
Automated Generation of Fault-Resistant Circuits
Nicolai Müller 1 and Amir Moradi 2

1 Ruhr University Bochum, Horst Görtz Institute for IT Security, Bochum, Germany
firstname.lastname@rub.de

2 Technische Universität Darmstadt, Darmstadt, Germany
firstname.lastname@tu-darmstadt.de

Abstract. Fault Injection (FI) attacks, which involve intentionally introducing faults
into a system to cause it to behave in an unintended manner, are widely recognized
and pose a significant threat to the security of cryptographic primitives implemented
in hardware, making fault tolerance an increasingly critical concern. However,
protecting cryptographic hardware primitives securely and efficiently, even with well-
established and documented methods such as redundant computation, can be a time-
consuming, error-prone, and expertise-demanding task. In this research, we present a
comprehensive and fully-automated software solution for the Automated Generation of
Fault-Resistant Circuits (AGEFA). Our application employs a generic and extensively
researched methodology for the secure integration of countermeasures based on
Error-Correcting Codes (ECCs) into cryptographic hardware circuits. Our software
tool allows designers without hardware security expertise to develop fault-tolerant
hardware circuits with pre-defined correction capabilities under a comprehensive fault
adversary model. Moreover, our tool applies to masked designs without violating
the masking security requirements, in particular to designs generated by the tool
AGEMA. We evaluate the effectiveness of our approach through experiments on
various block ciphers and demonstrate its ability to produce fault-tolerant circuits.
Additionally, we assess the security of examples generated by AGEFA against Side-
Channel Analysis (SCA) and FI using state-of-the-art leakage and fault evaluation
tools.
Keywords: Fault Analysis · Impeccable Circuits · SIFA · Hardware · Masking

1 Introduction
The already well-advanced integration of embedded systems into our daily lives highlights
the critical need for reliable guarantees with respect to the confidentiality of sensitive
data processed by these systems. Cryptographic primitives, such as block ciphers, are
well-established methods that ensure the confidentiality of data both at rest and in transit.
However, the implementation of cryptographic primitives in hardware presents significant
challenges that are yet to be fully resolved. Physical attacks, such as passive Side-Channel
Analysis (SCA) attacks [Koc96] and active Fault Injection (FI) attacks [BDL97], have
emerged as severe attack vectors due to the physical accessibility that embedded devices
offer to potential adversaries.

In the context of SCA, an adversary records a certain physical characteristic of the
device during the execution of a cryptographic primitive and subsequently exploits the
relation between the measurements and the processed data to recover secret informa-
tion. Examples include but are not restricted to [Koc96, KJJ99, GMO01, HS13, GST14].
Masking [CJRR99], as a well-studied countermeasure against SCA based on secret shar-
ing [Sha79], has gained a considerable amount of attention from the scientific community
due to its simple security assumptions and adversary models. The d-probing model [ISW03]

https://orcid.org/0000-0002-3286-4722
https://orcid.org/0000-0002-4032-7433
mailto:nicolai.mueller@rub.de, amir.moradi@rub.de
mailto:amir.moradi@tu-darmstadt.de

2 AGEFA

and its extension to cover physical defaults, known as the robust probing model [FGP+18],
are the commonly used adversary models and form the basis for security notions such as
probing security and composability, which enable to prove the formal security of masked
implementations. However, designing and implementing a properly masked cryptographic
primitive is complex, error-prone, and tedious. Many examples of insecure masking schemes
can be found in the literature [MMSS19], highlighting the need for automated solutions
that reduce manual interaction and the potential for human error. One such solution is
the Automated Generation of Masked Hardware (AGEMA) [KMMS22], which automates
the generation of masked hardware circuits by translating unprotected gate-level netlists
into masked hardware circuits albeit with an associated increase in circuit size and latency
compared to manually crafted masked designs. To narrow the performance gap in terms of
area and latency between automatically-generated masked designs and manual approaches,
various optimizations have been introduced and implemented into new software tools like
the Automated Generation of Masked Nonlinear Components (AGMNC) [WFP+23] or
Compress [CGM+23].

In addition to passive SCA attacks, active adversaries employ techniques that deliber-
ately introduce faults into the operation of the device to compromise its security [BDL97].
Such attacks can be carried out through various fault injection methods, i.e. by shortening
the period of particular clock cycles (clock-glitching) [ADN+10], by altering the power
supply (voltage-glitching) [SGD08], by electromagnetic pulses (as Electromagnetic Fault
Injection (EMFI)) [SSAQ02], or by focused laser beams [SA02]. The injected faults can
be exploited by a various set of concrete techniques including Differential Fault Analy-
sis (DFA) [BS97], Differential Fault Intensity Analysis (DFIA) [GYTS14], Statistical Fault
Attack (SFA) [FJLT13], Fault Sensitivity Analysis (FSA) [LSG+10], Ineffective Fault
Attack (IFA) [Cla07], and Statistical Ineffective Fault Attack (SIFA) [DEK+18]. The first
generic and comprehensive hardware fault adversary model in [RSG23] abstracts any fault,
regardless of its location, type, or timing, by replacing a gate whose output is faulty
with another gate realizing the functionality of the faulty gate. The faulty circuit is then
compared with a fault-free circuit to determine whether the fault is propagated to the
primary output. Incorporating redundancy into the system can be an effective strategy for
countering FI attacks. This redundancy allows faulty states to be compared with fault-free
states, thereby detecting or correcting faults introduced during the attack. One way of
incorporating redundancy is to use binary linear codes, which can be implemented in a
variety of ways. Importantly, the fault tolerance of an implementation depends on the
specification of the underlying code used.

• Schemes based on Error-Detecting Codes (EDCs) are used to detect a pre-defined
number of faults. If a fault is detected, the device discards the faulty output and
may eliminate the key if a certain threshold is reached [AMR+20].

• Schemes based on Error-Correcting Codes (ECCs) are used to correct a pre-defined
number of faults. Hence, an adversary will always observe fault-free outputs as
long as the injected fault is covered by the underlying fault model, defined by the
employed code [SRM20].

Since EDC-based schemes do not protect against SIFA [DEK+18], this work focuses on
the application of ECC-based schemes to block ciphers, as exemplarily and manually done
in [SRM20].

Our Contributions

To the best of our knowledge, there is no AGEMA-equivalent tool for protecting a given
design against FI attacks, i.e. there is no tool for automatically generating fault-tolerant
circuits. We fill this gap by introducing an extension to the current security-aware

N. Müller, A. Moradi 3

hardware design flow, namely Automated Generation of Fault-Resistant Circuits (AGEFA).
In particular, our tool, which is publicly available via GitHub1, has the following key
features.

• AGEFA enables the fully automated translation of unprotected hardware designs,
i.e. designs without any countermeasures against FI, into provably fault-tolerant
hardware circuits. In particular, the fault-tolerance of AGEFA’s outputs, even
against SIFA, can be exhaustively verified by cryptographic fault-analysis tools, e.g.,
VerFI [AWMN20]. For this work, we have chosen to exclusively focus on symmetric
ciphers, aiming to ensure a comprehensive verification process. While there are
no inherent limitations to applying AGEFA to, e.g., post-quantum cryptography,
the potentially extensive outcomes would pose significant challenges for verification.
As a result, AGEFA enables even inexperienced engineers without deep knowledge
in the field of hardware security to reliably protect any design against FI attacks.
Concretely, AGEFA provides automated solutions for the following problems:

– Searching for an efficient ECC that is not only correct but also tailored precisely
to the designer’s specific requirements can be a time-consuming task when
approached manually. In Section 3.2, we present an automated procedure aimed
at expediting the process of finding an efficient ECC tailored to the individual
requirements of the user.

– Implementing a fault-resistant design, which relies on the generated ECC, is a
task fraught with a high risk of implementation flaws. Even minor oversights
can compromise the security of the entire design. In Section 3.3, we outline
a procedure that automates the implementation process, thereby eliminating
human errors.

– Furthermore, AGEFA can incorporate several non-trivial optimizations, typ-
ically performed manually. This capability enables the generated designs to
achieve an efficiency level comparable to that of manually crafted designs.

• When AGEFA processes a masked design, e.g. an SCA-secure design generated by
AGEMA, it preserves all the security guarantees provided by the masking counter-
measure that satisfy Probe-Isolating Non-Interference (PINI) requirements, while
adding protection against FI attacks. In practice, this means that an engineer can
give an unprotected design without any countermeasures to AGEMA first, and
receive an SCA-secure design based on PINI gadgets. Further processing of the
resulting design with AGEFA will produce a solution that is SCA- and FI-secure.

2 Background

2.1 Notations
As summarized in Table 1, we use lower-case characters to denote atomic elements, e.g.
Boolean variables, and sans-serif fonts to denote Boolean functions.Additionally, we use
upper-case bold characters, such as X, to represent a set of elements with cardinality |X|.
We refer to the individual elements of a set using their index, such that xi ∈ X represents
the i-th element of X. Exceptionally, we use upper-case characters to denote multi-bit
variables such as X ∈ Fn

2 .

1https://github.com/Chair-for-Security-Engineering/AGEMA

https://github.com/Chair-for-Security-Engineering/AGEMA
https://github.com/Chair-for-Security-Engineering/AGEMA

4 AGEFA

Table 1: Notations used in this work.
Notation Description

f : Fn
2 → F2 n-ary Boolean function

F : Fn
2 → Fm

2 n-ary vectorial Boolean function
fi : Fn

2 → F2 n-ary i-th coordinate function of F

x ∈ F2 Boolean variable
X ∈ Fn

2 Vector of n Boolean variables
xi ∈ F2 i-th Boolean variable of X
X Set

P ∈ Fn×m
2 (n × m)-matrix

In ∈ Fn×n
2 Identity matrix of size n

M Module

Variable Description

d Security order
g Glitch coverage
t Transition coverage
c Coupling coverage

f Fault cardinality
s Fault style
l Fault location

k Message size
n Codeword size
δ Minimum distance

Table 2: Parameters associated with a single wire.
Notation Description

attribute(w) Returns the attribute associated with w. It holds that attribute(w) ∈
{clock, control, layer, reset, secure} introduced in Section 3.

share_domain(w) If w carries the share of a sensitive variable, this parameter stores the
share domain of w. This is introduced in Section 3.1.

linear_index(w) If w is the input or output of a binary matrix with elements in Fk
2 we

enumerate all k-bit input and output chunks and store the number
related to w as its linear index. This is introduced in Section 3.1.

2.2 Circuit Model
We formalize the operations carried out by a hardware circuit through a Boolean function
Fi

2 → Fp
2 with i inputs and o outputs. The circuit acquires every input through a signal

driven by a physical wire. Subsequently, the corresponding outputs are retrieved from the
circuit by reading the signals transmitted through the output wires. Each wire w in a
circuit is uniquely defined by its name while we refer to the signal currently transmitted by
a wire as its state. Formally, we associate multiple parameters with each wire and define
functions to access them as given in Table 2.

Further, review a circuit as a composition of separate building blocks called modules.

Definition 1 (Module). A moduleM defines a quadruple (INM, TM, OUTM, INSTM)
with the following elements:

• INM (resp. OUTM) defines a set of primary input wires (resp. primary output
wires) belonging to M.

• TM defines the set of intermediate (internal) wires of M.

• INSTM defines a set of instructions representing the functionality of the M. We
define an instruction as a Boolean function based on a restricted set of operands
{not, and, nand, or, nor, xor, xnor, reg}.

We refer to an atomic module G as a gate (either combinational or sequential). Every
gate evaluates a single output (|OUTG | = 12) by applying a single operation from
{not, and, nand, or, nor, xor, xnor, reg} to the signals in ING , i.e. TG = ∅.

Example 1. Let M be a module that abstracts multiple gates computing the Boolean
function z = ab ⊕ c. Then, it holds that INM = {a, b, c} and OUTM = {z}. There

2Note that, for this work, we exclude gates with multiple outputs and do not use the inverted output
of a register. This restriction is related to the use of AGEMA.

N. Müller, A. Moradi 5

R

Combinational Logic

clk

rst

IN
|IN|

|ST|

|OUT|

|FB|

OUT

Figure 1: General Mealy model of a synchronous sequential circuit.

are multiple possibilities to construct INSTM such as INSTM = {z = a and b xor c}
with TM = ∅ or INSTM = {q = a and b, z = q xor c} with TM = {q}. Further, we
can represent M as a composition of Gand = ({a, b}, ∅, {z}, {z = a and b}) and Gxor =
({a, b}, ∅, {z}, {z = a xor b}).

Definition 2 (Circuit). We model a circuit as a directed graph (G, W) while each
vertex G ∈ {Gnot,Gand,Gnand,Gor,Gnor,Gxor,Gxnor,Greg} represents an atomic module, e.g. a
sequential or combinational gate, and each edge w ∈W represents a wire.

We focus on sequential circuits, where a clock signal clk synchronizes the processed
data by storing the state of wires in ST in registers. Any synchronous sequential circuit
(which has no combinational loops) can be modeled as a Mealy machine [Mea55]. We
show the schematic model of a generic sequential circuit in Figure 1.

The model incorporates a single register stage created by merging all synchronization
elements, such as registers from an arbitrary number of stages. Initially, an active reset
signal rst forces the register stage to load the state of the primary inputs (data and control
signals) carried by wires in IN. Subsequently, the circuit repeatedly processes the state of
ST by feeding the feedback signal state carried by wires in FB back to the combinational
logic. The register stage synchronizes the state of all wires in ST using a clock signal clk
while the combinational logic computes the subsequent register inputs based on signals
from FB. We refer to the combinational logic together with its subsequent multiplexer as
the round function R.

2.3 Security Models
The discussion on security models in our work is twofold, encompassing both the SCA
and FI adversary models. We remark, that SCA adversary models allow us to prove the
secure application of masking [CJRR99] which stands as the predominant concept for
protecting a circuit against SCA. Therefore, masking is the only SCA countermeasure
considered in this work. According to secret sharing [Sha79], masking involves randomizing
every sensitive variable X ∈ Fn

2 with d + 1 uniformly and randomly distributed shares
X0, . . . , Xd ∈ (Fn

2)d+1 satisfying X =
⊕d

i=0 Xi. In addition, the circuit must undergo
transformation into a masked variant, executing every operation on a subset of shares.
However, while we briefly revisit SCA models to provide necessary background information,
we focus more extensively on the FI adversary models.

2.3.1 Side-Channel Analysis (SCA) Adversary Model

The d-probing adversary model [ISW03] restricts the adversary’s capabilities to place a
maximum of d probes on the wires of an ideal circuit. Each probe provides access to the
intermediate value of a specific wire at a particular point in time, corresponding to a clock
cycle.

6 AGEFA

Definition 3 (d-probing security). A circuit is d-probing secure iff it does not disclose
any sensitive information to any d-probing adversary.

