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Abstract. Certain applications such as FHE transciphering require randomness while oper-

ating over encrypted data. This randomness has to be obliviously generated in the encrypted

domain and remain encrypted throughout the computation. Moreover, it should be guar-

anteed that independent-looking random coins can be obliviously generated for different

computations.

In this work, we consider the homomorphic evaluation of pseudorandom functions (PRFs)

with a focus on practical lattice-based candidates. In the homomorphic PRF evaluation

setting, given a fully homomorphic encryption of the PRF secret key 𝒔, it should be possible

to homomorphically compute encryptions of PRF evaluations {PRF𝒔 (𝑥𝑖 )}𝑀𝑖=1
for public inputs

{𝑥𝑖 }𝑀𝑖=1
. We consider this problem for PRF families based on the hardness of the Learning-

With-Rounding (LWR) problem introduced by Banerjee, Peikert and Rosen (Eurocrypt ’12).

We build on the random-oracle variant of a PRF construction suggested by Banerjee et al. and
demonstrate that it can be evaluated using only two sequential programmable bootstraps

in the TFHE homomorphic encryption scheme. We also describe several modifications of

this PRF—which we prove as secure as the original function—that support homomorphic

evaluations using only one programmable bootstrap per slot.

Numerical experiments were conducted using practically relevant FHE parameter sets from

the TFHE-rs library. Our benchmarks show that a throughput of about 1000 encrypted

pseudorandom bits per second (resp. 900 encrypted pseudorandom bits per second) can be

achieved on an AWS hpc7a.96xlarge machine (resp. on a standard laptop with an Apple M2

chip), on a single thread. The PRF evaluation keys in our experiments have sizes roughly 40%

and 60% of a bootstrapping key. Applying our solution to transciphering enables important

bandwidth savings, typically trading 64-bit values for 4-bit values per transmitted ciphertext.

Keywords: Fully homomorphic encryption (FHE), Pseudorandom functions (PRFs), Learning-

with-rounding (LWR), Oblivious randomness generation

1 Introduction
Fully homomorphic encryption (FHE) provides a method of outsourcing computation on

sensitive data [30]. In particular, a client may encrypt data (e.g., patient medical records) using

an FHE scheme and outsource some computation/evaluation (e.g., some diagnosis) on that

data. Importantly, the server never learns the initial data, or the result of its computation.

A recurring problem with existing FHE schemes [15, 17, 19, 26, 32] is their ciphertext expan-

sion: a ciphertext is at least an order of magnitude larger than its corresponding plaintext. This

poses a significant problem when storing a large number of FHE ciphertexts in a remote data-

base. A solution inspired by the performance of symmetric key ciphers is called transciphering.
The idea is to first store symmetric key ciphertexts in the remote database long term. Then,
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whenever computation on some database element(s) is requested, the server homomorphically

evaluates the secret-key deciphering algorithm to obtain FHE ciphertext(s) encrypting the

same database plaintext(s). To preserve privacy, the server is given an encrypted version of

the client’s symmetric key. In summary, transciphering essentially allows a server to use an

encrypted version of the client’s symmetric key to transform a symmetric key ciphertext

into an FHE one. As pseudorandom functions (PRFs) are a key building block of secret-key

cryptography, the problem of transciphering boils down to homomorphically evaluating a

PRF as efficiently as possible.

Another application of homomorphically evaluating PRFs is producing encrypted ran-

domness for blockchain smart contracts. An example of where one might require this is for

simulating dice rolls or more generally playing games with randomness on the blockchain. In

slightly more detail, a privacy-preserving blockchain may consist of a series of FHE ciphertexts

encrypted under a key shared amongst an assigned group of validators. The task of these

validators is to decrypt particular ciphertexts in a distributed manner. An example of an

implementation of such a blockchain is fhEVM [23]. During a game/smart contract execution,

clients can produce encryptions of random values by homomorphically evaluating a PRF. In

doing so, the plaintexts remain hidden from the client but can still be considered random by

relying on the security of the underlying PRF. These ciphertexts can then be used as dice

rolls or even fed into an encrypted shuffling algorithm in a card game. Shuffling based on

FHE-encrypted PRF outputs is also useful [27] in the context of private information retrieval

[20].

When it comes to homomorphically computing secret-key pseudorandom objects, one may

end up evaluating a complex circuit, which may be time-consuming and lead to impractical

parameters without resorting to bootstrapping. Indeed, all existing FHE schemes involve

ciphertexts containing a noise that grows during homomorphic evaluations. At some point,

the noise grows too large to enable correct decryption, so that FHE schemes specify a boot-

strapping algorithm which resets the noise to some predefined size. FHE schemes such as

FHEW/TFHE [19, 25] take bootstrapping one step further. In particular, in their basic version,

they enable the application of a negacyclic univariate function to the plaintext during the

bootstrapping operation. This is referred to as programmable bootstrapping (PBS). Essentially,
for any negacyclic univariate function 𝑓 , applying the programmable bootstrapping algorithm

takes an encryption of𝑚 and outputs an encryption of 𝑓 (𝑚) with a predefined noise level.

Another important point is that bootstrapping in FHEW/TFHE is very efficient in terms of

latency (i.e., takes milliseconds) compared to BFV/BGV [15, 17, 26] where bootstrapping takes

multiple seconds.

1.1 Our Contributions and Techniques
We consider the question of how efficiently we can homomorphically evaluate pseudorandom

functions based on lattice assumptions. More precisely, we address the problem of evaluating

PRFs based on the difficulty of the Learning-With-Rounding (LWR) problem [9], which

can be seen as a variant of the Learning-With-Errors (LWE) problem where the noise is

deterministically generated. For a public matrix A ∈ Z𝑛×𝑚
𝑄

with moduli 𝑝 and 𝑄 such that

𝑝 < 𝑄 and a secret vector 𝒔 ∈ Z𝑛 , the LWR problem is to distinguish ⌈(𝑝/𝑄) · (A⊺ · 𝒔 mod 𝑄)⌋
from a uniformly random vector in Z𝑚𝑝 . Here, the notation ⌈·⌋ denotes rounding to the

nearest integer (rounding upwards in the case of a tie). The conjectured hardness of LWR

naturally leads to a pseudorandom generator [9, Section 1.1] which expands a seed 𝒔 into a
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longer pseudorandom string ⌈(𝑝/𝑄) · (A⊺ · 𝒔 mod 𝑄)⌋ using a public matrix A. By the GGM

construction [34], it also implies a pseudorandom function family. Furthermore, it yields a

more direct PRF construction (explicitly described [14] but already implicit in [9]) in the

random oracle model. Given input 𝑥 and a secret key 𝒔 ∈ Z𝑛 , the PRF evaluation is defined

to be ⌈(𝑝/𝑄) · (A(𝑥)⊺ · 𝒔 mod 𝑄)⌋, where the matrix A(𝑥) = 𝐻 (𝑥) ∈ Z𝑛×𝑚
𝑄

is derived from a

random oracle 𝐻 .

In this paper, we show that the latter construction can be evaluated efficiently using a small

number of sequential PBSes if we restrict the ratio 𝑄/𝑝 to be small. We note that the known

reductions from LWE to LWR either assume that 𝑄/𝑝 is super-polynomial [9] or that the

number𝑚 of samples given to the distinguisher is a priori bounded [5, 11]. In fact, a certain

class of reductions for 𝑄/𝑝 = poly(𝜆) and an unbounded number of samples was shown to

be impossible [50]. However, even for an unbounded number of samples, LWR still appears

to be exponentially hard (as commented in [9, 12]) in the parameter regime 𝑄/𝑝 = Ω(
√
𝑛)

when 𝑝 | 𝑄 .
In the following, we show that, for a polynomial ratio 𝑄/𝑝 , we can evaluate the above

LWR-based PRF using a small number of sequential bootstraps. The idea is to compute an

input-dependent vector 𝒂 = 𝐻 (𝑥) ∈ Z𝑛
𝑄
and view 𝒄 = (−𝒂, 0) ∈ Z𝑛+1

𝑄
as an LWE ciphertext

(with plaintext modulus 𝑝) that has a very large noise, but still decrypts to
⌈ 𝑝
𝑄
· (⟨𝒂, 𝒔⟩ mod 𝑄)

⌋
under the LWE secret key 𝒔 ∈ Z𝑛 . So, if we have an FHE bootstrapping key encrypting the PRF

secret key 𝒔, we can obtain a low-noise encryption of the same value

⌈ 𝑝
𝑄
· (⟨𝒂, 𝒔⟩ mod 𝑄)

⌋
by bootstrapping 𝒄 = (−𝒂, 0) ∈ Z𝑛+1

𝑄
.

With the bootstrapping techniques of FHEW [25] and TFHE [19], one difficulty is that we

must find the appropriate negacyclic functions to evaluate in order to perform this operation.

As a warm-up, we use techniques from Liu et al. [45] to evaluate the original PRF using

three sequential PBSes (Lemma C.1) for each slot of log𝑝 pseudorandom bits. This evaluation

procedure is detailed in Appendix C since it is not our most efficient solution. To improve

on this first attempt, we use a recent “Full-domain functional bootstrapping” method from

Ma et al. [47] so as to reduce the PBS depth (i.e., the number of sequential bootstraps per

pseudorandom plaintext slot) to 2.

Finally, we suggest a modified version of the random-oracle-based PRF of [9, 14] which

supports homomorphic evaluations in depth one and dispenses with the need to sequentially

evaluate different negacyclic functions. By “depth-one”, we mean that, if the output space of

the PRF is Zℓ𝑝 , each slot of log𝑝 output bits only costs one PBS to evaluate and ℓ slots can

be processed in parallel in order to obtain a long output in Zℓ𝑝 . Our construction essentially

applies a PBS using a single negacyclic version of the usual rounding function. As a result,

the “ciphertext” (−𝒂, 0) from above gets mapped to an encryption of

(−1)msb(⟨𝒂,𝒔 ⟩ mod 2𝑄 ) ·
⌈
𝑝

𝑄
· (⟨𝒂, 𝒔⟩ mod 𝑄)

⌋
. (1)

When 𝑝 and 𝑄 are powers-of-2, we can show that the above function is a PRF based on the

pseudorandomness of LWR. The reduction works by deriving the base-2 digits and the sign of

the modified PRF from LWR samples whose moduli are scaled up by appropriate powers-of-2.

An insignificant technicality of the reduction is that it is convenient to assume LWR holds with

respect to the floor function, rather than the rounding function. As mentioned by Banerjee

et al. [9, Sect. 2], there is no reason to suspect that the use of ⌊·⌋ as a rounding function

impacts the hardness of LWR, even for 𝑄/𝑝 = poly(𝜆). We prove the pseudorandomness of

the modified function (1) in Lemma 5.5 and its floor function analogue in Lemma 5.4. Note
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that the latter achieves slightly better parameters. Although the base 2 is appropriate for

practical implementations of TFHE, one could replace it by other bases if required.

A point worth mentioning is that due to the structure of TFHE, we typically end up

using LWR with power-of-two moduli 𝑄 ∈ {29, 210, 211} and 𝑝 ∈ {2, . . . , 25} in our depth-

1 construction. In particular, 𝑝 is often very small which allows LWR to remain hard for

relatively small LWR dimension 𝑛LWR compared to the TFHE LWE dimension 𝑛LWE. This can

be leveraged by truncating PBS operation; i.e., by performing 𝑛LWR blind rotation steps during

the PBS rather than the usual 𝑛LWE steps. Since blind rotation dominates PBS latency, we may

achieve a factor 𝑛LWR/𝑛LWE improvement in terms of latency.

1.2 Application to Transciphering
As an application of our homomorphic PRF evaluation scheme, we present a new efficient

transciphering method whose security relies solely on a well-studied lattice problem. In

particular, althoughwe are using a tweaked LWR-based PRF for ourmost efficient instantiation,

there is a tight mathematical reduction to a standard and well-known LWR assumption. This

is in contrast to most previous works that tweak cipher/PRF design to suit FHE evaluation

without provable reductions from well-studied problems. Furthermore, our most efficient

scheme is very simple to implement using existing TFHE libraries as it simply takes advantage

of the native PBS operation (more specifically, the blind rotation). The PRF evaluation key

takes the form of blind rotation key material and essentially consists of ring GSW encryptions

[32] of the PRF key bits. A positive characteristic of our construction is that the noise of

output ciphertexts is as small as in bootstrapped ciphertexts. This is not true for schemes that

rely on e.g. leveled BFV/BGV operations, where extra time-consuming bootstrapping may

be necessary to use the outputs in certain applications. We finally mention the flexibility of

our transciphering scheme. Should we be required to use an alternative plaintext modulus

for some application, we may simply adjust the dimension of the LWR PRF secret to retain

security. In particular, we simply need to find the smallest dimension such that LWR with

moduli 𝑄 = 2𝑁 and 2𝑝 remains sufficiently hard (for our depth-1 construction). Here, 𝑁

is a parameter dictating the degree of a cyclotomic polynomial. For correctness of the PBS,

𝑄/2𝑝 will always be sufficiently large and we may find this LWR dimension. For example, the

TFHE-rs [53] parameter sets typically satisfy 𝑄/2𝑝 ∈ {32, 64}. Then, it is trivial to apply our

transciphering scheme with a range of plaintext spaces by making small adjustments to the

number of PRF key bits (and thus, adjusting the number of blind rotation steps). This means

that the plaintext space can be dictated by the wider application, rather than the transciphering

scheme. Further, our scheme has good granularity in the sense that each individual plaintext

may be processed independently, rather than in blocks of a fixed size.

