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Abstract. Fault injection attacks are a serious threat to system security, enabling
attackers to bypass protection mechanisms or access sensitive information. To evaluate
the robustness of CPU-based systems against these attacks, it is essential to analyze
the consequences of the fault propagation resulting from the complex interplay between
the software and the processor. However, current formal methodologies combining
hardware and software face scalability issues due to the monolithic approach used.
To address this challenge, this work formalizes the k-fault-resistant partitioning notion
to solve the fault propagation problem when assessing redundancy-based hardware
countermeasures in a first step. Proven security guarantees can then reduce the
remaining hardware attack surface when introducing the software in a second step.
First, we validate our approach against previous work by reproducing known results
on cryptographic circuits. In particular, we outperform state-of-the-art tools for
evaluating AES under a three-fault-injection attack. Then, we apply our methodology
to the OpenTitan secure element and formally prove the security of its CPU’s
hardware countermeasure to single bit-flip injections. Besides that, we demonstrate
that previously intractable problems, such as analyzing the robustness of OpenTitan
running a secure boot process, can now be solved by a co-verification methodology
that leverages a k-fault-resistant partitioning. We also report a potential exploitation
of the register file vulnerability in two other software use cases. Finally, we provide
a security fix for the register file, prove its robustness, and integrate it into the
OpenTitan project.
Keywords: Physical Attacks · OpenTitan · Secure Boot · Hardware · Software

1 Introduction
Fault Attacks and Countermeasures. Fault injection (FI) attacks aim to trigger an
abnormal execution behavior inside a chip by manipulating the operational conditions of
the target device [BCN+06]. Faults are injected by glitching the external clock or voltage
supply or by shooting with a laser or an electromagnetic probe into the die [KSV13]. These
perturbations corrupt the computations performed by the circuit, leading to the propagation
of incorrect values in the microarchitecture and wrong behavior of the system [YSW18].
An adversary exploiting this faulty behavior can attack cryptographic primitives [BDL97,
BS97, TMA11, DEK+18], bypass secure boot [VTM+17, dHOGT21], or gain full malicious
code execution on a device [NT19].
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To ensure robustness against fault injection, security-critical devices such as secure
elements implement hardware- and software-based fault countermeasures [JRR+18]. Miti-
gating fault attacks often relies on spatial or temporal redundancy. Countermeasures like
Concurrent Error Detection (CED) schemes are deployed at the hardware level, while soft-
ware countermeasures implement protections like control-flow integrity [BEMP20, NSL+23]
or instruction duplication [BBK+10]. However, software- or hardware-only countermea-
sures are limited in their ability to protect against fault attacks [YGS+16] or come with a
large overhead [AMR+20]. Consequently, recent works combine hardware and software
aspects in proposed countermeasures [CCH23, NM23]. Since the fault security of a chip
is based on these countermeasures, the correctness and effectiveness of the combination
must be ensured. Security evaluation is also crucial, as either conception flaws or the tool-
ing, e.g., the hardware synthesis or the software compiling, could reduce countermeasure
security [NOV+22].

Evaluation of System Security. Common security evaluation approaches include penetra-
tion testing, which requires a physical chip sample, is costly, time-consuming, and whose
results highly depend on the fault injection setup. Simulation or formal verification tools
are used to evaluate pre-silicon security and improve fault coverage. Most often, the hard-
ware and the software are analyzed separately. On the one hand, pre-silicon frameworks at
the circuit level, such as FIVER [RSS+21] and SYNFI [NOV+22], analyze the resilience of
a design’s gate-level netlist against fault attacks. These tools rely on bounded verification
techniques as they consider cryptographic circuits that have a fixed number of clock
cycles. However, they are unable to analyze CPU-based systems or determine under which
software conditions identified hardware vulnerabilities can be exploited. On the other hand,
software-oriented fault injection frameworks [PMPD14, HSP21, DBP23, KR23] focus on
efficiently evaluating the robustness of software countermeasures. They perform their
analysis using architectural models instead of actual implementations. Consequently, these
frameworks cannot assess the security of combinations of hardware- and software-based
countermeasures. Besides, analysis results ignore subtle microarchitectural effects that can
lead to vulnerabilities under specific software conditions [LBD+18, TAC+22].

Hardware/Software Co-Verification. Recent research motivates the need to consider both
hardware and software to analyze the security of CPU-based circuits [YGS+16, LDPB21].
Although a first formal hardware and software co-verification approach exists [TAC+23],
the proposed methodology suffers from scalability issues. For processors, the propagation
of the fault effects requires a computationally complex in-depth analysis over multiple clock
cycles, whose bound is unknown [TAC+22]. The used bounded verification thus fails to
provide generic security guarantees against faults and leads to the classical state explosion
problem. Software-related optimizations in the verification, such as constraining some
program (faulty) execution paths, show small improvements that significantly depend on
the use case and are thus difficult to generalize. Consequently, only up to 100 instructions
executed over a microcontroller-like processor can be analyzed for a single fault injection.

Contribution. In this paper, we introduce and formalize the notion of k-fault-resistant
partitioning to formally prove, at the gate level, whether hardware redundancy-based
countermeasures can capture up to k faults injected by an attacker. A k-fault-resistant par-
titioning is an inductive invariant that implies the robustness of hardware countermeasures
of processors, labeled as k-fault secure, independently of the program being executed. It
thus extends state-of-the-art hardware verification techniques with unbounded guarantees
for such circuits. We also propose an algorithm to find and prove such k-fault partitions.
The outputs of this hardware analysis step are areas of the studied processor with its
countermeasures where the invariant does not hold. These verification results allow to
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restrict the fault injections we consider when the software is introduced to analyze whether
remaining hardware fault locations can lead to software vulnerabilities. The problem of
fault propagation and the associated state explosion is drastically reduced, thus enabling a
hardware/software co-verification methodology to fully analyze the robustness of systems
against fault injection. The k-fault-resistant partitioning notion considers separable spatial
and informational redundancy-based protection schemes, that are today the most widely
deployed countermeasures in secure elements.

First, we validate our approach by replicating known results on Skinny and AES circuits
protected with a code-based CED from the Impeccable Circuits [AMR+20], as no similar
work exists on CPUs. Further, we show that our methodology outperforms related work, i.e.,
proves the 2-fault security of AES in less than 4 h compared to 130 h for FIVER [RSS+21].
In addition, we demonstrate the scalability of k-fault-resistant partitioning by analyzing
the 3-fault security of AES, which was not conducted by related work.

Then, to demonstrate the capabilities of our fault injection analysis methodology, we ana-
lyze the k-fault security of a development version of the fault-hardened Ibex processor [IBE]
used in the OpenTitan secure element [JRR+18]. We first verify two hardware counter-
measures, namely its Dual-Core LockStep (DCLS) and the Error Detection Code (EDC)
of its register file. Our analysis reveals that DCLS correctly detects any single bit-flip in
one of the two cores or in its internal comparison logic, i.e., it is labeled 1-fault secure.
However, some single bit-flips injected in the Ibex’s register file are not captured by the
EDC protection, thus leading to potential software exploitations. The hardware/software
co-verification step showcases that an adversary can exploit this vulnerability to manipu-
late the control flow of the VerifyPIN authentication program [DPP+16] or to perform
a differential fault analysis on an AES software implementation [kok]. Nevertheless, we
verify the robustness of the OpenTitan secure element running the first step of a secure
boot process, as its software countermeasures prevent the register file vulnerability from
being exploited. Performance-wise, k-fault-resistant partitioning allows us to analyze a
secure processor with a 130 kGE circuit. The hardware/software co-verification step can
then address previously intractable software verification of thousands of instructions. All
the code and experimental artifacts are publicly available1.

We disclosed the fault vulnerability of the register file to the OpenTitan project, which
acknowledged our findings. In this paper, we provide a fix for the vulnerability and
formally prove that the register file is then 1-fault secure. Our fix was integrated2 into the
OpenTitan project.

