do the same for a PublicTestType instance.

The results are given in Table 1.
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Test 1 Test 2

Derived Raw Private Public

g95 – no optimisation 0.26 0.27 0.34 0.12

-O2 0.26 0.25 0.21 0.01

-O3 0.25 0.27 0.20 0.02

-march=nocona -ffast-math -funroll-loops -O3 0.09 0.1 0.16 0.02

NAG – no optimisation 0.26 0.26 0.43 0.36

-O2 0.29 0.51 0.23 0.03

-O4 0.28 0.49 0.21 0.03

-O4 -mismatch all -ieee=full -Bstatic 0.26 0.51 0.19 0.03

Intel – no optimisation (-O0) 0.29 0.29 0.38 0.12

-O2 0.19 0.22 0.19 0.02

-O3 0.23 0.23 0.19 0.01

-ipo -O3 0.22 0.23 0.02 0.02

Lahey – no optimisation 0.23 0.23 0.26 0.02

-O 0.22 0.23 0.27 0.02

--o2 0.26 0.26 0.26 0.02

-x - --o2 0.05 0.03 0.26 0.01

Table 1: Table of results for overhead tests 1 and 2

The table above shows that there need be no overhead in using derived types, a fact enhanced

by noting that this test included time for setting values of the derived type’s components before

each call to the subroutine.

The emboldened line in the table shows that by inlining the set and get routines the Intel

compiler can deliver the same performance for encapsulated data as for publicly accessible data

in a derived type.

Test 2 described above can be considered a worst-case of data-hiding in that we are considering

a set of 107 objects individually. A better approach would be to consider on object that describes

the collection of these individuals. For example, it may be better to create an object that describes

a molecule rather than deal with an a group of individual atom objects. To test this we created

Test 3 that repeated Test 2 with objects that contained array components which were set and

get as appropriate for their public/private nature. The module we used is given below.

module ArrayTest

use precision_module, only : WP

implicit none

! A type that hides data

type PrivateArrayTestType

private

integer, pointer, dimension(:) :: intArray

real(kind=WP), pointer, dimension(:) :: realArray
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end type ! PrivateArrayTestType

! A type that has public data

type PublicArrayTestType

integer, pointer, dimension(:) :: intArray

real(kind=WP), pointer, dimension(:) :: realArray

end type ! PublicArrayTestType

contains

subroutine setIntArray(object, Array)

type(PrivateArrayTestType), intent(inout) :: object

integer, target, dimension(:), intent(in) :: Array

object%intArray => Array

end subroutine ! setIntArray

subroutine setRealArray(object, Array)

type(PrivateArrayTestType), intent(inout) :: object

real(kind=WP), target, dimension(:), intent(in) :: Array

object%realArray => Array

end subroutine ! setRealArray

function getIntArray(object)

type(PrivateArrayTestType), intent(in) :: object

integer, pointer, dimension(:) :: getIntArray

getIntArray => object%intArray

end function ! getIntArray

function getRealArray(object)

type(PrivateArrayTestType), intent(in) :: object

real(kind=WP), pointer, dimension(:) :: getRealArray

getRealArray => object%realArray

end function ! getRealArray

function getIntArraySize(object)

type(PrivateArrayTestType), intent(in) :: object

integer :: getIntArraySize

getIntArraySize = size(object%intArray)

end function ! getIntArraySize

function getRealArraySize(object)

type(PrivateArrayTestType), intent(in) :: object

integer :: getRealArraySize

getRealArraySize = size(object%realArray)
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end function ! getRealArraySize

end module ! ArrayTest

The results are given in Table 2.

Test 3

Private Public

g95 – no optimisation 0.24 0.14

-O2 0.24 0.04

-O3 0.26 0.03

-march=nocona -ffast-math -funroll-loops -O3 0.24 0.03

NAG – no optimisation 0.11 0.11

-O2 0.03 0.03

-O4 0.05 0.03

-O4 -mismatch all -ieee=full -Bstatic 0.04 0.03

Intel – no optimisation (-O0) 0.15 0.13

-O2 0.05 0.04

-O3 0.03 0.04

-ipo -O3 0.04 0.04

Lahey – no optimisation 0.04 0.03

-O 0.04 0.04

--o2 0.04 0.03

-x - --o2 0.03 0.03

Table 2: Table of results for overhead Test 3

We can see from this table that not only have times come down compared with Test 2 but

that there is little difference between using public and private components in these derived types.

