Dates are inconsistent

Dates are inconsistent

4148 results sorted by ID
2024/679 (PDF) Last updated: 2024-05-03
Isotropic Quadratic Forms, Diophantine Equations and Digital Signatures
Martin Feussner, Igor Semaev
Public-key cryptography

This work introduces DEFI - an efficient hash-and-sign digital signature scheme based on isotropic quadratic forms over a commutative ring of characteristic 0. The form is public, but the construction is a trapdoor that depends on the scheme's private key. For polynomial rings over integers and rings of integers of algebraic number fields, the cryptanalysis is reducible to solving a quadratic Diophantine equation over the ring or, equivalently, to solving a system of quadratic Diophantine...

2024/657 (PDF) Last updated: 2024-05-02
Cryptographic Accumulators: New Definitions, Enhanced Security, and Delegatable Proofs
Anaïs Barthoulot, Olivier Blazy, Sébastien Canard
Public-key cryptography

Cryptographic accumulators, introduced in 1993 by Benaloh and De Mare, represent a set with a concise value and offer proofs of (non-)membership. Accumulators have evolved, becoming essential in anonymous credentials, e-cash, and blockchain applications. Various properties like dynamic and universal emerged for specific needs, leading to multiple accumulator definitions. In 2015, Derler, Hanser, and Slamanig proposed a unified model, but new properties, including zero-knowledge security,...

2024/652 (PDF) Last updated: 2024-05-02
Compact and Secure Zero-Knowledge Proofs for Quantum-Resistant Cryptography from Modular Lattice Innovations
Samuel Lavery
Public-key cryptography

This paper presents a comprehensive security analysis of the Adh zero-knowledge proof system, a novel lattice-based, quantum-resistant proof of possession system. The Adh system offers compact key and proof sizes, making it suitable for real-world digital signature and public key agreement protocols. We explore its security by reducing it to the hardness of the Module-ISIS problem and introduce three new variants: Module-ISIS+, Module-ISIS*, and Module-ISIS**. These constructions enhance...

2024/643 (PDF) Last updated: 2024-04-26
Key-Homomorphic and Aggregate Verifiable Random Functions
Giulio Malavolta
Public-key cryptography

A verifiable random function (VRF) allows one to compute a random-looking image, while at the same time providing a unique proof that the function was evaluated correctly. VRFs are a cornerstone of modern cryptography and, among other applications, are at the heart of recently proposed proof-of-stake consensus protocols. In this work we initiate the formal study of aggregate VRFs, i.e., VRFs that allow for the aggregation of proofs/images into a small di- gest, whose size is independent of...

2024/634 (PDF) Last updated: 2024-04-25
NTRU-based FHE for Larger Key and Message Space
Robin Jadoul, Axel Mertens, Jeongeun Park, Hilder V. L. Pereira
Public-key cryptography

The NTRU problem has proven a useful building block for efficient bootstrapping in Fully Homomorphic Encryption (FHE) schemes, and different such schemes have been proposed. FINAL (ASIACRYPT 2022) first constructed FHE using homomorphic multiplexer (CMux) gates for the blind rotation operation. Later, XZD+23 (CRYPTO 2023) gave an asymptotic optimization by changing the ciphertext format to enable ring automorphism evaluations. In this work, we examine an adaptation to FINAL to evaluate CMux...

2024/625 (PDF) Last updated: 2024-04-23
Interactive Threshold Mercurial Signatures and Applications
Masaya Nanri, Octavio Perez Kempner, Mehdi Tibouchi, Masayuki Abe
Public-key cryptography

Equivalence class signatures allow a controlled form of malleability based on equivalence classes defined over the message space. As a result, signatures can be publicly randomized and adapted to a new message representative in the same equivalence class. Notably, security requires that an adapted signature-message pair looks indistinguishable from a random signature-message pair in the space of valid signatures for the new message representative. Together with the decisional Diffie-Hellman...

2024/623 (PDF) Last updated: 2024-04-22
Complete group law for genus 2 Jacobians on Jacobian coordinates
Elif Ozbay Gurler, Huseyin Hisil
Public-key cryptography

This manuscript provides complete, inversion-free, and explicit group law formulas in Jacobian coordinates for the genus 2 hyperelliptic curves of the form $y^2 = x^5 + a_3 x^3 + a_2 x^2 + a_1 x + a_0$ over a field $K$ with $char(K) \ne 2$. The formulas do not require the use of polynomial arithmetic operations such as resultant, mod, or gcd computations but only operations in $K$.

2024/614 (PDF) Last updated: 2024-04-22
Non-interactive Blind Signatures from Lattices
Foteini Baldimtsi, Jiaqi Cheng, Rishab Goyal, Aayush Yadav
Public-key cryptography

Blind signatures enable a receiver to obtain signatures on messages of its choice without revealing any message to the signer. Round-optimal blind signatures are designed as a two-round interactive protocol between a signer and receiver. Coincidentally, the choice of message is not important in many applications, and is routinely set as a random (unstructured) message by a receiver. With the goal of designing more efficient blind signatures for such applications, Hanzlik (Eurocrypt '23)...

2024/609 (PDF) Last updated: 2024-04-20
New Security Proofs and Techniques for Hash-and-Sign with Retry Signature Schemes
Benoît Cogliati, Pierre-Alain Fouque, Louis Goubin, Brice Minaud
Public-key cryptography

Hash-and-Sign with Retry is a popular technique to design efficient signature schemes from code-based or multivariate assumptions. Contrary to Hash-and-Sign signatures based on preimage-sampleable functions as defined by Gentry, Peikert and Vaikuntanathan (STOC 2008), trapdoor functions in code-based and multivariate schemes are not surjective. Therefore, the standard approach uses random trials. Kosuge and Xagawa (PKC 2024) coined it the Hash-and-Sign with Retry paradigm. As many attacks...

2024/593 (PDF) Last updated: 2024-04-16
The Case of Small Prime Numbers Versus the Okamoto-Uchiyama Cryptosystem
George Teseleanu
Public-key cryptography

In this paper we study the effect of using small prime numbers within the Okamoto-Uchiyama public key encryption scheme. We introduce two novel versions and prove their security. Then we show how to choose the system's parameters such that the security results hold. Moreover, we provide a practical comparison between the cryptographic algorithms we introduced and the original Okamoto-Uchiyama cryptosystem.

2024/591 (PDF) Last updated: 2024-04-16
Hash your Keys before Signing: BUFF Security of the Additional NIST PQC Signatures
Thomas Aulbach, Samed Düzlü, Michael Meyer, Patrick Struck, Maximiliane Weishäupl
Public-key cryptography

In this work, we analyze the so-called Beyond UnForgeability Features (BUFF) security of the submissions to the current standardization process of additional signatures by NIST. The BUFF notions formalize security against maliciously generated keys and have various real-world use cases, where security can be guaranteed despite misuse potential on a protocol level. Consequently, NIST declared the security against the BUFF notions as desirable features. Despite NIST's interest, only $6$ out of...

2024/590 (PDF) Last updated: 2024-04-16
Revisiting the Security of Fiat-Shamir Signature Schemes under Superposition Attacks
Quan Yuan, Chao Sun, Tsuyoshi Takagi
Public-key cryptography

The Fiat-Shamir transformation is a widely employed technique in constructing signature schemes, known as Fiat-Shamir signature schemes (FS-SIG), derived from secure identification (ID) schemes. However, the existing security proof only takes into account classical signing queries and does not consider superposition attacks, where the signing oracle is quantum-accessible to the adversaries. Alagic et al. proposed a security model called blind unforgeability (BUF, Eurocrypt'20), regarded as a...

