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ABSTRACT
The traditional leader-based BFT protocols often lead to unbalanced

work distribution among participating parties, with a single leader

carrying out the majority of the tasks. Recently, Directed Acyclic

Graph (DAG) based BFT protocols have emerged as a solution

to balance consensus efforts across parties, typically resulting in

higher throughput compared to traditional protocols.

However, existing DAG-based BFT protocols exhibit long latency

to commit decisions. The primary reason for such a long latency is

having a leader every 2 or more “rounds”. Even under honest lead-

ers, these protocols require two or more reliable broadcast (RBC)

instances to commit the proposal submitted by the leader (leader

vertex), and additional RBCs to commit other proposals (non-leader

vertices). In this work, we present Sailfish, the first DAG-based

BFT that supports a leader vertex in each round. Under honest

leaders, Sailfish maintains a commit latency of one RBC round

plus 1𝛿 to commit the leader vertex (where 𝛿 is the actual trans-

mission latency of a message) and only an additional RBC round

to commit non-leader vertices. Furthermore, we extend Sailfish to

Multi-leader Sailfish, which facilitates multiple leaders within a sin-

gle round and commits all leader vertices in a round with a latency

of one RBC round plus 1𝛿 . Through experimental evaluation, we

demonstrate that our protocols achieve significantly better latency

compared to state-of-the-art DAG-based protocols, with slightly

better throughput.

1 INTRODUCTION
Byzantine fault-tolerant state machine replication (BFT SMR) pro-

tocols form the core underpinning for blockchains. At a high level,

a BFT-SMR enables a group of parties to agree on a sequence of

values, even if some of these parties are Byzantine (arbitrarily mali-

cious). Owing to the need for efficient blockchains in practice, there

has been a lot of recent progress in improving the key efficiency

metrics namely, latency, communication complexity, and through-

put under various network conditions. Assuming the network is

partially synchronous, existing SMR protocols can commit with

a latency overhead of 3𝛿 (where 𝛿 represents the actual network

delay) [8, 9, 15] and also achieve linear communication complex-

ity [23, 34] under optimistic conditions (such as an honest leader).

Most of these protocol designs rely on a designated leader who

is the party responsible for proposing transactions and driving

the protocol forward while other parties agree on the proposed

values and ensure that the leader keeps making progress. From an

efficiency standpoint, this approach results in two key drawbacks.

First, there is an uneven scheduling of work among the parties.

While the leader is sending a proposal, the other parties’ processors

and their network is not used leading to uneven resource usage

across parties. Second, in typical leader-based protocols progress

stops if the leader fails and until it is replaced. Several techniques

proposed in the literature can potentially mitigate these concerns.

These include the use of erasure coding techniques [2, 26] or the

data availability committees [17, 18, 32] to disseminate the data

more efficiently.

Recently, a novel approach known asDAG-based BFT has emerged [4,

12, 19, 21, 22, 29, 30]. These protocols enable all participating par-

ties to propose in parallel, maximizing bandwidth utilization and

ensuring equitable distribution of workload. Consequently, these

protocols have demonstrated improved throughput compared to the

leader-based counterparts under moderate network sizes [13, 29].

However, existing DAG-based protocols incur a high latency com-

pared to their “leader-heavy” counterparts [9, 15, 20, 23, 34]. Is high

latency inherent for such DAG-based protocols? This paper works

towards addressing this question.

In the following, we first discuss the core structure involved in a

DAG-based protocol, then describe the latency of the state-of-the-

art protocols compared to ours, and then explain the key challenges

and our contributions.

Typical structure of DAG-based BFT. A DAG-based BFT pro-

gresses through a series of rounds. In each round 𝑟 , each party

makes a proposal, represented as a DAG vertex. The vertex includes

references to at least 2𝑓 + 1 vertices proposed in round 𝑟 − 1 (where
𝑓 is the maximum number of Byzantine faults). These references

form the edges of the DAG. The edges and paths formed from these

edges are used for committing vertices in the DAG. Many DAG-

based protocols rely on a reliable broadcast protocol (RBC) [7] to

disseminate the vertices; this ensures non-equivocation and guaran-

teed delivery [21, 28, 29]. Depending on whether a communication-

optimal [14] or latency-optimal [1] RBC protocols are used, the

RBC would incur a latency of 4𝛿 and 2𝛿 respectively.

Partially synchronous DAG-based protocols rely on designated

parties called leaders to commit vertices. In these protocols, the

vertices proposed by the leaders (leader vertices) are committed

whereas non-leader vertices are ordered as part of the causal history

of leader vertices.

Latency in state-of-the-art partially synchronous DAG-based
BFT protocols. The state-of-the-art partially synchronous DAG-

based protocols are Bullshark [29, 30], Shoal [28], Cordial min-

ers [22] and Mysticeti [3]. We elaborate on the results obtained by

these protocols in Table 1.

In Bullshark, each round employs an RBC to disseminate the

proposal, and a leader is assigned every 2 rounds. The round after
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the leader round serves to “vote” the leader vertex; hence called

the voting round. Thus, committing the leader vertex requires two

RBC rounds. On the other hand, non-leader vertices that share a

round with previous leader require a minimum of 4 RBCs.

A recent work, Shoal introduced a “pseudo-pipelining” technique

to reduce the commit latency of non-leader vertices by employing

multiple instances of the Bullshark-based protocol sequentially,

ensuring that a leader vertex is present in every round. However,

their protocol relies on an instance of Bullshark to commit some

vertex before initiating a new instance with a leader in the next

round. When Bullshark fails to commit, Shoal requires an extra

two RBCs to initiate a new instance. Additionally, when dealing

with alternating adversarial and honest leaders, both Bullshark and

Shoal struggle to make progress, compromising Shoal’s ability to

ensure a leader vertex in every round. Shoal also inherits a latency

of 2 RBCs for committing the leader vertex.

Cordial Miners recently improved the latency of DAG-based

BFT protocols by using best-effort broadcast (BEB) instead of RBC.

They achieved a commit latency of 3𝛿 for leader vertices and 6𝛿

for non-leader vertices that coincide with the leader round, with

the leader round repeating every 3 rounds. Building on this, Mys-

ticeti [3] adds support to accommodate multiple leaders within a

single round. Despite these improvements, both protocols maintain

a communication complexity of 𝑂 (𝑛4) per round in the presence

of Byzantine failures (where 𝑛 is the number of parties) and lack

modularity. In contrast, DAG-based protocols that utilize RBC can

offer a range of communication complexities and commit latencies

by leveraging existing RBCs from the literature.

In this work, we concentrate on modular DAG-based BFT proto-

cols that use RBC. To the best of our knowledge, existing modular

DAG-based protocols do not truly support a leader vertex in every

(RBC) round and necessitate a minimum of 2 RBCs to commit the

leader vertex. To address these concerns, we introduce Sailfish, the

first DAG-based BFT protocol that achieves support for a leader

vertex in each round while achieving a latency of 1RBC plus 1𝛿

time to commit the leader vertex, along with an additional RBC

to commit the non-leader vertices. When employing the optimal

latency RBC [1], Sailfish incurs only 3𝛿 to commit the leader ver-

tex, effectively matching the best latency achieved by classical ap-

proaches [9] and DAG-based BFT not relying on RBC [3, 22]. When

using a communication-optimal RBC [14], our protocol incurs 5𝛿

latency to commit the leader vertex. Compared to the state-of-the-

art DAG-based BFT that rely on RBC, Sailfish improves the latency

for committing leader vertices by at least 1𝛿 (when using [1]) and

3𝛿 time (when using [14]). Additionally, compared to DAG-based

protocols relying on BEB, Sailfish improves the latency to commit

the non-leader vertices by at least 1𝛿 (when using [1]).

Challenges and Key Contributions

The key technical challenge. In DAG-based protocols, a crucial

safety invariant that needs to be maintained is: when a round 𝑟

leader vertex 𝑣𝑘 is committed by an honest party, the leader vertex

of any round 𝑟 ′ > 𝑟 should have a path to 𝑣𝑘 . In earlier protocols, 𝑣𝑘
is committed when a sufficient (𝑓 + 1 or more) round 𝑟 + 1 vertices
have a path to 𝑣𝑘 and the safety invariant is achieved by having a

leader vertex in every two or more rounds. As a round 𝑟 + 2 vertex

has paths to 2𝑓 + 1 round 𝑟 + 1 vertices, a round 𝑟 + 2 leader vertex
will trivially have a path to 𝑣𝑘 . Similarly, the leader vertex of round

𝑟 ′ > 𝑟 + 2 will have a path to 𝑣𝑘 . However, the round 𝑟 + 1 leader
vertex lacks paths to other round 𝑟 + 1 vertices. Consequently, even
if 𝑣𝑘 is committed, the round 𝑟 + 1 leader vertex cannot establish a

path to it via other round 𝑟 + 1 vertices. The only way it can form a

path to 𝑣𝑘 is by awaiting its delivery. However, waiting for 𝑣𝑘 to be

delivered poses liveness concerns. Alternatively, if the round 𝑟 + 1
leader vertex is proposed (after a timeout), it can lack a path to 𝑣𝑘
even when other parties have committed 𝑣𝑘 , violating the safety

requirement. This is the key challenge when supporting a leader

vertex in each round.

Towards having a leader vertex in each round. Our solution
to the above challenge is simple. In our protocol, we mandate the

round 𝑟 + 1 leader vertex to have a path to 𝑣𝑘 or contain a proof

that shows a sufficient number of honest parties did not vote for 𝑣𝑘 .

When such a proof exists, we can guarantee 𝑣𝑘 cannot be committed;

it is thus safe for the round 𝑟 + 1 leader vertex to lack a path to 𝑣𝑘 .

The requirement for the round 𝑟 +1 leader vertex to wait for 𝑣𝑘 or

the proof marginally increases the timeout duration a party has to

wait in a round compared to existing protocols, potentially impact-

ing latency under failures. To address this concern, we conduct a

thorough analysis of the latency. Our analysis indicates that despite

the increased timeout, our latencies outperform the state-of-the-art

in the presence of a single Byzantine failure between honest leaders

(see Table 1).

Towards improving the commit latency to 1RBC plus 1𝛿 for
leader vertices. In a typical RBC protocol [7, 14, 25], the sender

first sends its value to all other parties, followed by multiple rounds

of message exchanges among the parties.When the sender is honest,

the first value received from the sender is the value that is eventually

delivered. We rely on this observation and decide based on the first

received values of the round 𝑟 + 1 vertices, i.e., we do not require

the RBC of round 𝑟 + 1 vertices to be delivered to commit the round

𝑟 leader vertex. However, when the sender is faulty, the first value

received from the sender can be different from the final delivered

value. In order to account for such Byzantine behavior, our protocol

commits the round 𝑟 leader vertex only when 2𝑓 + 1 round-(𝑟 + 1)
vertices have paths to the round 𝑟 leader vertex. Out of the 2𝑓 + 1
first messages for the round 𝑟 + 1 vertices, at least 𝑓 + 1 are sent by
honest parties which will be delivered by all honest parties.

This approach ensures the safety invariant while enabling our

protocol to commit the leader vertex with a latency of 1 RBC plus

1𝛿 , and an additional RBC to commit the non-leader vertices.

Towards supporting multiple leaders in a round. In order to

improve the latency for multiple vertices, we extend Sailfish to

support multiple leaders within a single round. We categorize these

leaders as the main leader and secondary leaders. The primary role

of the main leader remain identical to that of Sailfish: its leader

vertex must either establish a path to all leader vertices from the

previous round or contain a proof that some missing leader vertices

cannot be committed; thus maintaining the safety invariant. We

term this extended version Multi-leader Sailfish.

The commit rule closely resembles that of Sailfish, with some

additional constraints. In an ideal scenario where all leaders are
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Table 1: Comparison of DAG-based BFT protocols, after GST

RBC
Used

LV Commit
Latency

NLV Commit(1)
Latency

Communication
Complexity

Leader
Frequency

Multiple
Leaders

NLV Latency (2)
Under Failure

Modular?

Bullshark [29, 30] Das et al. [14] 8𝛿 +8𝛿 𝑂 (𝑛3 ) 1/2 ✗ +(8Δ + 8𝛿 ) ✓
Shoal [28] Das et al. [14] 8𝛿 +4𝛿 𝑂 (𝑛3 ) 1 ✓ +(8Δ + 4𝛿 ) ✓
Cordial Miners [22] None 3𝛿 +3𝛿 𝑂 (𝑛4 ) 1/3 ✗ +6Δ ✗

Mysticeti [3] None 3𝛿 +3𝛿 𝑂 (𝑛4 ) 1/3 ✓ +6Δ ✗

Sailfish Das et al. [14] 5𝛿 +4𝛿 𝑂 (𝑛3 ) 1 ✓ +(8Δ + 2𝛿 ) ✓
Sailfish Abraham et al. [1] 3𝛿 +2𝛿 𝑂 (𝑛4 ) 1 ✓ +(4Δ + 2𝛿 ) ✓

LV implies leader vertex. NLV implies non-leader vertex. We use the erasure-coded reliable broadcast from Das et al. [14] which incurs 4 communication steps and𝑂 (𝑛2 )
communication complexity to propagate𝑂 (𝑛)-sized message. Bullshark (and Shoal) can also use RBC protocol of Abraham et al. [1] to achieve a commit latency of 4𝛿 for leader

vertices and additional 4𝛿 (2𝛿 for Shoal) for non-leader vertices. (1) This column lists the additional latency to commit non-leader vertices that share a round with the previous

leader vertex; the commit latency of these vertices is the maximum among non-leader vertices between two leader rounds. (2) The column lists the increase in latency to commit

non-leader vertices when a single Byzantine failure occurs between honest leaders.

honest, the respective leader vertices can be committed with a

latency of one RBC plus 1𝛿 .

Evaluation. We implement and evaluate the performance of Sail-

fish, comparing it with state-of-the-art DAG-based protocols. In our

evaluation, we observe that Sailfish achieves significantly better

latency than Bullshark [29, 30] and Shoal [28], with slightly better

throughput. This improvement stems from Sailfish’s support for

a leader vertex in each round and its ability to commit the leader

vertex with one RBC plus 1𝛿 , and an additional RBC to commit the

non-leader vertices.

We also evaluate the performance of Multi-leader Sailfish. Our

results indicate that in failure-free cases, the average latency of the

protocol reduces with the increase in the number of leaders in a

round as more vertices are committed with a latency of one RBC

plus 1𝛿 .

Organization. The rest of the paper is organized as follows: In Sec-

tion 2, we present the system model and preliminaries for our

work. Section 3 presents Sailfish, the first DAG-based BFT that sup-

ports a leader vertex in each round and achieves a commit latency

of one RBC plus 1𝛿 to commit the leader vertex and an additional

RBC to commit the non-leader vertices. We further enhance this

protocol in Section 4 to accommodate multiple leaders within a

single round, aiming to achieve improved average latency. An eval-

uation of our protocols is presented in Section 5, followed by a

comprehensive discussion of related works in Section 6.

2 PRELIMINARIES
We consider a system P := 𝑃1, . . . , 𝑃𝑛 consisting of 𝑛 parties out of

which up to 𝑓 = ⌊𝑛−1
3
⌋ parties can be Byzantine. The Byzantine

parties may behave arbitrarily. A party that is not faulty throughout

the execution is considered to be honest and executes the protocol

as specified.

We consider the partial synchrony model of Dwork et al. [16].

Under this model, the network starts in an initial state of asyn-

chrony during which the adversary may arbitrarily delay messages

sent by honest parties. However, after an unknown time called the

Global Stabilization Time (GST), the adversary must ensure that

all messages sent by honest parties are delivered to their intended

recipients within Δ time of being sent. We use 𝛿 to characterize the

actual (variable) transmission latencies of messages and observe

that 𝛿 ≤ Δ after GST. Additionally, we assume the local clocks of

the parties have no clock drift and arbitrary clock skew.