Outline. This paper is structured as follows. First, we introduce the notations and
background in Section 2. Our hardware/software co-verification methodology is described
in Section 3, and Section 4 details the fault-resistant partitioning property at the root of our
contributions. Section 5 presents the implementation, and Section 6 validates our approach
against prior work on cryptographic circuits. Section 7 leverages our full co-verification
methodology to evaluate the fault resistance of OpenTitan’s secure processor. Finally,
Section 8 compares our approach against related work, and Section 9 concludes this work.
Proof of our methodology and replicable attack scenarios are given in Appendices A and B.

2 Background
This section first provides a formal description of hardware circuits and then summarizes
background on fault attacks as well as hardware-based fault countermeasures.

1https://github.com/CEA-LIST/Fault-Resistant-Partitioning
2https://github.com/lowRISC/ibex/pull/2117
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2.1 Sequential Circuit Model
Definition 1 (Circuit Model). A sequential hardware circuit is modeled as a directed
graph C = (G,W ), where G is a set of bit-level circuit elements (gates), and W ⊆ G×G
is the set of wires connecting the gates. Furthermore, each gate g ∈ G has a type, and
belongs to one of the disjoint sets representing inputs I, outputs O, register gates R, and
combinational gates C such that G = I ∪O∪R∪C. Additionally, every loop in the circuit
must contain at least one register r ∈ R to prevent combinational loops.

In the rest of this work, we assume that all registers r ∈ R are synchronized on the
same clock signal. Consequently, we use the clock cycle as the timing unit of the circuit.

Definition 2 (Circuit State). Let C = (G,W ) be a circuit, I =
{
x1, . . . , x|I|

}
⊆ G be its

inputs, and R =
{
r1, . . . , r|R|

}
⊆ G be its registers, where | · | is the cardinality operator.

The state of circuit C at clock cycle i is the value tuple σC
i =

(
x1, . . . , x|I|, r1, . . . , r|R|

)
containing its inputs I and registers R at the given clock cycle. In the following, we write
σi and leave out the superscript when the circuit is obvious.

Combinational gates C and outputs O are not part of the state, as their values are
entirely determined by the registers R and inputs I at a given clock cycle i. Furthermore,
the value of every gate g ∈ G in the current clock cycle i can be thought of as a function of
the current circuit state σi, which we write as g (σi). Assuming the gates G are topologically
sorted, we define the notation S (σi), with S ⊆ G, to be the value tuple of all gates g ∈ S
in the state σi. As an example, this notation will be used in the following to refer to
the circuit’s output values O (σi) at state σi, or to assume equalities over output values
between two different states, e.g., O (σi) = O

(
σj

)
.

Since circuits execute through time, it is useful to define sequences of consecutive circuit
states called execution traces where each state depends on its predecessor.

Definition 3 (Execution Trace). Let C = (G,W ) be a circuit with inputs I ⊆ G and
registers R ⊆ G, and let σi =

(
x1, . . . , x|I|, r1, . . . , r|R|

)
be the current circuit state. The

next circuit state at clock cycle i + 1 is σi+1 =
(
x′

1, . . . , x
′
|I|, r

′
1, . . . , r

′
|R|

)
, where x′

j are
circuit inputs freely chosen by the circuit’s environment, and r′

j = g (σi) are the current
state values of the register inputs with (g, rj) ∈ W . Furthermore, we call a sequence of n
such circuit states an execution trace (σi)

n
i=1 = (σ1, . . . , σn).

The theory and methods we introduce in the rest of this work rely on special ways of
partitioning a circuit’s registers. Here, we give a general definition of a circuit partitioning.

Definition 4 (Circuit Partitioning). Let C = (G,W ) be a circuit. We define a circuit
partitioning P = {Pj}m

j=1 as a complete partitioning of R such that Pj are disjoint sets
of registers, i.e., Pj ⊆ R, with ∀j ̸= j′ : Pj ∩ Pj′ = Ø and R =

⋃m
j=1 Pj . Furthermore, for

two states σ and σ̂ , we write ∆P (σ, σ̂) := |{P ∈ P | P (σ) ̸= P (σ̂)}| for the number of
partitions in P that have different values between states σ and σ̂ .

Figure 1a illustrates a partitioning P = {P1, P2} where P1 = {r1, r2} and P2 = {r3}.

2.2 Fault Injection Attacks
As mentioned in the introduction, attackers can cause faults in the computation. In the
following, we formalize the transient fault model, fault attacks, and an attacker goal when
attacking a system.

Definition 5 (Transient Fault Model). Let C = (G,W ) be a circuit. A transient fault model
for circuit C is characterized as a set of pairs F ⊆ G×U , with U = {x 7→ 0, x 7→ 1, x 7→ ¬x}.
Each fault (g, u) ∈ F describes a potential transient fault with the fault location g ∈ G
and the fault effect u ∈ U , which encompasses bit-reset, bit-set, and bit-flip fault effects.
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(a) Circuit partitioning. (b) Fault propagation.

Figure 1: Simple circuit examples.
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Figure 2: CED scheme.

Here, F describes which gates in the hardware circuit can be faulted with which types
of faults. While in general F = G×U , Definition 5 also allows for cases where the attacker
either cannot fault certain gates due to protection or infeasibility, or can only introduce
specific kinds of faults due to circuit technology or fault injection method.

Definition 6 (Fault Attack). Let C = (G,W ) be a circuit, (σi)
n
i=1 be an execution trace

of C, and F be a fault model. A fault attack F ⊆ F × [1, n] is a set of timed faults injected
into circuit C with attack order |F|. F causes a faulty execution trace

(
σF

i

)n

i=1, where each
fault (g, u, j) ∈ F causes gate g to compute u ◦ g at clock cycle j. Furthermore, we write
FJ = {(g, u, j) ∈ F | j ∈ J} for the part of F whose faults are in clock cycles J ⊆ [1, n].

Figure 1b illustrates a fault attack on a simple circuit and different kinds of consequences.
Here, fault f1 = (g1, u, j) has immediate consequences i.e., in the same clock cycle, on the
combinational gates g1 and g3, and the output y1. Fault f2 = (r1, u, j) on the register r1
propagates in the circuit and has delayed consequences on r2, g3, and y1 at clock cycle
j + 1. Fault f2 can also have no consequences if the effect u does not induce a different
value or if the mux g3 does not select the output from r2. Finally, f3 = (r3, u, j) illustrates
a specific case of delayed consequences as the fault can stay hidden in the register r3 for
an unknown amount of time without being propagated to the output y1 according to the
value of x3, respectively g1.

From a security perspective, an attacker wants to perform a fault attack on a circuit to
create an exploit. Definition 7 formalizes how we model the goals of such an attacker.

Definition 7 (Attacker Goal). Let C = (G,W ) be a circuit with inputs I ⊆ G and registers
R ⊆ G. Furthermore, let F be a fault model. An attacker goal is a Boolean predicate φ
over circuit states determining whether they are desirable, i.e., φ : {0, 1}|I∪R| → {0, 1}.
An attacker can reach goal φ at attack order k if they can find a fault attack F ⊆ F × [1, n],
with |F| ≤ k, such that the resulting execution trace

(
σF

i

)n

i=1 fulfills φ
(
σF

n

)
= 1.

For example, an attack on a CPU circuit can target a specific program counter value
to determine if a given sequence of instructions can be executed. Alternatively, the attack
may involve a memory address to detect if sensitive data can be read/written.

2.3 Concurrent Error Detection Schemes
Concurrent Error Detection schemes (CEDs) attempt to protect a system against fault
attacks using spatial redundancy [MM00]. Figure 2 depicts such a scheme where the target
function T produces an output T (x) for a given input x, while the prediction function
P independently generates a predicted characteristic of the output based on the input x,
and the checker function compares the outputs and raises an alert signal on a mismatch.
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In its simplest form, the prediction circuit is a duplication of the target and the checker
simply compares for equality [KWMK02]. Alternatively, P can also be implemented with
error detection codes [BBK+03, AMR+20]. Some implementations also introduce a delay
between the operation of the target and the prediction functions [VM02, MP23]. This
delay has the advantage of increasing the practical difficulty of faulting both functions but
introduces a circuit area overhead due to buffering. Definition 8 formalizes CED schemes.

Definition 8 ((d,A)-CED). A circuit C = (G,W ) with outputsO implements a (d,A)-CED
when its outputs are divided into alert signals A ⊆ O with associated delay of d clock
cycles and primary outputs O′ = O \A. Without loss of generality, we say that C raises
an alert at clock cycle i if A (σi) ̸= (0, . . . , 0), which we will write A (σi) ̸= 0 for brevity.