Further, the (g, t, c)-robust d-probing model [FGP+18] extends the d-probing model
with the coverage of physical defaults, such as glitches (g), transitions (t), and couplings
(c). A (g, t, c)-robust d-probing adversary can place up to d extended probes, each capable
of recording all intermediate values on a specific wire that could potentially be leaked due
to the physical defaults.

Definition 4 ((g, t, c)-robust d-probing security). A circuit is (g, t, c)-robust d-probing
secure iff it does not disclose any sensitive information to any (g, t, c)-robust d-probing
adversary.

We remark that the most prominent instances of the robust probing model are the
(1, 0, 0)-robust d-probing model, i.e. the glitch-extended probing model, (0, 1, 0), i.e. the
transition-extended probing model, and (1, 1, 0), i.e. the glitch- and transition-extended
probing model. Except [CBG+17, CEM18], couplings are not extensively considered
particularly from a theoretical point of view due to the necessity to have access to the
detailed information about the physical realization of the target device, e.g., place and
routing details.

2.3.2 Composability

As designs have continued to increase in complexity, it has become challenging to design
and evaluate circuits that are provably robust-probing secure, especially those that require
higher-order security. To address this issue, researchers have introduced composable
gadgets [CGLS21], which are small and provably secure building blocks that can be
composed to create circuits of any order that are also provably secure. In practice, tools
such as AGEMA replace unprotected cells with their protected counterparts, i.e. gadgets.

Definition 5 (Composability). A robust-probing secure gadget is composable iff its
arbitrary composition with other robust-probing secure and composable gadgets also
results in a robust-probing secure circuit.

For a set of gadgets to be composable, each gadget must individually satisfy particular
security requirements, and all possible combinations of the gadgets must also be in
conformity with the underlying security model. As explained in detail below, PINI [CS20]
is known as one of such composable security notions.

Definition 6 (Perfect Probe Simulation). Let P be a set of d (extended) probes on
a gadget. P can be perfectly simulated with a set S of input shares if a probabilistic
polynomial-time simulator can be found that computes a joint probability distribution
based on S, which is identical to the distribution of P.

Definition 7 (d-Probe-Isolating Non-Interference (PINI)). Let P be a set of d0 (extended)
probes on a gadget, and S a set of d1 (extended) probes on the gadget’s primary outputs,
while O contains all output share indices probed by the probes in S. A gadget is d-PINI
iff for every P ∪ S with d0 + d1 ≤ d, there exists a set I of d0 share indices such that the
wires probed by probes in P ∪ S can be perfectly simulated from input shares with indices
in I ∪O [CS20].

2.3.3 Fault Injection (FI) Adversary Model

Based on [RSG23], we consider a formal model for the adversary whose abilities are denoted
by ζ(f, s, l), where f ∈ {1, 2, . . . , |G|} denotes the maximum number of faults that can
be simultaneously injected into different gates, s ∈ {τsr, τs, τr, τbf , τfm} the fault type

N. Müller, A. Moradi 7

i.e. stuck-at (τsr, τs, τr), bit-flip (τbf), or custom (τfm) faults, and l ∈ {ci, m, mci} the
possible fault locations, which are usually a restricted set of gates, defined by l = ci ⊆ c∞,
and registers, defined by l = m. In this work, we focus on a conservative (worst-case)
adversary model that allows toggle faults (s = τbf), including stuck-at faults as well, at
arbitrary locations of the circuit, such as gates and registers (l = mc∞),but excluding
primary signals3. Each fault is modeled by replacing the faulty cell with a predefined
cell that implements another functionality, i.e. for s = τbf a faulty gate gets replaced by
its negated variant. Hence, for certain given inputs X, the faulty circuit may produce a
faulty intermediate state Q̃ instead of Q while for other inputs the fault gets suppressed.
Then, the model compares the primary output of the faulty circuit Z̃ with that of an
equivalent circuit without any fault Z to determine whether the injected fault was effective
(cf. Definition 8) or ineffective (cf. Definition 9).

Definition 8 (Effective fault). We consider an injected fault as effective, w.r.t to a primary
input X, iff Z̃ 6= Z, i.e. if the injected fault affects the primary output when X is processed.

Definition 9 (Ineffective fault). We consider an injected fault as ineffective, w.r.t to a
primary input X, iff Z̃ = Z, i.e. if the injected fault does not affect the primary output
when X is processed.

As our focus is solely on error correction, we can disregard separate definitions of
detected and undetected faults. We consider a circuit to be secure under a fault model
ζ(f, t, l) if all the considered faults will be corrected, i.e. are ineffective.

Definition 10 ((f, s, l)-fault security). A circuit is (f, s, l)-fault secure if all considered
faults are ineffective.

We remark that (f, τbf , mc∞)-fault security, which we consider in this work, is equivalent
to security under the multivariate adversary model defined in [SRM20] and that security
according to Definition 10 also implies security against SIFA.

2.3.4 Fault Propagation and Independence

Whenever an adversary injects faults in f intermediate gates, it is possible that more
than f output signals of the circuit can become faulty [AMR+20]. To illustrate, let us
assume that the adversary injects a fault in one intermediate gate inside the circuit. The
faulty output of the gate may become the input of multiple subsequent gates, which are
driven by the faulty gate propagating to multiple primary outputs. This phenomenon
is known as fault propagation. To prevent fault propagation, every module must satisfy
the independence property [AMR+20], meaning that every intermediate wire in a module
should contribute to at most one primary output of the circuit.

Definition 11 (Independence). The implementation of a moduleM inside a circuit fulfills
the independence property iff |OUTM| = 1, i.e. if M computes a single output.

If the independence property is satisfied, every introduced fault can make at most one
output signal faulty.

2.4 Countermeasures
2.4.1 Error-Correcting Codes (ECCs)

To achieve (f, s, l)-fault security an error-correction mechanism is required. Usually,
error-correction is based on redundancy and binary linear codes.

3Faults on primary inputs without any redundancy cannot be detected or corrected.

8 AGEFA

Definition 12 (Binary linear code). A binary linear code C is a k-dimensional subset of
Fn

2 representing a linear and injective mapping function C : Fk
2 7→ Fn

2 , i.e. C applies C to
encode a message X ∈ Fk

2 to a codeword Y ∈ C.

As C is linear, we can formalize the mapping by a (k×n)-matrix, refered to as generator
matrix G, i.e. it holds that X ·G = Y . Furthermore, we refer to a code as systematic iff
it embeds the message into the first k bits of the codeword, i.e. G is of the form [Ik|P],
with Ik being the k × k identity matrix. In this context, where we are dealing with binary
linear systematic codes (denoted as [n, k]-codes in the following), we refer to the codeword
associated with the message X ∈ Fk

2 as Y = 〈X|X ′〉 ∈ C while X ′ denotes the parity of X.
Formally, the parity is computed as X ′ = X ·P , while P again is the matrix representation
of a linear and injective mapping P : Fk

2 7→ Fn−k
2 . To prove the injectivity of a linear

function, we refer to Lemma 1.

Lemma 1. A linear function C is injective iff it holds that C(X) = {0}n =⇒ X = {0}k.

When transmitting a codeword Y ∈ C over an unreliable communication channel, the
receiver can obtain a faulty codeword Ỹ = 〈X ⊕ E|X ′ ⊕ E′〉, where 〈E|E′〉 is the error
vector that affected the transmission. The number of faults to correct within a single
codeword depends on the code’s minimum distance δ. Therefore, we denote an [n, k]-code
satisfying a minimum distance of δ as [n, k, δ]-code.

Definition 13 (Minimum Distance). The minimum distance δ of an [n, k]-code C is
defined as min∀Y,Z∈C,Y 6=Z HD(Y, Z) = min∀Y,Z∈C,Y 6=Z HW(Y ⊕ Z) = min∀Y ∈C HW(Y).

In the above definition, HD(Y, Z) denotes the Hamming Distance (HD) of two different
codewords Y and Z, i.e. the number bits which differ between Y and Z, while HW(.)
denotes the Hamming Weight (HW) of a codeword.

To correct the faults, Ỹ is replaced by its nearest valid codeword, i.e. the codeword with
minimal distance to Ỹ . Accordingly, Ỹ will only be correctly replaced by Y if the distance
between Y and Ỹ is still smaller than the distance between Ỹ and other codewords. This
directly leads to Lemma 2. Hence, an [n, k, δ]-code can correct at most f = δ

2 − 1 faulty
bits in a single codeword.

Lemma 2. An [n, k, δ]-code can correct all faulty codewords Ỹ = 〈X ⊕ E|X ′ ⊕ E′〉 with
HW(E) + HW(E′) < δ

2 .

The translation from a faulty codeword to its nearest valid codeword can be done by
means of syndrome decoding. For a valid codeword Y = 〈X|X ′〉 it holds that X ′ = X · P
and therefore X ′ ⊕X · P = 0. For a faulty codeword Ỹ = 〈X ⊕E|X ′ ⊕E′〉 with the error
vector 〈E|E′〉, we denote (X ′ ⊕ E′)⊕ (X ⊕ E) · P = E′ ⊕ E · P as a syndrome. Once the
syndrome is calculated, the Syndrome Decoder (SD) compares it to a pre-calculated lookup
table of syndromes and their corresponding error vectors S : E′ ⊕ E · P 7→ 〈E|E′〉. If the
syndrome matches one of the entries in the table, it means that an error has occurred and
the decoder can use the associated error vector to correct the error. Based on syndrome
decoding, we can correct faulty codewords as shown in Figure 2. We call the place where
such a correction is made a correction point.

We remark that S is split into two functions namely S0 : E′ ⊕ E · P 7→ E and
S1 : E′ ⊕ E · P 7→ E′, meaning that both receive the syndrome. Syndrome decoders S0
and S1 predict E and E′ correctly as long as the fault can be corrected by the underlying
C. Hence, it must hold that HW(E) + HW(E′) < δ

2 to correct Ỹ with an [n, k, δ]-code C.

2.4.2 Majority Voting

A simple yet effective correction point derived from an [n, 1, δ]-code with C : F2 7→ Fn
2 and

C(x) = {x}n can correct up to f = δ
2 − 1 faults in a codeword with an odd codeword

N. Müller, A. Moradi 9

size of n = δ through the application of a technique known as Majority Voting (MV). In
essence, MV involves examining each bit within the codeword and identifying the majority
value among them. By aligning the bits with the majority decision, the correction point
effectively corrects up to f faults in the codeword. Typically, the correction points are
designed to receive the redundantly generated results of a system, which often involves
obtaining the same output from n independent and parallel instances. For example,
consider a scenario where three cipher cores simultaneously process identical inputs. In
this setup, the correction points are responsible for evaluating these redundant outputs
in order to correct one fault per output bit. Since the independent instances operate
without sharing any signals, the occurrence of a fault in one instance does not impact
the outputs of the other instances. Additionally, given that each output bit is corrected
individually, there is no necessity for the instances to adhere to the independence property
which reduces the area overhead associated with MV to a factor of n due to the presence
of these n parallel instances plus an additional MV circuit. If the correction is applied
exclusively to the system’s output, the effectiveness of MV is constrained as it can only
correct a total of f faults throughout the entire execution of the system, as opposed
to f faults per clock cycle. Consequently, to attain the desired level of fault security
denoted as (f, τbf , mc∞), the correction logic must be capable of addressing the cumulative
sum of faults that an adversary could potentially inject during the system’s execution.
This necessitates correcting a much larger number of faults, rendering the corresponding
overhead arising from redundancy impractical for our needs.

2.4.3 Impeccable Circuits

Aghaie et al. apply the aforementioned [n, k, δ]-codes in Concurrent Error Detection (CED)
schemes for hardware circuits [AMR+20]. The presented strategy allows to limit the fault
propagation in a way that the circuit guarantees the detection of up to f faults at arbitrary
positions when employing an [n, k, δ]-code. Again f refers to the number of simultaneously
injected faults as introduced in Section 2.3.3 and applied in Definition 10. As detection
of faults is not enough to prevent SIFA, a follow-up work shows a scheme for correcting
faults at arbitrary positions by applying an [n, k, δ]-code [SRM20]. To implement the
error correction scheme, we commence with a general sequential circuit, as illustrated in
Figure 1. To simplify matters, we assume |IN| mod k = 0∧ |FB| mod k = 0 meaning that
the input state of the round function and the feedback state are both multiples of k bits.
In accordance with the [n, k, δ]-code, each k-bit message X, carried by a dedicated k-bit
segment of IN or FB, can be encoded into its respective codeword Y = 〈X|X ′〉 by applying
the parity mapping function P, as defined in Section 2.4.1. For example, if |IN| = q · k (or
|FB| = q · k), we define F : Fq·k

2 7→ Fq·(n−k)
2 . This function maps a collection of q messages,

each composed of k bits, to their corresponding q parities, each comprised of n− k bits.
Specifically, F applies P individually to each of the q messages. While the straightforward
procedure mentioned above applies to data signals, it is essential to carefully consider
control signals, which are typically processed by a finite-state machine and play a critical
role in the round function. Changes in the control flow can potentially enable an adversary

P

S0 S1

X X ′

X ⊕ E X ′ ⊕ E ′

Figure 2: Correction point correcting a faulty codeword 〈X ⊕E|X ′ ⊕E′〉 back to 〈X|X ′〉.

10 AGEFA

|ST|

|ST′|

|FB|

|FB′|

R

R′

SD0

SD1F

F

FF

rst
IN

OUT

Figure 3: CED based on Impeccable Circuits II with injective F.

to propagate intermediate states to the output. To prevent any alterations in the control
flow, every control signal in IN must be encoded separately, distinct from the data signals
or other control signals [SRM20]. In practical terms, this means that each single-bit control
signal is padded with zeros to create an individual k-bit chunk while data signals are only
padded if the whole state encompasses no multiple of k bits.

Further, we assume that F is an injective function4. Therefore, the redundancy size
must be at least as large as the message size, implying that n ≥ 2k. Additionally, since F
is an injective function, the redundant counterpart of the round function R can exclusively
operate on the parities of the input signals. This results in a redundant round function
denoted as R′ = F ◦ R ◦ F−1, operating on the set of parities belonging to the input signals
of the round function. In particular, we denote the set of wires driving the redundancy
state of the feedback signals as FB′. To construct a full correction point for FB we
employ the same principle as for defining F to establish SD0 : Fq·(n−k)

2 7→ Fq·k
2 (and

SD1 : Fq·(n−k)
2 7→ Fq·(n−k)

2). These functions are responsible for decoding the syndromes
of q parity chunks. As a result, we can apply q correction points in parallel to correct
the input state of the round function. Figure 3 shows the schematic of the circuit from
Figure 1 after the application of such a CED.

