Masked Computation of the Floor Function and
Its Application to the FALCON Signature

Pierre-Augustin Berthet!3 ®, Justine Paillet?? ® and Cédric Tavernier?

1 TPélécom Paris, LTCI, Palaiseau, France
2 Université Jean-Monnet, Saint-Etienne, France
3 Hensoldt France SAS, Plaisir, France

Abstract.

FALCON is candidate for standardization of the new Post Quantum Cryptography
(PQC) primitives by the National Institute of Standards and Technology (NIST).
However, it remains a challenge to define efficient countermeasures against side-
channel attacks (SCA) for this algorithm. FALCON is a lattice-based signature
that relies on rational numbers which is unusual in the cryptography field. While
recent work proposed a solution to mask the addition and the multiplication, some
roadblocks remain, most noticeably how to protect the floor function. We propose in
this work to complete the existing first trials of hardening FALCON against SCA.
We perform the mathematical proofs of our methods as well as formal security proof
in the probing model using the Non-Interference concepts. We provide performances
on a laptop computer of our gadgets as well as of a complete masked FALCON.
Keywords: Floor Function - Floating-Point Arithmetic - Post-Quantum Cryptogra-
phy - FALCON - Side-Channel Analysis - Masking

1 Introduction

With the rise of quantum computing, mathematical problems which were hard to solve
with current technologies will be easier to breach. Among the concerned problems, the
Discrete Logarithm Problem (DLP) could be solved in polynomial times by the Shor
quantum algorithm [Sho99]. As much of the current asymmetric primitives rely on this
problem and will be compromised, new cryptographic primitives are studied. The National
Institute of Standards and Technology (NIST) launched a post-quantum standardization
process [CCJT16]. The finalists are CRYSTALS Kyber [BDK 18, NIS24b], CRYSTALS
Dilithium [DKLT18, NIS24a], SPHINCS+ [BHK ™19, NIS24c] and FALCON [PFH"20].

Another concern for the security of cryptographic primitives is their robustness to a
Side-Channel opponent. Side-Channel Analysis (SCA) was first introduced by Paul Kocher
[Koc96] in the mid-1990. This new branch of cryptanalysis focuses on studying the impact
of a cryptosystem on its surroundings. As computations take time and energy, an opponent
able to access the variation of one or both could find correlations between its physical
observations and the data manipulated, thus resulting in a leakage and a security breach.
Thus, the study of weaknesses in the implementations of new primitives and the way to
protect them is an active field of research.

While many efforts have been done to protect CRYSTALS Dilithium and CRYSTALS
Kyber, summed up by Ravi et al. [RCDB24], FALCON has been less covered. Indeed, the

E-mail: berthet@telecom-paris.fr (Pierre-Augustin Berthet), justine.paillet@Quniv-st-etienne.fr (Justine
Paillet), cedric.tavernier@hensoldt.net (Cédric Tavernier)

https://orcid.org/0009-0005-5065-2730
https://orcid.org/0009-0009-6056-7766
https://orcid.org/0009-0007-5224-492X
mailto:berthet@telecom-paris.fr
mailto:justine.paillet@univ-st-etienne.fr
mailto:cedric.tavernier@hensoldt.net

2 Masked Floor Function For FALCON

algorithm relies on floating-point arithmetic, for which there is little literature on how to
protect it.

1.0.1 Related Work

Previous works have identified two main weaknesses within the signing process of Falcon:
the pre-image computation and the Gaussian sampler. The latest is proved vulnerable
by Karabulut and Aysu [KA21] using an ElectroMagnetic (EM) attack. Their work was
later improved by Guerreau et al. [GMRR22]. To counter those attacks, Chen and Chen
[CC24] propose a masked implementation of the addition and multiplication of FALCON.
However, they did not delve into the second weakness of Falcon, the Gaussian sampler.
The Gaussian sampler is vulnerable to timing attacks, as shown by previous work
[GBHLY16, EFGT17, MHS"19, PBY17]. An isochronous design was proposed by Howe
et al. [HPRR20] to counter those attacks. Nonetheless, a successful single power analysis
(SPA) was proposed by Guerreau et al. [GMRR22] and further improved by Zhang et
al. [ZLYW23]. There is currently no masking countermeasure for FALCON’s Gaussian
Sampler. Existing work [EFGT22] tends to rewrite the Gaussian Sampler to remove the
use of floating arithmetic, thus avoiding the challenge of masking the floor function.

1.0.2 Our Contribution

In this work, we further expand the countermeasure from Chen and Chen [CC24] and
apply it to the Gaussian Sampler. We propose a masking method based on the mantissa
truncation to compute the floor function as well as a method to mask the division. We
discuss the application of those methods to masking FALCON.

Relying on the previous work of Chen and Chen [CC24], we also verify the higher-order
security of our method in the probing model. Our formal proofs rely on the Non-Interference
(NT) security model first introduced by Barthe et al. [BBDT16].

We provide some performances of our methods and compare them with the reference
unmasked implementation and the previous work of Chen and Chen [CC24]. The imple-
mentation is tested on a laptop computer with an Intel-Core i7-11800H CPU and can be
further optimized.

2 Notation and Background

2.1 Notations

o We denote by A «~ B the set A excluding the values of set B, id est (A~ B)(B = 0.
We denote by K~ the negative values of the set K and by K* its non-zero values.

o For z € R, we denote the floor function of by |z].

e We will use the dot . as the separator between the integer part ¢ and the fractional
part f of a real number x =i.f.

o If (b;) is a 64-bit Boolean sharing for bit value b, we denote (—b;) a 64-bit Boolean

sharing for 264 — b. It means that if b = 0, (—b;) is a 64-bit boolean sharing for 0,
and b =1, (—b;) is a 64-bit boolean sharing for OXFFFFFFFFFFFFFFFF.

For algorithmic extracts of FALCON [PFH'20], we use the original paper notations.

Pierre-Augustin Berthet, Justine Paillet, Cédric Tavernier 3

2.2 Diagram Legend

The diagrams in Section 5 use the same legend:
e Probing sets are denoted by P; or O and are colored in red.

« Simulation sets are denoted by S7 and are colored in blue.

t-SNI gadgets are colored in green.

e t-NI gadgets are colored in black.

2.3 FALCON Sign

FALCON [PFH"20] is a Lattice-Based signature using the GPV framework over the NTRU
problem. In this paper, we will focus on the Gaussian Sampler used in the signature
algorithm. For more details on the key generation or the verification, refer to the original
paper of FALCON[PFH™20].

2.3.1 Signature

The signature follows the Hash-Then-Sign strategy. The message m is salted with a random
value r and then hashed into a challenge c. The remainder of the signature aims at building
an instance of the SIS problem upon ¢ and a public key h, id est finding § = (s1, s2)
such as sy + soh = ¢. Hence, §= (f— Z)B with t a pre-image vector and Z provided by
a Gaussian Sampler must be computed. Chen and Chen [CC24] focus on masking the
pre-image vector computation. In this work, we mask the Gaussian Sampler and provide
performances for the entire signature algorithm. This algorithm is detailed in [PFH™20]
in the corresponding section.