We make use of digital signatures and a public-key infrastructure

(PKI) to prevent spoofing and replays and validate messages. We

use ⟨𝑥⟩𝑖 to denote a message 𝑥 digitally signed by party 𝑃𝑖 using

its private key. We use 𝐻 (𝑥) to denote the invocation of the hash

function 𝐻 on input 𝑥 .

2.1 Building Blocks

Byzantine reliable broadcast. In a Byzantine reliable broadcast

protocol (RBC), a designated sender 𝑃𝑘 invokes r_bcast𝑘 (𝑚, 𝑟 ) to

propagate its input 𝑚 in some round 𝑟 ∈ N. Each party 𝑃𝑖 then

outputs the message𝑚 via r_deliver𝑖 (𝑚, 𝑟, 𝑃𝑘 ) where 𝑃𝑘 is the desig-

nated sender and 𝑟 is the round number in which sender 𝑃𝑘 sent the

message𝑚. The reliable broadcast primitive satisfies the following

properties:

- Agreement. If an honest party 𝑃𝑖 outputs r_deliver𝑖 (𝑚, 𝑟, 𝑃𝑘 ),

then every other honest party 𝑃 𝑗 eventually outputs r_deliver𝑗 (𝑚, 𝑟, 𝑃𝑘 ).

- Integrity. For every round 𝑟 ∈ N and party 𝑃𝑘 ∈ P, an honest

party 𝑃𝑖 outputs r_deliver𝑖 at most once regardless of𝑚.

- Validity. If an honest party 𝑃𝑘 calls r_bcast𝑘 (𝑚, 𝑟 ) then every

honest party eventually outputs r_deliver(𝑚, 𝑟, 𝑃𝑘 ).

2.2 Problem Definition
Following Bullshark [29], we focus on the Byzantine Atomic Broad-

cast (BAB) problem as defined below:

Definition 2.1 (Byzantine atomic broadcast [21, 29]). Each honest

party 𝑃𝑖 ∈ P can call a_bcast𝑖 (𝑚, 𝑟 ) and output a_deliver𝑖 (𝑚, 𝑟, 𝑃𝑘 ),

𝑃𝑘 ∈ P. A Byzantine atomic broadcast protocol satisfies reliable

broadcast properties (agreement, integrity, and validity) as well as:

- Total order. If an honest party 𝑃𝑖 outputs a_deliver𝑖 (𝑚, 𝑟, 𝑃𝑘 )

before a_deliver𝑖 (𝑚
′, 𝑟 ′, 𝑃ℓ ), then no honest party 𝑃 𝑗 outputs

a_deliver𝑗 (𝑚
′, 𝑟 ′, 𝑃ℓ ) before a_deliver𝑗 (𝑚, 𝑟, 𝑃𝑘 ).

3 THE SAILFISH PROTOCOL
In this section, we present Sailfish, a protocol that supports a leader

vertex in each round and improves the latency to commit both leader

and non-leader vertices. Specifically, Sailfish incurs one RBC plus

1𝛿 to commit the leader vertex and an additional RBC to commit

the non-leader vertex. We first provide some basic preliminaries to

ease the protocol description.

Round based execution. Our protocol progresses through a se-

quence of numbered rounds. Rounds are numbered by non-negative
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integers starting with 1. Each round 𝑟 consists of a designated leader,

denoted by 𝐿𝑟 , which is selected via a deterministic method based

on the round number.

Basic data structures. At a high level, the communication among

parties is represented in the form of DAG. In each round, each party

proposes a single vertex containing a (possibly empty) block of

transactions alongwith references to at least 2𝑓 +1 vertices proposed
in an earlier round. Those references serve as the edges in the DAG.

The proposed vertices are propagated using RBC to ensure non-

equivocation and guarantee all honest parties eventually deliver

them.

The basic data structures and utilities for DAG construction are

presented in Figure 1. Each party maintains a local copy of the DAG

and different honest parties may observe different views of the

DAG. However, due to the reliable broadcast of the vertices, each

party will eventually converge on the same view of the DAG. The

local view of DAG for party 𝑃𝑖 is represented as 𝐷𝐴𝐺𝑖 . Each vertex

is associated with a unique round number and a unique sender

(source). When 𝑃𝑖 delivers a round 𝑟 vertex, it is added to 𝐷𝐴𝐺𝑖 [𝑟 ].
𝐷𝐴𝐺𝑖 [𝑟 ] contains up to 𝑛 vertices.

Each vertex consists of two sets of outgoing edges — strong

edges and weak edges. The strong edges of round 𝑟 vertex 𝑣 consist

of at least 2𝑓 + 1 vertices from round 𝑟 − 1 while the weak edges of

the vertex consist of up to 𝑓 vertices from rounds < 𝑟 − 1 such that

there is no path from 𝑣 to these vertices. A path from vertex 𝑣𝑘 to

𝑣ℓ following the strong edges is called a strong path. Compared to

Bullshark [29], we add two additional fields in the structure of the

vertex – (i) 𝑣 .𝑛𝑣𝑐 , which stores a no-vote certificate (consisting of a
quorum of no-vote messages in a round), and (ii) 𝑣 .𝑡𝑐 , which store

timeout certificate (consisting of a quorum of timeout messages in

a round). We explain the purpose of these fields shortly.

DAG construction protocol. The DAG construction protocol is

presented in Figure 2. In each round 𝑟 , each party 𝑃𝑖 proposes one

vertex 𝑣 . A round 𝑟 vertex proposed by 𝐿𝑟 is referred to as the

round 𝑟 leader vertex while the other round 𝑟 vertices are non-

leader vertices. In order to propose a vertex in a round 𝑟 , 𝑃𝑖 waits

to receive at least 2𝑓 + 1 round 𝑟 − 1 vertices along with the round

𝑟 −1 leader vertex until a timeout occurs in round 𝑟 −1. In the event

that 𝑃𝑖 receives 2𝑓 + 1 round 𝑟 − 1 along with round 𝑟 − 1 leader
vertex, 𝑃𝑖 can immediately enter round 𝑟 and propose a round 𝑟

vertex (see Line 36). We note that including a reference to the round

𝑟 − 1 leader vertex serves as a “vote” towards the round 𝑟 − 1 leader
vertex. These votes are later used to commit the leader vertex. Thus,

waiting for the leader vertex until a timeout helps honest parties to

vote for the leader vertex and helps commit the leader vertex with

a small latency when the leader is honest (after GST).

If 𝑃𝑖 did not receive the round 𝑟 − 1 leader vertex before the time-

out, it multicasts ⟨timeout, 𝑟 − 1⟩𝑖 to all other parties (see Line 38).

In addition, an honest party 𝑃 𝑗 in round 𝑟 ′ ≤ 𝑟 − 1 also multicasts

⟨timeout, 𝑟 − 1⟩𝑗 messages if it receives 𝑓 + 1 distinct round 𝑟 − 1
timeout messages (see Line 40). Upon receiving 2𝑓 + 1 round 𝑟 − 1
timeout messages (denoted by TC𝑟−1), 𝑃𝑖 can enter round 𝑟 and

propose a round 𝑟 vertex as long as it has received at least 2𝑓 + 1
round 𝑟 − 1 vertices (see Line 36). In our protocol, we require a

round 𝑟 vertex to either have a strong path to the round 𝑟 − 1 leader

vertex or include TC𝑟−1 in 𝑣 .𝑡𝑐 . This is a constraint that we place

on all vertices. We will clarify the purpose of this constraint shortly.

When 𝑃𝑖 proposes a round 𝑟 vertex without a strong path to the

round 𝑟 − 1 leader vertex, it also sends a no-vote message to 𝐿𝑟
indicating that 𝑃𝑖 did not vote for round 𝑟 − 1 leader vertex. Upon
entering round 𝑟 , 𝑃𝑖 starts a timer which is set to some 𝜏 time. We

will shortly provide more details on the value of 𝜏 .

We place an additional constraint on the leader vertex. A round

𝑟 leader vertex needs to either have a strong path to the round

𝑟 − 1 leader vertex or contain a quorum of round 𝑟 − 1 no-vote
messages (denoted by NVC𝑟−1). The NVC𝑟−1 serves as a proof
that a quorum of parties did not “vote” for the round 𝑟 − 1 leader
vertex. Hence, the round 𝑟 − 1 leader vertex cannot be committed

and it is safe to lack a strong path to the round 𝑟 − 1 leader vertex.
Upon delivering a round 𝑟 vertex 𝑣 , each party 𝑃𝑖 checks if these

constraints are met via is_valid(𝑣) function. In particular, is_valid(𝑣)

checkswhether 𝑣 consists of either a strong path to round 𝑟−1 leader
vertex or TC𝑟−1 (and NVC𝑟−1 for the round 𝑟 leader vertex). In
addition, 𝑃𝑖 also checks if vertex 𝑣 consists of at least 2𝑓 + 1 strong
edges to round 𝑟 −1 vertices. Once these checks are satisfied, vertex
𝑣 is added to 𝐷𝐴𝐺𝑖 [𝑟 ] via try_add_to_dag(𝑣) which succeeds when

𝑃𝑖 has delivered all the vertices that have a path from vertex 𝑣 in

the DAG. If try_add_to_dag(𝑣) fails, the vertex is added to the buffer
for a later retry. In addition, when try_add_to_dag(𝑣) succeeds, the

vertices in the buffer are re-attempted to be added to the 𝐷𝐴𝐺𝑖 .

Jumping rounds. Apart from advancing the rounds sequentially,

our protocol allows honest parties in round 𝑟 ′ < 𝑟 to “jump” to

a higher round 𝑟 when they observe 2𝑓 + 1 round 𝑟 − 1 vertices

along with round 𝑟 − 1 leader vertex or receive a TC𝑟−1. If 𝐿𝑟 is
the lagging party, it additionally needs to wait to receive either

NVC𝑟−1 or round 𝑟 − 1 leader vertex in order to propose round

𝑟 leader vertex. When jumping rounds from 𝑟 ′ to 𝑟 , parties do not

propose vertices between those rounds.

Committing and ordering the DAG. In our protocol, only the

leader vertices are committed. The non-leader vertices are ordered

(in some deterministic order) as part of the causal history of a leader

vertex when the leader vertex is (directly or indirectly) committed

as shown in order_vertices function (see Line 22).

The commit rule is presented in Figure 3. An honest party 𝑃𝑖
directly commits a round 𝑟 leader vertex 𝑣𝑘 when it observes 2𝑓 + 1
“first messages” (of the RBC) for round 𝑟 + 1 vertices with strong

paths to the round 𝑟 leader vertex, i.e., 𝑃𝑖 does not need to wait

for the RBC of round 𝑟 + 1 vertices to terminate. This is because

when the sender of the RBC is honest, the first observed value (i.e.,

the first message of the RBC) is the value that will eventually be

delivered. Among the 2𝑓 +1 round 𝑟+1 vertices, at least 𝑓 +1 vertices
are sent by honest parties which will eventually be delivered such

that the delivered value is equal to the first received value (in the

first message of RBC). This is sufficient to ensure NVC𝑟 will not
exist and any round 𝑟 ′ > 𝑟 leader vertex (if it exists) will have

strong paths to the round 𝑟 leader vertex; thus ensuring the safety

of a commit.

In addition to the above commit rule, our protocol also allows

party 𝑃𝑖 to directly commit a round 𝑟 leader vertex 𝑣𝑘 if it delivers

(via RBC) 2𝑓 + 1 round 𝑟 + 1 vertices that have strong paths to 𝑣𝑘
(see Line 59). This commit rule is helpful in scenarios when the
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Local variables:
struct vertex 𝑣: ⊲ The struct of a vertex in the DAG

v.round - the round of 𝑣 in the DAG

v.source - the party that broadcast 𝑣

v.block - a block of transactions

v.strongEdges - a set of vertices in 𝑣.𝑟𝑜𝑢𝑛𝑑 that represent strong edges

v.weakEdges - a set of vertices in rounds < v.round−1 that represent weak edges

v.nvc - a no-vote certificate for 𝑣.𝑟𝑜𝑢𝑛𝑑 − 1(if any)

v.tc - a timeout certificate for 𝑣.𝑟𝑜𝑢𝑛𝑑 − 1 (if any)

𝐷𝐴𝐺𝑖 [ ]− An array of sets of vertices (indexed by rounds)

blocksToPropose - A queue, initially empty, 𝑃𝑖 enqueues valid blocks of transactions from clients

𝑙𝑒𝑎𝑑𝑒𝑟𝑆𝑡𝑎𝑐𝑘 ← initialize empty stack

1: procedure path(𝑣,𝑢) ⊲ Check if exists a path consisting of strong and weak edges in the DAG

2: return exists a sequence of 𝑘 ∈ N, vertices 𝑣1, . . . , 𝑣𝑘 s.t.

𝑣1 = 𝑣, 𝑣𝑘 = 𝑢, and ∀ 𝑗 ∈ [2, .., 𝑘 ] : 𝑣𝑗 ∈
⋃

𝑟≥1 𝐷𝐴𝐺𝑖 [𝑟 ] ∧ (𝑣𝑗 ∈ 𝑣𝑗−1 .𝑤𝑒𝑎𝑘𝐸𝑑𝑔𝑒𝑠 ∪ 𝑣𝑗−1 .𝑠𝑡𝑟𝑜𝑛𝑔𝐸𝑑𝑔𝑒𝑠 )
3: procedure strong_path(𝑣,𝑢) ⊲ Check if exists a path consisting of only strong edges from 𝑣 to 𝑢 in the DAG

4: return exists a sequence of 𝑘 ∈ N, vertices 𝑣1, . . . , 𝑣𝑘 s.t.

𝑣1 = 𝑣, 𝑣𝑘 = 𝑢, and ∀ 𝑗 ∈ [2, .., 𝑘 ] : 𝑣𝑗 ∈
⋃

𝑟≥1 𝐷𝐴𝐺𝑖 [𝑟 ] ∧ 𝑣𝑗 ∈ 𝑣𝑗−1 .𝑠𝑡𝑟𝑜𝑛𝑔𝐸𝑑𝑔𝑒𝑠

5: procedure set_weak_edges(𝑣, 𝑟 ) ⊲ Add edges to orphan vertices

6: 𝑣.𝑤𝑒𝑎𝑘𝐸𝑑𝑔𝑒𝑠 ← {}
7: for 𝑟 ′ = 𝑟 − 2 down to 1 do
8: for every 𝑢 ∈ 𝐷𝐴𝐺𝑖 [𝑟 ′ ] s.t. ¬path(𝑣,𝑢) do
9: 𝑣.𝑤𝑒𝑎𝑘𝐸𝑑𝑔𝑒𝑠 ← 𝑣.𝑤𝑒𝑎𝑘𝐸𝑑𝑔𝑒𝑠 ∪ {𝑢}
10: procedure get_vertex(𝑝, 𝑟 )
11: if ∃𝑣 ∈ 𝐷𝐴𝐺𝑖 [𝑟 ] s.t. 𝑣.𝑠𝑜𝑢𝑟𝑐𝑒 = 𝑝 then
12: return 𝑣

13: return ⊥
14: procedure get_leader_vertex(𝑟 )
15: return get_vertex(𝐿𝑟 , 𝑟 )

16: procedure a_bcast𝑖 (𝑏, 𝑟 )
17: 𝑏𝑙𝑜𝑐𝑘𝑠𝑇𝑜𝑃𝑟𝑜𝑝𝑜𝑠𝑒.enqueue(𝑏)

18: procedure broadcast_vertex(𝑟 )
19: 𝑣 ← create_vertex(𝑟 )

20: try_add_to_dag(𝑣)

21: r_bcast𝑖 (𝑣, 𝑟 )

22: procedure order_vertices()
23: while ¬𝑙𝑒𝑎𝑑𝑒𝑟𝑆𝑡𝑎𝑐𝑘.isEmpty() do
24: 𝑣 ← 𝑙𝑒𝑎𝑑𝑒𝑟𝑆𝑡𝑎𝑐𝑘.pop()

25: 𝑣𝑒𝑟𝑡𝑖𝑐𝑒𝑠𝑇𝑜𝐷𝑒𝑙𝑖𝑣𝑒𝑟 ← {𝑣′ ∈ ⋃
𝑟>0 𝐷𝐴𝐺𝑖 [𝑟 ] | 𝑝𝑎𝑡ℎ (𝑣, 𝑣′ ) ∧

𝑣′ ∉ 𝑑𝑒𝑙𝑖𝑣𝑒𝑟𝑒𝑑𝑉𝑒𝑟𝑡𝑖𝑐𝑒𝑠 }
26: for every 𝑣′ ∈ 𝑣𝑒𝑟𝑡𝑖𝑐𝑒𝑠𝑇𝑜𝐷𝑒𝑙𝑖𝑣𝑒𝑟 in some deterministic order do
27: output a_deliver𝑖 (𝑣′ .𝑏𝑙𝑜𝑐𝑘, 𝑣′ .𝑟𝑜𝑢𝑛𝑑, 𝑣′ .𝑠𝑜𝑢𝑟𝑐𝑒)
28: 𝑑𝑒𝑙𝑖𝑣𝑒𝑟𝑒𝑑𝑉𝑒𝑟𝑡𝑖𝑐𝑒𝑠 ← 𝑑𝑒𝑙𝑖𝑣𝑒𝑟𝑒𝑑𝑉𝑒𝑟𝑡𝑖𝑐𝑒𝑠 ∪ {𝑣′ }

Figure 1: Basic data structures for Sailfish. The utility functions are adapted from [21, 29].