It is important to note that contrary to MV as explained in Section 2.4.2, the round
functions R and R′, together with the correction logic, must be implemented in a way
that the propagation of a single intermediate fault to multiple faults within ST or ST′

is prevented. This necessitates their implementation in a manner that ensures the inde-
pendence property. In the case of an ECC with δ = 2f + 1, the output of SD0 remains
unchanged even when up to f faults are introduced at its input. It means that SD0 does
not propagate any fault E with HW(E) < f . Therefore, it is feasible to instantiate F and
the corresponding XOR operation separately. However, this does not hold true for SD1
[SRM20]. Consequently, all sub-circuits enclosed by dashed red lines in Figure 3 must
adhere to the independence property. Unfortunately, this may lead to the necessity of
incorporating multiple instances of the same correction logic, potentially increasing the
area requirements. To mitigate the increase in area overhead, the authors of [SRM20]
suggested the insertion of multiple correction points while maintaining the circuit’s latency,
provided that the round function R can be decomposed. Specifically, they suggest to split
R into two sub-functions R = R1 ◦ R0 in a way that R1 becomes linear. Further, if R1 can
be effectively represented as a binary matrix composed of elements from the finite field Fk

2 ,
it has been established in [AMR+20] that R1 exhibits a property of fault non-propagation.
Consequently, when implemented in accordance with the aforementioned decomposition,

4Indeed, another scheme based on non-injective F is also presented in [SRM20]. However, according to
the results presented in [BBM+22], we excluded such cases in this work.

N. Müller, A. Moradi 11

there is no necessity for an additional correction point before the computation of R1.
However, if R0 and R1 are both non-linear, this would necessitate additional circuitry to
implement multiple correction points. In this case, two individual correction points are
required to correct the inputs of R0 and R1 respectively. It is worth noting that the round
function can be decomposed into multiple sub-functions, as opposed to having just one
linear and one non-linear sub-function. An extreme example of this approach is illustrated
in [BKHL20], where a correction point is introduced for each non-linear gate. While this
strategy simplifies the achievement of the independence property, it is important to consider
that the substantial increase in the number of correction points could potentially result in
an impractical area overhead, depending on the specific target. Since we allow an adversary
to introduce up to f faults per clock cycle, it is important to note that the number of
faults to be corrected between two correction points is effectively doubled, as observed
in [SRM20]. To illustrate this, consider an adversary with the capability to inject a single
fault per clock cycle. Exemplary, the adversary can fault the input of a specific register
in one clock cycle and fault the output of another register in the subsequent clock cycle.
In this scenario, the fault introduced at the register’s input is propagated to its output,
resulting in two simultaneous faults on register outputs. Consequently, the underlying
ECC must be designed to correct for a total of 2f faults to achieve (f, τbf , mc∞)-fault
security.

3 Technique
In this section, we present AGEFA’s procedure (cf. Figure 4) for converting an unprotected
implementation into a fault-resistant design, utilizing the technique outlined in Impeccable
Circuits II [SRM20]. We have chosen to adopt the scheme due to its assurance of security
within our designated fault adversary model, a feat that, practically, cannot be achieved
through the application of, for instance, cipher-level MV. Additionally, Impeccable
Circuits II provides a high degree of flexibility in its implementation, primarily through
the ability to decompose the round function as needed. This flexibility permits us to
optimize protection in two vital dimensions: latency and area. On one hand, we can opt
for no decomposition to minimize the latency, while on the other hand, we have the option
to decompose the round function into multiple sub-functions to reduce the overall area
footprint at the cost of higher latency. Moreover, this flexibility allows us to experiment
with various configurations, enabling us to identify the most suitable one. This advantage
is a direct result of automation and would be unattainable through manual methods.

Fault-unprotected
Netlist

Attribute Report

Code Parameters

Attribute
Prop.

Corr.Point
Generation

Generate
Layers

Combine Modules
Independently

Write Final
Design

Fault-protected
Design

Figure 4: Procedure of AGEFA to protect a circuit against FI attacks.

AGEFA follows the process outlined in Figure 4. The process begins with receiving a
gate-level netlist written in Verilog. The given netlist implements no protection against FI
attacks but can be a masked implementation to be protected against SCA. To prepare
the netlist to be processed by AGEFA, the designer must first synthesize the behavioral-
level description of the design using a synthesizer such as Design Compiler (DC) [Inc] or
Yosys [Wol]. Additionally, for every primary input or output wire w, the designer has to
set attribute(w) through textual annotations in the netlist in the following manner:

12 AGEFA

• If wire w should be identified as the clock signal, it must hold that attribute(w) =
clock. In this work, we denote the clock signal as clk.

• If wire w should be identified as the reset signal, it must hold that attribute(w) =
reset. In this work, we denote the reset signal as rst.

• For every primary input or output wire w which carries a data signal (including plain-
text, ciphertext, and key), it must hold that attribute(w) = secure. Likewise, if w
carries a control signal, e.g. enable or done signals, it must hold that attribute(w) =
control. Further, for every primary input wire (resp. output wire) w, it holds that
w ∈ IN (resp. w ∈ OUT) iff attribute(w) = secure ∨ attribute(w) = control.

• If we assume that R = Rh−1 ◦ . . . R0, i.e. if the round function is a decomposition of
h sub-functions, and we abstract every sub-function with a module Rh−1, . . . ,R0, it
holds that attribute(w) = layer for every intermediate wire w with w ∈ INRi

∧w ∈
OUTRi−1 ∧ 0 < i ≤ h.

Once the annotated netlist is received, AGEFA applies a slightly modified version
of the AGEMA’s parser, resulting in a graph (G, W) that represents the netlist based
on the circuit model described in Section 2.2. We straightforwardly render R into a
separate set of modules R. Again, R ∈ R abstracts one coordinate function of R. If R
is decomposed, we create additional coordinate functions for every intermediate wire x
with attribute(x) = layer. More concretely, if attribute(x) = layer, we add a new
module X to R while OUTX = {x} and INX can contain primary input wires or other
intermediate wires w with attribute(w) = layer. Further, we render the register stage
into another set of modules FF while FF ∈ FF abstracts a single register. Based on this
representation of the circuit, AGEFA performs the following high-level steps.

• To generate a secure and efficient design, AGEFA sets all parameters mentioned in
Table 2 for every signal of the circuit.

• Based on the given message size k and fault cardinality 2f , AGEFA automatically
finds an efficient ECC including all operations required to construct a correction
point. For every operation required for the correction, AGEFA generates a module
that satisfies the independence property.

• AGEFA transforms all coordinate functions of the (decomposed) combinational logic
in a way that they fulfill the independence property.

• Subsequently, it proceeds to construct the three functions, as indicated by the dashed
red lines in Figure 3. In this process, AGEFA connects the generated functions,
each of which independently satisfies the independence property. Importantly, the
compositions are crucially designed to uphold the independence property.

• Lastly, AGEFA finalizes the protected design by connecting the cascaded functions.

3.1 Attribute Propagation
We repeat that the protection mechanism presented in Impeccable Circuits II [SRM20]
takes special care of the Finite State Machine (FSM) as injecting faults on the FSM
may change the control flow, i.e. enables an adversary to observe intermediate states
of the design. Therefore, AGEFA must distinguish between the protection of control
signals and data signals. While all w ∈ IN are already annotated, AGEFA automatically
determines all attribute(x) for every x ∈ ST and for every x ∈ FB (see Figure 1).
To propagate the attributes of the primary inputs through the circuit, we can apply
Algorithm 1 of [KMMS22] on R and FF. Hence, the following two rules apply.

N. Müller, A. Moradi 13

• For every R ∈ R, it holds for the output wire w ∈ OUTR that attribute(w) =
control if @x ∈ INR : attribute(x) = secure. Conversely, attribute(w) =
secure if ∃x ∈ INR : attribute(x) = secure.

• For every FF ∈ FF, it holds for the output wire w ∈ OUTFF that attribute(w) =
attribute(x) if x ∈ INFF denotes the input wire with attribute(x) 6= clock.

If AGEFA processes a masked design operating on multiple shares, we make sure that
the error-correction logic does not violate the SCA-security assumptions of the original
design. Specifically, if a masked design adheres to probing security (resp. composability)
under the robust probing model, the final masked and fault-tolerant design must similarly
guarantee probing security (resp. composability) under the same model. Implementing the
error-correction logic SCA-securely can be done share-wise, allowing each share domain to
be processed independently, thereby satisfying the PINI-notion. However, it is crucial to
ensure that the error-correction logic does not mistakenly combine shares from different
domains. To avoid this, each message (for encoding) must only contain shares from the
same share domain, which can be achieved by labeling every w ∈ ST with a corresponding
share domain, i.e. share_domain(w). The designer has to provide an additional report
assigning all w ∈ ST that carry shared variables to their corresponding share domain
share_domain(w)5. If a handcrafted masked implementation is given to AGEFA, the
designer must manually generate and provide the wires with their respective share domain,
i.e. in the synthesis script or the behavioral design, which might be a challenging task. On
the other hand, if the design is entirely made by secure and composable gadgets, such as
a result of AGEMA, we can annotate the required wires in each gadget separately and
propagate the annotation during the synthesis procedure6. However, if share_domain(w)
for a w ∈ ST is not specified in the report, e.g. in case of attribute(w) = control, we
set share_domain(w) = 0 while it holds that share_domain(w) > 0 for all w carrying a
shared variable. This annotation ensures that subsequent stages, such as Algorithm 5,
encode signals exclusively from the same share domain within a given message. We
acknowledge that annotating a masked circuit in this manner can be a tedious task.
Nonetheless, if we were to limit the annotation to only primary inputs of the circuit, we
would need to exercise greater caution when consolidating signals into the same share
domain. This cautious approach would, in turn, lead to a further increase in the area
overhead of the final result.

3.1.1 Optimizations

If the round function R can be expressed as the composition of two sub-functions, R = R1◦R0,
and R1 can be represented as a binary matrix with elements in Fk

2 , there is no need to
correct the inputs of R1 [AMR+20, SRM20]. Hence, avoiding an additional correction point
leads to a more efficient design w.r.t circuit size and latency. Therefore, AGEFA searches
in the module-based representation of R, denoted as R for a subset of modules R1 ⊂ R
where the instructions can be represented as the aforementioned matrix multiplication.
This procedure is twofold. First, AGEFA extracts all R ∈ R representing linear functions.
Then, AGEFA considers all linear R ∈ R as a linear layer and checks if the correction at
inputs can be safely removed.

To identify every R ∈ R representing a linear function, we create its Algebraic
Normal Forms (ANFs) based on INSTR and examine whether it exclusively comprises

5The report_attribute command ensures that Synopsys DC creates such a report.
6Technically, Yosys automatically propagates all user-defined attributes in the RTL code to the netlist,

unless the -noattr flag is set. For Synopsys DC, the designer must define an attribute for each gadget
type through define_user_attribute and propagate it via propagate_user_attributes command. This
procedure results in a separate attribute report that contains all nets with their corresponding attribute,
which then can be given to AGEFA.

14 AGEFA

Algorithm 1 Mark inputs of linear functions
Input: R . The module-based abstractions of the round function.
Input: FF . The module-based abstraction of the register stage.
Input: IN . The set of wires carrying primary input signals
Output: R . The round function with marked input and output wires.

1: R0 ← {R ∈ R|∃w ∈ OUTR : linear_index(w) = 0}
2: R1 ← R\R0
3: X← ∅
4: for ∀R ∈ R0 do
5: X← X ∪OUTR0

6: end for
7: Y← X
8: for ∀x ∈ X do . Check if the non-linear output is an input of only linear functions.
9: Z← {OUTFF |FF ∈ FF : x ∈ INFF} . Get the register output wire.

10: if @z ∈ INR|R ∈ R0 : z ∈ Z then
11: for ∀z ∈ Z do . Mark register outputs that are no inputs of linear functions.
12: linear_index(z)← 1
13: end for
14: end if
15: for ∀R ∈ R1 do . Consider linear layer outputs as inputs of another linear layer.
16: if @w ∈ INR : linear_index(w) = 0 ∧ w /∈ IN ∧ w /∈ Y then
17: X← X ∪OUTR
18: Y← Y ∪OUTR
19: end if
20: end for
21: X← X\{x}
22: end for

monomials with an algebraic degree of one. If R is confirmed to be abstract a linear
function, we mark w ∈ OUTR by setting linear_index(w) = 1. Otherwise, we set
linear_index(w) = 0. Additionally, it has been demonstrated in [AMR+20] that the
outputs of a multiplexer stage controlled by rst can be directly integrated into the following
linear layer without an additional correction. Thus, we set linear_index(w) = 1 not only
when R abstracts a linear function but also in cases where R represents a function with
non-linear components limited to multiplexers using rst as the select signal. Hence, it
holds that linear_index(w) = 1 if the ANF of R exclusively contains monomials with an
algebraic degree of one or monomials with an algebraic degree of two with rst as one of the
variables. This approach enables the identification of such multiplexers, even if they are not
explicitly represented by dedicated multiplexer modules in the netlist but are expressed in
their underlying algebraic form. After this step, the output wire w of every R ∈ R is either
marked as linear (linear_index(w) = 1) or non-linear (linear_index(w) = 0) and we
denote the list of linear modules as R1 = {R ∈ R|∃w ∈ OUTR : linear_index(w) = 1}.
Similarly, we denote the non-linear modules as R0 = R\R1. To identify if R1 abstracts
one or multiple layer(s) which do not require additional correction, we apply Algorithm 1.
Initially, in Lines 3-7, Algorithm 1 creates two sets, X and Y, encompassing all output
wires of R0. In the following Lines 9-14, Algorithm 1 systematically examines each output
wire x ∈ X produced by a non-linear function, determining whether its signal is exclusively
propagated (though a register, as checked in Line 9) to the inputs of linear coordinate
functions. This criterion is satisfied iff the signal carried by x is not propagated to the
input of any R ∈ R0. To identify such wires, Algorithm 1 marks every input wire of
R1, denoted as z in Line 12, meeting this condition by setting linear_index(z) = 1.

N. Müller, A. Moradi 15

Algorithm 2 Remove the correction point
Input: L . The sorted linear layer with marked linear outputs
Input: INL, OUTL . A sorted list of input and output wires of L
Input: k . The message size
Output: L . The linear layer with updated linear outputs and inputs

1: q ← 0
2: for ∀w ∈ INL do
3: linear_index(w)← b q

k c+ 1
4: q ← q + 1
5: end for
6: for ∀w ∈ OUTL do
7: linear_index(w)← b q

k c+ 1
8: q ← q + 1
9: end for

10: for ∀q ∈ {0, k, 2k, . . . , |OUTL| − k} do
11: M← {Lq, . . . ,Lq+k−1} ⊂ L
12: for ∀(M,M∗) ∈M×M :M 6=M∗ do
13: if ∃w ∈ INM ∩ INM∗ : attribute(w) 6= reset then
14: for ∀w ∈ INL ∪OUTL do
15: linear_index(w)← 0
16: end for
17: end if
18: if |INM| 6= |INM∗ | ∨ (∃w ∈ INM ∧ @q ∈ INM∗ : linear_index(w) =

linear_index(q)) then
19: for ∀w ∈ INL ∪OUTL do
20: linear_index(w)← 0
21: end for
22: end if
23: end for
24: end for

Additionally, in Lines 15-20 the algorithm considers all output wires of linear functions
and assesses whether their signals are exclusively propagated to the inputs of other
linear coordinate functions. This step enables the detection of multiple cascaded linear
layers. Ultimately, all elements R ∈ R possessing solely linear inputs and outputs
are identified as constituting a linear layer. Formally, we denote the linear layer as
L = {R ∈ R|@w ∈ OUTR ∪ INR : linear_index(w) = 0} with a joint set of primary
input wires INL and primary output wires OUTL. We remark, that both sets INL
and OUTL must be sorted based on the signal names. Utilizing the information from
L, INL, and OUTL, the procedure presented in Algorithm 2 determines whether the
correction point can be removed from all wires in INL. Specifically, it examines if the
implementation of L can be represented as a binary matrix with elements in Fk

2 . A crucial
condition for such a representation is that both |INL| and |OUTL| are multiples of k,
except rst, which is encoded into a separate message. Consequently, rst within |INL| is
counted as k signals. If L satisfies this condition, indicating that |INL| and |OUTL| are
multiples of k, Algorithm 2 is executed. Otherwise, we set linear_index(w) = 0 for all
w ∈ INL ∪OUTL.