2.3.2 Gaussian Sampler

The Gaussian Sampler denoted by SamplerZ can be evaluated from the three following
functions, ApproxExp, BerExp and BaseSampler:

ApproxExp. This function return 2% x ccs x e~ and depends of a matrix C defined
in page 42 of [PFHT20]:

Algorithm 1: ApproxExp(x,ccs) [PFHT20]

Data: floating-point values = € [0,1n(2)] and ccs € [0, 1]
Result: An integral approximation of 2% - ces - exp(—x)
1 y <« C0]; // y and z remain in {0---2% — 1} the whole algorithm
2 2+ |29 2;
3 for ¢ from 1 to 12 do
4 L y <« Cli] — (z-y) >> 63;
263

o

z 4+ 2% ces);
y < (z-y) >>63;
return y;

N o

BerExp. This function return 1 with probability ccs x e™*:

4 Masked Floor Function For FALCON

Algorithm 2: BerExp(x,ccs) [PFHT20)

Data: floating-point values z, ccs > 0
Result: A single bit, equal to 1 with probability ~ ccs - exp(—x)
s+ |z/In(2)] ; // Compute the unique decomposition z =In(2°)+r with
(r,s) € [0,In(2)) x Z*
r < x—s-1n(2);
s < min(s, 63);
z + (2 APPROXEXP(r, ccs) — 1) >> s;
i 64:
do
i1 —8;
w < UNIFORMBITS(8) — ((z >> 1) & OXFF);
while ((w = 0) and (i > 0));
return [w < 0];

=

© o N O ok W N

=
[=]

BaseSampler This function samples a random integer between 0 and 18:

Algorithm 3: BaseSampler() [PFHT20]

Data: -
Result: An integer zg € {0, -+, 18} such that z ~ x
1 u < UNIFORMBITS(72);
2 29 < 0;
3 for ¢ from 0 to 17 do
4 | 204 20+ [u < RCDT[i]];

5 return zo;

where RCDT is defined in Falcon Specification [PFH™20].

The Gaussian Sampler is constructed as follows:

Algorithm 4: SamplerZ(u,0”) [PFHT20]

Data: floating-point values p,0’ € R such that ¢’ € [Omin, Omax)
Result: z € Z sampled from a distribution very close to Dz ,, o
17—
2 CCS 4 Omin/0’;
3 while I do
4 20 < BASESAMPLER();
5 b + UNIFORMBITS(8) & 0x1;
6 24 b+(2-b—1)z0;
7 e (22(—;)2 __Z
if BEREXP(z,ccs) =1 then

L return z + |ul;

20max’

2.4 Floor Function

The floor function is defined as follows:

Definition 1. Vz € R, the floor function of z, denoted by |z], returns the greatest integer
zsuch as z < z.
Vo € R, the truncate function of x =i.f, (¢, f) € Z x N, denoted by truncate(x), returns i.

Pierre-Augustin Berthet, Justine Paillet, Cédric Tavernier)

2.4.1 Binary64 Encoding

A floating-point [Kah96] is encoded with a sign bit s, a 11-bits long exponent e and a
52-bits long mantissa m such as:

z€R,x=(—1)° x 2671923 (1 4 m x 2752). (1)

2.4.2 Computing The Floor

Computing the floor function on a floating-point is performed by truncating the mantissa
according to the value of the exponent and the sign:

o If e < 1023 then if s =0 then |z] =0 else |#] = —1. Indeed,

(e<1023)A(s=0) = 0<z <2 +mx2 <1 (2)
(e<1023)A(s=1) = 0>z> 2" 4 -mx279> 1, (3)

o If e > 1074 then |x] = x. We have

e> 1074 — |;17| — 9e—1023 +m X 9e—1023-52 (4)
=27 eN"+ (mx27P) eN = 2N (5)

The sign bit s only changes "€ N" in "€ Z7".

e If 1023 < e <1074 then we truncate the mantissa m of z and remove its 1074 — e
last bits m[2—(e=1023):1] " That way we have

1023 S e S 1074 :> xr = 26—1023 +m[64:1075—e] X 252—(6—1023)+€—1023—52 (6)
— (2671023) c N* + (m[64:1()757e]) e N. (7)

However, this only provides truncate(x). To get |z, one has to take into account
the sign bit s. We can rely on the fact that Vo € R™ « Z, truncate(z) = |x] + 1
and Vz € RT, truncate(x) = |x]. Thus, recovering the sign bit allows to properly
compute the floor function from the truncated one in this case.

Remark 1. To compute the truncate(z) function, the same method can be applied but
discard the use of the sign. For the case e < 1023, the result is always 0.

This method requires the knowledge of the exponent and the sign, which are both some
sensitive values. We propose in this work a method to perform this truncation securely.

2.5 Masking

Masking is a generic countermeasure against SCA at the software level. Instead of
processing a sensitive data, it is split into random shares which are processed separately,
like in Boolean and Arithmetic masking [MOPO0S8]. Masking security can be evaluated with
the t-probing model, first introduced in [ISWO03]. As consequence, a gadget is said secured
against t-order attacks if no information can be recovered by any set of ¢ intermediate
values. However, for the composition of gadgets we use a stronger model introduced in
[BBD'16]: the (Strong) Non-Interference model.

Definition 2. (¢-Non Interference (¢-NI) security [BBD'16]). A gadget is said ¢-Non
Interference (¢-NI) secure if every set of ¢ intermediate values can be simulated by no more
than ¢ shares of each of its inputs.

t-NI gadgets composition does not imply ¢-NI security. We need a stronger definition
for this:

6 Masked Floor Function For FALCON

Definition 3. (¢-Strong Non Interference (t-SNI) security [BBD'16]). A gadget is said
t-Strong Non-Interference (¢-SNI) secure if for every set of ¢; of internal intermediate
values and to of its output shares with t; + to <t, they can be simulated by no more than
t; shares of each of its inputs.

We consider these models in Section 5 to demonstrate the security of our design. We

rely on existing gadgets and propose new ones, as shown in Table 1.

Table 1: List of gadgets, their security and their reference

Algorithm Description Security Reference
SecAnd AND of Boolean shares t-SNI [BBDT16],[ISW03]
SecAdd Addition of Boolean shares t-SNI [BBE"18],[CGTV15]
A2B Arithmetic to Boolean conversion — ¢-SNI [SPOG19]
B2A Boolean to Arithmetic conversion t-SNI [BCZ18]
RefreshMasks t-NI refresh of masks t-N1 [BBD'16], [BCZ18]
Refresh t-SNI refresh of masks t-SNI [BBD"16]
SecOr OR of Boolean shares t-SNI [CC24]
SecNonZero NonZero check of shares t-SNI [CC24]
SecFprUrsh Right-shift with sticky bit t-SNI [CC24]
SecFprNorm64 Normalization to [263,264) t-NI [CC24]
SecFprAdd Floating addition t-SNI [CC24]
SecFprMul Floating multiplication t-SNI [CC24]
SecFprUrsh ¢ Right-shift without sticky bit t-SNI Algorithm 5
RemoveDecimal || Truncate the mantissa t-SNI Algorithm 6
SetExponentZero || Set exponent to zero t-SNI Algorithm 7
SecFprBaselnt Compute the floor t-SNI Algorithm 9
SecFprComp Compares two values t-SNI Algorithm 10
SecFprScalePow?2 || Multiplies by a power of 2 t-SNI Algorithm 11
SecFprinv Inversion t-SNI Algorithm 12
Minimum63 Comparison with 63 t-SNI Algorithm 13

3 Masking the Floor Function

In Section 2.4.2 we have described how to compute the floor using floating-point arithmetic.
We present now the corresponding masking gadgets.