Implementation and Comparisons. To highlight the practicality of our scheme, we use

the TFHE-rs [53] library. In particular, we run experiments on an AWS hpc7a.96xlarge instance

withAVX512 using a single thread. Using the TFHE-rs parameter set PARAM_MESSAGE_2_CARRY_2,
we obtain 5 bits with 5.2 ms latency leading to a throughput of 970 encrypted pseudorandom

bits per second (bits/s). For the PARAM_MESSAGE_1_CARRY_1 parameters, we obtain 3 bits in

2.8 ms leading to a throughput of 1070 bits/s. The corresponding latencies on a Macbook Pro

with an Apple M2 processor and 8 GB RAM are just 10% and 30% higher for the two parameter

sets respectively. Our experiments show that the PRF evaluation key size is roughly 60% of a

bootstrapping key for both of these parameter sets. Note that these results are single thread

and would benefit from parallelization in the obvious way.
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It is interesting to compare our results with state-of-the-art TFHE alternatives. Among

these, the Trivium (which was only designed to provide 80 bits of security) and Kreyvium

ciphers achieve 64 bits at a latency of over 100 ms (or around 500 bits/s of throughput) using

more than 64 parallel threads [8, Table 2] on an AWS m6i.metal machine. This is ignoring the

expensive warm-up phase for these ciphers. Our results show that our construction is faster,

even when using a single thread on a standard laptop.

In an even more recent single-thread homomorphic evaluation of Trivium on a laptop with

an Intel i5-1245U CPU and 16GB RAM, Bon et al. [13] obtained a throughput of 35 bits per

second, which is ≈ 25 times lower than our throughput of 881 bits/s (also on a laptop using

a singe thread). A caveat of their approach is that the output of the evaluation algorithm

is a ciphertext with noise larger than a bootstrapped ciphertext. This is not the case in our

construction. The authors mention that this inconvenience is handled by performing a PBS in

the transciphering or application phase. Shifting this PBS back into the evaluation phase for a

fairer comparison suggests a throughput of 26 bits per second which is approximately 34 times

lower than our reported throughput. Our increased throughput is nevertheless obtained at the

expense of encrypting the PRF secret key in a larger ciphertext (with size ≈ 37% and 58% of a

regular TFHE bootstrapping key for the parameter sets used in our experiments). Fortunately,

this is acceptable if the encrypted PRF secret key is only sent once and amortized over many

transciphering operations.

1.3 Related Work
The idea of using bootstrapping to obliviously generate FHE encryptions of random bits

was previously used in the past (see, e.g., [1]). In this paper, we consider a derandomized

version of the process where we prove that obliviously generated ciphertexts indeed encrypt

pseudorandom messages that are uniquely determined by an encrypted seed and a public

input. For this purpose, we also aim at relying on the pseudorandomness of a well-studied

PRF family.

Homomorphic evaluation of PRFs/ciphers using FHE has received a lot of attention in the

research literature. With transciphering in mind, a natural task was to optimize the evaluation

of AES [31]. Unfortunately, the efficiency of this approach is questionable and the current

record stands at around 30 seconds for the evaluation of a single AES block [52] on a powerful

server. This has lead to the development of FHE-friendly cipher/PRF constructions such as

LowMC [4], PASTA [24], FASTA [21], FLIP [49], FiLIP [48], Elisabeth [22], Rubato [36] and

Chaghri [6]. Unfortunately, the security level of such schemes is not well understood and

attacks are still being discovered [33, 35, 44]. In an attempt to avoid this problem, the standard-

ized cipher Trivium [38] and the subsequent cipher Kreyvium [18] have been investigated

as good options for efficient transciphering [8]. The homomorphic evaluation of Trivium

and other symmetric primitives (including SIMON, AES and Keccack) was also considered

via a framework [13] allowing to evaluate more complex Boolean functions. However, even

Trivium and Kreyvium have recently been subjected to improved attacks [37]. For the sake

of not putting all one’s eggs in the same basket, it is desirable to have alternative solutions

based on more stable and number theoretic assumptions, in particular if they enable higher

throughputs than the homomorphic evaluation of stream ciphers. This motivates us to con-

sider LWR-based PRFs and exploit the fact that their structure blends quite well with the

bootstrapping paradigm of FHEW/TFHE.

In a direction somewhat analogous to ours, a recent work shows how to homomorphically
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evaluate an adaptation of the LWR PRF using the BGV/BFV scheme [27]. In particular, this

work tweaks the LWR-based PRF in a way that replaces the exact rounding function with an

alternative based on the Legendre symbol. The advantage of this is that the resulting PRF is re-

alizable using a reasonably small number of leveled homomorphic multiplications (concretely

≈ 20). It should be noted that these leveled multiplications lead to an output ciphertext with a

noise larger than that of a freshly bootstrapped ciphertext which may need to be considered in

certain applications. On the downside, their modified rounding function makes the resulting

PRF significantly deviate from the well-known construction and introduces a novel variant

of the LWR assumption. As of today, this assumption does not appear to be implied by the

original assumption and has not undergone much cryptanalytic effort. In contrast, we rely on

an LWR assumption that has been standing for over a decade.

Our approach has a common feature with the HERMES transciphering scheme [7] in that

the latter also allows switching from a lattice-based symmetric cipher (with the difference

that they use an LWE-based one while we rely on LWR) to CKKS/BGV/BFV (instead of TFHE

in our case) without relying on any ad-hoc assumption. Yet, their 1.58 expansion factor is

larger than ours. Moreover, they achieve a latency of around 25 seconds before any output is

computed with around 60 bits per second of amortized throughput.

Brakerski et al. [16] took a different (non-transciphering-based) approach allowing to reduce
the expansion rate of FHE schemes by constructing a ciphertext compression mechanism

leading to rate-(1 − 𝑜 (1)) FHE. Their technique applies to packed LWE ciphertexts sharing a

common header (typically, a vector over Z𝑛𝑞 ) where ℓ message-carrying slots encrypt ℓ distinct

binary plaintexts under distinct LWE secret keys. It shrinks each of these ℓ slots down to a

single bit, thus replacing a vector in Zℓ𝑞 by a binary string {0, 1}ℓ . For ℓ = Ω̃(𝜆2) = poly(𝜆)
plaintexts, the achieved rate (i.e. plaintext size divided by ciphertext size) is 1 − O(1/𝜆) when
expanding the ciphertext header from a seed. In other words, the size of a compressed output

ciphertext on ℓ plaintext inputs approaches the size of around ℓ plaintexts as ℓ grows to

infinity. However, subsequent FHE evaluations cannot be done on compressed ciphertexts

and require bootstrapping to “undo” the compression. Applying this method to plain TFHE

thus requires ℓ = poly(𝜆) bootstrapping keys (one for each of the original ℓ distinct keys).

This overhead may be avoided by introducing a ring structure to TFHE as in [40] with a

larger than usual ring dimension ℓ to achieve reasonable expansion factor. However, the

sub-optimal granularity (i.e., the fact that a block of ℓ = poly(𝜆) ciphertexts is required before
a compression operation can begin) remains. Note that one may also apply the compression

to BGV/BFV.

Outline of the paper. The rest of this paper is organized as follows. We begin with back-

ground knowledge and definitions in Section 2. Next, in Section 3, we discuss homomorphic

evaluation of the standard LWR function in depth 2. Then, in Section 4 we discuss ring-LWR-

based PRFs in the context of BFV. In Section 5, we present the depth-1 evaluation of our

modified LWR PRF along with the associated security reductions. This is followed by an

implementation of our depth-1 construction using the TFHE-rs library in Section 6. Finally,

for completeness, we concretize the transciphering application in Section 7. In appendix, we

formally define pseudorandom functions and describe GGSW ciphertexts. We also include a

less efficient depth-3 evaluation of the standard LWR PRF.
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2 Background and Definitions
Notation. In the following, when 𝐷 is a distribution, 𝑥 ∼ 𝐷 means that 𝑥 is a random variable

distributed according to 𝐷 . The notation 𝑥 ←↪ 𝐷 denotes the explicit action of sampling an

element 𝑥 according to the distribution 𝐷 . For a finite set S, 𝑈 (S) stands for the uniform
distribution over S. For any integer 𝑞 ≥ 2, Z𝑞 denotes the ring of integers with addition

and multiplication modulo 𝑞. For any real number 𝑦, we use ⌈𝑦⌋ to denote rounding 𝑦 to the

nearest integer (rounding upwards in the case of a tie) and ⌊𝑦⌋ to denote the floor function. If

𝑦 is replaced by a vector 𝒚, we apply the rounding and floor functions entry-wise.

2.1 Cryptographic Assumptions
LWE/LWRAssumptions. Wefirst recall the Learning-With-Errors (LWE) assumption defined

by Regev [51].

Definition 2.1 (LWE assumption). Let integers𝑚 ≥ 𝑛 ≥ 1,𝑞 ≥ 2 and let 𝜒𝑠 , 𝜒𝑒 be distributions

over Z. The LWE𝑛,𝑚,𝑞,𝜒𝑠 ,𝜒𝑒 problem consists in distinguishing between the distributions{
(A⊺,A⊺ 𝒔 + 𝒆) | A ∼ 𝑈 (Z𝑛×𝑚𝑞 ), 𝒔 ←↪ 𝜒𝑛𝑠 , 𝒆 ∼ 𝜒𝑚𝑒

}
and𝑈 (Z𝑚×𝑛𝑞 × Z𝑚𝑞 ).

When the distribution of 𝒔 is the uniform distribution 𝑈 (Z𝑛𝑞 ), the assumption is sometimes

denoted by LWE𝑛,𝑚,𝑞,𝜒𝑒 .

We now recall the definition of the Learning-With-Rounding (LWR) problem [9].

Definition 2.2 (LWR assumption). Let integers𝑚 ≥ 𝑛 ≥ 1, 𝑞 > 𝑝 ≥ 2 and let 𝜒𝑠 be a distribu-

tion over Z. The Learning-With-Rounding (LWR𝑛,𝑚,𝑞,𝑝,𝜒𝑠 ) problem consists in distinguishing

between the distributions{
(A⊺, ⌈(𝑝/𝑞) · (A⊺ 𝒔 mod 𝑞)⌋ mod 𝑝) | A ∼ 𝑈 (Z𝑛×𝑚𝑞 ), 𝒔 ←↪ 𝜒𝑛𝑠

}
and𝑈 (Z𝑚×𝑛𝑞 × Z𝑚𝑝 ).

When the number𝑚 of samples is a priori bounded, the LWE assumption is known [5, 11]

to imply the hardness of LWR for a polynomial ratio 𝑞/𝑝 = poly(𝜆). When there is no pre-

determined upper bound on the number of samples, the only known reduction [9, Theorem 3.2]

from LWE to LWR requires a super-polynomial ratio 𝑞/𝑝 = Ω(𝜆𝜔 (1) ). However, it is quite
plausible that LWR remains hard for 𝑞/𝑝 = poly(𝜆) even for an a priori unbounded number

of samples. As discussed in [9, 12], as long as 𝑞/𝑝 = Ω(
√
𝑛) and 𝑞/𝑝 is an integer (so that

⌈(𝑝/𝑞) · 𝑈 (Z𝑞)⌋ = 𝑈 (Z𝑝 )), LWR may be exponentially hard even for quantum algorithms.

We also note that replacing the rounding function ⌊·⌉ by the floor function is not believed to

affect the hardness of the LWR problem [9, Sect. 2].

Ring-LWE/LWR Assumptions. We now recall the definition of the ring Learning-With-

Errors problem [46].

Definition 2.3 (RLWE assumption). Take an integer 𝑞 ≥ 2. Let Φ(𝑋 ) be a cyclotomic poly-

nomial of degree 𝑁 and let the rings R = Z[𝑋 ]/(Φ(𝑋 )) and R𝑞 = R/𝑞R. Let 𝜒𝑠 , 𝜒𝑒 be

distributions over R. The Ring LWE (RLWE𝑁,𝑚,𝑞,𝜒𝑠 ,𝜒𝑒 ) problem consists in distinguishing

between the distributions{
(𝒂, 𝒂 · 𝑠 + 𝒆) | 𝒂 ∼ 𝑈 (R𝑚𝑞 ), 𝑠 ←↪ 𝜒𝑠 , 𝒆 ∼ 𝜒𝑚𝑒

}
and𝑈 (R𝑚𝑞 × R𝑚𝑞 ) .
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The LWR problem has a natural analogue in the ring setting. The Ring Learning-With-
Rounding (RLWR) problem [9] is defined as follows.

Definition 2.4 (RLWR assumption). Let integers 𝑞 > 𝑝 ≥ 2. Let Φ(𝑋 ) be a cyclotomic

polynomial of degree 𝑁 and let the rings R = Z[𝑋 ]/(Φ(𝑋 )) and R𝑞 = R/𝑞R. Let 𝜒𝑠 be a
distribution over R. The Ring Learning-With-Rounding (RLWR𝑁,𝑚,𝑞,𝑝,𝜒𝑠 ) problem consists in

distinguishing between the distributions{
(𝒂,

⌈
(𝑝/𝑞) · (𝒂 · 𝑠 mod 𝑞)

⌋
mod 𝑝) | 𝑎 ∼ 𝑈 (R𝑚𝑞 ), 𝑠 ←↪ 𝜒𝑠

}
and𝑈 (R𝑚𝑞 × R𝑚𝑝 ).

Finally, we recall the definition of the Generalized Learning-With-Errors (GLWE) problem

(also know as the Module-Learning-With-Errors problem) studied in [42] that is useful when

discussing the TFHE/FHEW [19, 25] FHE schemes.