Local variables:
𝑟𝑜𝑢𝑛𝑑 ← 1; buffer← {}

29: upon r_deliver𝑖 (𝑣, 𝑟, 𝑝) do
30: if 𝑣.𝑠𝑜𝑢𝑟𝑐𝑒 = 𝑝 ∧ 𝑣.𝑟𝑜𝑢𝑛𝑑 = 𝑟 ∧ |𝑣.𝑆𝑡𝑟𝑜𝑛𝑔𝐸𝑑𝑔𝑒𝑠 | ≥ 2𝑓 + 1∧ is_valid(𝑣) then
31: if ¬try_to_add_to_dag(𝑣) then
32: buffer← buffer ∪ {𝑣}
33: else
34: for 𝑣′ ∈ buffer : 𝑣′ .𝑟𝑜𝑢𝑛𝑑 ≤ 𝑟 do
35: try_to_add_to_dag(𝑣′)

36: upon |𝐷𝐴𝐺𝑖 [𝑟 ] | ≥ 2𝑓 + 1 ∧ (∃𝑣′ ∈ 𝐷𝐴𝐺𝑖 [𝑟 ] : 𝑣′ .𝑠𝑜𝑢𝑟𝑐𝑒 = 𝐿𝑟 ∨ TC𝑟 is received) for 𝑟 ≥ 𝑟𝑜𝑢𝑛𝑑 do
37: advance_round(𝑟 + 1)

38: upon timeout do
39: multicast ⟨timeout, 𝑟𝑜𝑢𝑛𝑑 ⟩𝑖
40: upon receiving 𝑓 + 1 distinct ⟨timeout, 𝑟 ⟩∗ such that 𝑟 ≥ 𝑟𝑜𝑢𝑛𝑑 do
41: multicast ⟨timeout, 𝑟 ⟩𝑖
42: upon receiving TC𝑟 such that 𝑟 ≥ 𝑟𝑜𝑢𝑛𝑑 do
43: multicast TC𝑟
44: procedure create_new_vertex(𝑟 )
45: 𝑣.𝑟𝑜𝑢𝑛𝑑 ← 𝑟

46: 𝑣.𝑠𝑜𝑢𝑟𝑐𝑒 ← 𝑃𝑖
47: 𝑣.𝑏𝑙𝑜𝑐𝑘 ← 𝑏𝑙𝑜𝑐𝑘𝑠𝑇𝑜𝑃𝑟𝑜𝑝𝑜𝑠𝑒.dequeue()

48: 𝑣.𝑠𝑡𝑟𝑜𝑛𝑔𝐸𝑑𝑔𝑒𝑠 ← 𝐷𝐴𝐺𝑖 [𝑟 − 1]
49: set_weak_edges(𝑣, 𝑟 )

50: if �𝑣′ ∈ 𝐷𝐴𝐺𝑖 [𝑟 − 1] : 𝑣′ .𝑠𝑜𝑢𝑟𝑐𝑒 = 𝐿𝑟−1 then
51: 𝑛.𝑡𝑐 ← TC𝑟−1
52: if 𝑃𝑖 = 𝐿𝑟 then
53: 𝑣.𝑛𝑣𝑐 ← NVC𝑟−1
54: return 𝑣

55: procedure try_to_add_to_dag(𝑣)
56: if ∀𝑣′ ∈ 𝑣.𝑠𝑡𝑟𝑜𝑛𝑔𝐸𝑑𝑔𝑒𝑠 ∪ 𝑣.𝑤𝑒𝑎𝑘𝐸𝑑𝑔𝑒𝑠 : 𝑣′ ∈ ⋃𝑘≥1 𝐷𝐴𝐺𝑖 [𝑘 ] then
57: 𝐷𝐴𝐺𝑖 [𝑣.𝑟𝑜𝑢𝑛𝑑 ] ← 𝐷𝐴𝐺𝑖 [𝑣.𝑟𝑜𝑢𝑛𝑑 ] ∪ {𝑣}
58: if |𝐷𝐴𝐺𝑖 [𝑣.𝑟𝑜𝑢𝑛𝑑 ] | ≥ 2𝑓 + 1 then
59: try_commit(𝑣.𝑟𝑜𝑢𝑛𝑑 − 1, 𝐷𝐴𝐺𝑖 [𝑣.𝑟𝑜𝑢𝑛𝑑 ])
60: buffer← buffer \ {𝑣}
61: return true
62: return false

63: procedure advance_round(𝑟 )
64: if �𝑣′ ∈ 𝐷𝐴𝐺𝑖 [𝑟 − 1] | : 𝑣′ .𝑠𝑜𝑢𝑟𝑐𝑒 = 𝐿𝑟−1 then
65: send ⟨no-vote, 𝑟 − 1⟩𝑖 to 𝐿𝑟
66: if 𝑃𝑖 = 𝐿𝑟 then
67: wait until ∃𝑣′ ∈ 𝐷𝐴𝐺𝑖 [𝑟 − 1] : 𝑣′ .𝑠𝑜𝑢𝑟𝑐𝑒 = 𝐿𝑟−1 or

NVC𝑟−1 is received
68: 𝑟𝑜𝑢𝑛𝑑 ← 𝑟 ; start timer
69: broadcast_vertex(𝑟𝑜𝑢𝑛𝑑)

Figure 2: Sailfish: DAG construction protocol for party 𝑃𝑖

RBC delivers a vertex without having received the first message of

the RBC. Such scenarios arise when the sender of the RBC is faulty

or during an asynchronous period.

Upon directly committing 𝑣𝑘 in round 𝑟 , 𝑃𝑖 first indirectly com-

mits leader vertices 𝑣𝑚 in smaller rounds such that there exists a

strong path from 𝑣𝑘 to 𝑣𝑚 (based on its local copy of the DAG) until

it reaches a round 𝑟 ′ < 𝑟 in which it previously directly committed
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Local variables:
𝑐𝑜𝑚𝑚𝑖𝑡𝑡𝑒𝑑𝑅𝑜𝑢𝑛𝑑 ← 0

70: upon receiving a set S of ≥ 2𝑓 + 1 first messages for round 𝑟 + 1 vertices do
71: try_commit(𝑟, S)
72: procedure try_commit(𝑟, S)
73: 𝑣 ← get_leader_vertex(𝑟 )

74: 𝑣𝑜𝑡𝑒𝑠 ← {𝑣′ ∈ S | strong_path(𝑣′, 𝑣)}
75: if 𝑣𝑜𝑡𝑒𝑠 ≥ 2𝑓 + 1 then
76: commit_leader(𝑣)

77: procedure commit_leader(𝑣)

78: 𝑙𝑒𝑎𝑑𝑒𝑟𝑆𝑡𝑎𝑐𝑘.push(𝑣)

79: 𝑟 ← 𝑣.𝑟𝑜𝑢𝑛𝑑 − 1

80: 𝑣′ ← 𝑣

81: while 𝑟 > 𝑐𝑜𝑚𝑚𝑖𝑡𝑡𝑒𝑑𝑅𝑜𝑢𝑛𝑑 do
82: 𝑣𝑠 ← get_leader_vertex(𝑟 )

83: if strong_path(𝑣′, 𝑣𝑠 ) then
84: 𝑙𝑒𝑎𝑑𝑒𝑟𝑆𝑡𝑎𝑐𝑘.push(𝑣𝑠 )

85: 𝑣′ ← 𝑣𝑠

86: 𝑟 ← 𝑟 − 1

87: 𝑐𝑜𝑚𝑚𝑖𝑡𝑡𝑒𝑑𝑅𝑜𝑢𝑛𝑑 ← 𝑣.𝑟𝑜𝑢𝑛𝑑

88: order_vertices()

Figure 3: Sailfish: The commit rule for party 𝑃𝑖

Round r-1 r r+1

P1

P2

P3

P4

Figure 4: Depicts the view of one of the parties committing blocks
from rounds 𝑟 and 𝑟 − 1. When the party observes 2𝑓 + 1 votes on the
round 𝑟 leader vertex, it commits that vertex and deterministically
orders non-leader vertices from earlier rounds (bold vertices). We
assume round 𝑟 − 1 leader vertex was committed earlier. Note that
performing this commit requires only the receipt of round 𝑟 + 1
vertices; they do not need to be RBC-delivered. Moreover, since the
round 𝑟 leader does not refer to 𝑃4’s round 𝑟 − 1 vertex, it is not
ordered as yet.

a leader vertex. In this protocol, we ensure that when a round 𝑟

leader vertex 𝑣𝑘 is directly committed by some honest party, leader

vertices for any round 𝑟 ′ > 𝑟 have a strong path to 𝑣𝑘 . This ensures

𝑣𝑘 will be (directly or indirectly) committed by all honest parties.

Remark on timeout parameter 𝜏 .The value of timeout parameter

𝜏 depends on two factors (i) the underlying RBC primitive used

to propagate the vertices, and (ii) how an honest party 𝑃𝑖 entered

round 𝑟 .

Several RBC primitives [1, 2, 7, 25] have been proposed in the lit-

erature with various tradeoffs in communication complexity, num-

ber of steps required, setup assumptions, etc. For a comprehensive

list of RBC primitives, we refer readers to the recent work by Al-

haddad et al. [2]. The value of parameter 𝜏 should be long enough

to ensure that when an honest party enters round 𝑟 , it can deliver

the round 𝑟 leader vertex broadcast by an honest leader along with

2𝑓 +1 round 𝑟 vertices before its timeout occurs. In particular, when

𝑃𝑖 enters round 𝑟 , the parameter 𝜏 should accommodate the time

it takes for other honest parties to enter the common round 𝑟 , in-

cluding 𝐿𝑟 (if honest) and deliver their round 𝑟 vertices before the

timeout occurs for 𝑃𝑖 .

The timeout parameter 𝜏 also depends on whether party 𝑃𝑖 en-

tered round 𝑟 via TC𝑟−1 or not. When TC𝑟−1 exists and 𝐿𝑟 does
not deliver round 𝑟 − 1 leader vertex, 𝐿𝑟 has to collect NVC𝑟−1
before proposing a round 𝑟 leader vertex which may require up to

2Δ time. Accordingly, party 𝑃𝑖 has to wait for 2Δ additional time

in round 𝑟 when entering round 𝑟 via TC𝑟−1 compared to when it

enters round 𝑟 via receiving round 𝑟 − 1 leader vertex.
The RBC primitive of Das et al. [14] has 4 communication steps

and delivers a value within 4Δ time (see Property 1). In addition,

it also ensures that when an honest party delivers a value at time

𝑡 , all honest parties deliver the value by 𝑡 + 2Δ (see Property 2).

Accordingly, party 𝑃𝑖 sets its parameter 𝜏 to 6Δ when it enters

round 𝑟 after delivering round 𝑟 − 1 leader vertex and to 8Δ when

it enters round 𝑟 via TC𝑟−1. We note that different honest parties

may set different values for 𝜏 depending on how they entered a

round.

Intuition behind including a timeout certificate on the vertex.
As mentioned above, we place a constraint on all the vertices: a

valid round 𝑟 + 1 vertex should either have a strong path to round

𝑟 leader vertex or include a TC𝑟 . This is to prevent Byzantine

parties from driving the protocol too fast and prevent an honest

leader vertex from getting directly committed (even after GST).

Note that our protocol requires 2𝑓 + 1 round 𝑟 + 1 vertices with
strong paths to round 𝑟 leader vertex for the round 𝑟 leader vertex

to be directly committed. In addition, our protocol also supports

parties to “jump” to a higher round 𝑟 ′ > 𝑟 when they observe 2𝑓 + 1
round 𝑟 ′ − 1 vertices including the round 𝑟 ′ − 1 leader vertex or

TC𝑟 ′−1. If TC𝑟 were not included in the vertex, the 𝑓 Byzantine

parties can propose round 𝑟 + 1 vertices without strong paths to the
round 𝑟 leader vertex. And, as soon as 𝑓 + 1 honest parties propose
round 𝑟 vertices (with strong paths to the round 𝑟 leader vertex),

the protocol can move to round 𝑟 + 1 while 𝑓 honest parties are

lagging behind in some lower round 𝑟 ′′ ≤ 𝑟 . Relying on the same

technique, the protocol can proceed to round 𝑟 ′ > 𝑟 . The adversary

can then deliver 2𝑓 + 1 round 𝑟 ′ vertices along with round 𝑟 ′ leader
vertex to the 𝑓 lagging honest parties; causing them to enter round

𝑟 ′ + 1 such that these 𝑓 lagging honest parties do not propose a

round 𝑟 + 1 vertex. This prevents the round 𝑟 leader vertex from

being committed.

After GST, when 𝐿𝑟 is honest, honest parties do not timeout in

round 𝑟 . Thus, Byzantine parties cannot propose round 𝑟 + 1 vertex
without voting for the round 𝑟 leader vertex. This ensures round 𝑟

leader vertex gets directly committed.

Explicit round-synchronization. Our protocol consists of an ex-

plicit round-synchronization via multicasting of timeout messages

and TC𝑟 when 𝐿𝑟 is faulty. This is to ensure all honest parties can

receive TC𝑟 and 2𝑓 + 1 round 𝑟 vertices within 2Δ time and send

⟨no-vote, 𝑟 ⟩ to 𝐿𝑟+1. This allows 𝐿𝑟+1 to collect aNVC𝑟 in a timely

manner and allows all honest parties to receive the round 𝑟 + 1
leader vertex before they timeout in round 𝑟 + 1.
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3.1 Efficiency Analysis

Commit latencies. The commit latency of the leader vertex is

the time taken to propagate round 𝑟 vertices (via RBC), and one

communication step required to receive the first messages for 2𝑓 +1
round 𝑟 + 1 vertices i.e., one RBC, plus 1𝛿 . When employing the

RBC protocol due to Das et al. [14], the commit latency of the leader

vertex is 5𝛿 . The non-leader vertices require an additional RBC (i.e.

4𝛿) to be committed.

We note that the Bullshark (and Shoal) cannot support a commit

with a latency with one RBC, plus 1𝛿 . This is due to the following

reasons. First, Bullshark waits for only 𝑓 + 1 round 𝑟 + 1 vertices
with strong paths to round 𝑟 leader vertex to commit the round

𝑟 leader vertex. Out of these round 𝑟 + 1 vertices, up to 𝑓 could

be sent by Byzantine parties. If we rely only on the first received

value of the RBC (based on the first message), the final delivered

value could be different when its sender is faulty. In this case, the

final delivered vertices may not have strong path to the round 𝑟

leader vertex for up to 𝑓 vertices. A single round 𝑟 + 1 vertex from
an honest party with a strong path to the round 𝑟 leader vertex is

insufficient to ensure the safety of a commit. On the other hand,

if Bullshark were to be modified to commit upon receiving 2𝑓 + 1
round 𝑟 + 1 vertices with strong paths to round 𝑟 leader vertex, it

may fail to commit any leader vertices. This is because Bullshark

does not require a round 𝑟 + 1 vertex to include TC𝑟 when it does

not have a strong path to round 𝑟 vertex leader. As explained above,

this allows Byzantine parties to drive the protocol fast and prevent

a commit (even after GST).