2024/561 (PDF) Last updated: 2024-04-23
SQIAsignHD: SQIsignHD Adaptor Signature
Farzin Renan, Péter Kutas
Public-key cryptography

Adaptor signatures can be viewed as a generalized form of the standard digital signature schemes where a secret randomness is hidden within a signature. Adaptor signatures are a recent cryptographic primitive and are becoming an important tool for blockchain applications such as cryptocurrencies to reduce on-chain costs, improve fungibility, and contribute to off-chain forms of payment in payment-channel networks, payment-channel hubs, and atomic swaps. However, currently used adaptor...

2024/553 (PDF) Last updated: 2024-04-29
Efficient Linkable Ring Signatures: New Framework and Post-Quantum Instantiations
Yuxi Xue, Xingye Lu, Man Ho Au, Chengru Zhang
Public-key cryptography

In this paper, we introduce a new framework for constructing linkable ring signatures (LRS). Our framework is based purely on signatures of knowledge (SoK) which allows one to issue signatures on behalf of any NP-statement using the corresponding witness. Our framework enjoys the following advantages: (1) the security of the resulting LRS depends only on the security of the underlying SoK; (2) the resulting LRS naturally supports online/offline signing (resp. verification), where the output...

2024/541 (PDF) Last updated: 2024-04-07
Dual Support Decomposition in the Head: Shorter Signatures from Rank SD and MinRank
Loïc Bidoux, Thibauld Feneuil, Philippe Gaborit, Romaric Neveu, Matthieu Rivain
Public-key cryptography

The MPC-in-the-Head (MPCitH) paradigm is widely used for building post-quantum signature schemes, as it provides a versatile way to design proofs of knowledge based on hard problems. Over the years, the MPCitH landscape has changed significantly, with the most recent improvement coming from VOLE-in-the-Head (VOLEitH) and Threshold-Computation-in-the-Head (TCitH). While a straightforward application of these frameworks already improve the existing MPCitH-based signatures, we show in...

2024/540 (PDF) Last updated: 2024-04-07
Lattice-Based Timed Cryptography
Russell W. F. Lai, Giulio Malavolta
Public-key cryptography

Timed cryptography studies primitives that retain their security only for a predetermined amount of time, such as proofs of sequential work and time-lock puzzles. This feature has proven to be useful in a large number of practical applications, e.g. randomness generation, sealed-bid auctions, and fair multi-party computation. However, the current state of affairs in timed cryptography is unsatisfactory: Virtually all efficient constructions rely on a single sequentiality assumption, namely...

2024/528 (PDF) Last updated: 2024-04-04
The solving degrees for computing Gröbner bases of affine semi-regular polynomial sequences
Momonari Kudo, Kazuhiro Yokoyama
Public-key cryptography

Determining the complexity of computing Gröbner bases is an important problem both in theory and in practice, and for that the solving degree plays a key role. In this paper, we study the solving degrees of affine semi-regular sequences and their homogenized sequences. Some of our results are considered to give mathematically rigorous proofs of the correctness of methods for computing Gröbner bases of the ideal generated by an affine semi-regular sequence. This paper is a sequel of the...

2024/523 (PDF) Last updated: 2024-04-03
Unbindable Kemmy Schmidt: ML-KEM is neither MAL-BIND-K-CT nor MAL-BIND-K-PK
Sophie Schmieg
Public-key cryptography

In "Keeping up with the KEMs" Cremers et al. introduced various binding models for KEMs. The authors show that ML-KEM is LEAK-BIND-K-CT and LEAK-BIND-K-PK, i.e. binding the ciphertext and the public key in the case of an adversary having access, but not being able to manipulate the key material. They further conjecture that ML-KEM also has MAL-BIND-K-PK, but not MAL-BIND-K-CT, the binding of public key or ciphertext to the shared secret in the case of an attacker with the ability to...

2024/521 (PDF) Last updated: 2024-04-02
LIT-SiGamal: An efficient isogeny-based PKE based on a LIT diagram
Tomoki Moriya
Public-key cryptography

In this paper, we propose a novel isogeny-based public key encryption (PKE) scheme named LIT-SiGamal. This is based on a LIT diagram and SiGamal. SiGamal is an isogeny-based PKE scheme that uses a commutative diagram with an auxiliary point. LIT-SiGamal uses a LIT diagram which is a commutative diagram consisting of large-degree horizontal isogenies and relatively small-degree vertical isogenies, while the original SiGamal uses a CSIDH diagram. A strength of LIT-SiGamal is efficient...

2024/519 (PDF) Last updated: 2024-04-02
On implementation of Stickel's key exchange protocol over max-min and max-$T$ semirings
Sulaiman Alhussaini, Serge˘ı Sergeev
Public-key cryptography

Given that the tropical Stickel protocol and its variants are all vulnerable to the generalized Kotov-Ushakov attack, we suggest employing the max-min semiring and, more generally, max-$T$ semiring where the multiplication is based on a $T-$norm, as a framework to implement the Stickel protocol. While the Stickel protocol over max-min semiring or max-$T$ semiring remains susceptible to a form of Kotov-Ushakov attack, we demonstrate that it exhibits significantly increased resistance against...

2024/509 (PDF) Last updated: 2024-03-31
Distribution of cycles in supersingular $\ell$-isogeny graphs
Eli Orvis
Public-key cryptography

Recent work by Arpin, Chen, Lauter, Scheidler, Stange, and Tran counted the number of cycles of length $r$ in supersingular $\ell$-isogeny graphs. In this paper, we extend this work to count the number of cycles that occur along the spine. We provide formulas for both the number of such cycles, and the average number as $p \to \infty$, with $\ell$ and $r$ fixed. In particular, we show that when $r$ is not a power of $2$, cycles of length $r$ are disproportionately likely to occur along the...

2024/505 (PDF) Last updated: 2024-04-15
RSA-Based Dynamic Accumulator without Hashing into Primes
Victor Youdom Kemmoe, Anna Lysyanskaya
Public-key cryptography

A cryptographic accumulator is a compact data structure for representing a set of elements coming from some domain. It allows for a compact proof of membership and, in the case of a universal accumulator, non-membership of an element x in the data structure. A dynamic accumulator, furthermore, allows elements to be added to and deleted from the accumulator. Previously known RSA-based dynamic accumulators were too slow in practice because they required that an element in the domain be...

2024/501 (PDF) Last updated: 2024-03-28
Anonymous Revocable Identity-Based Encryption Supporting Anonymous Revocation
Kwangsu Lee
Public-key cryptography

Anonymous identity-based encryption (AIBE) is an extension of identity-based encryption (IBE) that enhances the privacy of a ciphertext by providing ciphertext anonymity. In this paper, we introduce the concept of revocable IBE with anonymous revocation (RIBE-AR), which is capable of issuing an update key and hiding the revoked set of the update key that efficiently revokes private keys of AIBE. We first define the security models of RIBE-AR and propose an efficient RIBE-AR scheme in...

2024/486 (PDF) Last updated: 2024-03-25
Anamorphic Encryption: New Constructions and Homomorphic Realizations
Dario Catalano, Emanuele Giunta, Francesco Migliaro
Public-key cryptography

The elegant paradigm of Anamorphic Encryption (Persiano et al., Eurocrypt 2022) considers the question of establishing a private communication in a world controlled by a dictator. The challenge is to allow two users, sharing some secret anamorphic key, to exchange covert messages without the dictator noticing, even when the latter has full access to the regular secret keys. Over the last year several works considered this question and proposed constructions, novel extensions and...

2024/473 (PDF) Last updated: 2024-03-25
Extremely Simple (Almost) Fail-Stop ECDSA Signatures
Mario Yaksetig
Public-key cryptography

Fail-stop signatures are digital signatures that allow a signer to prove that a specific forged signature is indeed a forgery. After such a proof is published, the system can be stopped. We introduce a new simple ECDSA fail-stop signature scheme. Our proposal is based on the minimal assumption that an adversary with a quantum computer is not able to break the (second) preimage resistance of a cryptographically-secure hash function. Our scheme is as efficient as traditional ECDSA, does not...