The definition of a fault-secure CED, first introduced in [SS92], tends to generalize in
the security field, particularly within the gadgets domain, under the name k-order active
security [DN20]. Definition 9 formalizes k-fault security, extending the previous definitions
to consider a possible detection delay.

Definition 9 (k-fault secure (d,A)-CED). Let C = (G,W ) be a circuit implementing a
(d,A)-CED, (σi)

n+d
i=1 be an arbitrary execution trace of length n+ d, F be a fault model

and k be the attack order. We say that the (d,A)-CED is k-fault secure against the fault
model F if and only if, ∀n ∈ N∗,

∀ (σi)
n+d
i=1 , ∀F ⊆ F × [1, n+ d], |F| ≤ k :(

n+d∧
i=1

A
(
σ

F[1,i]
i

)
= 0
)

=⇒

(
n∧

i=1
O′ (σi) = O′

(
σ

F[1,i]
i

))
.

(1)

Intuitively, Definition 9 says that k-fault security against fault model F guarantees
that whenever there are no alerts in the first n+ d clock cycles, the primary outputs are
correct up to clock cycle n. Since this must hold for all executions of arbitrary length, we
can infer that an alert is raised at most d cycles after a corrupted primary output. A delay
d = 0 implies an immediate detection, whereas d = 2 means the alert is raised up to two
cycles after the corrupted output.

Proving the k-fault security of a (d,A)-CED against the fault model F often relies on
bounded equivalence checking [RSS+21, NOV+22]. As described later in Figure 4c, this
approach considers a golden trace (σi)

n+d
i=1 and a faulty trace

(
σF

i

)n+d

i=1 starting from the
same initial state σ1. The k-fault security is ensured by checking that the two traces have
the same outputs at each state, assuming no alert is raised. However, as illustrated in
Figure 1b, the duration of the fault propagation is not always known a priori and a bound
n is difficult to find as faults can stay hidden in the circuit indefinitely. Consequently,
bounded techniques provide guarantees assuming the fault propagation bound n, but
cannot prove the k-fault security in the general case, and may struggle as the checking
complexity increases with n.

The theory and methods described in this paper also apply to correction-based counter-
measures as these protections are equivalent to a (d,A)-CED scheme without alert signals
or delay, i.e., A = Ø and d = 0.

3 Co-Verification Methodology
This section introduces our hardware/software co-verification methodology, which analyzes
the system’s robustness against fault injections. The methodology, illustrated in Figure 3,
consists of two steps. In the first step, highlighted in the top box of Figure 3, we evaluate
the security of the implemented CED schemes against faults at order k. The second step,
depicted in the bottom box of Figure 3, is dedicated to the full system verification.
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Figure 3: Co-verification methodology to evaluate SW/HW systems against faults attacks.

3.1 Step 1 — Hardware Verification Flow
The hardware verification step can be done either at the Register Transfer Level (RTL) or
the netlist level, i.e., after circuit synthesis. However, the latter ensures that the effects of
the synthesis on the countermeasures’ implementation are captured and that the analysis
is performed on a circuit model as close as possible to the tape-out. The input hardware
design provided in RTL is thus converted, after synthesis, to a cycle-accurate bit-accurate
circuit model C (Definition 1). The fault model F describing all possible fault injections is
then derived from the input fault model and the produced circuit model.

The analysis of the k-fault security of circuit C is performed by formally verifying the
k-fault-resistant partitioning property using an inductive approach to provide unbounded
guarantees. In the next section, we formally define this invariant and prove it implies
the k-fault secure property of the design. Informally, this property holds under two
conditions. First, circuit outputs are correct under any k fault injections that do not
raise an alert. Second, the sequential elements of the circuit can be partitioned such
that any k fault injections in the circuit are either detected or confined in partitions.
Fault confinement in partitions means that no fault in a partition can propagate to some
partitions without being detected. Note that the effects of a fault injection can freely
propagate in a partition without further consequences. Fault confinement ensures that
the injection of k faults cannot corrupt more than k partitions without being detected.
Therefore, a k-fault-resistant partitioning necessarily has at least k+ 1 partitions to ensure
fault detection at attack order k. Indeed, with k partitions or less, all the partitions could
be corrupted, preventing detection.

The verification of the k-fault-resistant partitioning is performed by first building
iteratively a partitioning that ensures fault confinement or detection for the attack order k
and the fault model F . When this construction fails, the user can inspect the verification
logs to understand the reason for the failure. Once a suitable partitioning P is built,
a second step verifies iteratively until success that the partitioning P also ensures the
outputs’ integrity for the attack order k and the fault model F . When the verification
fails, the faults that lead to outputs’ corruption are added to a set F ′, denoted set of
exploitable faults. Similarly, the partitions targeted by the faults are added to the set
P ′ that contains the partitions whose corruption by faults alters outputs’ integrity. We
refer to these partitions as exploitable partitions in the remainder. This growing set F ′ is
excluded from the fault set F considered for the next verifications. Also, no fault can be
injected in registers belonging to a partition of P ′ in the next iterations. The verification
eventually succeeds and outputs the sets F ′ and P ′.
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Figure 4: Overview of different properties a circuit implementing CED can fulfill, where
property (a) is the strongest and implies property (b), which in turn implies property (c).

Note that Step 1 is independent of the executed program. Consequently, it only has to
be run once, and the verification results can be used for multiple software evaluations. In
the case where no exploitable faults or partitions are identified, the circuit is robust to k
faults unconditionally of the executed software. There is no need to perform Step 2.

3.2 Step 2 — System Verification Flow
Step 2 is a system verification process that analyzes program executions to detect if an
attacker can reach his goal. This verification is performed by considering only the faults
that have not been formally proven, at Step 1, to be detected by hardware protections.

The software and hardware co-verification takes as input the hardware design, a binary
program, the attack order, the attacker goal, and the set of exploitable faults F ′ and
partitions P ′ computed in Step 1. The system modeling process combines all these elements
in a single model. The generated model maps the software execution on the underlying
hardware whose behavior is modified by the possible faults in F ′ and P ′. Exploitable fault
locations derived from F ′ and P ′ help to select the best-suited abstraction level during
the modeling step. For example, an ISA-level model is sufficient when only the values
read from memory can be corrupted. When the hardware description is necessary, the
system modeling process can optimize sub-circuits if faults in P ′ and F ′ do not target
them. Indeed, there is no need to consider every micro-architectural detail of protected
parts of the circuit for which a behavioral modeling is enough.

As a result of the analysis, the verification step reports whether the system is robust
against the considered attacker, and produces counterexamples as Value Change Dump
(VCD) files if vulnerabilities have been found. Counterexamples help the user to understand
where the fault was injected and how it propagates in the system to create the vulnerability.

4 Fault-Resistant Partitioning
This section formally defines the notion of k-fault-resistant partitioning before proving
it implies the k-fault security of a circuit implementing CED. Afterward, we provide an
algorithm that automatically identifies such a partitioning and proves its k-fault resistance.

4.1 Formal Definition of k-Fault-Resistant Partitioning
As discussed in Section 2.3, directly proving that a circuit implementing a CED fault
countermeasure provides k-fault security is not always feasible. As depicted in Figure 4c,
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direct bounded proofs would have to unroll both the golden and faulty versions of the
circuit an a priori unknown number of times, until reaching a completeness threshold.
Considering that transient faults can often linger within the state of the circuit indefinitely,
this methodology quickly becomes intractable. However, all is not lost and it is possible to
find simple properties provable with a small fixed bound that implies the k-fault security
of a CED implementation, circumventing such problems. In the following, we define such
a property called k-fault-resistant partitioning and prove it guarantees the k-fault security
of a (d,A)-CED.

