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Abstract

Unclonable cryptography utilizes the principles of quantum mechanics to addresses crypto-
graphic tasks that are impossible classically. We introduce a novel unclonable primitive in
the context of secret sharing, called unclonable secret sharing (USS). In a USS scheme, there
are 𝑛 shareholders, each holding a share of a classical secret represented as a quantum state.
They can recover the secret once all parties (or at least 𝑡 parties) come together with their
shares. Importantly, it should be infeasible to copy their own shares and send the copies to two
non-communicating parties, enabling both of them to recover the secret.

Our work initiates a formal investigation into the realm of unclonable secret sharing, shedding
light on its implications, constructions, and inherent limitations.

• Connections: We explore the connections between USS and other quantum cryptographic
primitives such as unclonable encryption and position verification, showing the difficulties
to achieve USS in different scenarios.

• Limited Entanglement: In the case where the adversarial shareholders do not share any
entanglement or limited entanglement, we demonstrate information-theoretic constructions
for USS.

• Large Entanglement: If we allow the adversarial shareholders to have unbounded entan-
glement resources (and unbounded computation), we prove that unclonable secret sharing
is impossible. On the other hand, in the quantum random oracle model where the ad-
versary can only make a bounded polynomial number of queries, we show a construction
secure even with unbounded entanglement.
Furthermore, even when these adversaries possess only a polynomial amount of entan-
glement resources, we establish that any unclonable secret sharing scheme with a recon-
struction function implementable using Cliffords and logarithmically many T-gates is also
unattainable.

∗University of California, Santa Barbara. prabhanjan@cs.ucsb.edu.
†NTT Research, Carnegie Mellon University. vipul@cmu.edu.
‡Massachusetts Institute of Technology. jiahuiliu@csail.mit.edu.
§University of California, San Diego. qipengliu0@gmail.com.

1



Contents

1 Introduction 3
1.1 Our Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2 Technical Overview 8
2.1 𝖴𝖲𝖲1 implies 𝖴𝖤, 𝖴𝖤 implies 𝖴𝖲𝖲2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.2 Construction of 𝖴𝖲𝖲𝜔(log 𝜆) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.3 Impossibility of 𝖴𝖲𝖲1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.4 Barries of 𝖴𝖲𝖲1 (implication of PV) . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

3 Preliminaries 13
3.1 Notations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
3.2 Unclonable Encryption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
3.3 Quantum Gate Sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
3.4 Quantum Query Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3.5 Port-based Teleportation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

4 Definitions and Notations 16
4.1 Unclonable Secret Sharing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
4.2 Indistinguishability-Based Security . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
4.3 Entanglement Graph . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

5 Adversaries with Disconnected Entanglement Graphs 18
5.1 𝖴𝖲𝖲𝜔(log 𝜆): an Information-Theoretic Approach . . . . . . . . . . . . . . . . . . . . . 18
5.2 𝖴𝖲𝖲𝑑, for 𝑑 ≥ 2: from Unclonable Encryption . . . . . . . . . . . . . . . . . . . . . . 20

6 Adversaries with Full Entanglement 22
6.1 Security . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

7 Impossibilities and Barriers 24
7.1 Impossibility in the Information-Theoretic Setting . . . . . . . . . . . . . . . . . . . . 25
7.2 Impossibility with Low T-gates for Efficient Adversaries . . . . . . . . . . . . . . . . 26
7.3 USS Implies Unclonable Encryption . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
7.4 Search-based USS Implies Position Verification . . . . . . . . . . . . . . . . . . . . . 30

References 33

A Additional Preliminaries 35
A.1 Gate Teleportation Protocol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
A.2 Search-Based Security and Collusion-Resistant Security . . . . . . . . . . . . . . . . . 36

2



1 Introduction

Alice is looking for storage for her sensitive data. She decides to hire multiple independent cloud
providers and secret shares her data across them. Later on, Alice retrieves these shares and recon-
structs the data. Everything went as planned. However: what if the cloud providers keep a copy
and sell shares of her data to her competitor, Bob? How can Alice make sure that once she retrieves
her data, no one else can?

This is clearly impossible in the classical setting. The cloud providers can always keep a copy of
the share locally and later, if Bob comes along, sell that copy to Bob. Nonetheless, this problem has
been recently studied in the classical setting by a recent work of Goyal, Song, and Srinivasan [GSS21]
who introduced the notion of traceable secret sharing (TSS). In TSS, if (a subset of) the cloud
providers sell their shares to Bob, they cannot avoid leaving a cryptographic proof of fraud with
Bob. Moreover, this cryptographic proof could not have been generated by Alice. Hence, (assuming
Bob cooperates with Alice), Alice can sue the cloud providers in court and recover damages. Thus,
TSS only acts as a deterrent and indeed, cannot stop the cloud providers from copying the secret.

However, in the quantum setting, the existence of no cloning theorem offers the tantalizing
possibility that perhaps one may be able to build an “unclonable secret sharing” (USS) scheme.
Very informally, the most basic version of a USS can be described as follows:

• Alice (the dealer) has a classical secret 𝑚 ∈ {0, 1}*. She hires 𝑛 cloud providers 𝒫1, . . . ,𝒫𝑛.

• Alice computes shares (𝜌1, · · · , 𝜌𝑛), which is an 𝑛-partite state, from 𝑚 and sends the share
𝜌𝑖 to the party 𝒫𝑖 (note that Alice does not need to store any information like a cryptography
key on her own).

• Given (𝜌1, · · · , 𝜌𝑛), it is easy to recover 𝑚. But given any strict subset of the shares, no
information about 𝑚 can be deduced (i.e., it is an 𝑛-out-of-𝑛 secret sharing scheme).

• The most important is the unclonability. For every 𝑖 ∈ [𝑛], the party 𝒫𝑖 computes a bipartite
state 𝜎𝐗𝑖𝐘𝑖 . It sends the register 𝐗𝑖 to Bob and 𝐘𝑖 to Charlie. Assuming that the message
𝑚 was randomly chosen to be either 𝑚0 or 𝑚1 (where (𝑚0,𝑚1) is chosen adversarially), the
probability that both Bob and Charlie can guess the correct message must be upper bounded
by a quantity negligibly close to 1

2 .

In other words, the parties 𝒫1, . . . ,𝒫𝑛 must be unable to locally clone their shares such that
both sets of shares allow for reconstruction. Indeed, as we mentioned, this is the most basic version
of USS. Even this basic setting has a practical significance: the servers which store Alice’s shares
may not intentionally communicate her shares with each other, because they belong to companies
with conflict of interest; but a malicious Bob may still buy a copy of Alice’s share from each of
them.

One can consider more general settings where, e.g., we are interested in threshold (i.e., 𝑡-out-of-
𝑛) USS or, where a subset of the 𝑛 parties might collude in attempting to clone their shares. One
can also consider the setting where the parties 𝒫1, . . . ,𝒫𝑛 share some entanglement (allowing them
to use quantum teleportation).

Unclonable cryptography leverages the power of quantum information and empowers one to
achieve primitives which are clearly impossible in classical cryptography. While a lot of efforts
have been made towards various unclonable cryptographic primitives including but not limited to
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quantum money [BB20, AC12, Zha17, Shm22, LMZ23], copy-protection [Aar09, CLLZ21, AL20],
tokenized signatures [BS16, CLLZ21, Shm22] and unclonable encryption (UE) [Got02, BL20, AK21,
AKL+22, AKL23], the question of unclonable secret sharing had not been studied prior to our work.
Secret sharing is one of the most fundamental primitives in cryptography and as such, we believe that
studying unclonable secret sharing is an important step towards laying the foundation of unclonable
cryptography. Our contribution lies in initiating a systematic study of USS.

Connection to Unclonable Encryption. The classical counterparts of unclonable encryption
and (2-out-of-2) unclonable secret sharing are very similar. For instance, both one-time pad encryp-
tion and 2-out-of-2 secret sharing rely on the same ideas in the classical setting. One may wonder
if UE and USS share similar a relation. UE resembles standard encryption with one additional
property: now ciphertext is unclonable, meaning no one can duplicate a ciphertext into two parts
such that both parts can be used separately to recover the original plaintext. At first glance, it
might seem like UE directly implies a 2-out-of-2 USS. To secret share 𝑚, the dealer (Alice) would
generate a secret key 𝑠𝑘, and compute ciphertext 𝜌𝖼𝗍, which encrypts the classical message 𝑚. One
of the shares will be 𝜌𝖼𝗍 while the other will be 𝑠𝑘. Since 𝜌𝖼𝗍 is unclonable, this may prevent two
successful reconstructions of the original message.

However, the above intuition does not work if the two parties in (2-out-of-2) USS share entan-
glement. In UE, the ciphertext 𝜌𝖼𝗍 is a split into two components and sent to Alice and Bob. Later
on, the secret key 𝑠𝑘 is sent (without any modification) to both Alice and Bob. However, in USS,
the secret key 𝑠𝑘 corresponds to the second share and might also be split into two register such
that one is sent to Alice and the other to Bob. This split could be done using a quantum register
which is entangled with the quantum register used to split the cipher text 𝜌𝖼𝗍. It is unclear if such
an attack can be reduced to the UE setting, where there is no analog of such an entangled register.
In fact, we show the opposite. We show that in some settings, USS implies UE, thus showing that
USS could be a stronger primitive.

Connection to Instantaneous Non-Local Computation. It turns out that the positive re-
sults on instantaneous non-local computation imply negative results on USS in specific settings. The
problem of instantaneous non-local computation [Vai03, BK11, Spe15, IH08, GC19] is the following:
Dave and Eve would like to compute a unitary 𝑈 on a state 𝜌𝐗𝐘, where Dave has the register 𝐗 and
Eve has the register 𝐘. They need to do so by just exchanging one message simultaneously with each
other. Non-local computation has connections to the theory of quantum gravity, as demonstrated in
some recent works [May19, May22]. Suppose there is a unitary 𝑈 for which non-local computation
is possible then this rules out a certain class of unclonable secret sharing schemes. Specifically, it
disallows certain reconstruction procedures that are functionally equivalent to 𝑈 . In more detail,
consider a USS scheme that is defined as follows: on input a message 𝑚, it produces shares on two
registers 𝐗 and 𝐘. The reconstruction procedure1 takes as input the shares and outputs 𝑚 in both
registers 𝐗 and 𝐘. Any non-local computation protocol for such a reconstruction procedure would
violate the security of the USS scheme. Investigating both positive and negative results of USS
schemes could shed more light on the feasibility of non-local computation. In this work, we adapt
and generalize techniques used in the literature on non-local computation to obtain impossibility

1In general, a reconstruction procedure need not output a copy of the secret twice but using CNOT gates, we can
easily transform any reconstruction procedure into one that outputs two copies of the secret.
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results for USS.

USS also has connections to position verification, a well-studied notion in quantum cryptography
that has connections to problems in fundamental physics. We discuss this in the next section.

1.1 Our Results

In this work, our primary emphasis will be on 𝑛-out-of-𝑛 unclonable secret sharing schemes as
even though they are the simplest, they give rise to numerous intriguing questions. Our results are
twofold, as below.

1.1.1 Results on Information-Theoretic USS

Information-Theoretic

𝖴𝖲𝖲1 𝖴𝖤 𝖴𝖲𝖲2 · · ·
trivial

𝖴𝖲𝖲𝜔(log 𝜆)

construction (d)
Section 5.1

Section 7.3
(a)

Section 5.2
(c)

×

Section 7.1
(b) (e)

?

Figure 1: Relations between USS and UE in the information-theoretic regime.

We first examine the connections between USS and UE and constructions of UE in the information-
theoretic regime. The first part of our results can be summarized by Figure 1. In the figure, 𝖴𝖲𝖲1
stands for information-theoretic USS, secure against adversarial parties sharing unbounded amount
of entanglement; we will explain why we call it 𝖴𝖲𝖲1 later on. We first show that, even if we restrict
adversaries in 𝖴𝖲𝖲1 to have a polynomial amount of entanglement, it implies UE.

Theorem 1.1 (direction (a) in Figure 1, Section 7.3). Information-theoretic USS that is secure
against adversarial parties 𝒫 sharing polynomial amount of entanglement implies UE.

This leads us to ponder whether 𝖴𝖲𝖲1 and UE share equivalence, like their classical counterparts
do. Perhaps surprisingly, we show that this connection is unlike to hold. We prove that 𝖴𝖲𝖲1 does
not exist in the information-theoretic setting. Since there is no obvious evidence to refute UE in the
IT setting and many candidates were proposed toward information-theoretic UE, our impossibility
stands in sharp contrast to UE.

Theorem 1.2 (direction (b) in Figure 1, Section 7.1). Information-theoretic USS that is secure
against adversarial parties 𝒫 sharing unbounded amount of entanglement with each other, does not
exist.

Facing the above impossibility, it seems like USS in the IT regime comes to a dead end. To
overcome the infeasibility result, we investigate USS against adversarial parties with specific entan-
glement configurations. We consider the case where every pair of 𝒫𝑖 and 𝒫𝑗 either shares unbounded
entanglement or shares no entanglement. In this case, we can define an entanglement graph, of
which an edge (𝑖, 𝑗) corresponds to entanglement between 𝒫𝑖 and 𝒫𝑗 . Then, we propose the natural
generalization and define 𝖴𝖲𝖲𝑑 for any 𝑑 > 1:
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𝖴𝖲𝖲𝑑: Information-theoretic USS, secure against adversarial parties sharing entanglement whose
entanglement graph has at least 𝑑 connected components.

The above definition captures the case that there are 𝑑 groups of parties; there is unlimited
entanglement between parties in the same group and no entanglement between parties in differ-
ent groups. This notation is not only for overcoming the barrier, but also has practical interest:
parties from different groups are geographically separated or have conflict of interest, maintaining
entanglement between them is either too expensive or impossible. Note that the characterization of
entanglement is only for adversarial parties, whereas honest execution of the scheme does not need
any pre-shared entanglement. We also like to note that aforementioned 𝖴𝖲𝖲1 is also captured by
the above definition when 𝑑 = 1.

It is easy to see that the existence of 𝖴𝖲𝖲𝑑 implies 𝖴𝖲𝖲𝑑+1 for any 𝑑 ≥ 1, as having less
entanglement makes attacking more difficult. However, since 𝖴𝖲𝖲1 is impossible, can we construct
𝖴𝖲𝖲𝑑 for some 𝑑? We complete the picture of USS and UE by presenting the following two theorems.

Theorem 1.3 (direction (c) in Figure 1, Section 5.2). 𝖴𝖤 implies 𝖴𝖲𝖲2 in the information-theoretic
setting. As a corollary, it implies 𝖴𝖲𝖲𝑑 for any 𝑑 > 1 in the IT setting.

Theorem 1.4 (construction (d) in Figure 1, Section 5.1). 𝖴𝖲𝖲𝑑 exists for every 𝑑 = 𝜔(log 𝜆) in the
information-theoretic setting, where 𝜆 is the security parameter.

Along with Theorem 1.4, we proved a special XOR lemma of the well-known monogamy-of-entanglement
property for BB84 states [BB20, TFKW13], when the splitting adversary is limited to tensor strate-
gies. More precisely, we only consider cloning strategies that apply channels on each individual
qubit, but never jointly on two or more qubits. Given a BB84 state, let 𝑝(𝑛) be the probability
of the optimal tensor cloning strategy, that later two non-communicating parties recover the par-
ity simultaneously. 𝑝(1) = 1/2 + 1/2

√
2 was proved in [TFKW13]. In this work, we show that

𝑝(𝑛) = 1/2 + exp(−Ω(𝑛)), which demonstrates a XOR hardness amplification for tensor strategies.
We believe the proof of the theorem will be of independent interest, as a more general version of
the theorem (that applies to any cloning strategies) will imply UE in the IT setting, resolving an
open question on unclonable encryption since [BL20].

These two theorems establish a clear distinction between 𝖴𝖲𝖲1 and 𝖴𝖲𝖲𝑑 for all 𝑑 greater than
1. Furthermore, the latter theorem illustrates that as the value of 𝑑 becomes sufficiently large, it
becomes feasible to achieve 𝖴𝖲𝖲𝑑 within the IT setting. Consequently, it implies that, at the very
least, certain objectives outlined in Figure 1 can be constructed.

Lastly, as the final arrow in Figure 1, does 𝖴𝖲𝖲2 or 𝖴𝖲𝖲𝜔(log 𝜆) implies UE?

Remark 1.5 (direction (e) in Figure 1). We do not have an answer yet. Nonetheless, we assert that
either 𝑈𝑆𝑆𝑑 does not imply 𝖴𝖤, or establishing this implication is as challenging as constructing
UE. The latter assertion arises from our existing knowledge of 𝖴𝖲𝖲𝜔(log 𝜆) — demonstrating such
an implication should, in turn, furnish us with a means to construct UE within the IT framework.

1.1.2 Results on Computational USS

In this computational regime, adversarial parties are computationally bounded; this in turn implies
that the amount of pre-shared entanglement is also computationally bounded. Unlike the compre-
hensive picture presented in Figure 1, our understanding here is more intricate. Specifically, as
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Computational

𝖴𝖲𝖲1 𝖴𝖤

search-𝖴𝖲𝖲1 1-dim PV

Section 7.3
(a)

trivial

Section 7.4
(h)

impossibility (f) Section 7.2
construction (g) Section 6

Figure 2: Relations between USS and UE in the computational regime.

demonstrated in Figure 2, the feasibility or infeasibility hinges on factors such as the computational
complexity of USS schemes and the actual quantity of shared entanglement among malicious parties.