Latency analysis under failures. Note that 𝜏 of our protocol is
6Δ in the round following an honest leader and 8Δ in the round

following a Byzantine leader. The additional timeout is required

because the round 𝑟 leader vertex needs to wait forNVC𝑟−1 when
𝐿𝑟−1 is faulty. In contrast, Bullshark (and Shoal) requires 𝜏 of 6Δ in

all scenarios (when using the RBC primitive of Das et al. [14]).

Despite our protocol having a slightly larger 𝜏 compared to

Bullshark (and Shoal), the commit latency does not worsen when a

single Byzantine failure occurs between two honest leaders. This is

because both our protocol and Bullshark (and Shoal) require honest

parties to wait for 6Δ in the round corresponding to the Byzantine

leader. In the subsequent round, the honest leader can obtainNVC
and propose responsively, meaning the increased value of 𝜏 does

not increase latency in practice (when messages arrive in 𝛿 < Δ
time). In fact, our protocol incurs less latency despite the need to

wait for TC and NVC, primarily due to having a leader every

round and smaller commit latency.

As a concrete example, we consider the commit latency of the

non-leader vertices of round 𝑟 − 1 when 𝐿𝑟 is Byzantine and both

𝐿𝑟−1 and 𝐿𝑟+1 are honest. For both our protocol and Bullshark

(and Shoal), honest parties need to wait for 6Δ time in round 𝑟 .

Let 𝑡 be the time when the first honest party enters round 𝑟 . Since

honest parties may enter round 𝑟 within 2Δ of each other, all honest

parties receive TC𝑟 by time 𝑡 + 8Δ+𝛿 and 𝐿𝑟+1 receivesNVC𝑟 by
𝑡 + 8Δ + 2𝛿 . As 𝐿𝑟+1 is honest, its leader vertex can be committed

in the next 5𝛿 time; committing round 𝑟 − 1 non-leader vertices in
8Δ + 11𝛿 time (compared to 9𝛿 when 𝐿𝑟 is honest.)

In the case of Bullshark (and Shoal), apart from 6Δ wait in round

𝑟 , honest parties would need to wait for round 𝑟 + 1 vertices from

some honest parties that entered round 𝑟 late (since honest parties

enter a round within 2Δ of each other). Moreover, in their case,

the round 𝑟 + 2 leader vertex is the next vertex to be committed

in round 𝑟 + 3. In total, the latency to commit round 𝑟 − 1 non-

leader vertices is 8Δ + 16𝛿 (compared to 12𝛿 when 𝐿𝑟 is honest, in

the case of Shoal). Thus, under a single Byzantine failure between

honest leaders, our protocol still performs better compared to both

Bullshark and Shoal.

However, when there is a sequence of two or more faulty lead-

ers in between honest leaders, honest parties need to wait for 𝜏

of 8Δ time, and hence our protocol would slightly underperform

compared to Bullshark (and Shoal) in terms of latency.

Communication complexity. The size of each vertex is 𝑂 (𝑛)
since it consists of references to up to 𝑛 vertices and, may con-

tain TC andNVC. The size of these certificates is𝑂 (1) assuming

threshold signatures [6] (𝑂 (𝑛) without threshold signatures). In

each round, each party propagates a single vertex via RBC. The RBC

protocol of Das et al. [14] incurs𝑂 (𝑛2) communication to propagate

𝑂 (𝑛)-sized messages. Thus, the total communication complexity

is 𝑂 (𝑛3) per round. Similarly, all-to-all multicast of timeout certifi-
cates incurs 𝑂 (𝑛2) communication assuming threshold signatures

(or 𝑂 (𝑛3) without threshold signatures). Thus, the overall commu-

nication complexity is 𝑂 (𝑛3) per round (when using [14]).

We note that a single vertex can contain𝑂 (𝑛) transactions with-
out increasing its size. This results in amortized linear communica-

tion complexity per round.

We present detailed security analysis in Appendix A.

4 MULTI-LEADER SAILFISH
In Sailfish, the latency to commit the leader vertex is shorter com-

pared to the non-leader vertices. To improve the latency for multiple

vertices, we extend Sailfish to support multiple leaders within a

single round. In the best-case scenario, when all of these leaders

are honest, the respective leader vertices can be committed with a

latency of one RBC plus 1𝛿 .

Multiple leaders in a round. In this protocol, multiple leaders are

chosen within a round based on the round number. One of these

leaders serves as the main leader, while the others are designated

as secondary leaders. The vertex proposed by the main leader is

referred to as the main leader vertex, and the vertices proposed

by the secondary leaders are termed secondary leader vertices.

The responsibilities of the main leader in Multi-leader Sailfish are

consistent with those in Sailfish: either the main leader vertex must

have a strong path to all leader vertices from the previous round or

the main leader must collect a no-vote certificate for any missing

leader vertices.

To determine the multiple leaders in a given round, we define a

deterministic function, get_multiple_leaders(𝑟 ), which returns an

ordered list of leaders for round 𝑟 . The first leader in this list serves

as the main leader, while the subsequent leaders are designated

as secondary leaders. Analogous to Sailfish, the main leader for

round 𝑟 is denoted as 𝐿𝑟 . We useML𝑟 to denote the ordered list

of leaders provided by get_multiple_leaders(𝑟 ).ML𝑟 [𝑥] denotes
the 𝑥𝑡ℎ element in the list. Additionally,ML𝑟 [: 𝑥] represents the
first 𝑥 leaders, whileML𝑟 [𝑥 + 1 :] denotes the leaders in the list

excluding the first 𝑥 leaders.
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89: upon timeout do
90: if �𝑣′ ∈ 𝐷𝐴𝐺𝑖 [𝑟 ] : 𝑣′ .𝑠𝑜𝑢𝑟𝑐𝑒 = 𝐿𝑟𝑜𝑢𝑛𝑑 then
91: multicast ⟨timeout, 𝑟𝑜𝑢𝑛𝑑 ⟩𝑖
92: procedure advance_round(𝑟 )
93: ML ← get_multiple_leaders(𝑟 − 1)

94: for 𝑝 ∈ ML do ⊲ iterate overML in order

95: if �𝑣′ ∈ 𝐷𝐴𝐺𝑖 [𝑟 − 1] | : 𝑣′ .𝑠𝑜𝑢𝑟𝑐𝑒 = 𝑝 then
96: send ⟨no-vote, 𝑝, 𝑟 − 1⟩𝑖 to 𝐿𝑟
97: if 𝑃𝑖 = 𝐿𝑟 then
98: wait until ∃𝑣′ ∈ 𝐷𝐴𝐺𝑖 [𝑟 − 1] : 𝑣′ .𝑠𝑜𝑢𝑟𝑐𝑒 = 𝑝 ∀𝑝 ∈ ML[: 𝑥 ] or

NVC𝑝
′

𝑟−1 is received, where 𝑝
′ = ML[𝑥 + 1]

99: 𝑟𝑜𝑢𝑛𝑑 ← 𝑟 ; start timer
100: broadcast_vertex(𝑟𝑜𝑢𝑛𝑑)

101: procedure create_new_vertex(𝑟 )
102: 𝑣.𝑟𝑜𝑢𝑛𝑑 ← 𝑟

103: 𝑣.𝑠𝑜𝑢𝑟𝑐𝑒 ← 𝑃𝑖
104: 𝑣.𝑏𝑙𝑜𝑐𝑘 ← 𝑏𝑙𝑜𝑐𝑘𝑠𝑇𝑜𝑃𝑟𝑜𝑝𝑜𝑠𝑒.dequeue()

105: 𝑣.𝑠𝑡𝑟𝑜𝑛𝑔𝐸𝑑𝑔𝑒𝑠 ← 𝐷𝐴𝐺𝑖 [𝑟 − 1]
106: set_weak_edges(𝑣, 𝑟 )

107: if �𝑣′ ∈ 𝐷𝐴𝐺𝑖 [𝑟 − 1] : 𝑣′ .𝑠𝑜𝑢𝑟𝑐𝑒 = 𝐿𝑟−1 then
108: 𝑣.𝑡𝑐 ← TC𝑟−1
109: if 𝑃𝑖 = 𝐿𝑟 then
110: ML ← get_multiple_leaders(𝑟 − 1)

111: for 𝑝 ∈ ML do
112: if �𝑣′ ∈ 𝐷𝐴𝐺𝑖 [𝑟 − 1] | : 𝑣′ .𝑠𝑜𝑢𝑟𝑐𝑒 = 𝑝 then
113: 𝑣.𝑛𝑣𝑐 ← NVC𝑝

𝑟−1
114: break
115: return 𝑣

116: procedure try_commit(𝑟, S)
117: CLS ← [ ]
118: ML ← get_multiple_leaders(𝑟 )

119: for 𝑝 ∈ ML do
120: 𝑣 ← get_vertex(𝑝, 𝑟 )

121: 𝑣𝑜𝑡𝑒𝑠 ← {𝑣′ ∈ S | strong_path(𝑣′, 𝑣)}
122: if 𝑣𝑜𝑡𝑒𝑠 ≥ 2𝑓 + 1 then
123: CLS ← CLS | | 𝑣
124: else break
125: commit_leaders(CLS)
126: procedure commit_leaders(𝑐𝑙𝑠)

127: 𝑙𝑒𝑎𝑑𝑒𝑟𝑆𝑡𝑎𝑐𝑘.push(𝑐𝑙𝑠)

128: 𝑣′ ← 𝑐𝑙𝑠 [0]
129: 𝑟 ← 𝑣′ .𝑟𝑜𝑢𝑛𝑑 − 1

130: while 𝑟 > 𝑐𝑜𝑚𝑚𝑖𝑡𝑡𝑒𝑑𝑅𝑜𝑢𝑛𝑑 do
131: CMV ← [ ]
132: ML ← get_multiple_leaders(𝑟 )

133: for 𝑝 ∈ ML do
134: 𝑣 ← get_vertex(𝑝, 𝑟 )

135: if strong_path(𝑣′, 𝑣) then
136: CMV ← CMV | | 𝑣
137: else break
138: if CMV ≠ [ ] then
139: 𝑣′ ← CMV[1] ⊲ main leader vertex for round 𝑟

140: 𝑙𝑒𝑎𝑑𝑒𝑟𝑆𝑡𝑎𝑐𝑘.push(CMV)

141: 𝑟 ← 𝑟 − 1

142: 𝑐𝑜𝑚𝑚𝑖𝑡𝑡𝑒𝑑𝑅𝑜𝑢𝑛𝑑 ← 𝑐𝑙𝑠 [0] .𝑟𝑜𝑢𝑛𝑑
143: order_vertices()

144: procedure order_vertices()
145: while ¬𝑙𝑒𝑎𝑑𝑒𝑟𝑆𝑡𝑎𝑐𝑘.isEmpty() do
146: CMV ← 𝑙𝑒𝑎𝑑𝑒𝑟𝑆𝑡𝑎𝑐𝑘.pop()

147: for 𝑣 ∈ CMV do ⊲ iterate over CMV in order

148: 𝑣𝑒𝑟𝑡𝑖𝑐𝑒𝑠𝑇𝑜𝐷𝑒𝑙𝑖𝑣𝑒𝑟 ← {𝑣′ ∈ ⋃𝑟>0 𝐷𝐴𝐺𝑖 [𝑟 ] | 𝑝𝑎𝑡ℎ (𝑣, 𝑣′ ) ∧ 𝑣′ ∉ 𝑑𝑒𝑙𝑖𝑣𝑒𝑟𝑒𝑑𝑉𝑒𝑟𝑡𝑖𝑐𝑒𝑠 }
149: for every 𝑣′ ∈ 𝑣𝑒𝑟𝑡𝑖𝑐𝑒𝑠𝑇𝑜𝐷𝑒𝑙𝑖𝑣𝑒𝑟 in some deterministic order do
150: output a_deliver𝑖 (𝑣′ .𝑏𝑙𝑜𝑐𝑘, 𝑣′ .𝑟𝑜𝑢𝑛𝑑, 𝑣′ .𝑠𝑜𝑢𝑟𝑐𝑒)
151: 𝑑𝑒𝑙𝑖𝑣𝑒𝑟𝑒𝑑𝑉𝑒𝑟𝑡𝑖𝑐𝑒𝑠 ← 𝑑𝑒𝑙𝑖𝑣𝑒𝑟𝑒𝑑𝑉𝑒𝑟𝑡𝑖𝑐𝑒𝑠 ∪ {𝑣′ }

Figure 5: Multi-leader Sailfish

DAG construction protocol. The basic data structures are identi-
cal to Sailfish. In order to accommodate multiple leaders in a round,

we modify how parties advance rounds. The modified protocol is

presented in Figure 5.

Recall that in Sailfish, each party 𝑃𝑖 waits for the round 𝑟 leader

vertex until a timeout. If the leader vertex is not delivered before the

timeout, 𝑃𝑖 sends ⟨timeout, 𝑟 ⟩ message. Upon receiving either the

round 𝑟 leader vertex or TC𝑟 (along with 2𝑓 +1 round 𝑟 vertices) 𝑃𝑖
advances to round 𝑟 + 1. When 𝑃𝑖 advances to round 𝑟 + 1 via TC𝑟 ,
it sends ⟨no-vote, 𝑟 ⟩ to 𝐿𝑟+1. Additionally, 𝐿𝑟 must collect NVC𝑟
before proposing a round 𝑟 + 1 leader vertex.

In Multi-leader Sailfish, 𝑃𝑖 sends ⟨timeout, 𝑟 ⟩ only when it does

not deliver the round 𝑟 main leader vertex before the timeout; it

does not send timeoutmessages when the secondary leader vertices

are not delivered.

To handle multiple leaders, various strategies can be employed

for advancing through rounds. For instance, party 𝑃𝑖 could wait

for all leaders inML𝑟 or TC𝑟 (along with 2𝑓 + 1 round 𝑟 vertices)
before advancing to round 𝑟 + 1. Upon advancing to round 𝑟 + 1, 𝑃𝑖
sends ⟨no-vote, 𝑝, 𝑟 ⟩ for all 𝑝 ∈ ML𝑟 from which 𝑃𝑖 did not deliver

the corresponding round 𝑟 leader vertex. In the ideal scenario, when

all leaders inML𝑟 are honest and after GST, all honest parties will

responsively receive all round 𝑟 leader vertices and move to round

𝑟 +1. However, a single faulty leader can cause the protocol to await

its leader vertex, thereby slowing down the protocol.

Alternatively, each party 𝑃𝑖 could choose to wait solely for the

round 𝑟 main leader vertex or TC𝑟 (along with 2𝑓 + 1 round 𝑟

vertices) before progressing to round 𝑟 + 1. Subsequently, 𝑃𝑖 would
send ⟨no-vote, 𝑝, 𝑟 ⟩ for all 𝑝 ∈ ML𝑟 from which 𝑃𝑖 did not receive

the round 𝑟 leader vertex by the time it advances to round 𝑟 + 1.
While this approach prioritizes the fastest leaders in ML𝑟 for

voting, it may result in slow leaders not being voted on, potentially

causing the the slow leaders to not achieve the best possible latency.

We adjust the constraint on the main leader vertex as follows:

The round 𝑟 + 1 main leader vertex must establish strong paths

to all leader vertices corresponding to leaders inML𝑟 [: 𝑥] (for
some 𝑥 > 0) and include a quorum of ⟨no-vote, 𝑝, 𝑟 ⟩ (referred to

as NVC𝑝𝑟 ), where 𝑝 = ML𝑟 [𝑥 + 1] (see Line 98). If the main

leader vertex has strong paths to all leader vertices corresponding

to leaders inML𝑟 , it is not required to include NVC𝑟 for any

round 𝑟 leaders. The constraint on other round 𝑟 +1 vertices remain

unchanged; specifically, the round 𝑟 + 1 vertex must include TC𝑟
only if it lacks a strong path to the round 𝑟 main leader vertex.