5 Recommendations

Be pragmatic. We are not advocating the use of objects and object oriented programming

everywhere and in all cases. Indeed there are those who argue that OO programming is not as

“natural” as some of its advocates propose [25, 26].

The (somewhat obvious) idea is to use it where it may be useful. Some situations where it

may be useful:

• Data is passed among procedures in a group. Use a derived type to make the grouping

clear (and shorten argument lists!)

• Data is passed among a small set of procedures in a group. Use a derived type defined in a

module along with the procedures. The relation between the data and procedures is made

more obvious.

• A set of derived types have data in common. Create a base type containing the common

data and use “has-a” inheritance for the derived types. The common data is in one place

and not replicated in each type.
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• There is a set of routines each doing a similar thing to different types of object plus a large

amount of decision code. Put the routines in a module and create a generic interface. The

decision about which routine to call is now made by the compiler.

• There are routines all doing the same thing to different derived types. If it really is the

same thing then there must be some commonality between the types so create a base class

for the derived types and put one copy of the routine in its module that operates on the

base class type. The base class data can be retrieved from the derived types and passed to

this one routine.

• If there really is polymorphism use polymorphic objects and Forpedo.

We should also add the two main pitfalls to be aware of with OO programming.

• Avoid making the inheritance hierarchy too deep. Object names in very deep hierarchies

can become meaningless, e.g. Object or Widget. It may also make it difficult to fit a new

object into the hierarchy, see [26].

• Don’t create objects just for the sake of it. Unless you are very good at describing what is

going on and why, the purpose of an object may become obscured.
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A Example of Run-time Polymorphism

Source code for Shape base class and its subclasses, Circle and Square.

! The Shape_class module. Defines a Shape type and methods

module Shape_class

implicit none

! Define Shape type

type Shape

private

character*12 :: name

end type ! Shape

interface print

module procedure print_Shape

end interface

contains

subroutine setName(self, theName)

type(Shape), intent(inout) :: self

character*12 :: theName

self%name = theName

end subroutine ! setName

function getName(self)

character*12 :: getName

type(Shape), intent(in) :: self

getName = self%name

end function ! getName

subroutine print_Shape(self)

type(Shape), intent(in) :: self

print *, "I am a ",self%Name

end subroutine ! print_Shape

end module ! Shape_class

! The Circle_class module. Defines a circular shape.

module Circle_class

! Bring Shape_class into scope

use Shape_class

implicit none

! Define Circle type

type Circle
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private

type(Shape) :: super ! Shape superclass

real :: centre_x, centre_y ! centre coordinates

real :: radius ! radius

end type ! Circle

interface new

module procedure init_Circle

end interface

interface print

module procedure print_Circle

end interface

interface move

module procedure move_Circle

end interface

contains

subroutine init_Circle(self, x,y, r)

type(Circle), intent(out) :: self

real, intent(in) :: x,y ! centre coordinates

real, intent(in) :: r ! radius

call setName(self%super, "Circle ")

self%centre_x = x

self%centre_y = y

self%radius = r

end subroutine ! init_Circle

subroutine print_Circle(self)

type(Circle), intent(in) :: self

call print_Shape(self%super)

print *, "Centre - (", self%centre_x, ",", self%centre_y, "), ", &

"Radius - ", self%radius

end subroutine ! print_Circle

! Move the circle by vector (x,y)

subroutine move_Circle(self, x,y)

type(Circle), intent(inout) :: self

real, intent(in) :: x, y

self%centre_x = self%centre_x + x

self%centre_y = self%centre_y + y

end subroutine ! move_Circle
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end module ! Circle_class

! The Square_class module. Defines a square shape.