Similar to the IT setting, the implication of 𝖴𝖲𝖲1 and UE still works (direction (a) in Figure 2).
What is new here is that we present one impossibility result and one infeasibility result on 𝖴𝖲𝖲1.

Theorem 1.6 (Informal, impossibility (f) in Figure 2, Section 7.2). USS whose reconstruction
function has only 𝑑 T gates, can be attacked with adversarial parties sharing 𝑂(2𝑑) qubits of pre-
shared entanglement.

Therefore, when the reconstruction has low T complexity, say 𝑑 = log 𝜆, then such 𝖴𝖲𝖲 does not
exist even in the computational regime. Next, we present a construction, in sharp contrast to
the impossibility above. Quantum random oracle [BDF+11], models the perfect (and unrealizable)
cryptographic hash function. As it should behave as a truly random function, it can not have a
small number of T gates.

Theorem 1.7 (construction (g) in Figure 2, Section 6). USS that is secure against query-efficient
adversarial parties sharing an arbitrary amount of pre-shared entanglement2, exists in the quantum
random oracle model (QROM).

As quantum random oracle is not realizable in general, we wonder whether 𝖴𝖲𝖲1 can be con-
structed in the plain model. To the end, we show that 𝖴𝖲𝖲1 implies a cryptographic primitive called
1-dimensional position verification that is secure against parties sharing any polynomial amount of
entanglement. Position verification represents an actively explored research area. Despite all the
ongoing efforts, the development of a construction for position verification within the standard
model remains elusive. This underscores the formidable challenge of devising 𝖴𝖲𝖲1, when relying
on computational assumptions.

Theorem 1.8 (direction (h) in Figure 2, Section 7.4). USS that is secure against adversarial parties
having pre-shared entanglement, implies 1-dimensional position verification that is secure against
parties sharing the same amount of pre-shared entanglement.

2The adversary is polynomially bounded in queries but not in the pre-shared entanglment.
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2 Technical Overview

In this section, unless otherwise specified, we focus on 2-out-of-2 USS, with 𝖲𝗁𝖺𝗋𝖾 and 𝖱𝖾𝖼𝗈𝗇𝗌𝗍𝗋𝗎𝖼𝗍.
𝖲𝗁𝖺𝗋𝖾 takes as input a message 𝑚 and outputs two shares 𝜌0, 𝜌1; whereas 𝖱𝖾𝖼𝗈𝗇𝗌𝗍𝗋𝗎𝖼𝗍 takes two
quantum shares and outputs a string. We assume 𝜌0, 𝜌1 are unentangled. When we consider
impossibility results, all arguments mentioned in this overview carry in the same way to the general
cases; for constructions, we only require unentangled shares.

2.1 𝖴𝖲𝖲1 implies 𝖴𝖤, 𝖴𝖤 implies 𝖴𝖲𝖲2

We first examine two directions (directions (a) and (c) in Figures 1 and 2); that is, how 𝖴𝖲𝖲1 implies
𝖴𝖤 and how 𝖴𝖤 implies 𝖴𝖲𝖲2. These two directions work in both IT and computational setting. We
briefly recall the definition of UE: it is a secret key encryption scheme with the additional property:
there is no way to split a quantum ciphertext into two parts, both combining with the classical
secret key can recover the original plaintext (with probability at least 1/2 plus negligible).

𝖴𝖲𝖲1 implies 𝖴𝖤, Section 7.3. Given a 2-out-of-2 USS, we now design a UE:

𝖴𝖤.𝖤𝗇𝖼(𝑘,𝑚) takes as input a secret key 𝑘 and a message,

1. it first produces two shares (𝜌1, 𝜌2)← 𝖴𝖲𝖲.𝖲𝗁𝖺𝗋𝖾(𝑚),

2. it parses 𝑘 = (𝑎, 𝑏) and let the unclonable ciphertext be 𝖼𝗍 = (𝜌1, 𝑋
𝑎𝑍𝑏𝜌2𝑍

𝑏𝑋𝑎). In
other words, it sends out 𝜌1 in clear, while having 𝜌2 one-time padded by the key 𝑘.

Decryption is straightforward, by unpadding 𝑋𝑎𝑍𝑏𝜌2𝑍
𝑏𝑋𝑎 and applying 𝖱𝖾𝖼𝗈𝗇𝗌𝗍𝗋𝗎𝖼𝗍 to (𝜌1, 𝜌2).

Correctness and semantic security follows easily. Its unclonability can be based on the unclonability
of 𝖴𝖲𝖲1; indeed, the scheme corresponds to a special strategy of malicious 𝒫1 and 𝒫2. Suppose
there exists an adversary (𝒜,ℬ, 𝒞) that violates the above scheme, there exists (𝒫1,𝒫2,ℬ, 𝒞) that
violates the security of 𝖴𝖲𝖲1.

𝒫1 and 𝒫2 share EPR pairs. 𝒫2 uses the EPR pairs to teleport 𝜌2 to 𝒫1, with 𝒫2 having random
(𝑎, 𝑏) and 𝒫1 obtaining (𝜌1, 𝑋

𝑎𝑍𝑏𝜌2𝑍
𝑏𝑋𝑎). As 𝒫2 only has classical information, it sends

(𝑎, 𝑏) to both ℬ and 𝒞, while 𝒫1 applies 𝒜 on (𝜌1, 𝑋
𝑎𝑍𝑏𝜌2𝑍

𝑏𝑋𝑎) and shares the bipartite
state with both ℬ and 𝒞.

It is not hard to see that the above attacking strategy for 𝖴𝖲𝖲1 exactly corresponds to an attack in
the 𝖴𝖤 we proposed above: 𝒫1 tries to split a ciphertext while 𝒫2 simply forwards the secret key
𝑘 = (𝑎, 𝑏). Therefore, we can base the unclonability of the 𝖴𝖤 on that of 𝖴𝖲𝖲1, which completes
the first direction.

𝖴𝖤 implies 𝖴𝖲𝖲2, Section 5.2. Recall that 2-out-of-2 𝖴𝖲𝖲2 describes adversarial parties who do
not share any entanglement. We can simply set up our 𝖴𝖲𝖲2 scheme as follows, using 𝖴𝖤:

𝖲𝗁𝖺𝗋𝖾(𝑚) takes as input a message 𝑚, it samples a key 𝑘 for 𝖴𝖤, and let |𝖼𝗍⟩ be the unclonable
ciphertext of 𝑚 under 𝑘; the procedure 𝖲𝗁𝖺𝗋𝖾 outputs the first share as 𝜌1 = 𝑘, and the second
share as 𝜌2 = |𝖼𝗍⟩.

8



As there is no entanglement between 𝒫1 and 𝒫2, 𝒫1 with 𝜌1 = 𝑘 forwards the classical information
to both Alice and Bob. In the meantime, 𝒫2 employs her cloning strategy, which remains entirely
independent of the key 𝑘. Consequently, the unclonability of out 𝖴𝖲𝖲2 aligns with that of 𝖴𝖤.

When we generalize the conclusion to 𝑛-out-of-𝑛 𝖴𝖲𝖲2, we first secret share the targeted message
𝑚 into 𝑛 shares. For any two adjacent parties 𝒫𝑖, 𝒫𝑖+1 and the 𝑖-th share, the first part receives the
key and the second one gets the unclonable ciphertext. As long as all the malicious parties form at
least two connected components (as defined in 𝖴𝖲𝖲2), there must be two adjacent parties who do
not have entanglement. Thus, we can incur the same logic to prove its unclonability, basing on the
unclonability of 𝖴𝖤.

2.2 Construction of 𝖴𝖲𝖲𝜔(log 𝜆)

For simplicity, we focus on an 𝑛-out-of-𝑛 USS, where 𝑛 = 𝜔(log 𝜆) and no entanglement is shared
between any malicious parties, which is a special case of a general 𝑛-out-of-𝑛 𝖴𝖲𝖲𝜔(log 𝜆), for a
larger 𝑛 ≫ 𝜔(log 𝜆). Our construction is based on the BB84 states. Our scheme first classically
secret-shares 𝑚 into (𝑛− 1) shares and encodes each classical share into a single-qubit BB84 state.
One party will receive the basis information 𝜃 which contains (𝑛 − 1) basis; every other party will
receive a BB84 state for the 𝑖-th classical share.

𝖲𝗁𝖺𝗋𝖾(𝑚): it takes as input a secret 𝑚 ∈ {0, 1},

• it samples 𝑚1, · · · ,𝑚𝑛−1 conditioned on their parity equals to 𝑚;

• it samples 𝜃 ∈ {0, 1}𝑛−1;
• let the first (𝑛− 1) shares be 𝜌𝑖 = 𝐻𝜃𝑖 |𝑚𝑖⟩ ⟨𝑚𝑖|𝐻𝜃𝑖 and the last share 𝜌𝑛 = |𝜃⟩⟨𝜃|.

Reconstruction of shares is straightforward. After receiving all shares, one uses the basis information
𝜃 to recover all the classical shares 𝑚𝑖; 𝑚 then is clearly determined by these 𝑚𝑖.

To reason about the unclonability of our protocol, we first recall a theorem on BB84 states,
initially proposed by Tomamichel, Fehr, Kaniewski and Wehner [TFKW13] and later adapted in
constructing unclonable encryption by Broadbent and Lord [BL20]. We start by considering a
cloning game of single-qubit BB84 states.

1. 𝒜 receives 𝐻𝜃|𝑥⟩⟨𝑥|𝐻𝜃 for uniformly random 𝑥, 𝜃 ∈ {0, 1}, it applies a channel and produces
𝜎𝐁𝐂. Bob and Charlie receive their registers accordingly.

2. Bob ℬ and Charlie 𝒞 apply their POVMs and try to recover 𝑥; they win if and only if both
guess 𝑥 correctly.

Lemma 2.1 (Corollary 2 when 𝑛 = 1, [BL20]). No (unbounded) quantum (𝒜,ℬ, 𝒞) wins the above
game with probability more than 0.855.

Tomamichel, Fehr, Kaniewski and Wehner [TFKW13] and Broadbent and Lord [BL20] studied
parallel repetitions of the above cloning game3. In the parallel repetition, 𝑛 random and independent
BB84 states are generated, which encode an 𝑛-bit string 𝑥. The goal of cloning algorithms is to guess
the 𝑛-bit string 𝑥 simultaneously. They showed that the cloning game follows parallel repetition,

3Indeed, [TFKW13] proved a stronger statement on a different game, which ultimately implied the parallel repe-
tition theorem, shown by [BL20].
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meaning that the optimal winning probability in an 𝑛-fold parallel repetition game is at most
(0.855)𝑛.

Our proposed scheme also prepares these BB84 states in parallel, but hides the secret 𝑚 as the
XOR of the longer secret. Indeed, the XOR repetition of the BB84 cloning game has been a folklore
and was considered as a candidate for UE. More specifically, it is conjectured that the following
game can not be won by any algorithm with probability more than 1/2 + exp(−Ω(𝑛)):

XOR repetition of BB84 cloning games.

1. 𝒜 receives 𝐻𝜃|𝑥⟩⟨𝑥|𝐻𝜃 for uniformly random 𝑥, 𝜃 ∈ {0, 1}𝑛, it applies a channel and produces
𝜎𝐁𝐂. Bob and Charlie receive their register accordingly.

2. Bob ℬ and Charlie 𝒞 apply their POVMs and try to recover 𝗉𝖺𝗋𝗂𝗍𝗒(𝑥); they win if and only if
both guess correctly.

Although there is no evidence to disprove the bound for the XOR repetition so far, the validity
of the bound still remains unknown. In this work, we prove this bound, when 𝒜 is restricted to a
collection of strategies. It applies 𝒞𝑖 on the 𝑖-th qubit of the BB84 state and get 𝜎(𝑖)𝐁𝐂; the final state
𝜎𝐁𝐂 =

⨂︀
𝑖 𝜎

(𝑖)
𝐁𝐂. Note that the lemma does not put any constraint on the behaviors of ℬ or 𝒞.

Lemma 2.2 (An XOR lemma for BB84 cloning games, Section 5.1.). When 𝒜 only applies a tensor
cloning strategy to prepare 𝜎𝐁𝐂, the optimal success probability in the XOR repetition of BB84 games
is 1/2 + exp(−Ω(𝑛)).

Equipped with it, it is straightforward to show the unclonability of our protocol.

A proof for the XOR repetition. Finally, we give a brief recap on the proof for Lemma 2.2.
For any 𝒜’s tensor strategy with channels 𝒞𝑖 applied on the 𝑖-th qubit of a BB84 state, we recall

the notation 𝜎(𝑖)ℬ𝒞 . This is the state produced from the 𝑖-th qubit of the B884 state, when 𝜃𝑖, 𝑥𝑖 was
sampled uniformly at random. Let 𝜎(𝑖,0)𝐁 be the density matrix, describing the register that will be
given to Bob, when 𝑥𝑖 = 0. We can similarly define 𝜎(𝑖,1)𝐁 , 𝜎(𝑖,0)𝐂 and 𝜎(𝑖,1)𝐂 . Lemma 2.1 tells us that,
there exists a constant 𝑐 > 0, either

𝖳𝖣(𝜎
(𝑖,0)
𝐁 , 𝜎

(𝑖,1)
𝐁 ) < 𝑐 or 𝖳𝖣(𝜎

(𝑖,0)
𝐂 , 𝜎

(𝑖,1)
𝐂 ) < 𝑐.

This indicates that for every 𝑖, either Bob or Charlie can not perfectly tell the value of 𝑥𝑖, regardless
of the channel 𝒞𝑖. Furthermore, as the BB84 state has 𝑛 qubits, w.l.o.g. we can assume that the
above holds for Bob, for at least 𝑛/2 positions.

In the XOR repetition, Bob eventually will receive 𝜎
(𝑖,𝑚𝑖)
𝐁 . We show that Bob can not tell

whether the parity of all 𝑚𝑖 is odd or even. More precisely, we will show:

𝖳𝖣

⎛⎜⎝ ∑︁
𝑚1,...,𝑚𝑛−1:
⊕𝑖𝑚𝑖=0

1

2𝑛−2

(︃⨂︁
𝑖

𝜎
(𝑖,𝑚𝑖)
𝐁

)︃
,

∑︁
𝑚1,...,𝑚𝑛−1:
⊕𝑖𝑚𝑖=1

1

2𝑛−2

(︃⨂︁
𝑖

𝜎
(𝑖,𝑚𝑖)
𝐁

)︃⎞⎟⎠ ≤ 𝑐𝑛/2.
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We connect the trace distance directly to the trace distance of each pair of states 𝖳𝖣(𝜎
(𝑖,0)
𝐁 , 𝜎

(𝑖,1)
𝐁 )

and demonstrate an equality (see Section 5.1):

𝖳𝖣

⎛⎜⎝ ∑︁
𝑚1,...,𝑚𝑛−1:
⊕𝑖𝑚𝑖=0

1

2𝑛−2

(︃⨂︁
𝑖

𝜎
(𝑖,𝑚𝑖)
𝐁

)︃
,

∑︁
𝑚1,...,𝑚𝑛−1:
⊕𝑖𝑚𝑖=1

1

2𝑛−2

(︃⨂︁
𝑖

𝜎
(𝑖,𝑚𝑖)
𝐁

)︃⎞⎟⎠ =
∏︁
𝑖

𝖳𝖣
(︁
𝜎
(𝑖,0)
𝐁 , 𝜎

(𝑖,1)
𝐁

)︁
.

Since every trace distance is bounded by 1 and there are at least 𝑛/2 terms in the product smaller
than 𝑐, we conclude the result.

2.3 Impossibility of 𝖴𝖲𝖲1

Since 𝖴𝖲𝖲1 implies 𝖴𝖤, it is natural to consider building 𝖴𝖤 from 𝖴𝖲𝖲1. Constructing 𝖴𝖤 in the
basic model remained unresolved since [BL20]. Perhaps the connections in the last section provide
a new avenue for constructing 𝖴𝖤. In this section, we present two impossibility results (referred to
as (b) in Figure 1 and (f) in Figure 2) that highlight challenges associated with 𝖴𝖲𝖲1.

Information-theoretic 𝖴𝖲𝖲1 does not exist, Section 7.1. We begin by examining the case of
2-out-of-2 𝖴𝖲𝖲1 with unentangled shares, and our impossibility result extends to the general case.
Let us consider two malicious parties, 𝒫1 and 𝒫2, who share an unlimited amount of entanglement.
𝒫2 receives the initial share, 𝜌2, and teleports it to 𝒫1. This action leaves 𝒫2 with a random one-
time pad key, denoted as (𝑎, 𝑏) while 𝒫1 now possesses (𝜌1, 𝑋𝑎𝑍𝑏𝜌2𝑍

𝑏𝑋𝑎). Now, 𝒫1 aims to jointly
apply the reconstruction procedure to (𝜌1, 𝜌2), but there’s a problem: 𝒫1 lacks all the necessary
information, especially the one-time padded key. To address this challenge, we recall the concept of
port-based teleportation [IH08, BK11] to help 𝒫1.