In Lines 2-9 of Algorithm 2, each k-bit message derived from the sorted primary wires
of L is assigned a distinct linear index greater than 0. This annotation signifies that no
correction is necessary. However, Algorithm 2 is responsible for verifying whether the
conditions for removing the correction are indeed met. If not, Algorithm 2 resets all linear

16 AGEFA

Algorithm 3 Generation of a binary, linear, systematic, and injective [n, k, δ]-code.
Input: k, δ . Message size k and minimum distance δ
Output: C . A binary, linear, systematic, and injective [n, k, d]-code

1: C← ∅
2: for X = 0 to 2k − 1 do . Iterate through all possible messages
3: X ′ ← 0 . X ′ stores the parity of X
4: Y ← 〈X|X ′〉
5: while ∃Z : 〈T |T ′〉 ∈ C s.t. HD(Y, Z) < δ ∨ X ′ = T ′ do . Check codeword Y
6: X ′ ← X ′ + 1
7: Y ← 〈X|X ′〉
8: end while
9: C← C ∪ {Y } . Add the new codeword to the code

10: end for

indices to 0 (cf. Lines 15 and 20). This reset implies that correction is required for all
signals. To assess this, AGEFA iterates through all chunks consisting of k modules and
stores both their inputs and linear indices. Two conditions must be satisfied to warrant
the removal of the correction point.

1. The same input signal (except the signal carried by rst) must not be distributed
across multiple coordinate functions forming a k-bit message. This condition is
examined in Line 13.

2. Each coordinate function forming a k-bit message should receive the same number
of inputs with identical linear indices. This condition is examined in Line 18.

It is important to note that the question whether the correction logic can be removed or
not depends on the order of the wires in INL and OUTL We specifically examine only the
case where INL and OUTL are sorted based on the wire names while also unsorted INL
and OUTL can lead to a removed correction point. However, validating all these diverse
orderings is computationally infeasible. Instead, we choose this sorted representation based
on the belief that it is likely to be implemented, given that it results in a k-bit message
for k subsequent bits of a larger state. To illustrate, in the context of a cipher with a
64-bit round state {x0, . . . , x63}, and k = 4, we assume that a matrix representation in F4

2
is implemented by considering sets such as 〈x0, x1, x2, x3〉, . . . , 〈x60, x61, x62, x63〉 as 4-bit
messages. In other words, we assume that a designer would interpret the 64-bit state as 16
subsequent 4-bit words. However, if the designer chooses another representation, AGEFA
cannot remove the correction point resulting in a design that is still secure but not as
efficient as possible.

3.2 Correction Point Generation
The designer specifies the code parameters, i.e. the message size k and the maximum number
of faults to correct within one clock cycle, usually set to 2f to achieve (f, τbf , mc∞)-fault
security. Utilizing these parameters, AGEFA estimates the appropriate ECC parameters
[n, k, δ]. As outlined in Lemma 2 and Section 2.4.3, it holds that n ≥ 2k. Further, the
underlying ECC must correct 2f faults, hence δ = 4f + 1.

3.2.1 Error-Correcting Code (ECC) Generation

The procedure for finding a binary, linear, systematic, and injective [n, k, δ]-code, denoted
as C which is a vector subspace of Fn

2 is outlined in Algorithm 3. It processes every
message X by assigning a parity X ′ and generating the codeword Y = 〈X|X ′〉. In Line 5,

N. Müller, A. Moradi 17

it is checked if Y can be added to C without violating the code’s minimum distance and
injectivity, i.e. by checking if the minimum distance of Y and all other codewords of C is
sufficient and by ensuring that no other codeword in C shares X ′ as parity. As long as Y
is not a suited codeword for C, we increment its parity X ′ until the codeword satisfies
all the requirements. Algorithm 3 repeats this procedure until all X ∈ Fk

2 are associated
with a corresponding X ′ in C. The presented procedure follows a Greedy approach for
constructing a, so-called, lexicographic code [CS86, Con90]. We remark that (1) such a
code exists for all possible k and d [BP93], (2) the resulting codes are provably linear,
systematic, and injective [Lev60, CS86, BP93], and (3) n is usually minimal [CS86]. The
injectivity and systematicity of the code generated by Algorithm 3 are easily provable due
to the algorithm’s nature. However, the linearity of the code is not immediately apparent.
A lexicographic code, where the codewords are arranged and iterated in lexicographic
order, was first proven to be linear by Levenshtein [Lev60]. Brualdi et al. later generalized
this proof to lexicographic codes generated using arbitrarily ordered bases of Fn

2 , resulting
in a lexicographic ordering on the coefficient vectors [BP93]. As Algorithm 3 iterates
through the codewords in lexicographic order, the generated codes are also linear by
extension of the aforementioned proofs. In summary, Algorithm 3 leads to codes with
small parities and thus an efficient encoding. However, the designer is free to force AGEFA
to employ a certain ECC that better fits particular needs. From C, we derive the mapping
P : Fk

2 → Fn−k
2 between messages X ∈ Fk

2 and their corresponding parities X ′ ∈ Fn−k
2

in form of a lookup table. We compute the table lookup for an arbitrary message X as
X · P = X ′. Further, we generate the mapping P−1(.), again as a lookup table to map
arbitrary parities back to their corresponding messages.

3.2.2 Syndrome Decoder (SD) Generation

Algorithm 4 constructs the corresponding SD of the previously generated [n, k, δ]-code C. As
shown in Figure 2, we split the SD into two separate functions, namely S0 : E′⊕E ·P 7→ E
and S1 : E′ ⊕ E · P 7→ E′. As previously mentioned, we generate the mappings S0 and
S1 as lookup tables. Algorithm 4 generates mappings for all possible error vectors that
C can correct, specifically for error vectors with less than δ−1

2 faulty bits. In Line 3, the
syndrome is computed based on the error vector. The syndrome is subsequently mapped
to the corresponding parts of the error vector and stored as a mapping (lookup table) in
S0 and S1. These lookup tables are not complete, meaning that S0 and S1 do not cover all
〈E|E′〉 ∈ Fn

2 . We deal with such cases in the following section.

3.2.3 Algebraic Representation

To integrate P, P−1, S0, and S1 into a hardware design and to facilitate further steps, we
convert the lookup tables into a set of modules in accordance with Definition 1. We repeat
that a module can abstract complex operations consisting of multiple gates and inputs.
For every module M with |INM| = n inputs and |OUTM| = m outputs, it holds that

Algorithm 4 Generation of the Syndrome Decoder (SD).
Input: P, n, k, δ . Resulting ECC parameters from Algorithm 3
Output: S0, S1 . The corresponding SD with two mappings

1: S0 ← ∅, S1 ← ∅
2: for ∀〈E|E′〉 ∈ Fn

2 s.t. HW(〈E|E′〉) < δ−1
2 do . Generate error vectors to correct

3: T ← P(E)⊕ E′ . Compute the syndrome T
4: S0 ← S0 ∪ (T, E) . Add S0(T) = E to the mapping
5: S1 ← S1 ∪ (T, E′) . Add S1(T) = E′ to the mapping
6: end for

18 AGEFA

it can be formalized by an n-ary vectorial Boolean function with m coordinate functions.
However, we can also decompose the Boolean functions in a way that multiple vectorial
Boolean functions compute the module’s intermediates in TM while other functions process
the intermediates to compute the primary outputs OUT. We denote the resulting sets of
modules as P, P−1, S0, and S1 while every module in the set abstracts one coordinate
function of the respective operation, e.g. Pi denotes the i-th module in P abstracting
the i-th coordinate function of P. Further, it holds that none of the modules stores
intermediates, meaning that every module implements a Boolean function processing all
input signals to compute a single output.

Since all functions are injective, their corresponding lookup tables may contain don’t
care values. For example, S0 and S1 certainly have such cases as explained above. To
find the most efficient logic function that represents the lookup table even if it contains
don’t cares, we apply the Quine-McCluskey algorithm [Qui52, McC56] on every coordinate
function of the respective mappings. Hence, every mapping is translated from a lookup
table into its minimal sum-of-products form becoming efficient in terms of circuit size.
Finally, we store the generated Boolean function, i.e. the minimal sum-of-products form,
using a single instruction, in accordance with Definition 1, into the corresponding module.

3.2.4 Optimizations

Depending on the complexity of the combinational logic, choosing C with minimum n, as
shown in Section 3.2.1 may not always be the optimal approach. As an example, consider
an arbitrary linear, injective, and systematic [8, 4, 3]-code C which is capable of correcting
one fault in an 8-bit codeword with 4-bit message. It can be shown that it is possible
to implement the mapping P : F4

2 → F4
2, where a message X : 〈x3, x2, x1, x0〉 is mapped

to its corresponding parity X ′ : 〈x′
3, x′

2, x′
1, x′

0〉, using four separate coordinate functions
p0, p1, p2, p3 : F4

2 → F2 as follows.

x′
3 = p3(x3), x′

2 = p2(x2, x1), x′
1 = p1(x2, x0), x′

0 = p0(x3, x2, x1, x0)

According to Figure 3 and the explanations given in Section 2.4.3, the redundant part of the
round function, i.e. R′, is derived as F ◦ R ◦ F−1. We remark that each coordinate function
of R′ should satisfy the independence property. Therefore, the output of sub-functions
of R ◦ F−1 are the inputs of F, i.e. X in the above equations. Due to the independence
property, coordinate functions p0 to p3 cannot share any inputs. As an example, the circuit
which computes x2 must be instantiated three times as p0, p1, and p2 receive x2. In other
words, each input of the coordinate functions p0 to p3 should be individually generated.
This means that these coordinate functions need in total 9 individual inputs. As a side
note, there is no other [8, 4, 3]-code with a smaller number of individual inputs.

If we, artificially, increase the parity size by one bit, we achieve a linear, injective,
and systematic [9, 4, 3]-code with message-to-parity mapping Q : F4

2 → F5
2 which maps a

message X : 〈x3, x2, x1, x0〉 to its corresponding parity X ′ : 〈x′
4, x′

3, x′
2, x′

1, x′
0〉 with the

following five coordinate functions q0, q1, q2, q3, q4 : F4
2 → F2.

x′
4 = q4(x3), x′

3 = q3(x2), x′
2 = q2(x1), x′

1 = q1(x0), x′
0 = q0(x3, x2, x1, x0)

Despite the larger parity size, the coordinate functions of Q need in total only 8
individual inputs. We remark that the number of individual inputs of P (resp. Q) has a
decisive influence on the complexity of the design, i.e. circuit size, as R′ needs to employ
these message-to-parity mappings. Consequently, a mapping with a minimal number of
inputs per coordinate function can avoid multiple instances of the same combinational
sub-circuit, potentially saving more area than that of the additional parity. The specific size
of the circuit depends on the round function and the syndrome decoders, which generally
become more complex as the parity size increases. Therefore, the designer has to balance

N. Müller, A. Moradi 19

between fewer instances of individual coordinate functions belonging to the round function
and an increasingly complex SD.

To determine the optimal parity size, AGEFA automatically finds the parity size
resulting in the smallest number of individual inputs for the message-to-parity mapping.
This is done by incrementally increasing the parity size as long as the number of individual
inputs decreases and continuing with the code that results in the smallest number of
individual inputs. However, it is recommended to apply AGEFA on every design twice,
once with these optimizations and once without, to ensure that the optimizations truly
result in a decrease in the circuit size. If optimizing the parity size does not lead to a
smaller circuit, it can be concluded that the SD becomes too complex and that the smallest
possible parity size, i.e. AGEFA without optimizations, is a better choice.

3.3 Layer Generation
In contrast to the round function, P, P−1, S0, and S1, are designed to process a single
message (or parity) rather than the entire state ST. To correct ST, we have to decide
which signals of ST can be securely corrected within a single message and which signals
need to be processed separately. To address this limitation, we extend the modules to
operate on ST, as given below.

3.3.1 Generating Redundant State

To accurately encode every signal of the circuit state, it is necessary to construct the
redundant counterpart belonging to ST. Due to the importance of control signals, it
holds that, every x ∈ ST with attribute(x) = control builds its own message while
k data signals can be processed within the same message. In particular, we pad every
control signal x with k − 1 leading zeros, resulting in an (n − k)-bit parity, denoted as
X ′ = P(〈{0}k−1, x〉). Contrary, data signals are encoded as k-bit chunks, each of which
is denoted as X = 〈xk−1, . . . , x0〉 and results in (n− k)-bit parity, derived as X ′ = P(X).
X is only padded with i leading zeros if only k − i data signals are available, i.e. if the
number of data signals is not a multiple of k bits. Furthermore, special care must be taken
when the given design is masked since the combination of multiple share domains of the
same variable within a k-bit message violates the security of masking. To transfer ST into
a padded state, denoted as SP, we apply Algorithm 5.

Before executing Algorithm 5, we cluster the unpadded state ST so that all signals with
the same attribute, the same share domain, and the same linear index appear in groups
one after the other while control signals make a distinct group. In Line 5 of Algorithm 5, a
separate message is generated for each control signal by padding the message with (k − 1)
zeros. To indicate leading zeros, we insert dummy signals driving constant zero into SP
which we denote as 0 ∈ SP (see Line 5). As control signals are usually unmasked, and
are associated to separate messages, their share domain can be neglected. In contrast,
data signals (processed in Lines 7-16) cannot be combined in the same message if their
share domains or linear indices are different. Therefore, we only combine data signals in a
message with the same parameters and start a new message as soon as we reach a data
signal with a different share domain or linear index. Finally, if the number of signals in a
message is smaller than k, we fill the remaining space with zeros, see Line 19. Note that
we process the feedback state FB in the same way to receive a padded feedback state
FP. Further, we remark that ST and FB are clustered in the same way meaning that
the signals of a certain register have the same index in both states. For example, ui ∈ SP
denotes the input signal of the i-th register while vi ∈ FP denotes its corresponding output
signal. Now, based on the padded data states SP and FP, we can create q · (n− k) signals
representing the corresponding parity states SP′ and FP′.