The is_valid() function is also appropriately updated to ensure that

these constraints are met.

Committing and ordering the DAG. Similar to Sailfish, only

the leader vertices are committed, and the non-leader vertices are

ordered (in some deterministic order) as part of the causal history

of a leader vertex when the leader vertex is (directly or indirectly)
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committed, as illustrated in the order_vertices function (refer to

Line 144).

In this protocol, an honest party 𝑃𝑖 directly commits a round 𝑟

leader vertex 𝑣𝑘 corresponding toML𝑟 [𝑥] when it observes 2𝑓 + 1
“firstmessages” (of the RBC) for round 𝑟+1 verticeswith strong paths
to the vertex 𝑣𝑘 and when all round 𝑟 leader vertices corresponding

to leaders inML𝑟 [: 𝑥 − 1] have been directly committed. If 𝑣𝑘
fails to be directly committed, party 𝑃𝑖 refrains from committing

the leader vertices corresponding to the leaders inML𝑟 [𝑥 + 1 :],
even if there are 2𝑓 + 1 round 𝑟 + 1 vertices with strong paths to the

leader vertices corresponding to the leaders inML𝑟 [𝑥 + 1 :]. We

will shortly explain why it is necessary to skip committing leader

vertices corresponding to leaders inML𝑟 [𝑥 + 1 :] in this case. The

commit rule is presented in try_commit() function (see Line 126).

In addition to the above commit rule, Multi-leader Sailfish also

enables party 𝑃𝑖 to directly commit round 𝑟 leader vertex 𝑣𝑘 cor-

responding toML𝑟 [𝑥] when it delivers (via RBC) 2𝑓 + 1 round
𝑟 + 1 vertices that have strong paths to 𝑣𝑘 and when all round 𝑟

leader vertices corresponding to leaders inML𝑟 [: 𝑥 −1] have been
directly committed.

Upon directly committing the main leader vertex 𝑣𝑚 in round 𝑟 ,

𝑃𝑖 first indirectly commits leader vertices corresponding toML𝑟 ′ [:
𝑦] (for some 𝑦 > 0) in an earlier round 𝑟 ′ < 𝑟 such that there

exists strong paths from 𝑣𝑚 to all leader vertices corresponding

toML𝑟 ′ [: 𝑦]. Subsequently, this process of indirectly committing

leader vertices of earlier rounds is repeated for leader vertices that

have strong paths from leader vertex corresponding toML𝑟 ′ [1]
(i.e., the main leader vertex of round 𝑟 ′) until it reaches a round
𝑟∗ < 𝑟 in which it previously directly committed a leader vertex

(see Line 126). When round 𝑟 ′ leader vertices corresponding to

leaders inML𝑟 ′ [: 𝑦] are directly committed, we ensure that any

future main leader vertex has a strong path to these round 𝑟 ′ leader
vertices. This ensures that these leader vertices will be (directly

or indirectly) committed by honest parties who missed directly

committing these leader vertices.

The order_vertices() function is also appropriately modified to

handle multiple leaders in a round (see Line 144).

Intuition behind skipping leaders in ML𝑟 [𝑥 + 1 :] when
ML𝑟 [𝑥] is not directly committed. As mentioned earlier, if

𝑃𝑖 does not directly commit a leader vertex 𝑣𝑘 corresponding to

ML𝑟 [𝑥], it also refrains from committing the leader vertices for

the leaders inML𝑟 [𝑥 + 1 :], even if there are sufficient votes for

these leader vertices. This precaution is taken because the main

leader vertex of a higher round 𝑟 ′′ > 𝑟 may still have a strong

path to 𝑣𝑘 . When this main leader vertex from round 𝑟 ′′ is com-

mitted, the leader vertices corresponding toML𝑟 [: 𝑦] (for some

𝑦 > 0) are also indirectly committed in order, provided there are

strong paths from the round 𝑟 ′′ main leader vertex to the leader

vertices corresponding toML𝑟 [: 𝑦]. If 𝑦 > 𝑥 , 𝑣𝑘 would be com-

mitted before the leader vertices corresponding to the leaders in

ML𝑟 [𝑥 + 1 :]. By skipping the commit of leader vertices corre-

sponding to ML𝑟 [𝑥 + 1 :], we ensure the total order property

during the indirect commit.

Additional conditions required for committing the secondary
leader vertices. We note two additional conditions required for

committing the secondary leader vertices. First, to commit leader

vertices corresponding to ML𝑟 [𝑥 + 1 :], the leader vertex cor-

responding to ML𝑟 [𝑥] must be committed beforehand. When

ML𝑟 [𝑥] is faulty, all leader vertices corresponding to leaders in

ML𝑟 [𝑥 + 1 :] fail to be committed, despite having sufficient votes

for these leader vertices. To address this concern, leader reputation

schemes [28, 33] can be employed to elect multiple leaders with a

good reputation for a given round.

Secondly, recall that parties send ⟨timeout, 𝑟 ⟩ messages only

when the round 𝑟 main leader vertex is not delivered in a timely

manner. The requirement for a round 𝑟 vertex to include TC𝑟−1
when it lacks a strong path to the round 𝑟−1main leader vertex (say

𝑣𝑘 ) can only prevent the Byzantine parties from proposing the round

𝑟 vertex without a strong path to 𝑣𝑘 . This ensures that sufficient

honest parties vote for 𝑣𝑘 in round 𝑟 and 𝑣𝑘 is committed by round

𝑟 , after GST. However, this does not prevent Byzantine parties from

“not voting” for the secondary leader vertices and send round 𝑟

vertices with strong path only to 𝑣𝑘 . With the help of 𝑓 + 1 honest
parties who vote for the secondary leader vertices, the adversary

can cause the protocol to advance to a higher round 𝑟 ′ > 𝑟 while 𝑓

honest parties are lagging behind in some lower round 𝑟 ′′ ≤ 𝑟 − 1.
The adversary can then deliver 2𝑓 + 1 round 𝑟 ′ vertices along with

round 𝑟 ′ main leader vertex to the 𝑓 lagging honest parties; causing

them to enter round 𝑟 ′ + 1 such that these 𝑓 lagging honest parties

do not propose a round 𝑟 vertex. This prevents the round 𝑟 − 1

secondary leader vertices from being directly committed. This issue

can potentially be addressed by introducing a timeout certificate

for each leader in a round and requiring a round 𝑟 vertex to include

a timeout certificate for each missing round 𝑟 − 1 leader vertex;

however the solution is less practical due to added synchronization

overhead and increase in size of a vertex.

In this context, Multi-leader Sailfish ensures that the round 𝑟

secondary leader vertices are committed by round 𝑟 + 1 only under

an “optimistic condition” where at least 2𝑓 + 1 parties (including
Byzantine parties) “vote” for the proposed secondary leader vertices.

Under normal conditions, these vertices will be committed in the

next round when the round 𝑟 + 1 leader vertex is committed. We

also note that these conditions apply to Mysticeti [3], although they

did not explicitly state the latter requirement.

4.1 Efficiency Analysis

Commit latencies. We analyze the commit latencies under the

optimistic condition where all parties vote for all proposed leader

vertices. If parties wait for all leader vertices corresponding to

ML𝑟 , and all leaders inML𝑟 are honest, the corresponding leader

vertices can be committed with a latency of one RBC plus 1𝛿 . How-

ever, a single faulty leader can cause the protocol to await its leader

vertex, resulting in a latency of 𝑂 (Δ).
Alternatively, when parties wait solely for the round 𝑟 main

leader vertex before advancing to the next round, the subsequent

main leader needs to collect NVC𝑟 for leaders for which it lacks

strong paths to the corresponding leader vertices. This incurs an

additional 1𝛿 time. Thus, the commit latency for the leader vertices

is one RBC plus 2𝛿 , while the non-leader vertices require an addi-

tional RBC. Under this strategy, when the RBC protocol of Das et

al. [14] is used, as long as 𝑥 >
𝑛−𝑓 +4

4
leader vertices are directly
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Table 2: Ping latencies (in ms) between GCP regions

Destination∗

Source us-e-1 us-w-1 eu-n-1 as-ne-1 au-se-1

us-east1-a 0.75 66.14 114.75 160.28 197.98

us-west1-a 66.15 0.66 158.13 89.56 138.33

europe-north1-a 115.40 158.38 0.69 245.15 295.13

asia-northeast1-a 159.89 90.05 246.01 0.66 105.58

australia-southeast1-a 197.60 139.02 294.36 108.26 0.58

∗
Region names are abbreviated versions of the source regions.

committed in a round, the average latency is still better compared

to Sailfish.

Communication complexity. In Multi-leader Sailfish, unlike Sail-

fish, each party can send a no-vote message for every leader in

ML𝑟 to the subsequent leader 𝐿𝑟+1. Even with a linear number

of leaders in a round, sending these no-vote messages incurs only

𝑂 (𝑛2) bits. Additionally, although NVC𝑟 can exist for multiple

leaders in round 𝑟 , the main leader vertex of round 𝑟 +1 has to incor-
porate a single NVC𝑟 . Therefore, the communication complexity

of Multi-leader Sailfish remains the same as that of Sailfish.

We present detailed security analysis in Appendix B.
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Figure 6: Throughput vs. end-to-end latency at 𝑛 = 10 and varying
input

5 EVALUATION
In this section, we evaluate the performance of Sailfish and Multi-

leader Sailfish, comparing their throughput and latency with modu-

lar DAG-based BFT protocols: Bullshark and Shoal, across different

system sizes and under failure scenarios.

Implementation details. Our implementation is a modification of

the open-source implementation of Bullshark [27]. We made mod-

ifications to the core consensus logic to create Sailfish and Multi-

leader Sailfish. Additionally, we created a custom implementation of

Shoal (since their implementation is not publicly accessible) which

guarantees a leader in every round and commits the leader vertex

with two RBCs. This customized Shoal implementation is better as

it does not require reinterpreting the DAG.

In the Bullshark implementation, the system consists of distinct

clients, workers, and consensus nodes. Each consensus node is

equipped with a number of workers. The client dispatches a con-

figurable number of transactions to its designated worker. The

workers then aggregate these transactions to form a batch, which

is subsequently forwarded to the workers of other consensus nodes.

Upon receiving the batch, a worker sends an acknowledgment

back to its originating worker. Once a worker collects a quorum of

acknowledgments, it sends the batch digest to its associated con-

sensus node. The consensus node then incorporates this digest into

its subsequent proposal.

Experimental setup.We carried out our evaluations on the Google

Cloud Platform (GCP), distributing nodes evenly across five dis-

tinct GCP regions: us-east1-b (South Carolina), us-west1-a (Oregon),

europe-north1-a (Hamina, Finland), asia-northeast1-a (Tokyo), and

australia-southeast1-a (Sydney). We employed e2-standard-32
1
in-

stances, each featuring 32vCPUs, 128GB of memory, and up to

16Gbps network bandwidth
2
. All nodes ran on Ubuntu 20.04, and

we summarize round-trip latencies in Table 2. We used ED25519

signatures for authentication.

In our setup, one client and one worker is co-located within

the consensus node. Each transaction is composed of 512 random

bytes, and the batch size is configured to 500KB. We set the timeout

parameter, 𝜏 to 3 seconds. Each experimental run spans 180 seconds,

and the data presented in the graphs represents an average across

three independent runs. For latency, we measured the average time

between the creation of a transaction (or a vertex) and its commit

by all (non-faulty) nodes to compute the end-to-end (or consen-

sus) latency. Throughput is measured as the number of committed

transactions per second.

Methodology. In our evaluations, we gradually increased the input
transactions. As depicted in Figure 6, the throughput increases with

increasing load without increasing latency up to a certain point

before reaching saturation. After saturation, the latency starts to

increase while the throughput either remains consistent or slightly

increases. In the subsequent figures, we report the throughput and

latency just before reaching this saturation point.

Performance of Sailfish under fault-free case. We initially

assess the performance of Bullshark, Shoal, and Sailfish under fault-

free scenarios across system sizes of 10, 20, and 50 nodes. The con-

sensus latencies are presented in Figure 7a, while the corresponding

end-to-end latencies and throughput are illustrated in Figure 7b

and Figure 7c respectively.

In Figure 7a, LV represents the average latency to commit the

leader vertices, NLV represents the average latency to commit

the non-leader vertices a round before the leader vertex and Avg

represents the average latency for all vertices (including those

from prior rounds that were ordered when the leader vertex was

committed). For Bullshark, the NLV latency is the average latency

to commit the two layers of non-leader vertices before the leader

round.

Consistent with our theoretical analysis, Sailfish significantly

outperforms both Bullshark and Shoal in terms of these latencies.

While Bullshark and Shoal achieve similar latencies for the leader

vertex, Bullshark’s additional layer of non-leader vertices results in

higher latency compared to Shoal for non-leader vertices. The im-

provement in consensus latencies directly translates to an improve-

ment in the overall end-to-end latency. As depicted in Figure 7b,

Sailfish reduces the end-to-end latency by approx. 20% compared

to Bullshark and Shoal across all system sizes. Furthermore, due to

1
https://cloud.google.com/compute/docs/general-purpose-machines

2
https://cloud.google.com/compute/docs/network-bandwidth
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Figure 7: Performance in the absence of failures across different system sizes.

reduced latency of Sailfish, it achieves improved throughput before

experiencing a latency spike as depicted in Figure 6 and Figure 7c.

Table 3: Consensus latencies (in ms) under failures at 𝑛 = 10

Leader vertices Non-leader vertices Average

Sailfish 754 2592 3234

Shoal [28] 1175 3003 6829

Bullshark [29] 1169 4960 7005
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Figure 8: Throughput vs. end-to-end latency at 𝑛 = 10 with 3 failures
and varying input

Performance of Sailfish under failures.We subsequently evalu-

ated the performance under 𝑓 crash failures at 𝑛 = 10, distributing

the failed leaders across consecutive odd rounds. In the case of

Sailfish, this translates to a leader failure occurring every other

round over 2𝑓 rounds. Meanwhile, as Bullshark designates leaders

exclusively in odd rounds, this equated to 𝑓 consecutive leader

failures. Consequently, Bullshark fails to commit for the first 2𝑓

rounds, with this pattern repeating every 𝑛 rounds. Additionally, as

Shoal relies on a Bullshark instance to commit some vertex before

initiating a new Bullshark instance, Shoal does not start a new

Bullshark instance until 2𝑓 rounds has passed.

The latency to commit the leader vertex increases slightly for

all protocols compared to the fault-free scenario, as shown in Ta-

ble 3. In fault-free cases, protocols commit with the fastest 2𝑓 + 1
nodes. However, with 𝑓 failures, the protocol must wait for all

nodes, resulting in increased commit latency for the leader vertex.

Additionally, rounds corresponding to the failed leader incur 𝜏 time,

and the non-leader vertices of the failed rounds are only committed

when the leader vertex of the following round is committed. This

leads to an increase in the average latency to commit the non-leader

vertices for all protocols.

In the case of Bullshark and Shoal, the vertices of the first 2𝑓

rounds are only committed after 2𝑓 rounds, resulting in worse

average latency. As Sailfish supports a leader in every round, it can

commit every other round, resulting in approx. 50% lesser average

latency. We present the corresponding throughput and end-to-end

latency in Figure 8. With the increased average commit latency, the

end-to-end latency for both Bullshark and Shoal worsens compared

to Sailfish, while the throughput remains (almost) the same as the

failure-free case.