Port-based teleportation allows one party to teleport a 𝑑-qubit quantum state to another party,
while leaving the state in plain. This is certainly impossible without paying any cost, as it contradicts
with special relativity. Two parties need to pre-share about 𝑂(𝑑2𝑑) EPR pairs, divided into 𝑂(2𝑑)
blocks of 𝑑 qubits. After the port-based teleportation, the teleported state will be randomly dropped
into one of the blocks of 𝒫2, while only 𝒫1 has the classical information about which block consists
of the original state.

Equipped with port-based teleportation, 𝒫1 teleports (𝜌1, 𝑋
𝑎𝑍𝑏𝜌2𝑍

𝑏𝑋𝑎) to 𝒫2; it has the clas-
sical information 𝗂𝗇𝖽 specifying the location of the teleported state. 𝒫2 then runs 𝖱𝖾𝖼𝗈𝗇𝗌𝗍𝗋𝗎𝖼𝗍 ∘
(𝐼 ⊗ 𝑍𝑏𝑋𝑎) on every possible block among the pre-shared entanglement, yielding 𝑂(2𝑑) different
values; even though most of the execution is useless, the 𝗂𝗇𝖽-th block will store the correct (classical)
answer. Finally, both 𝒫1 and 𝒫2 sends all their classical information to Alice and Bob; each of them
can independently determine the message. This clearly violates the unclonability of 𝖴𝖲𝖲1. Thus,
for any 2-out-of-2 𝖴𝖲𝖲1 whose shares are of length 𝑑, there is an attacking strategy that takes time
and entanglement of order �̃�(𝑑2𝑑) and completely breaks its unclonability.

We refer readers to Section 7.1 for the proof of a general theorem statement.

Impossibility of computationally secure 𝖴𝖲𝖲1, with low-T 𝖱𝖾𝖼𝗈𝗇𝗌𝗍𝗋𝗎𝖼𝗍, Section 7.2. We
now focus on the case when the reconstruction circuit can be implemented by Clifford gates and
logarithmically many 𝖳 gates. We would like to mention that a similar result has already been shown
in [Spe15] in the context of instantaneous non-local computation; we rediscovered the following
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simple attack for unclonable secret sharing. We also extend the attack to an 𝑛-party setting whereas
[Spe15] considers only 2 parties.

Denote 𝐶 to be the reconstruction circuit. That is, on input two shares of the form 𝜌1, 𝜌2, the
output is the first bit of 𝐶(𝜌1 ⊗ 𝜌2)𝐶† = |𝑚⟩ ⟨𝑚| ⊗ 𝜏 .

We let 𝒫2 teleport 𝜌2 to 𝒫1 and they try to compute 𝖱𝖾𝖼𝗈𝗇𝗌𝗍𝗋𝗎𝖼𝗍 in a non-local manner. In
the previous attack, this is done by leveraging an exponential amount of entanglement. To avoid
this and make the attack efficient, we hope that 𝒫1 can homomorphically compute on the one-time
padded data (𝜌1, 𝑋

𝑎𝑍𝑏𝜌2𝑍
𝑏𝑋𝑎), without decrypting it.

Suppose 𝐶 is a Clifford circuit. We use the fact that the Clifford group is a normalizer for
the Pauli group (specifically, the 𝑋𝑎𝑍𝑏 operator). Let us assume each 𝜌1, 𝜌2 is of ℓ qubits. In
other words, for any 𝑎, 𝑏 ∈ {0, 1}ℓ and Clifford circuit 𝐶, there exists a polynomial-time computable
𝑎′, 𝑏′ ∈ {0, 1}2ℓ depending only on 𝑎, 𝑏 and 𝐶, such that

𝐶(𝜌1 ⊗𝑋𝑎𝑍𝑏𝜌2𝑍
𝑏𝑋𝑎)𝐶† = 𝑋𝑎′𝑍𝑏′𝐶(𝜌1 ⊗ 𝜌2)𝐶†𝑍𝑏′𝑋𝑎′ .

Here 𝑎′, 𝑏′ act as a bigger quantum one-time pad operated on 𝐶(𝜌1 ⊗ 𝜌2)𝐶† = |𝑚⟩ ⟨𝑚| ⊗ 𝜏 .
Now 𝒫1 measures the first qubit in the computational basis, yielding𝑚⊕𝑎′1; whereas 𝒫2 compute

𝑎′, 𝑏′ (and most importantly, 𝑎′1) from its classical information 𝑎, 𝑏. They send their knowledge to
both Alice and Bob, who later simultaneously recover 𝑚.

Next, let us consider the more general case where 𝐶 consists of Clifford gates and 𝑡 number of
𝖳 gates. The homomorphic evaluation of Clifford gates are as before. However, the homomorphic
evaluation of 𝖳 gates are handled differently.

Let us consider one single 𝖳 gate that applies to the first qubit. We consider two identities, for
any 𝑥, 𝑧 ∈ {0, 1} and any single-qubit state |𝜓⟩

(𝑖) 𝑇 (𝑋𝑥𝑍𝑧) |𝜓⟩ = (𝑋𝑥𝑍𝑥⊕𝑧𝑃 𝑥)𝑇 |𝜓⟩ ,
(𝑖𝑖) 𝑃 (𝑋𝑥𝑍𝑧) |𝜓⟩ = (𝑋𝑥𝑍𝑥⊕𝑧)𝑃 |𝜓⟩

Suppose, the current state is of the form 𝑋𝑥𝑍𝑧 |𝜓⟩ and we apply 𝑃 𝑥𝑇 to the state. We would like
to show that the resulting state is 𝑋𝑎′𝑍𝑏′𝑇 |𝜓⟩ for some 𝑎′ ∈ {0, 1}, 𝑏′ ∈ {0, 1}. We use the above
identities:

(𝑃 𝑥𝑇 )(𝑋𝑥𝑍𝑧) |𝜓⟩ From (𝑖)
= 𝑃 𝑥(𝑋𝑥𝑍𝑥⊕𝑧𝑃 𝑥)𝑇 |𝜓⟩ From (𝑖𝑖)

= 𝑋𝑥𝑍𝑥⊕𝑧𝑃 𝑥⊕𝑥𝑇 |𝜓⟩ .

Note that 𝑃 2 = 𝑃 0 = 𝐼. Thus, if we can learn 𝑥 ahead, we can successfully homomorphic compute
𝖳 on the encrypted data. However, in our case, 𝑥 corresponds to any bit in the one-time pad key 𝑎 of
any stage. 𝒫1 has no way to learn 𝑥. This is where the limitation of low-𝖳 gate comes from. Instead
of knowing 𝑥 ahead, each time when a 𝖳 homomorphic evaluation is needed, one simply guesses
𝑥′; as long as 𝑥 = 𝑥′ (which happens with probability 1/2), we succeed. Thus, 𝒫1 only guesses
all 𝑥’s (for each 𝖳 gate) correctly with probability 2−𝑡. If 𝑡 is logarithmic, our attack violates the
security with inverse polynomial probability; therefore, it rules out computationally secure 𝖴𝖲𝖲1
with a low-𝖳 𝖱𝖾𝖼𝗈𝗇𝗌𝗍𝗋𝗎𝖼𝗍 procedure.

2.4 Barries of 𝖴𝖲𝖲1 (implication of PV)

To further demonstrate the challenge of building 𝖴𝖲𝖲 against entangled adversaries, we show that 2-
party 𝖴𝖲𝖲1 implies a primitive called position verification. Position verification (PV) has remained
a vexing problem since its inception [CGMO09].
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We briefly introduce the notion of position verification for the 1-dimensional setting: two verifiers
on a line will send messages to a prover who claims to be located at a position between the two
verifiers. By computing a function of the verifiers’ messages and returning the answers to the verifiers
in time, the prover ensures them of its location. However, two malicious provers may collude to
impersonate such an honest verifier by standing at the two sides of the claimed position.

We demonstrate that 2-party 𝖴𝖲𝖲1, even with the weaker search-based security, will imply PV:
the two verifiers in the position verification protocol will generate secret shares (𝜌0, 𝜌1) of a random
string 𝑠; then they will each send the messages 𝜌0 and 𝜌1 respectively to the prover; the prover
needs to reconstruct 𝑠 and send 𝑠 to both verifiers in time. Any attack against PV can be viewed
as a two-stage strategy—one can perfectly turn the first-stage strategy in PV into the shareholders’
strategy in 𝖴𝖲𝖲 and the second-stage strategy in PV into the recoverers’ strategy in 𝖴𝖲𝖲.

Despite many efforts, progress on PV in the computational setting against entangled adversaries
has unfortunately been slow. We do not even know of any secure computational PV against adver-
saries with unbounded polynomial amount of entanglement in the plain model, nor any impossibility
result. Moreover, some recent advancement in quantum gravity has unveiled some connections be-
tween the security of position verification and problems in quantum gravity [May19, May22] .

Any progress of 𝖴𝖲𝖲1 in the plain model will contribute towards resolving this long-standing
open problem and unveil more implications.

3 Preliminaries

3.1 Notations

We assume that the reader is familiar with the basic background from [NC10]. The Hilbert spaces
we are interested in are ℂ𝑑, for 𝑑 ∈ ℕ. We denote the quantum registers with capital bold letters 𝐑,
𝐖, 𝐗, ... . We abuse the notation and use registers in place of the Hilbert spaces they represent.
The set of all linear mappings from 𝐑 to 𝐖 is denoted by 𝐿(𝐑,𝐖), and 𝐿(𝐑) denotes 𝐿(𝐑,𝐑).
We denote unitaries with capital letters 𝐶, 𝐸, ... and the set of unitaries on register 𝐑 with 𝑈(𝐑).
We denote the identity operator on 𝐑 with 𝕀𝐑; if the register 𝐑 is clear from the context, we
drop the subscript 𝐑 from the notation 𝕀𝐑. We denote the set of all positive semi-definite linear
mappings in 𝐿(𝐑,𝐑) with trace 1 (i.e., set of all valid quantum states) by 𝐷(𝐑). For a register
𝐑 in a multi-qubit system, we denote 𝐑 to be a register consisting of all the qubits in the system
not contained in 𝐑. We denote 𝖳𝗋𝐑(𝜌) to be the state obtained by tracing out all the registers of 𝜌
except 𝐑. A quantum channel Φ refers to a completely positive and trace-preserving (CPTP) map
from a Hilbert space ℋ1 to a possibly different Hilbert space ℋ2.

3.2 Unclonable Encryption

Unclonable encryption was originally defined in [BL20] and they considered two security notions,
namely search and indistinguishability security, with the latter being stronger than the former. We
consider below a mild strengthening of the indistinguishability security due to [AK21].

Definition 3.1. An unclonable encryption scheme 𝖴𝖤 is a triple of efficient quantum algorithms
(𝖴𝖤.𝖪𝖾𝗒𝖦𝖾𝗇,𝖴𝖤.𝖤𝗇𝖼,𝖴𝖤.𝖣𝖾𝖼) with the following procedures:
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• 𝖪𝖾𝗒𝖦𝖾𝗇(1𝜆): On input a security parameter 1𝜆, returns a classical key 𝗌𝗄4.

• 𝖤𝗇𝖼(𝗌𝗄,𝑚): It takes the key 𝗌𝗄 and the message 𝑚 for 𝑚 ∈ {0, 1}poly(𝜆) as input and outputs
a quantum ciphertext 𝜌𝑐𝑡.

• 𝖣𝖾𝖼(𝗌𝗄, 𝜌𝑐𝑡): It takes the key 𝗌𝗄 and the quantum ciphertext 𝜌𝑐𝑡, it outputs a quantum state 𝜏 .

Correctness. The following must hold for the encryption scheme. For every 𝗌𝗄 ← 𝖪𝖾𝗒𝖦𝖾𝗇(1𝜆)
and every message 𝑚, we must have 𝖳𝗋[|𝑚⟩ ⟨𝑚|𝖣𝖾𝖼(𝗌𝗄,𝖤𝗇𝖼(𝗌𝗄, |𝑚⟩ ⟨𝑚|))] ≥ 1− 𝗇𝖾𝗀𝗅(𝜆).

Unclonability. In the rest of the work, we focus on unclonable IND-CPA security. The regular
IND-CPA security follows directly from its unclonable IND-CPA security. To define unclonable
security, we introduce the following security game.

Definition 3.2 (Unclonable IND-CPA game). Let 𝜆 ∈ ℕ+. Consider the following game against
the adversary (𝒜,ℬ, 𝒞).

• The adversary 𝒜 generates 𝑚0,𝑚1 ∈ {0, 1}𝑛(𝜆) and sends (𝑚0,𝑚1) to the challenger.

• The challenger randomly chooses a bit 𝑏 ∈ {0, 1} and returns 𝖤𝗇𝖼(𝗌𝗄,𝑚𝑏) to 𝒜. 𝒜 produces a
quantum state 𝜌𝐁𝐂 on registers 𝐁 and 𝐂, and sends the corresponding registers to ℬ and 𝒞.

• ℬ and 𝒞 receive the key 𝗌𝗄, and output bits 𝑏ℬ and 𝑏𝒞 respectively.

The adversary wins if 𝑏ℬ = 𝑏𝒞 = 𝑏.

We denote the success probability of the above game by 𝖺𝖽𝗏𝒜,ℬ,𝒞(𝜆). We say that the scheme is
information-theoretically (resp., computationally) secure if for all (resp., quantum polynomial-time)
adversaries (𝒜,ℬ, 𝒞),

𝖺𝖽𝗏𝒜,ℬ,𝒞(𝜆) ≤ 1/2 + 𝗇𝖾𝗀𝗅(𝜆).

3.3 Quantum Gate Sets

We will work with the following quantum gate sets.

Pauli Group. The single-qubit Pauli group 𝒫 consists of the group generated by the following
Pauli matrices:

𝐼 =

(︂
1 0
0 1

)︂
𝑋 =

(︂
0 1
1 0

)︂
𝑌 =

(︂
0 𝑖
−𝑖 0

)︂
𝑍 =

(︂
1 0
0 −1

)︂
The 𝑛-qubit Pauli group 𝒫𝑛 is the 𝑛-fold tensor product of 𝒫.

Clifford Group. The 𝑛-qubit Clifford group is defined to be the set of unitaries 𝐶 such that

𝐶𝒫𝑛𝐶† = 𝒫𝑛.

Elements of the Clifford group are generated by 𝖢𝖭𝖮𝖳 (a two-qubit gate that maps |𝑎, 𝑏⟩ to

|𝑎, 𝑏⊕ 𝑎⟩), Hadamard
(︂
𝐻 = 1√

2

(︂
1 1
1 −1

)︂)︂
, and Phase

(︂
𝑃 =

(︂
1 0
0 𝑖

)︂)︂
gates.

4In our construction, we require 𝗌𝗄 being a uniform random string. Such a 𝖴𝖤 scheme can be constructed in
QROM [AKL+22, AKL23]
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Universal Gate Set. A set of gates is said to be universal if for any integer 𝑛 ≥ 1, any 𝑛-qubit
unitary operator can be approximated to arbitrary accuracy by a quantum circuit using only gates
from that set. It is a well-known fact that Clifford gates are not universal, but adding any non-

Clifford gate, such as 𝑇
(︂
𝑇 =

(︂
1 0

0
√
𝑖

)︂)︂
, gives a universal set of gates. Throughout the paper, we

will use the universal gate set {𝐻,𝑇,𝖢𝖭𝖮𝖳}.

3.4 Quantum Query Algorithms

We consider the quantum query model in this work, which gives quantum circuits access to some
oracles.

Definition 3.3 (Classical Oracle). A classical oracle 𝒪 is a unitary transformation of the form
𝑈𝑓 |𝑥, 𝑦, 𝑧⟩ → |𝑥, 𝑦 + 𝑓(𝑥), 𝑧⟩ for classical function 𝑓 : {0, 1}𝑛 → {0, 1}𝑚. Note that a classical
oracle can be queried in quantum superposition.

In the rest of the paper, unless specified otherwise, we refer to the word “oracle” as “classical
oracle”. d zdzA quantum oracle algorithm with oracle access to 𝒪 is a sequence of local unitaries
𝑈𝑖 and oracle queries 𝑈𝑓 . Thus, the query complexity of a quantum oracle algorithm is defined as
the number of oracle calls to 𝒪.

In the analysis of the security of the USS scheme in QROM (Theorem 6.1), we will use the
following theorem from [BBBV97] to bound the change in adversary’s state when we change the
oracle’s input-output behavior at places where the adversary hardly ever queries on.

Theorem 3.4 ([BBBV97]). Let |𝜑𝑖⟩ be the superposition of oracle quantum algorithms ℳ with
oracle 𝒪 on input 𝑥 at time 𝑖. Define 𝑊𝑦(|𝜑𝑖⟩) to be the sum of squared magnitudes in |𝜑𝑖⟩ of
configurations of ℳ which are querying the oracle on string 𝑦. For 𝜖 > 0, let 𝐹 ⊆ [0, 𝑇 − 1] × Σ*

be the set of time-string pairs such that
∑︀

(𝑖,𝑦)∈𝐹 𝑊𝑦(|𝜑𝑖⟩) ≤ 𝜖2/𝑇 .
Now suppose the answer to each query (𝑖, 𝑦) ∈ 𝐹 is modified to some arbitrary fixed 𝑎𝑖,𝑦 (these

answers need not be consistent with an oracle). Let |𝜑′𝑖⟩ be the superposition of ℳ on input 𝑥 at
time 𝑖 with oracle 𝒪 modified as stated above. Then ‖|𝜑𝑇 ⟩ − |𝜑′𝑇 ⟩‖tr ≤ 𝜖.