20 AGEFA

Algorithm 5 Secure padding of a state
Input: ST . An unpadded but clustered state, i.e. a set of signals
Input: k . The size of one message
Output: SP . A padded state, i.e. a set of signals

1: q ← 0
2: l← 0
3: for ∀w ∈ ST do
4: if attribute(w) = control then
5: SP← SP ∪

{
〈 {0}k−1, w〉

}
6: else
7: if share_domain(w) 6= q then
8: SP← SP ∪

{〈
{0}k−(|SP| mod k)〉}

9: q ← share_domain(w)
10: else
11: if linear_index(w) 6= l then
12: SP← SP ∪

{〈
{0}k−(|SP| mod k)〉}

13: q ← linear_index(w)
14: end if
15: end if
16: SP← SP ∪ {w}
17: end if
18: end for
19: SP← SP ∪

{〈
{0}k−(|SP| mod k)〉}

3.3.2 Extending ECC Modules

As depicted in Figure 3, FB must be given as an input state to the functions F of the
correction logic while both F compute the parity state depending on FB. Here, we refer
to the sets of outputs of the functions F as U′ and V′. We highlight that both states
indicate parity states as |U′| = |V′| = |FP′| and that we derive the wire names of U′

and V′ from FP′ by extending every wire name of FP′ with an unique extension. Both
functions F : Fq·k

2 → Fq·(n−k)
2 map FP as a state of q concatenated k-bit messages to a

state of q corresponding (n− k)-bit parities (U′ and V′). This functionality is achieved
through the parallel application of q instances of the modules in P, with each instance
processing a single message. Therefore, we start with creating an additional set of modules
F = {F0, . . . ,Fq·(n−k)−1} abstracting q · (n − k) coordinate functions fi : Fk

2 → F2. We
remark that every Fi ∈ F computes exactly one signal of the parity state U′. To instantiate
every Fi ∈ F we apply Algorithm 6.

Algorithm 6 receives the input state FP, the output state U′, the set of modules P,
the size of one message k, and generates the set of modules F. It investigates |P| outputs
for every k-bit chunk of the input state FP. If the investigated output signal is not driving
constant zero (as checked in Line 4), we create a new module that computes the output
signal based on the given k-bit input chunk in Line 5. The applied instructions are taken
from a particular module of P. As these instructions depend on the input and output
signals of P, we replace all signal names in the instructions with the input and output
signals of the new module.

More precisely, Algorithm 6 initially takes the first k signals from FP to compute the
first (n− k) signals from U′. Hence, it creates the first (n− k) modules {F0, . . . ,Fn−k−1}
while every module receives k signals from FP as input. As F is just the extension of P
to a full state, Fi ∈ {F0, . . . ,Fn−k−1} implements the same function as Pi ∈ P but on
different signals. Therefore, we can copy the instructions from Pi to Fi if we update the

N. Müller, A. Moradi 21

Algorithm 6 Extending ECC Modules
Input: FP, U′ . Input and output states
Input: P . Set of modules for one codeword
Input: k . The message size
Output: F . Sets of modules for the entire state

1: Z← ∅
2: for i ∈ {0, . . . , |FP|

b − 1} do . Iterate through each message
3: for j ∈ {0, . . . , |P| − 1} do . Iterate through each signal of a message
4: if wU′

i·|P|+j 6= 0 then
5: F← F ∪ {({wFP

(i+1)·k−1, . . . , wFP
i·k }, ∅, {wU′

i·|P|+j}, INSTPj
)}

6: end if
7: end for
8: end for

signal names in the instructions. Afterwards, Algorithm 6 continues with the next k input
signals until all messages are processed.

We repeat Algorithm 3 with V′ instead of U′ to receive the modules for the second
instance of the function F. The same can be done to produce F−1 but with P−1 instead
of P and appropriate input and output states. Further, the same strategy with S0 (resp.
S1) and appropriate input and output states can be applied to generate the SD modules
SD0 (resp. SD1). We remark that we do not apply Algorithm 6 to generate modules for
the linear layers as these modules can be straightforwardly generated. For example, if the
linear layer receives U′ and FP′ as inputs, the i-th module processes the i-th signal of U′

and FP′ to generate the corresponding single output signal.

3.3.3 Satisfying Independence Property

To establish a functional and correct design, it would be enough to implement a circuit
architecture in which all modules are connected based on their input and output wires, as
depicted in Figure 3. However, this design would lack robustness against potential faults,
if multiple signals, e.g. the outputs of the round function, fail to satisfy the independence
property.

Example 2 (One Advanced Encryption Standard (AES) round). In the context of a
single round of the AES cipher, it is notable that all coordinate functions of the S-box
share the same 8-bit input in a standard implementation, while the MixColumns operation
combines the 8-bit outputs of four different S-boxes to produce 32 output bits. As a result,
if a single-bit input of any S-box is faulty, the fault can propagate to every S-box output
bit and subsequently to every 32 output bits of MixColumns. This example highlights how
a single faulty intermediate in an AES round can potentially lead to several faulty bits in
the output state of the same cipher round.

To reduce the propagation of faults to a single output bit, such that every faulty
intermediate signal results in at most one faulty output bit, AGEFA connects all components
in a manner to ensure that no signal serves as a shared input for multiple modules. This
is accomplished by allowing only one output signal per module, such that no fault within
one module can propagate to multiple outputs. Although all generated modules are solely
independent, they must also be connected to other modules to form the desired functions.
This connection must be established without sharing intermediate signals between multiple
coordinate functions. To accomplish this, we follow a specific composing procedure (cf.
Algorithm 7), composing two sets of modules X and Y. Further, we can iteratively compose
the result of Algorithm 7, which is also a set of modules Z, with further sets of modules.

22 AGEFA

Algorithm 7 Compose two subsequent sets of modules fulfilling independence property
Input: X = {X0, . . . ,X|X|−1}, Y = {Y0, . . . ,Y|Y|−1} . Two subsequent sets of modules
Input: OUT = {o0, . . . , o|O|−1} . Set of primary output signals
Output: Z = {Z0, . . . ,Z|Z|−1} . Composed module set computing Z = Y ◦ X

1: Z← Y
2: for ∀Z ∈ Z do . Iterate though all subsequent modules
3: W← ∅
4: for ∀i ∈ INZ do . Iterate though all inputs of Z
5: if ∃X ∈ X : i ∈ OUTX then . Check if a signal is an output of X and input Z
6: W←W ∪ INX . All inputs X will become inputs of Z
7: TZ ← TZ ∪OUTX . All outputs of X become intermediates of Z
8: INSTZ ← INSTZ ∪ INSTX . Z computes TZ based on INSTX
9: TZ ← TZ ∪TX . All intermediates of X become intermediates of Z

10: end if . As i is processed, we can continue with the next input
11: if @X ∈ X : i ∈ OUTX ∧ i 6= 0 then
12: W←W ∪ {i} . If i is no connection, we consider i as input signal
13: end if
14: end for
15: INZ ←W
16: end for
17: for ∀X ∈ X do . Iterate though all primary outputs computed by X
18: for ∀o ∈ OUTX : o ∈ OUT do
19: Z← Z ∪ {X}
20: end for
21: end for

The algorithm takes as input two sets of modules X and Y, each representing a set
of coordinate functions corresponding to X and Y. The resulting output is a third set of
modules Z, with each element Z ∈ Z representing a coordinate function of the composition
of X and Y, i.e. Z = Y ◦ X. In other words, the goal is to construct coordinate functions
of Z = Y ◦ X while satisfying the independence property.

Algorithm 7 begins by building each coordinate function Z ∈ Z independently, starting
with the corresponding Y ∈ Y (cf. Line 2). In the subsequent lines 4-10, the algorithm
compares all inputs of Y with the outputs of every X ∈ X. If a match is found, i.e. a signal
that is the output of X and input of Y , the algorithm proceeds to connect Y independently
with X to Z. The specific steps involved in this connection process are detailed in Lines
6-8.

• In Line 6, all input signals of X become input signals of Z. Further, in Line 12, all
inputs of Y which are not computed by any X ∈ X become inputs of Z.

• In Line 7, the output signal of X , with connection to Y becomes an intermediate
signal of Z.

• In Line 8, all instructions of X become instructions of Z and all intermediates of X
become intermediates of Z (cf. Line 9).

We acknowledge that Line 8 of Algorithm 7 does not further investigate the instructions
of X before adding them to Z. However, this may result in multiple instructions computing
the same intermediate signal, which could lead to multi-driven signals. For instance, suppose
that Y has two distinct input signals that are output signals of modules X0 and X1. It is
possible that X0 and X1 both compute the same intermediate signal w ∈ TX0 ∧ w ∈ TX1 .
If this is the case, Z will contain two instructions that compute w, which is redundant. To

N. Müller, A. Moradi 23

address this issue, we include a post-processing step after executing Algorithm 7 where
we examine each IZ to ensure that each intermediate signal is computed only once. In
other words, we remove any instructions that compute an intermediate signal that has
already been computed. Moreover, particular attention must be given to primary outputs
computed by any module in X. These signals may be either directly wired out without
reaching a module in Y, resulting in no connection between the modules, or wired out
and also given as inputs to modules in Y, thus connecting X and Y while also being
primary outputs. To ensure the independence property is maintained, primary outputs are
automatically handled as outputs of Z. Therefore, if X computes a primary output, it is
added as an additional module to Z. This ensures that primary outputs are computed by
independent modules, even if they serve as intermediates in another module. Algorithm 7
handles primary outputs between two layers in Line 19.

3.4 Finalize
At this juncture, we have arrived at three sets of modules, each representing the sub-circuits
demarcated by red dashed boxes in Figure 3. Since these modules do not require any
further extensions, we can proceed to write them to the final design. Moving on, we can
create the modified register stage by utilizing ST, ST′, FB, FB′ along with the annotated
clock signal, and finally we can connect all the modules together in a top module, which
can then be printed to complete the final design.

If the circuit encompasses a signal indicating the termination of the cipher computation
(commonly identified as a done signal), we incorporate the multiplexer-based construction
from [SRM20] to avoid that faults injected on such a signal reveal intermediate states
to an adversary. Hence, we connect all primary outputs of the final circuit depicted in
Figure 3 together with the redundancy of the done signal to a multiplexer tree that only
forwards the primary output if there are less than δ

2 bits of the done codeword faulty.

4 Case Studies
To demonstrate the flexibility of AGEFA and the performance of the designs it generates,
we applied it to a wide range of publicly available unprotected cipher designs.

4.1 Design Sources
We target the complete cipher cores given in Table 2 of [KMMS22]. We took all the designs
from GitHub7 including both behavioral-level descriptions and Verilog netlists. All given
netlists were generated by Synopsys DC and the NanGate 45 nm standard cell library.
Their specifications are listed in Table 3.

For the unmasked cipher cores, we utilized the available Verilog netlists from GitHub
and annotated the primary inputs and intermediates according to the description given
in Section 3, which are then given to AGEFA. Where circuit decomposition was desired,
we decomposed CRAFT, Skinny64, and Midori into two sub-circuits, separating the
non-linear part and the linear part (without input correction). This procedure is in line
with the decomposition strategy outlined in [SRM20]. For the other cores, where the
correction of the linear part cannot be removed, we decided to further decompose the
linear part based on the diffusion properties of the cipher if it tends to reduce the area
footprint. On the other hand, if the designs are masked by AGEMA, we first synthesized
the behavioral-level result of AGEMA by Synopsys DC. Beforehand, we annotated every
register input or primary output of each respective gadget with its corresponding share
domain. Technically, this is done by introducing a new attribute share_domain in the

7https://github.com/Chair-for-Security-Engineering/AGEMA

https://github.com/Chair-for-Security-Engineering/AGEMA
https://github.com/Chair-for-Security-Engineering/AGEMA

24 AGEFA

Table 3: Full cipher implementation case studies.
Cipher Implementation Area Delay Latency

[kGE] [ns] [cycle]
AES-128 (serial) [DR02] Byte-serial enc. 3.3 0.83 227
AES-128 [DR02] Round-based enc. 9.9 1.85 11
Skinny64 [BJK+16] Round-based enc. w. 64-bit key 1.5 0.52 33
CRAFT [BLMR19] Round-based enc. wo. tweak 1.2 0.68 32
PRESENT-80 [BKL+07] Nibble-serial enc. 1.6 0.59 543
LED-64 [GPPR11] Round-based enc. 2.1 1.22 33
Midori-64 [BBI+15] Round-based enc./dec. 2.0 0.97 17

synthesis script. We also kept the annotation during synthesis and included register inputs
of the netlist in the attribute report along with their share domain.

4.2 Verification Setup
Since AGEFA produces behavioral-level designs, we proceeded to synthesize the output of
AGEFA and verify the resiliency of the resulting netlists against potential faults using VerFI,
an open-source tool for cryptographic fault diagnosis [AWMN20]. Available on GitHub8,
VerFI simulates faults on the netlist based on user-defined specifications and determines
whether the injected faults are detected and/or corrected. To provide a thorough security
analysis in our fault adversary model, we configured VerFI to exhaustively verify whether
all possible combinations of δ−1

2 toggle faults injected on arbitrary cells of the netlist
during every clock cycle are corrected. Hence, VerFI considers every possible fault during
its analysis. Further, if AGEFA processes a masked design, we additionally evaluated
the robust probing security of the resulting netlist with PROLEAD [MM22]. PROLEAD,
like VerFI, makes use of a simulator to determine the independence of distributions for
each possible robust probing adversary. We followed the evaluation guidelines provided
on the PROLEAD GitHub9 repository and conducted two separate evaluations for each
design. Specifically, we evaluated each design in compact mode10 using up to 100 million
simulations and in normal mode with an effect size of 0.1. We confirmed the robust probing
security of a design only if PROLEAD detected no leakage during both evaluations. We
remark that PROLEAD does not perform an exhaustive evaluation, i.e. not all input
vectors are checked. Hence, PROLEAD cannot provide a security proof as usually given
by formal verification tools, such as SILVER [KSM20], and ends up with a false-negative
probability of 10−5 when reporting the absence of leakage. However, since full cipher
designs protected against SCA and FI are quite large, exhaustive evaluations (e.g. by
SILVER) become infeasible while PROLEAD claims efficiency even for large circuits.