2024/471 (PDF) Last updated: 2024-03-20
Knot-based Key Exchange protocol
Silvia Sconza, Arno Wildi
Public-key cryptography

We propose a new key exchange protocol based on the Generalised Diffie-Hellman Key Exchange. In the latter, instead of using a group-action, we consider a semigroup action. In our proposal, the semigroup is the set of oriented knots in $\mathbb{S}^3$ with the operation of connected sum. As a semigroup action, we choose the action of the semigroup on itself through the connected sum. For the protocol to work, we need to use knot invariants, which allow us to create the shared secret key...

2024/466 (PDF) Last updated: 2024-03-20
Arctic: Lightweight and Stateless Threshold Schnorr Signatures
Chelsea Komlo, Ian Goldberg
Public-key cryptography

Threshold Schnorr signatures are seeing increased adoption in practice, and offer practical defenses against single points of failure. However, one challenge with existing randomized threshold Schnorr signature schemes is that signers must carefully maintain secret state across signing rounds, while also ensuring that state is deleted after a signing session is completed. Failure to do so will result in a fatal key-recovery attack by re-use of nonces. While deterministic threshold...

2024/449 (PDF) Last updated: 2024-03-15
Practical Lattice-Based Distributed Signatures for a Small Number of Signers
Nabil Alkeilani Alkadri, Nico Döttling, Sihang Pu
Public-key cryptography

$n$-out-of-$n$ distributed signatures are a special type of threshold $t$-out-of-$n$ signatures. They are created by a group of $n$ signers, each holding a share of the secret key, in a collaborative way. This kind of signatures has been studied intensively in recent years, motivated by different applications such as reducing the risk of compromising secret keys in cryptocurrencies. Towards maintaining security in the presence of quantum adversaries, Damgård et al. (J Cryptol 35(2), 2022)...

2024/445 (PDF) Last updated: 2024-03-15
Threshold Structure-Preserving Signatures: Strong and Adaptive Security under Standard Assumptions
Aikaterini Mitrokotsa, Sayantan Mukherjee, Mahdi Sedaghat, Daniel Slamanig, Jenit Tomy
Public-key cryptography

Structure-preserving signatures (SPS) have emerged as an important cryptographic building block, as their compatibility with the Groth-Sahai (GS) NIZK framework allows to construct protocols under standard assumptions with reasonable efficiency. Over the last years there has been a significant interest in the design of threshold signature schemes. However, only very recently Crites et al. (ASIACRYPT 2023) have introduced threshold SPS (TSPS) along with a fully non-interactive construction....

2024/437 (PDF) Last updated: 2024-03-13
Insecurity of MuSig and BN Multi-Signatures with Delayed Message Selection
Sela Navot
Public-key cryptography

This note reveals a vulnerability of MuSig and BN multi-signatures when used with delayed message selection. Despite the fact that both schemes can be correctly implemented with preprocessing of the first two signing rounds before the message to sign is selected, we show that they are insecure (i.e. not existentially unforgeable against chosen message attacks) when the message selection is deferred to the third signing round and when parallel signing sessions are permitted. The attack, which...

2024/435 (PDF) Last updated: 2024-03-13
Unbiasable Verifiable Random Functions
Emanuele Giunta, Alistair Stewart
Public-key cryptography

Verifiable Random Functions (VRFs) play a pivotal role in Proof of Stake (PoS) blockchain due to their applications in secret leader election protocols. However, the original definition by Micali, Rabin and Vadhan is by itself insufficient for such applications. The primary concern is that adversaries may craft VRF key pairs with skewed output distribution, allowing them to unfairly increase their winning chances. To address this issue David, Gaži, Kiayias and Russel (2017/573) proposed a...

2024/417 (PDF) Last updated: 2024-03-09
An improved exact CRR basis conversion algorithm for FHE without floating-point arithmetic
Hongyuan Qu, Guangwu Xu
Public-key cryptography

Fully homomorphic encryption (FHE) has attracted much attention recently. Chinese remainder representation (CRR) or RNS representation is one of the core technologies of FHE. CRR basis conversion is a key step of KeySwitching procedure. Bajard et al. proposed a fast basis conversion method for CRR basis conversion, but the elimination of error had to be ignored. Halevi et al. suggested a method using floating-point arithmetic to avoid errors, but floating-point arithmetic has its own issues...

2024/411 (PDF) Last updated: 2024-04-05
Polytopes in the Fiat-Shamir with Aborts Paradigm
Henry Bambury, Hugo Beguinet, Thomas Ricosset, Eric Sageloli
Public-key cryptography

The Fiat-Shamir with Aborts paradigm (FSwA) uses rejection sampling to remove a secret’s dependency on a given source distribution. Recent results revealed that unlike the uniform distribution in the hypercube, both the continuous Gaussian and the uniform distribution within the hypersphere minimise the rejection rate and the size of the proof of knowledge. However, in practice both these distributions suffer from the complexity of their sampler. So far, those three distributions are the...

2024/401 (PDF) Last updated: 2024-03-05
Plover: Masking-Friendly Hash-and-Sign Lattice Signatures
Muhammed F. Esgin, Thomas Espitau, Guilhem Niot, Thomas Prest, Amin Sakzad, Ron Steinfeld
Public-key cryptography

We introduce a toolkit for transforming lattice-based hash-and-sign signature schemes into masking-friendly signatures secure in the t-probing model. Until now, efficiently masking lattice-based hash-and-sign schemes has been an open problem, with unsuccessful attempts such as Mitaka. A first breakthrough was made in 2023 with the NIST PQC submission Raccoon, although it was not formally proven. Our main conceptual contribution is to realize that the same principles underlying Raccoon...

2024/400 (PDF) Last updated: 2024-03-05
SILBE: an Updatable Public Key Encryption Scheme from Lollipop Attacks
Max Duparc, Tako Boris Fouotsa, Serge Vaudenay
Public-key cryptography

We present a new post-quantum Public Key Encryption scheme (PKE) named Supersingular Isogeny Lollipop Based Encryption or SILBE. SILBE is obtained by leveraging the generalized lollipop attack of Castryck and Vercauteren on the M-SIDH Key exchange by Fouotsa, Moriya and Petit. Doing so, we can in fact make of SILBE a post-quantum secure Updatable Public Key Encryption scheme (UPKE). SILBE is the first isogeny-based UPKE which is not based on group actions. In its core, SILBE extensively...

2024/397 (PDF) Last updated: 2024-03-05
Exponent-VRFs and Their Applications
Dan Boneh, Iftach Haitner, Yehuda Lindell
Public-key cryptography

Verifiable random functions (VRFs) are pseudorandom functions with the addition that the function owner can prove that a generated output is correct, with respect to a committed key. In this paper we introduce the notion of an exponent-VRF, or eVRF, which is a VRF that does not provide its output $y$ explicitly, but instead provides $Y = y \cdot G$, where $G$ is a generator of some finite cyclic group (or $Y = g^y$ in multiplicative notation). We construct eVRFs from DDH and from the...

2024/394 (PDF) Last updated: 2024-03-04
A Deniably Authenticated Searchable Public Key Encryption Scheme in Mobile Electronic Mail System
Shuhan Zeng, Yongjian Liao, Chuanhao Zhou, Jinlin He, Hongwei Wang
Public-key cryptography

Confidentiality and authentication are two main security goals in secure electronic mail (e-mail). Furthermore, deniability is also a significant security property for some e-mail applications to protect the privacy of the sender. Although searchable encryption solves the keyword searching problem in a secure e-mail system, it also breaks the deniability of the system. Because the adversary can obtain the information of the data sender and data user from the trapdoor as well as ciphertext...