3.5 Port-based Teleportation

In this section, we review a type of teleportation introduced by Ishizaka and Hiroshima [IH08]. To
distinguish their teleportation protocol from the traditional one, we borrow from their terminology
and call this port-based teleportation.

The port-based teleportation protocol is described as follows: Alice wants to teleport a qudit
state |𝜓𝐀⟩ from her system 𝐀 ∼= ℂ𝑑 to Bob’s system 𝐁 ∼= ℂ𝑑. We assume that Alice and Bob share
𝑁 = 𝑂(2𝑑) copies of the maximally entangled state |Φ⟩ = 1√

𝑑

∑︀𝑑
𝑖 |𝑖⟩ |𝑖⟩ respectively in registers

𝐀′1,𝐁
′
1;𝐀

′
2,𝐁

′
2; · · ·𝐀′𝑁 ,𝐁′𝑁 . We fix an orthonormal standard basis in each of these spaces.

1. Alice performs a certain POVM {𝐸𝑖
𝐀𝑖𝐀′

𝑖
}𝑁𝑖=1 on her systems {𝐀𝑖,𝐀

′
𝑖}𝑖∈[𝑁 ]. She sends the

result 𝑖 to Bob.

2. Bob discards everything except the subsystem 𝐁′𝑖 and calls it 𝐁.

3. The guarantee of the protocol is that, this register 𝐁 now holds the state |𝜓𝐀⟩.
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4 Definitions and Notations

4.1 Unclonable Secret Sharing

An (𝑡, 𝑛)-unclonable secret sharing scheme, associated with 𝑛 parties 𝒫1, . . . ,𝒫𝑛, consists of the
following QPT algorithms:

• 𝖲𝗁𝖺𝗋𝖾(1𝜆, 1𝑛, 1𝑡,𝑚) → 𝜌𝐑1𝐑2···𝐑𝑛 : On input security parameter 𝜆, 𝑛 parties, a secret 𝑚 ∈
{0, 1}*, output registers 𝐑1,𝐑2, · · · ,𝐑𝑛.

• 𝖱𝖾𝖼𝗈𝗇𝗌𝗍𝗋𝗎𝖼𝗍(𝜌𝐑′
𝑖1
, . . . , 𝜌𝐑′

𝑖𝑡
): On input shares 𝐑′𝑖1 , . . . ,𝐑

′
𝑖𝑡
, output a secret ̂︀𝑚.

When it is an 𝑛-out-of-𝑛 USS scheme, we ignore the input 1𝑡 in 𝖲𝗁𝖺𝗋𝖾. In the rest of the work, we
will focus on constructions with unentangled shares and impossibility results for entangled shared.
For sake of clarity, we will use 𝜌1, · · · , 𝜌𝑛 to denote these shares. We require the following properties
to hold.

Correctness. We can recover the secret with probability (almost) 1, more formally:

Pr[𝖱𝖾𝖼𝗈𝗇𝗌𝗍𝗋𝗎𝖼𝗍(𝜌𝑖1 , · · · , 𝜌𝑖𝑘) = 𝑚|(𝜌1, · · · , 𝜌𝑛)← 𝖲𝗁𝖺𝗋𝖾(1𝜆, 1𝑛,𝑚) ∩ 𝑘 ≥ 𝑡] = 1− 𝗇𝖾𝗀𝗅(𝜆).

4.2 Indistinguishability-Based Security

In this work, we will mostly focus on the (𝑛, 𝑛)-unclonable secret sharing case. For simplicity, we
call it 𝑛-party USS.

In this section, we define indistinguishability-based security for 𝑛-party 𝖴𝖲𝖲. The security
guarantees that for any two messages 𝑚0,𝑚1, no two reconstructing parties can simultaneously
distinguish between whether the secret is 𝑚0 or 𝑚1, given their sets of respective cloned shares.
Formally, we define the following experiment:

𝖤𝗑𝗉𝗍({𝒜𝑖},ℬ,𝒞,𝜉):

1. Let 𝜉 be a quantum state on registers 𝐀𝐮𝐱1, . . . ,𝐀𝐮𝐱𝑛. For every 𝑖 ∈ [𝑛], 𝒜𝑖 gets the register
𝐀𝐮𝐱𝑖.

2. 𝖠𝖽𝗏 = ({𝒜𝑖},ℬ, 𝒞, 𝜉) sends (𝑚0,𝑚1) to the challenger such that |𝑚0| = |𝑚1|.

3. Share Phase: The challenger chooses a bit 𝑏 $←− {0, 1}. It computes 𝖲𝗁𝖺𝗋𝖾(1𝜆, 1𝑛,𝑚𝑏) to
obtain (𝜌1, . . . , 𝜌𝑛) and sends 𝜌𝑖 to 𝒜𝑖.

4. Challenge Phase: For every 𝑖 ∈ [𝑛], 𝒜𝑖 computes a bipartite state 𝜎𝐗𝑖𝐘𝑖 . It sends the
register 𝐗𝑖 to ℬ and 𝐘𝑖 to 𝒞.

5. ℬ on input the registers 𝐗1, . . . ,𝐗𝑛, outputs a bit 𝑏ℬ. 𝒞 on input the registers 𝐘1, . . . ,𝐘𝑛,
outputs a bit 𝑏𝒞 .

6. Output 1 if 𝑏ℬ = 𝑏 and 𝑏𝒞 = 𝑏.
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Definition 4.1 (Information-theoretic Unclonable Secret Sharing). An 𝑛-party unclonable secret
sharing scheme (𝖲𝗁𝖺𝗋𝖾,𝖱𝖾𝖼𝗈𝗇𝗌𝗍𝗋𝗎𝖼𝗍) satisfies 1-bit unpredictability if for any non-uniform adversary
𝖠𝖽𝗏 =

(︀
{𝒜𝑖}𝑖∈[𝑛],ℬ, 𝒞, 𝜉

)︀
, the following holds:

𝖯𝗋
[︁
1← 𝖤𝗑𝗉𝗍({𝒜𝑖},ℬ,𝒞,𝜉)

]︁
≤ 1

2
+ 𝗇𝖾𝗀𝗅(𝜆)

Definition 4.2 (Computational Unclonable Secret Sharing). An 𝑛-party unclonable secret sharing
scheme (𝖲𝗁𝖺𝗋𝖾,𝖱𝖾𝖼𝗈𝗇𝗌𝗍𝗋𝗎𝖼𝗍) satisfies 1-bit unpredictability if for any non-uniform quantum polynomial-
time adversary 𝖠𝖽𝗏 =

(︀
{𝒜𝑖}𝑖∈[𝑛],ℬ, 𝒞, 𝜉

)︀
, the following holds:

𝖯𝗋
[︁
1← 𝖤𝗑𝗉𝗍({𝒜𝑖},ℬ,𝒞,𝜉)

]︁
≤ 1

2
+ 𝗇𝖾𝗀𝗅(𝜆)

Claim 1. Existence of (𝑛− 1)-party 𝖴𝖲𝖲 unconditionally implies 𝑛-party 𝖴𝖲𝖲.

This is straightforward to see, by creating a dummy share.

4.3 Entanglement Graph

We will focus on the setting when there are multiple quantum adversaries with shared entanglement
modeled as a graph, that we refer to as an entanglement graph. We formally define entanglement
graphs below.

Definition 4.3 (Entanglement Graph). Let 𝜌 be a 𝑛-partite quantum state over the registers
𝐗1, · · · ,𝐗𝑛. Let 𝜌[𝑖] be the mixed state over register 𝐗𝑖 (i.e., 𝜌[𝑖] = 𝖳𝗋𝐗𝑖(𝜌)) and 𝜌[𝑖, 𝑗] be the
mixed state over the registers 𝐗𝑖,𝐗𝑗 (i.e., 𝜌[𝑖, 𝑗] = 𝖳𝗋𝐗𝑖,𝐗𝑗 (𝜌)). An entanglement graph 𝐺 = (𝑉,𝐸)
associated with (𝜌,𝐗1, . . . ,𝐗𝑛) is defined as follows:

• 𝐺 is an undirected graph;

• 𝑉 = {1, 2, · · · , 𝑛};

• 𝐸 contains an edge (𝑢, 𝑣) if and only if 𝐗𝑢 and 𝐗𝑣 are entangled; or in other words, there
does not exist 𝜎𝑢, 𝜎𝑣 such that 𝜌[𝑢, 𝑣] = 𝜎𝑢 ⊗ 𝜎𝑣.

Performing non-local operations on a state 𝜌, over the registers 𝐗1, . . . ,𝐗𝑛, could change the en-
tanglement graph. For instance, performing arbitrary channels on some 𝐗𝑖, could remove some
edges associated with the node 𝑖; for example, a resetting channel that maps every state to |0⟩ ⟨0|.
However, on the other hand, performing only unitary operations on each of 𝐗1, . . . ,𝐗𝑛 is not going
to change the entanglement graph.

Unless otherwise specified, we assume that the amount of entanglement shared between the
different parties is either unbounded for information-theoretic protocols, or arbitrarily polynomial
for computational protocols.

Definition 4.4. Let 𝒫 = (𝒫1, . . . ,𝒫𝑛) be the set of parties with 𝜌 being the state received by all
the parties. That is, 𝜌 is an 𝑛-partite quantum state over the registers 𝐗1, . . . ,𝐗𝑛 such that the
party 𝒫𝑖 gets the register 𝐗𝑖. We say that 𝐺 is the entanglement graph associated with 𝒫 if 𝐺 is the
entanglement graph associated with (𝜌,𝐗1, . . . ,𝐗𝑛).
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Definition 4.5 (𝖴𝖲𝖲𝑑). We say an information-theoretic/computational unclonable secret shar-
ing scheme is a secure 𝖴𝖲𝖲𝑑 scheme, if it has indistinguishability-based security against all un-
bounded/efficient adversaries with pre-shared entanglement, whose entanglement graph has at least
𝑑 connect components.

It is not hard to see that, 𝖴𝖲𝖲1 is a USS satisfying the regular indistinguishability security.

5 Adversaries with Disconnected Entanglement Graphs

In this section, we give a construction of unclonable secret sharing with security against quantum
adversaries with disconnected entanglement graphs.

5.1 𝖴𝖲𝖲𝜔(log 𝜆): an Information-Theoretic Approach

We present an information-theoretic protocol in the setting when there are 𝜔(log 𝜆) connected
components. For simplicity, we consider the case when there are (𝑛+1) parties and the entanglement
graph does not have any edges. We demonstrate a construction of USS in this setting, where the
security scales with 𝑛.

1. 𝖲𝗁𝖺𝗋𝖾(1𝜆, 1(𝑛+1),𝑚 ∈ {0, 1}):

(a) Sample uniformly random 𝑟1, . . . , 𝑟𝑛 ← {0, 1} conditioned on ⊕𝑖𝑟𝑖 = 𝑚.
(b) Sample 𝜃1, . . . , 𝜃𝑛 ← {0, 1}.
(c) For each 𝑖 ∈ [𝑛]: let the 𝑖𝑡 share be 𝜌𝑖 = 𝐻𝜃𝑖 |𝑟𝑖⟩⟨𝑟𝑖|𝐻𝜃𝑖 . Let the (𝑛 + 1)𝑡 share be

𝜌𝑛+1 = (𝜃1, . . . , 𝜃𝑛).
(d) Output (𝜌1, . . . , 𝜌𝑛+1).

2. 𝖱𝖾𝖼𝗈𝗇𝗌𝗍𝗋𝗎𝖼𝗍(𝜌1, . . . , 𝜌𝑛+1):

(a) Measure 𝜌𝑛+1 in the computational basis to get (𝜃1, . . . , 𝜃𝑛).
(b) For every 𝑖 ∈ [𝑛], apply 𝐻𝜃𝑖 to 𝜌𝑖. Measure the resulting state in the computational basis

to get 𝑟𝑖.
(c) Output ⊕𝑖𝑟𝑖 = 𝑚.

Security. Consider the adversary to be 𝖠𝖽𝗏 = ({𝒜𝑖},ℬ, 𝒞, 𝜉), where 𝜉 is a product state. Hence-
forth, we omit mentioning 𝜉 = 𝜉1 ⊗ · · · ⊗ 𝜉𝑛+1, where 𝒜𝑖 receives 𝜉𝑖, since we can think of 𝜉𝑖 to be
part of the description of 𝒜𝑖.

For 𝑏 ∈ {0, 1}, let (𝜌𝑟11 , . . . , 𝜌
𝑟𝑛
𝑛 , 𝜌𝑛+1)← 𝖲𝗁𝖺𝗋𝖾(1𝜆, 1(𝑛+1), 𝑏), where⊕𝑖𝑟𝑖 = 𝑏 and 𝜌𝑖 = 𝐻𝜃𝑖 |𝑟𝑖⟩⟨𝑟𝑖|𝐻𝜃𝑖

and 𝜌𝑛+1 = |𝜃1 · · · 𝜃𝑛⟩⟨𝜃1 · · · 𝜃𝑛|. Suppose upon receiving 𝜌𝑟𝑖𝑖 , 𝒜𝑖 sends registers {𝐗𝑟𝑖
𝑖 } and {𝐘𝑟𝑖

𝑖 }
respectively to ℬ and 𝒞. We denote the reduced density matrix on 𝐗𝑟𝑖

𝑖 to be 𝜎𝑟𝑖𝑖 and on 𝐘𝑟𝑖
𝑖 to

be 𝜁𝑟𝑖𝑖 . We assume without loss of generality that 𝜌𝑛+1 is given to both ℬ and 𝒞 since it is a
computational basis state.

Define 𝒮ℬ and 𝒮𝒞 as follows:

𝒮ℬ =
{︀
𝑖 ∈ [𝑛] : 𝖳𝖣

(︀
𝜎0𝑖 , 𝜎

1
𝑖

)︀
≤ 0.86

}︀
𝒮𝒞 =

{︀
𝑖 ∈ [𝑛] : 𝖳𝖣

(︀
𝜁0𝑖 , 𝜁

1
𝑖

)︀
≤ 0.86

}︀
We prove the following claims.
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Claim 2. Either |𝒮ℬ| ≥ ⌈𝑛2 ⌉ or |𝒮𝒞 | ≥ ⌈𝑛2 ⌉.

Proof. We prove by contradiction; suppose it is not the case. Then there exists an index 𝑖 ∈ [𝑛] such
that 𝑖 /∈ 𝒮ℬ and 𝑖 /∈ 𝒮𝒞 . That is, 𝖳𝖣

(︀
𝜎0𝑖 , 𝜎

1
𝑖

)︀
> 0.86 and 𝖳𝖣

(︀
𝜁0𝑖 , 𝜁

1
𝑖

)︀
> 0.86, meaning the optimal

state distinguishing circuit can distinguish 𝜎0𝑖 , 𝜎
1
𝑖 with probability at least 0.93 = (1 + 0.86)/2.

Similarly, the optimal distinguishing probability for states 𝜁0𝑖 , 𝜁
1
𝑖 is at least 0.93.

Using this, we design an adversary that violates the unclonable security of single-qubit BB84
states [BL20, Corollary 2]. Let us first recall the security game for the unclonability of single-qubit
BB84 states:

1. 𝒜 receives 𝐻𝜃|𝑥⟩⟨𝑥|𝐻𝜃 for uniformly random 𝑥, 𝜃 ∈ {0, 1}, it applies a channel and produces
𝜎𝐁𝐂. Bob and Charlie receive their register accordingly.

2. Bob ℬ and Charlie 𝒞 apply their POVMs and try to recover 𝑥; they win if and only if both
guess 𝑥 correctly.

Lemma 5.1 (Corollary 2 when 𝜆 = 1, [BL20]). No (unbounded) quantum (𝒜,ℬ, 𝒞) wins the game
with probability more than 0.855.

We design an adversary (𝒜,ℬ, 𝒞) as follows, with winning probability 0.86 > 0.855, a contradiction.

• 𝒜 receives as input an unknown BB84 state. It runs 𝒜𝑖 on the state to obtain a bipartite
state, which it shares with ℬ and 𝒞.

• ℬ and 𝒞 in the security game of BB84 state will receive 𝜃𝑖 from the challenger.

• ℬ runs the optimal distinguisher distinguishing 𝜎0𝑖 and 𝜎1𝑖 . Based on the output of the dis-
tinguisher, it outputs its best guess of the challenge bit. Similarly, Charlie runs the optimal
distinguisher distinguishing 𝜁0𝑖 and 𝜁1𝑖 . It outputs its best guess of the challenge bit.

By a union bound, the probability that one of ℬ or 𝒞 fails is at most 0.14 = 0.07 × 2. Thus, they
simultaneously succeed with probability at least 0.86, a contradiction.

Claim 3. The following holds:

1.

𝖳𝖣

⎛⎜⎝ ∑︁
𝑟1,...,𝑟𝑛:
⊕𝑖𝑟𝑖=0

1

2𝑛−1

(︃⨂︁
𝑖

𝜎𝑟𝑖𝑖

)︃
,
∑︁

𝑟1,...,𝑟𝑛:
⊕𝑖𝑟𝑖=1

1

2𝑛−1

(︃⨂︁
𝑖

𝜎𝑟𝑖𝑖

)︃⎞⎟⎠ ≤ 0.86|𝒮ℬ|

2.