Definition 10 (k-Fault-Resistant Partitioning). Let C = (G,W ) be a circuit implementing
a (d,A)-CED. Let j ∈ N∗ be an arbitrary offset and let (σi)

j+l
i=j and (σ̂i)

j+l
i=j be two arbitrary

execution traces of length l + 1, where l = max(1, d). Finally, let P be a partitioning of
circuit C, F be a fault model, and let k ∈ N∗ be an attack order. We say that P is a
k-fault-resistant partitioning of C against the fault model F if and only if

∀ (σi)
j+l
i=j , (σ̂i)

j+l
i=j , F ⊆ F × [j, j + d], k′ ∈ N, |F| + k′ ≤ k :j+d∧

i=j

I (σi) = I (σ̂i)

 ∧
(
∆P

(
σj , σ̂j

)
≤ k′) ∧

j+d∧
i=j

A
(
σ̂

F[j,i]
i

)
= 0

 =⇒

(
∆P

(
σj+1, σ̂

F{j}
j+1

)
≤ k′ +

∣∣F{j}
∣∣) ∧

(
O′ (σj

)
= O′

(
σ̂

F{j}
j

))
.

(2)

Similar to k-fault security, the definition of k-fault-resistant partitioning also considers
two execution traces (σi)

j+l
i=j and (σ̂i)

j+l
i=j where the former is the reference trace and a

fault attack targets the latter. In Equation (2), the implication’s left-hand side can be
considered as assumptions under which the design must guarantee that the right-hand side
holds. First, it is assumed that both execution traces have the same inputs, their initial
states σj and σ̂j differ in at most k′ partitions at clock cycle j, and no alerts are triggered
in the faulty trace

(
σ̂F

i

)j+d

i=j
. Intuitively, this situation represents two execution traces of

circuit C, depicted in Figure 4a, processing the same inputs but where at most k′ partitions
have a different state due to faults injected before clock cycle j. In addition, we consider a
fault attack F with an attack order |F| ≤ k− k′ modifying execution trace (σ̂i)

j+l
i=j between

clock cycles j and j + d but without triggering any alert signal. The right-hand side of
Equation (2) specifies the two characteristics a k-fault-resistant partitioning must fulfill.
First, the number of newly corrupted partitions is less than or equal to

∣∣F{j}
∣∣ which is

equal to the number of faults introduced by the fault attack F at clock cycle j (k-fault
confinement). Newly corrupted partitions are evaluated after one transition, i.e., at clock
cycle j + 1, since faults have delayed consequences on registers. Second, the circuit’s
primary outputs must be identical at clock cycle j between the two execution traces since
faults have immediate consequences on the outputs (outputs’ integrity).

Theorem 1 states that a circuit with a k-fault-resistant partitioning is necessarily also
k-fault secure.

Theorem 1 (k-fault-resistant partitioning implies k-fault security). Let C = (G,W ) be
a circuit implementing a (d,A)-CED and let F be a fault model targeting the circuit. If
there exists a k-fault-resistant partitioning P against F then C is k-fault secure.

Proof. To prove that Definition 10 (Figure 4a) implies Definition 9 (Figure 4c), we first
show that it implies a stronger inductive property (Figure 4b), which in turn, implies
Definition 9. Figure 4 shows the proof intuition, where k′ faulty partitions in the initial
state σ̂i of (4a) correspond to k′ faults injected during the previous clock cycles of the
same execution trace

(
σF

i

)n

i=1 in (4b). The complete proof is given in Appendix A.

Theorem 1 provides a new strategy to prove the k-fault security of a (d,A)-CED circuit,
giving unbounded guarantees on the fault attack consequences. Although k-fault-resistant
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Algorithm 1: Build and prove a k-fault-resistant partitioning of circuit C.
Input: a circuit C = (G,W ) implementing a (d,A)-CED, a fault model F ⊆ G× U , an

attack order k, and an initial partitioning P
Output: On success, returns a k-fault-resistant partitioning P = {Pj}m

j=1, a set of
exploitable fault injections F ′ ⊆ F , and a set of exploitable partitions P ′ ⊆ P.

1 Create symbolic executions (σi)l+1
i=1 and (σ̂i)l+1

i=1, with l = max(1, d);
2 Create symbolic fault attack F ⊆ F × [1, d+ 1];
3 ψInsEqAndNoAlert ←

(∧d+1
i=1 I

(
σi

)
= I
(

σ̂i

))
∧
(∧d+1

i=1 A
(

σ̂F
i

)
= 0
)

;

4 Procedure BuildPartitioning: /* Build a k-fault confining partitioning */
5 for k′ from 0 to k do
6 ψMoreInfected ← (∆P (σ1, σ̂1) ≤ k′) ∧ (|F| ≤ k − k′) ∧

(
∆P (σ2, σ̂2) > k′ +

∣∣F{1}
∣∣);

7 while (ψInsEqAndNoAlert ∧ ψMoreInfected) is SAT do
8 PInit ← {P ∈ P | P (σ1) ̸= P (σ̂1)};
9 PNext ←

{
P ∈ P | P (σ2) ̸= P

(
σ̂F

2
)}

;
10 P ← merge (P,PInit,PNext);

11 if |P| ≤ k then return failure;
12 F ′ ← {}, P ′ ← {};
13 Procedure CheckIntegrity: /* Find faults that compromise outputs */
14 for k′ from 0 to k do
15 ψNoFaultsOnForbidden ←

(∧
P ∈P′ P (σ1) = P (σ̂1)

)
∧ (F ∩ F ′ × [1, d+ 1] = Ø);

16 ψOutsBad ← (∆P (σ1, σ̂1) ≤ k′) ∧ (|F| ≤ k − k′) ∧
(
O′ (σ1) ̸= O′ (σ̂F

1
))

;
17 while (ψInsEqAndNoAlert ∧ ψNoFaultsOnForbidden ∧ ψOutsBad) is SAT do
18 P ′ ← P ′ ∪ {P ∈ P | P (σ1) ̸= P (σ̂1)};
19 F ′ ← F ′ ∪ {(g, u) ∈ G× U | ∃j, (g, u, j) ∈ F};

20 return (P,P ′,F ′);

partitioning is only a sufficient condition for k-fault security, it significantly simplifies the
endeavor of the proof since the circuit is only unrolled max(1, d) times, compared to the
bounded equivalence checking approach. In converse, a k-fault secure circuit may not
fulfill the k-fault-resistant partitioning property. Our approach is not sufficient to highlight
genuine vulnerabilities, and counterexamples require further analysis as false positives exist.
The following section provides an algorithm to build such a k-fault-resistant partitioning.

4.2 Algorithm to Identify a k-Fault-Resistant Partitioning
Algorithm 1 describes how to identify a circuit partitioning P resistant to k fault injections
using SAT solving. It takes as input a circuit model C, a fault model F , an attack order k,
and an initial partitioning P . Algorithm 1 comprises two main procedures, BuildPartition-
ing and CheckIntegrity, where the former builds a partitioning ensuring k-fault confinement
or detection, and the latter finds all remaining fault injections compromising the integrity
of outputs. Eventually, the algorithm either returns a k-fault-resistant partitioning P
with a set of assumptions under which the circuit is k-fault secure or fails to find such a
partitioning and provides counterexamples detailing what happened.

The initial partitioning can be chosen freely, but for an initial run of the algorithm, it
should be chosen as P = {{r} | r ∈ R}, where each register r ∈ R belongs to a separate
partition. In subsequent runs of the algorithm, one can set the partitioning P to one that
was previously computed. At the start, the algorithm first creates two symbolic execution
traces (σi)

l+1
i=1 and (σ̂i)

l+1
i=1 of length l + 1, with l = max(1, d), and a symbolic fault attack

F that describes all possible faults an attacker can induce.
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Procedure BuildPartitioning iteratively analyzes whether the current partitioning P
guarantees that, whenever k′ partitions are compromised and there are

∣∣F{1}
∣∣ new faults

in the first clock cycle, there are at most k′ +
∣∣F{1}

∣∣ compromised partitions in the second
clock cycle (line 6). It does this by iterating through all combinations of k′ and |F| = k−k′

(line 5) and asking a SAT solver whether there are execution traces (σi)
l+1
i=1 and (σ̂i)

l+1
i=1

as well as a concrete fault attack F where the left-hand side of (2) is true but the first
part of the right-hand side, i.e.,

(
∆P (σ2, σ̂2) ≤ k′ +

∣∣F{1}
∣∣), is false (line 7). If the solver

finds such an example, i.e., the formula is SAT, the procedure gathers the compromised
partitions PInit and PNext from respectively the first and second clock cycle, and then
merges partitions from PNext until there are only k′ +

∣∣F{1}
∣∣ left, while avoiding merges

between the partitions also present in PInit (lines 8 to 10). As |P| decreases at each
iteration, procedure BuildPartitioning converges to a fixed point where partitioning P
fulfills the relevant part of (2), and the solver must return UNSAT. After all k′ are analyzed,
the procedure concludes.