Finally, as a sanity check, we performed experimental SCA evaluations on selected
designs using an Field Programmable Gate Array (FPGA)-based setup. We measured
power consumption traces using a SAKURA-X board encompassing a Kintex-7 target
FPGA. We monitored the power consumption, recorded by a digital oscilloscope at a
sampling rate of 500 MS/s, at a shunt resistor inserted in the target FPGA’s Vdd path
while the target design received a stable 6 MHz clock. Using 100 million traces obtained
by encrypting either a fixed or a random plaintext for a constant key, we conducted a non-
specific (fixed vs. random) t-test to gain an impression about the first-order information
leakage of the design under test. This test compares the statistical properties of two groups
of traces and detects the presence of information leakage by estimating t-statistic values

8https://github.com/emsec/VerFI
9https://github.com/ChairImpSec/PROLEAD

10Compact and normal mode refer to the techniques of how probability distributions are estimated.

https://github.com/emsec/VerFI
https://github.com/ChairImpSec/PROLEAD
https://github.com/emsec/VerFI
https://github.com/ChairImpSec/PROLEAD

N. Müller, A. Moradi 25

Table 4: Fault-tolerant cipher cores with δ = 3 and smallest circuit size.
Implementation Area Delay Latency

[kGE] [overhead] [ns] [overhead] [cycle]
AES-128 (serial) 47.87 ×14.51 4.53 ×5.45 227
AES-128 141.64 ×15.74 7.76 ×4.19 11
Skinny64 9.45 ×6.30 1.17 ×2.25 33
CRAFT 6.63 ×5.53 1.36 ×2.00 32
PRESENT-80 15.71 ×9.82 3.18 ×5.39 543
LED-64 28.69 ×13.66 4.55 ×3.73 33
Midori-64 22.64 ×11.32 2.52 ×2.60 17

Table 5: Fault-tolerant cipher cores with δ = 3 and smallest critical path delay.
Implementation Area Delay Latency

[kGE] [overhead] [ns] [overhead] [cycle]
AES-128 (serial) 58.37 ×17.69 2.92 ×3.52 227
AES-128 475.05 ×47.98 3.28 ×1.77 11
Skinny64 9.45 ×6.30 1.17 ×2.25 33
CRAFT 9.38 ×7.82 1.12 ×1.65 32
PRESENT-80 21.16 ×13.23 1.39 ×2.36 543
LED-64 44.40 ×21.14 2.19 ×1.80 33
Midori-64 32.85 ×16.43 1.67 ×1.72 17

for every single sample point based on student-t distribution [SM15]. In this work, we
depict the t-values for the first- and second-order statistical moments.

4.3 Unmasked Designs
We start with the unmasked designs summarized in Table 3. For every cipher core, we
investigated eight different message sizes k, from 1 to 8, and two different minimum
distances δ = 3 and δ = 5. Technically, a code that satisfies δ = 3 can correct a single fault
while δ = 5 enables the correction of two faults. We remark that the underlying code of
the presented scheme must satisfy the correction of two faults per cycle (δ = 5) in order
to be (1, τbf , mc∞)-fault secure. The detailed results including the circuit sizes and the
critical path delays for every experiment are given in Appendix A while we summarize
the results leading to the best performance in terms of circuit size and critical path delay
in Table 4 and Table 5. We remark that AGEFA does not add additional latency to any
design. Hence, the number of required clock cycles stays the same as in Table 3.

The results depicted in Table 4 and Table 5 demonstrate the significant impact of
the message size k and the applied decomposition on the generated designs. As a result,
we can provide practical recommendations for AGEFA’s settings based on the specific
requirements of the designer.

Recommended message sizes. Our observations indicate that the most area-efficient
designs are generated by using k = 2 or k = 4. These message sizes offer a good trade-off
between the number of bits per message, i.e., the number of parallel messages processed,
and the area requirements to process one message. However, using k = 1 leads to a slightly
larger, but still small, circuit size compared to the designs generated with k = 2 and k = 4
due to the high number of messages and required parallel instances of correction logic.
Additionally, larger codes with k > 4 become inefficient in terms of area and latency as
they require increasingly complex correction logic. Moreover, most cipher cores process

26 AGEFA

states with sizes that are multiples of 4, leading to less padding. This explains why designs
with k = 8 perform better than, e.g. k = 7, even though the code becomes more complex.
Therefore, to optimize the area overhead, we recommend using codes with 2 ≤ k ≤ 4.
For designers seeking optimization for a short critical path delay, k = 1 appears to be
the best choice. In this case, AGEFA applies the same correction logic as for MV but
to correct faults during every round. In our experiments, setting the message size k = 1
consistently yielded the shortest critical path delay for almost every design. This outcome is
because the MV code simply duplicates the data signal to build redundancy. Consequently,
the mapping between 1-bit messages and their redundant counterparts and vice versa is
achieved through wiring, i.e., without any additional computation. Hence, only the SDs
contributes to increasing the critical path delay. However, MV codes are usually large, as
they cannot be realized with a code size of 2k. Therefore, they may not be the best choice
when seeking area-optimized results. It is important to note that these recommendations
should not be considered as strict rules and may not always apply. Therefore, we suggest
exploring multiple designs generated with different message sizes before finalizing the
design choice.

Recommended decomposition strategy. The impact of decomposition becomes particu-
larly evident when applied to complex functions, such as the AES-128, and in scenarios
where no correction is needed for the linear layer such as CRAFT and Skinny64. There-
fore, we recommend decomposing the circuit into a linear and a non-linear part whenever
it is feasible to remove the correction for the linear component. However, in the case
of lightweight ciphers, where removing the correction of the linear layer is not possible,
decomposition seems to hurt the area and latency overheads. This is because restricting
fault propagation does not justify the costs of additional correction logic. This observation
holds since the round function of lightweight ciphers – in contrast to the round-based AES
– are simple and the faults cannot propagate extensively. For more complex functions,
even the incorporation of multiple additional correction layers can result in a smaller
area overhead while the results without decomposition become impractical. Therefore, we
recommend decomposing complex functions in general to avoid obtaining impractically
large results.

4.3.1 Verification

Our verification with VerFI demonstrated that all injected faults, except for the gate
responsible for computing the done signal, become ineffective. However, such a fault
is detected and reveals no information to the adversary since no intermediate state is
forwarded to the primary output.

4.4 Masked Designs
We selected CRAFT to examine the application of AGEFA on masked implementations.
This selection is justified by its comparably small area footprint and moderate latency,
making it easier to verify using both tool-based and experimental analyses. Due to the same
reason, we restrict our experiment to a first-order masked version of CRAFT protected
by a code with minimum distance δ = 3. AGEFA’s generated fault-tolerant version of
masked CRAFT is still small enough to be verified with PROLEAD in a feasible time
and using a realistic amount of memory. Additionally, the design is still compact enough
to fit on our FPGA-based setup for experimental analysis, and the length of the power
consumption traces remains practical. The above arguments highlight that the decision to
use CRAFT was purely based on verification considerations. However, AGEFA itself is
capable of handling, even higher-order masked versions of all ciphers discussed above in a
matter of minutes. Below, we describe our design flow in detail.

N. Müller, A. Moradi 27

• We started with the behavioral-level description of CRAFT and synthesized it with
Synopsys DC and NanGate 45 nm library to receive a Verilog netlist. The synthesized
design has an area footprint of 1.21 kGE and a critical path delay of 0.68 ns.

• To process the netlist with AGEMA, we annotated the primary inputs directly in
the Verilog file by marking all signals related to the plaintext or key as secure. This
was done to ensure that AGEMA produces a design with masked plaintext and key.
Additionally, we adjusted AGEMA to use first-order (d = 1) protection and to apply
HPC2 gadgets [CGLS21] to protect the given netlist. Further, we adjusted AGEMA
to operate in the naive mode, which involves replacing every cell that needs to be
masked with its HPC2 variant and to produce a non-pipeline design. Compared to a
pipelined version of the same design, this approach significantly reduces the overall
circuit size by avoiding additional pipeline registers, but at the cost of being able
to encrypt only one plaintext in each cipher run. As a result, AGEMA produced a
masked behavioral-level design of the given netlist which is provably secure under
the (1, 1, 0)-robust 1-probing model, i.e. first-order glitch- and transition-extended
probing secure.

• We synthesized the masked behavioral-level design along with the provided HPC2
gadgets obtained from AGEMA’s GitHub. Beforehand, we extended our synthesis
script to define the share_domain attribute for every masked gadget and set the
share_domain attribute for every register input for each gadget separately. Finally,
we adjusted our synthesis script to generate the attribute report. The masked design
provided by AGEMA has an area footprint of 10.84 kGE and a critical path delay of
1.12 ns.

• The synthesized netlist of the masked design serves as the input of AGEFA. We
annotated all data inputs, i.e. the masked plaintext and key signals as secure while
we annotated the register enable and done signal as control. Next, we applied
AGEFA to generate a fault-tolerant design using ECCs capable of correcting a single
fault (δ = 3). It is important to note that δ = 3 is not sufficient for security under the
(1, τbf , mc∞)-fault model, but it facilitates the verification process. By setting k = 1,
every single bit is seen as a separate message. As a side note, the resulting design
does not require the attribute report to maintain probing security if all registers are
realized with separate modules. Each message contains only k = 1 bit which avoids
any two signals from different share domains being combined in a syndrome decoder.
This is not the case for any other implementation with k > 1, and the attribute
report generated by the synthesis script is strictly required.

• To receive the final netlist allowing us to use PROLEAD and VerFI to evaluate
the results, we synthesized both behavioral-level designs generated by AGEFA with
Synopsys DC using NanGate 45 nm library. The final masked and fault-tolerant
design has an area footprint of 112.46 kGE and a critical path delay of 1.47 ns.

4.4.1 Verification

Similar to the unmasked designs, our verification with VerFI led to the conclusion that all
considered faults are corrected. We also verified the security of the given design under
the (1, 1, 0)-robust 1-probing model using PROLEAD. Using 100 million simulations,
PROLEAD reported the highest probability for detectable leakage as − log10(p) = 5.88.
Since PROLEAD assumes a false-positive probability of 10−5, the original authors claim
that exceeding the 5.0 threshold is not a strict criterion for insecure designs if the number
of considered probing sets is quite high. Since in our case study, there are 150 560 possible
robust probing sets, the probability of at least one probing set surpassing the threshold is

https://github.com/Chair-for-Security-Engineering/agema

28 AGEFA

0 10 20 30 40 50 60
Time (µs)

P
ow

er
(a) A sample trace.

0 10 20 30 40 50 60

−4

−2

0

2

4

Time (µs)

t-
st

at
is

ti
cs

(b) 1st-order t-test.

0 10 20 30 40 50 60
−3
−2
−1

0
1
2
3 ·102

Time (µs)
t-

st
at

is
ti

c

(c) 2nd-order univariate t-test.

Figure 5: FPGA-based fixed versus random t-test using 100 million traces, masked
CRAFT, first-order HPC2 with [3, 1, 3]-ECC.

1− (1− 10−5)150560 = 77.81%. Additionally, we observed that the probabilities did not
increase when we considered more simulations. Therefore, we conclude that the surpassed
threshold is due to a false positive, i.e., the underlying design maintains first-order security.

To verify the absence of leakage, we conducted experimental analyses using the setup
detailed in Section 4.2 that yielded the results depicted in Figure 5. Given that the design
is anticipated to possess only first-order security (with 2 shares), we expected the absence of
leakage in the first order, as confirmed by Figure 5b, as well as the presence of higher-order
detected leakages, which is evident from Figure 5c.

4.5 Benchmark
In addition to evaluating the security of the hardware designs produced by AGEFA, it is
crucial to analyze the performance of the tool itself, specifically in terms of runtime. To
this end, we conducted runtime measurements of AGEFA while generating each of the
individual case studies. Our measurements were performed on a standard laptop with an
i7-10610U CPU running at a clock frequency of 1.80 GHz, and 16 GB of RAM. We used
the Ubuntu 20.04 subsystem running on Windows 10 as the environment for executing
AGEFA. The runtime measurements are depicted in Figure 6.

For δ = 3, there are significant differences in the runtime of AGEFA when optimizations
are turned on versus when they are turned off. Notably, artificially increasing the code
size becomes the primary bottleneck if the message size increases while the optimized
variant is usually faster than without optimizations if k < 5. When the message size is
sufficiently small, the time saved by finding minimal Boolean functions can outweigh the
time required to perform the code optimization. This explains the lower runtime observed
when AGEFA optimizes the code. Upon analyzing Figure 6, we can conclude that finding
an optimized code with k = 9 would take hours, and further increasing the message size or
the minimum distance would make this optimization computationally infeasible. However,
it is essential to emphasize the following points:

• The process of finding an optimized ECC is independent of the specific netlist being

N. Müller, A. Moradi 29

processed. Thus, it is sufficient to find a code with specific k and δ once and reuse it
for subsequent designs. This approach allows for the precomputation of ECCs for
arbitrary parameters and the use of these precomputations as a database for AGEFA.
If a code with specific parameters already exists in the database, AGEFA can simply
load the code from the database and skip the code generation process. This strategy
can significantly reduce the runtime of AGEFA and make the optimization of ECC
computationally feasible for larger message sizes.

• Iteratively checking a large number of codes for their applicability, as they are required
to find an optimized code, can be efficiently performed in parallel. Therefore, the
aforementioned database of precomputed ECCs can be created on a more powerful
machine using multiple threads.

• All case studies imply that large message sizes lead to inefficient designs. Hence,
generating large codes should generally be avoided.

If the code optimization is disabled, optimizing Boolean functions with the Quine-
McCluskey algorithm can become time-consuming when correcting multiple faults, i.e.
as δ grows. However, optimizing Boolean functions is optional and can be avoided by
replacing don’t cares with concrete results, albeit at the cost of performance. Additionally,
this optimization is mostly problematic for large message sizes, which lead to inefficient
designs. For instance, generating designs with a code that satisfies k = 6 was the most
time-consuming case in our experiments with δ = 5, taking just around an hour.

4.6 Comparison
When evaluating the performance of our constructions, it is important to compare them to
hand-crafted designs, in which countermeasures are manually implemented by the designer
rather than through automated tools. This comparison involves two key aspects. Firstly,
we assess how AGEFA processes masked designs generated by AGEMA in comparison
to manually masked designs. Secondly, we evaluate how arbitrary designs generated by
AGEFA compare to designs where error correction is manually implemented.

4.6.1 Hand-Made Masked Designs vs. AGEMA-Generated Designs

In the context of SCA, an extensive discussion on the advantages and disadvantages of
using composable gadgets, as automatically instantiated by AGEMA, versus handmade
masking is given in [KMMS22]. Hand-crafted masked circuits are often more efficient under
some performance metrics, such as area, latency, or demand for fresh randomness, but can

1 2 3 4 5 6 7 8
100

101

102

103

104

Message Size (bits)

R
u

nt
im

e
(s

)

AES-128(serial) AES-128 Skinny64
CRAFT PRESENT-80 LED-64

Midori-64 wo. opt, wo. dec wo. opt, w. dec
w. opt, wo. dec w. opt, w. dec

Figure 6: Runtimes of AGEFA for all case studies with δ = 3.