𝖳𝖣

⎛⎜⎝ ∑︁
𝑟1,...,𝑟𝑛:
⊕𝑖𝑟𝑖=0

1

2𝑛−1

(︃⨂︁
𝑖

𝜁𝑟𝑖𝑖

)︃
,
∑︁

𝑟1,...,𝑟𝑛:
⊕𝑖𝑟𝑖=1

1

2𝑛−1

(︃⨂︁
𝑖

𝜁𝑟𝑖𝑖

)︃⎞⎟⎠ ≤ 0.86|𝒮𝒞 |
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Proof. We prove bullet 1 since bullet 2 follows symmetrically.

𝖳𝖣

⎛⎜⎝ ∑︁
𝑟1,...,𝑟𝑛:
⊕𝑖𝑟𝑖=0

1

2𝑛−1

(︃⨂︁
𝑖

𝜎𝑟𝑖𝑖

)︃
,
∑︁

𝑟1,...,𝑟𝑛:
⊕𝑖𝑟𝑖=1

1

2𝑛−1

(︃⨂︁
𝑖

𝜎𝑟𝑖𝑖

)︃⎞⎟⎠
=

1

2

⃦⃦⃦⃦
⃦⃦⃦ ∑︁
𝑟1,...,𝑟𝑛:
⊕𝑖𝑟𝑖=0

1

2𝑛−1

(︃⨂︁
𝑖

𝜎𝑟𝑖𝑖

)︃
−

∑︁
𝑟1,...,𝑟𝑛:
⊕𝑖𝑟𝑖=1

1

2𝑛−1

(︃⨂︁
𝑖

𝜎𝑟𝑖𝑖

)︃⃦⃦⃦⃦⃦⃦⃦
1

=

⃦⃦⃦⃦
⃦⨂︁

𝑖

(︀
𝜎0𝑖 − 𝜎1𝑖

)︀
2

⃦⃦⃦⃦
⃦
1

=
∏︁
𝑖

⃦⃦⃦⃦
⃦
(︀
𝜎0𝑖 − 𝜎1𝑖

)︀
2

⃦⃦⃦⃦
⃦
1

≤
∏︁
𝑖∈𝒮ℬ

𝖳𝖣
(︀
𝜎0𝑖 , 𝜎

1
𝑖

)︀
≤ 0.86|𝒮ℬ|

Here ‖·‖1 denotes the trace norm. In the above proof, we use the fact that ‖
⨂︀

𝑖 𝜏𝑖‖1 =
∏︀

𝑖 ‖𝜏𝑖‖1.

Lemma 5.2. The above USS scheme satisfies indistinguishability security against any adversaries
with no shared entanglement; i.e., it is a secure 𝖴𝖲𝖲𝑛 scheme (see Definition 4.5) with 𝑛 = 𝜔(log 𝜆).

Proof. From Claim 2, either |𝒮ℬ| ≥ ⌈𝑛2 ⌉ or |𝒮𝒞 | ≥ ⌈𝑛2 ⌉. We will assume without loss of generality
that |𝒮ℬ| ≥ ⌈𝑛2 ⌉. From bullet 1 of Claim 3, it holds that ℬ can successfully distinguish whether it
is in the experiment when the challenge bit 0 was used or when the challenge bit 1 was used, with
probability at most 1+𝜈(𝑛)

2 , for some exponentially small function 𝜈 in 𝑛. Thus, both ℬ and 𝒞 can
only simultaneously distinguish with probability at most 1+𝜈(𝑛)

2 . This completes the proof.

5.2 𝖴𝖲𝖲𝑑, for 𝑑 ≥ 2: from Unclonable Encryption

We present a construction of USS with security against quantum adversaries associated with any
disconnected entanglement graph. In the construction, we use an information-theoretically secure
unclonable encryption scheme, 𝖴𝖤 = (𝖴𝖤.𝖪𝖾𝗒𝖦𝖾𝗇,𝖴𝖤.𝖤𝗇𝖼,𝖴𝖤.𝖣𝖾𝖼). The resulting USS scheme is
consequently information-theoretically secure.

1. 𝖲𝗁𝖺𝗋𝖾(1𝜆, 1𝑛,𝑚) :

(a) Sample 𝑟1, · · · , 𝑟𝑛 ← {0, 1}|𝑚|.
(b) For each 𝑖 ∈ [𝑛], let 𝑦𝑖 = 𝑟𝑖; let 𝑦𝑛 = 𝑚⊕

∑︀𝑛
𝑖=1 𝑟𝑖.

(c) For each 𝑖 ∈ [𝑛]:

i. Compute 𝗌𝗄𝑖 ← 𝖴𝖤.𝖪𝖾𝗒𝖦𝖾𝗇(1𝜆). We denote the length of 𝗌𝗄𝑖 to be ℓ = ℓ(𝜆).
ii. Compute |𝖼𝗍𝑖⟩ ← 𝖴𝖤.𝖤𝗇𝖼(𝗌𝗄𝑖, 𝑦𝑖)

(d) For each 𝑖 ∈ [𝑛]: let each share 𝜌𝑖 = (𝗌𝗄𝑖−1, |𝖼𝗍𝑖⟩); here we define 𝗌𝗄0 = 𝗌𝗄𝑛.
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(e) Output (𝜌1, · · · , 𝜌𝑛)

2. 𝖱𝖾𝖼𝗈𝗇𝗌𝗍𝗋𝗎𝖼𝗍(𝜌1, · · · , 𝜌𝑛):

(a) For each 𝑖 ∈ [𝑛],

i. Parse 𝜌𝑖 as (𝗌𝗄𝑖−1, |𝖼𝗍𝑖⟩). We define 𝗌𝗄𝑛 = 𝗌𝗄0.
ii. Compute 𝑦𝑖 ← 𝖴𝖤.𝖣𝖾𝖼(𝗌𝗄𝑖, |𝖼𝗍𝑖⟩)

(b) Output 𝑚 =
∑︀𝑛

𝑖=1 𝑦𝑖.

Theorem 5.3. The above scheme satisfies indistinguishability-based security against adversaries
with any disconnected entanglement graph. More precisely, it is a secure 𝖴𝖲𝖲2 scheme (see Defini-
tion 4.5).

Proof. The correctness of the scheme follows from the correctness of UE decryption.
We now prove the security of the above scheme. Suppose we have an 𝖴𝖲𝖲 adversary (𝒜 =

(𝒜1, · · · ,𝒜𝑛),ℬ, 𝒞, 𝜉) who succeeds with probability 1
2 + 𝜀 in Definition 4.5, we construct an 𝖴𝖤

adversary (𝒜′,ℬ′, 𝒞′) who succeeds with probability 1
2 + 𝜀 in Definition 3.2.

Let 𝒜 receive as input an 𝑛-partite state 𝜉 over the registers 𝐀𝐮𝐱1, . . . ,𝐀𝐮𝐱𝑛 such that 𝒜𝑖

receives as input the register 𝐀𝐮𝐱𝑖. Additionally, without loss of generality, we can assume that
𝒜 also receives as input the challenge messages (𝑚0,𝑚1), where |𝑚0| = |𝑚1|. Let 𝐺 = (𝑉,𝐸) be
the entanglement graph associated with (𝜉,𝐀𝐮𝐱1, . . . ,𝐀𝐮𝐱𝑛), where, 𝑉 = {1, . . . , 𝑛}. Since 𝐺 is
disconnected, there exists 𝑖* ∈ [𝑛] such that (𝑖*, 𝑖* + 1) /∈ 𝐸. Let 𝐺1 = (𝑉1, 𝐸1) and 𝐺2 = (𝑉2, 𝐸2)
be two subgraphs of 𝐺 such that 𝑉1 ∪ 𝑉2 = 𝑉 , 𝑉1 ∩ 𝑉2 = ∅, 𝑖* ∈ 𝑉1, 𝑖* + 1 ∈ 𝑉2. Moreover, 𝐺1

and 𝐺2 are disconnected with each other. This further means that 𝜉 can be written as 𝜉𝐺1 ⊗ 𝜉𝐺2 ,
for some states 𝜉𝐺1 , 𝜉𝐺2 , such that 𝜉𝐺1 is over the registers {𝐀𝐮𝐱𝑖}𝑖∈𝑉1 and 𝜉𝐺2 is over the registers
{𝐀𝐮𝐱𝑖}𝑖∈𝑉2 .

We describe (𝒜′,ℬ′, 𝒞′) as follows:

Description of 𝒜′. Fix 𝑖*, (𝑚0,𝑚1) (as defined above). Upon receiving a quantum state |𝖼𝗍*⟩ 𝒜′
does the following:

• It prepares quantum states 𝜉𝐺1 , (𝜉𝐺2)
⊗2ℓ .

• It samples 𝑟𝑖
$←− {0, 1}|𝑚0|, where 𝑖 ∈ [𝑛], subject to the constraint that ⊕𝑖𝑟𝑖 = 𝑚0.

• It submits (𝑟𝑖* , 𝑟𝑖* ⊕𝑚0 ⊕𝑚1) to the UE challenger and in return, it receives |𝖼𝗍*⟩. It sets
|𝖼𝗍𝑖*+1⟩ = |𝖼𝗍*⟩.

• For every 𝑖 ∈ [𝑛], generate 𝗌𝗄𝑖 ← 𝖴𝖤.𝖪𝖾𝗒𝖦𝖾𝗇(1𝜆); let 𝗌𝗄𝑛+1 = 𝗌𝗄1.

• For every 𝑖 ∈ [𝑛] and 𝑖 ̸= 𝑖*, generate |𝖼𝗍𝑖⟩ ← 𝖴𝖤.𝖤𝗇𝖼(𝗌𝗄𝑖, 𝗌𝗁𝑖).

• For every 𝑖 ∈ [𝑛] and 𝑖 ̸= 𝑖* + 1, define 𝜌𝑖 = (𝗌𝗄𝑖−1, |𝖼𝗍𝑖⟩).

• We need to define 𝜌𝑖*+1 = (𝗌𝗄𝑖* , |𝖼𝗍𝑖*+1⟩). However, as 𝗌𝗄𝑖* will only be received by ℬ′ and 𝒞′ in
the UE security game later, we will enumerate all possible values of 𝗌𝗄𝑖* and the corresponding
computation result in the subgraph 𝐺2.
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– For every 𝑥 ∈ {0, 1}ℓ (possible value of 𝗌𝗄𝑖*), compute {𝒜𝑖}𝑖∈𝑉2 on {𝜌𝑖}𝑖∈𝑉2 , 𝜉𝐺2 to obtain
two sets of registers {𝐗(𝑥)

𝑖 }𝑖∈𝐺2 and {𝐘(𝑥)
𝑖 }𝑖∈𝐺2 .

• Compute {𝒜𝑖}𝑖∈𝑉1 on {𝜌𝑖}𝑖∈𝑉1 and 𝜉𝐺1 to obtain two sets of registers {𝐗𝑖}𝑖∈𝐺1 and {𝐘𝑖}𝑖∈𝐺1 .

• Send the registers {𝐗𝑖}𝑖∈𝐺1 and {𝐗(𝑥)
𝑖 }𝑖∈𝐺2,𝑥∈{0,1}𝜆 to ℬ′. Send the registers {𝐘𝑖}𝑖∈𝐺1 and

{𝐘(𝑥)
𝑖 }𝑖∈𝐺2,𝑥∈{0,1}𝜆 to 𝒞′.

Description of ℬ′ and 𝒞′. ℬ′ upon receiving the secret key 𝑘 (which is 𝗌𝗄𝑖*), computes ℬ on
{𝐗𝑖}𝑖∈𝐺1 and {𝐗(𝑘)

𝑖 }𝑖∈𝐺2 to obtain a bit 𝑏ℬ. 𝒞′ is defined similarly. We denote the output of 𝒞′ to
be 𝑏𝒞 .

If the challenger of the UE security chooses the bit 𝑏 = 0, then (𝒜,ℬ, 𝒞) in the above reduction
are receiving shares of 𝑚0; otherwise, they are receiving shares of 𝑚1. Thus, the success proba-
bility of (𝒜,ℬ, 𝒞) in Definition 4.5 is precisely the same as the success probability of (𝒜′,ℬ′, 𝒞′)
in Definition 3.2.

6 Adversaries with Full Entanglement

Theorem 6.1. (QROM protocol) There exists a 𝑛-party 𝖴𝖲𝖲 protocol with indistinguishability-based
security against adversaries sharing an arbitrary amount of entanglement (𝖴𝖲𝖲1, see Definition 4.5)
in the QROM, for any 𝑛 ≥ 2.

Construction Assume we have an underlying unclonable encryption scheme 𝖴𝖤 for one-bit mes-
sages (see Definition 3.2), consisting of three procedures 𝖴𝖤.𝖪𝖾𝗒𝖦𝖾𝗇,𝖴𝖤.𝖤𝗇𝖼,𝖴𝖤.𝖣𝖾𝖼 and a hash
function 𝐻 : {0, 1}𝑘·𝑛 → {0, 1}ℓ modeled as a random oracle, where ℓ = ℓ(𝜆) is the length of the
𝖴𝖤 secret key. It is easy to generalize our construction for the one-bit message to the 𝑛-bit message
setting with indistinguishability based security in Section 4.2.

We assume, without loss of generality, that the secret key generated from 𝖴𝖤.𝖪𝖾𝗒𝖦𝖾𝗇 is statis-
tically close to uniform distribution5. We construct a 𝖴𝖲𝖲 scheme as follows:

• 𝖲𝗁𝖺𝗋𝖾(1𝜆, 1𝑛,𝑚)→ (𝜌1, · · · , 𝜌𝑛):

1. Sample random 𝑦1, · · · 𝑦𝑛 ← {0, 1}𝑘·𝑛, where 𝑘 = 𝑘(𝜆). Let 𝗌𝗄 = 𝐻(𝑦1, · · · , 𝑦𝑛).
2. Compute |𝖼𝗍𝑚⟩ = 𝖴𝖤.𝖤𝗇𝖼(𝗌𝗄,𝑚 ∈ {0, 1})
3. Let 𝜌1 = (|𝖼𝗍𝑚⟩ , 𝑦1); 𝜌2 = 𝑦2; 𝜌3 = 𝑦3; · · · ; 𝜌𝑛 = 𝑦𝑛.

• Reconstruct(𝜌1, · · · , 𝜌𝑛) → �̂�: parse 𝜌1 = (|𝖼𝗍⟩ , 𝑦1); for every 𝑖 > 1, measure 𝜌𝑖 to get 𝑦𝑖;
compute 𝗌𝗄 = 𝐻(𝑦1, 𝑦2 · · · , 𝑦𝑛); compute �̂�← 𝖴𝖤.𝖣𝖾𝖼(𝗌𝗄, |𝖼𝗍⟩).

Correctness The correctness of the above scheme follows from the correctness of the unclonable
encryption scheme and of the evaluation of the random oracle 𝐻.

5Given any UE scheme, we can convert it into another one where the setup outputs a random string. The new
encryption algorithm will take this random string and runs the old setup to recover the secret key and then runs the
old encryption algorithm.
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6.1 Security

We consider the following two hybrids. We use underline to denote the differences between Hybrid
0 and Hybrid 1.

Hybrid 0. the challenger operates the 1-bit unpredictability experiment according to the original
construction above. Let the adversary be (𝒜,ℬ, 𝒞) where 𝒜 = (𝒜1, · · · ,𝒜𝑛).

1. The challenger samples uniform random 𝑦1, · · · , 𝑦𝑛 ← {0, 1}𝑛·𝑘 and 𝗌𝗄← 𝐻(𝑦1, · · · , 𝑦𝑛).

2. The challenger samples secret 𝑚 ← {0, 1}; computes |𝖼𝗍𝑚⟩ ← 𝖴𝖤.𝖤𝗇𝖼(𝗌𝗄,𝑚). Let 𝜌1 =
(|𝖼𝗍𝑚⟩ , 𝑦1); 𝜌2 = 𝑦2; 𝜌3 = 𝑦3; · · · ; 𝜌𝑛 = 𝑦𝑛.

3. The challenger gives the shares 𝜌1, · · · , 𝜌𝑛 to 𝒜1, · · · ,𝒜𝑛.

4. In the challenge phase, for every 𝑖 ∈ [𝑛], 𝒜𝑖 computes a bipartite state 𝜎𝐗𝑖𝐘𝑖 . It sends the
register 𝐗𝑖 to ℬ and 𝐘𝑖 to 𝒞.
ℬ on input the registers 𝐗1, . . . ,𝐗𝑛, outputs the bit 𝑏ℬ. 𝒞 on input the registers 𝐘1, . . . ,𝐘𝑛,
outputs the bit 𝑏𝒞 .

5. The challenger outputs 1 if 𝑏ℬ = 𝑚 and 𝑏𝒞 = 𝑚.

Hybrid 1. the challenger does the following modified version of the 1-bit unpredictability exper-
iment:

1. The challenger samples uniform random 𝑦1, · · · , 𝑦𝑛 ← {0, 1}𝑛·𝑘 and 𝗌𝗄← {0, 1}ℓ, where ℓ =
ℓ(𝜆) is the length of the 𝖴𝖤 secret key.

