Dates are inconsistent

Dates are inconsistent

4677 results sorted by ID
2024/669 (PDF) Last updated: 2024-05-02
Mempool Privacy via Batched Threshold Encryption: Attacks and Defenses
Arka Rai Choudhuri, Sanjam Garg, Julien Piet, Guru-Vamsi Policharla
Cryptographic protocols

With the rising popularity of DeFi applications it is important to implement protections for regular users of these DeFi platforms against large parties with massive amounts of resources allowing them to engage in market manipulation strategies such as frontrunning/backrunning. Moreover, there are many situations (such as recovery of funds from vulnerable smart contracts) where a user may not want to reveal their transaction until it has been executed. As such, it is clear that preserving...

2024/667 (PDF) Last updated: 2024-05-01
Agile, Post-quantum Secure Cryptography in Avionics
Karolin Varner, Wanja Zaeske, Sven Friedrich, Aaron Kaiser, Alice Bowman
Cryptographic protocols

To introduce a post-quantum-secure encryption scheme specifically for use in flight-computers, we used avionics’ module-isolation methods to wrap a recent encryption standard (HPKE – Hybrid Public Key Encryption) within a software partition. This solution proposes an upgrade to HPKE, using quantum-resistant ciphers (Kyber/ML-KEM and Dilithium/ML-DSA) redundantly alongside well-established ciphers, to achieve post-quantum security. Because cryptographic technology can suddenly become...

2024/666 (PDF) Last updated: 2024-04-30
Private Analytics via Streaming, Sketching, and Silently Verifiable Proofs
Mayank Rathee, Yuwen Zhang, Henry Corrigan-Gibbs, Raluca Ada Popa
Cryptographic protocols

We present Whisper, a system for privacy-preserving collection of aggregate statistics. Like prior systems, a Whisper deployment consists of a small set of non-colluding servers; these servers compute aggregate statistics over data from a large number of users without learning the data of any individual user. Whisper’s main contribution is that its server- to-server communication cost and its server-side storage costs scale sublinearly with the total number of users. In particular, prior...

2024/664 (PDF) Last updated: 2024-04-30
Pando: Extremely Scalable BFT Based on Committee Sampling
Xin Wang, Haochen Wang, Haibin Zhang, Sisi Duan
Cryptographic protocols

Byzantine fault-tolerant (BFT) protocols are known to suffer from the scalability issue. Indeed, their performance degrades drastically as the number of replicas $n$ grows. While a long line of work has attempted to achieve the scalability goal, these works can only scale to roughly a hundred replicas. In this paper, we develop BFT protocols from the so-called committee sampling approach that selects a small committee for consensus and conveys the results to all replicas. Such an...

2024/663 (PDF) Last updated: 2024-04-30
Xproofs: New Aggregatable and Maintainable Matrix Commitment with Optimal Proof Size
Xinwei Yong, Jiaojiao Wu, Jianfeng Wang
Cryptographic protocols

Vector Commitment (VC) enables one to commit to a vector, and then the element at a specific position can be opened, with proof of consistency to the initial commitment. VC is a powerful primitive with various applications, including stateless cryptocurrencies. Recently, matrix commitment Matproofs (Liu and Zhang CCS 2022), as an extension of VC, has been proposed to reduce the communication and computation complexity of VC-based cryptocurrencies. However, Matproofs requires linear-sized...

2024/661 (PDF) Last updated: 2024-04-29
Some amortization techniques for FRI-based SNARKs
Albert Garreta, Hayk Hovhanissyan, Aram Jivanyan, Ignacio Manzur, Isaac Villalobos, Michał Zając
Cryptographic protocols

We present two techniques to improve the computational and/or communication costs of STARK proofs: packing and modular split-and-pack. Packing allows to generate a single proof of the satisfiability of several constraints. We achieve this by packing the evaluations of all relevant polynomials in the same Merkle leaves, and combining all DEEP FRI functions into a single randomized validity function. Our benchmarks show that packing reduces the verification time and proof size compared...

2024/660 (PDF) Last updated: 2024-04-29
FE[r]Chain: Enforcing Fairness in Blockchain Data Exchanges Through Verifiable Functional Encryption
Camille Nuoskala, Reyhaneh Rabbaninejad, Tassos Dimitriou, Antonis Michalas
Cryptographic protocols

Functional Encryption (FE) allows users to extract specific function-related information from encrypted data while preserving the privacy of the underlying plaintext. Though significant research has been devoted to developing secure and efficient Multi-Input Functional Encryption schemes supporting diverse functions, there remains a noticeable research gap in the development of verifiable FE schemes. Functionality and performance have received considerable attention, however, the crucial...

2024/654 (PDF) Last updated: 2024-04-29
Monchi: Multi-scheme Optimization For Collaborative Homomorphic Identification
Alberto Ibarrondo, Ismet Kerenciler, Hervé Chabanne, Vincent Despiegel, Melek Önen
Cryptographic protocols

This paper introduces a novel protocol for privacy-preserving biometric identification, named Monchi, that combines the use of homomorphic encryption for the computation of the identification score with function secret sharing to obliviously compare this score with a given threshold and finally output the binary result. Given the cost of homomorphic encryption, BFV in this solution, we study and evaluate the integration of two packing solutions that enable the regrouping of multiple...

2024/651 (PDF) Last updated: 2024-04-28
A New Hash-based Enhanced Privacy ID Signature Scheme
Liqun Chen, Changyu Dong, Nada El Kassem, Christopher J.P. Newton, Yalan Wang
Cryptographic protocols

The elliptic curve-based Enhanced Privacy ID (EPID) signature scheme is broadly used for hardware enclave attestation by many platforms that implement Intel Software Guard Extensions (SGX) and other devices. This scheme has also been included in the Trusted Platform Module (TPM) specifications and ISO/IEC standards. However, it is insecure against quantum attackers. While research into quantum-resistant EPID has resulted in several lattice-based schemes, Boneh et al. have initiated the study...

2024/650 (PDF) Last updated: 2024-04-28
Hash-based Direct Anonymous Attestation
Liqun Chen, Changyu Dong, Nada El Kassem, Christopher J.P. Newton, Yalan Wang
Cryptographic protocols

Direct Anonymous Attestation (DAA) was designed for the Trusted Platform Module (TPM) and versions using RSA and elliptic curve cryptography have been included in the TPM specifications and in ISO/IEC standards. These standardised DAA schemes have their security based on the factoring or discrete logarithm problems and are therefore insecure against quantum attackers. Research into quantum-resistant DAA has resulted in several lattice-based schemes. Now in this paper, we propose the first...

2024/649 (PDF) Last updated: 2024-04-28
Sphinx-in-the-Head: Group Signatures from Symmetric Primitives
Liqun Chen, Changyu Dong, Christopher J. P. Newton, Yalan Wang
Cryptographic protocols

Group signatures and their variants have been widely used in privacy-sensitive scenarios such as anonymous authentication and attestation. In this paper, we present a new post-quantum group signature scheme from symmetric primitives. Using only symmetric primitives makes the scheme less prone to unknown attacks than basing the design on newly proposed hard problems whose security is less well-understood. However, symmetric primitives do not have rich algebraic properties, and this makes it...

2024/645 (PDF) Last updated: 2024-04-27
Toward Independent Key Encryption based on Q-Problem
Abdelkader Laouid, Mostefa Kara, Mohammad Hammoudeh
Cryptographic protocols

This paper defines a post-quantum encryption scheme based on discussion cryptography by introducing a new post-quantum hard problem called Q-Problem. The idea behind this scheme is to hide the keys of each entity, and the encryption process is based on secret message holders using only random private keys.

2024/642 (PDF) Last updated: 2024-04-26
GraphOS: Towards Oblivious Graph Processing
Javad Ghareh Chamani, Ioannis Demertzis, Dimitrios Papadopoulos, Charalampos Papamanthou, Rasool Jalili
Cryptographic protocols

We propose GraphOS, a system that allows a client that owns a graph database to outsource it to an untrusted server for storage and querying. It relies on doubly-oblivious primitives and trusted hardware to achieve a very strong privacy and efficiency notion which we call oblivious graph processing: the server learns nothing besides the number of graph vertexes and edges, and for each query its type and response size. At a technical level, GraphOS stores the graph on a doubly-oblivious data...