Remark 2. With small modifications, our design can also be used to compute the truncate
and the rounding functions.

To perform the floor function, we have to truncate the mantissa, modify the exponent
as well as address the sign and the special case of having 0 as a result. To do this we
introduce several gadgets:

3.0.1 SecFprUrshg

This gadget is a modification of the SecFprUrsh gadget from [CC24] (Algorithm 9 page
286). Our method, SecFprUrshy (Algorithm 5), does not keep the sticky bit but returns
the removed part instead.

Pierre-Augustin Berthet, Justine Paillet, Cédric Tavernier 7

Algorithm 5: SecFprUrshaoor ((my;), (cz;))

Data: 6-bit arithmetic shares (cz;)1<i<n for value cx;
64-bit boolean shares (my;)1<i<y, for sign value my.
Result: 64-bit boolean shares (my})1<;<y for value my >> cx
64-bit boolean shares (rot;)1<i<p for value myler1],
(mi)1<i<n < ((1 << 63),0,---,0);
for © from 1 to n do

Right-Rotate (my;) by cz;;

(my;) < RefreshMasks((my;));

Right-Rotate (m;) by cz;;

(m;) « RefreshMasks((m;));
len < 1;
while len < 32 do
(my) < (m; & (my >> len));
10 len < len << 1;

[<2 3L B VU U

© 0w N

11 (my}) < SecAnd((my;), (m;));
12 (rot;) < SecAnd((my;), (—(m;)));
13 return ((my)), (rot;));

=

3.0.2 RemoveDecimal

The SecFrpUrshgoo, gadget is used within another gadget, RemoveDecimal (Algorithm
6). We use this gadget to truncate the mantissa. We first shift the mantissa my by
cd = 52 — cz, using SecFprUrshgg,,. Once the mantissa is shifted, we have performed the
truncate(x) function. As described in Section 2.4.2, for the floor we also have to check
whether the sign sy is 1. In that case, we check by applying SecNonZero on the mantissa
part removed by SecFprUrshg,e;, with result denoted b. If the result is 0, we apply the
floor function to a negative integer. Otherwise, we have to retrieve 1 to the final result in
accordance with Section 2.4.2 and proceed by securely adding ¢p = s A b to the shifted my,
as summed up in Table 2.

Table 2: Truth table of ¢p = s A b and interpretations

sy b H cp=syAb Interpretation

0 b 0 T is a positive real

1 0 0 T is an negative integer

1 1 1 x is an non-integer negative real

3.0.3 SetExponentZero

Finally, we have to address the exponent computation. This is done with the SetExpo-
nentZero (Algorithm 7) gadget. This function handles specific Binary64 encoding cases,
specifically the encoding of 0 and the one of —1. Indeed, if | z |[< 1 and sy = 0, then the
expected result is 0 in its Binary64 form. Else, if sy = 1 and | « |< 1, then the expected
result is —1 in its Binary64 form. Table 3 highlights the relation between s,, b and the
expected result.

8 Masked Floor Function For FALCON

Algorithm 6: RemoveDecimalgoor ((my;), (eys), (sy:), (czi))

Data: 64-bit boolean shares (my;)1<i<, for mantissa value my;
16-bit arithmetic shares (ey;)1<i<n for exponent value ey;
1-bit boolean shares (sy;)1<i<n for sign value sy
16-bit arithmetic shares (cz;)1<i<n for value cx = ex-2013.
Result: 64-bit boolean shares (my;)1<i<, for mantissa value my >> (52 — cz);
16-bit arithmetic shares (ey;)1<i<n for exponent value ey + (52 — cz)
1 cry ¢ cxry — 52;
2 (ci) « A2B((cay));
(ep) = (') 5
(¢;) + SecAnd(Refresh((¢;)), (—cp;));
(cxi) « B2A((:));
(my;), (rot;) <= SecFprUrsh((my;), (—cx;));
(b 2) + SecNonZero((rot;));
(ep;) < SecAnd((ep;), (syi));
(cpi) = SecAnd((cpi), (bi));
10 (my;) < SecAdd((my;), (cpi));
1 (ey;) < (Refresh(ey;) — cz;);
12 return ((my;), (eyi), (b:));

3
4
5
6
7
8
9

Algorithm 7: SetExponentZerogeor ((ey;), (syi), (b:))

Data: 16-bit arithmetic shares (ey;)1<i<n for exponent value ey;

1-bit boolean shares (sy;)1<i<n for sign value sy

64-bit boolean shares (b;)1<i<n.

Result: 16-bit boolean shares (ey;)1<i<n for exponent value ey + (52 — cx);
1-bit boolean shares (sy;)1<i<n for sign value.

(eyz) <— A2B((ey:));

(b7) = (—syi);

(V) Secor((i), (0:));
(ey;) < SecAnd((ey;,b,));
(sy;) < SecAnd((sy;,b}));
return ((ey), (s9:));

(<2301 BNV VR

Table 3: Encoding 0, -1 or others: Truth table

—sy —syVb Interpretation

0--- "Small" positive number : ey =0 and sy =0
1--- "Small" negative number : ey = 1023 and sy = 1
—sy Non zero number : ey = ey and sy = sy

3.0.4 SecFprBaselnt; :

The gadget SecFprBaselnt¢ (Algorithm 9) is the main function of the masked floor, the
masked truncate, and the masked rounding. Gadgets and Zeroy are parameterized! by

these functions.

This paper focuses on f = floor. The sign, exponent and mantissa are extracted from
the masked Binary64 encoding used by [CC24] and place them into three variables sy, ey,

1Zerofoor = Zerotrunc = 1023 and Zeroyounq = 1022

Pierre-Augustin Berthet, Justine Paillet, Cédric Tavernier 9

and m,, which are directly linked to the output of the algorithm. This extraction is
performed with the SecFprExtract algorithm (Algorithm 8):

Algorithm 8: SecFprExtract(x)

Data: 64-bit boolean shares (z;)1<i<yn for value x

Result: 64-bit boolean shares (mx;)1<i<, for mantissa value mx;
16-bit arithmetic shares (ex;)1<i<n for exponent value ex;

1-bit boolean shares (sz;)1<i<n for sign value s.

52:1
(ma;) («*");

(ma;) + SecAdd((mx;), (2°2,0,---,0)); // add implicit bit in the
mantissa

[

(emi) — (.’I,',[LGSSS]);

(ew;) + B2A((ex:));

(s2;) « (a1°V);

return ((ma;), (ex;), (sz;));

W

o o

The inequality ¢, = e, — Zeroy < 0, corresponding to Equation 2, is checked. If cx is
negative, | ¢ |< 1 and we remove the decimals by my = 0. The algorithm SetExponentZero
(Algorithm 7) is called later in the algorithm to encode the result according to this case.
The two remaining cases are dealt with by RemoveDecimal 0, (Algorithm 6), as described
in Section 2.4.2. The cases are as follows: If cx > 52, then x is an integer as shown in
Equation 4 and no modification of the mantissa is required. Else, if 0 < ¢, < 51, we
truncate the mantissa consequently.