Performance of Multi-leader Sailfish under fault-free case.
We also evaluated the performance ofMulti-leader Sailfish in failure-

free scenarios, exploring configurations with both 𝑓 and 2𝑓 leaders

in a round. To simplify implementation, we adopted the strategy

where nodes wait for all leader vertices before advancing to the

next round. The corresponding consensus and end-to-end latencies

are presented in Figure 9. In Figure 9, MLSF-f represents Multi-

leader Sailfish with 𝑓 leaders, while MLSF-2f represents Multi-

leader Sailfish with 2𝑓 leaders.

As depicted in Figure 9a, the latency to commit the leader vertex

(and the non-leader vertices) increased slightly due to the neces-

sity of waiting for all leader vertices in a round. Nonetheless, the

average commit latency exhibits significant improvement as more

vertices are committed with reduced latency (i.e., one RBC plus

1𝛿), which aligns with our theoretical analysis. This improvement

in consensus latencies also translates to improved end-to-end la-

tency. As illustrated in Figure 9b, we observe improved end-to-end

latencies as the number of leader vertices increases.

6 RELATEDWORK
There has been an extensive body of research aimed at enhancing

the performance of BFT consensus protocols. Recently, DAG-based

BFT protocols have emerged as a means to enhance the through-

put of BFT consensus protocols. We review the most recent and

closely related works below. Compared to all these protocols, our

protocols require one RBC, plus 1𝛿 to commit the leader vertex and

an additional RBC to commit the non-leader vertices. Our protocol

supports multiple leaders in a round. When employing the RBC

protocol by Das et al. [14], our protocol requires 5𝛿 to commit the

leader vertex and an additional 4𝛿 to commit the non-leader ver-

tices. Moreover, it maintains a communication complexity of𝑂 (𝑛3)
per round.

Asynchronous DAG-based BFT. Hashgraph [4] builds an un-

structured DAG, with each vertex containing two references to
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Figure 9: Latency comparison of Multi-leader Sailfish in the absence of failures across different system sizes.

previous vertices. Parties then run an inefficient binary agreement

protocol on this DAG, leading to an expected exponential time com-

plexity. Aleph [19] is an asynchronous DAG-based BFT that builds

a structured round-based DAG, where parties proceed to the next

round once they receive 2𝑓 + 1 DAG vertices from other parties

in the same round. On top of the DAG construction protocol, an

asynchronous binary agreement protocol decides on the order of

vertices to commit; resulting in a higher commit latency.

DAG-Rider [21] is an asynchronous DAG-based BFT protocol.

DAG-Rider progresses through waves where each wave consists

of 4 rounds. There is a single leader in each wave and it requires

an expected 6 rounds (i.e., 6 sequential RBCs) to commit the leader

vertex. Since the non-leader vertices are ordered when the leader

vertex is committed, they require an additional 4 rounds to commit

the non-leader vertices that share a round with the leader vertex.

Tusk [13] is an implementation based on DAG-Rider.

Very recently, GradedDAG [11] and LightDAG [10] improve the

latency of asynchronous DAG-based BFT protocols by using weaker

primitives such as consistent broadcast [31] instead of RBC. While

the use of weaker primitives improves the latency in fault-free

cases, they require parties to download missing vertices at a later

point when failures occur, leading to an increase in latency.

Partially synchronous DAG-based BFT. Blockmania [12] em-

ploys a modified version of PBFT [9] for vertex dissemination and

constructs a structured round-based DAG. Their protocol is specif-

ically designed for owned objects [5], and it does not inherently

ensure the total ordering of these vertices. Bullshark [29, 30] builds

upon DAG-Rider to improve the commit latency during the syn-

chronous period. The partially synchronous version of Bullshark

has one leader every two rounds. It requires 2 RBCs to commit a

leader vertex and an additional 2 RBCs to commit the non-leader

vertices that share a round with the leader vertex. Furthermore,

Bullshark relies on an honest leader to synchronize all parties post

the GST, committing a vertex only after such synchronization. Con-

sequently, it demands two honest leaders to successfully commit

a vertex after GST, leading to latency issues in case of frequent

transitions between synchrony and asynchrony in the network.

In contrast, our protocol has explicit round synchronization and

supports commit with a single honest leader after GST.

Shoal [28] proposed a pseudo-pipelining approach to reduce the

latency of non-leader vertices in Bullshark. In their protocol, they

execute multiple instances of the Bullshark sequentially to ensure a

leader in every round. However, their protocol relies on an instance

of Bullshark to commit some vertex before initiating a new instance

with a leader in the next round. When Bullshark fails to commit,

Shoal requires an additional two rounds to commit some vertex

and start a new Bullshark instance. This limitation compromises

Shoal’s ability to consistently guarantee a leader vertex in each

round. Furthermore, Shoal’s support for multiple leaders in a round

hinges on executing multiple instances of Bullshark sequentially,

each with a different leader. As Bullshark is inherently designed

as a single-leader protocol which ensures the commitment of only

one leader vertex per round (after GST), reinterpreting the existing

DAG with a different leader does not guarantee the new leader will

be committed, even if the new leader is honest.

In a private conversation with the Aptos team, we learned that

they are also concurrently working on extending Shoal to improve

the latency of the leader vertex to one RBC plus 1𝛿 . However, fol-

lowing Shoal, their new protocol still does not support a leader

vertex in each round in a true sense.

In a recent work, Cordial Miners [22] introduced a DAG-based

BFT protocol that uses BEB instead of RBC to propagate vertices,

aiming to reduce latency. While their protocol achieves a commit

latency of 3𝛿 for the leader vertex, it still requires 6𝛿 to commit

non-leader vertices aligned with the leader round. Extending the

work of Cordial Miners [22], Mysticeti [3] introduces support for

multiple leaders within the same round and enhances the speed of

committing owned objects [5]. However, both the protocols suffer

from a high communication complexity of 𝑂 (𝑛4) per round and

lacks modularity. Additionally, both protocols incur higher latency

in the event of leader failure as they need to wait in each (non-RBC)

round. In comparison, the protocols that rely on RBC can employ a

single wait for multiple steps of RBC in a round, resulting in reduced

latency. Furthermore, while Mysticeti supports multiple leaders in

a round and specifies the commit rule to commit multiple vertices,

it does not detail the necessary conditions required to ensure these

leaders are committed.

BBCA-chain [24] also addresses the challenge of supporting

leaders in each round. They rely on a traditional leader-heavy BFT

protocol inherently capable of accommodating a leader in each

round. At the end of each round, each party sends a block of trans-

actions (via BEB) along with the commit status of the current round

and the commit certificate for the highest round it have observed.

This message serves as the view-change message in traditional

protocols [9]. The next leader aggregates a quorum of these mes-

sages in its new proposal; thus forming a DAG. The leader uses

single-shot PBFT [9] instance to propose its block. However, in their
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protocol, the leader is responsible for propagating 𝑂 (𝑛) proposals
when the Byzantine parties “selectively” send their proposals only

to the leader. When the size of each proposal is𝑂 (𝑛) bits, (which is

typically the case with DAG-based BFT), the leader is responsible

to disseminate 𝑂 (𝑛2) bits; placing a heavier burden on the leader.

In comparison, in our protocol (and DAG-based BFT protocols in

general), each party performs the same amount of work.
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A SECURITY ANALYSIS OF SAILFISH
We say that a leader vertex 𝑣𝑖 is committed directly by party 𝑃𝑖 if 𝑃𝑖
invokes commit_leader(𝑣𝑖 ). Similarly, we say that a leader vertex
𝑣 𝑗 is committed indirectly if it is added to 𝑙𝑒𝑎𝑑𝑒𝑟𝑆𝑡𝑎𝑐𝑘 in Line 84.

In addition, we say party 𝑃𝑖 consecutively directly commit leader

vertices 𝑣𝑘 and 𝑣𝑘 ′ if 𝑃𝑖 directly commits 𝑣𝑘 and 𝑣𝑘 ′ in rounds 𝑟

and 𝑟 ′ respectively and does not directly commit any leader vertex

between 𝑟 and 𝑟 ′.
The following fact is immediate from using reliable broadcast to

propagate a vertex 𝑣 and waiting for the entire causal history of 𝑣

to be added to the DAG before adding 𝑣 .

Fact 1. For every two honest parties 𝑃𝑖 and 𝑃 𝑗 (i) for every round
𝑟 ,

⋃
𝑟 ′≤𝑟 𝐷𝐴𝐺𝑖 [𝑟 ′] is eventually equal to

⋃
𝑟 ′≤𝑟 𝐷𝐴𝐺 𝑗 [𝑟 ′], (ii) at

any given time 𝑡 and round 𝑟 , if 𝑣 ∈ 𝐷𝐴𝐺𝑖 [𝑟 ] ∧ 𝑣 ′ ∈ 𝐷𝐴𝐺 𝑗 [𝑟 ] s.t.
𝑣 .𝑠𝑜𝑢𝑟𝑐𝑒 = 𝑣 ′ .𝑠𝑜𝑢𝑟𝑐𝑒 , then 𝑣 = 𝑣 ′. Moreover, for every round 𝑟 ′ < 𝑟 , if
𝑣 ′′ ∈ 𝐷𝐴𝐺𝑖 [𝑟 ′] and there is a path from 𝑣 to 𝑣 ′′, then 𝑣 ′′ ∈ 𝐷𝐴𝐺 𝑗 [𝑟 ′]
and there is a path from 𝑣 ′ to 𝑣 ′′.

Claim 1. If an honest party 𝑃𝑖 directly commits a leader vertex
𝑣𝑘 in round 𝑟 , then for every leader vertex 𝑣ℓ in round 𝑟 ′ such that
𝑟 ′ > 𝑟 , there exists a strong path from 𝑣ℓ to 𝑣𝑘 .

Proof. Since 𝑃𝑖 directly committed 𝑣𝑘 in round 𝑟 , there exists a

set Q of 2𝑓 + 1 vertices in 𝐷𝐴𝐺𝑖 [𝑟 + 1] that included a reference

to vertex 𝑣𝑘 . LetH ⊂ Q be the set of vertices proposed by honest
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parties in Q. We complete the proof by showing the statement holds

for any 𝑟 ′ > 𝑟 .

Case 𝑟 ′ = 𝑟 + 1: If 𝑣ℓ ∈ H , we are trivially done. Otherwise, the

vertices inH are from round 𝑟 + 1 honest non-leader parties. When

a round 𝑟 + 1 honest non-leader party 𝑃𝑖 includes a reference to

vertex leader 𝑣𝑘 , it does not send a round 𝑟 no-vote message. Since

|H | ≥ 𝑓 + 1, by standard quorum intersection argument, NVC𝑟
does not exist. Moreover, parties inH have delivered 𝑣𝑘 . By Fact 1,

𝐿𝑟+1 will eventually deliver 𝑣𝑘 . Thus, if 𝑣ℓ exists, it must include a

reference to 𝑣𝑘 and there exists a strong path from 𝑣ℓ to 𝑣𝑘 .

Case 𝑟 ′ > 𝑟 + 1: Observe that a round 𝑟 + 2 vertex has a strong
path to 2𝑓 +1 round 𝑟 +1 vertices. By standard quorum intersection,

this includes at least 𝑓 + 1 vertices in Q which has a strong path

to 𝑣𝑘 . Thus, all-round 𝑟 + 2 vertices (including round 𝑟 + 2 leader
vertex) have a strong path to 𝑣𝑘 . Moreover, each round 𝑟 ′′ > 𝑟 + 2
vertex has strong paths to at least 2𝑓 + 1 vertices in round 𝑟 ′′ − 1.
By transitivity, each vertex at round 𝑟 ′′ has strong paths to at least

2𝑓 + 1 vertices in round 𝑟 + 2. This implies 𝑣ℓ must have a strong

path to 𝑣𝑘 . □

Claim 2. If an honest party 𝑃𝑖 directly commits a leader vertex 𝑣𝑘
in round 𝑟 and an honest party 𝑃 𝑗 directly commits a leader vertex 𝑣ℓ
in round 𝑟 ′ ≥ 𝑟 , then 𝑃 𝑗 (directly or indirectly) commits 𝑣𝑘 in round
𝑟 .

Proof. If 𝑟 ′ = 𝑟 , by Fact 1, 𝑣𝑘 = 𝑣ℓ and we are trivially done.

When 𝑟 ′ > 𝑟 , by Fact 1 and Claim 1, there exists a strong path

from 𝑣ℓ to 𝑣𝑘 in 𝐷𝐴𝐺 𝑗 . By the code of commit_leader, after directly

committing a leader vertex 𝑣ℓ in round 𝑟 ′, 𝑃𝑖 tries to indirectly

commit leader vertices 𝑣𝑚 in smaller rounds such that there exists

a path from 𝑣ℓ to 𝑣𝑚 until it reaches a round 𝑟 ′′ < 𝑟 ′ in which it

previously directly committed a leader vertex. If 𝑟 ′′ < 𝑟 < 𝑟 ′, party
𝑃 𝑗 will indirectly commit 𝑣𝑘 in round 𝑟 . Otherwise, by inductive

argument and Claim 1, party 𝑃 𝑗 must have indirectly committed 𝑣𝑘
when directly committing round 𝑟 ′′ leader vertex. □

Claim 3. Let 𝑣𝑘 and 𝑣 ′
𝑘
be two leader vertices consecutively directly

committed by a party 𝑃𝑖 in rounds 𝑟𝑖 and 𝑟 ′𝑖 > 𝑟𝑖 respectively. Let
𝑣ℓ and 𝑣 ′

ℓ
be two leader vertices consecutively directly committed

by party 𝑃 𝑗 in rounds 𝑟 𝑗 and 𝑟 ′𝑗 > 𝑟 𝑗 respectively. Then, 𝑃𝑖 and 𝑃 𝑗

commits the same leader vertices between rounds max(𝑟𝑖 , 𝑟 𝑗 ) and
min(𝑟 ′

𝑖
, 𝑟 ′

𝑗
) and in the same order.

Proof. If 𝑟 ′
𝑖
< 𝑟 𝑗 or 𝑟

′
𝑗
< 𝑟𝑖 , then there are no rounds between

max(𝑟𝑖 , 𝑟 𝑗 ) and min(𝑟 ′
𝑖
, 𝑟 ′

𝑗
) and we are trivially done. Otherwise,

assume wlog that 𝑟𝑖 ≤ 𝑟 𝑗 < 𝑟 ′
𝑖
. By Claim 2, both 𝑃𝑖 and 𝑃 𝑗 will

(directly or indirectly) commit the same leader vertex in the round

min(𝑟 ′
𝑖
, 𝑟 ′

𝑗
). Assume min(𝑟 ′

𝑖
, 𝑟 ′

𝑗
) = 𝑟 ′

𝑖
. By Fact 1, both 𝐷𝐴𝐺𝑖 and

𝐷𝐴𝐺 𝑗 will contain 𝑣 ′
𝑘
and all vertices that have a path from 𝑣 ′

𝑘
in

𝐷𝐴𝐺𝑖 .

By the code of commit_leader, after (directly or indirectly) com-

mitting the leader vertex 𝑣 ′
𝑘
, parties try to indirectly commit leader

vertices in smaller round numbers until they reach a round in

which they previously directly committed a leader vertex. There-

fore, both 𝑃𝑖 and 𝑃 𝑗 will indirectly commit all leader vertices from

min(𝑟 ′
𝑖
, 𝑟 ′

𝑗
) to max(𝑟𝑖 , 𝑟 𝑗 ). Moreover, due to deterministic code of

commit_leader, both parties will commit the same leader vertices

between rounds min(𝑟 ′
𝑖
, 𝑟 ′

𝑗
) to max(𝑟𝑖 , 𝑟 𝑗 ) in the same order. □

By inductively applying Claim 3 between any two pairs of honest

parties we obtain the following corollary.

Corollary A.1. Honest parties commit the same leader vertices
in the same order.

Lemma A.2 (Total order). The protocol in Figures 1 to 3 satisfies
Total order.

Proof. By Corollary A.1, honest parties commit the same leader

vertices in the same order. By the code of order_vertices, parties

iterate on the committed leader vertices according to their order

and a_deliver all vertices in their causal history by a predefined

deterministic rule. By Fact 1, all honest parties have the same causal

history in their DAG for every committed leader. Thus, the lemma

follows. □

Lemma A.3 (Agreement). The protocol in Figures 1 to 3 satisfies
Agreement.