Definition 2.5 (GLWE assumption). Take an integer 𝑞 ≥ 2 and a rank 𝑘 ≥ 1. Let Φ(𝑋 ) be a
cyclotomic polynomial of degree 𝑁 and let the rings R = Z[𝑋 ]/(Φ(𝑋 )) and R𝑞 = R/𝑞R. Let
𝜒𝑠 , 𝜒𝑒 be distributions over R. The Generalized LWE (GLWE𝑘,𝑁 ,𝑚,𝑞,𝜒𝑠 ,𝜒𝑒 ) problem consists in

distinguishing between the distributions{
(A⊺,A⊺ · 𝒔 + 𝒆) | A ∼ 𝑈 (R𝑘×𝑚𝑞 ), 𝒔 ←↪ 𝜒𝑘𝑠 , 𝒆 ∼ 𝜒𝑚𝑒

}
and𝑈 (R𝑚×𝑘𝑞 × R𝑚𝑞 ).

2.2 (Key-Homomorphic) Pseudorandom Functions Based on LWR
In [9] (see also [12]), Banerjee, Peikert and Rosen implicitly describe a weak pseudorandom

function based on the hardness of the LWR problem. This weak PRF maps a uniformly random

input 𝒂 ∈ Z𝑛
𝑄
to the output wPRF𝒔 (𝒂) = ⌈(𝑝/𝑄) · (⟨𝒂, 𝒔⟩ mod 𝑄)⌋ mod 𝑝 , where 𝒔 ∈ Z𝑛 is the

secret key.

By introducing a random oracle 𝐻 : {0, 1}ℓ → Z𝑛
𝑄
, this weak PRF can be turned into a full

PRF by computing 𝒂 = 𝐻 (𝑥) ∈ Z𝑛
𝑄
when the PRF has to be evaluated on an arbitrary input

𝑥 ∈ {0, 1}ℓ . As pointed out in [14], this PRF turns out to be almost key-homomorphic PRF

and was recently used in [29]. It is precisely defined as follows.

The secret key is a vector 𝒔 = (𝑠1, . . . , 𝑠𝑛) ∼ 𝜒𝑛𝑠 where each 𝑠𝑖 is sampled from a distribution

𝜒𝑠 specified by public parameters. These public parameters also contain the description of

a hash function 𝐻 : {0, 1}ℓ → Z𝑛
𝑄
(modeled as a random oracle) and two moduli 𝑝 and 𝑄

where 𝑝 divides 𝑄 . Typically, 𝜒𝑠 is the uniform distribution over Z𝑄 . Alternatively, 𝜒𝑠 can
be a discrete Gaussian distribution with a suitable standard deviation 𝜎 or even the uniform

binary distribution. We note that in any of these cases, the parameters (𝑛, 𝑞, 𝑝) can be chosen

carefully to protect against all known attacks.

A function evaluation is then defined as

𝑥 ↦→ PRF𝒔 (𝑥) ≜
⌈
𝑝

𝑄
·
(
⟨𝐻 (𝑥), 𝒔⟩ mod 𝑄

) ⌋
mod 𝑝 (2)

and outputs a scalar in Z𝑝 . If we need to output 𝑡 pseudorandom elements in Z𝑝 , we can
extend it as

𝑥 ↦→ PRF𝒔 (𝑥) ≜ (𝑦1, . . . , 𝑦𝑡 )
where

𝑦𝑖 =

⌈
𝑝

𝑄
·
(
⟨𝐻 (𝑥, 𝑖), 𝒔⟩ mod 𝑄

) ⌋
mod 𝑝 ∀𝑖 ∈ {1, . . . , 𝑡} .
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When proving the pseudorandomness of the function (2) (in the random oracle model), the

reduction (see [9] or [29, Theorem 3.1]) is given from an instance of LWR where the number

of samples is not a priori bounded since each queried input 𝑥 is mapped to a different sample

(i.e., the number of samples is as large as the number of evaluation queries).

Therefore we need to choose a super-polynomial 𝑄/𝑝 = 𝜆𝜔 (1) if we want to rely on

known LWE-to-LWR reductions [9]. Alternatively, one may prefer a more efficient choice of

parameters with 𝑄/𝑝 = poly(𝜆) and rely on the plausible hardness of LWR in this parameter

regime.
1
In this case, it is recommended in [9] to set 𝑄/𝑝 as an integer larger than Ω(

√
𝑛) if 𝑛

is the dimension of 𝒔.
In [9, 12], LWRwas conjectured to be exponentially hard when𝑄/𝑝 = Ω(

√
𝑛) and assuming

uniform secret keys (i.e., 𝜒𝑠 = 𝑈 (Z𝑄 )). In order to homomorphically evaluate the PRF using

programmable bootstrapping, it is more convenient to sample the seed 𝒔 from a binary or

ternary distribution. In practice, we use the lattice estimator [3]
2
to derive secure parameters.

Although the lattice estimator is designed for LWE, we deploy the usual heuristic method

of approximating the hardness of LWR by that of LWE with uniform noise in the interval[
− 𝑄

2𝑝
+ 1,

𝑄

2𝑝

]
. Fortunately, even for the uniform binary distribution 𝜒𝑠 = 𝑈 ({0, 1}), we can

find 128-bit secure parameters for the range of moduli 𝑄 and 𝑝 that our constructions require.

2.3 TFHE Bootstrapping
An LWE ciphertext encrypting a message𝑚 ∈ Z𝑝 with respect to secret key takes the form

(𝒂, 𝑏) = (𝒂, ⟨𝒂, 𝒔⟩ +𝑒 +𝑚 ⌈𝑞/𝑝⌋) ∈ Z𝑛+1𝑞 . Here, 𝒂 is sampled uniformly and 𝑒 is sampled from an

error distribution 𝜒𝑒 . As in [45], when (𝒂, 𝑏) is an LWE ciphertext with secret key 𝒔, we denote
by Dec𝒔 (𝒂, 𝑏) = 𝑏 − ⟨𝒂, 𝒔⟩ mod 𝑞 the decoding function (a.k.a. phase function) which outputs

a noisy encoding 𝑒 +𝑚 ⌈𝑞/𝑝⌋ of the plaintext𝑚. We can similarly define GLWE ciphertexts

by taking 𝒂 ∈ R𝑘𝑞 , 𝒔 ∈ R𝑘𝑞 , error 𝑒 ∈ R and message𝑚 ∈ R𝑝 .

Programmable Bootstrapping Subroutines. We rely on the following theorem, which is

quoted from [45] but is implied by earlier results on the programmable bootstrapping of LWE

ciphertexts for negacyclic functions. Note that in this theorem and throughout this paper, 𝑞 is

used to denote the TFHE modulus and 𝑄 will denote a smaller modulus dividing 𝑞. We will

assume that 𝑄 = 2𝑁 where 𝑁 is the degree of the TFHE cyclotomic ring.

Theorem 2.6 ([45, Theorem 1]). Take positive integers 𝑛, 𝑞 and 𝑄 such that 𝑄 divides
𝑞 and 𝑞 is set to a power of 2. There is a bootstrapping procedure Boot with the following
property: For any LWE ciphertext (𝒂, 𝑏) ∈ Z𝑛+1

𝑄
and any function 𝑓 : Z𝑄 → Z𝑞 such that

𝑓 (𝑥 +𝑄/2) = −𝑓 (𝑥) mod 𝑞, the procedure Boot[𝑓 ] (𝒂, 𝑏) outputs a ciphertext (𝒄, 𝑑) ∈ Z𝑛+1𝑞 such
that

Dec𝒔 (𝒄, 𝑑) = 𝑓
(
Dec𝒔 (𝒂, 𝑏)

)
+ 𝑒 (mod 𝑞) ,

where |𝑒 | < 𝛽 , for a noise bound 𝛽 that only depends on the operations performed by Boot and
not on the input ciphertext (𝒂, 𝑏).

There are three subroutines in TFHE bootstrapping: blind rotation, sample extraction and

key-switching. In what follows, we set 𝑄 = 2𝑁 in the above theorem. The blind rotation

1
We note that, in the statement of [29, Theorem 3.1], the hypothesis𝑄/𝑝 = Ω (𝑛𝜔 (1) ) is only needed if a reduction

from LWE is desired via the LWE-to-LWR reduction of [9]. The proof still works under the LWR assumption when

𝑄/𝑝 is polynomial.

2
https://github.com/malb/lattice-estimator
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in TFHE takes as input an LWE ciphertext (𝒂, 𝑏) ∈ Z𝑛+1
2𝑁

under secret key 𝒔 ∈ {0, 1}𝑛 that

“encrypts” a message �̃� ∈ Z2𝑁 and a test polynomial 𝑣 (𝑋 ) whose coefficients encode the

outputs of a negacyclic function 𝑓 in a lookup table. It returns a GLWE ciphertext c′ ∈(
Z𝑞 [𝑋 ]/(𝑋𝑁 + 1)

)𝑘+1
, under secret key with bounded coefficients s′ ∈ 𝑅𝑘 , which encrypts

the polynomial 𝑋 −𝑏+⟨𝒂,𝒔 ⟩ mod 2𝑁 · 𝑣 (𝑋 ) whose degree-0 coefficient is 𝑓 (Dec𝒔 (𝒂, 𝑏)) when 𝑓
is negacyclic. This blind rotation operation requires a bootstrapping key in the form of

generalized GSW (or GGSW) encryptions [25, 32] of the entries of 𝒔. For completeness, we

overview GGSW in Appendix B. The resulting GLWE ciphertext is then sample-extracted to

obtain an LWE ciphertext encrypting the degree-0 coefficient of 𝑋 −𝑏+⟨𝒂,𝒔 ⟩ mod 2𝑁 · 𝑣 (𝑋 ). The
resulting LWE ciphertext (𝒄′, 𝑑 ′) ∈ Z𝑘𝑁+1𝑞 is encrypted under the secret key 𝒔′. A final key

switch leads to an LWE ciphertext (𝒄, 𝑑) ∈ Z𝑛+1𝑞 under the original secret key 𝒔. To sum up,

we have:

(𝒄, 𝑑) ← KeySwitch ◦ SampleExtract ◦BlindRotate(𝒂, 𝑏)︸                ︷︷                ︸
=GLWEs′ (𝑋 −Dec𝒔 (𝒂,𝑏) ·v(𝑋 ) )︸                                       ︷︷                                       ︸

=LWE𝒔′ (𝑓 (Dec𝒔 (𝒂,𝑏 ) ) )︸                                                         ︷︷                                                         ︸
=LWE𝒔 (𝑓 (Dec𝒔 (𝒂,𝑏 ) ) )

provided that test polynomial v(𝑋 ) = ∑𝑁−1

𝑖=0
𝑣𝑖 𝑋

𝑖
is programmed as 𝑣𝑖 = 𝑓 (𝑖) ∈ Z𝑞 for some

negacyclic function 𝑓 : Z2𝑁 → Z𝑞 . For a more detailed exposition, see [39]. Note that in

order to get the output (𝒄, 𝑑) ∈ Z𝑛+1𝑞 back into the domain of Boot, one can simply apply the

mod-switching operation given by ModSwitch𝑞→2𝑁 (𝒄, 𝑑) ≜
(
⌈(2𝑁 /𝑞) · 𝒄⌋, ⌈(2𝑁 /𝑞) ·𝑑⌋

)
. This

is useful when a sequence of multiple PBSes for negacyclic functions with different domains

and ranges is required.

3 Homomorphic Evaluation of LWR-based PRF in
Depth 2

We now describe the homomorphic evaluation of the standard LWR-based PRF in depth 2.

Note that this construction is not as efficient as the depth-1 construction in Section 5 and

may be skipped by the reader. Nonetheless, this section describes what can be achieved

using known techniques and paves the way for the homomorphic BFV evaluation of the

RLWR-based PRF discussed in Section 4. In this section, we set 𝑄 = 2𝑁 and Δ = 𝑄/𝑝 where 𝑝

is a plaintext modulus dividing 2𝑁 . Furthermore, the TFHE modulus 𝑞 > 2𝑁 is also assumed

to be divisible by 2𝑁 (which is the case in practice).

In order to homomorphically evaluate the PRF in (2) for a public input 𝑥 given an encryption

of the seed 𝒔 ∈ Z𝑛 , the idea is to first compute an input-dependent 𝒂 = 𝐻 (𝑥) ∈ Z𝑛
𝑄
and view

(−𝒂, 0) as an LWE ciphertext with a very large noise. Namely, assuming that Δ | 𝑄 , if we
write

(−𝒂, 0) =
(
−𝒂, −(⟨𝒂, 𝒔⟩ mod 𝑄) + Δ ·

⌈
(⟨𝒂, 𝒔⟩ mod 𝑄)/Δ

⌋
+ (⟨𝒂, 𝒔⟩ mod Δ)︸            ︷︷            ︸

∈ [−Δ/2,Δ/2)

)
,

we can view the term (⟨𝒂, 𝒔⟩ mod Δ) as a noise to clean up using bootstrapping. Using

TFHE/FHEW-like schemes, the main difficulty is to do this using negacyclic functions.

A first solution is to use a technique proposed by Liu et al. [45, Section 4] which applies

Theorem 2.6 to negacyclic functions described in Appendix C. This method is based on the
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homomorphic floor function evaluation technique [45, Algorithm 2] that allows handling an

arbitrarily large noise in the input ciphertext. For each slot of pseudorandomness, the resulting

homomorphic evaluation algorithm (which we describe in Appendix C for completeness)

requires 3 sequential PBSes.

