
A New Cryptographic Algorithm

Ali Mahdoum

Retired, previously worked as a full-time researcher at the

“Centre de Développement des Technologies Avancées”, Algiers, Algeria

ali.mahdoum@gmail.com

ORCID: 0000-0002-9430-195X

Abstract- The advent of quantum computing technology will compromise many of the current

cryptographic algorithms, especially public-key cryptography, which is widely used to protect

digital information. Most algorithms on which we depend are used worldwide in components of

many different communications, processing, and storage systems. Once access to practical

quantum computers becomes available, all public-key algorithms and associated protocols will be

vulnerable to criminals, competitors, and other adversaries. It is critical to begin planning for the

replacement of hardware, software, and services that use public-key algorithms now so that

information is protected from future attacks.” [1].

For this purpose, we have developed a new algorithm that contributes to deal with the

aforementioned problem. Instead to use a classical scheme of encoding / decoding methods

(keys, prime numbers, etc.), our algorithm is rather based on a combination of functions. Because

the cardinality of the set of functions is infinite, it would be impossible for a third part (e.g. a

hacker) to decode the secret information transmitted by the sender (Bob) to the receiver (Alice).

Author contribution information: All the tasks have been achieved by

Ali Mahdoum

Conflict of Interest: The author declares that he has no conflict of interest.

A New Cryptographic Algorithm

Ali Mahdoum

Retired, previously worked as a full-time researcher at the

“Centre de Développement des Technologies Avancées”, Algiers, Algeria

ali.mahdoum@gmail.com

Abstract- The advent of quantum computing technology will compromise many of the current

cryptographic algorithms, especially public-key cryptography, which is widely used to protect

digital information. Most algorithms on which we depend are used worldwide in components of

many different communications, processing, and storage systems. Once access to practical

quantum computers becomes available, all public-key algorithms and associated protocols will be

vulnerable to criminals, competitors, and other adversaries. It is critical to begin planning for the

replacement of hardware, software, and services that use public-key algorithms now so that

information is protected from future attacks.” [1].

For this purpose, we have developed a new algorithm that contributes to deal with the

aforementioned problem. Instead to use a classical scheme of encoding / decoding methods

(keys, prime numbers, etc.), our algorithm is rather based on a combination of functions. Because

the cardinality of the set of functions is infinite, it would be impossible for a third part (e.g. a

hacker) to decode the secret information transmitted by the sender (Bob) to the receiver (Alice).

1. Introduction

The aim of cryptography is to enable

exchanging secure messages even in the

presence of hackers. As our electronic

networks grow increasingly open and

interconnected, it is crucial to have strong,

trusted cryptographic standards and

guidelines, algorithms and encryption

methods that provide a foundation for e-

commerce transactions, mobile device

conversations and other exchanges of data.

The National Institute of Science and

Technology (NIST) has fostered the

development of cryptographic techniques

and technology for 50 years through an

open process which brings together industry,

government, and academia to develop

workable approaches to cryptographic

protection that enable practical security

[2]. Fig.1 shows the relation between FIPS

140-2 and CMVP & CAVP. Unfortunately,

this strong procedure did not prevent

cryptographic systems to be hacked even if

they were FIPS 140-2 level 3 validated! This

was the case for UTIMACO HSM (Fig.2)

and YUBIKEY (Fig.3). Those attacks need

stronger algorithms that aim at replacing the

current set of public-key cryptographic

algorithms so that to feature high resistance

against both current and quantum

computer-based attacks.

Fig.1. Relation between FIPS 140-2 and CMVP & CAVP (source: [3])

Fig.2. Example1: attacks on Ultimaco HSM (source: [4])

Fig.3. Example2: attacks on Yubikey (source: [4])

In this context, we have developed a

new cryptographic algorithm that overcomes

the use of a public key. Instead, it is rather

based on a combination of functions.

Because the cardinality of the set of

functions is infinite, it would be impossible

for a third part (e.g. a hacker) to decode the

secret information transmitted by the sender

(Bob) to the receiver (Alice). This will be

shown in the next section. In section 3, we

present our obtained results then we

conclude this paper in section 4.

2. Presentation of our algorithm

The aim of the proposed algorithm

is to either encode or decode a message.