Proof. If an honest party 𝑃𝑖 outputs a_deliver𝑖 (𝑣𝑖 .𝑏𝑙𝑜𝑐𝑘, 𝑣𝑖 .𝑟𝑜𝑢𝑛𝑑,

𝑣𝑖 .𝑠𝑜𝑢𝑟𝑐𝑒), 𝑣𝑖 must be in the causal history of some leader vertex

𝑣𝑘 .

When party 𝑃 𝑗 eventually directly commits a leader vertex 𝑣ℓ
for round higher than 𝑣𝑘 .𝑟𝑜𝑢𝑛𝑑 , by Lemma A.2, 𝑃 𝑗 also commits

𝑣𝑘 . By Fact 1, the causal histories of 𝑣𝑘 in 𝐷𝐴𝐺𝑖 and 𝐷𝐴𝐺 𝑗 are the

same. Thus, when 𝑃 𝑗 orders the causal histories of 𝑣𝑘 , it outputs

a_deliver𝑗 (𝑣𝑖 .𝑏𝑙𝑜𝑐𝑘, 𝑣𝑖 .𝑟𝑜𝑢𝑛𝑑, 𝑣𝑖 .𝑠𝑜𝑢𝑟𝑐𝑒). □

Lemma A.4 (Integrity). The protocol in Figures 1 to 3 satisfies
Integrity.

Proof. Anhonest party 𝑃𝑖 calls a_deliver𝑖 (𝑣 .𝑏𝑙𝑜𝑐𝑘, 𝑣 .𝑟𝑜𝑢𝑛𝑑, 𝑣 .𝑠𝑜𝑢𝑟𝑐𝑒)

only when vertex 𝑣 is in𝐷𝐴𝐺𝑖 . The vertices in𝐷𝐴𝐺𝑖 are added with

event r_deliver𝑖 (𝑣, 𝑣 .𝑟𝑜𝑢𝑛𝑑, 𝑣 .𝑠𝑜𝑢𝑟𝑐𝑒). Therefore, the proof follows

from the Integrity property of reliable broadcast. □

Validity. We rely on GST to prove validity. For RBC, we use the

protocol from Das et al. [14] for its (nearly) optimal communication

complexity. Their protocol requires 4 communication steps and

satisfies the RBC properties at all times. After GST, it provides the

following stronger guarantees:

Property 1. Let 𝑡 be a time after GST. If an honest party reliably
broadcasts a message𝑀 at time 𝑡 , all honest parties deliver𝑀 by time
𝑡 + 4Δ.

Property 2. Let 𝑡𝑔 denote the GST. If an honest party delivers message
𝑀 at time 𝑡 , then all honest parties deliver𝑀 by timemax(𝑡𝑔, 𝑡) + 2Δ.

Claim 4. Let 𝑡𝑔 denote the GST and 𝑃𝑖 be the first honest party
to enter round 𝑟 . If 𝑃𝑖 enters round 𝑟 at time 𝑡 via receiving round
𝑟 − 1 leader vertex, then all honest parties enter round 𝑟 or higher by
max(𝑡𝑔, 𝑡) + 2Δ.

Proof. Observe that 𝑃𝑖 must have delivered 2𝑓 + 1 round 𝑟 − 1
vertices along with round 𝑟−1 leader vertex by time 𝑡 . By Property 2,

all honest parties must have delivered 2𝑓 + 1 round 𝑟 − 1 vertices
along with round 𝑟 − 1 leader vertex by max(𝑡𝑔, 𝑡) + 2Δ. Thus, all
honest parties will enter round 𝑟 by max(𝑡𝑔, 𝑡) + 2Δ if they have

not already entered a higher round. □
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Claim 5. Let 𝑡𝑔 denote the GST and 𝑃𝑖 be the first honest party to
enter round 𝑟 . If 𝑃𝑖 enters round 𝑟 at time 𝑡 via TC𝑟−1, then (i) all
honest parties (except 𝐿𝑟 when 𝑃𝑖 ≠ 𝐿𝑟 ) enter round 𝑟 or higher by
max(𝑡𝑔, 𝑡) + 2Δ, and (ii) 𝐿𝑟 (if honest and 𝑃𝑖 ≠ 𝐿𝑟 ) enters round 𝑟 or
higher by max(𝑡𝑔, 𝑡) + 4Δ.

Proof. Observe that 𝑃𝑖 must have delivered 2𝑓 + 1 round 𝑟 − 1
vertices and received TC𝑟−1 by time 𝑡 . By Property 2, all honest

parties must have delivered 2𝑓 +1 round 𝑟−1 vertices bymax(𝑡𝑔, 𝑡)+
2Δ. In addition, 𝑃𝑖 must have multicasted TC𝑟−1 which arrives all

honest parties by max(𝑡𝑔, 𝑡) + Δ. Thus, all honest parties (except 𝐿𝑟
when 𝑃𝑖 ≠ 𝐿𝑟 ) will enter round 𝑟 bymax(𝑡𝑔, 𝑡) +2Δ if they have not

already entered a higher round. This proves part (i) of the claim.

Observe that if no honest party delivered round 𝑟 − 1 leader

vertex by max(𝑡𝑔, 𝑡) + 2Δ, all honest parties (including 𝐿𝑟 ) will

send ⟨no-vote, 𝑟 − 1⟩ to 𝐿𝑟 . Thus, 𝐿𝑟 will receiveNVC𝑟−1 by time

max(𝑡𝑔, 𝑡) + 3Δ. On the other hand, if at least one honest party

delivered round 𝑟 −1 leader vertex bymax(𝑡𝑔, 𝑡) +2Δ, by Property 2,
𝐿𝑟 will deliver round 𝑟 − 1 leader vertex by max(𝑡𝑔, 𝑡) + 4Δ. Thus,
𝐿𝑟 will enter round 𝑟 bymax(𝑡𝑔, 𝑡) + 4Δ if it has not already entered

a higher round. This proves part (ii) of the claim. □

Claim 6. All honest parties keep entering increasing rounds.

Proof. Suppose all honest parties are in round 𝑟 or above. Let

party 𝑃𝑖 be in round 𝑟 . If there exists an honest party 𝑃 𝑗 in round

𝑟 ′ > 𝑟 at any time, then by Claim 4 and Claim 5, all honest parties

will enter round 𝑟 ′ or higher. Otherwise, all honest parties are in
round 𝑟 . Observe that all honest parties will r_broadcast round 𝑟

vertex when entering round 𝑟 . Thus, all honest parties will deliver

2𝑓 + 1 round 𝑟 vertices.
Observe that if no honest party delivered round 𝑟 leader vertex,

due to the timeout rule, all honest parties will multicast ⟨timeout, 𝑟 ⟩
and receive TC𝑟 . In addition, all honest parties will also send

⟨no-vote, 𝑟 ⟩ to 𝐿𝑟+1 and 𝐿𝑟+1 will receive NVC𝑟−1. Thus, all hon-
est parties will move to round 𝑟 + 1. On the other hand, if at least

one honest party has delivered round 𝑟 leader vertex, by Fact 1,

all honest parties will deliver the round 𝑟 leader vertex. Having

delivered 2𝑓 + 1 round 𝑟 vertices and round 𝑟 leader vertex, all

honest parties will move to round 𝑟 + 1. □

Claim 7. If an honest party enters round 𝑟 then at least 𝑓 + 1
honest parties must have already entered 𝑟 − 1.

Proof. For an honest party to enter round 𝑟 , it must have deliv-

ered 2𝑓 + 1 round 𝑟 − 1 vertices. At least 𝑓 + 1 of those vertices are
sent by honest parties while they were in round 𝑟 − 1. Thus, 𝑓 + 1
honest parties must have already entered 𝑟 − 1. □

Claim 8. If the first honest party to enter round 𝑟 does so after
GST and 𝐿𝑟 is honest, then there exists at least 2𝑓 + 1 round 𝑟 + 1
vertices with strong paths to round 𝑟 leader vertex.

Proof. Let 𝑡 be the time when the first honest party (say 𝑃𝑖 )

entered round 𝑟 . Observe that no honest party sends ⟨timeout, 𝑟 ⟩
before 𝑡 + 8Δ due to its round timer expiring. Accordingly, no

honest party sends ⟨timeout, 𝑟 ⟩ due to receiving 𝑓 + 1 ⟨timeout, 𝑟 ⟩
before 𝑡 + 8Δ. Thus, TC𝑟 does not exist before 𝑡 + 8Δ. In addition,

by Claim 7, no honest party can enter a round greater than 𝑟 until

at least 𝑓 + 1 honest parties have entered 𝑟 . Thus, no honest party

sends a timeout message for a round greater than 𝑟 before 𝑡 + 8Δ
and no honest party enters a round greater than 𝑟 via a timeout

certificate before 𝑡 + 8Δ.
Since, 𝑃𝑖 entered round 𝑟 at time 𝑡 , by Claim 5, all honest parties

(except 𝐿𝑟 ) enter round 𝑟 or higher by 𝑡 + 2Δ and 𝐿𝑟 enters round

𝑟 or higher by 𝑡 + 4Δ. Observe that if some honest party enters a

round higher than 𝑟 + 1 before 𝑡 + 8Δ, there exists at least 2𝑓 + 1
round 𝑟 + 1 vertices with strong paths to round 𝑟 leader vertex (say

𝑣𝑘 ). This is because for an honest party to enter round 𝑟 ′, it must

have delivered 2𝑓 + 1 round 𝑟 ′ − 1 vertices. By transitive argument,

it must be that there exists 2𝑓 + 1 round 𝑟 + 1 vertices. Since TC𝑟
does not exist before 𝑡 + 8Δ, the round 𝑟 + 1 vertices must have a

strong path to 𝑣𝑘 .

Also, note that if an honest party enters round 𝑟 + 1 before 𝑡 + 8Δ,
it must have delivered 2𝑓 + 1 round 𝑟 vertices and vertex 𝑣𝑘 (since

TC𝑟 does not exist before 𝑡 + 8Δ). Thus, its round 𝑟 + 1 vertex must

have a strong path to 𝑣𝑘 .

In the rest of the proof, we consider the case when no honest

party entered a round higher than 𝑟 before 𝑡 + 8Δ. Thus, by Claim 5,

all honest parties (except 𝐿𝑟 ) enter round 𝑟 by 𝑡 + 2Δ and 𝐿𝑟 enters

round 𝑟 by 𝑡 + 4Δ. Note that an honest party invokes r_bcast on

its round 𝑟 vertex when it enters round 𝑟 . By Property 1, round

𝑟 vertices from all honest parties (except 𝐿𝑟 ) will be delivered by

𝑡 + 6Δ. In addition, by Property 1, 𝑣𝑘 will be delivered by 𝑡 + 8Δ.
Thus, all honest parties will receive 2𝑓 +1 round 𝑟 vertices by 𝑡 +8Δ
along with 𝑣𝑘 and send round 𝑟 + 1 vertex with a strong path to

𝑣𝑘 . □

The above claim uses 𝜏 = 8Δ. When an honest party enters round

𝑟 via receiving round 𝑟 − 1 leader vertex, by using Claim 4 (instead

of Claim 5), we can show the above claim holds with 𝜏 = 6Δ. By
the commit rule and Claim 8, the following corollary follows.

Corollary A.5. If the first honest party to enter round 𝑟 does so
after GST and 𝐿𝑟 is honest, all honest parties will directly commit
round 𝑟 leader vertex.

Lemma A.6 (Validity). The protocol in Figures 1 to 3 satisfies
Validity.

Proof. Let party 𝑃𝑖 be an honest party that invokes a_bcast(𝑏, 𝑟 ).

We show that all honest parties eventually output a_deliver(𝑏, 𝑟, 𝑝𝑖 ).

Observe that 𝑃𝑖 pushes𝑏 into the𝑏𝑙𝑜𝑐𝑘𝑠𝑇𝑜𝑃𝑟𝑜𝑝𝑜𝑠𝑒 queue. ByClaim 6,

𝑃𝑖 keeps increasing rounds and creating new vertices in those new

rounds. Thus, 𝑃𝑖 will eventually create a vertex 𝑣𝑖 with 𝑏 at some

round 𝑟 and reliably broadcast it. By the Validity property of re-

liably broadcast, all honest parties will eventually add it to their

DAG i.e., 𝑣𝑖 ∈ 𝐷𝐴𝐺 [𝑟 ] for every honest party. By the code of cre-

ate_new_vertex, every vertex that 𝑃 𝑗 creates after 𝑣𝑖 is added to

𝐷𝐴𝐺 𝑗 [𝑟 ] has a path to 𝑣𝑖 .

By Corollary A.5, the leader vertex proposed by an honest leader

is directly committed after GST. With a leader-election function

that elects all parties with equal probability, there will be an hon-

est leader who will propose a vertex with a path to 𝑣𝑖 and the

leader vertex will be committed. By the code of order_vertices, 𝑃 𝑗
will eventually invoke a_deliver(𝑏, 𝑟, 𝑝𝑖 ). By Lemma A.3, all honest

parties will eventually invoke a_deliver(𝑏, 𝑟, 𝑝𝑖 ). □
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B SECURITY ANALYSIS OF MULTI-LEADER
SAILFISH

We say that a leader vertex 𝑣𝑖 is committed directly by party 𝑃𝑖 if

𝑃𝑖 invokes commit_leaders(CLS) and 𝑣𝑖 ∈ CLS. Similarly, we

say that a leader vertex 𝑣 𝑗 is committed indirectly if CMV is added

to 𝑙𝑒𝑎𝑑𝑒𝑟𝑆𝑡𝑎𝑐𝑘 (in Line 140) and 𝑣 𝑗 ∈ CMV . In addition, we say

party 𝑃𝑖 consecutively directly commit leader vertices in rounds 𝑟

and 𝑟 ′ > 𝑟 and does not directly commit any leader vertex between

𝑟 and 𝑟 ′.
To commit a round 𝑟 leader vertex in Multi-leader Sailfish, at

least 𝑓 + 1 round-(𝑟 + 1) vertices proposed by honest parties must

have a strong path to the round 𝑟 leader vertex, which is identical to

that of Sailfish. Additionally, the main leader vertex of Multi-leader

Sailfish is identical to the leader vertex of Sailfish. Thus, the proof

of the following claim (Claim 9) remains identical to Claim 1.

Claim 9. If an honest party 𝑃𝑖 directly commits a leader vertex 𝑣𝑘
in round 𝑟 , then for every main leader vertex 𝑣ℓ in round 𝑟 ′ such that
𝑟 ′ > 𝑟 , there exists a strong path from 𝑣ℓ to 𝑣𝑘 .

Similarly, the indirect commit rule of a main leader vertex in

Multi-leader Sailfish is identical to the indirect commit rule of the

leader vertex in Sailfish. Thus, the proof of the following claim

(Claim 10) remains identical to Claim 2 except Claim 9 needs to be

invoked (instead of Claim 1).

Claim 10. If an honest party 𝑃𝑖 directly commits the main leader
vertex 𝑣𝑘 in round 𝑟 and an honest party 𝑃 𝑗 directly commits the
main leader vertex 𝑣ℓ in round 𝑟 ′ ≥ 𝑟 , then 𝑃 𝑗 (directly or indirectly)
commits 𝑣𝑘 in round 𝑟 .

Claim 11. If an honest party 𝑃𝑖 directly commits all leader vertices
corresponding toML𝑟 [: 𝑥] (for some 𝑥 > 0) and an honest party 𝑃 𝑗
directly commits the main leader vertex 𝑣ℓ in round 𝑟 ′ > 𝑟 , then 𝑃 𝑗
indirectly commits all leader vertices corresponding toML𝑟 [: 𝑥] in
round 𝑟 .

Proof. Given that 𝑃𝑖 directly committed all leader vertices in

ML𝑟 [: 𝑥], by Fact 1 and Claim 9, there are strong paths from the

main leader vertex of any round higher than 𝑟 to all leader vertices

corresponding toML𝑟 [: 𝑥] in 𝐷𝐴𝐺 𝑗 .