Algorithm 9: SecFprBaselnts(x)

Data: 64-bit boolean shares (x;)1<;<n for value x

Result: 64-bit boolean shares (y;)1<;<n for mantissa value y = f(x).
((myi), (eyi), (syi)) < SecFprExtract((w;));

(cx;) + (eyi), cxr < eyr — Zeroy;

(ci) A2B((ca{"™));

(my;) < SecAnd((myi% (—(=¢i)));

(my;), (eyi), (Rnd;) < RemoveDecimaly((my;), (ey;),Refresh(sy;),Refresh((cz;)));
(my;), (ey;) < SecFprNorm64((my;), (ey;));

(mys) (my**Y);

eyy < eyy + 11;

(ey) (sy;) < SetEXponentZerof((eyz) (=(=ci)), (s:), (Rnd;));

10 (5) (s,) < (ewi), W7M) — (mys);

11 return (y1);

N =

© 0w N T AW

o

As the algorithm RemoveDecimal does not normalize the mantissa, then SecFprNorm64
(see [CC24] Algorithm 10 page 286) is called and returns a shifted my as well as ey to set
the mantissa back to bits [52 : 1] and update ey. Finally, the last step in the algorithm,
before reformatting the initial encoding, consists in computing the specific encoding of "0"
if it is the expected result, by applying the SetExponentZero; function (Algorithm 7).

4 Application to Falcon : Gaussian Sampler

The floor function has been described above and we propose now to address the SamplerZ
function (Algorithm 4 or see [PFH*20] Algorithm 15 page 43). In the algorithms SamplerZ
and BerExp (Algorithm 2 or see [PFHT20] Algorithm 14 page 43), division operations are
used. Most of these divisions involve constants as the divisor, allowing us to pre-calculate
the inverse and perform a multiplication. However, the first division in SamplerZ (line 2)

10 Masked Floor Function For FALCON

involves a division with secret information. Hence, we must perform securely a division
by an arbitrary value. To divide by x, we invert it and then compute a multiplication.
Computing the inverse involves performing a Euclidean division until obtaining sufficient
precision (55 bits) to construct it.

4.1 Division:

Let # = (sz,€5,mz) and L+ =y = (s, e,,my). As the inverse operation preserves the sign,
sy = s;. To compute the exponent e,, we subtract 1023 by ¢, = e, — 1023 + b, where
b depends on if x is a power of two and cheap to invert in Binary64. This condition is
verified when the mantissa is 0. If not, we set b = 1 to further subtract 1023 and get the
correct exponent e,. This is obtained by performing b =SecNonZero(m). The exponent
is computed with the following Equation 8:

ey = 1023 — (e, — 1023+ b) = 2046 — e, — b (8)

Computing the mantissa corresponds to the Euclidean division: first, the dividend d =
(1 << ¢;) is compared to by computing comp = SecFprComp(d, z) (Algorithm 10). The
comparison algorithm is an adaptation of the swap part of the SecFprAdd function (see
[CC24] Algorithm 13 page 290) where a similar comparison is performed.

Algorithm 10: SecFprComp((z;), (v:))

Data: 64-bit boolean shares (z;)1<i<n for value x;
64-bit boolean shares (y;)1<i<yn for sign value y.
Result: 1-bit boolean shares (comp;)1<i<n for value [z < y]

1 Refresh((z;));

2 (ma) (1), (mys) < (");

3 (d;) + SecAdd((ma;), (—=my1, mya, -+, Myn));
4 Refresh((d;));

5 (b;) < SecNonZero((—dy,ds, -+ ,dy));

6 (b)) + SecNonZero((—(dy & 253),da, - ,dy));
7 (comp;) (dEGS) ®b; ®b);

8 return (comp;);

If © < d, then the comparison algorithm outputs 1. This result is carried over to the
new mantissa and we add —z to d. Else, if comp = 0, no addition is performed on d. To
continue the Euclidian divison, d is shifted one time to the left. Performing this shift
is done by calling the SecFprScalePow2 (Algorithm 11) function. This function either
multiplies by 2 or either divide by 2 its input, and truncates the result if necessary.

After getting by this way 53 bits (52 plus the implicit bit) of the mantissa m,, two
additional bits are computed to preserve the sticky bit. Consequently we get the 55 bits of
the mantissa m,,.

4.2 Masking BerExp

BerExp (Algorithm 2) requires to securely compute a minimum as well as perform a
right-shift by a sensitive value. For the minimum, the comparison is made between a
constant equal to 63 and the sensitive value that we will denote here by X = (sX,eX, mX).
We check if X > 64. To do so we verify that the exponent eX is greater than 1029 and its
sign sX is 0. In BerExp, X is always positive and we only check the exponent condition.
As eX is a signed integer, we verify it by looking at the sign of the computation of
e = eX — 1029. We use an A2B conversion to extract the sign bit se. The final output

Pierre-Augustin Berthet, Justine Paillet, Cédric Tavernier 11

Algorithm 11: SecFprScalePow2((x;), p)

Data: 64-bit boolean shares (z;)1<i<y for value x;
An integer p.
Result: 64-bit boolean shares (y;)1<i<n for value z x 2P
1 (sz;), (ex;), (mz;) + SecFprExtract((z;));
2 (b;) + SecNonZero((x;));
3 (ex;) + B2A((ex;));
4 €r1 < exr1 +p;
5 (ex;) < A2B((ex;));
6 (ey;) + SecAnd((ex;), —(b;));
7 (1) (o), 0 = (ew), (07Y) (muya);
8 return Refresh()

Algorithm 12: SecFprInv((z;))

Data: 64-bit boolean shares (z;)1<i<n for value x.
Result: 64-bit boolean shares (y;)1<i<n for value 1/x

1 (sx;), (ex;), (max;) + SecFprExtract((z;));
2 (b;) < SecNonZero((mx;));

3 (ba;) + B2A(b;);

4 (ed;) + (e:vl + ba;);

5 (eyi) « (—edy);

6 (ey;) « A2B((ey;)), (ed;) + A2B((ed;));
7 (d;) + (ed; << 52);

8 (mmusX)+ Or((2%3,0,---,0), (x:));

9 for 5 from 1 to 55 do

10 (comp;) < SecFprComp((z;), (d;));

11 (my;) < (my; ® (comp; << (63 — 4)));
12 (zepy;) + SecAnd((minusX;), —(comp;));
13 (d;) < SecFprAdd((zcpy;), (d;));

14 (d;) < SecFprScalePow2((d;), 1);

15 (my;) < SecAnd((my;), —(b;));
o (y") Refresh((sy:)), (0" "™) (eyn), (") = (my™);

(
(

17 (fi) « SecOr(Refresh(my())7 (mygg)));
(

=

18 (f;) < SecAnd((f;), (myfz)))
19 (i) = SecAdd((v:), (fi));
20 return (y;);

12 Masked Floor Function For FALCON

is given by the mask of ((—se) A X) V ((—(—se€)) A 63). The minimum computations are
performed in Algorithm 13.