2024/641 (PDF) Last updated: 2024-04-26
Rondo: Scalable and Reconfiguration-Friendly Randomness Beacon
Xuanji Meng, Xiao Sui, Zhaoxin Yang, Kang Rong, Wenbo Xu, Shenglong Chen, Ying Yan, Sisi Duan
Cryptographic protocols

We present Rondo, a scalable and reconfiguration-friendly distributed randomness beacon (DRB) protocol in the partially synchronous model. Rondo is the first DRB protocol that is built from batched asynchronous verifiable secret sharing (bAVSS) and meanwhile avoids the high $O(n^3)$ message cost, where $n$ is the number of nodes. Our key contribution lies in the introduction of a new variant of bAVSS called batched asynchronous verifiable secret sharing with partial output (bAVSS-PO)....

2024/640 (PDF) Last updated: 2024-04-26
On Proving Pairings
Andrija Novakovic, Liam Eagen
Cryptographic protocols

In this paper we explore efficient ways to prove correctness of elliptic curve pairing relations. Pairing-based cryptographic protocols such as the Groth16 and Plonk SNARKs and the BLS signature scheme are used extensively in public blockchains such as Ethereum due in large part to their small size. However the relatively high cost of pairing computation remains a practical problem for many use cases such as verification ``in circuit" inside a SNARK. This naturally arises in recursive SNARK...

2024/637 (PDF) Last updated: 2024-04-25
Towards Permissionless Consensus in the Standard Model via Fine-Grained Complexity
Marshall Ball, Juan Garay, Peter Hall, Aggelos Kiayias, Giorgos Panagiotakos
Cryptographic protocols

We investigate the feasibility of permissionless consensus (aka Byzantine agreement) under standard assumptions. A number of protocols have been proposed to achieve permissionless consensus, most notably based on the Bitcoin protocol; however, to date no protocol is known that can be provably instantiated outside of the random oracle model. In this work, we take the first steps towards achieving permissionless consensus in the standard model. In particular, we demonstrate that worst-case...

2024/630 (PDF) Last updated: 2024-04-24
Conditional disclosure of secrets with quantum resources
Vahid R. Asadi, Kohdai Kuroiwa, Debbie Leung, Alex May, Sabrina Pasterski, Chris Waddell
Cryptographic protocols

The conditional disclosure of secrets (CDS) primitive is among the simplest cryptographic settings in which to study the relationship between communication, randomness, and security. CDS involves two parties, Alice and Bob, who do not communicate but who wish to reveal a secret $z$ to a referee if and only if a Boolean function $f$ has $f(x,y)=1$. Alice knows $x,z$, Bob knows $y$, and the referee knows $x,y$. Recently, a quantum analogue of this primitive called CDQS was defined and related...

2024/628 (PDF) Last updated: 2024-04-24
MUSEN: Aggregatable Key-Evolving Verifiable Random Functions and Applications
Bernardo David, Rafael Dowsley, Anders Konring, Mario Larangeira
Cryptographic protocols

A Verifiable Random Function (VRF) can be evaluated on an input by a prover who holds a secret key, generating a pseudorandom output and a proof of output validity that can be verified using the corresponding public key. VRFs are a central building block of committee election mechanisms that sample parties to execute tasks in cryptographic protocols, e.g. generating blocks in a Proof-of-Stake (PoS) blockchain or executing a round of MPC protocols. We propose the notion, and a matching...

2024/627 (PDF) Last updated: 2024-04-24
Distributed & Scalable Oblivious Sorting and Shuffling
Nicholas Ngai, Ioannis Demertzis, Javad Ghareh Chamani, Dimitrios Papadopoulos
Cryptographic protocols

Existing oblivious systems offer robust security by concealing memory access patterns, but they encounter significant scalability and performance challenges. Recent efforts to enhance the practicality of these systems involve embedding oblivious computation, e.g., oblivious sorting and shuffling, within Trusted Execution Environments (TEEs). For instance, oblivious sort has been heavily utilized: in Oblix (S&P'18), when oblivious indexes are created and accessed; in Snoopy's high-throughput...

2024/624 (PDF) Last updated: 2024-04-22
POKE: A Framework for Efficient PKEs, Split KEMs, and OPRFs from Higher-dimensional Isogenies
Andrea Basso
Cryptographic protocols

We introduce a new framework, POKE, to build cryptographic protocols from irrational isogenies using higher-dimensional representations. The framework enables two parties to manipulate higher-dimensional representations of isogenies to efficiently compute their pushforwards, and ultimately to obtain a shared secret. We provide three constructions based on POKE: the first is a PKE protocol, which is one of the most compact post-quantum PKEs and possibly the most efficient isogeny-based PKE...

2024/618 (PDF) Last updated: 2024-04-22
Efficient KZG-based Univariate Sum-check and Lookup Argument
Yuncong Zhang, Shi-Feng Sun, Dawu Gu
Cryptographic protocols

We propose a novel KZG-based sum-check scheme, dubbed $\mathsf{Losum}$, with optimal efficiency. Particularly, its proving cost is one multi-scalar-multiplication of size $k$---the number of non-zero entries in the vector, its verification cost is one pairing plus one group scalar multiplication, and the proof consists of only one group element. Using $\mathsf{Losum}$ as a component, we then construct a new lookup argument, named $\mathsf{Locq}$, which enjoys a smaller proof size and a...

2024/616 (PDF) Last updated: 2024-04-22
$\mathsf{Cougar}$: Cubic Root Verifier Inner Product Argument under Discrete Logarithm Assumption
Hyeonbum Lee, Seunghun Paik, Hyunjung Son, Jae Hong Seo
Cryptographic protocols

An inner product argument (IPA) is a cryptographic primitive used to construct a zero-knowledge proof (ZKP) system, which is a notable privacy-enhancing technology. We propose a novel efficient IPA called $\mathsf{Cougar}$. $\mathsf{Cougar}$ features cubic root verifier and logarithmic communication under the discrete logarithm (DL) assumption. At Asiacrypt2022, Kim et al. proposed two square root verifier IPAs under the DL assumption. Our main objective is to overcome the limitation of...

2024/615 (PDF) Last updated: 2024-04-22
Subverting Cryptographic Protocols from A Fine-Grained Perspective - A Case Study on 2-Party ECDSA
Jialiu Cheng, Yi Wang, Rongmao Chen, Xinyi Huang
Cryptographic protocols

The revelations of Edward Snowden in 2013 rekindled concerns within the cryptographic community regarding the potential subversion of cryptographic systems. Bellare et al. (CRYPTO'14) introduced the notion of Algorithm Substitution Attacks (ASAs), which aim to covertly leak sensitive information by undermining individual cryptographic primitives. In this work, we delve deeply into the realm of ASAs against protocols built upon cryptographic primitives. In particular, we revisit the existing...

2024/613 (PDF) Last updated: 2024-04-24
Hadamard Product Argument from Lagrange-Based Univariate Polynomials
Jie Xie, Yuncong Hu, Yu Yu
Cryptographic protocols

Hadamard product is a point-wise product for two vectors. This paper presents a new scheme to prove Hadamard-product relation as a sub-protocol for SNARKs based on univariate polynomials. Prover uses linear cryptographic operations to generate the proof containing logarithmic field elements. The verification takes logarithmic cryptographic operations with constant numbers of pairings in bilinear group. The construction of the scheme is based on the Lagrange-based KZG commitments (Kate,...

2024/610 (PDF) Last updated: 2024-04-22
Practical Delegatable Attribute-Based Anonymous Credentials with Chainable Revocation
Min Xie, Peichen Ju, Yanqi Zhao, Zoe L. Jiang, Junbin Fang, Yong Yu, Xuan Wang
Cryptographic protocols

Delegatable Anonymous Credentials (DAC) are an enhanced Anonymous Credentials (AC) system that allows credential owners to use credentials anonymously, as well as anonymously delegate them to other users. In this work, we introduce a new concept called Delegatable Attribute-based Anonymous Credentials with Chainable Revocation (DAAC-CR), which extends the functionality of DAC by allowing 1) fine-grained attribute delegation, 2) issuers to restrict the delegation capabilities of the delegated...