2024/388 (PDF) Last updated: 2024-03-03
Leakage-Resilient Attribute-Based Encryption with Attribute-Hiding
Yijian Zhang, Yunhao Ling, Jie Chen, Luping Wang
Public-key cryptography

In this work, we present two generic frameworks for leakage-resilient attribute-based encryption (ABE), which is an improved version of ABE that can be proven secure even when part of the secret key is leaked. Our frameworks rely on the standard assumption ($k$-Lin) over prime-order groups. The first framework is designed for leakage-resilient ABE with attribute-hiding in the bounded leakage model. Prior to this work, no one had yet derived a generic leakage-resilient ABE framework with...

2024/385 (PDF) Last updated: 2024-03-01
A New Public Key Cryptosystem Based on the Cubic Pell Curve
Michel Seck, Abderrahmane Nitaj
Public-key cryptography

Since its invention in 1978 by Rivest, Shamir and Adleman, the public key cryptosystem RSA has become a widely popular and a widely useful scheme in cryptography. Its security is related to the difficulty of factoring large integers which are the product of two large prime numbers. For various reasons, several variants of RSA have been proposed, and some have different arithmetics such as elliptic and singular cubic curves. In 2018, Murru and Saettone proposed another variant of RSA based on...

2024/361 (PDF) Last updated: 2024-02-28
Key Exchange with Tight (Full) Forward Secrecy via Key Confirmation
Jiaxin Pan, Doreen Riepel, Runzhi Zeng
Public-key cryptography

Weak forward secrecy (wFS) of authenticated key exchange (AKE) protocols is a passive variant of (full) forward secrecy (FS). A natural mechanism to upgrade from wFS to FS is the use of key confirmation messages which compute a message authentication code (MAC) over the transcript. Unfortunately, Gellert, Gjøsteen, Jacobson and Jager (GGJJ, CRYPTO 2023) show that this mechanism inherently incurs a loss proportional to the number of users, leading to an overall non-tight reduction, even if...

2024/359 (PDF) Last updated: 2024-02-28
Key-Recovery Attack on a Public-Key Encryption Related to Planted Clique
Caicai Chen, Chris Jones
Public-key cryptography

Hudoba proposed a public key encryption (PKE) scheme and conjectured its security to be based on the Planted Clique problem. In this note, we show that this scheme is not secure. We do so by devising an efficient algorithm for the even neighbor independent set problem proposed by Hudoba. This leaves open the possibility of building PKE based on Planted Clique.

2024/329 (PDF) Last updated: 2024-02-26
How to Validate a Verification?
Houda Ferradi
Public-key cryptography

This paper introduces \textsl{signature validation}, a primitive allowing any \underline{t}hird party $T$ (\underline{T}héodore) to verify that a \underline{v}erifier $V$ (\underline{V}adim) computationally verified a signature $s$ on a message $m$ issued by a \underline{s}igner $S$ (\underline{S}arah). A naive solution consists in sending by Sarah $x=\{m,\sigma_s\}$ where $\sigma_s$ is Sarah's signature on $m$ and have Vadim confirm reception by a signature $\sigma_v$ on $x$....

2024/328 (PDF) Last updated: 2024-02-26
Attribute-Based Signatures with Advanced Delegation, and Tracing
Cécile Delerablée, Lénaïck Gouriou, David Pointcheval
Public-key cryptography

Attribute-based cryptography allows fine-grained control on the use of the private key. In particular, attribute-based signature (ABS) specifies the capabilities of the signer, which can only sign messages associated to a policy that is authorized by his set of attributes. Furthermore, we can expect signature to not leak any information about the identity of the signer. ABS is a useful tool for identity-preserving authentication process which requires granular access-control, and can...

2024/327 (PDF) Last updated: 2024-02-26
Registered Functional Encryptions from Pairings
Ziqi Zhu, Jiangtao Li, Kai Zhang, Junqing Gong, Haifeng Qian
Public-key cryptography

This work initiates the study of concrete registered functional encryption (Reg-FE) beyond ``all-or-nothing'' functionalities: - We build the first Reg-FE for linear function or inner-product evaluation (Reg-IPFE) from pairings. The scheme achieves adaptive IND-security under $k$-Lin assumption in the prime-order bilinear group. A minor modification yields the first Registered Inner-Product Encryption (Reg-IPE) scheme from $k$-Lin assumption. Prior work achieves the same security in...

2024/313 (PDF) Last updated: 2024-02-26
The Complexity of Algebraic Algorithms for LWE
Matthias Johann Steiner
Public-key cryptography

Arora & Ge introduced a noise-free polynomial system to compute the secret of a Learning With Errors (LWE) instance via linearization. Albrecht et al. later utilized the Arora-Ge polynomial model to study the complexity of Gröbner basis computations on LWE polynomial systems under the assumption of semi-regularity. In this paper we revisit the Arora-Ge polynomial and prove that it satisfies a genericity condition recently introduced by Caminata & Gorla, called being in generic coordinates....

2024/312 (PDF) Last updated: 2024-02-23
Trapdoor Memory-Hard Functions
Benedikt Auerbach, Christoph U. Günther, Krzysztof Pietrzak
Public-key cryptography

Memory-hard functions (MHF) are functions whose evaluation provably requires a lot of memory. While MHFs are an unkeyed primitive, it is natural to consider the notion of trapdoor MHFs (TMHFs). A TMHF is like an MHF, but when sampling the public parameters one also samples a trapdoor which allows evaluating the function much cheaper. Biryukov and Perrin (Asiacrypt'17) were the first to consider TMHFs and put forth a candidate TMHF construction called Diodon that is based on the Scrypt MHF...

2024/311 (PDF) Last updated: 2024-02-23
Aggregating Falcon Signatures with LaBRADOR
Marius A. Aardal, Diego F. Aranha, Katharina Boudgoust, Sebastian Kolby, Akira Takahashi
Public-key cryptography

Several prior works have suggested to use non-interactive arguments of knowledge with short proofs to aggregate signatures of Falcon, which is part of the first post-quantum signatures selected for standardization by NIST. Especially LaBRADOR, based on standard structured lattice assumptions and published at CRYPTO’23, seems promising to realize this task. However, no prior work has tackled this idea in a rigorous way. In this paper, we thoroughly prove how to aggregate Falcon signatures...

2024/293 (PDF) Last updated: 2024-02-21
Registered Attribute-Based Signature
Yijian Zhang, Jun Zhao, Ziqi Zhu, Junqing Gong, Jie Chen
Public-key cryptography

This paper introduces the notion of registered attribute-based signature (registered ABS). Distinctly different from classical attribute-based signature (ABS), registered ABS allows any user to generate their own public/secret key pair and register it with the system. The key curator is critical to keep the system flowing, which is a fully transparent entity that does not retain secrets. Our results can be summarized as follows. -This paper provides the first definition of registered...

2024/263 (PDF) Last updated: 2024-02-16
Threshold Encryption with Silent Setup
Sanjam Garg, Dimitris Kolonelos, Guru-Vamsi Policharla, Mingyuan Wang
Public-key cryptography

We build a concretely efficient threshold encryption scheme where the joint public key of a set of parties is computed as a deterministic function of their locally computed public keys, enabling a silent setup phase. By eliminating interaction from the setup phase, our scheme immediately enjoys several highly desirable features such as asynchronous setup, multiverse support, and dynamic threshold. Prior to our work, the only known constructions of threshold encryption with silent setup...

2024/241 (PDF) Last updated: 2024-02-15
Generalized Adaptor Signature Scheme: From Two-Party to N-Party Settings
Kaisei Kajita, Go Ohtake, Tsuyoshi Takagi
Public-key cryptography

Adaptor signatures have attracted attention as a tool to ad-dress scalability and interoperability issues in blockchain applications, for example, such as atomic swaps for exchanging di˙erent cryptocur-rencies. Adaptor signatures can be constructed by extending of common digital signature schemes that both authenticate a message and disclose a secret witness to a speci˝c party. In Asiacrypt 2021, Aumayr et al. formulated the two-party adaptor signature as an independent crypto-graphic...