By the code of commit_leaders(), after directly committing the

main leader vertex 𝑣ℓ in round 𝑟 ′, 𝑃𝑖 tries to indirectly commit all

leader vertices corresponding toML𝑟 ′′ [: 𝑦] (for some 𝑦 > 0) in an

earlier round 𝑟 ′′ < 𝑟 ′ such that there exists strong paths from 𝑣ℓ
to all leader vertices corresponding toML𝑟 ′′ [: 𝑦]. This process of
indirectly committing multiple leader vertices of an earlier round

is repeated for leader vertices that have strong paths from the

main leader vertex of round 𝑟 ′′ (i.e.,ML𝑟 ′′ [1]), until it reaches a
round 𝑟∗ < 𝑟 ′ in which it previously directly committed a leader

vertex. If 𝑟∗ < 𝑟 < 𝑟 ′, party 𝑃 𝑗 will indirectly commit all leader

vertices inML𝑟 [: 𝑥] in round 𝑟 . Otherwise, by inductive argument

and Claim 9, party 𝑃 𝑗 must have indirectly committed all leader

vertices inML𝑟 [: 𝑥] when directly committing the main leader

vertex of round 𝑟∗. □

Claim 12. Let an honest party 𝑃𝑖 consecutively directly committed
in rounds 𝑟𝑖 and 𝑟 ′𝑖 . Also, let an honest party 𝑃 𝑗 consecutively directly
committed in rounds 𝑟 𝑗 and 𝑟 ′𝑗 . Then, 𝑃𝑖 and 𝑃 𝑗 commits the same

leader vertices between roundsmax(𝑟𝑖 , 𝑟 𝑗 ) andmin(𝑟 ′
𝑖
, 𝑟 ′

𝑗
) and in the

same order.

Proof. If 𝑟 ′
𝑖
< 𝑟 𝑗 or 𝑟

′
𝑗
< 𝑟𝑖 , then there are no rounds between

max(𝑟𝑖 , 𝑟 𝑗 ) and min(𝑟 ′
𝑖
, 𝑟 ′

𝑗
) and we are trivially done. Otherwise,

assume wlog that 𝑟𝑖 ≤ 𝑟 𝑗 < 𝑟 ′
𝑖
. Also, assume min(𝑟 ′

𝑖
, 𝑟 ′

𝑗
) = 𝑟 ′

𝑖
. Let

ML𝑟 ′
𝑖
[: 𝑥] be the list of multiple leader vertices directly committed

by party 𝑃𝑖 in round 𝑟 ′
𝑖
for some 𝑥 > 0. If 𝑟 ′

𝑖
= 𝑟 ′

𝑗
, by Claim 10, party

𝑃 𝑗 commits at leastML𝑟 ′
𝑖
[1] in round 𝑟 ′

𝑖
. Otherwise, by Claim 11,

party 𝑃 𝑗 indirectly commits all leader vertices in ML𝑟 [: 𝑥] in
round 𝑟 ′

𝑖
.

Moreover, by Fact 1, both𝐷𝐴𝐺𝑖 and𝐷𝐴𝐺 𝑗 will containML𝑟 ′
𝑖
[1]

(i.e., the main leader vertex in round 𝑟 ′
𝑖
) and all vertices that have

a path fromML𝑟 ′
𝑖
[1] in 𝐷𝐴𝐺𝑖 . By the code of commit_leaders(),

after (directly or indirectly) committingML𝑟 ′
𝑖
[1], parties try to in-

directly commit multiple leader vertices in a smaller round number

𝑟 ′′ < 𝑟 ′
𝑖
that have strong paths fromML𝑟 ′

𝑖
[1]. And, this process is

repeated by indirectly committing leader vertices of earlier round

with strong paths fromML𝑟 ′′ [1] until it reaches a round 𝑟∗ < 𝑟

in which it previously directly committed a leader vertex. There-

fore, both 𝑃𝑖 and 𝑃 𝑗 will indirectly commit all leader vertices from

min(𝑟 ′
𝑖
, 𝑟 ′

𝑗
) to max(𝑟𝑖 , 𝑟 𝑗 ). Moreover, due to deterministic code of

commit_leaders, both parties will commit the same leader vertices

between rounds min(𝑟 ′
𝑖
, 𝑟 ′

𝑗
) to max(𝑟𝑖 , 𝑟 𝑗 ) in the same order. □

By inductively applying Claim 12 between any two pairs of

honest parties we obtain the following corollary.

Corollary B.1. Honest parties commit the same leaders in the
same order.

The proof of the following total order lemma (Lemma B.2) re-

mains identical to Lemma A.2 except Corollary B.1 needs to be

invoked (instead of Corollary A.1).

Lemma B.2 (Total order). Multi-leader Sailfish satisfies Total
order.

Agreement. The agreement proof remains identical to Lemma A.3

except Lemma B.2 needs to be invoked (instead of Lemma A.2).

Integrity. The integrity proof remains identical to Lemma A.4.

Validity. We again rely on GST to prove validity and utilize the

RBC protocol from Das et al. [14].

Claim 13. Let 𝑡𝑔 denote the GST and 𝑃𝑖 be the first honest party to
enter round 𝑟 . If 𝑃𝑖 enters round 𝑟 at time 𝑡 , then (i) all honest parties
(except 𝐿𝑟 when 𝑃𝑖 ≠ 𝐿𝑟 ) enter round 𝑟 or higher by max(𝑡𝑔, 𝑡) +
2Δ, and (ii) 𝐿𝑟 (if honest and 𝑃𝑖 ≠ 𝐿𝑟 ) enters round 𝑟 or higher by
max(𝑡𝑔, 𝑡) + 4Δ.

Proof. Observe that 𝑃𝑖 must have delivered either round 𝑟 − 1
main leader vertex (say 𝑣𝑘 ) or received TC𝑟−1 along with 2𝑓 + 1
round 𝑟 − 1 vertices. By Property 2, all honest parties must have

delivered 2𝑓 +1 round 𝑟−1 vertices bymax(𝑡𝑔, 𝑡)+2Δ. If 𝑃𝑖 delivered
𝑣𝑘 , by Property 2, all honest parties must have delivered 𝑣𝑘 by

max(𝑡𝑔, 𝑡) +2Δ. Otherwise, 𝑃𝑖 must have multicasted TC𝑟−1 which
arrives all honest parties by max(𝑡𝑔, 𝑡) + Δ. Thus, all honest parties
(except 𝐿𝑟 when 𝑃𝑖 ≠ 𝐿𝑟 ) will enter round 𝑟 by max(𝑡𝑔, 𝑡) + 2Δ if
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they have not already entered a higher round. This proves part (i)

of the claim.

Having delivered 𝑣𝑘 or received TC𝑟−1 (along with 2𝑓 +1 round
𝑟 − 1 vertices), an honest party 𝑃 𝑗 sends ⟨no-vote, 𝑃𝑘 , 𝑟 − 1⟩ for all
𝑃𝑘 ∈ ML𝑟−1 if 𝑃 𝑗 did not deliver its corresponding leader vertex by
then. If no honest party delivered the leader vertex corresponding

to 𝑃𝑘 by max(𝑡𝑔, 𝑡) + 2Δ, then all honest parties (including 𝐿𝑟 ) will

send ⟨no-vote, 𝑃𝑘 , 𝑟 − 1⟩ to 𝐿𝑟 . Thus, 𝐿𝑟 will receive NVC𝑃𝑘𝑟−1 by
timemax(𝑡𝑔, 𝑡) + 3Δ. On the other hand, if at least one honest party

delivered the leader vertex corresponding to 𝑃𝑘 by max(𝑡𝑔, 𝑡) + 2Δ,
by Property 2, 𝐿𝑟 will deliver the leader vertex corresponding to

𝑃𝑘 by max(𝑡𝑔, 𝑡) + 4Δ. Thus, 𝐿𝑟 will either deliver a leader vertex
corresponding to 𝑃𝑘 or receive NVC𝑃𝑘

𝑟−1 for all 𝑃𝑘 ∈ ML𝑟−1 by
timemax(𝑡𝑔, 𝑡)+4Δ. Since 𝐿𝑟 waits for leader vertices corresponding
toML𝑟−1 [: 𝑥] andNVC𝑝𝑟−1 where 𝑝 =ML𝑟−1 [𝑥 +1], 𝐿𝑟 enters
round 𝑟 by max(𝑡𝑔, 𝑡) + 4Δ if it has not already entered a higher

round. This proves part (ii) of the claim. □

Claim 14. All honest parties keep entering increasing rounds.

Proof. Suppose all honest parties are in round 𝑟 or above. Let

party 𝑃𝑖 be in round 𝑟 . If there exists an honest party 𝑃 𝑗 in round

𝑟 ′ > 𝑟 at any time, then by Claim 13, all honest parties will enter

round 𝑟 ′ or higher. Otherwise, all honest parties are in round 𝑟 .

Observe that all honest parties will r_bcast round 𝑟 vertex when

entering round 𝑟 . Thus, all honest parties will deliver 2𝑓 + 1 round
𝑟 vertices. Furthermore, if an honest party (except 𝐿𝑟+1) delivers
the round 𝑟 main leader vertex (say 𝑣𝑘 ), it will advance to round

𝑟 + 1.
Alternatively, if no honest party delivered 𝑣𝑘 by the time their

round 𝑟 timer expires, due to the timeout rule, all honest parties will

multicast ⟨timeout, 𝑟 ⟩ and subsequently receive TC𝑟 . Having deliv-
ered 𝑣𝑘 or received TC𝑟 , an honest party 𝑃 𝑗 send ⟨no-vote, 𝑃𝑘 , 𝑟 ⟩
for all 𝑃𝑘 ∈ ML𝑟 if 𝑃 𝑗 did not deliver its corresponding leader

vertex by then. If no honest party delivered the leader vertex corre-

sponding to 𝑃𝑘 by the time they delivered 𝑣𝑘 or received TC𝑟 , then
all honest parties will send ⟨no-vote, 𝑃𝑘 , 𝑟 ⟩ to 𝐿𝑟+1. Thus, 𝐿𝑟+1 will
receive NVC𝑃𝑘𝑟 . On the other hand, if at least one honest party

delivered the leader vertex corresponding to 𝑃𝑘 , by Property 2,

𝐿𝑟+1 will deliver the leader vertex corresponding to 𝑃𝑘 . Thus, 𝐿𝑟
will either deliver a leader vertex corresponding to 𝑃𝑘 or receive

NVC𝑃𝑘𝑟 for all 𝑃𝑘 ∈ ML𝑟 . Since 𝐿𝑟+1 waits for leader vertices

corresponding toML𝑟 [: 𝑥] and NVC𝑝𝑟 where 𝑝 =ML𝑟 [𝑥 + 1],
𝐿𝑟+1 will advance to round 𝑟 + 1. □

The proof of the following claim (Claim 15) remains identical

to Claim 8 except Claim 13 needs to be invoked (instead of Claim 4).

Claim 15. If the first honest party to enter round 𝑟 does so after
GST and 𝐿𝑟 is honest, then there exists at least 2𝑓 + 1 round 𝑟 + 1
vertices with strong paths to round 𝑟 main leader vertex.

By the commit rule and Claim 15, the following corollary follows.

Corollary B.3. If the first honest party to enter round 𝑟 does so
after GST and 𝐿𝑟 is honest, all honest parties will directly commit the
round 𝑟 main leader vertex.

The proof of the following validity lemma (Lemma B.4) remains

identical to Lemma A.6 except Corollary B.3 needs to be invoked

(instead of Corollary A.5).

Lemma B.4 (Validity). Multi-leader Sailfish satisfies Validity.

As demonstrated in Claim 15, a round 𝑟 main leader vertex (pro-

posed by an honest leader) is always committed by round 𝑟 +1 (after
GST). We now establish that the round 𝑟 secondary leader vertices

will receive votes from at least 2𝑓 + 1 round 𝑟 + 1 vertices under
an “optimistic condition” when at least 2𝑓 + 1 parties (including
Byzantine parties) vote for the proposed secondary leader vertices.

Consequently, all leader vertices corresponding toML𝑟 [: 𝑥] will
be committed by round 𝑟 + 1 when all leaders inML𝑟 [: 𝑥] are
honest (after GST).

Claim 16. If the first honest party to enter round 𝑟 does so after
GST andHML𝑟 ⊆ ML𝑟 be the set of honest round 𝑟 leaders, then
under an optimistic condition where all parties vote for the proposed
vertices, there exists at least 2𝑓 + 1 round 𝑟 + 1 vertices with strong
paths to round 𝑟 leader vertices corresponding to parties inHML𝑟 .

Proof. Let 𝑡 be the time when the first honest party (say 𝑃𝑖 )

entered round 𝑟 . Observe that no honest party sends ⟨timeout, 𝑟 ⟩
before 𝑡 + 8Δ due to its round timer expiring. Accordingly, no

honest party sends ⟨timeout, 𝑟 ⟩ due to receiving 𝑓 + 1 ⟨timeout, 𝑟 ⟩
before 𝑡 + 8Δ. Thus, TC𝑟 does not exist before 𝑡 + 8Δ. In addition,

by Claim 7, no honest party can enter a round greater than 𝑟 until

at least 𝑓 + 1 honest parties have entered 𝑟 . Thus, no honest party

sends a timeout message for a round greater than 𝑟 before 𝑡 + 8Δ
and no honest party enters a round greater than 𝑟 via a timeout

certificate before 𝑡 + 8Δ.
Since, 𝑃𝑖 entered round 𝑟 at time 𝑡 , by Claim 13, all honest parties

(except 𝐿𝑟 ) enter round 𝑟 or higher by 𝑡 + 2Δ and 𝐿𝑟 enters round

𝑟 or higher by 𝑡 + 4Δ. Observe that if some honest party enters a

round higher than 𝑟 + 1 before 𝑡 + 8Δ, there exists at least 2𝑓 + 1
round 𝑟 + 1 vertices with strong paths to the round 𝑟 main leader

vertex. This is because for an honest party to enter round 𝑟 ′, it must

have delivered 2𝑓 + 1 round 𝑟 ′ − 1 vertices. By transitive argument,

it must be that there exists 2𝑓 + 1 round 𝑟 + 1 vertices. Since TC𝑟
does not exist before 𝑡 + 8Δ, the round 𝑟 + 1 vertices must have

a strong path to the round 𝑟 main leader vertex. Moreover, under

the optimistic condition, the round 𝑟 + 1 vertices must have strong

paths to all other round 𝑟 leader vertices corresponding to parties

inHML𝑟 .

Also, note that if an honest party enters round 𝑟 + 1 before 𝑡 + 8Δ,
it must have delivered 2𝑓 +1 round 𝑟 vertices along with all round 𝑟

leader vertices (since TC𝑟 does not exist before 𝑡 + 8Δ and it waits

for all round 𝑟 leader vertices before entering round 𝑟 + 1). Thus,
its round 𝑟 + 1 vertex must have a strong path to all round 𝑟 leader

vertices.

In the rest of the proof, we consider the case when no honest

party entered a round higher than 𝑟 before 𝑡 +8Δ. Thus, by Claim 13,

all honest parties (except 𝐿𝑟 ) enter round 𝑟 by 𝑡 + 2Δ and 𝐿𝑟 enters

round 𝑟 by 𝑡 + 4Δ. Note that an honest party r_bcast its round 𝑟

vertex when it enters round 𝑟 . By Property 1, round 𝑟 vertices from

all honest parties (except 𝐿𝑟 ) will be delivered by 𝑡 + 6Δ. In addition,

by Property 1, round 𝑟 main leader vertex will be delivered by 𝑡 +8Δ.
Thus, all honest parties will receive 2𝑓 + 1 round 𝑟 vertices along
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with leader vertices corresponding to parties inHML𝑟 by 𝑡 + 8Δ. When honest parties advance to round 𝑟 +1, their round 𝑟 +1 vertex
will have a strong path to 𝑣𝑘 . □
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