2024/606 (PDF) Last updated: 2024-04-19
Classical Commitments to Quantum States
Sam Gunn, Yael Tauman Kalai, Anand Natarajan, Agi Villanyi
Cryptographic protocols

We define the notion of a classical commitment scheme to quantum states, which allows a quantum prover to compute a classical commitment to a quantum state, and later open each qubit of the state in either the standard or the Hadamard basis. Our notion is a strengthening of the measurement protocol from Mahadev (STOC 2018). We construct such a commitment scheme from the post-quantum Learning With Errors (LWE) assumption, and more generally from any noisy trapdoor claw-free function family...

2024/599 (PDF) Last updated: 2024-04-17
Probabilistically Checkable Arguments for all NP
Shany Ben-David
Cryptographic protocols

A probabilistically checkable argument (PCA) is a computational relaxation of PCPs, where soundness is guaranteed to hold only for false proofs generated by a computationally bounded adversary. The advantage of PCAs is that they are able to overcome the limitations of PCPs. A succinct PCA has a proof length that is polynomial in the witness length (and is independent of the non-deterministic verification time), which is impossible for PCPs, under standard complexity assumptions. Bronfman and...

2024/594 (PDF) Last updated: 2024-05-01
Greco: Fast Zero-Knowledge Proofs for Valid FHE RLWE Ciphertexts Formation
Enrico Bottazzi
Cryptographic protocols

Fully homomorphic encryption (FHE) allows for evaluating arbitrary functions over encrypted data. In Multi-party FHE applications, different parties encrypt their secret data and submit ciphertexts to a server, which, according to the application logic, performs homomorphic operations on them. For example, in a secret voting application, the tally is computed by summing up the ciphertexts encoding the votes. Valid encrypted votes are of the form $E(0)$ and $E(1)$. A malicious voter could...

2024/587 (PDF) Last updated: 2024-04-18
Hidden $\Delta$-fairness: A Novel Notion for Fair Secure Two-Party Computation
Saskia Bayreuther, Robin Berger, Felix Dörre, Jeremias Mechler, Jörn Müller-Quade
Cryptographic protocols

Secure two-party computation allows two mutually distrusting parties to compute a joint function over their inputs, guaranteeing properties such as input privacy or correctness. For many tasks, such as joint computation of statistics, it is important that when one party receives the result of the computation, the other party also receives the result. Unfortunately, this property, which is called fairness, is unattainable in the two-party setting for arbitrary functions. So weaker...

2024/582 (PDF) Last updated: 2024-04-17
Improved Alternating Moduli PRFs and Post-Quantum Signatures
Navid Alamati, Guru-Vamsi Policharla, Srinivasan Raghuraman, Peter Rindal
Cryptographic protocols

We revisit the alternating moduli paradigm for constructing symmetric key primitives with a focus on constructing highly efficient protocols to evaluate them using secure multi-party computation (MPC). The alternating moduli paradigm of Boneh et al. (TCC 2018) enables the construction of various symmetric key primitives with the common characteristic that the inputs are multiplied by two linear maps over different moduli, first over $\mathbb{F}_2$ and then over $\mathbb{F}_3$. The...

2024/580 (PDF) Last updated: 2024-04-15
Dynamic Decentralized Functional Encryptions from Pairings in the Standard Model
Duy Nguyen
Cryptographic protocols

Dynamic Decentralized Functional Encryption (DDFE), introduced by Chotard et al. (CRYPTO'20), stands as a robust generalization of (Multi-Client) Functional Encryption. It enables users to dynamically join and contribute private inputs to individually-controlled joint functions, all without requiring a trusted authority. Agrawal et al. (TCC’21) further extended this line of research by presenting the first DDFE construction for function-hiding inner products (FH-IP-DDFE) in the random oracle...

2024/571 (PDF) Last updated: 2024-04-26
MiniCast: Minimizing the Communication Complexity of Reliable Broadcast
Thomas Locher, Victor Shoup
Cryptographic protocols

We give a new protocol for reliable broadcast with improved communication complexity for long messages. Namely, to reliably broadcast a message a message $m$ over an asynchronous network to a set of $n$ parties, of which fewer than $n/3$ may be corrupt, our protocol achieves a communication complexity of $1.5 |m| n + O( \kappa n^2 \log(n) )$, where $\kappa$ is the output length of a collision-resistant hash function. This result improves on the previously best known bound for long...

2024/570 (PDF) Last updated: 2024-04-15
Large-Scale Private Set Intersection in the Client-Server Setting
Yunqing Sun, Jonathan Katz, Mariana Raykova, Phillipp Schoppmann, Xiao Wang
Cryptographic protocols

Private set intersection (PSI) allows two parties to compute the intersection of their sets without revealing anything else. In some applications of PSI, a server holds a large set and needs to run PSI with many clients, each with its own small set. In this setting, however, all existing protocols fall short: they either incur too much cost to compute the intersections for many clients or cannot achieve the desired security requirements. We design a protocol that particularly suits this...

2024/569 (PDF) Last updated: 2024-04-12
An overview of symmetric fuzzy PAKE protocols
Johannes Ottenhues
Cryptographic protocols

Fuzzy password authenticated key exchange (fuzzy PAKE) protocols enable two parties to securely exchange a session-key for further communication. The parties only need to share a low entropy password. The passwords do not even need to be identical, but can contain some errors. This may be due to typos, or because the passwords were created from noisy biometric readings. In this paper we provide an overview and comparison of existing fuzzy PAKE protocols. Furthermore, we analyze certain...

2024/568 (PDF) Last updated: 2024-04-12
Communication-Efficient Multi-Party Computation for RMS Programs
Thomas Attema, Aron van Baarsen, Stefan van den Berg, Pedro Capitão, Vincent Dunning, Lisa Kohl
Cryptographic protocols

Despite much progress, general-purpose secure multi-party computation (MPC) with active security may still be prohibitively expensive in settings with large input datasets. This particularly applies to the secure evaluation of graph algorithms, where each party holds a subset of a large graph. Recently, Araki et al. (ACM CCS '21) showed that dedicated solutions may provide significantly better efficiency if the input graph is sparse. In particular, they provide an efficient protocol for...

2024/567 (PDF) Last updated: 2024-04-12
Amortizing Circuit-PSI in the Multiple Sender/Receiver Setting
Aron van Baarsen, Marc Stevens
Cryptographic protocols

Private set intersection (PSI) is a cryptographic functionality for two parties to learn the intersection of their input sets, without leaking any other information. Circuit-PSI is a stronger PSI functionality where the parties learn only a secret-shared form of the desired intersection, thus without revealing the intersection directly. These secret shares can subsequently serve as input to a secure multiparty computation of any function on this intersection. In this paper we consider...

2024/566 (PDF) Last updated: 2024-04-12
A Near-Linear Quantum-Safe Third-Party Private Set Intersection Protocol
Foo Yee Yeo, Jason H. M. Ying
Cryptographic protocols

Third-party private set intersection (PSI) enables two parties, each holding a private set to compute their intersection and reveal the result only to an inputless third party. In this paper, we present efficient third-party PSI protocols, which significantly lower the computational workload compared to prior work. Our work is motivated by real-world applications such as contact tracing whereby expedition is essential while concurrently preserving privacy. Our construction attains a...

2024/560 (PDF) Last updated: 2024-04-11
Two-Party Decision Tree Training from Updatable Order-Revealing Encryption
Robin Berger, Felix Dörre, Alexander Koch
Cryptographic protocols

Running machine learning algorithms on encrypted data is a way forward to marry functionality needs common in industry with the important concerns for privacy when working with potentially sensitive data. While there is already a growing field on this topic and a variety of protocols, mostly employing fully homomorphic encryption or performing secure multiparty computation (MPC), we are the first to propose a protocol that makes use of a specialized encryption scheme that allows to do secure...