Algorithm 13: Minimum63(x;)

Data: 64-bit boolean shares (x;)1<;<n for positive integer x;
Result: 64-bit boolean shares (y;)1<i<n equal to the minimum between 63 and =
(sx;), (ex;), (mzx;) < SecFprExtract((x;));

(st;) is a masking of the value 63;

exy + ex; — 1029);

(ex;) < A2B((ex;));

(rd;) <« SeCAnd((—(exi)(m)), (z4);

(rB;) < SeCAnd((—(—!((iIi)(lG))), (z4);

(yi) < SecOr((rA;), (rB;));

return (y;);

® N 0 R W N

To right-shift a masked Binary64 Y by another masked Binary64 X € [0, 63], we use
SecFprUrsh (Algorithm). However, we first convert X, a 64-bit boolean sharing, into a
6-bit arithmetic sharing. We denote X = (sX,eX,mX). We have to take into account
the possibility that X = 0. Thus, when injecting the implicit bit on each share, we take
the mantissa mX and compute: mX’ = SecNonZero(eX)||mX. To keep only the integer
value, we perform a right-shift of the mantissa mX’ by 52 — (eX — 1023). This is done
with the SecFprUrsh function:

m = SecFprUrsh(mX’,52 — eX + 1023) 9)

The result m is a 64-bit boolean sharing. As X € [0,63], only the 6 lower bits can be
masks of 1, all the other bits are known to be masks of 0. Thus, we apply a B2A conversion
on those 6 bits to get the masked integer value of X as an arithmetic sharing. The result
of the shifting of Y by X is therefore SecFprUrsh(Y,ml6:1).

5 Security Proof

In this section we cover the t-SNI security of our design with n = ¢ + 1 shares. We follow
and rely on the same principles used by Chen and Chen [CC24] for our proofs. We aim
to propose only t-SNI secure gadgets as the composition of those gadgets is itself t-SNI.
this limits the risks of compositional flaws at the cost of performance overheads and more
demanding randomness requirements.

5.1 Floor Function
Lemma 1. The gadget SetExponentZerofoor (Algorithm 7) is t-SNI secure.

Proof. We use an abstract diagram in Figure 1 for our demonstration. The gadget only
contains t-SNI gadgets. By composition of t-SNI gadgets, this gadget is itself t-SNI. [

Lemma 2. The gadget SecFprUrshpoor (Algorithm 5) is t-SNI secure.

Proof. The gadget SecFprUrshgoor is a slight modification of the gadget SecFprUrsh
from [CC24]. Our gadget does not compute the sticky bit but retains the rotated out
information. We rely on their proof regarding the ¢-SNI security of the gadget Rotate
(see [CC24], Lemma 3 and Figure 2). We now show that the operations below the rotation

Pierre-Augustin Berthet, Justine Paillet, Cédric Tavernier 13

£r4
S,
(ey) A2B 271
Si
#p3) SecAnd (ey)
1 ST
® > SecOr
(sy) S: 2"
SecAnd (sy)
S
Figure 1: Abstract diagram of SetExponentZero fo0r
£ps £PI
s! s! . .
(xi) —> Rotate I SecAnd —— (xi)>>(ci)
& Si
(ci)
o £ p4 £p3
S
(mi) —= Rotate & @ / P2
S; LS|
SecAnd —— (rot)
S

Figure 2: Abstract diagram of SecFprUrsh oo

loop are t-SNI secure. We use an abstract diagram in Figure 2 for the demonstration. Let
an adversary probe the intermediate values sets P, of SecAnd, P, of SecAnd and P; of
XOR. As SecAnd is t-SNI secure, one can use the sets S,57 (resp. S1,5%) to simulate
P, (resp. Py) and the ouput shares of (rot) (resp. (xi) >> (ci)) with sizes no more than
P, (resp. Pp). One can simulate the probing set of P; in the XOR. and the simulation sets
S2 and S? with the output shares S3 of the rotation of (mi). Indeed, as the XOR is a
linear operation performed on each share separately, it is t-NI secure. All probes are now
simulated with output shares S} U S3 of the rotation of (zi) and S3 of the rotation of (mi).
We have | S} US| < |Pi| + |P| and |Ss| < |Ps| + |S3| + |SF| < |Ps| + || + |P1|. Along
with the internal probes P5; and P, from the rotation loop, all gadgets can be simulated
by input shares with no more than t; values due to the t-SNI security showed at first in
([CC24], Lemma 3). O

Lemma 3. The gadget RemoveDecimalgoor (Algorithm 6) is t-SNI secure.

Proof. We use an abstract diagram in Figure 3 for the demonstration. We assume an
adversary probes the intermediate values sets of the output shares O and F; in each gadget
for i € [1;12]. We use simulation sets S to simulate the values for each gadget. t-SNI
security implies that: if the size of all probing sets P; is t; < ¢ and if the size of values
required to simulate in each gadget is smaller than ¢, then the simulation sets linked to
the input shares are not bigger than ¢;. The ¢-SNI gadgets imply |S| < |P| and the t-NT
gadgets imply |S| < |P|+ |O|. As Refresh, SecAnd, SecNonZero, SecFprUrsh .o,
B2A and A2B are all t-SNI secure whereas SecAdd and "+" are ¢-NI secure, we can
sequentially derive the following:

|51 <[P o 1831, 193] < ||
o 18311931 < [Pof + [Oey)| o |56 < |Fs
o [S11, 5% < [Pl + [Omy) | o |S7],197] < [Py

14 Masked Floor Function For FALCON

N y 4]
(ey) Sy Refresh 2
+ (ey)
@) 52 A 3 Refresh £l <
P30 V3% s) £ps
S SecAnd Sy B2A
9
P9
(my) 4
£Pi0 sk
1
(sy) —— S0 SecAnd S; S; £p4
1
/ P7 SecFprUrsh_f | S4 SecAdd F— (my)
2
#pPs |s! £P6 s, g

SecAnd <@ | SecNonZero

Figure 3: Abstract diagram of RemoveDecimalggor

° |58|§|P8| ® ‘511|§‘P11|
o |S51158] < [Pol

o ISl 1570l < [Prol o [Si2] < [Prof
Based on the previous inequalities, we know that no gadget requires more than t; +to = ¢
values to be simulated. This above method can be applied to the input shares as well, with

S0l < [Pro] for (sy), [S7] < [Pr| for (my), |Sia| < [Prof for (cz) and [S3] < || +[S)] <
| Py| 4 | Py| for (ey), no sizes being more than ¢;. O

Theorem 1. The gadget SecFprBaselnta.or (Algorithm 9) is t-SNI secure.

£ P4
Sl
(my) * SecAnd |
Si
£ps s]_£P1
Ss SetExponentZero)
(ey) A2B (sy)
sl #pP3 S| S
2
S3 RemoveDecimal
Se S;
Refresh 3
S, 1S
£r6
/ P2| SecFprNorm64
(my)
(sy)

Figure 4: Abstract diagram of SecFprBaselntqoor

Proof. We use the same method as for the demonstration of Lemma 3. We use an
abstract diagram in Figure 4 for the demonstration. Let assume an adversary probes the
intermediate values sets of the output shares O and P; in each gadget for i € [1;6]. We

Pierre-Augustin Berthet, Justine Paillet, Cédric Tavernier 15

use simulation sets Sg to simulate the values for each gadget. t-SNI security implies that
if the size of all probing sets P; is t; <t and if the size of values required to simulate in
each gadget is smaller than t, then the simulation sets linked to the input shares are not
bigger than t;. As SetExponentZero, RemoveDecimal, SecAnd, A2B and Refresh
are all t-SNI secure while SecFprNorm64 is ¢-NI secure, we can sequentially derive the
following:

o |S11,1S%],1S7] < | Py o |S1l,183] < | Pyl
o 1531, 183] < |Po| + [O gyl o [Ss5] <P
o |S31,1531,153],153] < | Ps o [S] < | Pl

Based on the previous inequalities, we know that no gadget requires more than ¢ ;4|0 ;)| <
t values to be simulated. The above method is also applied to the input shares, with |S}| <
|Py| for (my), |S5US2 US| < |Ps| + | Ps| + | Ps| for (ey) and S5 U S3| < |Ps| + | Py for
(sy), none being more than ¢;. O

5.2 Inverse

Lemma 4. The gadget SecFprComp (Algorithm 10) is t-SNI secure.