To obtain better efficiency, we can actually use a technique from [47, Algorithm 1] so as

to only call Boot twice for each plaintext slot. To do this, we use the negacyclic functions

𝑓𝐶 , 𝑓eval : Z𝑄 → Z𝑄 defined as

𝑓𝐶 (𝑥) =

Δ
4
·
(
2

⌊
𝑥
Δ

⌋
+ 1

)
mod 𝑄 if 𝑥 ∈

[
0,
𝑄

2
− 1

]
−Δ

4
·
(
2

⌊
𝑥
Δ

⌋
− 𝑝 + 1

)
mod 𝑄 if 𝑥 ∈

[𝑄
2
, 𝑄 − 1

]
𝑓eval (𝑥) =


Δ ·

( ⌊
2𝑥
Δ

⌋
mod 𝑝

)
if 𝑥 ∈

[
0,
𝑄

4
− 1

]
Δ ·

( ⌊
2(𝑄−𝑥 )

Δ

⌋
+ 𝑝

2
mod 𝑝

)
if 𝑥 ∈

[
3𝑄

4
, 𝑄 − 1

]
−𝑓eval

(
𝑥 − 𝑄

2

)
mod 𝑄 if 𝑥 ∈

[𝑄
4
,

3𝑄

4
− 1

]
where Δ = 𝑄/𝑝 and the input 𝑥 ∈ Z𝑄 is seen as a positive integer in {0, . . . , 𝑄 − 1}. We note

that 𝑓𝐶 is negacyclic since, for each 𝑥 ∈ [𝑄/2, 𝑄 − 1],

𝑓𝐶 (𝑥 −𝑄/2) = 𝑄

4𝑝
·
(
2

⌊ 𝑝
𝑄
·
(
𝑥 − 𝑄

2

) ⌋
+ 1

)
=

𝑄

4𝑝
·
(
2

⌊ 𝑝
𝑄
· 𝑥

⌋
− 𝑝 + 1

)
= −𝑓𝐶 (𝑥) .

The negacyclic property of 𝑓eval can also be checked in a similar way (with additional cases to

consider):

𝑓eval (𝑥 +𝑄/2) =


−𝑓eval

(
(𝑥 +𝑄/2) − 𝑄

2

)
(mod 𝑄) if 𝑥 ∈

[
0,
𝑄

4
− 1

]
Δ ·

( ⌊
2(𝑄−(𝑥+𝑄/2) )

Δ

⌋
+ 𝑝

2
mod 𝑝

)
if 𝑥 ∈

[𝑄
4
,
𝑄

2
− 1

]
Δ ·

( ⌊
2(𝑥+𝑄/2)

Δ

⌋
mod 𝑝

)
if 𝑥 ∈

[𝑄
2
,

3𝑄

4
− 1

]
−𝑓eval

(
(𝑥 +𝑄/2) − 𝑄

2

)
(mod 𝑄) if 𝑥 ∈

[
3𝑄

4
, 𝑄 − 1

]

=


−𝑓eval (𝑥) (mod 𝑄) if 𝑥 ∈

[
0,
𝑄

4
− 1

]
Δ ·

( ⌊
2(𝑄−𝑥 )

Δ

⌋
+ 𝑝

2
mod 𝑝

)
if 𝑥 ∈

[𝑄
4
,
𝑄

2
− 1

]
Δ ·

( ⌊
2𝑥
Δ

⌋
mod 𝑝

)
if 𝑥 ∈

[𝑄
2
,

3𝑄

4
− 1

]
−𝑓eval (𝑥) (mod 𝑄) if 𝑥 ∈

[
3𝑄

4
, 𝑄 − 1

]
= −𝑓eval (𝑥) (mod 𝑄) .

Again, we assume that 𝑄 and 𝑝 are both powers of 2. In the description hereunder, we

also assume that the seed 𝒔 ∈ Z𝑛 of the LWR-based PRF is encrypted in the same way as the

bootstrapping key of an TFHE encryption scheme where the LWE secret key is 𝒔. We thus

assume a bootstrapping key bsk = GGSW𝒔′ (𝒔) consisting of a GGSW encryption [25, 32] of

the seed 𝒔 (which is viewed as the decryption key of an LWE-based secret-key encryption

scheme) under a GGSW secret key 𝒔′. The evaluation algorithm then goes as follows. Here, as

in [47, Section 3], the inner product ⟨𝒂, 𝒔⟩ mod 𝑄 is interpreted as an unsigned element of

{0, . . . , 𝑄−1} (rather than {−𝑄/2, . . . , 𝑄/2−1}) and 𝜇 is viewed as an element of {0, . . . , 𝑝−1}.
Evalpp (bsk, 𝑥) : Given public parameters pp = (𝑛,𝑄, 𝑝, 𝛽), an evaluation key bsk and an

input 𝑥 ∈ {0, 1}ℓ , compute the input-dependent vector 𝒂 = 𝐻 (𝑥) ∈ Z𝑛
𝑄
and do the

following:
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1. (𝒄, 𝑑) := Boot[𝑓𝐶 ] (−𝒂, Δ
2
) (mod 𝑄)

2. (�̄�, ¯𝑏) = Boot[𝑓eval] (𝒄, 𝑑) (mod 𝑄)
Output the ciphertext ct = (�̄�, ¯𝑏) ∈ Z𝑛+1

𝑄
.

The above homomorphic evaluation algorithm outputs an LWE encryption of PRF𝒔 (𝑥) =⌈ 𝑝
𝑄
· (⟨𝒂, 𝒔⟩ mod 𝑄)

⌋
mod 𝑝 (interpreted as an element of [0, 𝑝 − 1]) under an LWE secret

key which is the PRF seed 𝒔 itself. In order to obtain an LWE encryption of PRF𝒔 (𝑥) under
the LWE secret key 𝒔′, we can remove the key-switching step in the second call to Boot. We

further note that the final modulus switch may be removed.

The following lemma is adapted from [47, Lemma 3.1], with all details written out.

Lemma 3.1. Assume that 𝑝 and𝑄 are both powers of 2 and that Δ = 𝑄/𝑝 > 4𝛽 , where 𝛽 is the
bootstrapping error from Theorem 2.6. For any 𝑥 ∈ {0, 1}ℓ , Eval outputs a ciphertext (�̄�, ¯𝑏) ∈ Z𝑛+1

𝑄

such that Dec𝒔 (�̄�, ¯𝑏) = Δ · 𝜇 + 𝑒 (mod 𝑄), where |𝑒 | < 𝛽 ,

𝜇 =

⌈
𝑝

𝑄
·
(
⟨𝒂, s⟩ mod 𝑄

) ⌋
mod 𝑝 (3)

with 𝒂 = 𝐻 (𝑥) ∈ Z𝑛
𝑄
.

Proof. We first note that

(−𝒂, 0) ∈ Z𝑛+1𝑄 =
(
−𝒂,−(⟨𝒂, 𝒔⟩ mod 𝑄) + Δ · ⌈(⟨𝒂, 𝒔⟩ mod 𝑄)/Δ⌋ + (⟨𝒂, 𝒔⟩ mod Δ)︸            ︷︷            ︸

∈ [−Δ/2,Δ/2)

)
where Δ = 𝑄/𝑝 and (⟨𝒂, 𝒔⟩ mod 𝑄) ∈ {0, . . . , 𝑄 − 1}. Then, before Line 1, we have

Dec𝒔 (−𝒂, 0) = ⟨𝒂, 𝒔⟩ mod 𝑄

= Δ ·
⌈
(⟨𝒂, 𝒔⟩ mod 𝑄)/Δ⌋︸                   ︷︷                   ︸

≜ 𝜇

+(⟨𝒂, 𝒔⟩ mod Δ) (mod 𝑄),

where 𝜇 ∈ {0, . . . , 𝑝 − 1},3 and we can interpret (⟨𝒂, 𝒔⟩ mod Δ) as a very large noise. Initially,

we have

Dec𝒔 (−𝒂, Δ
2
) = Δ · 𝜇 +

(
(⟨𝒂, 𝒔⟩ mod Δ) + Δ

2

)︸                     ︷︷                     ︸
≜𝑒

(mod 𝑄) (4)

where 𝑒 ∈ [0,Δ). Then, we distinguish two cases.

Case I: Δ · 𝜇 + 𝑒 ∈ [0, 𝑄/2 − 1]
We have

𝑓𝐶 (Δ · 𝜇 + 𝑒) = Δ
4
·
(
2

⌊ Δ·𝜇+𝑒
Δ

⌋
+ 1

)
mod 𝑄

= Δ
4
· (2𝜇 + 1) mod 𝑄 .

After Line 1, we obtain

Dec𝒔 (𝒄, 𝑑) ≡ 𝑓𝐶
(
Dec𝒔 (−�̄�, Δ

2
)
)
+ 𝑒𝛽

≡ 𝑓𝐶 (Δ · 𝜇 + 𝑒) + 𝑒𝛽
≡ Δ

4
· (2𝜇 + 1) + 𝑒𝛽 (mod 𝑄)

3
Recall that, in this section, elements of Z𝑄 are viewed as unsigned integers with a representative in [0,𝑄 − 1].
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for some 𝑒𝛽 ∈ (−𝛽, 𝛽). Moreover, we know that

𝑓𝐶 (Δ · 𝜇 + 𝑒) ∈
[
Δ
4
,
𝑄

4
− Δ

4

]
because 𝑓𝐶 (𝑥) ∈ [0, 𝑄/4−Δ/4] for any 𝑥 ∈ [0, 𝑄/2−1] andwe cannot have Δ

4
·(2𝜇+1) ∈

[0,Δ/4) for 𝜇 ∈ {0, . . . , 𝑝 − 1}. Since |𝑒𝛽 | < 𝛽 < Δ/4, this implies

Dec𝒔 (𝒄, 𝑑) mod 𝑄 = Δ
4
· (2𝜇 + 1) + 𝑒𝛽 ∈ [0, 𝑄/4 − 1] .

By the definition of 𝑓eval, this in turn yields

𝑓eval

(
Dec𝒔 (𝒄, 𝑑) mod 𝑄

)
≡ Δ ·

⌊
2

Δ ·
( Δ

4
· (2𝜇 + 1) + 𝑒𝛽

) ⌋
≡ Δ ·

⌊ (
𝜇 + 1

2
+ 2

Δ · 𝑒𝛽
) ⌋

≡ Δ · 𝜇 (mod 𝑄)

since

�� 2

Δ · 𝑒𝛽
�� < (2/Δ) · (Δ/4) = 1/2. By Theorem 2.6, after Line 2, we obtain

Dec𝒔 (�̄�, ¯𝑏) ≡ 𝑓eval

(
Dec𝒔 (𝒄, 𝑑)

)
+ 𝑒′

𝛽

≡ Δ · 𝜇 + 𝑒′
𝛽

for some 𝑒′
𝛽
∈ (−𝛽, 𝛽).

Case II: Δ · 𝜇 + 𝑒 ∈ [𝑄/2, 𝑄 − 1]
We have

𝑓𝐶 (Δ · 𝜇 + 𝑒) = −Δ
4
·
(
2

⌊ Δ·𝜇+𝑒
Δ

⌋
− 𝑝 + 1

)
mod 𝑄

= −Δ
4
· (2𝜇 − 𝑝 + 1) mod 𝑄

= −Δ
2
· 𝜇 + 𝑄

4
− Δ

4
mod 𝑄

so that, after Line 1,

Dec𝒔 (𝒄, 𝑑) ≡ 𝑓𝐶 (Δ · 𝜇 + 𝑒) + 𝑒𝛽
≡ −Δ

2
· 𝜇 + 𝑄

4
− Δ

4
+ 𝑒𝛽 (mod 𝑄) (5)

for some 𝑒𝛽 ∈ (−𝛽, 𝛽).
Also, for any 𝑥 ∈ [𝑄/2, 𝑄−1], we have 𝑓𝐶 (𝑥) ∈ [(3𝑄+Δ)/4, 𝑄− Δ

4
], so that 𝑓𝐶 (𝑥)+𝑒𝛽 ∈

[3𝑄/4, 𝑄 − 1] whenever 𝑒𝛽 ∈ (−Δ/4,Δ/4) and the rightmost side of (5) thus lives in

[3𝑄/4, 𝑄 − 1].
Since 𝑓𝐶 (Δ · 𝜇 + 𝑒) = −Δ

2
· 𝜇 + 𝑄

4
− Δ

4
(mod 𝑄), we have (over Q)

2

Δ ·
(
𝑄 − 𝑓𝐶 (Δ · 𝜇 + 𝑒) − 𝑒𝛽

)
= 2

Δ ·
( Δ

2
· 𝜇 + 3𝑄

4
+ Δ

4
− 𝑒𝛽 + 𝑘 ·𝑄

)
= 𝜇 + 3𝑝

2
+ 1

2
− 2

Δ · 𝑒𝛽︸︷︷︸
∈ (− 1

2
,
1

2
)

+2𝑘 · 𝑝

for some integer 𝑘 ∈ Z. By rounding, it comes that⌊
2

Δ ·
(
𝑄 − 𝑓𝐶 (Δ · 𝜇 + 𝑒) − 𝑒𝛽

) ⌋
= 𝜇 + 3𝑝

2
+ 2𝑘 · 𝑝

(still over Q) and⌊
2

Δ ·
(
𝑄 − 𝑓𝐶 (Δ · 𝜇 + 𝑒) − 𝑒𝛽

) ⌋
+ 𝑝

2
≡ 𝜇 + 2(𝑘 + 1) · 𝑝
≡ 𝜇 (mod 𝑝) .
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Given that Dec𝒔 (𝒄, 𝑑) mod 𝑄 ∈ [3𝑄/4, 𝑄 − 1] after Line 1, we have
𝑓eval

(
Dec𝒔 (𝒄, 𝑑) mod 𝑄

)
= 𝑓eval

(
𝑓𝐶 (Δ · 𝜇 + 𝑒) + 𝑒𝛽

)
= Δ ·

( ⌊
2

Δ ·
(
𝑄 − 𝑓𝐶 (Δ · 𝜇 + 𝑒) − 𝑒𝛽

) ⌋
+ 𝑝

2
mod 𝑝

)
mod 𝑄

= Δ · 𝜇 mod 𝑄 .