2024/547 (PDF) Last updated: 2024-04-08
Efficient Permutation Correlations and Batched Random Access for Two-Party Computation
Stanislav Peceny, Srinivasan Raghuraman, Peter Rindal, Harshal Shah
Cryptographic protocols

In this work we define the notion of a permutation correlation $(\pi,A,B,C)$ s.t. $\pi(A)=B+C$ for a random permutation $\pi$ of $n$ elements and vectors $A,B,C\in \mathbb{F}^n$. We demonstrate the utility of this correlation for a wide range of applications. The correlation can be derandomized to obliviously shuffle a secret-shared list, permute a secret-shared list by a secret-shared permutation, and more. Similar techniques have emerged as a popular building block for the honest majority...

2024/545 (PDF) Last updated: 2024-04-08
Optimal Asynchronous Byzantine Consensus with Fair Separability
Vincent Gramoli, Zhenliang Lu, Qiang Tang, Pouriya Zarbafian
Cryptographic protocols

Despite ensuring both consistency and liveness, state machine replication protocols remain vulnerable to adversaries who manipulate the transaction order. To address this, researchers have proposed order-fairness techniques that rely either on building dependency graphs between transactions, or on assigning sequence numbers to transactions. Existing protocols that handle dependency graphs suffer from sub-optimal performance, resilience, or security. On the other hand, Pompe (OSDI '20)...

2024/544 (PDF) Last updated: 2024-04-08
A post-quantum Distributed OPRF from the Legendre PRF
Novak Kaluderovic, Nan Cheng, Katerina Mitrokotsa
Cryptographic protocols

A distributed OPRF allows a client to evaluate a pseudorandom function on an input chosen by the client using a distributed key shared among multiple servers. This primitive ensures that the servers learn nothing about the input nor the output, and the client learns nothing about the key. We present a post-quantum OPRF in a distributed server setting, which can be computed in a single round of communication between a client and the servers. The only server-to-server communication occurs...

2024/539 (PDF) Last updated: 2024-04-07
Supersingular Hashing using Lattès Maps
Daniel Larsson
Cryptographic protocols

In this note we propose a variant (with four sub-variants) of the Charles--Goren--Lauter (CGL) hash function using Lattès maps over finite fields. These maps define dynamical systems on the projective line. The underlying idea is that these maps ``hide'' the $j$-invariants in each step in the isogeny chain, similar to the Merkle--Damgård construction. This might circumvent the problem concerning the knowledge of the starting (or ending) curve's endomorphism ring, which is known to create...

2024/537 (PDF) Last updated: 2024-04-06
Confidential and Verifiable Machine Learning Delegations on the Cloud
Wenxuan Wu, Soamar Homsi, Yupeng Zhang
Cryptographic protocols

With the growing adoption of cloud computing, the ability to store data and delegate computations to powerful and affordable cloud servers have become advantageous for both companies and individual users. However, the security of cloud computing has emerged as a significant concern. Particularly, Cloud Service Providers (CSPs) cannot assure data confidentiality and computations integrity in mission-critical applications. In this paper, we propose a confidential and verifiable delegation...

2024/535 (PDF) Last updated: 2024-04-05
NodeGuard: A Highly Efficient Two-Party Computation Framework for Training Large-Scale Gradient Boosting Decision Tree
Tianxiang Dai, Yufan Jiang, Yong Li, Fei Mei
Cryptographic protocols

The Gradient Boosting Decision Tree (GBDT) is a well-known machine learning algorithm, which achieves high performance and outstanding interpretability in real-world scenes such as fraud detection, online marketing and risk management. Meanwhile, two data owners can jointly train a GBDT model without disclosing their private dataset by executing secure Multi-Party Computation (MPC) protocols. In this work, we propose NodeGuard, a highly efficient two party computation (2PC) framework for...

2024/534 (PDF) Last updated: 2024-04-05
CryptoVampire: Automated Reasoning for the Complete Symbolic Attacker Cryptographic Model
Simon Jeanteur, Laura Kovács, Matteo Maffei, Michael Rawson
Cryptographic protocols

Cryptographic protocols are hard to design and prove correct, as witnessed by the ever-growing list of attacks even on protocol standards. Symbolic models of cryptography enable automated formal security proofs of such protocols against an idealized cryptographic model, which abstracts away from the algebraic properties of cryptographic schemes and thus misses attacks. Computational models of cryptography yield rigorous guarantees but support at present only interactive proofs and/or...

2024/531 (PDF) Last updated: 2024-04-06
Avoiding Trusted Setup in Isogeny-based Commitments
Gustave Tchoffo Saah, Tako Boris Fouotsa, Emmanuel Fouotsa, Célestin Nkuimi-Jugnia
Cryptographic protocols

In 2021, Sterner proposed a commitment scheme based on supersingular isogenies. For this scheme to be binding, one relies on a trusted party to generate a starting supersingular elliptic curve of unknown endomorphism ring. In fact, the knowledge of the endomorphism ring allows one to compute an endomorphism of degree a power of a given small prime. Such an endomorphism can then be split into two to obtain two different messages with the same commitment. This is the reason why one needs a...

2024/526 (PDF) Last updated: 2024-04-04
Optimizing and Implementing Fischlin's Transform for UC-Secure Zero-Knowledge
Yi-Hsiu Chen, Yehuda Lindell
Cryptographic protocols

Fischlin's transform (CRYPTO 2005) is an alternative to the Fiat-Shamir transform that enables straight-line extraction when proving knowledge. In this work we focus on the problem of using the Fischlin transform to construct UC-secure zero-knowledge from Sigma protocols, since UC security -- that guarantees security under general concurrent composition -- requires straight-line (non-rewinding) simulators. We provide a slightly simplified transform that is much easier to understand, and...

2024/525 (PDF) Last updated: 2024-04-04
Privacy Preserving Biometric Authentication for Fingerprints and Beyond
Marina Blanton, Dennis Murphy
Cryptographic protocols

Biometric authentication eliminates the need for users to remember secrets and serves as a convenient mechanism for user authentication. Traditional implementations of biometric-based authentication store sensitive user biometry on the server and the server becomes an attractive target of attack and a source of large-scale unintended disclosure of biometric data. To mitigate the problem, we can resort to privacy-preserving computation and store only protected biometrics on the server. While...

2024/524 (PDF) Last updated: 2024-04-03
A Time-Space Tradeoff for the Sumcheck Prover
Alessandro Chiesa, Elisabetta Fedele, Giacomo Fenzi, Andrew Zitek-Estrada
Cryptographic protocols

The sumcheck protocol is an interactive protocol for verifying the sum of a low-degree polynomial over a hypercube. This protocol is widely used in practice, where an efficient implementation of the (honest) prover algorithm is paramount. Prior work contributes highly-efficient prover algorithms for the notable special case of multilinear polynomials (and related settings): [CTY11] uses logarithmic space but runs in superlinear time; in contrast, [VSBW13] runs in linear time but uses linear...

2024/522 (PDF) Last updated: 2024-04-02
Cryptanalysis of Secure and Lightweight Conditional Privacy-Preserving Authentication for Securing Traffic Emergency Messages in VANETs
Mahender Kumar
Cryptographic protocols

In their paper, Wei et al. proposed a lightweight protocol for conditional privacy-preserving authentication in VANET. The protocol aims to achieve ultra-low transmission delay and efficient system secret key (SSK) updating. Their protocol uses a signature scheme with message recovery to authenticate messages. This scheme provides security against adaptively chosen message attacks. However, our analysis reveals a critical vulnerability in the scheme. It is susceptible to replay attacks,...

2024/514 (PDF) Last updated: 2024-04-28
Zero-Knowledge Proof Vulnerability Analysis and Security Auditing
Xueyan Tang, Lingzhi Shi, Xun Wang, Kyle Charbonnet, Shixiang Tang, Shixiao Sun
Cryptographic protocols

Zero-Knowledge Proof (ZKP) technology marks a revolutionary advancement in the field of cryptography, enabling the verification of certain information ownership without revealing any specific details. This technology, with its paradoxical yet powerful characteristics, provides a solid foundation for a wide range of applications, especially in enhancing the privacy and security of blockchain technology and other cryptographic systems. As ZKP technology increasingly becomes a part of the...