After BuildPartitioning finishes, the algorithm checks whether the partitioning has less
than k partitions (line 11), as such a partitioning cannot guarantee the output integrity for
the second procedure (cf. Section 3). Procedure BuildPartitioning may fail for one of the
three following reasons: (i) the circuit C has some flaws and is not k-fault secure, (ii) there
is no k-resistant partitioning even if C is k-fault secure (cf. Section 4.1), or (iii) the merging
heuristics fails to build a k-resistant partitioning even though one exists. We generate log
files for each counterexample given by the solver and the corresponding partition merges
the algorithm performs. In general, the logs are invaluable for understanding why a design
might be insecure, but this analysis must be performed manually.

For higher-order fault analysis, one should start with k = 1 and iteratively feed the
found partitioning P back into the algorithm for the next higher k as a k-fault resistant
partitioning must be (k − 1)-fault resistant.

Procedure CheckIntegrity iteratively determines the sets P ′ and F ′ of partitions and
locations where faults can compromise the output integrity. The procedure iteratively
verifies if the partitioning P guarantees outputs’ integrity in the presence of k′ faulty
partitions and k− k′ new faults while not targeting the known-to-be exploitable partitions
P ′ and fault locations F ′ identified in previous iterations (lines 15 and 16). Whenever
the solver returns SAT, it means that it found a new set of fault locations and initially
corrupted partitions that compromises output integrity and must be added to P ′ and
F ′, respectively (lines 17 to 19). If the solver returns UNSAT instead, it means that the
partitioning P is proven k-fault secure assuming there are no faults on the P ′ and F ′.

5 Implementation
This section details how we implement the methodology introduced in Section 3. First,
we describe Step 1 to formally analyze the k-fault security of a CED circuit using k-fault-
resistant partitioning. Second, we illustrate how potential remaining faults, undetected by
the hardware countermeasures, are integrated into a co-verification framework.

5.1 Step 1 — Hardware Verification Flow
The hardware design is converted into a bit-level netlist using the synthesis tool Yosys [Wol]
to match the circuit model given in Definition 1. Additionally, input, output and alert
signals must be provided to define the CED circuit to be analyzed.

We then rely on the C++ API of the CaDiCaL SAT solver [BFFH20] for the formal
analysis described in Algorithm 1. Circuit elements are encoded with Boolean variables
and execution traces (σi)

l+1
i=1 and (σ̂i)

l+1
i=1 are modeled unrolling the circuit l = max(1, d)

times. Fault injections are applied to execution traces using new Boolean variables to



12 Fault-Resistant Partitioning of Secure CPUs for System Co-Verification

Simulation
Controller

Hardware
Design

System Model

C++System
Modeling

Attacker
Goal

Attack
Order Check

Goal 

Exploitable
Faults

Exploitable
Partitions

Fault
Timing

System State

Save
state

Restore
state

Vulnerable

Robust

Counter
Examples

Attack report

.vcd.vcd.vcd

Simulations
with faults

Timeout

.sv

.elfBinary
Program

Figure 5: Software/Hardware co-verification flow (Step 2) using Verilator.

control the effect of faults. Finally, assumptions ψ made by Algorithm 1 are provided
to the SAT solver to check their satisfiability. CaDiCaL is used in incremental mode to
update assumptions as we build the circuit partitioning. Log files and VCD waveforms are
generated to keep track of successive iterations, understand how the algorithm builds the
circuit partitioning, and analyze why the proof may fail. The implementation is about
4000 lines of code and is publically available3.

5.2 Step 2 — System Co-Verification
Figure 5 illustrates our simulation-based co-verification framework. First, the system
modeling step relies on the open-source tool Verilator [Sny] to convert the hardware design
and the binary program into a cycle-accurate C++ model. The system modeling also
takes as input the sets F ′ and P ′ computed in Step 1 to determine the remaining fault
locations in gates and registers. Verilator optimizes the generated model for simulation
performance reasons, and the effectiveness of optimizations depends on the number of
fault locations. Then, the simulation controller simulates the circuit with a maximum of
k faults. The fault timing specifies the cycles where the faults must be injected during
the simulation. The predicate φ is evaluated on the system state at each clock cycle to
determine if the attacker can reach its goal. For example, such a predicate may evaluate
the program counter value to analyze the control flow or look at a value in the memory or
in the register file. Simulations are run in parallel. Finally, the framework provides an
attack report for each fault attack evaluated. The report classifies the attack between i)
robust, i.e., the fault attack does not fulfill φ and the simulation terminates as expected,
ii) vulnerable, i.e., φ has been reached, and iii) timeout, i.e., neither the attacker goal nor
the normal program exit point has been reached and the simulation stops after a timeout.
The timeout is computed according to the program length. Verilator generates logs such
as the ISA states or VCD waveforms to understand where the faults were injected and
how they propagate in the system to create the vulnerability.

To speed up the analysis, we adapted a simulator feature to save the system state in a
file. The state is restored for each new verification, which avoids simulating irrelevant parts
of the program for the fault analysis. In addition, we used the Verification Procedural
Interface (VPI), supported by Verilator, to observe the circuit state and compute φ or to
inject faults on circuit elements retrieved according to their hierarchical names.

This co-verification framework has the same limitations as simulation-based analysis
tools. It is not exhaustive on program inputs and does not provide security guarantees in
the general case. In addition, a timeout is needed to stop the simulation when the control
flow has been modified by the attack but without reaching the attacker goal.

3https://github.com/CEA-LIST/Fault-Resistant-Partitioning

https://github.com/CEA-LIST/Fault-Resistant-Partitioning
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Table 1: Evaluation of Skinny-64 and AES-128 circuits using k-fault-resistant partitioning.

Circuit Characteristics Faults Algorithm 1 Performance Results

Name Size
(GE)

Regs
(#)

Loc.
(#)

Order
k

Build
Partitioning (s)

Check
Integrity (s)

Partitions
(#)

Exploitable
Faults (#)

Skinny-64
red-1 3 270 235 1 707 1 1.18 0.043 235

64 outputsSkinny-64
red-3 4 163 305 2 959 1 1.32 0.052 305

2 9.06 0.324 305

Skinny-64
red-4 6 316 341 3 417

1 2.48 0.127 341
2 10.23 0.404 341
3 38.50 0.693 341 + 335 in checker

AES-128
red-1 20 532 427 16 262 1 597 1.20 427

129 outputsAES-128
red-4 29 092 527 23 390 1 1 073 2.14 527

2 13 983 2.28 527

AES-128
red-5 32 284 561 26 166

1 1 471 2.32 561
2 17 376 2.57 561
3 201 272 2.79 561 + 22 in checker

6 Experimental Validation on Impeccable Circuits
This section validates our methodology against prior work on formal verification of CED
schemes. We evaluate the robustness of Skinny-64 and AES-128 implementations from
Impeccable Circuits [AMR+20] protected with code-based CEDs against faults attacks.
Although providing unbounded guarantees on cryptographic circuits is not as crucial as on
a CPU, i.e., their operation usually takes a few clock cycles, these case studies allow us to
compare against related work, e.g., FIVER [RSS+21], as no similar work exists on CPUs.

Performance-wise, our algorithm successfully proves the 2-fault security of AES-128
(resp. Skinny-64) implementation in less than 4 h (resp. 10 s) using an Intel Core i7-1185G7
laptop, as shown in Table 1. In comparison, the authors of FIVER reported 130 h to prove
the 2-fault security of the same AES circuit using an Intel Xeon server. Our approach also
reports that circuit inputs and outputs can be faulted as they are not protected with EDC.