/ P6 (xi)
(xi) S S,
Refresh —4 SecNonZero | £P2
£p4 £PI ‘S‘l’
N Sy S
o) T SecAdd Refresh @ (comp)
St
#ps
S £p3
L23 SecNonZero

Figure 5: Abstract diagram of SecFprComp

Proof. We use an abstract diagram in Figure 5 for our demonstration. This gadget is
similar to the swap part of the SecFprAdd gadget from [CC24] (Theorem 3, first part of
the proof). We add some Refresh to ensure the ¢-SNI property. The XOR associated
to the probing set P; is t-NI secure as this linear operation is performed on each share
separately. The gadget SecAdd associated to the probe Ps is also ¢-NI secure. The other
gadgets are t-SNI secure. Hence, we have the following inequalities:

° ‘S(l)‘v ‘Sll‘v ‘S%‘ < ‘Pl‘ + ‘O(comp)‘

|S4] < | Py

o |So] <[Py 1S8], IS5| < | Ps| + [Sal < |Ps| + | Pyl

o |S3] < | P

|S6| < | Ps|

According to these inequalities, no gadget requires more than t; + [Ocomp)| < t values
to be simulated. This method can be applied to the input shares: For (x;), we have
|Sﬁ‘ < ‘Pb| < t; and for (yz) we have |Sg| < |P5| + |P1| <tr.]

Lemma 5. The gadget SecFprScalePow?2 (Algorithm 11) is t-SNI secure.

16 Masked Floor Function For FALCON

(sy)

£p3 £p2
S| SecNonZero S SecAnd
B £Pl
S3
(ey) £76 #ps #p4 Refresh (y)
Se B2A S| _|_ S, A%B

(my)

Figure 6: Abstract diagram of SecFprScalePow2

Proof. We consider an abstract diagram in Figure 6 for our demonstration. This gadget
mainly affects the exponent shares (ey). Apart from "+" which is ¢-NI as it is simply
adding a constant to one share, all other gadgets are t-SNI. As the single input of the
gadget "+" comes from a t-SNI gadget B2A and then has its single output fed into another
t-SNI gadget, the chain B2A — 7 4+ 7 — A2B is itself {-SNI. By composition, the entire
gadget is t-SNI. O

Theorem 2. The gadget SecFprInv (Algorithm 12) is t-SNI secure.

(xi)

0 fP4 £p3 f4) £PI
@iy S
§| SecFprComp S SecAnd S SecFpradd SilSecFprScalePow2l— (di)
(xi) 4
s £ps
. sY
(mi) =3 SecOr (mi)

Figure 7: Abstract diagram of LOOP

Proof. We base our demonstration on an abstract diagram in Figure 8. We first prove that
the gadget LOOP associated to the probes set P is t-SNI secure.

We use an abstract diagram in Figure 7 for our demonstration. This gadget composes
t-SNI gagdets, including SecFprComp and SecFprScalePow2, proven ¢-SNI in Lemmas
4 and 5. As the first iteration of the loop is ¢-SNI secure by composition, and the loop
cycles on itself, all remaining iterations are also t-SNI secure. This implies the gadget
LOOP is itself t-SNI secure.

For the rest of the SecFprInv gadget, all gadgets are t-SNI apart from + associated to the
probes set P; and SecAdd associated to the probes set ;. We can derive the following:

o [S1| <P+ 0@ inv)l o |S7] <[P

o [S3],185] < [P o |Ss| < [P35

. 1311831 < || TP S s
o 1Sul < [Pyl e [Sio0| < [Prol

o [S],]S5] < |Ps| o [S11] < |P1q]

o 181,186, 18] < | P o [Si2] < [P

Pierre-Augustin Berthet, Justine Paillet, Cédric Tavernier 17

Based on these inequalities, we know that no gadgets requires more than t7+|O(,_ine)| <
t values to be simulated. This method can also be applied to the input shares: For (1)
we have |S11 U S| < |Pri| + | Ps| < tp, for (exi) we have |Sa| < |Py| + |Ps| + | P2| < tg, for

(szi) we have |S1a| < |Pi2| <t and for (mi) we have |S3| < |Ps| < tr. O
(xi) .
s,,‘ £r11 (mi)
SecNonZero
Sul e PAI
#£ri0| B2A g 4l g A s) LOOP
(exi)] +
S £p5 "
| #es -
(sxi) SecAnd | .
|S]Z /PIZ A2B Sy ‘ S (x_inv)
S,
Refresh / P4
Refresh
g3 180 Sl £) #Pi
1 1
SecOr 5, SecAnd LSi SecAdd
| S?

Figure 8: Abstract diagram of SecFprInv

Lemma 6. The gadget Minimum®63 (Algorithm 13) is t-SNI secure.

Proof. The Minimum63 algorithm is composed only of ¢-SNI gadgets, namely A2B, SecAnd
and SecOr. It is thus itself ¢-SNI. O

6 Performances

Some results are shown in Table 4. This implementation is not optimized and is realized
with a laptop computer equipped with an Intel Core i7-11800H CPU. The compiler used
is gcc version 9.4.0 with options -O8. We have considered our performances of SecFprAdd
and SecFprMul as reference and compare our work with the one of Chen and Chen [CC24],
as they used a different hardware (Intel Core i9-12900KF). We have designed our code
around 3 shares and some well-known optimizations for 2 shares masking have not been
implemented. Hence, we observe that the complexity increases linearly with the number
of shares.

18 Masked Floor Function For FALCON
Table 4: Time in microseconds
Algorithm Unmasked 2 Shares 3 Shares
[PFH™20]
SecFprAdd [CC24] 0.00011 7.533 13.552
SecFprMul [CC24] 0.000 14 5.563 11.622
SecFprBaselntg,o, 0.000 136 7.084 13.284
SecFprUrshgoor - 0.113 0.219
SecFprlnv 0.000 138 559.658 994.416
SecFprComp - 1.601 2.471
SecFprScalePow?2 - 0.943 1.903
ApproxExp 0.000 126 190.207 367.245
BerExp 0.005 446 227.187 441.951
SamplerZ 0.114 1807.353 4205.701
1024 SamplerZ 122.962 1850633 4382602
2048 SamplerZ 247.902 3780432 8731953

To replicate the performances of the calls to the Gaussian Sampler by FALCON, we
performed SamplerZ by the same amount of iterations required in both FALCON-512 and
FALCON-1024. Table 4 highlights the impact of the division computation on SamplerZ.
The SecFprInv gadget is the main bottleneck of our design as it involves 55 SecFprAdd.
On the other hand, our SecFprBaselntgq,, gadget is no more costly than one SecFprAdd.

We also tested a masked complete version of FALCON. Its performances are summarized
in Table 5. We do not perform the signature rejection. Thus, in a real world use case,
the performances might be doubled. Our results clearly highlight that this masking
methodology for FALCON is not ready for a deployment.