2024/507 (PDF) Last updated: 2024-04-01
An Efficient SNARK for Field-Programmable and RAM Circuits
Jehyuk Jang, Jamie Judd
Cryptographic protocols

The advancement of succinct non-interactive argument of knowledge (SNARK) with constant proof size has significantly enhanced the efficiency and privacy of verifiable computation. Verifiable computation finds applications in distributed computing networks, particularly in scenarios where nodes cannot be generally trusted, such as blockchains. However, fully harnessing the efficiency of SNARK becomes challenging when the computing targets in the network change frequently, as the SNARK...

2024/504 (PDF) Last updated: 2024-03-29
Polylogarithmic Proofs for Multilinears over Binary Towers
Benjamin E. Diamond, Jim Posen
Cryptographic protocols

We introduce a polylogarithmic-verifier polynomial commitment scheme for multilinears over towers of binary fields. To achieve this, we adapt an idea of Zeilberger, Chen and Fisch's BaseFold ('23) to the setting of binary towers, using FRI (ICALP '18)'s binary-field variant. In the process, we reinterpret Lin, Chung and Han (FOCS '14)'s novel polynomial basis so as to make apparent its compatibility with FRI. We moreover introduce a "packed" version of our protocol, which supports—with no...

2024/503 (PDF) Last updated: 2024-04-01
Two Levels are Better than One: Dishonest Majority MPC with $\widetilde{O}(|C|)$ Total Communication
Alexander Bienstock, Kevin Yeo
Cryptographic protocols

In recent years, there has been tremendous progress in improving the communication complexity of dishonest majority MPC. In the sub-optimal corruption threshold setting, where $t<(1-\varepsilon)\cdot n$ for some constant $0<\varepsilon\leq 1/2$, the recent works Sharing Transformation (Goyal $\textit{et al.}$, CRYPTO'22) and SuperPack (Escudero $\textit{et al.}$, EUROCRYPT'23) presented protocols with information-theoretic online phases achieving $O(1)$ communication per multiplication gate,...

2024/499 (PDF) Last updated: 2024-03-28
CCA Secure Updatable Encryption from Non-Mappable Group Actions
Jonas Meers, Doreen Riepel
Cryptographic protocols

Ciphertext-independent updatable encryption (UE) allows to rotate encryption keys and update ciphertexts via a token without the need to first download the ciphertexts. Although, syntactically, UE is a symmetric-key primitive, ciphertext-independent UE with forward secrecy and post-compromise security is known to imply public-key encryption (Alamati, Montgomery and Patranabis, CRYPTO 2019). Constructing post-quantum secure UE turns out to be a difficult task. While lattices offer the...

2024/497 (PDF) Last updated: 2024-03-28
On the Security of Data Markets and Private Function Evaluation
István Vajda
Cryptographic protocols

The income of companies working on data markets steadily grows year by year. Private function evaluation (PFE) is a valuable tool in solving corresponding security problems. The task of Controlled Private Function Evaluation and its relaxed version was introduced in [Horvath et.al., 2019]. In this article, we propose and examine several different approaches for such tasks with computational and information theoretical security against static corruption adversary. The latter level of security...

2024/496 (PDF) Last updated: 2024-03-28
Two-Round Threshold Signature from Algebraic One-More Learning with Errors
Thomas Espitau, Shuichi Katsumata, Kaoru Takemure
Cryptographic protocols

Threshold signatures have recently seen a renewed interest due to applications in cryptocurrency while NIST has released a call for multi-party threshold schemes, with a deadline for submission expected for the first half of 2025. So far, all lattice-based threshold signatures requiring less than two-rounds are based on heavy tools such as (fully) homomorphic encryption (FHE) and homomorphic trapdoor commitments (HTDC). This is not unexpected considering that most efficient two-round...

2024/495 (PDF) Last updated: 2024-03-28
Reducing Signature Size of Matrix-code-based Signature Schemes
Tung Chou, Ruben Niederhagen, Lars Ran, Simona Samardjiska
Cryptographic protocols

This paper shows novel techniques to reduce the signature size of the code-based signature schemes MEDS and ALTEQ, by a large factor. For both schemes, the signature size is dominated by the responses for rounds with nonzero challenges, and we reduce the signature size by reducing the size of these responses. For MEDS, each of the responses consists of $m^2 + n^2$ field elements,while in our new protocol each response consists of only $2k$ ($k$ is usually chosen to be close to $m$ and $n$)...

2024/493 (PDF) Last updated: 2024-03-27
Reckle Trees: Updatable Merkle Batch Proofs with Applications
Charalampos Papamanthou, Shravan Srinivasan, Nicolas Gailly, Ismael Hishon-Rezaizadeh, Andrus Salumets, Stjepan Golemac
Cryptographic protocols

We propose Reckle trees, a new vector commitment based on succinct RECursive arguments and MerKLE trees. Reckle trees' distinguishing feature is their support for succinct batch proofs that are updatable - enabling new applications in the blockchain setting where a proof needs to be computed and efficiently maintained over a moving stream of blocks. Our technical approach is based on embedding the computation of the batch hash inside the recursive Merkle verification via a hash-based...

2024/491 (PDF) Last updated: 2024-03-27
Updatable Policy-Compliant Signatures
Christian Badertscher, Monosij Maitra, Christian Matt, Hendrik Waldner
Cryptographic protocols

Policy-compliant signatures (PCS) are a recently introduced primitive by Badertscher et al. [TCC 2021] in which a central authority distributes secret and public keys associated with sets of attributes (e.g., nationality, affiliation with a specific department, or age) to its users. The authority also enforces a policy determining which senders can sign messages for which receivers based on a joint check of their attributes. For example, senders and receivers must have the same nationality,...

2024/490 (PDF) Last updated: 2024-03-27
One Tree to Rule Them All: Optimizing GGM Trees and OWFs for Post-Quantum Signatures
Carsten Baum, Ward Beullens, Shibam Mukherjee, Emmanuela Orsini, Sebastian Ramacher, Christian Rechberger, Lawrence Roy, Peter Scholl
Cryptographic protocols

The use of MPC-in-the-Head (MPCitH)-based zero-knowledge proofs of knowledge (ZKPoK) to prove knowledge of a preimage of a one-way function (OWF) is a popular approach towards constructing efficient post-quantum digital signatures. Starting with the Picnic signature scheme, many optimized MPCitH signatures using a variety of (candidate) OWFs have been proposed. Recently, Baum et al. (CRYPTO 2023) showed a fundamental improvement to MPCitH, called VOLE-in-the-Head (VOLEitH), which can...

2024/484 (PDF) Last updated: 2024-03-25
Harmonizing PUFs for Forward Secure Authenticated Key Exchange with Symmetric Primitives
Harishma Boyapally, Durba Chatterjee, Kuheli Pratihar, Sayandeep Saha, Debdeep Mukhopadhyay, Shivam Bhasin
Cryptographic protocols

Physically Unclonable Functions (PUFs) have been a potent choice for enabling low-cost, secure communication. However, in most applications, one party holds the PUF, and the other securely stores the challenge-response pairs (CRPs). It does not remove the need for secure storage entirely, which is one of the goals of PUFs. This paper proposes a PUF-based construction called Harmonizing PUFs ($\textsf{H_PUF}$s), allowing two independent PUFs to generate the same outcome without storing...

2024/482 (PDF) Last updated: 2024-03-27
Single Server PIR via Homomorphic Thorp Shuffles
Ben Fisch, Arthur Lazzaretti, Zeyu Liu, Charalampos Papamanthou
Cryptographic protocols

Private Information Retrieval (PIR) is a two player protocol where the client, given some query $x \in [N]$ interacts with the server, which holds a $N$-bit string $\textsf{DB}$ in order to privately retrieve $\textsf{DB}[x]$. In this work, we focus on the single server client-preprocessing model, initially idealized by Corrigan-Gibbs and Kogan (EUROCRYPT 2020), where the client and server first run some joint preprocessing algorithm, after which the client can retrieve elements of the...