2024/239 (PDF) Last updated: 2024-02-15
Simulation-Secure Threshold PKE from Standard (Ring-)LWE
Hiroki Okada, Tsuyoshi Takagi
Public-key cryptography

Threshold public key encryption (ThPKE) is PKE that can be decrypted by collecting "partial decryptions" from t (≤ N) out of N parties. ThPKE based on the learning with errors problem (LWE) is particularly important because it can be extended to threshold fully homomorphic encryption (ThFHE). ThPKE and ThFHE are fundamental tools for constructing multiparty computation (MPC) protocols: In 2023, NIST initiated a project (NIST IR 8214C) to establish guidelines for implementing threshold...

2024/226 (PDF) Last updated: 2024-04-25
Attribute-based Keyed (Fully) Homomorphic Encryption
Keita Emura, Shingo Sato, Atsushi Takayasu
Public-key cryptography

Keyed homomorphic public key encryption (KHPKE) is a variant of homomorphic public key encryption, where only users who have a homomorphic evaluation key can perform a homomorphic evaluation. Then, KHPKE satisfies the CCA2 security against users who do not have a homomorphic evaluation key, while it satisfies the CCA1 security against users who have the key. Thus far, several KHPKE schemes have been proposed under the standard Diffie-Hellman-type assumptions and keyed fully homomorphic...

2024/214 (PDF) Last updated: 2024-02-16
Distributed Fiat-Shamir Transform
Michele Battagliola, Andrea Flamini
Public-key cryptography

The recent surge of distribute technologies caused an increasing interest towards threshold signature protocols, that peaked with the recent NIST First Call for Multi-Party Threshold Schemes. Since its introduction, the Fiat-Shamir Transform has been the most popular way to design standard digital signature schemes. In this work, we translate the Fiat-Shamir Transform into a multi-party setting, building a framework that seeks to be an alternative, easier way to design threshold digital...

2024/208 (PDF) Last updated: 2024-02-16
Asymmetric Cryptography from Number Theoretic Transformations
Samuel Lavery
Public-key cryptography

In this work, we introduce a family of asymmetric cryptographic functions based on dynamic number theoretic transformations with multiple rounds of modular arithmetic to enhance diffusion and difficulty of inversion. This function acts as a basic cryptographic building block for a novel communication-efficient zero-knowledge crypto-system. The system as defined exhibits partial homomorphism and behaves as an additive positive accumulator. By using a novel technique to constructively embed...

2024/205 Last updated: 2024-02-21
A Generalized Distributed RSA Key Generation
ChihYun Chuang, IHung Hsu, TingFang Lee
Public-key cryptography

In this paper, we propose a novel bi-primality test to determine whether $N=pq$ is the product of two primes on any RSA modulus in which we relaxed the restriction, $p\equiv q \equiv 3 \Mod{4}$, that was assumed in most of current bi-primality tests. Our bi-primality test is generalized from Lucas primality test to the bi-prime case. Our test always accepts when $p$ and $q$ are both prime, and otherwise accepts with probability at most $1/2$. In addition, we also prove that the...

2024/203 (PDF) Last updated: 2024-02-09
Application-Aware Approximate Homomorphic Encryption: Configuring FHE for Practical Use
Andreea Alexandru, Ahmad Al Badawi, Daniele Micciancio, Yuriy Polyakov
Public-key cryptography

Fully Homomorphic Encryption (FHE) is a powerful tool for performing privacy-preserving analytics over encrypted data. A promising method for FHE over real and complex numbers is approximate homomorphic encryption, instantiated with the Cheon-Kim-Kim-Song (CKKS) scheme. The CKKS scheme enables efficient evaluation for many privacy-preserving machine learning applications. Despite its high efficiency, there is currently a lot of confusion on how to securely instantiate CKKS for a given...

2024/202 (PDF) Last updated: 2024-03-11
Fully Homomorphic Encryption beyond IND-CCA1 Security: Integrity through Verifiability
Mark Manulis, Jérôme Nguyen
Public-key cryptography

We focus on the problem of constructing fully homomorphic encryption (FHE) schemes that achieve some meaningful notion of adaptive chosen-ciphertext security beyond CCA1. Towards this, we propose a new notion, called security against verified chosen-ciphertext attack (vCCA). The idea behind it is to ascertain integrity of the ciphertext by imposing a strong control on the evaluation algorithm. Essentially, we require that a ciphertext obtained by the use of homomorphic evaluation must be...

2024/183 (PDF) Last updated: 2024-02-07
On Security Proofs of Existing Equivalence Class Signature Schemes
Balthazar Bauer, Georg Fuchsbauer
Public-key cryptography

Equivalence class signatures (EQS), introduced by Hanser and Slamanig (AC'14), sign vectors of elements from a bilinear group. Signatures can be ``adapted'', meaning that anyone can transform a signature on a vector to a (random) signature on any multiple of that vector. (Signatures thus authenticate equivalence classes.) A transformed signature/message pair is then indistinguishable from a random signature on a random message. EQS have been used to efficiently instantiate (delegatable)...

2024/181 (PDF) Last updated: 2024-03-22
Functional Bootstrapping for FV-style Cryptosystems
Dongwon Lee, Seonhong Min, Yongsoo Song
Public-key cryptography

Fully Homomorphic Encryption (FHE) enables the computation of an arbitrary function over encrypted data without decrypting them. In particular, bootstrapping is a core building block of FHE which reduces the noise of a ciphertext thereby recovering the computational capability. This paper introduces a new bootstrapping framework for the Fan-Vercauteren (FV) scheme, called the functional bootstrapping, providing more generic and advanced functionality than the ordinary bootstrapping...

2024/179 (PDF) Last updated: 2024-02-16
Traitor Tracing without Trusted Authority from Registered Functional Encryption
Pedro Branco, Russell W. F. Lai, Monosij Maitra, Giulio Malavolta, Ahmadreza Rahimi, Ivy K. Y. Woo
Public-key cryptography

Traitor-tracing systems allow identifying the users who contributed to building a rogue decoder in a broadcast environment. In a traditional traitor-tracing system, a key authority is responsible for generating the global public parameters and issuing secret keys to users. All security is lost if the \emph{key authority itself} is corrupt. This raises the question: Can we construct a traitor-tracing scheme, without a trusted authority? In this work, we propose a new model for...

2024/177 (PDF) Last updated: 2024-02-06
Registered Functional Encryption for Quadratic Functions from MDDH
Qiaohan Chu, Li Lin, Chen Qian, Jie Chen
Public-key cryptography

We present a Registered Functional Encryption (RFE) scheme for inner product and a RFE scheme for quadratic functions based on pairings and relying on the Matrix Decision Diffie-Hellman (MDDH) assumption and bilateral MDDH assumption. Previously, RFE is only known to be constructed from indistinguishability obfuscation (iO) in Francati-Friolo-Maitra-Malavolta-Rahimi-Venturi [Asiacrypt '23].

2024/175 (PDF) Last updated: 2024-02-06
Lossy Cryptography from Code-Based Assumptions
Quang Dao, Aayush Jain
Public-key cryptography

Over the past few decades, we have seen a proliferation of advanced cryptographic primitives with lossy or homomorphic properties built from various assumptions such as Quadratic Residuosity, Decisional Diffie-Hellman, and Learning with Errors. These primitives imply hard problems in the complexity class $\mathcal{SZK}$ (statistical zero-knowledge); as a consequence, they can only be based on assumptions that are broken in $\mathcal{BPP}^{\mathcal{SZK}}$. This poses a barrier for building...

2024/171 (PDF) Last updated: 2024-02-05
Approximate Methods for the Computation of Step Functions in Homomorphic Encryption
Tairong Huang, Shihe Ma, Anyu Wang, XiaoYun Wang
Public-key cryptography

The computation of step functions over encrypted data is an essential issue in homomorphic encryption due to its fundamental application in privacy-preserving computing. However, an effective method for homomorphically computing general step functions remains elusive in cryptography. This paper proposes two polynomial approximation methods for general step functions to tackle this problem. The first method leverages the fact that any step function can be expressed as a linear combination of...