Therefore, after Line 2, we get

Dec𝒔 (�̄�, ¯𝑏) ≡ 𝑓eval

(
Dec𝒔 (𝒄, 𝑑

) )
+ 𝑒′

𝛽

≡ Δ · 𝜇 + 𝑒′
𝛽

for some 𝑒′
𝛽
∈ (−𝛽, 𝛽), as claimed. □

We need to assume that 𝑄 = 2𝑁 , where 𝑁 is the ring dimension (i.e., the degree of the

cyclotomic polynomial 𝑋𝑁 + 1 used in the GGSW scheme encrypting the PRF seed 𝒔), in order

to evaluate the negacyclic functions using look-up tables of reasonable size. As an example,

suppose that 𝑄 = 2 × 2048, 𝑝 = 2
5
and 𝑛 = 761 with a binary secret key (which is the case for

the PARAM_MESSAGE_2_CARRY_2 parameters from TFHE-rs). In this case, the lattice estimator

suggests around 200 bits of security for the LWR𝑛,𝑚,2𝑁,𝑝,𝑈 ({0,1}) for unbounded number of

samples𝑚, meaning that the LWR problem of interest is concretely hard.

Remark 3.2. We note that Theorem 2.6 applies to the bootstrapping algorithm of [43], which

does not require secret keys to be small. This allows homomorphically evaluating the PRF

described in (2) when its secret key is sampled from a wide discrete Gaussian distribution

(rather than a uniform binary/ternary distribution). The methodology is the same as above.

4 Extension to RLWR-based PRFs Using BFV
The approach of Section 3 extends to homomorphically evaluate the ring analogue of the PRF

recalled Section 2.2. We assume a random oracle 𝐻 : {0, 1}ℓ → R𝑞 that ranges over the ring
R𝑞 .

Recall that, in the notations of Definition 2.3, the BFV FHE [26] involves ciphertexts of the

form (−𝑎,−𝑎 · 𝑠 + Δ ·𝑚 + noise), where 𝑎 ∼ 𝑈 (R𝑞) is a random ring element and 𝑠 ∼ 𝜒𝑠 is the
secret key sampled from some distribution over R. The standard bootstrapping of BFV can be

seen as a restricted programmable bootstrapping for the function 𝑓 (𝑥) = Δ · ⌈𝑥/Δ⌋ that only
refreshes the input ciphertext. We can use the random oracle to encode the input 𝑥 as a ring

element 𝑎 = 𝐻 (𝑥) ∈ R𝑞 and interpret (−𝑎, 0) ∈ R2

𝑞 as a noisy BFV ciphertext of the form

(−𝑎, 0) =
(
−𝑎, −𝑎 · 𝑠 + Δ · Q + 𝑟︸︷︷︸

∈ [−Δ/2,Δ/2)

)
∈ R2

𝑞 ,

where Q is the quotient obtained by Euclidean division and 𝑟 is the remainder. By applying

non-programmable bootstrapping techniques for BFV, we can homomorphically compute a

low-noise encryption (𝑐, 𝑑) ∈ R2

𝑞 of the same plaintext Q. Note that in order to enable the BFV

bootstrapping of the high noise ciphertext, one should set 𝑞 to be the intermediate modulus

to avoid the modulus switching step [28]. Then, we obtain that

Q =
⌈
((𝑝/𝑞) · 𝑎 · 𝑠 mod 𝑞)

⌋
=
⌈
(𝑝/𝑞) · (𝑎 · 𝑠 mod 𝑞)

⌋
mod 𝑝 ,

so that the bootstrapping algorithm outputs a BFV encryption (𝑐, 𝑑) of the RLWR-based PRF⌈
(𝑝/𝑞) · (𝑎 · 𝑠 mod 𝑞)

⌋
.
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Using the bootstrapping techniques of BFV, we can thus obtain many pseudorandom slots

in one bootstrap achieving very high amortized throughput. On the downside, it incurs a

much higher latency (typically at least in the 10’s of seconds) than TFHE. This latency may

be prohibitive in applications such as transciphering.

5 Modified PRFs Supporting Homomorphic Evaluation
Using Depth-1 Bootstrapping

In Section 3, the TFHE evaluator has to perform two programmable bootstrappings for each

plaintext slot in order to evaluate non-negacyclic functions.

In this section, we modify the LWR-based PRF in such a way that it can be evaluated using

only one PBS per plaintext slot. In this modified construction, we assume again that 𝑄 = 2𝑁

where 𝑁 is the ring dimension used in TFHE.

We start from the previous approach and view (−𝒂, 0) ∈ Z𝑛+1
2𝑁

as a highly noisy ciphertext

that decrypts to

⌊
(⟨𝒂, 𝒔⟩ mod 2𝑁 )/Δ

⌋
(in this case, we view the noise as a positive integer in

[0,Δ)). We now apply Theorem 2.6 to the negacyclic function 𝑓 : Z2𝑁 → Z𝑞 defined by:

𝑓 (𝑥) =
{
Δ′ ·

⌊ 𝑝
𝑁
· 𝑥

⌋
mod 𝑞 if 𝑥 ∈

[
0, 𝑁 − 1

]
−Δ′ ·

⌊ 𝑝
𝑁
· (𝑥 − 𝑁 )

⌋
mod 𝑞 if 𝑥 ∈

[
𝑁, 2𝑁 − 1

] (6)

= (−1)msb(𝑥 ) · Δ′ ·
⌊ 𝑝
𝑁
· (𝑥 mod 𝑁 )

⌋
where Δ′ = 𝑞/2𝑁 ∈ Z. By Theorem 2.6, the Evalpp evaluation algorithm outputs a ciphertext

encrypting

PRF𝒔 (𝑥) = (−1)msb(⟨𝒂,𝒔 ⟩ mod 2𝑁 )
⌊
𝑝

𝑁
·
(
⟨𝒂, 𝒔⟩ mod 𝑁

) ⌋
mod 𝑝 (7)

where 𝒂 ≜ 𝒂(𝑥) = 𝐻 (𝑥) ∈ (Z2𝑁 )𝑛 and 𝒔 ∈ {0, 1}𝑛 is the LWE secret key. Note that we hash 𝑥

onto Z2𝑁 even though the inner product inside the rounding function is reduced modulo 𝑁 .

Another difference with the original construction is that the underlying rounding function is

the floor function ⌊·⌋ (whereas the initial PRF can use any rounding function like floor, ceiling

or the nearest integer although its depth-2 evaluation works for the ⌈·⌋ rounding function).
We note that this rounding function was used recently in [29] for similarly small moduli, and

that there is no reason to suspect that the use of ⌊·⌋ affects hardness [9, Sect. 2]. We later

show that one can use the “rounding to nearest integer” function if desired. Although the

function (7) is not the standard PRF considered in [14, 29], we can still prove it pseudorandom

via a reduction from the pseudorandomness of the standard LWR-based PRF.

In more detail, the Evalpp algorithm takes as input the bootstrapping keys bsk[ 𝑗], 1 ≤
𝑗 ≤ 𝑛, each of which is a GGSW encryption (with ring dimension 𝑁 ) of the secret key bit

𝑠 𝑗 under GLWE secret key 𝒔′. We form the test polynomial v ∈ Z𝑝 [𝑋 ]/(𝑋𝑁 + 1) given by

v(𝑋 ) = ∑𝑁−1

𝑖=0
𝑣𝑖 𝑋

𝑖
with coefficients defined as 𝑣𝑖 = ⌊𝑖 · 𝑝/𝑁 ⌋ mod 𝑝 for each 𝑖 ∈ [0, 𝑁 − 1].

Letting 𝒂 = (𝑎1, . . . , 𝑎𝑛), define

w𝑗 (𝑋 ) =
{
v(𝑋 ) if 𝑗 = 0

𝑋 𝑠 𝑗 𝑎 𝑗 · w𝑗−1 (𝑋 ) for 1 ≤ 𝑗 ≤ 𝑛
.

Then, due to the congruence 𝑋𝑁 = −1 (mod 𝑋𝑁 + 1), we have

𝑋 −
∑𝑛

𝑗=1
𝑠 𝑗 ·𝑎 𝑗 (mod 2𝑁 ) · v(𝑋 ) = (−1)msb(⟨𝒂,𝒔 ⟩ mod 2𝑁 ) · 𝑋 −(⟨𝒂,𝒔 ⟩ mod 𝑁 ) · v(𝑋 ) (mod 𝑋𝑁 + 1)

(8)
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since

⟨𝒂, 𝒔⟩ mod 2𝑁 = (⟨𝒂, 𝒔⟩ mod 𝑁 ) + 𝑏 · 𝑁 ,

where 𝑏 = msb(⟨𝒂, 𝒔⟩ mod 2𝑁 ) ∈ {0, 1}. In the right-hand-side member of (8), the degree-0

coefficient is thus

(−1)msb(⟨𝒂,𝒔 ⟩ mod 2𝑁 ) · 𝑣 ⟨𝒂,𝒔 ⟩ mod 𝑁 = (−1)msb(⟨𝒂,𝒔 ⟩ mod 2𝑁 ) ·
⌊
(⟨𝒂, 𝒔⟩ mod 𝑁 ) · 𝑝/𝑁

⌋
mod 𝑝

which is the correct evaluation for 𝒂 = 𝐻 (𝑥) ∈ Z𝑛
2𝑁

. Note that the blind rotation and sample

extraction subroutines on the ciphertext (−𝒂, 0) exactly run this procedure in the encrypted

domain. In particular, the phase of (−𝒂, 0) (i.e., ⟨𝒂, 𝒔⟩ mod 2𝑁 ) picks out the correct coefficient

of the test polynomial. To summarize, we have:

Evalpp (bsk, 𝑥) : Given public parameters pp = (𝑛, 𝑁, 𝑝, 𝑞, 𝛽), an evaluation key bsk and

an input 𝑥 ∈ {0, 1}ℓ , compute the input-dependent vector 𝒂 = 𝐻 (𝑥) ∈ Z𝑛
𝑄
and output

SampleExtract ◦BlindRotate[𝑓 ] (−𝒂, 0) i.e., Boot[𝑓 ] without the keyswitch.
Note that removing the keyswitch outputs an LWE ciphertext of the PRF encrypted under the

key 𝒔′ interpreted as an LWE secret key. One can then keyswitch this ciphertext to the TFHE

secret key in the wider application if required.

Remark 5.1. Although we have presented the case where the PRF key has the same form

as the LWE secret key used in TFHE, other alternatives are available. Since the modified

LWR PRF is as secure as an LWR PRF, the required LWR dimension 𝑛LWR can be smaller

than the LWE dimension 𝑛 used in TFHE. This allows us to use a bsk[ 𝑗] for 1 ≤ 𝑗 ≤ 𝑛LWR in

our construction which can significantly increase efficiency as fewer blind rotation steps are

carried out. Furthermore, since we do not perform any modulus switch from 𝑞 to 2𝑁 unlike

in TFHE, there is a possibility to reduce 𝑁 while increasing the module rank for efficiency.

When doing this, the hardness of the corresponding LWR problem must be checked since

𝑁 is the largest modulus of the LWR assumption, so that a smaller 𝑁 induces a smaller

deterministically generated noise (of magnitude < 𝑁 /𝑝). Note that it would be useful in terms

of memory requirement to reuse the TFHE bootstrapping key for PRF evaluation, but this

would violate the principle of key separation.

5.1 Pseudorandomness of the Modified PRF
We have shown that one can evaluate the function

PRF𝒔 (𝑥) ≜ (−1)msb(⟨𝒂,𝒔 ⟩ mod 2𝑁 )
⌊
𝑝

𝑁
·
(
⟨𝒂, 𝒔⟩ mod 𝑁

) ⌋
(mod 𝑝)

with a depth-1 programmable bootstrapping. However, we must also show that PRF𝒔 is indeed
pseudorandom as it is amodified version of the standard LWR PRF described in Section 2.2. As a

standard TFHE parameter choice, we assume that 𝑁 = 2
ℓ𝑁

and 𝑝 = 2
ℓ𝑝
where 𝑘 ≜ ℓ𝑁 − ℓ𝑝 > 0.

Consider any 𝑦 ∈ Z bounded in absolute value by 2𝑁 · 𝐵 for appropriately large 𝐵. It is

easy to see that 𝑦 mod 2𝑁 is simply the lowest ℓ𝑁 + 1 bits of 𝑦 + 2𝑁𝐵. Further, 𝑦 mod 𝑁 is

the lowest ℓ𝑁 bits of 𝑦 + 2𝑁𝐵. We can additionally interpret the operation on 𝑦 described by⌊
2𝑝

2𝑁
· (𝑦 mod 2𝑁 )

⌋
mod 2𝑝 (9)

in terms of operations on bits too. In particular, one can think of the above operation as taking

the ℓ𝑁 + 1 bottom bits of 𝑦 + 2𝑁𝐵 and then dropping the 𝑘 least significant bits. This leaves

ℓ𝑁 + 1 − 𝑘 = ℓ𝑝 + 1 bits which represents an integer modulo 2𝑝 . This interpretation implies:
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Observation 5.2. For 𝑁 > 𝑝 both powers-of-two and any 𝑦 ∈ Z,

msb(𝑦 mod 2𝑁 ) = msb

( ⌊
2𝑝

2𝑁
· (𝑦 mod 2𝑁 )

⌋
mod 2𝑝

)
.