Instead to use a classical scheme of encoding

/ decoding methods (keys, prime numbers,

etc.), our algorithm is rather based on a

combination of functions. Because the

cardinality of the set of functions is infinite,

it would be impossible for a third part (e.g. a

hacker) to decode the secret information

transmitted by the sender (Bob) to the

receiver (Alice).

2.1. Encoding methodology

Let us consider the following simple

example:

Bob wants to transmit to Alice the character

‘A’. The ASCII code of ‘A’ is 65. Of course,

instead to transmit 65, our algorithm sends

Y = F(65) where F if an encoding function

such as the following one:

Y = F(‘A’) = sqrt(13.* X)+

log((2*X+1)/log(X)) / log(5.) - (7+pow(X,

1./3.)) / (X+24)

 = 3.108632e+001

In the above equation, X is the ASCII code

of the character one wants to encode (in this

case, 65).

Thus, instead to send to Alice the integer

value 65, Bob sends the REAL value

3.108632e+001

It is obvious that the encoding function

could be AS COMPLICATE AS WE

WANT since the set of functions is of

INFINITE cardinality (the above equation

shows a quite simple function).

Using the above equation, the encoding of

the message found in the file “TEXT.txt”

results in the encrypted message included in

the file “CODED_TEXT.txt”, the third one

is “DECODED_TEXT.txt” which is the

result of the decoding operation performed

by Alice. Obviously, the file

“DECODED_TEXT.txt” has the

SIMILAR content than the original file,

“TEXT.txt”.

 The robustness of our encoding

methodology is that there exists an infinite

number of functions:

X-1, log51(4+X7/4), 2*sqrt(X), (97+X*3),

etc.

Among this infinite number of functions,

one can deduce an infinite number of

function combinations such as the following

simple one:

Y = (29.*X*log(X7/4) -

(2.*X2/3+1))/(X*log9X)*(2.*X12+1.)*log3(5.))

where X is the ASCII code of the character

to encode

 A well chosen function combination

used to encode some character will yield a

hard task for a third part (e.g. a hacker) to

deduce X from Y. Furthermore, our

encoding algorithm uses a DIFFERENT

encoding function for some characters like

the space one. Thus, even if a hacker can

observe that, for example,

1.917480e+001 corresponds to the

ASCII code of the space character (which is

32), he would not be able to retrieve the

other original characters because they are

encoded with a DIFFERENT function.

 Please note that our present version

uses 2 different encoding functions: one for

the space character and a second one for the

remaining characters. However, this version

could be easily modified so that a specific

encoding function is used for EACH ASCII

code (in other words, there are as many

encoding functions as there are ASCII

codes).

It is then clear that our encoding

methodology yields a huge size of the

solution space. In other words, the

exploration of such a solution space makes

the hacker facing an intractable problem for

which he wont be able to solve even using a

quantum algorithm.

2.2. Decoding methodology

Let us again consider the following encoding

function:

Y = F(X) = sqrt(13.* X)+

log((2*X+1)/log(X)) / log(5.) - (7+pow(X,

1./3.)) / (X+24)

In order to retrieve the ASCII code X, one

has to solve X = F-1(Y). This is not easy if

function F is a combination of many

difficult functions. However, this is not an

issue. Indeed, let us assume that we are

encoding the character ‘A’. Then, the value

of Y would be 3.108632e+001. Thus, we

have: F(X) - 3.108632e+001 = 0.

To obtain X, we will simply use some

numerical method achieving that goal. The

Newton-Raphson method is well indicated

for that purpose. Rapidly speaking, this

method operates as follows (Fig. 4):

- One starts from some X0. In our

case, the solution is an ASCII code

(0 ≤ ASCII code ≤ 127). So, one can

choose X0 = 64

- From X0, one determines X1 which

is the intersection of the X-axis with

the tangent of the curve of G at the

point (X0, G(X0))

- One recursively determines X2, X3,

etc.

Note that the tangent of G at the point (Xn,

G(Xn)) is Y = G’(Xn) * (X-Xn) + G(Xn)

This tangent intersects the X-axis when Y =

0, namely when:

X = Xn – G(Xn) / G’(Xn) , i.e.:

Xn+1 = Xn – G(Xn) / G’(Xn)

 In order to be able to use this nice method,

one should be able to calculate the derivate

function of the encoding function for each

abscissa X0, X1, …, Xn+1

The iteration process stops when the

condition |G(Xi) / G’(Xi)| < 10-P (e.g.