2024/164 (PDF) Last updated: 2024-02-05
Faster BGV Bootstrapping for Power-of-Two Cyclotomics through Homomorphic NTT
Shihe Ma, Tairong Huang, Anyu Wang, Xiaoyun Wang
Public-key cryptography

Power-of-two cyclotomics is a popular choice when instantiating the BGV scheme because of its efficiency and compliance with the FHE standard. However, in power-of-two cyclotomics, the linear transformations in BGV bootstrapping cannot be decomposed into sub-transformations for acceleration with existing techniques. Thus, they can be highly time-consuming when the number of slots is large, degrading the advantage brought by the SIMD property of the plaintext space. By exploiting the...

2024/156 (PDF) Last updated: 2024-02-02
Homomorphic sign evaluation using functional bootstrapping with a RNS representation of integers
Philippe Chartier, Michel Koskas, Mohammed Lemou, Florian Méhats
Public-key cryptography

In the context of fully-homomorphic-encryption, we consider the representation of large integers by their decomposition over a product of rings (through the Chinese Remainder Theorem) and introduce a new algorithm for the determination of the sign solely through the knowledge of ring-components. We then prove that our algorithm delivers a correct result with a very high probability.

2024/155 (PDF) Last updated: 2024-02-02
Fully Homomorphic Encryption on large integers
Philippe Chartier, Michel Koskas, Mohammed Lemou, Florian Méhats
Public-key cryptography

At the core of fully homomorphic encryption lies a procedure to refresh the ciphertexts whose noise component has grown too big. The efficiency of the so-called bootstrap is of paramount importance as it is usually regarded as the main bottleneck towards a real-life deployment of fully homomorphic crypto-systems. In two of the fastest implementations so far, the space of messages is limited to binary integers. If the message space is extended to the discretized torus $T_{p_i}$ or...

2024/153 (PDF) Last updated: 2024-02-02
Revisiting the Slot-to-Coefficient Transformation for BGV and BFV
Robin Geelen
Public-key cryptography

Numerous algorithms in homomorphic encryption require an operation that moves the slots of a ciphertext to the coefficients of a different ciphertext. We describe an FFT-like method for decomposing this slot-to-coefficient transformation (and its inverse) for BGV and BFV. The proposed method is specific to power-of-two cyclotomic rings and can handle both fully and sparsely packed slots. Previously, such a method was only known for non-power-of-two cyclotomic rings. Our algorithm admits...

2024/146 (PDF) Last updated: 2024-03-01
Computing Orientations from the Endomorphism Ring of Supersingular Curves and Applications
Jonathan Komada Eriksen, Antonin Leroux
Public-key cryptography

This work introduces several algorithms related to the computation of orientations in endomorphism rings of supersingular elliptic curves. This problem boils down to representing integers by ternary quadratic forms, and it is at the heart of several results regarding the security of oriented-curves in isogeny-based cryptography. Our main contribution is to show that there exists efficient algorithms that can solve this problem for quadratic orders of discriminant $n$ up to $O(p^{4/3})$....

2024/144 (PDF) Last updated: 2024-02-01
Efficient (3,3)-isogenies on fast Kummer surfaces
Maria Corte-Real Santos, Craig Costello, Benjamin Smith
Public-key cryptography

We give an alternative derivation of (N,N)-isogenies between fast Kummer surfaces which complements existing works based on the theory of theta functions. We use this framework to produce explicit formulae for the case of N = 3, and show that the resulting algorithms are more efficient than all prior (3,3)-isogeny algorithms.

2024/140 (PDF) Last updated: 2024-02-01
Efficient ECDSA-based Adaptor Signature for Batched Atomic Swaps
Binbin Tu, Min Zhang, Yu Chen
Public-key cryptography

Adaptor signature is a novel cryptographic primitive which ties together the signature and the leakage of a secret value. It has become an important tool for solving the scalability and interoperability problems in the blockchain. Aumayr et al. (Asiacrypt 2021) recently provide the formalization of the adaptor signature and present a provably secure ECDSA-based adaptor signature, which requires zero-knowledge proof in the pre-signing phase to ensure the signer works correctly. However, the...

2024/131 (PDF) Last updated: 2024-01-30
Practical Post-Quantum Signatures for Privacy
Sven Argo, Tim Güneysu, Corentin Jeudy, Georg Land, Adeline Roux-Langlois, Olivier Sanders
Public-key cryptography

The transition to post-quantum cryptography has been an enormous challenge and effort for cryptographers over the last decade, with impressive results such as the future NIST standards. However, the latter has so far only considered central cryptographic mechanisms (signatures or KEM) and not more advanced ones, e.g., targeting privacy-preserving applications. Of particular interest is the family of solutions called blind signatures, group signatures and anonymous credentials, for which...

2024/115 (PDF) Last updated: 2024-03-27
Accelerating BGV Bootstrapping for Large $p$ Using Null Polynomials Over $\mathbb{Z}_{p^e}$
Shihe Ma, Tairong Huang, Anyu Wang, Xiaoyun Wang
Public-key cryptography

The BGV scheme is one of the most popular FHE schemes for computing homomorphic integer arithmetic. The bootstrapping technique of BGV is necessary to evaluate arbitrarily deep circuits homomorphically. However, the BGV bootstrapping performs poorly for large plaintext prime $p$ due to its digit removal procedure exhibiting a computational complexity of at least $O(\sqrt{p})$. In this paper, we propose optimizations for the digit removal procedure with large $p$ by leveraging the properties...

2024/097 (PDF) Last updated: 2024-01-22
Improved All-but-One Vector Commitment with Applications to Post-Quantum Signatures
Dung Bui, Kelong Cong, Cyprien Delpech de Saint Guilhem
Public-key cryptography

Post-quantum digital signature schemes have recently received increased attention due to the NIST standardization project for additional signatures. MPC-in-the-Head and VOLE-in-the-Head are general techniques for constructing such signatures from zero-knowledge proof systems. A common theme between the two is an all-but-one vector commitment scheme which internally uses GGM trees. This primitive is responsible for a significant part of the computational time during signing and...

2024/094 (PDF) Last updated: 2024-01-21
Chosen-Ciphertext Secure Dual-Receiver Encryption in the Standard Model Based on Post-Quantum Assumptions
Laurin Benz, Wasilij Beskorovajnov, Sarai Eilebrecht, Roland Gröll, Maximilian Müller, Jörn Müller-Quade
Public-key cryptography

Dual-receiver encryption (DRE) is a special form of public key encryption (PKE) that allows a sender to encrypt a message for two recipients. Without further properties, the difference between DRE and PKE is only syntactical. One such important property is soundness, which requires that no ciphertext can be constructed such that the recipients decrypt to different plaintexts. Many applications rely on this property in order to realize more complex protocols or primitives. In addition, many...

2024/093 (PDF) Last updated: 2024-01-21
Short Code-based One-out-of-Many Proofs and Applications
Xindong Liu, Li-Ping Wang
Public-key cryptography

In this work, we propose two novel succinct one-out-of-many proofs from coding theory, which can be seen as extensions of the Stern's framework and Veron's framework from proving knowledge of a preimage to proving knowledge of a preimage for one element in a set, respectively. The size of each proof is short and scales better with the size of the public set than the code-based accumulator in \cite{nguyen2019new}. Based on our new constructions, we further present a logarithmic-size ring...

2024/087 (PDF) Last updated: 2024-01-23
Tree-based Lookup Table on Batched Encrypted Queries using Homomorphic Encryption
Jung Hee Cheon, Hyeongmin Choe, Jai Hyun Park
Public-key cryptography

Homomorphic encryption (HE) is in the spotlight as a solution for privacy-related issues in various real-world scenarios. However, the limited types of operations supported by each HE scheme have been a major drawback in applications. While HE schemes based on learning-with-error (LWE) problem provide efficient lookup table (LUT) evaluation in terms of latency, they have downsides in arithmetic operations and low throughput compared to HE schemes based on ring LWE (RLWE) problem. The use of...