Table 5: Masked FALCON in seconds

FALCON FFSampling Compress Preimage Total
FALCON 512 (2 shares) 3.157130 0.001 258 0.040 156 3.198 545
FALCON 512 (3 shares) 6.284270 0.002 396 0.081 091 6.367 758

FALCON 1024 (2 shares) 6.825461 0.002 594 0.080 565 6.908 620
FALCON 1024 (3 shares) 12.759945 0.004 814 0.162189 12.926 950

7 Conclusion

In this paper we have extended the work of Chen and Chen [CC24] and have used their
gadgets and our new own gadgets to mask the floor function (Section 3). The Gaussian
sampler of FALCON (Section 4) has been protected with this floor gadget. Additionally,
to reach this task, we provided a masked implementation of the division (Section 4). We
discussed about the t-SNI properties of our gadgets (Section 5). Finally, we provided some
performances got on a laptop computer equipped with an Intel Core CPU (Section 6),
highlighting the non-readiness state of this masking methodology for real world deployment.
Future works could investigate better masking methodologies and/or algorithmic improve-
ments. For instance, reducing the division’s cost should lead to better performances, as
it is the main bottleneck in our current design. New masking methods for floating-point

Pierre-Augustin Berthet, Justine Paillet, Cédric Tavernier 19

arithmetic, less reliant on A2B and B2A conversions, could be studied and offer better
performances. Other representations than Binary64 could also be of interest but should
first be allowed in the FALCON standard. Finally, fault-injection resilient designs could
be of interest.

Acknowlegdments We would like to thank Ken-Yu Chen and Jiun-Peng Chen who
responded to our questions regarding their work.

This work thanks grant 2022156 and grant 2023151 from the Appel & projets 2022 and
Appel a projets 2023 theses AID CIFRE-Défense by the Agence de I'Innovation de Défense
(AID), Ministere des Armées (French Ministry of Defense).

This paper is also part of the on-going work of Hensoldt SAS France for the Appel a projets
Cryptographie Post-Quantique launched by Bpifrance for the Stratégie Nationale Cyber
(France National Cyber Strategy) and Stratégie Nationale Quantique (France National
Quantum Strategy). In this, Hensoldt SAS France is a part of the X7-PQC project in
partnership with Secure-IC, Télécom Paris and Xlim.

20

Masked Floor Function For FALCON

References

[BBD*16]

[BBE*18)]

[BCZ18§]

[BDK*18]

[BHK19]

[CC24]

[CCIT16]

[CGTV15]

[DKL*18]

Gilles Barthe, Sonia Belaid, Francois Dupressoir, Pierre-Alain Fouque, Ben-
jamin Grégoire, Pierre-Yves Strub, and Rébecca Zucchini. Strong non-
interference and type-directed higher-order masking. In Proceedings of the
2016 ACM SIGSAC Conference on Computer and Communications Security,
CCS ’16, page 116-129, New York, NY, USA, 2016. Association for Computing
Machinery. doi:10.1145/2976749.2978427.

Gilles Barthe, Sonia Belaid, Thomas Espitau, Pierre-Alain Fouque, Benjamin
Grégoire, Mélissa Rossi, and Mehdi Tibouchi. Masking the glp lattice-based
signature scheme at any order. In Jesper Buus Nielsen and Vincent Rijmen,
editors, Advances in Cryptology — EUROCRYPT 2018, pages 354-384, Cham,
2018. Springer International Publishing.

Luk Bettale, Jean-Sébastien Coron, and Rina Zeitoun. Improved high-order
conversion from boolean to arithmetic masking. ITACR Transactions on
Cryptographic Hardware and Embedded Systems, 2018(2):22-45, May 2018.
URL: https://tches.iacr.org/index.php/ TCHES /article/view /873, doi:
10.13154/tches.v2018.1i2.22-45.

Joppe Bos, Leo Ducas, Eike Kiltz, T Lepoint, Vadim Lyubashevsky, John M.
Schanck, Peter Schwabe, Gregor Seiler, and Damien Stehle. Crystals - kyber:
A cca-secure module-lattice-based kem. In 2018 IEEE European Symposium
on Security and Privacy (EuroS€P), pages 353-367, April 2018. doi:10.110
9/EuroSP.2018.00032.

Daniel J. Bernstein, Andreas Hiilsing, Stefan Ko6lbl, Ruben Niederhagen,
Joost Rijneveld, and Peter Schwabe. The sphincs+ signature framework.
In Proceedings of the 2019 ACM SIGSAC Conference on Computer and
Communications Security, CCS 19, page 2129-2146, New York, NY, USA,
2019. Association for Computing Machinery. doi:10.1145/3319535.336322
9.

Keng-Yu Chen and Jiun-Peng Chen. Masking floating-point number multipli-
cation and addition of falcon: First- and higher-order implementations and
evaluations. TACR Transactions on Cryptographic Hardware and Embedded
Systems, 2024(2):276-303, Mar. 2024. URL: https://tches.iacr.org/index.php
/TCHES/article/view/11428, doi:10.46586/tches.v2024.12.276-303.

Lily Chen, Lily Chen, Stephen Jordan, Yi-Kai Liu, Dustin Moody, Rene
Peralta, Ray A Perlner, and Daniel Smith-Tone. Report on post-quantum
cryptography, volume 12. US Department of Commerce, National Institute of
Standards and Technology ..., 2016.

Jean-Sébastien Coron, Johann Grofischadl, Mehdi Tibouchi, and Praveen Ku-
mar Vadnala. Conversion from arithmetic to boolean masking with logarithmic
complexity. In Gregor Leander, editor, Fast Software Encryption, pages 130—
149, Berlin, Heidelberg, 2015. Springer Berlin Heidelberg.

Léo Ducas, Eike Kiltz, Tancrede Lepoint, Vadim Lyubashevsky, Peter
Schwabe, Gregor Seiler, and Damien Stehlé. Crystals-dilithium: A lattice-
based digital signature scheme. TJACR Transactions on Cryptographic Hard-
ware and Embedded Systems, 2018(1):238-268, Feb. 2018. URL: https:
//tches.iacr.org/index.php/TCHES/article/view /839, doi:10.13154
/tches.v2018.i1.238-268.

https://doi.org/10.1145/2976749.2978427
https://tches.iacr.org/index.php/TCHES/article/view/873
https://doi.org/10.13154/tches.v2018.i2.22-45
https://doi.org/10.13154/tches.v2018.i2.22-45
https://doi.org/10.1109/EuroSP.2018.00032
https://doi.org/10.1109/EuroSP.2018.00032
https://doi.org/10.1145/3319535.3363229
https://doi.org/10.1145/3319535.3363229
https://tches.iacr.org/index.php/TCHES/article/view/11428
https://tches.iacr.org/index.php/TCHES/article/view/11428
https://doi.org/10.46586/tches.v2024.i2.276-303
https://tches.iacr.org/index.php/TCHES/article/view/839
https://tches.iacr.org/index.php/TCHES/article/view/839
https://doi.org/10.13154/tches.v2018.i1.238-268
https://doi.org/10.13154/tches.v2018.i1.238-268

Pierre-Augustin Berthet, Justine Paillet, Cédric Tavernier 21

[EFGT22]

[EFGT17]

[GBHLY16]

[GMRR22]

[HPRR20]

[ISW03]

[KA21]

[Kah96]

[Koc96]

[MHS*19]

[MOPO0S]

Thomas Espitau, Pierre-Alain Fouque, Francois Gérard, Mélissa Rossi, Akira
Takahashi, Mehdi Tibouchi, Alexandre Wallet, and Yang Yu. Mitaka: A
simpler, parallelizable, maskable variant of falcon. In Orr Dunkelman and
Stefan Dziembowski, editors, Advances in Cryptology — EUROCRYPT 2022,
pages 222-253, Cham, 2022. Springer International Publishing.