2. The challenger samples secret 𝑚 ← {0, 1}; computes |𝖼𝗍𝑚⟩ ← 𝖴𝖤.𝖤𝗇𝖼(𝗌𝗄,𝑚). Let 𝜌1 =
(|𝖼𝗍𝑚⟩ , 𝑦1); 𝜌2 = 𝑦2; 𝜌3 = 𝑦3; · · · ; 𝜌𝑛 = 𝑦𝑛.

3. The challenger gives the shares 𝜌1, · · · , 𝜌𝑛 to 𝒜1, · · · ,𝒜𝑛. It reprograms the random oracle 𝐻
at the input (𝑦1, · · · , 𝑦𝑛) to be 𝗌𝗄, right before entering the challenge phase. In other words,
the resulting random oracle 𝐻 ′ has the identical behavior as 𝐻 for every input except on input
(𝑦1, 𝑦2, · · · , 𝑦𝑛), 𝐻 ′ outputs 𝗌𝗄.

4. In the challenge phase, for every 𝑖 ∈ [𝑛], 𝒜𝑖 computes a bipartite state 𝜎𝐗𝑖𝐘𝑖 . It sends the
register 𝐗𝑖 to ℬ and 𝐘𝑖 to 𝒞.
ℬ on input the registers 𝐗1, . . . ,𝐗𝑛, outputs the bit 𝑏ℬ. 𝒞 on input the registers 𝐘1, . . . ,𝐘𝑛,
outputs the bit 𝑏𝒞 .

5. The challenger outputs 1 if 𝑏ℬ = 𝑚 and 𝑏𝒞 = 𝑚.

Lemma 6.2. The advantages of adversary 𝒜 in Hybrid 0 and Hybrid 1 are negligibly close.

Proof. We further clarify what happens in Hybrid 1: at the beginning of the execution, the function
𝐻 : {0, 1}𝑘·𝑛 → {0, 1}ℓ is a random function. Then it reprograms the function 𝐻 to get a new
function 𝐻 ′ such that 𝐻 ′(𝑦1, · · · , 𝑦𝑛) = 𝗌𝗄 right before the challenge phase; i.e., before any 𝒜𝑖 sends
the bipartite state 𝜎𝐗𝑖,𝐘𝑖 to Bob and Charlie.
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Suppose each 𝒜𝑖 has 𝑞 queries. For each 𝒜𝑖, note that the strings {𝑦𝑗}𝑗 ̸=𝑖,𝑗∈[𝑛] are uniformly
random from {0, 1}𝑘(𝑛−1). Let us denote the squared amplitudes of 𝒜𝐻

𝑖 ’s query on input 𝑥 as 𝑊𝑖(𝑥).
By Markov’s inequality, we have, for each 𝒜𝑖, given a fixed 𝑦𝑖 and for every 0 ≤ 𝛼 ≤ 1:

Pr
{𝑦𝑗}𝑗 ̸=𝑖←{0,1}𝑘(𝑛−1)

[𝑊𝑖(𝑦1, 𝑦2, · · · , 𝑦𝑛) ≥ 𝛼] ≤
𝑞

𝛼 · 2𝑘·(𝑛−1)

We can set 𝛼 = 1
2(𝑘·(𝑛−1))/2 and have Pr{𝑦𝑗}𝑗 ̸=𝑖←{0,1}𝑘(𝑛−1) [𝑊𝑖(𝑥) ≥ 1

2(𝑘·(𝑛−1))/2 ] ≤ 𝑞
2(𝑘·(𝑛−1))/2 .

Let us denote the query weight of the overall adversary 𝒜 = (𝒜1, · · · ,𝒜𝑛) on input (𝑦1, · · · , 𝑦𝑛)
as 𝑊 (𝑦1, · · · , 𝑦𝑛). Since the operations performed by 𝒜1, · · · ,𝒜𝑛 commute, we can apply the union
bound to obtain the probability for any 𝒜𝑖 to query on 𝑦1, · · · , 𝑦𝑛:

Pr
{𝑦𝑗}𝑗 ̸=𝑖←{0,1}𝑘(𝑛−1)

[∃𝑖 ∈ [𝑛] :𝑊𝑖(𝑦1, 𝑦2, · · · , 𝑦𝑛) ≥ 𝛼] ≤
𝑛 · 𝑞

2(𝑘·(𝑛−1))/2

That is, with probability (1 − 𝑛·𝑞
2(𝑘·(𝑛−1))/2 ), for all 𝑖 ∈ [𝑛], the query weight 𝑊𝑖(𝑦1, · · · , 𝑦𝑛) ≤ 𝛼.

Therefore, we have with overwhelmingly large probability, their query total weight 𝑊 (𝑦1, · · · , 𝑦𝑛) =∑︀
𝑖𝑊𝑖(𝑦1, · · · , 𝑦𝑛) ≤ 𝑛 · 𝛼.
We denote the joint state of (𝒜,ℬ, 𝒞) at the beginning of the challenge phase in Hybrid 0 as

𝜏0 and the state in Hybrid 1 as 𝜏1. Then we can invoke Theorem 3.4, to obtain ‖𝜌𝒜,0 − 𝜌𝒜,1‖tr ≤√
𝑛·𝑞

2𝑘(𝑛−1)/4 = 𝗇𝖾𝗀𝗅(𝜆). We can view the final output in the challenge phase as the final outcome of
a POVM on the state 𝜌𝒜,0 (or respectively, 𝜌𝒜,1). Therefore, by the fact that ‖𝜌𝒜,0 − 𝜌𝒜,1‖tr =
max𝐸 ‖𝐸(𝜌𝒜,0)− 𝐸(𝜌𝒜,1)‖tr where the maximum is taken over all POVMs 𝐸, we have

|Pr[(𝒜,ℬ, 𝒞) wins Hybrid 0]− Pr[(𝒜,ℬ, 𝒞) wins Hybrid 1]| ≤ 𝗇𝖾𝗀𝗅(𝜆).

Lemma 6.3. Assuming the IND security of the unclonable encryption in Definition 3.2, the advan-
tage of the adversary in Hybrid 1 is negligible.

Proof. Suppose (𝒫1, . . . ,𝒫𝑛,ℬ, 𝒞) is an adversary in the security game of the unclonable secret
sharing for the above construction, we construct a QPT 𝒜′ for the indistinguishability unclonable
encryption security defined in Definition 3.2.
𝒜′ samples uniform random 𝑦1, · · · , 𝑦𝑛 and receives the quantum ciphertext |𝖼𝗍𝑚⟩ from the 𝖴𝖤

challenger. Then 𝒜′ prepares 𝜌1 = (|𝖼𝗍𝑚⟩ , 𝑦1), 𝜌2 = 𝑦1, · · · , 𝜌𝑛 = 𝑦𝑛 and sends them to (𝒫1, . . . ,𝒫𝑛).
𝒜′ prepares the state to send to ℬ′, 𝒞′ as follows: gives (𝑦1, · · · , 𝑦𝑛) to ℬ′; after entering the

challenge phase of 𝖴𝖤 and before the challenge phase of 𝖴𝖲𝖲, ℬ′ reprograms 𝐻 on input 𝑦1, · · · , 𝑦𝑛
to be 𝗌𝗄, which it receives from the 𝖴𝖤 challenger; then after entering challenge phase of 𝖴𝖲𝖲, ℬ′
outputs the output of 𝖴𝖲𝖲 adversarial recoverer ℬ and 𝒞′ outputs the output of 𝖴𝖲𝖲 adversarial
recoverer 𝒞.

If ℬ, 𝒞 both outputs the correct 𝑚, then ℬ′, 𝒞′ will win the IND 𝖴𝖤 security game.

7 Impossibilities and Barriers

In this section, we present two impossibility results on USS. Furthermore, we present two implica-
tions of USS: namely, unclonable encryption and position verification secure against large amount
of entanglement. Since no construction known for the latter two primitives, this further underscores
the formidable barriers of building USS.
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7.1 Impossibility in the Information-Theoretic Setting

Theorem 7.1. Let 𝒫 be a set of parties. Information-theoretically secure USS for 𝒫 is impossible
if the entanglement graph for 𝒫 is connected and in particular, there is an edge from 𝑃1 to everyone
else.

Proof. The attack strategy is as follows. The 𝑛 parties 𝑃1, · · · , 𝑃𝑛 pre-share a large amount of
entanglement with one another. In the protocol, each 𝑃𝑖 receives its share 𝜌𝑖.

• Regular Teleportation Stage: all parties 𝑃𝑖, where 𝑖 ̸= 1 teleport their shares to party 𝑃1 via
regular teleportation. Each 𝑃𝑖 obtains a measurement outcome (𝑎𝑖, 𝑏𝑖).

• Now 𝑃1 holds a state in the following format: (𝕀 ⊗ 𝑋𝑎2𝑍𝑏2 ⊗ · · ·𝑋𝑎𝑛𝑍𝑏𝑛) |Ψ⟩𝑃1𝑃2···𝑃𝑛
which

can be represented as mixed states (𝜌1, 𝑋
𝑎2𝑍𝑏2𝜌2𝑋

𝑎2𝑍𝑏2 , · · · , 𝑋𝑎𝑛𝑍𝑏𝑛𝜌𝑛𝑋
𝑎𝑛𝑍𝑏𝑛). That is,

quantum one-time padded shares from all other parties and its own share in the clear.

• Port-Based Teleportation Stage:

– 𝑃1 performs port-based teleportation (see Section 3.5) for the state (𝕀 ⊗ 𝑋𝑎2𝑍𝑏2 ⊗
· · ·𝑋𝑎𝑛𝑍𝑏𝑛) |Ψ⟩𝑃1𝑃2···𝑃𝑛

to 𝑃2. 𝑃1 obtains a measurement outcome that stands for some
index 𝑖1. Recall that by the guarantee of port-based teleportation, the index 𝑖1 specifies
the register of 𝑃2 that holds the above state in the clear, without any Pauli errors on
top.

– 𝑃2 will now remove the quantum one time pad information 𝑋𝑎2 , 𝑍𝑎2 on its share in the
teleported state above. Since 𝑃2 does not have information about 𝑖1, it simply performs
𝕀⊗𝑍𝑎2𝑋𝑎2 ⊗ 𝕀 · · ·⊗ 𝕀 on all exponentially many possible registers that it may receive the
teleported state from 𝑃1.

– Next 𝑃2 performs port-based teleportation with 𝑃3 for all registers that could possibly
hold the state (𝕀⊗𝕀⊗𝑋𝑎3𝑍𝑏3⊗· · ·⊗𝑋𝑎𝑛𝑍𝑏𝑛) |Ψ⟩𝑃1𝑃2···𝑃𝑛

. Thus, 𝑃2 obtains an exponential
number of indices about the registers that will receive the teleported states on 𝑃3’s hands.

– 𝑃3 accordingly, applies 𝕀⊗ 𝕀⊗𝑍𝑏3𝑋𝑎3 · · · 𝕀 on all the possible registers that can hold the
teleported state; performs a port-based teleportation to 𝑃4 with all of these registers and
obtains a measurement outcome that has a doubly-exponential number of indices 6.

– · · ·
– Finally, 𝑃𝑛 receives the teleported states from 𝑃𝑛−1 and performs 𝕀⊗ · · · 𝕀⊗ 𝑍𝑏𝑛𝑋𝑎𝑛 on

all of them. One of these registers will hold the state |Ψ⟩𝑃1···𝑃𝑛
= (𝜌1, · · · , 𝜌𝑛) in the

clear. Then 𝑃𝑛 performs the reconstruction algorithm on all of these registers to obtain
a large number of possible outcomes. One of them will hold the correctly reconstructed
secret 𝑠.

• Reconstruction Stage: now 𝑃𝑛 sends all its measurement outcomes to both Bob and Charlie.
All other 𝑃𝑖’s send their indices information measured in the port teleportation protocol. Bob
and Charlie can therefore find the correct index in 𝑃𝑛’s measurement outcomes that holds 𝑠,
by following a path of indices.

6For 𝑃𝑖, 2 ≤ 𝑖 < 𝑛, the measurement outcome will have its size grow in an exponential tower of height 𝑖.
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Remark 7.2. The above strategy can be easily converted into a strategy where the underlying en-
tanglement graph is connected (but may not be a complete graph) and every pair of connected parties
share (unbounded) entanglement. The similar idea applies by performing regular teleportation and
port-based teleportation via any DFS order of the graph. Thus, we have the following theorem.

Theorem 7.3. Let 𝒫 be a set of parties. Information-theoretically secure USS for 𝒫 is impossible
if the entanglement graph for 𝒫 is connected.

7.2 Impossibility with Low T-gates for Efficient Adversaries

Our impossibility result above in the information-theoretic setting requires exponential amount of
entanglement between the parties. In this section, we present an attack that can be performed by
efficient adversaries, albeit on USS schemes with restricted reconstruction algorithms.

Again, we point out that our result is a rediscovery of a similar algorithm in [Spe15] in the
context of instantaneous non-local computation. We also extend the attack to an 𝑛-party setting
whereas [Spe15] considers only 2 parties.

Theorem 7.4. Let 𝒫 be a set of parties and if the entanglement graph for 𝒫 is connected, then
there exists an attack using polynomial-time and polynomial amount of entanglement on any 𝖴𝖲𝖲
scheme where the procedure 𝖱𝖾𝖼𝗈𝗇𝗌𝗍𝗋𝗎𝖼𝗍 consists of only Clifford gates and 𝑂(log 𝜆) number of T
gates.

Proof. We first consider the two party case for the sake of clarity, and then generalize to 𝑛-party
case.

Let us assume that the number of qubits in each party 𝒜𝑖’s secret share 𝜌𝑖 to be 𝑘 (up to
some padding with |00 · · · 0⟩ if they have different lengths) and they are each stored in registers 𝑃𝑖,
respectively. Without loss of generality, we view the entire system over registers 𝑃1 and 𝑃2 as a
pure state |𝜓12⟩ since our attack works regardless of this state being mixed or pure.

We write the honest protocol’s reconstruction circuit 𝖱𝖾𝖼𝗈𝗇𝗌𝗍𝗋𝗎𝖼𝗍 on 2𝑘-qubit inputs as a circuit
consisting of Clifford gates and T gates, followed by a measurement in the computational basis in
the end. The secret 𝑚 to recover will be the first bit in the measurement outcome.

Recall that in the gate teleportation protocol Appendix A.1, given the Pauli errors (𝑎, 𝑏) as the
sender’s (Alice) measurement result, and given a Clifford circuit 𝐺 the receiver (Bob) intends to
apply on the teleported state |𝜓⟩, we can compute an update function 𝑓𝐺 for 𝐺, so that (𝑎′, 𝑏′) ←
𝑓𝐺(𝑎, 𝑏) and 𝖹𝑏′𝖷𝑎′𝐺(𝖷𝑎𝖹𝑏) |𝜓⟩ = 𝐺 |𝜓⟩. Instead of using the approach in [BK20] to compute a
(relatively complicated) update function for any Clifford+T quantum circuit, we will instead use a
simpler approach to compute the update function 𝑓𝖱𝖾𝖼𝗈𝗇𝗌𝗍𝗋𝗎𝖼𝗍 just as for a Clifford-only circuit.

1. 𝒜1 and 𝒜2 pre-shares 𝑘-ebit of entanglement in register 𝑃 ′1, 𝑃 ′2. 𝒜1 teleports its share 𝜌1 to
𝒜2 and obtains the measurement outcomes (𝑎, 𝑏) ∈ {0, 1}2𝑘. Now 𝒜2 should have a quantum
one-time padded 𝖷𝑎𝖹𝑏𝜌1𝖹

𝑏𝖷𝑎 in its register 𝑃 ′2.

2. 𝒜2 applies 𝖱𝖾𝖼𝗈𝗇𝗌𝗍𝗋𝗎𝖼𝗍 circuit in a gate-by-gate manner, with the following approaches:

(a) If the next gate to apply is a Clifford gate, then 𝒜2 simply applies it to the corresponding
registers in 𝑃 ′2 and/or 𝑃2. Recall that 𝑃 ′2 consists of teleported first share and 𝑃2 has the
second share.
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(b) If the next gate is a T gate, and suppose it is the 𝑗-th T gate, according to the topological
numbering on all 𝖳 gates in the 𝖱𝖾𝖼𝗈𝗇𝗌𝗍𝗋𝗎𝖼𝗍 circuit: 𝒜2 first applies the T gate. Then it
samples a random bit 𝑠𝑗 ← {0, 1} and applies a 𝖯𝑠𝑗 gate upon applying the 𝑗-th 𝖳 gate.
(i.e., if 𝑠𝑗 = 1 then it applies a 𝖯 gate upon applying the 𝖳 gate, and if 𝑠𝑗 = 0, it does
nothing).
Every time after applying the 𝖳 gate and its following 𝖯𝑠𝑗 gate, 𝒜2 modifies the circuit
description for 𝖱𝖾𝖼𝗈𝗇𝗌𝗍𝗋𝗎𝖼𝗍: append the gate 𝖯𝑠𝑗 after the 𝑗-th T gate; the gate 𝖯𝑠𝑗

operates on the same qubit.

3. In the end, 𝒜2 finishes applying all the gates and obtains an modified reconstruction circuit
𝖱𝖾𝖼𝗈𝗇𝗌𝗍𝗋𝗎𝖼𝗍′. It will obtain a classical outcome 𝑐.

4. In the challenge phase, 𝒜2 sends the modified circuit description 𝖱𝖾𝖼𝗈𝗇𝗌𝗍𝗋𝗎𝖼𝗍′ and 𝑐 to the
recoverers ℬ and 𝒞. 𝒜1 sends the one-time pads (𝑎, 𝑏) to ℬ and 𝒞.