2024/481 (PDF) Last updated: 2024-03-22
Watermarkable and Zero-Knowledge Verifiable Delay Functions from any Proof of Exponentiation
Charlotte Hoffmann, Krzysztof Pietrzak
Cryptographic protocols

A verifiable delay function $\texttt{VDF}(x,T)\rightarrow (y,\pi)$ maps an input $x$ and time parameter $T$ to an output $y$ together with an efficiently verifiable proof $\pi$ certifying that $y$ was correctly computed. The function runs in $T$ sequential steps, and it should not be possible to compute $y$ much faster than that. The only known practical VDFs use sequential squaring in groups of unknown order as the sequential function, i.e., $y=x^{2^T}$. There are two constructions for...

2024/480 (PDF) Last updated: 2024-03-22
Folding-based zkLLM
Wilbert W
Cryptographic protocols

This paper introduces a new approach to construct zero-knowledge large language models (zkLLM) based on the Folding technique. We first review the concept of Incrementally Verifiable Computation (IVC) and compare the IVC constructions based on SNARK and Folding. Then we discuss the necessity of Non-uniform IVC (NIVC) and present several Folding schemes that support more expressive circuits, such as SuperNova, Sangria, Origami, HyperNova, and Protostar. Based on these techniques, we propose a...

2024/479 (PDF) Last updated: 2024-03-25
Making Hash-based MVBA Great Again
Hanwen Feng, Zhenliang Lu, Tiancheng Mai, Qiang Tang
Cryptographic protocols

Multi-valued Validated Asynchronous Byzantine Agreement ($\mathsf{MVBA}$) is one essential primitive for many distributed protocols, such as asynchronous Byzantine fault-tolerant scenarios like atomic broadcast ($\mathsf{ABC}$), asynchronous distributed key generation, and many others. Recent efforts (Lu et al, PODC' 20) have pushed the communication complexity of $\mathsf{MVBA}$ to optimal $O(\ell n + \lambda n^2)$, which, however, heavily rely on ``heavyweight'' cryptographic tools,...

2024/474 (PDF) Last updated: 2024-03-25
Accumulation without Homomorphism
Benedikt Bünz, Pratyush Mishra, Wilson Nguyen, William Wang
Cryptographic protocols

Accumulation schemes are a simple yet powerful primitive that enable highly efficient constructions of incrementally verifiable computation (IVC). Unfortunately, all prior accumulation schemes rely on homomorphic vector commitments whose security is based on public-key assumptions. It is an interesting open question to construct efficient accumulation schemes that avoid the need for such assumptions. In this paper, we answer this question affirmatively by constructing an accumulation...

2024/472 (PDF) Last updated: 2024-05-02
Sailfish: Towards Improving Latency of DAG-based BFT
Nibesh Shrestha, Rohan Shrothrium, Aniket Kate, Kartik Nayak
Cryptographic protocols

The traditional leader-based BFT protocols often lead to unbalanced work distribution among participating parties, with a single leader carrying out the majority of the tasks. Recently, Directed Acyclic Graph (DAG) based BFT protocols have emerged as a solution to balance consensus efforts across parties, typically resulting in higher throughput compared to traditional protocols. However, existing DAG-based BFT protocols exhibit long latency to commit decisions. The primary reason for...

2024/470 (PDF) Last updated: 2024-03-20
Fast Secure Computations on Shared Polynomials and Applications to Private Set Operations
Pascal Giorgi, Fabien Laguillaumie, Lucas Ottow, Damien Vergnaud
Cryptographic protocols

Secure multi-party computation aims to allow a set of players to compute a given function on their secret inputs without revealing any other information than the result of the computation. In this work, we focus on the design of secure multi-party protocols for shared polynomial operations. We consider the classical model where the adversary is honest-but-curious, and where the coefficients (or any secret values) are either encrypted using an additively homomorphic encryption scheme or...

2024/469 (PDF) Last updated: 2024-03-20
Malicious Security for Sparse Private Histograms
Lennart Braun, Adrià Gascón, Mariana Raykova, Phillipp Schoppmann, Karn Seth
Cryptographic protocols

We present a construction for secure computation of differentially private sparse histograms that aggregates the inputs from a large number of clients. Each client contributes a value to the aggregate at a specific index. We focus on the case where the set of possible indices is superpolynomially large. Hence, the resulting histogram will be sparse, i.e., most entries will have the value zero. Our construction relies on two non-colluding servers and provides security against malicious...

2024/467 (PDF) Last updated: 2024-04-01
Partially Non-Interactive Two-Round Lattice-Based Threshold Signatures
Rutchathon Chairattana-Apirom, Stefano Tessaro, Chenzhi Zhu
Cryptographic protocols

This paper gives the first lattice-based two-round threshold signature based on lattice assumptions for which the first message is independent of the message being signed without relying on fully-homomorphic encryption, and our construction supports arbitrary thresholds. Our construction provides a careful instantiation of a generic threshold signature construction by Tessaro and Zhu (EUROCRYPT ’23) based on specific linear hash functions, which in turns can be seen as a generalization of...

2024/465 (PDF) Last updated: 2024-03-19
Shorter VOLEitH Signature from Multivariate Quadratic
Dung Bui
Cryptographic protocols

VOLE-in-the-head paradigm recently introduced by Baum et al. (Crypto 2023) allows transforming zero-knowledge protocols in the designated verifier setting into public-coin protocols, which can be made non-interactive and publicly verifiable. Our transformation applies to a large class of ZK protocols based on vector oblivious linear evaluation (VOLE) and leads to resulting ZK protocols that have linear proof size and are simpler, smaller, and faster than related approaches based on...

2024/456 (PDF) Last updated: 2024-03-18
Tight ZK CPU: Batched ZK Branching with Cost Proportional to Evaluated Instruction
Yibin Yang, David Heath, Carmit Hazay, Vladimir Kolesnikov, Muthuramakrishnan Venkitasubramaniam
Cryptographic protocols

We explore Zero-Knowledge proofs (ZKP) of statements expressed as programs written in high-level languages, e.g., C or assembly. At the core of executing such programs in ZK is the repeated evaluation of a CPU step, achieved by branching over the CPU’s instruction set. This approach is general and covers traversal-execution of a program’s control flow graph (CFG): here CPU instructions are straight-line program fragments (of various sizes) associated with the CFG nodes. This highlights the...

2024/453 (PDF) Last updated: 2024-03-16
Verifiable Information-Theoretic Function Secret Sharing
Stanislav Kruglik, Son Hoang Dau, Han Mao Kiah, Huaxiong Wang, Liang Feng Zhang
Cryptographic protocols

A function secret sharing (FSS) (Boyle et al., Eurocrypt 2015) is a cryptographic primitive that enables additive secret sharing of functions from a given function family $\mathcal{F}$. FSS supports a wide range of cryptographic applications, including private information retrieval (PIR), anonymous messaging systems, private set intersection and more. Formally, given positive integers $r \geq 2$ and $t < r$, and a class $\mathcal{F}$ of functions $f: [n] \to \mathbb{G}$ for an Abelian group...

2024/450 (PDF) Last updated: 2024-03-15
The 2Hash OPRF Framework and Efficient Post-Quantum Instantiations
Ward Beullens, Lucas Dodgson, Sebastian Faller, Julia Hesse
Cryptographic protocols

An Oblivious Pseudo-Random Function (OPRF) is a two-party protocol for jointly evaluating a Pseudo-Random Function (PRF), where a user has an input x and a server has an input k. At the end of the protocol, the user learns the evaluation of the PRF using key k at the value x, while the server learns nothing about the user's input or output. OPRFs are a prime tool for building secure authentication and key exchange from passwords, private set intersection, private information retrieval,...

2024/444 (PDF) Last updated: 2024-03-15
A trust-minimized e-cash for cryptocurrencies
Mario Yaksetig
Cryptographic protocols

We introduce a private cryptocurrency design based on the original e-cash protocol. Our proposal allows for private payments on existing blockchain systems. In our design, the issuance of the private cash is transparent and is associated with a blockchain transfer to provide stronger security.