30 AGEFA

Table 6: Comparison of different CRAFT designs.
Implementation Area Delay Latency

[kGE] [overhead] [ns] [overhead] [cycle]
Unprotected [SRM20] 1.1 - 0.55 - 32
Cipher-level MV (δ = 3) [SRM20] 4.5 ×4.1 1.0 ×1.8 32
Cipher-level MV (δ = 5) [SRM20] 7.7 ×7.0 1.0 ×1.8 32
Impeccable Circuits II (δ = 3) [SRM20] 5.2 ×4.5 0.87 ×1.6 32
Impeccable Circuits II (δ = 5) [SRM20] 21.6 ×19.6 1.1 ×2.0 32
Unprotected [this work] 1.21 - 0.68 - 32
AGEFA (δ = 3) [this work] 6.63 ×5.5 1.12 ×1.7 32
AGEFA (δ = 5) [this work] 29.88 ×24.7 1.56 ×2.3 32

be difficult to verify and evaluate. Although PROLEAD can evaluate full masked cipher
cores, evaluating higher-order designs may be infeasible due to the high demand on runtime
and memory. Composable gadgets achieve higher-order provable security by design but at
the cost of some overhead. If AGEFA processes a design made out of composable gadgets,
the overhead compared to a hand-crafted design is multiplied by at least a factor of two due
to the addition of redundancy, i.e. the second instantiation of the round function. However,
it is important to note that this overhead applies to all target circuits and is not unique to
masked designs generated by AGEMA. Furthermore, error correction typically involves
redundant computation, which cannot be avoided. Therefore, the overhead is not specific
to AGEFA and would also arise if the designer manually integrates an error-correction
facility. As demonstrated above, preserving the robust probing security of a hand-crafted or
automatically generated masked circuit when applying AGEFA is straightforward when it
is adjusted to set k = 1. However, if the user applies another code with k > 1, annotating
every register input and primary output with its corresponding share domain can be
complicated and error-prone. If we pre-annotate the gadgets of AGEMA, the designs can
be processed by AGEFA together with an attribute report (generated by the synthesizer
like DC) to integrate arbitrary ECCs without violating the robust probing security.

4.6.2 Hand-Made Fault-Resistant Designs vs. AGEFA-Generated Designs

Impeccable Circuits II [SRM20]. Initially, we compare the manually protected designs
of CRAFT from [SRM20] with the outcomes of AGEFA. Given that the synthesis script
utilized to generate the outcomes in [SRM20] is not publicly accessible, we have opted to
provide not only the absolute performance metrics but also the relative area and delay
overheads when compared to the unprotected design. Specifically, we present the overheads
for the synthesized AGEFA-generated designs in relation to the unprotected input design
of AGEFA, which we synthesized by ourselves. The performance metrics are detailed in
Table 6.

While we acknowledge that cipher-level MV leads to more area-efficient designs com-
pared to the application of Impeccable Circuits II, we must emphasize once more that
cipher-level MV falls short of guaranteeing the desired security level (see. Section 2.4.2).
Further, the hand-crafted Impeccable Circuits II design with δ = 3 incorporates a non-
injective code which complicates the fair comparison to the design generated using AGEFA.
To make a truly equitable comparison, we focus on the design for δ = 5, where both
the hand-crafted version and the AGEFA result employ injective codes, and the circuit
decomposition is consistent. Upon examination, we observe that the AGEFA-generated
design exhibits an approximately 26% increase in relative area overhead and an approxi-
mately 15% increase w.r.t the critical path delay compared to the hand-crafted design.
However, it is essential to note that manual protection of the design offers opportunities
for optimization of the target cipher itself, specifically tailored to minimize overhead. Such

N. Müller, A. Moradi 31

optimizations are not feasible with AGEFA since it operates on a pre-synthesized netlist
where the target structure is at least partially removed. Consequently, we posit that
optimizing the netlist before applying AGEFA may yield more area-efficient designs.

A Countermeasure Against SIFA [BKHL20]. The authors of [BKHL20] investigated
a [3, 1, 3]-code to protect Skinny against one-bit FI attacks. While they did not report
the relative area overhead of a real hardware design, they estimated the relative overhead
based on the number of basic logic gates. It is worth noting that such an estimated
overhead may tend to be overly optimistic, as it does not take into account additional logic
elements needed for signal distribution, such as gates with higher drive strength or buffers
instantiated to allow higher fan out. However, when considering the smallest design of
Skinny generated by AGEFA, we end up with a relative area overhead of 6.3 times which
is 12.5% higher compared to the relative overhead of 5.6 times reported in [BKHL20] while
the manual protection, again, allows a wider range of optimizations on the target cipher.
Again, we estimated the relative overhead of the AGEFA-generated design by comparing
it to our unprotected, synthesized Skinny design (see. Table 3).

4.7 Summary
We observe that the designs generated by AGEFA tend to be quite large, particularly when
considering the round-based implementation of the AES without any form of decomposition.
This characteristic makes these particular designs more suitable for academic exploration,
where our primary objective is to demonstrate the limitations and capabilities of AGEFA.
However, our findings indicate that when dealing with lightweight ciphers and/or employing
decomposition techniques, the results become more acceptable. In this context, we must
emphasize that we operate within a strong adversary model, wherein security cannot be
assured through significantly more cost-effective methods like cipher-level MV. Furthermore,
it is worth noting that AGEFA produces smaller designs when the unprotected design
is serialized (involving multiple cycles per cipher round) as opposed to the round-based
approach (with one cycle per cipher round). This introduces a trade-off between area and
latency. When we primarily provided round-based designs to AGEFA, we obtained designs
of substantial size but with relatively low latency.

5 Conclusions
In conclusion, this paper introduces AGEFA, a fully-automated and open-source framework
designed to enable engineers and hardware designers to generate fault-tolerant crypto-
graphic hardware circuits with ease and reliability. The framework leverages various
optimization techniques to implement the ECC-based procedure presented in Impeccable
circuits II [SRM20] on arbitrary hardware circuits, ensuring the improved performance
of the resulting designs. Our tool is effectively demonstrated through a series of case
studies that feature well-known symmetric block ciphers, providing insight into the diverse
performance trade-offs that arise based on the message size and number of faults to correct,
particularly in terms of area overhead and critical path delay. Our case studies yield specific
recommendations for creating area-optimized designs (by selecting k = 2 or k = 4 with
decomposition) or delay-optimized designs (by selecting k = 1 without decomposition),
depending on the desired outcome. Furthermore, we demonstrated that our tool naturally
extends the existing security-aware hardware design flow. AGEFA can add fault-tolerance
to masked circuits generated with AGEMA, without violating the given security proofs
under the robust probing security model by simply annotating internal signals of each
gadget. Hence, the combination of AGEMA and AGEFA allows for the generation of
fault- and SCA-secure hardware circuits from an unprotected netlist. We conducted

32 AGEFA

practical experiments and tool-based evaluations to demonstrate the fault-tolerance and
SCA resistance of the designs generated by our framework, further affirming our claims.
However, while our evaluation shows that the generated designs are secure against SCA
and FI adversaries individually, we cannot guarantee their security against combined
adversaries who apply both types of attacks simultaneously. Hence, further research in
extending AGEFA or AGEMA to ensure security against combined adversaries would be
a promising avenue to explore. Additionally, the substantial overhead attributed to error
correction can be mitigated in scenarios where assured error detection is deemed sufficient,
such as in Root-of-Trust (RoT) modules. Integrating error detection support into AGEFA
necessitates an additional output signal, signaling the injection of a fault while employing
an underlying EDC with a smaller minimum distance than that of an ECC. Hence, we
highlight the exploration of a fault-detection variant of AGEFA as a compelling avenue for
future research.

Acknowledgments
The work described in this paper has been supported in part by the German Research
Foundation (DFG) under Germany’s Excellence Strategy - EXC 2092 CASA - 390781972,
and through the projects 435264177 (SAUBER), by the Federal Ministry of Education
and Research of Germany through the Project KOSEF (16KIS1597).

References
[ADN+10] Michel Agoyan, Jean-Max Dutertre, David Naccache, Bruno Robisson, and

Assia Tria. When clocks fail: On critical paths and clock faults. In CARDIS
2010, volume 6035 of LNCS, pages 182–193. Springer, 2010.

[AMR+20] Anita Aghaie, Amir Moradi, Shahram Rasoolzadeh, Aein Rezaei Shahmirzadi,
Falk Schellenberg, and Tobias Schneider. Impeccable circuits. IEEE Trans.
Computers, 69(3):361–376, 2020.

[AWMN20] Victor Arribas, Felix Wegener, Amir Moradi, and Svetla Nikova. Cryptographic
Fault Diagnosis using VerFI. In HOST 2020, pages 229–240. IEEE, 2020.

[BBI+15] Subhadeep Banik, Andrey Bogdanov, Takanori Isobe, Kyoji Shibutani,
Harunaga Hiwatari, Toru Akishita, and Francesco Regazzoni. Midori: A
Block Cipher for Low Energy. In ASIACRYPT, volume 9453 of LNCS, pages
411–436. Springer, 2015.

[BBM+22] Timo Bartkewitz, Sven Bettendorf, Thorben Moos, Amir Moradi, and Falk
Schellenberg. Beware of Insufficient Redundancy An Experimental Evaluation
of Code-based FI Countermeasures. IACR TCHES, 2022(3):438–462, 2022.

[BDL97] Dan Boneh, Richard A. DeMillo, and Richard J. Lipton. On the impor-
tance of checking cryptographic protocols for faults (extended abstract). In
EUROCRYPT 1997, volume 1233 of LNCS, pages 37–51. Springer, 1997.

[BJK+16] Christof Beierle, Jérémy Jean, Stefan Kölbl, Gregor Leander, Amir Moradi,
Thomas Peyrin, Yu Sasaki, Pascal Sasdrich, and Siang Meng Sim. The
SKINNY Family of Block Ciphers and Its Low-Latency Variant MANTIS. In
CRYPTO, volume 9815 of LNCS, pages 123–153. Springer, 2016.

[BKHL20] Jakub Breier, Mustafa Khairallah, Xiaolu Hou, and Yang Liu. A countermea-
sure against statistical ineffective fault analysis. IEEE Trans. Circuits Syst.,
67-II(12):3322–3326, 2020.

N. Müller, A. Moradi 33

[BKL+07] Andrey Bogdanov, Lars R. Knudsen, Gregor Leander, Christof Paar, Axel
Poschmann, Matthew J. B. Robshaw, Yannick Seurin, and C. Vikkelsoe.
PRESENT: An Ultra-Lightweight Block Cipher. In CHES 2007, volume 4727
of LNCS, pages 450–466. Springer, 2007.

[BLMR19] Christof Beierle, Gregor Leander, Amir Moradi, and Shahram Rasoolzadeh.
CRAFT: Lightweight Tweakable Block Cipher with Efficient Protection
Against DFA Attacks. IACR Trans. Symmetric Cryptol., 2019(1):5–45, 2019.

[BP93] Richard A. Brualdi and Vera Pless. Greedy codes. J. Comb. Theory, Ser. A,
64(1):10–30, 1993.

[BS97] Eli Biham and Adi Shamir. Differential fault analysis of secret key cryptosys-
tems. In CRYPTO 1997, volume 1294 of LNCS, pages 513–525. Springer,
1997.

[CBG+17] Thomas De Cnudde, Begül Bilgin, Benedikt Gierlichs, Ventzislav Nikov, Svetla
Nikova, and Vincent Rijmen. Does Coupling Affect the Security of Masked
Implementations? In COSADE 2017, volume 10348 of LNCS, pages 1–18.
Springer, 2017.

[CEM18] Thomas De Cnudde, Maik Ender, and Amir Moradi. Hardware Masking,
Revisited. IACR TCHES, 2018(2):123–148, 2018.

[CGLS21] Gaëtan Cassiers, Benjamin Grégoire, Itamar Levi, and François-Xavier Stan-
daert. Hardware Private Circuits: From Trivial Composition to Full Verifica-
tion. IEEE Trans. Comp., 70(10):1677–1690, 2021.

[CGM+23] Gaëtan Cassiers, Barbara Gigerl, Stefan Mangard, Charles Momin, and Rishub
Nagpal. Compress: Reducing area and latency of masked pipelined circuits.
IACR Cryptol. ePrint Arch., page 1600, 2023.

[CJRR99] Suresh Chari, Charanjit S. Jutla, Josyula R. Rao, and Pankaj Rohatgi. Towards
Sound Approaches to Counteract Power-Analysis Attacks. In CRYPTO 1999,
volume 1666 of LNCS, pages 398–412. Springer, 1999.

[Cla07] Christophe Clavier. Secret external encodings do not prevent transient fault
analysis. In CHES 2007, volume 4727 of LNCS, pages 181–194. Springer, 2007.

[Con90] John H. Conway. Integral lexicographic codes. DM, 83(2-3):219–235, 1990.

[CS86] John H. Conway and Neil J. A. Sloane. Lexicographic codes: Error-correcting
codes from game theory. IEEE TIT, 32(3):337–348, 1986.

[CS20] Gaëtan Cassiers and François-Xavier Standaert. Trivially and Efficiently
Composing Masked Gadgets With Probe Isolating Non-Interference. IEEE
TIFS, 15:2542–2555, 2020.

[DEK+18] Christoph Dobraunig, Maria Eichlseder, Thomas Korak, Stefan Mangard, Flo-
rian Mendel, and Robert Primas. SIFA: exploiting ineffective fault inductions
on symmetric cryptography. IACR TCHES, 2018(3):547–572, 2018.

[DR02] Joan Daemen and Vincent Rijmen. The Design of Rijndael: AES - The
Advanced Encryption Standard. Information Security and Cryptography.
Springer, 2002.

34 AGEFA

[FGP+18] Sebastian Faust, Vincent Grosso, Santos Merino Del Pozo, Clara Paglia-
longa, and François-Xavier Standaert. Composable Masking Schemes in the
Presence of Physical Defaults & the Robust Probing Model. IACR TCHES,
2018(3):89–120, 2018.

[FJLT13] Thomas Fuhr, Éliane Jaulmes, Victor Lomné, and Adrian Thillard. Fault
attacks on AES with faulty ciphertexts only. In FDTC 2013, pages 108–118.
IEEE Computer Society, 2013.

[GMO01] Karine Gandolfi, Christophe Mourtel, and Francis Olivier. Electromagnetic
analysis: Concrete results. In CHES 2001, volume 2162 of Lecture Notes in
Computer Science, pages 251–261. Springer, 2001.

[GPPR11] Jian Guo, Thomas Peyrin, Axel Poschmann, and Matthew J. B. Robshaw.
The LED Block Cipher. In CHES, volume 6917 of LNCS, pages 326–341.
Springer, 2011.

[GST14] Daniel Genkin, Adi Shamir, and Eran Tromer. RSA key extraction via low-
bandwidth acoustic cryptanalysis. In CRYPTO 2014, volume 8616 of LNCS,
pages 444–461. Springer, 2014.

[GYTS14] Nahid Farhady Ghalaty, Bilgiday Yuce, Mostafa M. I. Taha, and Patrick
Schaumont. Differential fault intensity analysis. In FDTC 2014, pages 49–58.
IEEE Computer Society, 2014.

[HS13] Michael Hutter and Jörn-Marc Schmidt. The temperature side channel and
heating fault attacks. In CARDIS 2013, volume 8419 of LNCS, pages 219–235.
Springer, 2013.