P=5).

Note that in our context, G(X) = F(X) – C ;

C is the encrypted value of an ASCII code

(e.g. 3.108632e+001).

3. Results

Our method that was presented in

the previous section has been implemented

on both Linux and Windows7 operating

systems (OS), using the C language. The

results that are depicted in Table 1 are

obtained under Linux 11.0 OS on a machine

that has the following features:

- Dual core processors (AMD C-50)

running at 1 GHz

- 4-Gb RAM

Fig. 4. The Newton-Raphson method to numerically solve G(X) = 0

Table 1 – Results obtained under Linux 11.0 OS using the C language

 (with 2 core processors AMD C-50 @1GHz, 4-Gb RAM)

Instance
ENCODING DECODING

Size (bytes) CPU Time (s) * Size (bytes) CPU Time (s) *

1 2331 0 30303 0

2 4662 0 60606 0

3 6993 0 90909 0

4 11655 0 151515 0

5 18648 0 242424 1

6 30303 0 393939 2

7 74592 0 969696 5

8 149184 1 1939392 10

9 298368 2 3878784 21

10 596736 5 7757568 43
*CPU Time = 0 s means CPU Time < 1 s (it would actually be some ns)

Although this machine presents weak

features, the CPU times are very interesting

even for the last sample (596736 bytes is the

size of the text to encode, 7 757 568 bytes is

the size of the encoded text obtained for the

same instance). One can observe the

following:

- For the same instance, the CPU time

for the decoding is greater than that

of the encoding because the size of

the encoded text is greater than that

of the original text and because the

Newton-Raphson method used in

the decoding needs, for each real

value, some iterations to retrieve the

original character

- The encoding is very fast (5s for a

quite large instance – we recall that

the machine presents weak features-)

- Considering the sizes and the

obtained CPU times, our algorithm

scales perfectly (the CPU time nearly

grows linearly with the size –Fig.5-)

 The CPU times are determined thanks to

the last instruction of our C-code, the

instruction system(“ps –elf | grep

Mahdoum_crypto”) –please see Fig.6 in

APPENDIX A- (Mahdoum_crypto being

the name of the executable code).

 Fig.5 CPU time VS the size (bytes) of the file for both encoding and decoding techniques

The command is Mahdoum_crypto if of

where if and of are respectively the names of

the input file (the text to encode) and the

output one (the encoded text). Fig.7 (in

APPENDIX A) depicts a sample of a text

to encode (included in file TEXT.txt), Fig.8

(in APPENDIX A) depicts the result of the

encoding, included in file

CODED_TEXT.txt

(obviously, the command is:
Mahdoum_crypto TEXT.txt CODED_TEXT.txt).

When the user starts running our program,

he is asked to enter:

0

5

10

15

20

25

30

35

40

45

50

0 2000000 4000000 6000000 8000000 10000000

Encoding

decoding

CPU Time (s)

Size (bytes)

- either ‘e’ or ‘E’ to perform the

encoding part or

- either ‘d’ or ‘D’ to perform the

decoding part

In case none of these characters is entered,

our program delivers an error message and

exits.

An error message is also delivered in case:

 - no file (e.g. TEXT.txt) is specified as a

parameter for the encoding part

 - the 2 file names (e.g.

CODED_TEXT.txt and

DECODED_TEXT.txt) are not

specified. Note that

CODED_TEXT.txt is an input file

that contains the encoded message

while DECODED_TEXT.txt is an

output file that will contain the result

of the decoding part.

4. Conclusion

In this paper, we have shown that some

cryptographic components that were FIPS

140-2 level 3 validated get hacked.

Furthermore, with the advent of quantum

computing, it is critical to begin planning for

the replacement of hardware, software, and

services that use public-key algorithms now

so that information is protected from future

attacks. For this purpose, we have developed

a new cryptographic algorithm that is not

based on the classical scheme (keys, prime

numbers, etc.). Instead, our algorithm is

rather based on functions combination

because the cardinality of the functions set is

INFINITE, which makes the data

corruption an intractable problem for which

the hacker will not be able to solve even

using a quantum algorithm. The present

version of our algorithm uses only 2

encoding functions (one for the space

character, the 2nd one for the remaining

characters). In order to make our encoding

technique stronger, we plan to use a

SPECIFIC encoding function for EACH

ASCII code. We formally believe that such

an encoding will prevent any correlation,

interpolation, etc. from the encoded data.