Changing (2𝑁, 2𝑝) to (𝑁, 𝑝) in Equation (9) changes the operation to “take ℓ𝑁 bottom bits of

𝑦 + 2𝑁𝐵 and then drop the 𝑘 least significant bits”. Therefore, we have the following:

Observation 5.3. For 𝑁 > 𝑝 both powers-of-two and any 𝑦 ∈ Z, one can compute
⌊ 𝑝
𝑁
·

(𝑦 mod 𝑁 )
⌋

mod 𝑝 from the bits of the quantity in (9) by simply dropping the most significant
bit.

With these two observations, we prove that the modified PRF𝒔 is as secure as a standard
LWR-based PRF (denoted as 𝐺𝒔 ), which is identical to the one recalled in Section 2.2 except

that the rounding function ⌈·⌋ is replaced by ⌊·⌋.
Lemma 5.4. Assume 𝑝 = 2

ℓ𝑝 and 𝑁 = 2
ℓ𝑁 are powers-of-two such that 𝑘 ≜ ℓ𝑁 − ℓ𝑝 > 0. Take

a random function 𝐻 : {0, 1}∗ → (Z2𝑁 )𝑛 and assume that 𝐺𝒔 : {0, 1}∗ → Z2𝑝 ,

𝐺𝒔 (𝑥) ≜
⌊

2𝑝

2𝑁
·
(
⟨𝐻 (𝑥), 𝒔⟩ mod 2𝑁

) ⌋
mod 2𝑝

is pseudorandom for 𝒔 sampled uniformly from {0, 1}𝑛 . Then, the function PRF𝒔 : {0, 1}∗ → Z𝑝 ,

PRF𝒔 (𝑥) ≜ (−1)msb(⟨𝐻 (𝑥 ),𝒔 ⟩ mod 2𝑁 ) ·
⌊
𝑝

𝑁
·
(
⟨𝐻 (𝑥), 𝒔⟩ mod 𝑁

) ⌋
mod 𝑝

is pseudorandom where 𝒔 is also sampled uniformly in {0, 1}𝑛 .
Proof. We describe a reduction A that attempts to build a PPT PRF distinguisher for 𝐺

from any PPT distinguisher D for PRF. The reduction is as follows:

• When D wishes to query its oracle on input 𝑥 , A forwards the request on to its

challenger, receiving 𝑔 ∈ Z2𝑝 in response.

• Define 𝑔0 ≜ msb(𝑔) and 𝑔′ to be the integer in {0, . . . , 𝑝 − 1} resulting from dropping

the MSB of 𝑔. A sends 𝑓 ≜ (−1)𝑔0 · 𝑔′ mod 𝑝 back to D in response to the query 𝑥 .

• A ultimately outputs whatever D does.

When A’s challenger is returning uniform values for 𝑔, A’s response 𝑓 that is sent to D is

clearly uniform. On the other hand, whenA’s challenger is using𝐺𝒔 to compute 𝑔, we can use

Observation 5.2 to show that the exponent of (−1) is correct and Observation 5.3 to show that

the remaining term (i.e., 𝑔′) is correctly computed for PRF𝒔 . Therefore, A perfectly simulates

D’s PRF challenger which implies thatD’s advantage against the pseudorandomness of PRF𝒔
is equal to that of A’s advantage against 𝐺𝒔 . By assumption on the pseudorandomness of 𝐺𝒔 ,

PRF𝒔 must also be pseudorandom. □

5.2 Replacing Floor with Nearest Integer Rounding
It is of course possible to evaluate the modified PRF in depth one when the rounding function

is ⌈·⌋ instead of ⌊·⌋. This only requires to modify the coefficients of the test polynomial v(𝑋 )
accordingly. In the interpretation of (−𝑎, 0) as a noisy ciphertext, we need to replace ⌊·⌋ by
⌈·⌋ in the negacyclic function of (6) and go back to our view of the “noise” as an integer in

[−Δ/2,Δ/2).
However, we need to slightly modify the argument proving the pseudorandomness of the

resulting function. We may replace the definition of PRF𝒔 by

PRF𝒔 (𝑥) ≜ (−1)msb(⟨𝐻 (𝑥 ),𝒔 ⟩ mod 2𝑁 ) ·
⌈
𝑝

𝑁

(
⟨𝐻 (𝑥), 𝒔⟩ mod 𝑁

) ⌋
mod 𝑝 (10)
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in Lemma 5.4 whilst changing the parameters (𝑝, 𝑁 ) in the definition of 𝐺𝒔 . To see how, note

that we can write ⌈𝑦⌋ = ⌊𝑦⌋ + 𝑏𝑦 where 𝑏𝑦 is the bit of 𝑦 just below the fixed binary point.

Essentially, the reduction in the proof needs an extra bit in order to convert the floor function

to the rounding function (i.e., to simulate the function in Equation (10)). In order to gain access

to this bit, one needs to increase 𝑝 in the definition of 𝐺𝒔 by a factor of 2. The conclusion is

the following lemma.

Lemma 5.5. Assume 𝑝 = 2
ℓ𝑝 and 𝑁 = 2

ℓ𝑁 are powers-of-two such that 𝑘 ≜ ℓ𝑁 − ℓ𝑝 − 1 > 0.
Take a random function 𝐻 : {0, 1}∗ → (Z2𝑁 )𝑛 and assume that 𝐺𝒔 : {0, 1}∗ → Z4𝑝 ,

𝐺𝒔 (𝑥) ≜
⌊

4𝑝

2𝑁
·
(
⟨𝐻 (𝑥), 𝒔⟩ mod 2𝑁

) ⌋
mod 4𝑝

is pseudorandom for 𝒔 sampled uniformly from {0, 1}𝑛 . Then, the function PRF𝒔 : {0, 1}∗ → Z𝑝 ,

PRF𝒔 (𝑥) ≜ (−1)msb(⟨𝐻 (𝑥 ),𝒔 ⟩ mod 2𝑁 ) ·
⌈
𝑝

𝑁
·
(
⟨𝐻 (𝑥), 𝒔⟩ mod 𝑁

) ⌋
mod 𝑝

is pseudorandom where 𝒔 is also sampled uniformly in {0, 1}𝑛 . □

5.3 Reducing the Range for Padding
In TFHE and wider applications, it is often useful to have one or more padding bits in the

plaintext space. A common practice is to always leave the most significant bit of a plaintext

to 0 when this plaintext has to be involved in further homomorphic computations. So far, we

have not considered this issue.
4

In the depth-2 construction of Section 3, a simple solution is to modify the test polynomial

of the second PBS and shift the bits of all coefficients to the right. In the depth-1 case, we

cannot do this since it would unsuitably interfere with the (−1)msb(⟨𝒂,𝒔 ⟩ mod 2𝑁 )
factor during

the blind rotation.

In the depth-1 case, we can address this problem by considering yet another modified

PRF. As before, we assume that the full plaintext space has a power-of-two modulus 𝑝 = 2
ℓ𝑝
.

However, we now introduce a usable plaintext modulus 𝑝′ = 2
ℓ𝑝′ < 𝑝 meaning that we have

ℓ𝑝 − ℓ𝑝′ padding bits. The modified PRF can then be described as

PRF𝒔 (𝑥) ≜ (−1)msb(⟨𝒂,𝒔 ⟩ mod 2𝑁 ) ·
( ⌊ 𝑝′

2𝑁
·
(
⟨𝒂, 𝒔⟩ mod 𝑁

) ⌋
+ 1

2

)
+ 𝑝′−1

2
mod 𝑝 (11)

= (−1)msb(⟨𝒂,𝒔 ⟩ mod 2𝑁 ) ·
⌊
𝑝′

2𝑁
·
(
⟨𝒂, 𝒔⟩ mod 𝑁

) ⌋
+ 𝑝′

2
−msb

(
⟨𝒂, 𝒔⟩ mod 2𝑁

)
(12)

which ranges over [0, 𝑝′ − 1]. To evaluate this function, we can first apply Theorem 2.6 with

𝑄 = 2𝑁 to the function

𝑓 : Z2𝑁 → Z𝑞, 𝑥 ↦→ 𝑓 (𝑥) ≜ (−1)msb(𝑥 ) · 𝑞
𝑝
·
( ⌊ 𝑝′

2𝑁
· (𝑥 mod 𝑁 )

⌋
+ 1

2

)
which is negacyclic since

𝑓 (𝑥 + 𝑁 ) = (−1) · 𝑓 (𝑥) = −𝑓 (𝑥) mod 2𝑁 ∀𝑥 ∈ [0, 𝑁 − 1] .

4
In the application to transciphering in Section 7, it is not necessary to keep the padding bit clear and we can use the

full precision of the message space.
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Then, after the PBS, we can add the term
𝑞

𝑝
· 𝑝
′−1

2
to the evaluated ciphertext.

5
Due to the

additive homomorphism, this yields an encryption of the correct PRF value (11).

We now argue the pseudorandomness of the function in (11). Note that for any 𝒂, 𝒔 ∈ Z𝑛 ,⌊
𝑝′/2
𝑁
·
(
⟨𝒂, 𝒔⟩ mod 𝑁

) ⌋
mod

𝑝′

2
=

⌊
𝑝′/2
𝑁
·
(
⟨𝒂, 𝒔⟩ mod 𝑁

) ⌋
mod 𝑝

=

⌊
𝑝′/2
𝑁
·
(
⟨𝒂, 𝒔⟩ mod 𝑁

) ⌋
as the modular reduction mod(𝑝′/2) and 𝑝 is inconsequential. By Observation 5.3, if 𝑁 >

𝑝′/2, one can compute the above by dropping the most significant bit of⌊
𝑝′

2𝑁
·
(
⟨𝒂, 𝒔⟩ mod 2𝑁

) ⌋
. (13)

Furthermore, by Observation 5.2, if 𝑁 > 𝑝′/2,

msb

(
⟨𝒂, 𝒔⟩ mod 2𝑁

)
= msb

( ⌊ 𝑝′
2𝑁
·
(
⟨𝒂, 𝒔⟩ mod 2𝑁

) ⌋ )
. (14)

To prove the pseudorandomness property, we rely on the following lemma whose proof is

similar to that of the un-padded case.

Lemma 5.6. Assume 𝑝′ = 2
ℓ𝑝′ and 𝑁 = 2

ℓ𝑁 are powers-of-two such that 𝑁 > 𝑝′/2. Take a
random function 𝐻 : {0, 1}∗ → (Z2𝑁 )𝑛 and assume that 𝐺𝒔 : {0, 1}∗ → Z𝑝′ ,

𝐺𝒔 (𝑥) ≜
⌊
𝑝′

2𝑁
·
(
⟨𝐻 (𝑥), 𝒔⟩ mod 2𝑁

) ⌋
is pseudorandom for 𝒔 sampled uniformly from {0, 1}𝑛 . Then, the function

PRF′𝒔 : {0, 1}∗ →
{
± 1

2
,±

(
1 + 1

2

)
,±

(
2 + 1

2

)
, . . . ,±

( 𝑝′
2
− 1 + 1

2

)}
PRF′𝒔 (𝑥) ≜ (−1)msb(⟨𝐻 (𝑥 ),𝒔 ⟩ mod 2𝑁 ) ·

( ⌊ 𝑝′
2𝑁
·
(
⟨𝐻 (𝑥), 𝒔⟩ mod 𝑁

) ⌋
+ 1

2

)
is pseudorandom where 𝒔 is also sampled uniformly in {0, 1}𝑛 .

Proof. We describe a reduction A that attempts to build a PPT PRF distinguisher for 𝐺

from any PPT distinguisher D for PRF′. The reduction is as follows:

• When D wishes to query its oracle on input 𝑥 , A forwards the request on to its

challenger, receiving 𝑔 ∈ Z𝑝′ in response.

• Define 𝑔0 ≜ msb(𝑔) ∈ {0, 1} and let 𝑔′ the integer in {0, . . . , 𝑝′/2 − 1} resulting from
dropping the MSB of 𝑔. A sends 𝑓 ≜ (−1)𝑔0 · (𝑔′ + 1

2
) back to D in response to the

query 𝑥 .

• A ultimately outputs whatever D does.

When A’s challenger is returning uniform values for 𝑔, A’s response 𝑓 that is sent to D is

clearly uniform in the appropriate range as A’s operations are invertible. On the other hand,

when A’s challenger is using 𝐺𝒔 to compute 𝑔, we can use Equation (14) to show that the

exponent of (−1) is correct and Observation 5.3 with the parametrization in (13) to show that

the remaining term (i.e., 𝑔′) is correctly computed for PRF′𝒔 . Therefore, A perfectly simulates

D’s PRF challenger which implies thatD’s advantage against the pseudorandomness of PRF′𝒔
is equal to that of A’s advantage against 𝐺𝒔 . By assumption on the pseudorandomness of 𝐺𝒔 ,

PRF′𝒔 must also be pseudorandom. □

5
This does not quite correspond to adding

𝑝′
2
− 1

2
to the plaintext since 1/2 is not defined modulo 𝑝 . However, it still

provides an encryption of the correct PRF evaluation (11) after the final addition.
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We finally complete the proof of pseudorandomness for the function defined in (11) by

additively shifting the pseudorandom function PRF′𝒔 from the above lemma.