2024/076 (PDF) Last updated: 2024-04-24
A provably masked implementation of BIKE Key Encapsulation Mechanism
Loïc Demange, Mélissa Rossi
Public-key cryptography

BIKE is a post-quantum key encapsulation mechanism (KEM) selected for the 4th round of the NIST’s standardization campaign. It relies on the hardness of the syndrome decoding problem for quasi-cyclic codes and on the indistinguishability of the public key from a random element, and provides the most competitive performance among round 4 candidates, which makes it relevant for future real-world use cases. Analyzing its side-channel resistance has been highly encouraged by the community and...

2024/068 (PDF) Last updated: 2024-01-16
Laconic Function Evaluation, Functional Encryption and Obfuscation for RAMs with Sublinear Computation
Fangqi Dong, Zihan Hao, Ethan Mook, Daniel Wichs
Public-key cryptography

Laconic function evaluation (LFE) is a "flipped" version of fully homomorphic encryption, where the server performing the computation gets the output. The server commits itself to a function $f$ by outputting a small digest. Clients can later efficiently encrypt inputs $x$ with respect to the digest in much less time than computing $f$, and ensure that the server only decrypts $f(x)$, but does not learn anything else about $x$. Prior works constructed LFE for circuits under LWE, and for...

2024/067 (PDF) Last updated: 2024-03-09
A Refined Hardness Estimation of LWE in Two-step Mode
Wenwen Xia, Leizhang Wang, Geng Wang, Dawu Gu, Baocang Wang
Public-key cryptography

Recently, researchers have proposed many LWE estimators, such as lattice-estimator (Albrecht et al, Asiacrypt 2017) and leaky-LWE-Estimator (Dachman-Soled et al, Crypto 2020), while the latter has already been used in estimating the security level of Kyber and Dilithium using only BKZ. However, we prove in this paper that solving LWE by combining a lattice reduction step (by LLL or BKZ) and a target vector searching step (by enumeration or sieving), which we call a Two-step mode, is more...

2024/056 (PDF) Last updated: 2024-01-15
Zero-Knowledge Proofs for SIDH variants with Masked Degree or Torsion
Youcef Mokrani, David Jao
Public-key cryptography

The polynomial attacks on SIDH by Castryck, Decru, Maino, Martindale and Robert have shown that, while the general isogeny problem is still considered unfeasible to break, it is possible to efficiently compute a secret isogeny when given its degree and image on enough torsion points. A natural response from many researchers has been to propose SIDH variants where one or both of these possible extra pieces of information is masked in order to obtain schemes for which a polynomial attack is...

2024/055 (PDF) Last updated: 2024-01-18
Multi-Hop Fine-Grained Proxy Re-Encryption
Yunxiao Zhou, Shengli Liu, Shuai Han
Public-key cryptography

Proxy re-encryption (PRE) allows a proxy to transform a ciphertext intended for Alice (delegator) to another ciphertext intended for Bob (delegatee) without revealing the underlying message. Recently, a new variant of PRE, namely fine-grained PRE (FPRE), was proposed in [Zhou et al., Asiacrypt 2023]. Generally, FPRE is designed for a function family F: each re-encryption key rk_{A→B}^f is associated with a function f ∈ F, and with rk_{A→B}^f, a proxy can transform Alice's ciphertext...

2024/054 (PDF) Last updated: 2024-01-19
FEASE: Fast and Expressive Asymmetric Searchable Encryption
Long Meng, Liqun Chen, Yangguang Tian, Mark Manulis, Suhui Liu
Public-key cryptography

Asymmetric Searchable Encryption (ASE) is a promising cryptographic mechanism that enables a semi-trusted cloud server to perform keyword searches over encrypted data for users. To be useful, an ASE scheme must support expressive search queries, which are expressed as conjunction, disjunction, or any Boolean formulas. In this paper, we propose a fast and expressive ASE scheme that is adaptively secure, called FEASE. It requires only 3 pairing operations for searching any conjunctive set of...

2024/053 (PDF) Last updated: 2024-01-14
Anonymous Homomorphic IBE with Application to Anonymous Aggregation
Michael Clear, Ciaran McGoldrick, Hitesh Tewari
Public-key cryptography

All anonymous identity-based encryption (IBE) schemes that are group homomorphic (to the best of our knowledge) require knowledge of the identity to compute the homomorphic operation. This paper is motivated by this open problem, namely to construct an anonymous group-homomorphic IBE scheme that does not sacrifice anonymity to perform homomorphic operations. Note that even when strong assumptions such as indistinguishability obfuscation (iO) are permitted, no schemes are known. We succeed in...

2024/043 (PDF) Last updated: 2024-01-10
Fuzzy Identity Based Encryption with a flexible threshold value
Sedigheh Khajouei-Nejad, Sam Jabbehdari, Hamid Haj Seyyed Javadi, Seyed Mohammad Hossein Moattar
Public-key cryptography

The issue of data and information security on the internet and social network has become more serious and pervasive in recent years. Cryptography is used to solve security problems. However, message encryption cannot merely meet the intended goals because access control over the encrypted messages is required in some applications. To achieve these requirements, attribute-based encryption (ABE) is used. This type of encryption provides both security and access structure for the network users...

2024/042 (PDF) Last updated: 2024-01-10
Foundations of Anonymous Signatures: Formal Definitions, Simplified Requirements, and a Construction Based on General Assumptions
Jan Bobolz, Jesus Diaz, Markulf Kohlweiss
Public-key cryptography

In today's systems, privacy is often at odds with utility: users that reveal little information about themselves get restricted functionality, and service providers mistrust them. In practice, systems tip to either full anonymity (e.g. Monero), or full utility (e.g. Bitcoin). Well-known cryptographic primitives for bridging this gap exist: anonymous credentials (AC) let users disclose a subset of their credentials' attributes, revealing to service providers "just what they need"; group...

2024/040 (PDF) Last updated: 2024-01-10
ReSolveD: Shorter Signatures from Regular Syndrome Decoding and VOLE-in-the-Head
Hongrui Cui, Hanlin Liu, Di Yan, Kang Yang, Yu Yu, Kaiyi Zhang
Public-key cryptography

We present ReSolveD, a new candidate post-quantum signature scheme under the regular syndrome decoding (RSD) assumption for random linear codes, which is a well-established variant of the well-known syndrome decoding (SD) assumption. Our signature scheme is obtained by designing a new zero-knowledge proof for proving knowledge of a solution to the RSD problem in the recent VOLE-in-the-head framework using a sketching scheme to verify that a vector has weight exactly one. We achieve a...

2024/039 (PDF) Last updated: 2024-04-15
X-Wing: The Hybrid KEM You’ve Been Looking For
Manuel Barbosa, Deirdre Connolly, João Diogo Duarte, Aaron Kaiser, Peter Schwabe, Karoline Varner, Bas Westerbaan
Public-key cryptography

X-Wing is a hybrid key-encapsulation mechanism based on X25519 and ML-KEM-768. It is designed to be the sensible choice for most applications. The concrete choice of X25519 and ML-KEM-768 allows X-Wing to achieve improved efficiency compared to using a generic KEM combiner. In this paper, we introduce the X-Wing hybrid KEM construction and provide a proof of security. We show (1) that X-Wing is a classically IND-CCA secure KEM if the strong Diffie-Hellman assumption holds in the X25519...

2024/037 (PDF) Last updated: 2024-04-18
Computing $2$-isogenies between Kummer lines
Damien Robert, Nicolas Sarkis
Public-key cryptography

We use theta groups to study $2$-isogenies between Kummer lines, with a particular focus on the Montgomery model. This allows us to recover known formulas, along with more efficient forms for translated isogenies, which require only $2S+2m_0$ for evaluation. We leverage these translated isogenies to build a hybrid ladder for scalar multiplication on Montgomery curves with rational $2$-torsion, which cost $3M+6S+2m_0$ per bit, compared to $5M+4S+1m_0$ for the standard Montgomery ladder.