References

[1] https://www.nccoe.nist.gov/crypto-

agility-considerations-migrating-post-

quantum-cryptographic-algorithms

[2] https://www.nist.gov/cryptography

[3] https://youtu.be/w8iQsgkiQ9I

[4] https://youtu.be/w_cjOjdN1bI

APPENDIX A

/***/
/* 1rst version of text encoding / decoding, May 2023 */
/* Author: Dr. Ali Mahdoum ali.mahdoum@gmail.com */
/***/
#include <stdlib.h>
#include <stdio.h>
#include <math.h>
#define faire
#define fait
#define then
#define endif

float Fct(float), Fct_Spec(float);
float Fct2(float, float), Fct_deriv(float), Fct2_Spec(float, float), Fct_deriv_Spec(float);
void coding(FILE *, FILE *);

int main(int argc, char *argv[])
{
 FILE *fp, *fp1;
 char c, C1;
 float Y, Y1, Y2, X, Z;
 int P= 5;
 int X1;
 printf("\n Please enter either e or E for encoding, either d or D for decoding\n");
 scanf("%c", &c);
 if(c != 'e' && c != 'E' && c != 'd' && c != 'D')
 then {printf("\n Command error\n");
 exit(1);
 }
 endif
 if(c == 'e' || c == 'E')
 then {if(!(fp=fopen(argv[1], "r")))
 then {printf("\nERROR: Cannot open file %s\n", argv[1]);
 exit(1);
 }
 endif
 if(!(fp1=fopen(argv[2], "w")))
 then {printf("\nERROR: Cannot open file %s\n", argv[2]);
 exit(1);
 }
 endif
 coding(fp, fp1);
 }
 else {Z=pow(10., -P);
 if(!(fp=fopen(argv[1],"r")))
 then {printf("\n ERROR: Could not open file %s\n", argv[1]);
 exit(1);
 }
 endif
 if(!(fp1=fopen(argv[2],"w")))
 then {printf("\n ERROR: Could not open file %s\n", argv[2]);
 exit(1);
 }
 endif
 while((c=getc(fp)) != EOF)
 faire {ungetc(c,fp);
 fscanf(fp,"%f ",&Y);
 Y1=4.0e+0;
 Y2=2.0e+0;
 X=1.e+2;

 while(fabs(Y1 / Y2) >= Z)
 faire {X = X - (Y1 / Y2);
 if(fabs(Y - 19.17480) <= 1.e-6)
 then {Y1=Fct2_Spec(X,Y);
 Y2 = Fct_deriv_Spec(X);
 }
 else {Y1 = Fct2(X,Y);
 Y2 = Fct_deriv(X);
 }
 endif
 }
 fait
 X1= (int) X;
 if(X-X1 < (X1+1-X))
 then C1= (char) X1;
 else C1= (char) (X1+1.);
 endif
 fprintf(fp1,"%c", C1);
 }
 fait
 fclose(fp);
 fclose(fp1);
 }
 endif
 system("/bin/ps -elf | grep Mahdoum_crypto");
 }

/***/
/* Function FCT() */
/***/
float Fct(float X)
{float Y;

 Y = sqrt(13.* X)+ log((2*X+1)/log(X)) / log(5.) - (7+pow(X, 1./3.)) / (X+24);
 return Y;
 }

/***/
/* Function FCT_Spec() */
/***/
float Fct_Spec(float X)
{float Y;

 Y = 16+pow(X, 1./3.);
 return Y;
}

/***/
/* Function CODING() */
/***/
void coding(FILE *fp, FILE *fp1)
{
 char c;
 int X1;
 float X, Y1;

 while((c=getc(fp)) != EOF)
 faire {ungetc(c,fp);
 fscanf(fp,"%c", &c);

 X1= (int) c;
 X=(float) X1;
 if(X1 == 32)
 then Y1=Fct_Spec(X);
 else Y1 = Fct(X);
 endif
 fprintf(fp1,"%le ",Y1);
 }
 fait
 fclose(fp);
 fclose(fp1);
 }

/***/
/* Function FCT_DERIV() */
/***/
float Fct_deriv(float X)
{float Y;

 Y = 13./(2.*sqrt(X))+ (2.*X*log(X)-(2.*X+1))/(X*log(X)*(2.*X+1.)*log(5.)) - ((((1./3.)*pow(X,-