2024/434 (PDF) Last updated: 2024-03-13
Parameter-Hiding Order-Revealing Encryption without Pairings
Cong Peng, Rongmao Chen, Yi Wang, Debiao He, Xinyi Huang
Cryptographic protocols

Order-Revealing Encryption (ORE) provides a practical solution for conducting range queries over encrypted data. Achieving a desirable privacy-efficiency tradeoff in designing ORE schemes has posed a significant challenge. At Asiacrypt 2018, Cash et al. proposed Parameter-hiding ORE (pORE), which specifically targets scenarios where the data distribution shape is known, but the underlying parameters (such as mean and variance) need to be protected. However, existing pORE constructions rely...

2024/433 (PDF) Last updated: 2024-03-13
UniHand: Privacy-preserving Universal Handover for Small-Cell Networks in 5G-enabled Mobile Communication with KCI Resilience
Rabiah Alnashwan, Prosanta Gope, Benjamin Dowling
Cryptographic protocols

Introducing Small Cell Networks (SCN) has significantly improved wireless link quality, spectrum efficiency and network capacity, which has been viewed as one of the key technologies in the fifth-generation (5G) mobile network. However, this technology increases the frequency of handover (HO) procedures caused by the dense deployment of cells in the network with reduced cell coverage, bringing new security and privacy issues. The current 5G-AKA and HO protocols are vulnerable to security...

2024/432 (PDF) Last updated: 2024-03-13
Perfect Asynchronous MPC with Linear Communication Overhead
Ittai Abraham, Gilad Asharov, Shravani Patil, Arpita Patra
Cryptographic protocols

We study secure multiparty computation in the asynchronous setting with perfect security and optimal resilience (less than one-fourth of the participants are malicious). It has been shown that every function can be computed in this model [Ben-OR, Canetti, and Goldreich, STOC'1993]. Despite 30 years of research, all protocols in the asynchronous setting require $\Omega(n^2C)$ communication complexity for computing a circuit with $C$ multiplication gates. In contrast, for nearly 15 years, in...

2024/430 (PDF) Last updated: 2024-03-12
SoK: Zero-Knowledge Range Proofs
Miranda Christ, Foteini Baldimtsi, Konstantinos Kryptos Chalkias, Deepak Maram, Arnab Roy, Joy Wang
Cryptographic protocols

Zero-knowledge range proofs (ZKRPs) allow a prover to convince a verifier that a secret value lies in a given interval. ZKRPs have numerous applications: from anonymous credentials and auctions, to confidential transactions in cryptocurrencies. At the same time, a plethora of ZKRP constructions exist in the literature, each with its own trade-offs. In this work, we systematize the knowledge around ZKRPs. We create a classification of existing constructions based on the underlying building...

2024/429 (PDF) Last updated: 2024-03-12
FOLEAGE: $\mathbb{F}_4$OLE-Based Multi-Party Computation for Boolean Circuits
Maxime Bombar, Dung Bui, Geoffroy Couteau, Alain Couvreur, Clément Ducros, Sacha Servan-Schreiber
Cryptographic protocols

Secure Multi-party Computation (MPC) allows two or more parties to compute any public function over their privately-held inputs, without revealing any information beyond the result of the computation. The main efficiency bottleneck in MPC protocols comes from interaction between parties. To limit the interaction, modern protocols for MPC generate a large amount of input-independent preprocessing material called multiplication triples, in an offline phase. This preprocessing can later be used...

2024/426 (PDF) Last updated: 2024-03-12
Efficient Actively Secure DPF and RAM-based 2PC with One-Bit Leakage
Wenhao Zhang, Xiaojie Guo, Kang Yang, Ruiyu Zhu, Yu Yu, Xiao Wang
Cryptographic protocols

Secure two-party computation (2PC) in the RAM model has attracted huge attention in recent years. Most existing results only support semi-honest security, with the exception of Keller and Yanai (Eurocrypt 2018) with very high cost. In this paper, we propose an efficient RAM-based 2PC protocol with active security and one-bit leakage. 1) We propose an actively secure protocol for distributed point function (DPF), with one-bit leakage, that is essentially as efficient as the...

2024/421 (PDF) Last updated: 2024-04-22
LLRing: Logarithmic Linkable Ring Signatures with Transparent Setup
Xiangyu Hui, Sid Chi-Kin Chau
Cryptographic protocols

Linkable ring signatures are an important cryptographic primitive for anonymized applications, such as e-voting, e-cash and confidential transactions. To eliminate backdoor and overhead in a trusted setup, transparent setup in the discrete logarithm or pairing settings has received considerable attention in practice. Recent advances have improved the proof sizes and verification efficiency of linkable ring signatures with a transparent setup to achieve logarithmic bounds. Omniring (CCS '19)...

2024/418 (PDF) Last updated: 2024-03-18
Atomic and Fair Data Exchange via Blockchain
Ertem Nusret Tas, István András Seres, Yinuo Zhang, Márk Melczer, Mahimna Kelkar, Joseph Bonneau, Valeria Nikolaenko
Cryptographic protocols

We introduce a blockchain Fair Data Exchange (FDE) protocol, enabling a storage server to transfer a data file to a client atomically: the client receives the file if and only if the server receives an agreed-upon payment. We put forth a new definition for a cryptographic scheme that we name verifiable encryption under committed key (VECK), and we propose two instantiations for this scheme. Our protocol relies on a blockchain to enforce the atomicity of the exchange and uses VECK to ensure...

2024/416 (PDF) Last updated: 2024-03-19
Mangrove: A Scalable Framework for Folding-based SNARKs
Wilson Nguyen, Trisha Datta, Binyi Chen, Nirvan Tyagi, Dan Boneh
Cryptographic protocols

We present a framework for building efficient folding-based SNARKs. First we develop a new "uniformizing" compiler for NP statements that converts any poly-time computation to a sequence of identical simple steps. The resulting uniform computation is especially well-suited to be processed by a folding-based IVC scheme. Second, we develop two optimizations to folding-based IVC. The first reduces the recursive overhead of the IVC by restructuring the relation to which folding is applied. The...

2024/415 (PDF) Last updated: 2024-03-07
Column-wise Garbling, and How to Go Beyond the Linear Model
Lei Fan, Zhenghao Lu, Hong-Sheng Zhou
Cryptographic protocols

In the linear garbling model introduced by Zahur, Rosulek, and Evans (Eurocrypt 2015), garbling an AND gate requires at least \(2\kappa\) bits of ciphertext, where $\kappa$ is the security parameter. Though subsequent works, including those by Rosulek and Roy (Crypto 2021) and Acharya et al. (ACNS 2023), have advanced beyond these linear constraints, a more comprehensive design framework is yet to be developed. Our work offers a novel, unified, and arguably simple perspective on garbled...

2024/402 (PDF) Last updated: 2024-03-05
Efficient Unbalanced Quorum PSI from Homomorphic Encryption
Xinpeng Yang, Liang Cai, Yinghao Wang, Yinghao Wang, Lu Sun, Jingwei Hu
Cryptographic protocols

Multiparty private set intersection (mPSI) protocol is capable of finding the intersection of multiple sets securely without revealing any other information. However, its limitation lies in processing only those elements present in every participant's set, which proves inadequate in scenarios where certain elements are common to several, but not all, sets. In this paper, we introduce an innovative variant of the mPSI protocol named unbalanced quorum PSI to fill in the gaps of the mPSI...

2024/395 (PDF) Last updated: 2024-03-07
Notus: Dynamic Proofs of Liabilities from Zero-knowledge RSA Accumulators
Jiajun Xin, Arman Haghighi, Xiangan Tian, Dimitrios Papadopoulos
Cryptographic protocols

Proofs of Liabilities (PoL) allow an untrusted prover to commit to its liabilities towards a set of users and then prove independent users' amounts or the total sum of liabilities, upon queries by users or third-party auditors. This application setting is highly dynamic. User liabilities may increase/decrease arbitrarily and the prover needs to update proofs in epoch increments (e.g., once a day for a crypto-asset exchange platform). However, prior works mostly focus on the static case and...