Our methodology was also able to assess the 3-fault security of these circuits, an
attacker model unreachable by state-of-the-art tools. However, our fault analysis first
fails to build a circuit partitioning. The manual investigation of the logs produced during
procedure BuildPartitioning shows that three faults defeat the EDC protection by targeting
simultaneously: 1) the original function, 2) the redundant function, and 3) the checker
disabling the alert at a specific clock cycle. During the following clock cycles, the injected
faults propagate and lead to collisions that are undetected by the checker mechanism.
Explaining the exploitable faults in more detail is beyond the scope of this paper. However,
assuming that the exploitable faults identified in the checker cannot be corrupted, i.e.,
335 bits in Skinny-64, and only 22 bits in AES-128 where fewer collisions exist, we prove
the 3-fault security of AES (resp. Skinny) in 55 h (resp. 39 s). For each algorithm, we
reproduced the attack for a full encryption to ensure that the reported counterexamples
are not false positives. Attack scenarios are given in Appendix B.

7 Evaluation on OpenTitan
In this section, we apply our methodology to analyze the resilience of a development version
of the Secure Ibex processor and determine whether an attacker can exploit potential
hardware vulnerabilities in three different programs running on the OpenTitan platform.
First, we evaluate the robustness of the hardware countermeasures implemented in the
Secure Ibex processor. Second, we leverage the hardware verification results to analyze
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Figure 6: Secure Ibex countermeasures and partitioning obtained with Algorithm 1.

whether the identified vulnerabilities can be exploited in different programs. Third, we
provide a hardware fix for the vulnerability discovered and re-evaluate the security.

OpenTitan Threat Model. The OpenTitan project [JRR+18] provides an open-source
secure element design [Opeb]. Internally, OpenTitan uses the 32-bit RISC-V Ibex processor,
implements several hardware-based countermeasures, and provides hardened software and
secure boot. Globally, these countermeasures aim to protect the chip’s confidentiality,
integrity, and authenticity [Opea]. We consider an attacker having physical access to the
platform capable of interfering with its operation by performing fault injection attacks
(attacker goal). We consider a single transient bit-flip everywhere in the microarchitecture
(fault model), which is in line with the protection level provided by the countermeasures.

Secure Ibex Hardware Countermeasures. Our hardware analysis focuses on the secure
configuration of the Ibex core [IBE], which uses different spatial Concurrent Error Detec-
tion (CED) schemes (Figure 6). The dual-core lockstep (DCLS) mechanism instantiates
the Ibex core twice, compares the outputs between the main core and the shadow core,
and triggers an alert signal on a mismatch. To increase the protection against faults,
the shadow core inputs are delayed for d cycles, where d is fixed at synthesis time. Our
evaluation uses the default value d = 2 but also discusses the results for d = 3. Both core
instances share the register file, which is protected against faults with Error Detection
Codes (EDC) and a write-enable glitch detection mechanism.

7.1 Step 1 — Hardware Verification of Secure Ibex

In the following, we apply our hardware verification methodology individually to the
register file and the DCLS before analyzing the entire Ibex core. Table 2 summarizes
the area in gate equivalent (GE) for each circuit, provides the number of possible fault
locations, and reports verification results and performance using an Intel Xeon Gold 6154
CPU. Our analysis does not consider the sleep mode of the Ibex processor that disables
the clock signal, as our circuit model only considers synchronous circuits (Definition 1).
First, we focus on k = 1 since the countermeasures of Secure Ibex aim to mitigate a single
fault before discussing the evaluation results with k = 2.
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Register File Analysis. The register file consists of thirty-two 32-bit registers, each
protected by a 7-bit EDC. Register file countermeasures ensure that written data is stored
at the correct address (encoding checker box in Figure 7) and that read data have not
been modified (EDC checkers box in Figure 7). Procedure BuildPartitioning has proven
that a fault injected in the circuit cannot propagate to multiple registers without being
detected by the protections. Table 2 reports that each register is an independent partition.

However, procedure CheckIntegrity has enumerated 172 fault locations in the com-
binational logic that lead to the corruption of primary outputs. As shown in Figure 7,
the internal mux tree that selects the register to read according to the inputs signals
raddr_a_i or raddr_b_i is not protected. Hence, a single fault in the mux logic can
change which register file value is written back to the core. This is not detected by DCLS
as the register file is only read once by the main core, and the value is then stored in the
input buffer of the shadow core, i.e., both cores retrieve the same faulty register file value
(Figure 6). We discuss the mitigation we designed in Section 7.3.

In addition, we also evaluate the register file against a weaker fault model targeting
only the sequential logic. The EDC protection claims to be robust against 3 faults injected
in the data and our analysis proves it as reported in Table 2.

Dual-Core Lockstep (DCLS) Analysis. At first, procedure BuildPartitioning described in
Algorithm 1 failed to build a correct partitioning of the DCLS and grouped every register
inside the same partition. Counterexamples provided by the analysis showed that the
checker mechanism can be disabled when initializing a specific register to 0. This register
drives the enable_cmp_q signal and is intended to disable the alert during the first d clock
cycles after a system reset as the shadow core and the main core produce different outputs
because of the delay. Formal verification leverages this register to turn off the protection

Table 2: Evaluation of the Secure Ibex and its modules using k-fault-resistant partitioning.

Circuit Characteristics Faults Algorithm 1 Performance Results

Name Size
(GE)

Regs
(#)

Loc.
(#)

Order
k

BuildPartitioning CheckIntegrity
Time

Partitions
(#)

Exploitable Faults
Iter. (#) Time P ′ (#) F ′ (#)

Register File 12 075 1 326
8 331 1 172 38 s 53 s 1 326 0 172
1 326a 3 1 349 s 344 s 1 326 0 0

Register File
with fix 11 913 1 326

8 667 1 1 17 s 73 s 1 326 0 0
1 326a 3 1 135 s 383 s 1 326 0 0

DCLS 117 998 5 918 116 561
1 508 20 h 12 5 h 10 1 108 0 0
2 11 11 s — 445 — —

Secure Ibex
(no iCache) 130 194 7 248 125 080

1 1 10 h 45 30 h 50 2 438 0 0 (+172)
2 48 53 s — 421 — —

a Restricted fault model targeting the sequential logic only
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failing to prove system 1-fault security. In the following, and without loss of generality,
we assume this register is initialized to 1 as it should be during the normal processor
operation. Faults can still be injected into this register. Nonetheless, this highlights that
the whole DCLS security relies on a 1-bit register that can be written to 0 to disable the
protection. We reported this finding to the OpenTitan project and provided a security
enhancement that got integrated4 into the project.

Assuming enable_cmp_q = 1, our analysis builds 1 108 partitions. The main core and
the shadow core are two of these, while the others are registers that faults cannot corrupt
without raising an alert. Figure 6 denotes them as other partitions. Building P takes
508 iterations in 11 h, and then the proof of fault confinement in P takes 9 h 20 (Table 2).
Finally, procedure CheckIntegrity proves that the DCLS can detect any single bit-flip in
one of the two cores and in its internal comparison logic in 5 h 10.

To observe the influence of the DCLS detection delay on the evaluation, we also carried
out experiments with d = 3. As a result, the design size increases by 3.1%, the number of
registers by 13.4%, and the verification time by 24.6%, since the circuit has to be unrolled
once more. The analysis concludes with the same results as with d = 2.

Full Ibex Analysis. The full Ibex comprises the DCLS and the register file. The remaining
gates are involved in the sleep unit module, which we disabled. First, we assume that the
172 faults already identified in the register file cannot be reproduced here. Then, we reuse
the partitions found when verifying the DCLS and the register file modules to initialize
Algorithm 1. As a result, procedure BuildPartitioning only needs one iteration to prove
the fault confinement (Table 2), and our methodology proves the 1-fault security of the
full Ibex processor against a single fault injection.

Discussion on Ibex Analysis with k = 2. OpenTitan is designed to be 1-fault secure.
Two faults are logically not detected when targeting both cores or disabling the 1-bit alert.
However, we report in Table 2 how our methodology behaves, with k = 2, on an unprotected
design. For both the DCLS and the Secure Ibex, procedure BuildPartitioning merges most
of the previously identified partitions, with k = 1, within a few seconds. Multiple partitions
remain due to structurally impossible merges or because of non-faultable registers that
drive the alert signal directly. Notably, the main core and the shadow core are merged
and the resulting partitioning no longer guarantees the output integrity against one fault.
We omit the CheckIntegrity results as enumerating all the exploitable faults is irrelevant
and does not necessarily report genuine vulnerabilities.