5. ℬ and 𝒞 computes the update function 𝑓𝖱𝖾𝖼𝗈𝗇𝗌𝗍𝗋𝗎𝖼𝗍′ according to the updated 𝖱𝖾𝖼𝗈𝗇𝗌𝗍𝗋𝗎𝖼𝗍′ circuit
and computes 𝑓𝖱𝖾𝖼𝗈𝗇𝗌𝗍𝗋𝗎𝖼𝗍′(𝑎||0 · · · 0, 𝑏||0 · · · 0) (the quantum OTPs (𝑎, 𝑏) are each appended
with 𝑘 zeros to represent the quantum OTPs on 𝒜2’s state 𝜌2 before applying any gate). In
the successful case, they will obtain Pauli corrections (𝑎*, 𝑏*); in an unsuccessful case, they
abort 7. They then each apply 𝖹𝑏*𝖷𝑎* to 𝑐 and output the first bit of 𝖹𝑏*𝖷𝑎*𝑐 as 𝑚 (in our
settings, 𝖹𝑏* is in fact unnecessary).

Correctness We show that the above strategy allows 𝒜,ℬ, 𝒞 to win with a noticeable probability,
when the number of T gates is 𝑂(log 𝜆).

Recall that we have the following identity (in Appendix A.1.1):

𝖳
(︁
𝖷𝑎𝖹𝑏

)︁
|𝜓⟩ =

(︁
𝖷𝑎𝖹𝑏⊕𝑎𝖯𝑎

)︁
𝖳 |𝜓⟩

Every time 𝒜2 applies a 𝖳 gate on the quantum one-time padded input, if we directly “move” this
𝖳 gate to the right side, we will have an unwanted 𝖯𝑎 on the right side of the Pauli one-time pads
𝑋,𝑍’s. Our solution is to make a guess on the bit 𝑎 ∈ {0, 1} and apply an additional 𝖯𝑎 in order
to remove the unwanted phase gate 𝖯𝑎 from the final correction.

When the guess is correct, i.e. 𝑠𝑗 = 𝑎, we have the following after applying the 𝖳-gate and
𝖯𝑠𝑗 = 𝖯𝑎 gate:

𝖯𝑎𝖷𝑎𝑍𝑏⊕𝑎𝖯𝑎𝖳 |𝜓⟩ = 𝖷𝑎𝑍𝑏⊕𝑎2𝖯𝑎⊕𝑎𝖳 |𝜓⟩
= 𝖷𝑎𝖹𝑏⊕𝑎𝖳 |𝜓⟩ since 𝑎2 = 𝑎, 𝑎⊕ 𝑎 = 0.

The above equalities follow from applying the update rules in Appendix A.1.1.
Now we have successfully "moved" the original 𝖳 gate to the right side of Pauli pads 𝖷,𝖹’s, and

removed the unwanted 𝖯𝑎 gate.
7When computing the update function for the circuit 𝖱𝖾𝖼𝗈𝗇𝗌𝗍𝗋𝗎𝖼𝗍′, we can modify the algorithm inside the update

function to do the following: if the next gate is a 𝖳 gate and assume the update function after applying the previous
gate gives outcome (𝑎′, 𝑏′), then first check if there’s a correct 𝖯𝑎′

gate following the T gate; if yes, compute the
update function for these two gates together as (𝑎′, 𝑏′ ⊕ 𝑎′)← 𝑓𝖯𝑎′

𝖳(𝑎
′, 𝑏′); otherwise if there’s not a correct 𝖯𝑎′

gate
that follows the 𝖳 gate, the update function aborts.
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Let us suppose for all 𝑗 ∈ [𝜅], where 𝜅 is the number of 𝖳 gates, 𝒜2’s guess for 𝑠𝑗 is correct:
that is, assuming the update function after applying the previous gate gives outcome (𝑎′, 𝑏′), then
if 𝑎′ = 1 then there is a 𝖯 gate that follows the 𝖳 gate; else there would not be one. Then whenever
the update function 𝑓𝖱𝖾𝖼𝗈𝗇𝗌𝗍𝗋𝗎𝖼𝗍′ runs into a 𝖳 gate followed by a correct 𝖯𝑠𝑗 = 𝖯𝑎′ , we will obtain
the updated Pauli errors as (𝑎′, 𝑏′ ⊕ 𝑎′)← 𝑓𝖯𝑎′𝖳(𝑎

′, 𝑏′).
If all𝒜2’s guesses for {𝑠𝑗}𝑗∈[𝜅] are correct, then𝒜2’s measurement outcome 𝑐 = 𝖱𝖾𝖼𝗈𝗇𝗌𝗍𝗋𝗎𝖼𝗍′𝖷𝑎𝖹𝑏 |𝜓12⟩

will be equal to 𝖷𝑎*𝑍𝑏*𝖱𝖾𝖼𝗈𝗇𝗌𝗍𝗋𝗎𝖼𝗍 |𝜓12⟩. ℬ, 𝒞 will obtain the (𝑎*, 𝑏*)← 𝑓𝖱𝖾𝖼𝗈𝗇𝗌𝗍𝗋𝗎𝖼𝗍′(𝑎||0𝑘, 𝑏||0𝑘) so
that by applying 𝖷𝑎*𝖹𝑏* to 𝑐, they will both obtain the real result 𝖱𝖾𝖼𝗈𝗇𝗌𝗍𝗋𝗎𝖼𝗍 |𝜓12⟩. by outputting
the first bit they will recover the correct 𝑚.

Every time 𝒜2 makes a guess on 𝑠𝑗 , it has probability 1
2 of getting correct. When it guesses

incorrectly for one 𝑗 ∈ [𝜅], then the entire approach may fail. Therefore, the above attack has
success probability at least 1

2𝜅 . Since the 𝖳 gate number 𝜅 is logarithmic in terms of the security
parameter, the attack succeeds with a noticeable probability.

Extending to 𝑛-party case In the 𝑛-party case, every 𝒜𝑖, 𝑖 ̸= 𝑛 can teleport its share 𝜌𝑖 to the
last party 𝒜𝑛 and sends their Pauli OTP information {(𝑎𝑖, 𝑏𝑖)}𝑖 ̸=𝑛 to the recoverers ℬ and 𝒞.
𝒜𝑛 performs the same operations as what 𝒜2 does in the 2-party case. In the end, it sends

the outcome 𝑐 and modified circuit 𝖱𝖾𝖼𝗈𝗇𝗌𝗍𝗋𝗎𝖼𝗍′ to ℬ and 𝒞. They should then be able to compute
corrections (𝑎′1, 𝑏

′
1, · · · , 𝑎′𝑛, 𝑏′𝑛) ← 𝑓𝖱𝖾𝖼𝗈𝗇𝗌𝗍𝗋𝗎𝖼𝗍′(𝑎

′
1, 𝑏
′
1, · · · , 0𝑘, 0𝑘) and apply 𝖹𝑏′1,··· ,𝑏′𝑛𝖷𝑎′1,···𝑎′𝑛 to 𝑐 to

recover the secret.

7.3 USS Implies Unclonable Encryption

Theorem 7.5. Unclonable secret sharing with IND-based security against adversaries with (bounded)
polynomial amount of shared entanglement and connected pre-shared entanglement graph implies se-
cure unclonable encryption.

We will first look at the 2-party case, which can be easily extended to the 𝑛(> 2)-party case.

Proof. Assume a secure 𝖴𝖲𝖲 = (𝖴𝖲𝖲.𝖲𝗁𝖺𝗋𝖾,𝖴𝖲𝖲.𝖱𝖾𝖼𝗈𝗇𝗌𝗍𝗋𝗎𝖼𝗍) with IND-based security, we construct
the following UE scheme:

1. 𝖪𝖾𝗒𝖦𝖾𝗇(1𝜆, 1|𝑚|): samples a random 𝗌𝗄← {0, 1}2ℓ, where ℓ = ℓ(𝜆) is the number of qubits in
each share generated by 𝖴𝖲𝖲.𝖲𝗁𝖺𝗋𝖾(1𝜆, 1|𝑚|, ·). Output 𝗌𝗄.

2. 𝖤𝗇𝖼(𝗌𝗄,𝑚) :

(a) compute (𝜌1, 𝜌2)← 𝖴𝖲𝖲.𝖲𝗁𝖺𝗋𝖾(1𝜆, 1|𝑚|,𝑚).

(b) sample random (𝑎, 𝑏) ← {0, 1}2ℓ. Use them to quantum one-time pad the second share
𝜌2 to obtain 𝖷𝑎𝖹𝑏𝜌2𝖹

𝑏𝖷𝑎.

(c) compute 𝑠← (𝑎, 𝑏)⊕ 𝗌𝗄

(d) Output 𝖼𝗍 = (𝜌1,𝖷
𝑎𝖹𝑏𝜌2𝖹

𝑏𝖷𝑎, 𝑠).

3. 𝖣𝖾𝖼(𝖼𝗍, 𝗌𝗄):

(a) parse 𝖼𝗍 = (𝜌1, 𝜌
′
2, 𝑠);
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(b) compute (𝑎, 𝑏)← 𝑠⊕ 𝗌𝗄;
(c) output 𝑚← 𝖴𝖲𝖲.𝖱𝖾𝖼𝗈𝗇𝗌𝗍𝗋𝗎𝖼𝗍(𝜌1,𝖷

𝑎𝖹𝑏𝜌′2𝖹
𝑏𝖷𝑎).

Correctness The correctness easily follows from the correctness of the underlying 𝖴𝖲𝖲 scheme.

Security Suppose we have 𝖴𝖤 adversaries (𝒜,ℬ, 𝒞) that wins in the IND-based 𝖴𝖤 security game,
we can construct adversary (𝒜′ = (𝒜1,𝒜2),ℬ′, 𝒞′) for the 𝖴𝖲𝖲 IND-based security.

Before receiving the shares from the challenger, 𝒜1 and 𝒜2 agrees on a random strong 𝑟 ←
{0, 1}2ℓ. When receiving the shares, 𝒜2 teleports its share 𝜌2 to 𝒜1 and obtains Pauli errors (𝑎, 𝑏).
𝒜1 gives (𝜌1, , 𝑟) the 𝖴𝖤 adversary 𝒜. 𝒜2 computes 𝗌𝗄′ ← (𝑎, 𝑏)⊕ 𝑟.
In the 𝖴𝖲𝖲 challenge phase, 𝒜2 sends 𝗌𝗄′ to both ℬ′ and 𝒞′. The 𝖴𝖤 adversaries 𝒜 has finished

giving the bipartite it genertaed from (𝜌1, 𝑟) state 𝜎ℬ,𝒞 to ℬ and 𝒞.
Then ℬ′ feeds ℬ with 𝗌𝗄′ as the secret key in the 𝖴𝖤 security game (and 𝒞′ feeding 𝗌𝗄′ to

𝒞,respectively), and outputs their output bit 𝑏ℬ, 𝑏𝒞 as the answer to 𝖴𝖲𝖲 game. Since the classical
part in the unclonable ciphertext is the classical information (𝑎, 𝑏) masked by a uniformly random 𝗌𝗄,
the reduction perfectly simulates the above scheme by first giving the 𝖴𝖤 adversary 𝒜 a uniformly
random string 𝑟 and later feeding ℬ, 𝒞 with 𝑟 ⊕ (𝑎, 𝑏).

Extending to 𝑛-party case We can change the scheme to sample a longer 𝗌𝗄 ∈ {0, 1}2(𝑛−1)ℓ and
let the unclonable ciphertext be (𝜌1,𝖷

𝑎2𝖹𝑏2𝜌2𝖹
𝑏2𝖷𝑎2 , · · · ,𝖷𝑎𝑛𝖹𝑏𝑛𝜌𝑛𝖹

𝑏𝑛𝖷𝑎𝑛 , 𝑠 = (𝑎1, 𝑏1, · · · , 𝑎𝑛, 𝑏𝑛)⊕
𝗌𝗄).

In the reduction, when receiving the shares, 𝒜𝑖, 𝑖 ̸= 1 teleports its share 𝜌𝑖 to 𝒜1 and obtains
Pauli errors (𝑎𝑖, 𝑏𝑖). The rest of the reduction follows easily.

Theorem 7.6. Unclonable secret sharing with IND-based security against adversaries with discon-
nected entanglement graph, where one of the parties receives as a share a quantum state and all
other parties receive classical shares (in other words, computational basis states), implies secure
unclonable encryption.

Proof. In the case where only one party has a quantum share, the others classical shares, we can
easily modify the above construction to have a 𝖴𝖤 scheme from 𝖴𝖲𝖲:

1. 𝖪𝖾𝗒𝖦𝖾𝗇(1𝜆, 1|𝑚|): samples a random 𝗌𝗄 ← {0, 1}(𝑛−1)ℓ, where ℓ = ℓ(𝜆) is the number of
qubits/bits in each share generated by 𝖴𝖲𝖲.𝖲𝗁𝖺𝗋𝖾(1𝜆, 1|𝑚|, ·). Output 𝗌𝗄.

2. 𝖤𝗇𝖼(𝗌𝗄,𝑚) :

(a) compute (𝜌1, 𝑦2, · · · , 𝑦𝑛)← 𝖴𝖲𝖲.𝖲𝗁𝖺𝗋𝖾(1𝜆, 1|𝑚|,𝑚). 𝑦1, · · · , 𝑦𝑛 are binary strings.
(b) sample random 𝗌𝗄← {0, 1}(𝑛−1)ℓ. Compute 𝑠← (𝑦1, · · · , 𝑦𝑛)⊕ 𝗌𝗄

(c) Output 𝖼𝗍 = (𝜌1, 𝑠).

3. 𝖣𝖾𝖼(𝖼𝗍, 𝗌𝗄):

(a) parse 𝖼𝗍 = (𝜌1, 𝑠);
(b) compute (𝑦1, · · · , 𝑦𝑛)← 𝑠⊕ 𝗌𝗄;
(c) output 𝑚← 𝖴𝖲𝖲.𝖱𝖾𝖼𝗈𝗇𝗌𝗍𝗋𝗎𝖼𝗍(𝜌1, 𝑦1, · · · , 𝑦𝑛).
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Security Suppose we have an 𝖴𝖤 adversary (𝒜,ℬ, 𝒞) that wins in the IND-based 𝖴𝖤 security
game with probability 1

2 + 𝜀, we construct an adversary (𝒜′ = (𝒜1, · · · 𝒜𝑛),ℬ′, 𝒞′) that wins in the
𝖴𝖲𝖲 IND-based security game with probability 1

2 + 𝜀. Thus, if the USS scheme is secure then 𝜀 has
to be negligible. We describe 𝒜1, · · · ,𝒜𝑛 as follows.

Before receiving the shares from the challenger, 𝒜1, · · · ,𝒜𝑛 agrees on a random string 𝑟 ←
{0, 1}(𝑛−1)ℓ.
𝒜1 gives (𝜌1, 𝑟) to the 𝖴𝖤 adversary 𝒜. 𝒜𝑖, for 𝑖 ̸= 1, when receiving the classical share 𝑦𝑖 from

the challenger, computes 𝗌𝗄′𝑖 ← 𝑦𝑖 ⊕ 𝑟𝑖, where 𝑟𝑖 is the (𝑖− 1)-th block of length-ℓ string in 𝑟.
In the 𝖴𝖲𝖲 challenge phase, each 𝒜𝑖, for 𝑖 ̸= 1, sends 𝗌𝗄′𝑖 to both ℬ′ and 𝒞′. 𝒜1 sends the

bipartite state 𝜎ℬ,𝒞 to ℬ′ and 𝒞′, where 𝜎ℬ,𝒞 is the output of 𝒜.
Then ℬ′ feeds ℬ with 𝗌𝗄′ = (𝗌𝗄′2, · · · , 𝗌𝗄′𝑛) as the secret key in the 𝖴𝖤 security game (and 𝒞′

feeding 𝗌𝗄′ to 𝒞, respectively), and outputs their output bit 𝑏ℬ, 𝑏𝒞 as the answer to 𝖴𝖲𝖲 game. Since
the classical part in the unclonable ciphertext is the classical information (𝑦2, · · · , 𝑦𝑛) masked by
a uniformly random 𝗌𝗄, the reduction perfectly simulates the above scheme by first giving the 𝖴𝖤
adversary 𝒜 a uniformly random string 𝑟 and later feeding ℬ, 𝒞 with 𝑟 ⊕ (𝑦2, · · · , 𝑦𝑛). Thus, the
advantage of (𝒜′,ℬ′, 𝒞′) in breaking the USS security game is precisely the same as the advantage
of (𝒜,ℬ, 𝒞) breaking the UE security game.

7.4 Search-based USS Implies Position Verification

Quantum Position Verification We first give a definition of 1-dimensional quantum position
verification.

A 1-dimensional quantum position-verification protocol in the vanilla model8 of verifier (𝑉0, 𝑉1)
and prover 𝑃 consists of the following stages:

1. Setup: Verifiers 𝑉0, 𝑉1 exchange information over another secure (possibly quantum) channel
unknown to 𝑃 to prepare for the (potentially quantum) challenge (𝜌𝑥, 𝜌𝑦). 𝑉0, 𝑉1 also make
sure that they are located on the two different sides of the prover 𝑃 .