2024/026 (PDF) Last updated: 2024-01-08
Towards Compact Identity-based Encryption on Ideal Lattices
Huiwen Jia, Yupu Hu, Chunming Tang, Lin Wang
Public-key cryptography

Basic encryption and signature on lattices have comparable efficiency to their classical counterparts in terms of speed and key size. However, Identity-based Encryption (IBE) on lattices is much less efficient in terms of compactness, even when instantiated on ideal lattices and in the Random Oracle Model (ROM). This is because the underlying preimage sampling algorithm used to extract the users' secret keys requires huge public parameters. In this work, we specify a compact IBE...

2024/021 (PDF) Last updated: 2024-01-06
Designing homomorphic encryptions with rational functions
Gerald Gavin, Sandrine Tainturier
Public-key cryptography

New ideas to build homomorphic encryption schemes based on rational functions have been recently proposed. The starting point is a private-key encryption scheme whose secret key is a rational function $\phi/\phi'$. By construction, such a scheme is not homomorphic. To get homomorphic properties, nonlinear homomorphic operators are derived from the secret key. In this paper, we adopt the same approach to build HE. We obtain a multivariate encryption scheme in the sense that the knowledge of...

2024/019 (PDF) Last updated: 2024-01-10
Benchmark Performance of Homomorphic Polynomial Public Key Cryptography for Key Encapsulation and Digital Signature Schemes
Randy Kuang, Maria Perepechaenko, Dafu Lou, Brinda Tank
Public-key cryptography

This paper conducts a comprehensive benchmarking analysis of the performance of two innovative cryptographic schemes: Homomorphic Polynomial Public Key (HPPK)-Key Encapsulation Mechanism (KEM) and Digital Signature (DS), recently proposed by Kuang et al. These schemes represent a departure from traditional cryptographic paradigms, with HPPK leveraging the security of homomorphic symmetric encryption across two hidden rings without reliance on NP-hard problems. HPPK can be viewed as a...

2024/018 (PDF) Last updated: 2024-01-12
Smaller Sphincs+
Scott Fluhrer, Quynh Dang
Public-key cryptography

NIST has released the draft specification of SLH-DSA (also known as Sphincs+). When NIST released its original call for proposals for the Postquantum Process, they specified that signature systems would need to be usable at full security for $2^{64}$ signatures per private key. Hence, the parameter sets specified in SLH-DSA is tuned to have full security after that many signatures. However, it has been noted that in many cases, we don't have need for that many signatures, and that...

2024/016 (PDF) Last updated: 2024-01-04
Reducing the computational complexity of fuzzy identity-based encryption from lattice
Sedigheh Khajouei-Nejad, Hamid Haj Seyyed Javadi, Sam Jabbehdari, Seyed Mohammad Hossein Moattar
Public-key cryptography

In order to provide access control on encrypted data, Attribute-based encryption (ABE) defines each user using a set of attributes. Fuzzy identity-based encryption (FIBE) is a variant of ABE that allows for a threshold access structure for users. To address the potential threat posed by future quantum computers, this paper presents a post-quantum fuzzy IBE scheme based on lattices. However, current lattice-based ABE schemes face challenges related to computational complexity and the length...

2024/014 (PDF) Last updated: 2024-01-04
A Lattice-based Accountable Subgroup Multi-signature Scheme with Verifiable Group Setup
Ahmet Ramazan Ağırtaş, Oğuz YAYLA
Public-key cryptography

An accountable subgroup multi-signature (ASM) is a multi-signature that allows any subgroup of potential signers to jointly sign a message such that the subgroup of co-signers are accountable for the resulting signature and their identities are identifiable to any verifier. In this paper, we pro- pose a novel lattice-based accountable subgroup multi-signature scheme, i.e., vMS2, by combining the group setup method of recently proposed vASM scheme and Damgard et al.’s lattice-based MS2...

2023/1968 (PDF) Last updated: 2024-03-07
Evaluating the security of CRYSTALS-Dilithium in the quantum random oracle model
Kelsey A. Jackson, Carl A. Miller, Daochen Wang
Public-key cryptography

In the wake of recent progress on quantum computing hardware, the National Institute of Standards and Technology (NIST) is standardizing cryptographic protocols that are resistant to attacks by quantum adversaries. The primary digital signature scheme that NIST has chosen is CRYSTALS-Dilithium. The hardness of this scheme is based on the hardness of three computational problems: Module Learning with Errors (MLWE), Module Short Integer Solution (MSIS), and SelfTargetMSIS. MLWE and MSIS have...

2023/1965 (PDF) Last updated: 2023-12-28
More Efficient Public-Key Cryptography with Leakage and Tamper Resilience
Shuai Han, Shengli Liu, Dawu Gu
Public-key cryptography

In this paper, we study the design of efficient signature and public-key encryption (PKE) schemes in the presence of both leakage and tampering attacks. Firstly, we formalize the strong leakage and tamper-resilient (sLTR) security model for signature, which provides strong existential unforgeability, and deals with bounded leakage and restricted tampering attacks, as a counterpart to the sLTR security introduced by Sun et al. (ACNS 2019) for PKE. Then, we present direct constructions...

2023/1957 (PDF) Last updated: 2023-12-25
Chosen Ciphertext Security via BARGs
Takahiro Matsuda
Public-key cryptography

In this paper, we show a new set of cryptographic primitives that generically leads to chosen ciphertext secure (CCA secure) public-key encryption (PKE). Specifically, we show how a (non-interactive, publicly verifiable) batch argument (BARG) for NP can be combined with a chosen plaintext secure PKE scheme to achieve a CCA secure one. The requirement of the succinctness of the proof size of a BARG in our result is rather mild: The proof size is $O(k^{\epsilon})$ for some non-negative...

2023/1956 (PDF) Last updated: 2023-12-24
A Signature Scheme from Full-Distance Syndrome Decoding
Abdelhaliem Babiker
Public-key cryptography

In this paper we propose a new hash-and-sign digital signature scheme whose security against existential forgery under adaptive chosen message attack is based on the hardness of full-distance syndrome decoding. We propose parameter sets for three security levels (128-bits, 192-bits, and 256-bits) based on concrete estimations for hardness of the syndrome decoding problem and estimate the corresponding sizes of the keys and the signature for each level. The scheme has large public and private...

2023/1947 (PDF) Last updated: 2024-03-29
Using Predicate Extension for Predicate Encryption to Generically Obtain Chosen-Ciphertext Security and Signatures
Marloes Venema, Leon Botros
Public-key cryptography

Predicate encryption (PE) is a type of public-key encryption that captures many useful primitives such as attribute-based encryption (ABE). Although much progress has been made to generically achieve security against chosen-plaintext attacks (CPA) efficiently, in practice, we also require security against chosen-ciphertext attacks (CCA). Because achieving CCA-security on a case-by-case basis is a complicated task, several generic conversion methods have been proposed, which typically target...

2023/1946 (PDF) Last updated: 2023-12-22
SnarkFold: Efficient SNARK Proof Aggregation from Split Incrementally Verifiable Computation
Xun Liu, Shang Gao, Tianyu Zheng, Bin Xiao
Public-key cryptography

The succinct non-interactive argument of knowledge (SNARK) technique is widely used in blockchain systems to replace the costly on-chain computation with the verification of a succinct proof. However, when dealing with multiple proofs, most existing applications require each proof to be independently verified, resulting in a heavy load on nodes and high transaction fees for users. To improve the efficiency of verifying multiple proofs, we introduce SnarkFold, a universal SNARK-proof...

Note: In order to protect the privacy of readers, eprint.iacr.org does not use cookies or embedded third party content.