module Square_class

! Bring Shape_class into scope

use Shape_class

implicit none

! Define Square type

type Square

private

type(Shape) :: super ! Shape superclass

real :: centre_x, centre_y ! centre coordinates

real :: side ! length of side

end type ! Square

interface new

module procedure init_Square

end interface

interface print

module procedure print_Square

end interface

interface move

module procedure move_Square

end interface

contains

subroutine init_Square(self, x,y, l)

type(Square), intent(out) :: self

real, intent(in) :: x,y ! centre coordinates

real, intent(in) :: l ! length of side

call setName(self%super, "Square ")

self%centre_x = x

self%centre_y = y

self%side = l

end subroutine ! init_Square

subroutine print_Square(self)

type(Square), intent(in) :: self

real :: x,y,side

x = self%centre_x

y = self%centre_y
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side = self%side

call print_Shape(self%super)

print *, "Coordinates - (", x-side/2.0, ",", y-side/2.0, ") ", &

"(", x+side/2.0, ",", y-side/2.0, ") ", &

"(", x-side/2.0, ",", y+side/2.0, ") ", &

"(", x+side/2.0, ",", y+side/2.0, ")"

end subroutine ! print_Square

! Move the square by vector (x,y)

subroutine move_Square(self, x,y)

type(Square), intent(inout) :: self

real, intent(in) :: x, y

self%centre_x = self%centre_x + x

self%centre_y = self%centre_y + y

end subroutine ! move_Square

end module ! Square_class

We define the polymorphic object using pointers to the circle and square objects.

! Module to define the polymorphic behaviour of subclasses of shape.

module poly_Shape_class

! Bring shape subclasses into scope

use Circle_class

use Square_class

! The routines to implement run-time polymorphism are private as they are not designed

! to be called directly but through interfaces. See below.

private :: poly_init, assign_circle, assign_square

private :: poly_print

! Define poly_Shape type

type poly_Shape

private

type(Circle), pointer :: pCircle

type(Square), pointer :: pSquare

end type ! poly_Shape

interface new

module procedure poly_init

end interface

interface poly

module procedure assign_circle, assign_square

end interface
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interface print

module procedure poly_print

end interface

interface move

module procedure poly_move

end interface

contains

! Initialise poly_Shape with null pointers

subroutine poly_init(self)

type(poly_Shape), intent(out) :: self

nullify(self%pCircle)

nullify(self%pSquare)

end subroutine ! poly_init

! Assign circle to poly_Shape

function assign_circle(theCircle) result(shape)

type(poly_Shape) :: shape

type(Circle), target, intent(in) :: theCircle

shape%pCircle => theCircle

nullify(shape%pSquare)

end function ! assign_circle

! Assign square to poly_Shape

function assign_square(theSquare) result(shape)

type(poly_Shape) :: shape

type(Square), target, intent(in) :: theSquare

shape%pSquare => theSquare

nullify(shape%pcircle)

end function ! assign_square

! Print a shape. This is where the polymorphism is illustrated.

subroutine poly_print(self)

type(poly_Shape), intent(in) :: self

if (associated(self%pCircle)) then

call print(self%pCircle)

else if (associated(self%pSquare)) then

call print(self%pSquare)

end if

end subroutine ! poly_print

! Move a shape. Make sure we can change data polymorphically.
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subroutine poly_move(self, x,y)

type(poly_Shape), intent(inout) :: self

real, intent(in) :: x,y

if (associated(self%pCircle)) then

call move(self%pCircle, x,y)

else if (associated(self%pSquare)) then

call move(self%pSquare, x,y)

end if

end subroutine ! poly_print

end module ! poly_Shape_class

We can use this object in code as follows.

! Main program to test run-time polymorphism of shape library

program Main

! Bring poly_Shape_class into scope (we also get Circle_class and Square_class)

use poly_Shape_class

implicit none

type(Square) square1

type(Circle) circle1

type(poly_Shape) shape1

call new(square1, 0.0, 0.0, 1.0)

call new(circle1, 0.0, 0.0, 1.0)

call new(shape1)

call print(square1)

! Create a polymorphic shape for the square

shape1 = poly(square1)

print *, ’Move the square (-2,1.3)’

call move(square1, -2.0, 1.3)

call printShape(shape1)

call print(circle1)

! Create a polymorphic shape for the circle

shape1 = poly(circle1)

print *, ’Move the circle (2.22,-1.21)’

call move(circle1, 2.22, -1.21)

call printShape(shape1)
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end program ! Main

! Subroutine to print a shape

subroutine printShape(theShape)

! Bring poly_Shape_class into scope

use poly_Shape_class

type(poly_Shape), intent(in) :: theShape

call print(theShape)

end subroutine ! printShape

! Subroutine to move a shape by vector (x,y)

subroutine moveShape(theShape, x,y)

! Bring poly_Shape_class into scope

use poly_Shape_class

type(poly_Shape), intent(inout) :: theShape

real, intent(in) :: x, y

call move(theShape, x,y)

end subroutine ! printShape
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B Example of Templates with Forpedo

The source code containing the template
definitions.