6 Implementation and Performance
In order to test our depth-1 construction in practice, we use the TFHE-rs library using an

AWS hpc7a.96xlarge instance with 4th Gen AMD EPYC processor, 768 GiB total RAM and

using AVX512 on a single thread. We also provide benchmarks run on a 2022 Apple Macbook

Pro with an Apple M2 chip and 8 GB RAM. In particular, we test the latency (specifically,

the time required to perform the blind rotation step) for the homomorphic evaluation of the

PRF in Section 5.1. To ensure the practical relevance of our results, we use practical TFHE

parameter sets PARAM_MESSAGE_2_CARRY_2 (where the bootstrapping key has size 23.9MB)

and PARAM_MESSAGE_1_CARRY_1 (with bootstrapping key size 11 MB) as opposed to some

bespoke parameter set. Our benchmarks do not include the computation of the hash value𝐻 (𝑥)
and therefore mimic cases where the hash values have been precomputed e.g. transciphering

where the server stores the hashes. In any case, the time taken to hash will be negligible

compared to the runtime of homomorphic PRF evaluations, especially for short 128-bit or

256-bit inputs. Note that the plaintext space for PARAM_MESSAGE_2_CARRY_2 is effectively Z𝑝
for 𝑝 = 2

5
as there are 2 “carry” bits, 2 “message” bits and a padding bit (equaling 5 bits in total).

Note that the nomenclature arises from the fact that TFHE-rs is designed to implement large

integer arithmetic. Further, the ring dimension used is 𝑁 = 2048 = 2
11
. Using the optimization

outlined in Remark 5.1 and Lemma 5.4, we require that LWR𝑛LWR,𝑚,𝑄=2𝑁,2𝑝,𝑈 ({0,1}) is hard.
Using the lattice estimator for unbounded 𝑚 and modeling LWR as LWE with uniform

rounding noise, we conclude that we may choose 𝑛LWR = 445 for an estimated 128 bits of

security. Taking 𝑛𝐿𝑊𝐸 to be the TFHE LWE dimension leads to a PRF evaluation key that has

a size of approximately 𝑛LWR/𝑛LWE = 445/742 ≈60% of the size of a regular bootstrapping

key. Making this choice leads to a latency of 6.0328 ms (averaged over 60 seconds). Stated

differently, we obtain a throughput of around 829 encrypted pseudorandom bits on a single

thread. Naturally, one can increase this throughput by using multiple threads.

For the PARAM_MESSAGE_1_CARRY_1 parameter set, the plaintext space is effectively set to

𝑝 = 2
3
and the ring dimension is 𝑁 = 512 leading to 𝑛LWR = 409. The PRF evaluation key size

in this case is also approximately 𝑛LWR/𝑛LWE = 409/702 ≈ 60% of the bootstrapping key. The

latency in the depth-1 construction is around 2.8029 ms (averaged over 60 seconds) leading to

around 1070 pseudorandom bits per second on a single thread. The results are summarized in

Table 1.

Table 1. Single threaded experimental results. The first reported result is on a hpc7a.96xlarge

instance whereas the second is on an Apple Macbook Pro.

Parameter set MESSAGE_1_CARRY_1 MESSAGE_2_CARRY_2

Plaintext bits 3 5

Latency (ms) 2.803 / 3.714 6.033 / 8.187

Throughput (bits/s) 1070 / 808 829 / 611

Bootstrap Key 11.0 MB 23.9 MB

PRF Eval Key 6.4MB 13.9 MB
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Further Optimization. As mentioned in Remark 5.1, our conditions on 𝑁 are different to

those in TFHE parameter selection and reducing the size of 𝑁 can offer improvements in

efficiency. In particular, we do not have to worry about any modulus switching error from

𝑞 to 2𝑁 in our construction. We do however have to worry about choosing 𝑁 and 𝑛LWR so

that LWR holds with respect to moduli 2𝑁 and 2𝑝 . We describe our strategy for optimizing

parameters next, defining 𝑘 to be the module rank (as defined in Definition 2.5) in the TFHE

GLWE assumption. Suppose that we are using parameters (𝑁,𝑘, 𝑛LWR with a GLWE/GGSW.

Then, we can map to some 𝑘 ′, 𝑁 ′ = 𝑁 /2𝜅 (for some integer 𝜅 < log
2
(𝑁 )) and set 𝑛′

LWR
such

that the LWR assumption in Lemma 5.4 holds.

Next, we must ensure that the new parameters are chosen so that the output of our

construction looks like a bootstrapped TFHE PARAM_MESSAGE_X_CARRY_X ciphertext. A detail

is that these parameter sets use the more efficient “keyswitch then blind rotate” [10] pattern:

i.e., the output to the PBS is a (𝑘 · 𝑁 + 1)-dimensional LWE ciphertext. On the other hand,

the output to our optimized scheme would be a (𝑘 ′ · 𝑁 ′ + 1)-dimensional LWE ciphertext.

We will always assume that whenever (𝑘 ′, 𝑁 ′) ≠ (𝑘, 𝑁 ), we use distinct secret keys. In other

words, we do not share a secret key between a GLWE in dimensions (𝑘 ′, 𝑁 ′) and (𝑘, 𝑁 ). This
choice may be overly conservative, but may potentially allow for a less heuristic security

guarantee. Then, to summarize we pick parameters to ensure that a blind rotation followed by

a “𝑘 ′𝑁 ′ to 𝑘𝑁 ” keyswitch results in a ciphertext under the correct key, with the noise level of

a bootstrapped ciphertext. We note that when using the “blind rotate then keyswitch” pattern,

the 𝑘 ′𝑁 ′ to 𝑘𝑁 keyswitch is unnecessary as one would simply keyswitch directly down to the

LWE dimension to obtain a bootstrapped ciphertext. However, this pattern generally leads to

an overall less efficient FHE application.

Using the optimization techniques from [10], we obtain new parameters and run bench-

marks. Unfortunately, the optimized PARAM_MESSAGE_1_CARRY_1 setting did not improve

throughput, even when ignoring the 𝑘 ′𝑁 ′ to 𝑘𝑁 keyswitch. Therefore, we do not report

on this parameter set. However, the optimization and improved performance of the PARAM_
MESSAGE_2_CARRY_2 is reported in Table 2. A good choice for the dimension 𝑁 ′ in terms of

latency and key size appears to be 512. At this dimension, the throughput increases by 16%

(or 44%) on the hpc7a.96xlarge (respectively, laptop) whereas the evaluation key shrinks by

around 5 MB or 36% compared to results in Table 1. As can be seen in the latter table, when

𝑁 ′ becomes small, the LWR dimension increases dramatically hindering performance. Note

that optimizing without the 𝑘 ′𝑁 ′ to 𝑘𝑁 keyswitch does not appear to change the throughput

here either. In particular, removing the keyswitch still does not allow us to pick 𝑘 ′𝑁 ′ < 𝑘𝑁 or

improve the blind rotation decomposition parameters (which are already optimal in PARAM_
MESSAGE_2_CARRY_2). We note that the key compression techniques of [43] could also be

applied to compress the size of the PRF evaluation key. However, due to the tight noise

constraints considered when optimizing the parameters used in our benchmarks, we do not

expect their techniques to be directly applicable to the parameter sets used in this work, since

it would add additional noise in the PRF evaluation key. Instead, to utilize these techniques, it

would be necessary to use larger parameters, as in [2, 43]

7 Application to Transciphering
We now describe an application of our homomorphic PRF evaluation algorithms to tran-

sciphering. We consider a client wishing to send large amounts of data to the cloud that

will eventually be used in an FHE application—think for example of image processing over
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Table 2. Single threaded experimental results with “optimized” parameters for

PARAM_MESSAGE_2_CARRY_2. The first reported result is on a hpc7a.96xlarge instance

whereas the second is on an Apple Macbook Pro.

Parameter set Opt-2-2-256 Opt-2-2-512 Opt-2-2-1024

(𝑁 ′, 𝑘 ′, 𝑛′
LWR
) (256, 8, 980) (512, 4, 455) (1024, 2, 455)

Plaintext bits 5 5 5

Latency (ms) 14.267 / 13.388 5.205 / 5.675 5.156 / 6.379

Throughput (bits/s) 350 / 373 961 / 881 970 / 784

PRF Eval Key 17.2 MB 8.9MB 10.7 MB

encrypted data. Instead of sending FHE encryptions of the data on the cloud, transciphering

allows the transmission of symmetric key encryptions to dramatically reduce cloud bandwidth

requirements. Specifically, the symmetric encryptions sent on the cloud do not need to be any

larger than the original data, whereas FHE ciphertexts would be much larger. As an example

of this application, a symmetric encryption of a message𝑀 can take the form(
𝑥,𝑀 ⊕ PRF𝑘 (𝑥)

)
where 𝑥 is a random string of sufficient length chosen by the sender.

6
Then, in order to obtain

an FHE encryption of 𝑀 , the cloud can use an FHE encryption of 𝑘 to compute an FHE

encryption of PRF𝑘 (𝑥). With this, the cloud can homomorphically subtract PRF𝑘 (𝑥) to obtain

an FHE encryption of𝑀 that can be computed on further. Note that other forms of symmetric

encryption (e.g. certain block cipher modes of operation) may also be used provided that PRF

inputs remain public.

As a concrete example, we may consider our depth-1 construction of Section 5.1 (or Section

5.2). This yields a symmetric encryption scheme where the sender chooses a random 𝑥 ←↪

𝑈 ({0, 1}𝜆) and encrypts 𝑴 ∈ Z𝑚𝑝 using PRF secret key 𝑘 ≜ 𝒔 ←↪ 𝑈 ({0, 1}𝑛) by computing

(𝑥, 𝒄) =
(
𝑥,𝑴 + PRF𝒔 (𝑥) mod 𝑝

)
, where

∀𝑖 ∈ [𝑚] :

(
PRF𝒔 (𝑥)

)
𝑖
≜ (−1)msb(⟨𝐻 (𝑥,𝑖 ),𝒔 ⟩ mod 2𝑁 ) ·

⌊
𝑝

𝑁
·
(
⟨𝐻 (𝑥, 𝑖), 𝒔⟩ mod 𝑁

) ⌋
, (15)

for a hash function 𝐻 : {0, 1}∗ → Z𝑛𝑝 modeled as a random oracle. Then, the encryptor sends

the ciphertext (𝑥, 𝒄) for storage. We assume that the evaluator has a copy of the corresponding

public bootstrapping key bsk = GGSW.Enc𝒔′ (𝒔) for some secret key 𝒔′. From (𝑥, 𝒄) and bsk,
the evaluator can compute(

A, 𝒃 = A⊺𝒔′ + 𝒆 + Δ · PRF𝒔 (𝑥)
)
= Evalpp (bsk, 𝑥) ∈ Z𝑚×𝑛𝑞 × Z𝑚𝑞 ,

where ∥𝒆∥∞ ≤ 𝛽 for the bound 𝛽 of Theorem 2.6. Then, the evaluator obtains

(−A,−𝒃 + Δ · 𝒄 mod 𝑞)
which is an encryption of𝑴 ∈ Z𝑚𝑝 under the secret key 𝒔′ since (0,Δ·𝒄) is a (trivial) encryption
of 𝒄 .
The main advantage of the proposed solution is that the encryption of𝑚 plaintexts in Z𝑝

only requires sending a random seed 𝑥 (typically, a 256-bit value) along with𝑚 values modulo

𝑝 . This is much better that the plain solution that would send a matrix A of𝑚 × 𝑛 entries

6
This construction satisfies the definition of CPA security (see, e.g., [41, Chapter 3]) for secret-key encryption schemes

assuming that the underlying PRF is pseudorandom.
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modulo 𝑞 plus𝑚 values modulo 𝑞 (typically, 𝑛 is of the order of 1000). This is even better

than the folklore improved solution consisting in sending a seed 𝜎 for building matrix A
along with𝑚 values modulo 𝑞. Our solution trades modulo-𝑞 values against modulo-𝑝 values,

where 𝑝 ≪ 𝑞; typically, 𝑝 = 2
4
and 𝑞 = 2

64
. Compared to the improved solution, this saves

𝑚 · log
2
𝑞/𝑝 bits of transmission. For example, for (1024 × 1024) 8-bit gray-scale images, with

𝑝 = 16 and 𝑞 = 2
64
(and thus𝑚 = 2

21
), this results in saving more than 10

8
bits per encrypted

image.

We also observe that, as in stream-cipher-based solutions, we can dynamically decide to

change the number𝑚 of plaintext blocks if the need arises without changing anything to the

parameters or the key material. It only requires to update the number of indexes 𝑖 when the

encryptor computes (15).
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A Pseudorandom Functions
In this section, we recall the standard definition of pseudorandom function families.

Definition A.1. Let 𝜆 be a security parameter and let 𝜅 = 𝜅 (𝜆). A pseudorandom function

PRF : {0, 1}𝜆 × {0, 1}𝜅 → {0, 1}𝜆 is an efficiently computable function where the first input

𝐾 ∈ {0, 1}𝜆 is the key. Let Ω be the set of all functions that map 𝜅-bit inputs to 𝜆-bit strings.

The advantage of a PRF distinguisher D making 𝑄 evaluation queries is defined as

AdvD,prf

𝑄
(𝜆) :=

��
Pr[DPRF(𝐾,· ) (1𝜆) = 1] − Pr[D𝐹 ( ·) (1𝜆) = 1]

�� ,
where the probability is taken over the random choice of 𝐾 ←↪ 𝑈 ({0, 1}𝜆) and 𝐹 ←↪ 𝑈 (Ω)
and the coin tosses of D.

B GGSW Ciphertexts
Generalized GSW (GGSW) encryption is a natural extension of the scheme by Gentry, Sahai,

and Waters [32] (in its ring version) to higher ranks. GGSW ciphertexts play a central role

in the programmable bootstrapping of TFHE as they enable the external product of certain

ciphertexts (as defined below). In particular, the bootstrapping keys are GGSW encryptions of

private-key components.