2. Challenge:

• Verifiers 𝑉0 sends 𝜌𝑥 to 𝑃 and 𝑉1 sends 𝜌𝑦 to 𝑃 so that the two pieces of information
reach 𝑃 at the claimed position 𝑝𝑜𝑠 at the same time.

• 𝑃 computes 𝒫(𝜌𝑥, 𝜌𝑦) for some quantum channel 𝒫 instantaneously and sends the (pos-
sibly quantum) answers 𝜌𝖺𝗇𝗌,0 and 𝜌𝖺𝗇𝗌,1 back to 𝑉0, 𝑉1.

• 𝑉0, 𝑉1 check if the answers arrive on the correct time and if 𝒫(𝜌𝑥, 𝜌𝑦) is computed cor-
rectly. If both yes, accept; otherwise if one condition is violated, reject.

For any position 𝑝𝑜𝑠 (within the capability of the verifiers), we want the protocol to satisfy two
properties in terms of a security parameter 𝑛:

• Correctness: For any honest prover 𝑃 at claimed position 𝑝𝑜𝑠, there exists a negligible
function 𝗇𝖾𝗀𝗅(·) such that the probability that the verifiers accept is at least (1− 𝗇𝖾𝗀𝗅(𝜆)).

8The vanilla model is a model where we do not consider hardware restrictions on any parties. Usually it means
that we do not work with bounded storage/bounded retrieval model; all parties have synchronized clocks.
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• Soundness: For any malicious provers (𝑃0, 𝑃1, · · · , 𝑃𝑘) (where 𝑘 = poly(𝜆)), none of which
at the claimed position 𝑝𝑜𝑠, there exists a negligible function 𝗇𝖾𝗀𝗅(·) such that the probability
that the verifiers accept is at most 𝗇𝖾𝗀𝗅(𝜆).

where the probabilities are taken over the randomness used in the protocol.
It can be observed that we can consider only two malicious provers (𝑃0, 𝑃1) since adding more

provers won’t help increase their winning probability.

QPV with Pre-shared Entanglement In QPV, we also consider different adversarial setup such
as: (1) (𝑃0, 𝑃1) do not have pre-shared entanglement; (2) (𝑃0, 𝑃1) can share a bounded/unbounded
polynomial amount of entanglement; (3) (𝑃0, 𝑃1) can share unbounded amount of entanglement.
We also divide the settings into computational and information-theoretic.

Theorem 7.7. 2-party 𝖴𝖲𝖲(computational/IT resp.) with search-based security (Definition A.1)
implies 1-dimensional QPV (computational/IT, resp.), where the two adversarial provers in the
QPV protocol pre-share the same amount of entanglement as the two parties in the 𝖴𝖲𝖲 protocol do.

The following theorem demonstrates from another point of view the barrier of constructing secure
protocols against entangled adversaries for 𝖴𝖲𝖲 in the IT setting. Even if we consider computational
asusumptions, the development in building secure QPV protocols against entangled adversaries has
been slow, which indicates further evidence on how challenging 𝖴𝖲𝖲 can be in the entangled setting.

Theorem 7.8 ([BK11, BCF+14]). Quantum position verification is impossible in the information
theoretic setting if we allow the adversaries to preshare entanglement.

Proof for Theorem 7.7

Proof. Given a 2-party 𝖴𝖲𝖲 protocol with search based security, we construct a QPV protocol as
follows:

1. Setup: at time 𝑡0, verifiers 𝑉0, 𝑉1 sample a random secret 𝑠← {0, 1}𝑛. Run 𝖴𝖲𝖲.𝖲𝗁𝖺𝗋𝖾(1𝜆, 2, 𝑠)→
(𝜌0, 𝜌1).

2. 𝑉0 sends 𝜌0 to the prover and 𝑉1 sends 𝜌1 to the prover so that 𝜌0 and 𝜌1 reach the prover at
the same time. Let us denote the time that these two messages arrive at prover’s location as
𝑡1.

3. The prover runs 𝖴𝖲𝖲.𝖱𝖾𝖼𝗈𝗇𝗌𝗍𝗋𝗎𝖼𝗍(𝜌0, 𝜌1) → 𝑠′ (we assume that the reconstruction procedure
is instantaneous compared to the travelling time of the message). It sends the recovered secret
𝑠′ to both 𝑉0 and 𝑉1.

4. 𝑉0 and 𝑉1 check if the message 𝑠′ from the prover arrive on time, respectively and if the
message 𝑠′ = 𝑠. If yes, accept; else reject.

Suppose there’s a pair of malicious provers (𝑃0, 𝑃1) who are not at the claimed position but make
the verfiers accept with non-negligible probability, then there exists some malicious shareholders
(𝑃 ′0, 𝑃

′
1) that break the search-based security of 2-party 𝖴𝖲𝖲.

We first give a general description that captures all QPV attacks against the above protocol.
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• 𝑃0 will stand at a location between the left-hand-side verifier 𝑉0 and the claimed location 𝑝𝑜𝑠.
𝑃1 will stand at a location between the right-hand-side verifier 𝑉1 and the claimed location
𝑝𝑜𝑠.

• At time 𝑡0,0, 𝑃0 receives the message 𝜌0 from 𝑉0. 𝑡0,0 < 𝑡1 because 𝑃0 is standing closer to 𝑉0
than 𝑝𝑜𝑠 is.

• At time 𝑡0,1, 𝑃1 receives 𝜌1 from 𝑉1. For similar reason as above, 𝑡0,1 < 𝑡1.

• Without loss of generality, 𝑃0 applies some unitary 𝑈0 on 𝜌0 and its own auxiliary state 𝐀𝐮𝐱0

(possibly having preshared entanglement with 𝑃1) to obtain two states 𝜌0,𝐿, 𝜌0,𝑅 as outputs.

• 𝑃1 applies some unitary 𝑈1 on 𝜌1 and its own auxiliary state 𝐀𝐮𝐱1 (possibly having preshared
entanglement with 𝑃0) to obtain two states 𝜌1,𝐿, 𝜌1,𝑅 as outputs.

• 𝑃0 keeps 𝜌0,𝐿 for itself and sends 𝜌0,𝑅 to 𝑃1; 𝑃1 keeps 𝜌1,𝐿 for itself and sends 𝜌1,𝑅 to 𝑃0.

• After 𝑃0 receives 𝜌1,𝐿, it applies a POVM Π0 on the joint system of (𝜌0,𝐿, 𝜌1,𝐿) to get a
measurement outcome 𝑠′0.

• After 𝑃1 receives 𝜌0,𝑅, it applies a POVM Π1 on the joint system of (𝜌0,𝑅, 𝜌1,𝑅) to get a
measurement outcome 𝑠′1 9.

• 𝑃0 sends 𝑠′0 to 𝑉0; 𝑃1 sends 𝑠′1 to 𝑉1.

Suppose the above attack succeeds with probability 𝜖 10, we construct a pair of 𝖴𝖲𝖲 adversary
(𝑃 ′0, 𝑃

′
1) that succeeds with probability 𝜖 against search based security:

• 𝑃 ′0 and 𝑃 ′1 share the same setup (preshared entanglement/shared randomness) as 𝑃0, 𝑃1 do.

• When receiving share 𝜌0, 𝑃 ′0 applies the unitary 𝑈0 on 𝜌0 and its own auxiliary state 𝐀𝐮𝐱0

(possibly having preshared entanglement with 𝑃1) to obtain two states 𝜌0,𝐿, 𝜌0,𝑅.

• When receiving share 𝜌1, 𝑃 ′1 applies the unitary 𝑈1 on 𝜌1 and its own auxiliary state 𝐀𝐮𝐱1

(possibly having preshared entanglement with 𝑃0) to obtain two states 𝜌1,𝐿, 𝜌1,𝑅.

• In the reconstruction stage: 𝑃 ′0 sends 𝜌0,𝐿 to the recoverer ℬ and 𝜌0,𝑅 to 𝒞. 𝑃 ′1 sends 𝜌1,𝐿 to
the recoverer ℬ and 𝜌1,𝑅 to 𝒞.

• ℬ applies the POVM Π0 on the joint system of (𝜌0,𝐿, 𝜌1,𝐿) to get a measurement outcome 𝑠′0.
𝒞 applies the POVM Π1 on the joint system of (𝜌0,𝑅, 𝜌1,𝑅) to get a measurement outcome 𝑠′1.

• By our assumption, we have 𝑠′0 = 𝑠′1 = 𝑠 with probability 𝜖.

9𝑈0, 𝑈1,Π0,Π1 are all instantaneous compared to message travelling time.
10It is guaranteed that using the above attack strategy, the malicious provers’ messages will arrive at the verifiers

on time. We omit the details here since we do not need this property for attacking 𝖴𝖲𝖲.
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A Additional Preliminaries

A.1 Gate Teleportation Protocol

Suppose Alice has a quantum state |𝜓⟩ (without loss of generality, |𝜓⟩ is a one qubit state) and
Alice and Bob share one half each of an EPR pair. Then Alice can send her state to Bob using
the quantum teleportation protocol. This requires Alice to perform a measurement on the input as
well as her half of the EPR pair (let the output of these measurements be 𝑎, 𝑏). Then Bob’s part of
EPR pair gets transformed to the state 𝑋𝑏𝑍𝑎 |𝜓⟩.

A simple modification to the quantum teleportation protocol allows us to achieve gate telepor-
tation. That is, if we could apply 𝐺 to Bob’s half of the EPR pair and then apply the quantum
teleportation circuit, Bob gets the state 𝐺

(︀
𝑋𝑏𝑍𝑎 |𝜓⟩

)︀
. To obtain the correct outcome 𝐺 |𝜓⟩, Bob

needs to compute an update function 𝑓 that helps him obtain (𝑎′, 𝑏′) ← 𝑓(𝑎, 𝑏) where the inputs
are the Pauli correction (𝑎, 𝑏) ; Bob then applies 𝑋𝑎′𝑍𝑏′ on his register that hold 𝐺

(︀
𝑋𝑏𝑍𝑎 |𝜓⟩

)︀
.

A.1.1 Update function

We consider the following identities (ignoring the global phase) verbatim from [BK20]. Let |𝜓⟩
be a 1-qubit state and |𝜑⟩ be a 2-qubit state. As introduced in [BK20], we would like to obtain
𝐺 (|𝜓⟩) from 𝐺

(︀
𝑋𝑏𝑍𝑎 |𝜓⟩

)︀
(output of gate teleportation). To look at how we can get 𝐺 (|𝜓⟩) from

𝐺
(︀
𝑋𝑏𝑍𝑎 |𝜓⟩

)︀
, we look at the case when 𝐺 is a 1-qubit gate and |𝜓⟩ is a 1-qubit state. For this we

get the following identities (ignoring the global phase):

𝖷
(︁
𝖷𝑎𝖹𝑏

)︁
|𝜓⟩ =

(︁
𝖷𝑎𝖹𝑏

)︁
𝖷 |𝜓⟩

𝖹
(︁
𝖷𝑎𝖹𝑏

)︁
|𝜓⟩ =

(︁
𝖷𝑎𝖹𝑏

)︁
𝖹 |𝜓⟩

𝖧
(︁
𝖷𝑎𝖹𝑏

)︁
|𝜓⟩ =

(︁
𝖷𝑏𝖹𝑎

)︁
𝖧 |𝜓⟩

𝖯
(︁
𝑋𝑎𝑍𝑏

)︁
|𝜓⟩ =

(︁
𝖷𝑎𝖹𝑎⊕𝑏

)︁
𝖯 |𝜓⟩

𝖢𝖭𝖮𝖳
(︁
𝖷𝑎1𝖹𝑏1 ⊗ 𝖷𝑎2𝖹𝑏2

)︁
|𝜑⟩ =

(︁
𝖷𝑎1𝖹𝑏1⊕𝑏2 ⊗ 𝖷𝑎1⊕𝑎2𝖹𝑏2

)︁
𝖢𝖭𝖮𝖳 |𝜑⟩

𝖳
(︁
𝖷𝑎𝖹𝑏

)︁
|𝜓⟩ =

(︁
𝖷𝑎𝖹𝑏⊕𝑎𝖯𝑎

)︁
𝖳 |𝜓⟩
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From the above rules, we can see that for Clifford circuits, we can prepare a classical update
funtion 𝑓𝐺 according to the quantum circuit description 𝐺, apply 𝑋𝑎′ and 𝑍𝑏′ , where (𝑎′, 𝑏′) ←
𝑓𝐺(𝑎, 𝑏), to 𝐺(𝑋𝑏𝑍𝑎 |𝜓⟩) and get 𝐺(|𝜓⟩).

Update function for Any Quantum Circuits Additionally, as discussed in [BK20]: suppose
a state |𝜓⟩ is QOTP-ed using the keys (𝑎1, 𝑏1, . . . , 𝑎𝑛, 𝑏𝑛). Then, for any quantum circuit 𝐺 (not
necessarily Clifford) applied on the QOTP-ed state, there exists a correction unitary, expressed as
a linear combination of Paulis, that when applied on the QOTP-ed state yields the state 𝐺(|𝜓⟩).
Note that computing such an update function for arbitrary quantum circuits may not be efficient,
depending on the number of T gates.

A.2 Search-Based Security and Collusion-Resistant Security

Search-Based Security In this paragraph, we briefly define search-based security, a weakening of
the indistinguishability definition. The security guarantees that for a random message 𝑚← {0, 1}𝜆,
no two reconstructing parties can simultaneously recover the secret 𝑚, given their set of respective
cloned shares.

The security game is the same as section 4.2 except that we replace the 1-bit mssage 𝑏 with the
𝜆-bit message 𝑚.

Accordingly, the security definitions are:

Definition A.1 (Search-based Information-theoretic Unclonable Secret Sharing). An 𝑛-party un-
clonable secret sharing scheme (𝖲𝗁𝖺𝗋𝖾,𝖱𝖾𝖼𝗈𝗇𝗌𝗍𝗋𝗎𝖼𝗍) satisfies search-based unpredictability if for any
non-uniform adversary 𝖠𝖽𝗏 =

(︀
{𝒜𝑖}𝑖∈[𝑛],ℬ, 𝒞, 𝜉

)︀
, the following holds:

𝖯𝗋
[︁
1← 𝖤𝗑𝗉𝗍({𝒜𝑖},ℬ,𝒞,𝜉)

]︁
≤ 𝗇𝖾𝗀𝗅(𝜆)

Definition A.2 (Search-based Computational Unclonable Secret Sharing). An 𝑛-party unclon-
able secret sharing scheme (𝖲𝗁𝖺𝗋𝖾,𝖱𝖾𝖼𝗈𝗇𝗌𝗍𝗋𝗎𝖼𝗍) satisfies search-based unpredictability if for any non-
uniform QPT adversary 𝖠𝖽𝗏 =

(︀
{𝒜𝑖}𝑖∈[𝑛],ℬ, 𝒞, 𝜉

)︀
, the following holds:

𝖯𝗋
[︁
1← 𝖤𝗑𝗉𝗍({𝒜𝑖},ℬ,𝒞,𝜉)

]︁
≤ 𝗇𝖾𝗀𝗅(𝜆)

Collusion-Resistant 𝖴𝖲𝖲 Security 𝑡-collusion resistant 𝖴𝖲𝖲 has the same security game as in
4.2, except that we allow an adversarially and adaptively chosen partition of parties into size no
larger than 𝑡 to collude: that is, in the share-phase, the shareholders can be partitioned into groups
of size at most 𝑡, and within each group, the shareholders can communicate and output one bipartite
state 𝜎ℬ𝒞 to send ℬ, 𝒞 before the reconstruct stage.

Claim 4. The existence of 2-party 𝖴𝖲𝖲 unconditionally implies 𝑛-party 𝖴𝖲𝖲 with any 𝑡 (𝑡 ≤ 𝑛− 1)-
collusion resistance.

Proof. First, let 𝑘 =
(︀
𝑛
2

)︀
. In the collusion resistance protocol, we first run a classical informa-

tion theoretic 𝑘-out-of-𝑘 secret sharing protocol on the original share 𝑥 to obtain classical shares
𝑥1, · · · , 𝑥𝑘. Next, for each every 2 party among all the 𝑛 parties for the collusion resistance adver-
sary, run a 2-party 𝖴𝖲𝖲 protocol on secret 𝑥𝑖, 𝑖 ∈ [𝑘]. Thus, no matter how the adversary partitions
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the 𝑛 parties into groups, with each group having size 𝑡 < 𝑛, there will always be at least a pair
two parties apart in two different groups. If the 𝑛-party collusion resistance protocol is insecure,
then there exists a reduction that embeds a 2-party 𝖴𝖲𝖲 challenge in the secret sharing (by guessing
correctly a separated pair of shareholders with inverse polynomial probability). The reduction can
simulate the remaining (𝑘−1) runs of the two party 𝖴𝖲𝖲 protocols on its own. Suppose the collusion
resistance adversary can output the correct secret in the end, then the reduction can recover the
secret of the two party 𝖴𝖲𝖲 challenge as well.

Corollary A.3. There exists a 𝑛-party 𝑡-collusion resistant 𝖴𝖲𝖲 protocol with indistinguishability-
based security against adversaries sharing an arbitrary amount of (connected) entanglement in
QROM, for any polynomial 𝑛 ≥ 2 and any 𝑡 < 𝑛.

The corollary easily follows from the above and Theorem 6.1.
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