#definetype WorldIdType Int integer

#definetype WorldIdType Real real

module HelloWorld<WorldIdType>

@WorldIdType :: worldId<WorldIdType>

contains

subroutine setId<WorldIdType>(id)

@WorldIdType :: id

worldId<WorldIdType> = id

end subroutine

subroutine print<WorldIdType>()

print *,’Hello World "’,

worldId<WorldIdType>,’"’

end subroutine

end module

The code produced by Forpedo

module HelloWorldInt

integer :: worldIdInt

contains

subroutine setIdInt(id)

integer :: id

worldIdInt = id

end subroutine

subroutine printInt()

print *,’Hello World "’,worldIdInt,’"’

end subroutine

end module

module HelloWorldReal

real :: worldIdReal

contains

subroutine setIdReal(id)

real :: id

worldIdReal = id

end subroutine

subroutine printReal()

print *,’Hello World "’,worldIdReal,’"’

end subroutine

end module

C Example of Run-time Polymorphism with Forpedo

Define module AnimalMod containing an animal age in years and modules DogMod and CatMod

that use AnimalMod and define the Dog and Cat type as follows.

module AnimalMod

type Animal

integer :: ageInYears

end type

end module
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module DogMod

use AnimalMod

type Dog

type (Animal) :: super

end type

interface makeSound

module procedure makeSoundDog

end interface

interface increaseAgeInAnimalYears

module procedure increaseAgeInAnimalYearsDog

end interface

interface increaseAgeAndGetAnimalYears

module procedure increaseAgeAndGetAnimalYearsDog

end interface

contains

subroutine makeSoundDog(self)

type (Dog) :: self

print *,’Woof!’

end subroutine

subroutine increaseAgeInAnimalYearsDog(self, increase)

type (Dog) :: self

integer, intent(in) :: increase

self%super%ageInYears = self%super%ageInYears + increase * 7 ! Dog year is 7 human years

end subroutine

function increaseAgeAndGetAnimalYearsDog(self, increase) result(returnValue)

type (Dog) :: self

integer, intent(in) :: increase

integer :: returnValue

call increaseAgeInAnimalYearsDog(self, increase)

returnValue = self%super%ageInYears

end function

end module

module CatMod

use AnimalMod

type Cat

type (Animal) :: super

end type
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interface makeSound

module procedure makeSoundCat

end interface

interface increaseAgeInAnimalYears

module procedure increaseAgeInAnimalYearsCat

end interface

interface increaseAgeAndGetAnimalYears

module procedure increaseAgeAndGetAnimalYearsCat

end interface

contains

subroutine makeSoundCat(self)

type (Cat) :: self

print *,’Meeow!’

end subroutine

subroutine increaseAgeInAnimalYearsCat(self, increase)

type (Cat) :: self

integer, intent(in) :: increase

self%super%ageInYears = self%super%ageInYears + increase * 6 ! Cat year is 6 (?) human years

end subroutine

function increaseAgeAndGetAnimalYearsCat(self, increase) result(returnValue)

type (Cat) :: self

integer, intent(in) :: increase

integer :: returnValue

call increaseAgeInAnimalYearsCat(self, increase)

returnValue = self%super%ageInYears

end function

end module

Now we can define the module that implements run-time polymorphism via a Forpedo pro-

tocol.

#protocol AnimalProtocol AnimalProtocolMod ! We define type AnimalProtocol in

! module AnimalProtocolMod

#method makeSound ! There will be a subroutine makeSound in

type(AnimalProtocol), intent(in) :: self ! AnimalProtocolMod with the ’self’ argument

#endmethod

#method increaseAgeInAnimalYears increase ! This subroutine will have 2 args -

type(AnimalProtocol), intent(inout) :: self ! self and increase

integer, intent(in) :: increase

#endmethod
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#funcmethod increaseAgeAndGetAnimalYears increase,returnValue

type(AnimalProtocol), intent(inout) :: self ! This function will have 2 args as above

integer, intent(in) :: increase ! and a return value

integer :: returnValue

#endmethod

! These are the types and their modules that are polymorphic

#conformingtype Dog DogMod

#conformingtype Cat CatMod

#endprotocol

Then we can create a main program that uses the Dog and Cat types and the Forpedo created