The simplest way to view GGSW ciphertexts is through gadget decomposition of GLWE

ciphertexts. Given a gadget vector g = (g1, . . . , gℓ ) ∈ Rℓ𝑞 and a GLWE ciphertext c ←
GLWEs(𝜇) ∈ R𝑘+1𝑞 under private key s = (s1, . . . , s𝑘 ) ∈ R𝑘 , the corresponding gadget GLWE

ciphertext (usually indicated with a
′
) is defined as

GLWE
′
s(𝜇) ←

(
GLWEs(g1 · 𝜇), . . . ,GLWEs(gℓ · 𝜇)

)
.

This leveled encryption gives rise to a GGSW ciphertext; i.e.,

GGSWs(𝜇) ←
(
GLWE

′
s(−s1 · 𝜇), . . . ,GLWE

′
s(−s𝑘 · 𝜇), GLWE

′
s(𝜇)

)
.

Importantly, the external product of a GLWE ciphertext and a GGSW ciphertext, denoted

with ⊛, satisfies

GLWEs(𝜇1) ⊛ GGSWs(𝜇2) = GLWEs(𝜇1 · 𝜇2 + e1 · 𝜇2)

where e1 is the noise error present in GLWEs(𝜇1). The output of the external product is

therefore a GLWE encryption of 𝜇1 ·𝜇2 provided that message 𝜇2 is “small” so that ∥e1 ·𝜇2)∥∞ ≈
∥e1∥∞. This is the case for the TFHE bootstrapping keys, which are GGSW encryptions of

key bits (i.e., values in {0, 1}).

C Evaluation Using Depth-3 Bootstrapping
Following Liu, Micciancio and Polyakov [45], we apply Theorem 2.6 with the following

negacyclic functions 𝑓2 : ZΔ → Z𝑄 , 𝑓0 : Z2Δ → Z2Δ and 𝑓1 : Z2Δ → Z𝑄 , where we define
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Δ = 𝑄/𝑝 ∈ Z:

𝑓2 (𝑥) =


−Δ/4 if 0 ≤ 𝑥 < Δ/4
+Δ/4 if Δ/2 ≤ 𝑥 < 3Δ/4
0 otherwise

𝑓0 (𝑥) =
(
Δ ·

⌊
𝑥
Δ

⌋
− Δ

2

)
mod 2Δ

𝑓1 (𝑥) =
{
𝑥 if 𝑥 < Δ

𝑄 − 𝑥 if 𝑥 ≥ Δ
.

In the above function definitions, the value 𝑓1 (𝑥) = 𝑄 − 𝑥 if 𝑥 ≥ Δ is not actually used and

only defined to satisfy the negacyclic constraint. Note that although TFHE natively handles

negacyclic functions 𝑓 : Z𝑄 → Z𝑞 for 𝑄 = 2𝑁 , we can adapt it to handle negacyclic functions

𝑓 ′ : Z𝑄 ′ → Z𝑞′ where 𝑄 ′ divides 2𝑁 and 𝑞′ divides 𝑞. Essentially, from 𝑓 ′, we may derive

a negacyclic function 𝑓 : Z2𝑁 → Z𝑞 by setting 𝑓 (𝑥) = (𝑞/𝑞′) · 𝑓 ′ (⌊𝑥 · 2𝑁 /𝑄 ′⌋) where the
multiplication is performed over the integers.

The homomorphic evaluation algorithm is based on the technique of [45, Section 4], which

is adapted using their homomorphic floor function [45, Algorithm 2] that allows handling an

arbitrarily large noise in the input ciphertext.

In the description hereunder, we assume that the seed 𝒔 ∈ Z𝑛 of the LWE-based PRF is

encrypted in the same way as the bootstrapping key of an LWE-based encryption scheme

where the secret key is 𝒔. We thus assume a bootstrapping key bsk = GGSW𝒔′ (𝒔) consisting
of a generalized-GSW encryption of the seed 𝒔 (viewed as the decryption key of a LWE-based

encryption scheme) under a GGSW secret key 𝒔′.

Evalpp (bsk, 𝑥) : Given public parameters pp = (𝑛,𝑄, 𝑝, 𝛽), an evaluation key bsk and an

input 𝑥 ∈ {0, 1}ℓ , compute the input-dependent vector 𝒂 = 𝐻 (𝑥) ∈ Z𝑛
𝑄
and do the

following:

1. (�̄�, 0) := (−𝒂, 0) mod Δ
2. (𝒄, 𝑑) := (−𝒂, 0) − Boot[𝑓2] (�̄�, 0) (mod 𝑄)
3. 𝑑 := 𝑑 + 𝛽 − Δ

4

4. (𝒄, ¯𝑑) := (𝒄, 𝑑) mod Δ
5. (𝒄, ¯𝑑) := (𝒄, ¯𝑑) mod 2Δ
6. (𝒄, ¯𝑑) := (𝒄, ¯𝑑) − Boot[𝑓0] (𝒄, ¯𝑑) (mod 2Δ)
7.

¯𝑑 := ¯𝑑 + 𝛽 − Δ
2

8. (𝒄, 𝑑) = (𝒄, 𝑑) − Boot[𝑓1] (𝒄, ¯𝑑) + 𝛽 (mod 𝑄)
Output the ciphertext ct = (𝒄, 𝑑) ∈ Z𝑛+1

𝑄
.

At the end of the evaluation process, ct is an LWE encryption of the PRF evaluation

PRF𝒔 (𝑥) =
⌈ 𝑝
𝑄
·
(
⟨𝐻 (𝑥), 𝒔⟩ mod 𝑄

) ⌋
mod 𝑝 under an LWE secret key which is the PRF secret

key 𝒔 itself. In order to obtain an LWE encryption of PRF𝒔 (𝑥) under the LWE secret key 𝒔′

(which is the one used to encrypt 𝒔 in the bootstrapping key), a simple solution is to remove

the key-switching step in the last call to the Boot procedure in Line 8.

We now prove the correctness property.

Lemma C.1. Assume that 𝑝 divides 𝑄 and that Δ = 𝑄/𝑝 > 16𝛽 , where 𝛽 is the bootstrapping
error from Theorem 2.6. For any 𝑥 ∈ {0, 1}ℓ , Eval outputs a ciphertext (𝒄, 𝑑) ∈ Z𝑛+1

𝑄
such that
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Dec𝒔 (𝒄, 𝑑) = Δ · 𝜇 + 𝑒 (mod 𝑄), where |𝑒 | < 2𝛽 ,

𝜇 =

⌈
𝑝

𝑄
·
(
⟨𝒂, 𝒔⟩ mod 𝑄

) ⌋
mod 𝑝

with 𝒂 = 𝐻 (𝑥) ∈ Z𝑛
𝑄
.

Proof. Since

(−𝒂, 0) ∈ Z𝑛+1𝑄 =

(
−𝒂,−(⟨𝒂, 𝒔⟩ mod 𝑄) + Δ ·

⌈
(⟨𝒂, 𝒔⟩ mod 𝑄)/Δ

⌋
+
(
⟨𝒂, 𝒔⟩ mod Δ

)︸            ︷︷            ︸
∈ [−Δ/2,Δ/2)

)
where Δ = 𝑄/𝑝 , we have

Dec𝒔 (−𝒂, 0) = ⟨𝒂, 𝒔⟩ mod 𝑄

= Δ ·
⌈
(⟨𝒂, 𝒔⟩ mod 𝑄)/Δ

⌋︸                   ︷︷                   ︸
≜ 𝜇

+
(
⟨𝒂, 𝒔⟩ mod Δ

)
(mod 𝑄)

before Line 1. After Line 1, we have (�̄�, 0) = (−𝒂, 0) mod Δ. By the same arguments as in [45,

Lemma 3], we have that

𝑚′ ≜ Dec𝒔 (�̄�, 0) mod Δ = ⟨𝒂, 𝒔⟩ mod Δ

are the log
2
Δ least significant bits of ⟨𝒂, 𝒔⟩ mod 𝑄 .

Then, 𝑓2 (𝑚′) = 𝑓2
(
⟨𝒂, 𝒔⟩ mod Δ

)
∈ {−Δ/4, 0,Δ/4}. Also, the action of 𝑓2 only depends on

the two most significant bits of the input and maps 00→ 11, 10→ 01, and 01, 11→ 00 (so

that the second MSB is always flipped). By Theorem 2.6, at Line 2, we then have

Dec𝒔 (𝒄, 𝑑) = Dec𝒔 (−𝒂, 0) − Dec𝒔 (Boot[𝑓2] (�̄�, 0)) mod 𝑄

= Dec𝒔 (−𝒂, 0) − 𝑓2 (𝑚′) + 𝑒𝛽︸︷︷︸
∈ (−𝛽,𝛽 )

mod 𝑄

= Δ · 𝜇 +
(
⟨𝒂, 𝒔⟩ mod Δ

)
− 𝑓2

(
⟨𝒂, 𝒔⟩ mod Δ

)︸                                       ︷︷                                       ︸
≜ 𝜇′

+𝑒𝛽 (mod 𝑄)

where the second MSB of 𝜇′ is always 1 and subtracting Δ/4 at Line 3 always sets this bit to 0.

At the end of Line 3, we thus have

Dec𝒔 (𝒄, 𝑑) = 𝜇 · Δ + ˜𝑏 · (Δ/2) + 𝑥 + 𝑒 (mod 𝑄) (16)

for some
˜𝑏 ∈ {0, 1}, 𝑥 ∈ [0,Δ/4) and 𝑒 ∈ [0, 2𝛽). At Line 4, this yields

Dec𝒔 (𝒄, ¯𝑑) = ˜𝑏 · (Δ/2) + 𝑥 + 𝑒 (mod Δ) .

At Line 5, it becomes

Dec𝒔 (𝒄, ¯𝑑) = 𝜃 · Δ + ˜𝑏 · (Δ/2) + 𝑥 + 𝑒 (mod 2Δ)
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for some 𝜃 ∈ {0, 1}. Before starting Line 6, we thus have
Dec𝒔 (𝒄, ¯𝑑) − Dec𝒔 (Boot[𝑓0] (𝒄, ¯𝑑))

≡ Dec𝒔 (𝒄, ¯𝑑) − 𝑓0
(
Dec𝒔 (𝒄, ¯𝑑)

)
+ 𝑒′

𝛽

≡ (𝜃 · Δ + ˜𝑏 · (Δ/2) + 𝑥 + 𝑒)
+ 𝑓0

(
𝜃 · Δ + ˜𝑏 · (Δ/2) + 𝑥 + 𝑒

)
+ 𝑒′

𝛽

≡ (𝜃 · Δ + ˜𝑏 · (Δ/2) + 𝑥 + 𝑒)

−
(
Δ ·

⌊
˜𝑏 · (Δ/2)+𝑥+𝑒

Δ

⌋
+ 𝜃 · Δ

)
+ Δ

2
+ 𝑒′

𝛽

≡ ( ˜𝑏 · (Δ/2) + 𝑥 + 𝑒)

−
(
Δ ·

⌊
˜𝑏 · (Δ/2)+𝑥+𝑒

Δ

⌋ )
+ Δ

2
+ 𝑒′

𝛽

≡ ( ˜𝑏 · (Δ/2) + 𝑥 + 𝑒) + Δ
2
+ 𝑒′

𝛽
(mod 2Δ)

where 𝑒′
𝛽
∈ (−𝛽, 𝛽) and the last equality holds because⌊

( ˜𝑏 · (Δ/2) + 𝑥 + 𝑒)/Δ
⌋
= 0

since 𝑥 ∈ [0,Δ/4) and 𝑒 ∈ [0, 2𝛽] with 2𝛽 < Δ/4 (due to the hypothesis Δ > 16𝛽). At the end

of Line 7, we then have

Dec𝒔 (𝒄, ¯𝑑) ≡ ˜𝑏 · (Δ/2) + 𝑥 + 𝑒 + 𝑒′ (mod 2Δ)
with 𝑒 ∈ [0, 2𝛽) and 𝑒′ ≜ 𝑒′

𝛽
+ 𝛽 ∈ (0, 2𝛽). Since 𝑥 ∈ [0,Δ/4) and 4𝛽 < Δ/4 (due to

the hypothesis Δ > 16𝛽), we then have (Dec𝒔 (𝒄, ¯𝑑) mod 2Δ) ∈ [0,Δ/2) if ˜𝑏 = 0 and

(Dec𝒔 (𝒄, ¯𝑑) mod 2Δ) ∈ [Δ/2,Δ) if ˜𝑏 = 1.

Therefore 𝑓1 (Dec𝒔 (𝒄, ¯𝑑) mod 2Δ) = ˜𝑏 · (Δ/2) + 𝑥 + 𝑒 + 𝑒′ by the definition of 𝑓1 (𝑥). By
combining this with (16) and applying Theorem 2.6 again, we obtain

Dec𝒔 (𝒄, 𝑑) − Dec𝒔
(
Boot[𝑓1] (𝒄, ¯𝑑)

)
≡ (𝜇 · Δ + ˜𝑏 · (Δ/2) + 𝑥 + 𝑒) − ( ˜𝑏 · (Δ/2) + 𝑥 + 𝑒 + 𝑒′) + 𝑒′′

𝛽

≡ 𝜇 · Δ − 𝑒′ + 𝑒′′
𝛽
(mod 𝑄)

with 𝑒′′
𝛽
∈ (−𝛽, 𝛽). Since −𝑒′ + 𝑒′′

𝛽
∈ (−3𝛽, 𝛽), after Line 8, we obtain

Dec𝒔 (𝒄, 𝑑) = 𝜇 · Δ + 𝑒 (mod 𝑄)
for some 𝑒 ∈ (−2𝛽, 2𝛽), as claimed. □
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