7.2 Step 2 — Co-Verification of Programs Running on OpenTitan
In this section, we analyze if the exploitable faults previously identified (register file) can
be exploited in an attack on the running software. All co-verifications have been conducted
using the framework described in Section 5.2 simulating a complete OpenTitan chip.
Our analysis focuses on the secure boot provided by the OpenTitan project. The other
evaluated programs are typical fault injection benchmarks [DRPR19, PHB+19, TAC+22],
i.e., VerifyPIN and tiny AES that are not provided by the OpenTitan project. Table 3
reports evaluation results and performance using an Intel Xeon Gold 6154 CPU.

7.2.1 Secure Boot

The secure boot process guarantees the integrity and authenticity of the code running
on the device after a system reset. The first stage configures the peripherals, sets up the
software environment, and also verifies the integrity of the second boot stage, ROM_EXT,

4https://github.com/lowRISC/ibex/pull/2129

https://github.com/lowRISC/ibex/pull/2129
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Table 3: Co-verification results on software cases exploiting the register file vulnerability.

Program Characteristics Fault Characteritics Analysis Results Performance

Name Function/
Version

Instr.
(#)

Attacker
Goal φ

Timing
(clock cycles)

Loc.
(#) Success Fail Timeout Threads

(#)
Verification

Time (s)

Secure Boot Mask ROM
signature check 2 526 φboot_flash 0 - 1 907 122 048 0 95 238 26 810 8 9 235

Tiny AES
Key Schedule
8th-9th round 221 φkey_sched 0 - 90 5 760 532 4 666 562 2 458

AES
7th-8th round 1 144 φaes 0 - 610 38 912 4 084 29 477 5 228 8 1 742

VerifyPIN

v0 114 φauthen 0 - 49 3 136 2 2 890 160 1 145
φptc 84

v1 121 φauthen 0 - 51 3 264 1 2 990 185 1 154
φptc 89

v2 162 φauthen 0 - 91 5 824 1 5 200 537 1 311
φptc 87

v3 166 φauthen 0 - 95 6 080 1 5 456 537 1 309
φptc 87

v4 189 φauthen 0 - 117 7 488 1 6 714 679 1 468
φptc 95

v5 169 φauthen 0 - 97 6 208 0 5 503 628 1 311
φptc 77

v6 160 φauthen 0 - 88 5 632 0 5 019 528 1 264
φptc 85

v7 187 φauthen 0 - 116 7 424 1 6 682 681 1 399
φptc 61

stored in Flash memory before booting on it. The second stage of the secure boot provides
boot services and verifies the next stage’s integrity, i.e., the boot loader (BL0) code for the
kernel. We focus on verifying the first boot stage, a typical target for fault injection attacks,
since it is stored in read-only memory and cannot be modified. We analyze the rom_verify
function in the Mask_ROM code, which is responsible for verifying the authenticity and
integrity of the next boot stage. It first computes the digest of the ROM_EXT image and
checks its RSA signature against the signature stored in the boot manifest.
Attacker Goal. Assuming a malicious ROM_EXT code, the attacker wants to bypass the
signature check and call the rom_boot function, i.e., φboot_flash : (PC = @rom_boot).

Our analysis evaluates faults injected in the rom_verify function, assuming that the
RSA hardware accelerator (OTBN module) has already computed the signature. Our
framework shows that controlling, with a fault, the register file value that is written back
is insufficient to bypass the first stage of the secure boot. Even if not detected by the
hardware, these faults are captured by the software countermeasures. Hence, the secure
boot’s signature verification is robust to single bit-flip attacks.

7.2.2 Differential Fault Analysis on tiny AES

Differential fault analysis [BS97] enables adversaries to retrieve the cryptographic key by
injecting faults during the AES encryption. These attacks can be performed on hardware
or software implementations of AES. As our work focuses on the evaluation of hardened
CPUs, we do not analyze the AES driver provided in the OpenTitan cryptography library
as it utilizes the AES hardware accelerator. Instead, we port the tiny AES [kok] program,
which is not officially provided by the project, to OpenTitan. As previously, we used the
framework described in Section 5.2 to inject faults into the register file during the AES
execution. We illustrate how an attacker can exploit these faults at the software level by
reproducing the requirements of two attacks known from the literature [KQ08, TMA11].
An arbitrary plaintext and symmetric key were used for the analysis.
Attacker Goal. The first attack targets the key schedule function to corrupt one byte in the
first column of the 9th round key (φkey_sched) [TFY07, KQ08]. The second attack targets
the AES algorithm to corrupt a single byte in the 8th round state matrix (φaes) [TMA11].

For each experiment, the fault is injected during the round preceding the round of
interest. We observe the 9th round key and the 8th round state matrix stored in the data
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memory5 and compare them against the precomputed reference values to determine if the
fault induced a single-byte corruption. Table 3 summarizes our evaluation results for each
attack. Our analysis reported 532 successful fault injections over the 5 760 possibilities to
satisfy φkey_sched. Similarly, 4 084 successful fault injections were identified over the 38 912
configurations tested to reach φaes. Inspecting the analysis reports shows that successful
fault injections are mainly applied to memory load and store operations.

7.2.3 VerifyPIN

For the last software verification, we focus on the VerifyPIN test suite that we port to
the chip as it is not part of the OpenTitan project. This test suite [DPP+16] implements
a simple authentication mechanism where a user has a maximum number of g_ptc
attempts to enter the correct 4-digit userPIN matching the secret cardPIN. When the
authentication succeeds, a global variable g_authenticated is set to true. The program is
available in eight versions with an increasing number of protections against fault attacks.
VerifyPIN_v0 has no protection, while VerifyPIN_v7 is the version with the highest
number of countermeasures. It implements hardened Boolean variables, constant iteration
loops, loop counter checks, inline function calls, and duplication of critical tests.
Attacker Goal. The attacker aims to i) bypass the secure authentication, i.e., φauthen :
(g_authenticated = true), or ii) manipulate the maximum number of authentication
tries, i.e., φptc : (g_ptc ≥ 3).

For each analysis, the attacker’s goal is evaluated at the end of VerifyPIN function
once the program counter reaches the exit point. Faults can be injected during the entire
execution of the program. As a result, Table 3 illustrates that φauthen and φptc are
reachable by an attacker in most of the eight versions of VerifyPIN. For example, injecting
a fault when decrementing g_ptc fulfills φptc. In addition, we observed that φauthen can
be reached by setting the cardPIN pointer equal to the userPIN pointer and comparing
the cardPIN code to itself.

7.3 Fixing Register File Vulnerability
As demonstrated in Section 7.1, a single fault into the output mux tree of the register
file could modify which value is written back to the Secure Ibex. Figure 8 depicts our
hardware modifications to protect the register file from faults.

First, the read addresses raddr_a and raddr_b are converted to one-hot encoded
signals, and their integrity is ensured by checker modules. Then, the one-hot encoded
read addresses are each fed into a mux directly operating on these signals. Internally, the
one-hot mux selects each output bit individually by performing AND- and OR-reductions
on the one-hot encoded addresses and the register file values. As a result, a single bit-flip
is immediately detected either by the one-hot encoding checkers or the EDC protections.

As reported in Table 2, our verification flow proves the 1-fault security of the fixed
register file. Since the fixed Ibex is robust to one single fault injection, no exploitable
faults need to be verified in the system verification step, which reduces the overall security
verification time. We reported this finding to the OpenTitan project and provided a
security enhancement that got integrated6 into the project.

8 Related Work
This section discusses our k-fault-resistant partitioning notion to an existing security defi-
nition and compares our methodology to software/hardware fault verification approaches.