2024/391 (PDF) Last updated: 2024-03-03
On Information-Theoretic Secure Multiparty Computation with Local Repairability
Daniel Escudero, Ivan Tjuawinata, Chaoping Xing
Cryptographic protocols

In this work we consider the task of designing information-theoretic MPC protocols for which the state of a given party can be recovered from a small amount of parties, a property we refer to as local repairability. This is useful when considering MPC over dynamic settings where parties leave and join a computation, a scenario that has gained notable attention in recent literature. Thanks to the results of (Cramer et al. EUROCRYPT'00), designing such protocols boils down to...

2024/390 (PDF) Last updated: 2024-03-21
STIR: Reed–Solomon Proximity Testing with Fewer Queries
Gal Arnon, Alessandro Chiesa, Giacomo Fenzi, Eylon Yogev
Cryptographic protocols

We present STIR (Shift To Improve Rate), an interactive oracle proof of proximity (IOPP) for Reed-Solomon codes that achieves the best known query complexity of any concretely efficient IOPP for this problem. For $\lambda$ bits of security, STIR has query complexity $O(\log d + \lambda \cdot \log \log d )$, while FRI, a popular protocol, has query complexity $O(\lambda \cdot \log d )$ (including variants of FRI based on conjectured security assumptions). STIR relies on a new technique for...

2024/387 (PDF) Last updated: 2024-04-28
Ceno: Non-uniform, Segment and Parallel Zero-knowledge Virtual Machine
Tianyi Liu, Zhenfei Zhang, Yuncong Zhang, Wenqing Hu, Ye Zhang
Cryptographic protocols

In this paper, we explore a novel Zero-knowledge Virtual Machine (zkVM) framework leveraging succinct, non-interactive zero-knowledge proofs for verifiable computation over any code. Our approach divides program execution proof into two stages. In the first stage, the process breaks down program execution into segments, identifying and grouping identical sections. These segments are then proved through data-parallel circuits that allow for varying amounts of duplication. In the subsequent...

2024/386 (PDF) Last updated: 2024-03-01
High-Throughput Secure Multiparty Computation with an Honest Majority in Various Network Settings
Christopher Harth-Kitzerow, Georg Carle
Cryptographic protocols

In this work, we present novel protocols over rings for semi-honest secure three-party computation (3-PC) and malicious four-party computation (4-PC) with one corruption. Compared to state-of-the-art protocols in the same setting, our protocols require fewer low-latency and high-bandwidth links between the parties to achieve high throughput. Our protocols also reduce the computational complexity by requiring up to 50 percent fewer basic instructions per gate. Further, our protocols achieve...

2024/383 (PDF) Last updated: 2024-03-01
Malicious Security for SCALES: Outsourced Computation with Ephemeral Servers
Anasuya Acharya, Carmit Hazay, Vladimir Kolesnikov, Manoj Prabhakaran
Cryptographic protocols

SCALES (Small Clients And Larger Ephemeral Servers) model is a recently proposed model for MPC (Acharya et al., TCC 2022). While the SCALES model offers several attractive features for practical large-scale MPC, the result of Acharya et al. only offered semi-honest secure protocols in this model. We present a new efficient SCALES protocol secure against malicious adversaries, for general Boolean circuits. We start with the base construction of Acharya et al. and design and use a suite of...

2024/382 (PDF) Last updated: 2024-03-01
Decentralized Access Control Infrastructure for Enterprise Digital Asset Management
Chirag Madaan, Rohan Agarwal, Vipul Saini, Ujjwal Kumar
Cryptographic protocols

With the rapidly evolving landscape of cryptography, blockchain technology has advanced to cater to diverse user requirements, leading to the emergence of a multi-chain ecosystem featuring various use cases characterized by distinct transaction speed and decentralization trade-offs. At the heart of this evolution lies digital signature schemes, responsible for safeguarding blockchain-based assets such as ECDSA, Schnorr, and EdDSA, among others. However, a critical gap exists in the...

2024/379 (PDF) Last updated: 2024-02-29
SyRA: Sybil-Resilient Anonymous Signatures with Applications to Decentralized Identity
Elizabeth Crites, Aggelos Kiayias, Amirreza Sarencheh
Cryptographic protocols

We introduce a new cryptographic primitive, called Sybil-Resilient Anonymous (SyRA) signature, which enables users to generate, on demand, unlinkable pseudonyms tied to any given context, and issue digital signatures on their behalf. Concretely, given a personhood relation, an issuer (who may be a distributed entity) enables users to prove their personhood and extract an associated long-term key, which can then be used to issue signatures for any given context and message. Sybil-resilient...

2024/376 (PDF) Last updated: 2024-03-13
Perfect (Parallel) Broadcast in Constant Expected Rounds via Statistical VSS
Gilad Asharov, Anirudh Chandramouli
Cryptographic protocols

We study broadcast protocols in the information-theoretic model under optimal conditions, where the number of corruptions $t$ is at most one-third of the parties, $n$. While worst-case $\Omega(n)$ round broadcast protocols are known to be impossible to achieve, protocols with an expected constant number of rounds have been demonstrated since the seminal work of Feldman and Micali [STOC'88]. Communication complexity for such protocols has gradually improved over the years, reaching $O(nL)$...

2024/375 (PDF) Last updated: 2024-02-29
Efficient and Generic Methods to Achieve Active Security in Private Information Retrieval and More Advanced Database Search
Reo Eriguchi, Kaoru Kurosawa, Koji Nuida
Cryptographic protocols

Motivated by secure database search, we present secure computation protocols for a function $f$ in the client-servers setting, where a client can obtain $f(x)$ on a private input $x$ by communicating with multiple servers each holding $f$. Specifically, we propose generic compilers from passively secure protocols, which only keep security against servers following the protocols, to actively secure protocols, which guarantee privacy and correctness even against malicious servers. Our...

2024/374 (PDF) Last updated: 2024-02-29
Universal Composable Password Authenticated Key Exchange for the Post-Quantum World
You Lyu, Shengli Liu, Shuai Han
Cryptographic protocols

In this paper, we construct the first password authenticated key exchange (PAKE) scheme from isogenies with Universal Composable (UC) security in the random oracle model (ROM). We also construct the first two PAKE schemes with UC security in the quantum random oracle model (QROM), one is based on the learning with error (LWE) assumption, and the other is based on the group-action decisional Diffie- Hellman (GA-DDH) assumption in the isogeny setting. To obtain our UC-secure PAKE scheme in...

2024/372 (PDF) Last updated: 2024-03-04
Two-Round Maliciously-Secure Oblivious Transfer with Optimal Rate
Pedro Branco, Nico Döttling, Akshayaram Srinivasan
Cryptographic protocols

We give a construction of a two-round batch oblivious transfer (OT) protocol in the CRS model that is UC-secure against malicious adversaries and has (near) optimal communication cost. Specifically, to perform a batch of $k$ oblivious transfers where the sender's inputs are bits, the sender and the receiver need to communicate a total of $3k + o(k) \cdot \mathsf{poly}(\lambda)$ bits. We argue that $3k$ bits are required by any protocol with a black-box and straight-line simulator. The...

2024/370 (PDF) Last updated: 2024-03-17
Perfectly-Secure Multiparty Computation with Linear Communication Complexity over Any Modulus
Daniel Escudero, Yifan Song, Wenhao Wang
Cryptographic protocols

Consider the task of secure multiparty computation (MPC) among $n$ parties with perfect security and guaranteed output delivery, supporting $t<n/3$ active corruptions. Suppose the arithmetic circuit $C$ to be computed is defined over a finite ring $\mathbb{Z}/q\mathbb{Z}$, for an arbitrary $q\in\mathbb{Z}$. It is known that this type of MPC over such ring is possible, with communication that scales as $O(n|C|)$, assuming that $q$ scales as $\Omega(n)$. However, for constant-size rings...

Note: In order to protect the privacy of readers, eprint.iacr.org does not use cookies or embedded third party content.