[Inc] Synopsys Inc. Design compiler graphical. https://www.synopsys.com/.

[ISW03] Yuval Ishai, Amit Sahai, and David A. Wagner. Private Circuits: Securing
Hardware against Probing Attacks. In CRYPTO 2003, volume 2729 of LNCS,
pages 463–481. Springer, 2003.

[KJJ99] Paul C. Kocher, Joshua Jaffe, and Benjamin Jun. Differential power analysis.
In CRYPTO 1999, volume 1666 of LNCS, pages 388–397. Springer, 1999.

[KMMS22] David Knichel, Amir Moradi, Nicolai Müller, and Pascal Sasdrich. Automated
generation of masked hardware. IACR TCHES, 2022(1):589–629, 2022.

[Koc96] Paul C. Kocher. Timing Attacks on Implementations of Diffie-Hellman, RSA,
DSS, and Other Systems. In CRYPTO 1996, volume 1109 of LNCS, pages
104–113. Springer, 1996.

[KSM20] David Knichel, Pascal Sasdrich, and Amir Moradi. SILVER - Statistical
Independence and Leakage Verification. In Shiho Moriai and Huaxiong Wang,
editors, ASIACRYPT 2020, volume 12491 of LNCS, pages 787–816. Springer,
2020.

[Lev60] Vladimir I. Levenshtein. A class of systematic codes. volume 131, pages
1011–1014, 1960.

[LSG+10] Yang Li, Kazuo Sakiyama, Shigeto Gomisawa, Toshinori Fukunaga, Junko
Takahashi, and Kazuo Ohta. Fault sensitivity analysis. In CHES 2010, volume
6225 of LNCS, pages 320–334. Springer, 2010.

https://www.synopsys.com/

N. Müller, A. Moradi 35

[McC56] E. J. McCluskey. Minimization of boolean functions. The Bell System Technical
Journal, 35(6):1417–1444, 1956.

[Mea55] George H Mealy. A method for synthesizing sequential circuits. Bell Syst.
tech. j. 1955, 34(5):1045–1079, 1955.

[MM22] Nicolai Müller and Amir Moradi. PROLEAD A probing-based hardware
leakage detection tool. IACR TCHES, 2022(4):311–348, 2022.

[MMSS19] Thorben Moos, Amir Moradi, Tobias Schneider, and François-Xavier Standaert.
Glitch-Resistant Masking Revisited or Why Proofs in the Robust Probing
Model are Needed. IACR TCHES, 2019(2):256–292, 2019.

[Qui52] W. V. Quine. The problem of simplifying truth functions. The American
Mathematical Monthly, 59(8):521–531, 1952.

[RSG23] Jan Richter-Brockmann, Pascal Sasdrich, and Tim Güneysu. Revisiting Fault
Adversary Models - Hardware Faults in Theory and Practice. IEEE Trans.
Computers, 72(2):572–585, 2023.

[SA02] Sergei P. Skorobogatov and Ross J. Anderson. Optical fault induction attacks.
In CHES 2002, volume 2523 of LNCS, pages 2–12. Springer, 2002.

[SGD08] Nidhal Selmane, Sylvain Guilley, and Jean-Luc Danger. Practical setup time
violation attacks on AES. In EDCC-7 2008, pages 91–96. IEEE Computer
Society, 2008.

[Sha79] Adi Shamir. How to Share a Secret. Commun. ACM, 22(11):612–613, 1979.

[SM15] Tobias Schneider and Amir Moradi. Leakage Assessment Methodology - A
Clear Roadmap for Side-Channel Evaluations. In CHES 2015, volume 9293 of
LNCS, pages 495–513. Springer, 2015.

[SRM20] Aein Rezaei Shahmirzadi, Shahram Rasoolzadeh, and Amir Moradi. Impecca-
ble circuits II. In 57th ACM/IEEE DAC 2020, pages 1–6. IEEE, 2020.

[SSAQ02] David Samyde, Sergei P. Skorobogatov, Ross J. Anderson, and Jean-Jacques
Quisquater. On a new way to read data from memory. In IEEE SISW 2002,
pages 65–69. IEEE Computer Society, 2002.

[WFP+23] Lixuan Wu, Yanhong Fan, Bart Preneel, Weijia Wang, and Meiqin Wang.
Automated generation of masked nonlinear components: From lookup tables
to private circuits, 2023.

[Wol] Clifford Wolf. Yosys open synthesis suite. http://www.clifford.at/yosys/.

http://www.clifford.at/yosys/

36 AGEFA

A Performance Results of Unmasked Designs

Table 7: Synthesis results, δ = 3, without optimized code and without round function
decomposition, circuit size in kGE.

Cipher Message size k
1 2 3 4 5 6 7 8

AES-128 (serial) 58.37 55.28 61.74 50.97 69.40 68.78 71.52 57.39
AES-128 475.00 430.04 439.15 372.47 449.42 451.73 459.85 379.43
Skinny64 12.52 13.05 19.17 13.21 20.67 21.48 21.82 17.30
CRAFT 9.38 9.73 13.35 10.38 14.13 14.12 14.48 12.57

PRESENT-80 21.16 20.90 25.84 23.75 26.59 29.04 29.25 28.88
LED-64 41.71 39.97 44.40 36.10 44.52 44.80 45.65 41.35

Midori-64 30.93 32.90 43.80 36.93 44.65 44.66 45.07 39.79

Table 8: Synthesis results, δ = 3, without optimized code and without round function
decomposition, critical path delay in ns.

Cipher Message size k
1 2 3 4 5 6 7 8

AES-128 (serial) 2.92 3.12 3.31 3.32 3.32 3.65 3.38 3.57
AES-128 3.49 3.66 3.78 3.72 4.00 4.11 4.10 4.06
Skinny64 1.22 1.38 1.84 1.64 2.06 2.12 2.12 2.09
CRAFT 1.12 1.29 1.75 1.60 1.94 2.03 1.88 1.77

PRESENT-80 1.39 1.48 1.41 1.73 1.90 1.89 1.94 1.92
LED-64 2.37 2.48 2.19 2.22 2.37 2.40 2.57 2.55

Midori-64 1.70 1.69 2.05 1.99 2.42 2.52 2.58 2.85

Table 9: Synthesis results, δ = 3, with optimized code and without round function
decomposition, circuit size in kGE.

Cipher Message size k
1 2 3 4 5 6 7 8

AES-128 (serial) 58.37 55.28 56.72 55.17 58.21 58.95 60.51 59.25
AES-128 475.05 430.55 408.17 385.05 392.23 386.55 389.42 362.82
Skinny64 12.52 13.05 13.84 12.48 14.56 14.72 15.71 14.70
CRAFT 9.38 9.73 10.01 9.05 10.18 10.04 10.67 9.96

PRESENT-80 21.16 20.90 22.42 22.17 22.76 23.31 23.55 23.35
LED-64 41.71 39.97 39.69 36.22 38.54 38.13 38.97 37.86

Midori-64 30.93 32.85 33.38 30.63 33.14 32.81 33.30 31.51

Table 10: Synthesis results, δ = 3, with optimized code and without round function
decomposition, critical path delay in ns.

Cipher Message size k
1 2 3 4 5 6 7 8

AES-128 (serial) 2.92 3.12 3.18 3.22 3.23 3.17 3.23 3.39
AES-128 3.28 3.64 3.59 3.59 3.72 3.86 3.82 4.02
Skinny64 1.22 1.38 1.48 1.52 1.63 1.75 1.74 1.80
CRAFT 1.12 1.29 1.38 1.55 1.62 1.58 1.78 1.65

PRESENT-80 1.39 1.48 2.07 1.87 1.83 1.96 1.93 2.07
LED-64 2.37 2.46 2.35 2.50 2.56 2.60 2.53 2.64

Midori-64 1.70 1.67 1.76 1.82 1.83 2.00 2.02 2.29

N. Müller, A. Moradi 37

Table 11: Synthesis results, δ = 3, without optimized code and with round function
decomposition, circuit size in kGE.

Cipher Message size k
1 2 3 4 5 6 7 8

AES-128 (serial) 53.85 51.31 57.53 47.87 65.38 64.93 68.06 54.64
AES-128 142.51 142.59 179.36 166.28 199.95 191.84 199.59 176.17
Skinny64 9.45 10.06 19.30 10.04 21.76 22.05 23.19 13.34
CRAFT 7.20 7.25 12.92 7.28 14.78 14.88 15.83 8.63

PRESENT-80 15.71 16.74 22.66 20.62 23.75 26.00 26.02 25.79
LED-64 30.73 29.58 33.87 28.69 36.43 37.44 38.78 36.51

Midori-64 22.64 24.91 35.07 26.17 39.05 39.61 41.16 36.36

Table 12: Synthesis results, δ = 3, without optimized code and with round function
decomposition, critical path delay in ns.

Cipher Message size k
1 2 3 4 5 6 7 8

AES-128 (serial) 4.19 4.11 4.46 4.53 5.19 5.10 5.43 5.07
AES-128 4.41 5.77 7.71 7.28 8.02 8.52 7.84 9.47
Skinny64 1.17 1.37 2.30 1.47 2.61 2.65 2.71 2.05
CRAFT 1.35 1.37 2.08 1.35 2.39 2.26 2.65 1.45

PRESENT-80 3.18 3.27 3.17 3.35 3.40 3.31 3.57 3.58
LED-64 3.73 4.03 4.59 4.55 5.13 5.18 5.53 5.53

Midori-64 2.52 2.88 3.71 3.42 4.53 4.71 5.07 5.05

Table 13: Synthesis results, δ = 3, with optimized code and with round function decompo-
sition, circuit size in kGE.

Cipher Message size k
1 2 3 4 5 6 7 8

AES-128 (serial) 53.84 51.31 52.93 52.19 54.94 56.08 57.63 56.94
AES-128 142.72 142.59 142.48 141.64 148.39 147.48 152.02 146.25
Skinny64 9.45 10.06 13.38 9.84 14.61 14.86 16.06 11.53
CRAFT 7.20 7.25 11.02 6.63 11.66 11.83 12.64 7.27

PRESENT-80 15.71 16.74 18.47 18.43 19.17 19.78 20.04 19.94
LED-64 30.73 29.58 30.97 29.04 32.02 32.43 33.99 33.83

Midori-64 22.64 24.91 27.92 27.82 29.83 29.98 31.47 30.82

Table 14: Synthesis results, δ = 3, with optimized code and with round function decompo-
sition, critical path delay in ns.

Cipher Message size k
1 2 3 4 5 6 7 8

AES-128 (serial) 4.19 4.11 4.24 4.68 4.72 5.28 5.22 5.26
AES-128 4.40 5.77 6.52 7.76 8.50 7.96 8.01 8.81
Skinny64 1.17 1.37 1.96 1.41 2.26 2.49 2.56 1.38
CRAFT 1.35 1.37 2.16 1.36 2.28 2.35 2.37 1.36

PRESENT-80 3.18 3.27 3.45 3.35 3.57 3.52 3.67 3.69
LED-64 3.73 4.03 4.26 4.58 4.78 4.97 4.80 5.20

Midori-64 2.52 2.88 3.36 3.76 4.07 4.55 4.57 4.61

38 AGEFA

Table 15: Synthesis results, δ = 5, without optimized code and without round function
decomposition, circuit size in kGE.

Cipher Message size k
1 2 3 4 5 6 7 8

AES-128 (serial) 308.94 274.75 274.43 335.72 437.70 455.73 463.46 211.67
AES-128 1410.83 1173.13 1109.49 1233.04 1489.54 1454.25 1467.83 890.17
Skinny64 55.32 55.22 66.42 79.84 141.51 151.26 172.08 98.86
CRAFT 45.47 39.54 44.96 45.75 78.88 78.46 99.98 82.65

PRESENT-80 104.83 103.09 107.29 153.85 171.62 193.23 201.02 156.94
LED-64 180.20 144.65 148.35 145.94 207.74 208.62 220.16 184.81

Midori-64 160.61 140.31 150.79 169.08 245.90 251.23 256.48 200.35

Table 16: Synthesis results, δ = 5, without optimized code and without round function
decomposition, critical path delay in ns.

Cipher Message size k
1 2 3 4 5 6 7 8

AES-128 (serial) 3.25 3.42 3.57 3.73 4.13 4.02 4.64 3.98
AES-128 3.99 4.16 3.97 4.27 4.56 4.48 4.77 4.55
Skinny64 1.56 1.90 2.00 2.20 2.44 2.55 2.99 2.80
CRAFT 1.56 1.68 1.98 2.33 2.39 2.45 2.94 2.91

PRESENT-80 1.85 2.10 1.78 2.07 2.38 2.33 2.82 2.78
LED-64 2.59 3.07 2.90 2.67 2.92 2.90 3.13 3.26

Midori-64 2.02 2.33 2.31 2.43 2.79 2.98 3.15 3.15

Table 17: Synthesis results, δ = 5, without optimized code and with round function
decomposition, circuit size in kGE.

Cipher Message size k
1 2 3 4 5 6 7 8

AES-128 (serial) 297.87 268.37 268.30 336.97 437.50 459.78 466.19 209.97
AES-128 476.57 485.53 512.93 812.75 1045.05 1140.49 1247.28 832.30
Skinny64 39.87 40.88 67.35 60.46 155.06 170.23 193.60 76.23
CRAFT 30.02 26.86 51.82 29.88 105.45 110.61 126.23 50.33

PRESENT-80 82.02 87.46 95.65 144.44 167.61 190.93 200.32 155.64
LED-64 150.05 142.39 150.93 191.31 272.09 290.63 308.55 203.58

Midori-64 114.30 120.68 140.73 206.74 286.75 308.00 329.97 199.36

Table 18: Synthesis results, δ = 5, without optimized code and with round function
decomposition, critical path delay in ns.

Cipher Message size k
1 2 3 4 5 6 7 8

AES-128 (serial) 4.51 5.16 5.49 6.05 6.86 7.02 7.74 6.29
AES-128 5.88 7.87 8.58 10.87 12.02 12.99 13.44 12.39
Skinny64 1.40 1.68 2.59 2.04 3.73 4.04 4.52 2.93
CRAFT 1.79 2.05 2.62 2.14 3.71 3.72 4.48 2.79

PRESENT-80 4.14 4.48 4.17 4.60 4.75 4.66 4.49 4.64
LED-64 4.93 5.15 6.09 6.60 7.05 7.72 8.46 8.11

Midori-64 3.56 4.13 4.79 5.95 6.81 7.09 8.01 7.56

	Introduction
	Background
	Notations
	Circuit Model
	Security Models
	Countermeasures

	Technique
	Attribute Propagation
	Correction Point Generation
	Layer Generation
	Finalize

	Case Studies
	Design Sources
	Verification Setup
	Unmasked Designs
	Masked Designs
	Benchmark
	Comparison
	Summary

	Conclusions
	Performance Results of Unmasked Designs