AnimalProtocol type.

program Main

use AnimalProtocolMod

use DogMod

use CatMod

type (Dog), pointer :: d

type (Cat), pointer :: c

type (AnimalProtocol) :: p

allocate(d,c)

! Initialization. Should use constructor, but left out for demo purposes.

d%super%ageInYears = 1

c%super%ageInYears = 1

! Assign polymorphic ’pointer’ to Dog

p = d

! Pass pointer to a subroutine that knows nothing about the concrete type Dog

call doStuffWithAnimal(p)

print *,"Dog’s age is now ",d%super%ageInYears

! Repeat for Cat. Results will be different, though subroutine call is the same.

p = c

call doStuffWithAnimal(p)

print *,"Cat’s age is now ",c%super%ageInYears

! Try again with a function, rather than a subroutine

print *,"Cat’s age is now ", increaseAgeAndGetAnimalYears(p,1)

deallocate(c,d)

contains

subroutine doStuffWithAnimal(a)

type (AnimalProtocol) :: a

call makeSound(a)
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call increaseAgeInAnimalYears(a, 2)

end subroutine

end program

Forpedo creates the AnimalProtocolMod module listed below.

!-------------------------------------------------------------------------------------------

! This protocol module was generated by Forpedo (http://www.macanics.net/forpedo).

! Do not edit this module directly. Instead, locate the forpedo input file used to generate

! it, and make changes there. When you are ready, regenerate this file with Forpedo.

!-------------------------------------------------------------------------------------------

module AnimalProtocolMod

use DogMod

use CatMod

implicit none

integer, parameter, private :: DogId = 0

integer, parameter, private :: CatId = 1

type AnimalProtocol

private

integer :: concreteTypeId = -1

type (Dog), pointer :: DogPtr

type (Cat), pointer :: CatPtr

end type

interface assignment(=)

module procedure assignToType0

module procedure assignToType1

end interface

interface makeSound

module procedure makeSoundProt

end interface

interface increaseAgeInAnimalYears

module procedure increaseAgeInAnimalYearsProt

end interface

interface increaseAgeAndGetAnimalYears

module procedure increaseAgeAndGetAnimalYearsProt

end interface

private :: assignToType0

private :: assignToType1

private :: makeSoundProt

private :: increaseAgeInAnimalYearsProt

private :: increaseAgeAndGetAnimalYearsProt

contains
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subroutine assignToType0(self,concreteType)

type (AnimalProtocol), intent(out) :: self

type (Dog), intent(in), target :: concreteType

self%DogPtr => concreteType

self%concreteTypeId = DogId

end subroutine

subroutine assignToType1(self,concreteType)

type (AnimalProtocol), intent(out) :: self

type (Cat), intent(in), target :: concreteType

self%CatPtr => concreteType

self%concreteTypeId = CatId

end subroutine

subroutine makeSoundProt(self)

type(AnimalProtocol), intent(in) :: self

select case (self%concreteTypeId)

case (DogId)

call makeSound(self%DogPtr)

case (CatId)

call makeSound(self%CatPtr)

case default

print *,"Invalid case in makeSoundProt"

stop

end select

end subroutine

subroutine increaseAgeInAnimalYearsProt(self, increase)

type(AnimalProtocol), intent(inout) :: self

integer, intent(in) :: increase

select case (self%concreteTypeId)

case (DogId)

call increaseAgeInAnimalYears(self%DogPtr, increase)

case (CatId)

call increaseAgeInAnimalYears(self%CatPtr, increase)

case default

print *,"Invalid case in increaseAgeInAnimalYearsProt"

stop

end select

end subroutine

function increaseAgeAndGetAnimalYearsProt(self, increase) result(returnValue)

type(AnimalProtocol), intent(inout) :: self

integer, intent(in) :: increase

integer :: returnValue

select case (self%concreteTypeId)

case (DogId)

returnValue = increaseAgeAndGetAnimalYears(self%DogPtr, increase)

case (CatId)
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returnValue = increaseAgeAndGetAnimalYears(self%CatPtr, increase)

case default

print *,"Invalid case in increaseAgeAndGetAnimalYearsProt"

stop

end select

end function

end module
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