Thomas Espitau, Pierre-Alain Fouque, Benoit Gérard, and Mehdi Tibouchi.
Side-channel attacks on bliss lattice-based signatures: Exploiting branch trac-
ing against strongswan and electromagnetic emanations in microcontrollers.
In Proceedings of the 2017 ACM SIGSAC Conference on Computer and Com-
munications Security, CCS ’17, page 18571874, New York, NY, USA, 2017.
Association for Computing Machinery. doi:10.1145/3133956.3134028.

Leon Groot Bruinderink, Andreas Hiilsing, Tanja Lange, and Yuval Yarom.
Flush, gauss, and reload — a cache attack on the bliss lattice-based signature
scheme. In Benedikt Gierlichs and Axel Y. Poschmann, editors, Cryptographic
Hardware and Embedded Systems — CHES 2016, pages 323-345, Berlin, Hei-
delberg, 2016. Springer Berlin Heidelberg.

Morgane Guerreau, Ange Martinelli, Thomas Ricosset, and Mélissa Rossi.
The hidden parallelepiped is back again: Power analysis attacks on fal-
con. TACR Transactions on Cryptographic Hardware and Embedded Systems,
2022(3):141-164, Jun. 2022. URL: https://tches.iacr.org/index.php/ TCHES
/article/view/9697, doi:10.46586/tches.v2022.13.141-164.

James Howe, Thomas Prest, Thomas Ricosset, and Mélissa Rossi. Isochronous
gaussian sampling: From inception to implementation. In Jintai Ding and
Jean-Pierre Tillich, editors, Post-Quantum Cryptography, pages 53-71, Cham,
2020. Springer International Publishing.

Yuval Ishai, Amit Sahai, and David Wagner. Private circuits: Securing hard-
ware against probing attacks. In Dan Boneh, editor, Advances in Cryptology
- CRYPTO 2003, pages 463-481, Berlin, Heidelberg, 2003. Springer Berlin
Heidelberg.

Emre Karabulut and Aydin Aysu. Falcon down: Breaking falcon post-quantum
signature scheme through side-channel attacks. In 2021 58th ACM/IEEE
Design Automation Conference (DAC), pages 691-696, Dec 2021. doi:10.1
109/DAC18074.2021.9586131.

William Kahan. Ieee standard 754 for binary floating-point arithmetic. Lecture
Notes on the Status of IEEFE, 754(94720-1776):11, 1996.

Paul C. Kocher. Timing attacks on implementations of diffie-hellman, rsa,
dss, and other systems. In Neal Koblitz, editor, Advances in Cryptology
— CRYPTO ’96, pages 104—113, Berlin, Heidelberg, 1996. Springer Berlin
Heidelberg.

Sarah McCarthy, James Howe, Neil Smyth, Seamus Brannigan, and Maire
O’Neill. Bearz attack falcon: Implementation attacks with countermeasures on
the falcon signature scheme. Cryptology ePrint Archive, Paper 2019/478, 2019.
https://eprint.iacr.org/2019/478. URL: https://eprint.iacr.org/2019/478.

Stefan Mangard, Elisabeth Oswald, and Thomas Popp. Power analysis attacks:
Revealing the secrets of smart cards, volume 31. Springer Science & Business
Media, 2008.

https://doi.org/10.1145/3133956.3134028
https://tches.iacr.org/index.php/TCHES/article/view/9697
https://tches.iacr.org/index.php/TCHES/article/view/9697
https://doi.org/10.46586/tches.v2022.i3.141-164
https://doi.org/10.1109/DAC18074.2021.9586131
https://doi.org/10.1109/DAC18074.2021.9586131
https://eprint.iacr.org/2019/478
https://eprint.iacr.org/2019/478

22

Masked Floor Function For FALCON

[NIS24a]

[NTS24b)]

[NIS24c]

[PBY17]

[PFH*20]

[RCDB24]

[Sho99]

[SPOG19]

[ZLYW23]

NIST. Module-lattice-based digital signature standard. NIST FIPS, 2024.
doi:10.6028/NIST.FIPS.204.1ipd.

NIST. Module-lattice-based key-encapsulation mechanism standard. NIST
FIPS, 2024. doi:10.6028/NIST.FIPS.203.1ipd.

NIST. Stateless hash-based digital signature standard. NIST FIPS, 2024.
doi:10.6028/NIST.FIPS.205.ipd.

Peter Pessl, Leon Groot Bruinderink, and Yuval Yarom. To bliss-b or not
to be: Attacking strongswan’s implementation of post-quantum signatures.
In Proceedings of the 2017 ACM SIGSAC Conference on Computer and
Communications Security, CCS '17, page 1843-1855, New York, NY, USA,
2017. Association for Computing Machinery. doi:10.1145/3133956.313402
3.

Thomas Prest, Pierre-Alain Fouque, Jeffrey Hoffstein, Paul Kirchner, Vadim
Lyubashevsky, Thomas Pornin, Thomas Ricosset, Gregor Seiler, William
Whyte, and Zhenfei Zhang. Falcon. Post-Quantum Cryptography Project of
NIST, 2020.

Prasanna Ravi, Anupam Chattopadhyay, Jan Pieter D’Anvers, and Anub-
hab Baksi. Side-channel and fault-injection attacks over lattice-based post-
quantum schemes (kyber, dilithium): Survey and new results. ACM Trans.
Embed. Comput. Syst., 23(2), mar 2024. doi:10.1145/3603170.

Peter W. Shor. Polynomial-time algorithms for prime factorization and
discrete logarithms on a quantum computer. SIAM Review, 41(2):303-332,
1999. arXiv:https://doi.org/10.1137/50036144598347011, doi:
10.1137/350036144598347011.

Tobias Schneider, Clara Paglialonga, Tobias Oder, and Tim Giineysu. Effi-
ciently masking binomial sampling at arbitrary orders for lattice-based crypto.
In Dongdai Lin and Kazue Sako, editors, Public-Key Cryptography — PKC
2019, pages 534-564, Cham, 2019. Springer International Publishing.

Shiduo Zhang, Xiuhan Lin, Yang Yu, and Weijia Wang. Improved power
analysis attacks on falcon. In Carmit Hazay and Martijn Stam, editors,
Advances in Cryptology — EUROCRYPT 2023, pages 565-595, Cham, 2023.
Springer Nature Switzerland.

https://doi.org/10.6028/NIST.FIPS.204.ipd
https://doi.org/10.6028/NIST.FIPS.203.ipd
https://doi.org/10.6028/NIST.FIPS.205.ipd
https://doi.org/10.1145/3133956.3134023
https://doi.org/10.1145/3133956.3134023
https://doi.org/10.1145/3603170
https://arxiv.org/abs/https://doi.org/10.1137/S0036144598347011
https://doi.org/10.1137/S0036144598347011
https://doi.org/10.1137/S0036144598347011

	Introduction
	Notation and Background
	Notations
	Diagram Legend
	FALCON Sign
	Floor Function
	Masking

	Masking the Floor Function
	Application to Falcon : Gaussian Sampler
	Division:
	Masking BerExp

	Security Proof
	Floor Function
	Inverse

	Performances
	Conclusion
	References