2./3.)*(X+24.))-(7.+pow(X,1./3.)))/pow(X+24.,2.));
 return Y;
 }

/***/
/* Function FCT_DERIV_Spec() */
/***/
float Fct_deriv_Spec(float X)
{float Y;

 Y = 1./3. * pow(X, -2./3.);
 return Y;
}

/***/
/* Function FCT2() */
/***/
float Fct2(float X, float A)
{float Y;

 Y = sqrt(13.* X)+ log((2*X+1)/log(X)) / log(5.) - (7+pow(X, 1./3.)) / (X+24) - A;
 return Y;
}

/***/
/* Function FCT2_Spec() */
/***/
float Fct2_Spec(float X, float A)
{float Y;

 Y = 16+pow(X, 1./3.)- A;
 return Y;

 }

 Fig.6 The C-code implementing our cryptographic algorithm

ABCD Bob is sending a message to Alice.
AZERTY
QWERTY
1234567890-=][poiuytrewqasdfghjkl;'\/.,mnbvcxz!@#$%^&*()_+}{POIUYTREWQASDFGHJKL:"|?>
<MNBVCXZ

Fig.7 The text to encode (e.g. in file TEXT.txt)

3.108632e+001 3.131737e+001 3.154661e+001 3.177409e+001 1.917480e+001 3.131737e+001 4.029624e+001
3.793445e+001 1.917480e+001 3.922493e+001 4.099398e+001 1.917480e+001 4.099398e+001 3.849313e+001
4.011979e+001 3.830787e+001 3.922493e+001 4.011979e+001 3.886086e+001 1.917480e+001 3.774627e+001
1.917480e+001 3.994252e+001 3.849313e+001 4.099398e+001 4.099398e+001 3.774627e+001 3.886086e+001
3.849313e+001 1.917480e+001 4.116646e+001 4.029624e+001 1.917480e+001 3.108632e+001 3.976441e+001
3.922493e+001 3.812164e+001 3.849313e+001 2.628497e+001 1.250596e+001 3.108632e+001 3.640005e+001
3.199986e+001 3.479361e+001 3.520253e+001 3.620338e+001 1.250596e+001 3.458722e+001 3.580661e+001
3.199986e+001 3.479361e+001 3.520253e+001 3.620338e+001 1.250596e+001 2.710363e+001 2.737072e+001
2.763505e+001 2.789672e+001 2.815579e+001 2.841234e+001 2.866644e+001 2.891817e+001 2.916757e+001
2.683370e+001 2.600596e+001 3.014323e+001 3.698338e+001 3.659559e+001 4.047187e+001 4.029624e+001
3.922493e+001 4.133818e+001 4.201762e+001 4.116646e+001 4.082073e+001 3.849313e+001 4.167936e+001
4.064670e+001 3.774627e+001 4.099398e+001 3.830787e+001 3.867746e+001 3.886086e+001 3.904335e+001
3.940563e+001 3.958545e+001 3.976441e+001 2.965968e+001 2.425985e+001 3.679002e+001 2.656085e+001
2.628497e+001 2.572372e+001 3.994252e+001 4.011979e+001 3.793445e+001 4.150914e+001 3.812164e+001
4.184885e+001 4.218567e+001 2.236799e+001 3.085343e+001 2.301706e+001 2.333438e+001 2.364717e+001
3.717566e+001 2.395560e+001 2.514908e+001 2.456008e+001 2.485644e+001 3.736689e+001 2.543813e+001
4.268562e+001 4.235301e+001 3.437952e+001 3.417046e+001 3.288641e+001 3.540511e+001 3.620338e+001
3.520253e+001 3.479361e+001 3.199986e+001 3.580661e+001 3.458722e+001 3.108632e+001 3.499871e+001
3.177409e+001 3.222393e+001 3.244636e+001 3.266718e+001 3.310411e+001 3.332029e+001 3.353498e+001
2.941472e+001 2.269500e+001 4.251966e+001 3.061864e+001 3.038193e+001 2.990250e+001 3.374823e+001
3.396004e+001 3.131737e+001 3.560646e+001 3.154661e+001 3.600558e+001 3.640005e+001 1.250596e+001

Fig.8 The encoded text (e.g. in file CODED_TEXT.txt)