5Actually, we observe values on the data memory interface as OpenTitan implements memory scrambling.
6https://github.com/lowRISC/ibex/pull/2117

https://github.com/lowRISC/ibex/pull/2117
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Non-Accumulative Gadgets. Dhooghe and Nikova introduced the composable notion
of Non-Accumulation (NA) to build secure systems using gadgets [DN20]. In detail, a
k-NA gadget attacked by k′ ≤ k faults either aborts or gives an output with at most
k′ faults. However, this notion does not consider sequential logic, where faults can stay
hidden in registers and modify outputs over multiple clock cycles. Besides, it cannot
model delayed detection, which is crucial for verifying current CPU countermeasures.
Furthermore, they provide guidelines for building secure gadgets but no methodology for
evaluating off-the-shelf systems. In contrast, our approach solves the problem of fault
propagation in sequential logic. We also provide an algorithm for building partitioning
that showed to be efficient on an industry-grade CPU.

Hardware Fault Verification. FIVER [RSS+21] transforms the circuit to analyze into a
binary decision diagram. It compares the outputs of the golden to the faulty model to
reveal the consequences of the fault on cryptographic circuits. Similarly, SYNFI [NOV+22]
is a pre-silicon fault analysis framework that allows hardware designers to evaluate the
robustness of a circuit and its countermeasures against faults. These tools perform bounded
equivalence checking, meaning the circuit is unrolled over several clock cycles to be analyzed.
This technique is not suitable for processor verification, as the consequences of faults may
occur after an unknown amount of time. In contrast, our methodology provides unbounded
security guarantees, making it possible to introduce software co-verification as a second
step. As a result, we can thoroughly verify large processors such as the Secure Ibex.

Furthermore, our approach can prove the security of cryptographic circuits against
multiple fault injections, as demonstrated in Section 6. Performance-wise, we outperform
FIVER by orders of magnitude when proving the AES security against two faults, and our
inductive property is valid for multi-round encryption, while FIVER’s results hold for a
single round. Additionally, we analyzed the 3-fault security of AES, which was previously
impossible with state-of-the-art tools. As SYNFI only analyzed parts of the AES block
(e.g., the FSM) and parts of the CPU, a performance comparison is not possible.

Software Fault Verification. ARMORY [HSP21] is a framework capable of automatically
injecting faults during program execution using an ARMv7-M emulator to analyze their
effects. Like ARMORY, ARCHIE [HGA+21] injects faults into software when executed on
an emulator. However, ARCHIE performs the fault analysis architecture independently,
i.e., ARM, RISC-V, x86, and other architectures are supported. FiSim [Ris] injects faults
into instructions to analyze whether a specific attack goal, e.g., skipping a password check,
can be achieved. However, as these frameworks perform their analysis using architectural
models instead of actual implementations, they are unable to spot vulnerabilities induced
by subtle effects of the microarchitecture [TAC+22].

Hardware/Software Fault Verification. A first work [TAC+23] has jointly modeled
hardware and software in a framework based on Yosys. However, modeling all the system’s
components in the same formal model leads to scalability issues and state-of-the-art
hardware model checkers [NPWB18, MIL+21] cannot cope with such complex models.

Complexity-wise, the state space to analyze depends on the design size in terms of gates
|G|, the program length n, and the size of fault model |F| to the power of the fault order
k. Our approach divides the verification into two steps to reduce this complexity. First, by
analyzing the hardware design independently of the program, we no longer depend on the
program length n and only need to unroll the circuit d times where the countermeasure
delay d ≪ n is much smaller than n. Second, the co-verification introduces the software
program in the model while the design complexity |G| and the remaining exploitable faults
|F ′| can be tremendously reduced, provided countermeasures are proven robust.
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Performance-wise, [TAC+23] evaluated the Secure Ibex with a restricted fault model
F targeting the shadow core’s registers only, i.e., 2 500 fault locations, and verifying a 46-
instruction program in 5 min. However, the authors reported they encountered scalability
issues and could not process more than a hundred instructions nor evaluate a larger design
with more faults. In contrast, we considered any possible bit-flips, i.e., 125 000 faults, and
reduced them to a smaller set of exploitable faults F ′ with 172 undetected faults in the
register file, proving that only targeting the shadow core is futile. The co-verification step
is then able to verify the robustness of 2 526 instructions of the secure boot in 2 h 30.

Security-wise, our approach provides much stronger guarantees. Our approach checks
the hardware only once. If no vulnerabilities are found, all programs are secure. Otherwise,
we use hardware verification results for any program co-verification. In the specific case of
the Ibex processor, we formally prove that only faults in the register file are possible and
analyze their consequences on various programs. On the opposite, [TAC+23]’s results only
hold for VerifyPIN, and the entire software/hardware verification must be rerun for each
program. Finally, our methodology is agnostic from the third-party co-verification tool.

9 Conclusion and Future Work
This paper introduced a novel notion of k-fault-resistant partitioning to enable the as-
sessment of redundancy-based hardware countermeasures to fault injections. We provide
unbounded fault verification proofs for the k-fault security of a circuit using k-fault-resistant
partitioning. The hardware security vulnerabilities identified by our methodology are then
exploited in a second verification phase taking into account the software. This enables us
to verify previously intractable problems, such as analyzing the robustness of OpenTitan
running a secure boot process. To demonstrate the capabilities of k-fault-resistant parti-
tioning, we provided a complete formal analysis of a development version of the Secure
Ibex processor used in the OpenTitan chip. Hereby, we identified a security vulnerability
in the register file, showed that it could be exploited in third-party software, and provided
a fix to mitigate the security issue that got integrated into the OpenTitan project.

Future work will extend the k-fault-resistant partitioning notion to support non-
separable CED-based hardware countermeasures or mixed hardware/software protections,
like control-flow integrity, where software- or hardware-only verification techniques cannot
be used. The methodology and the tool could also be extended to support permanent faults.
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A Proof of Theorem 1
Proof. To prove that a circuit C with partitioning P fulfilling Definition 10 also fulfills
Definition 9, we first prove that it satisfies a stronger inductive property for all n ∈ N∗:

∀ (σi)n+d
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Trivially, (3) implies it must also satisfy (1) for all n ∈ N∗. As mentioned, the proof
proceeds inductively over n, generalizing from an arbitrary execution (σi)

n+d
i=1 .

(Basis.) For the base case, we must demonstrate (3) for n = 1, i.e.,

∀ (σi)d+1
i=1 , ∀F ⊆ F × [1, d+ 1], |F| ≤ k :
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This follows directly from (2). Let F ⊆ F × [1, d+ 1] be an attack with |F| ≤ k, (σi)
d+1
i=1

be an execution, and lastly, (σ̂i)
d+1
i=1 be a second execution with σ̂i = σ
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As faults in prior states cannot corrupt the input in the current state, we can conclude
that

(∧d+1
i=1 I (σi) = I

(
σ

F[1,i−1]
i

))
= ⊤. Furthermore, since σF[1,0]

1 = σ
FØ
1 = σ1, we get

∆P

(
σ1, σ

F[1,0]
1

)
= 0, simplifying the left-hand side of the implication to just the last term.

Generalizing the result, i.e., introducing quantification over free variables (σi)
d+1
i=1 and

F ⊆ F × [1, d+ 1] with |F| ≤ k, produces (4) and concludes the induction basis.
(Step.) For the induction step, we have to show that necessarily

∀ (σi)n+d+1
i=1 , ∀F ⊆ F × [1, n+ d+ 1], |F| ≤ k :

(
n+d+1∧

i=1

A
(
σ

F[1,i]
i

)
= 0

)
=⇒

(
∆P

(
σn+2, σ

F[1,n+1]
n+2

)
≤
∣∣F[1,n+1]

∣∣) ∧(n+1∧
i=1

O′ (σi) = O′
(
σ

F[1,i]
i

)) (5)

under the assumption that (3) holds. First, let (σi)
n+d+1
i=1 be an arbitrary execution and

F ⊆ F × [1, n + d + 1] be an arbitrary attack with |F| ≤ k. Consider the expression(∧n+d+1
i=1 A

(
σ

F[1,i]
i

)
= 0
)

and assume it is true (⊤). Consequently, the weaker expression

from 1 up to n+d is also true, i.e.,
(∧n+d

i=1 A
(
σ

F[1,i]
i

)
= 0
)

= ⊤. This, together with an ap-

plication of (3) to the execution (σi)
n+d
i=1 , means that

(
∆P

(
σn+1, σ

F[1,n]
n+1

)
≤
∣∣F[1,n]

∣∣) = ⊤

and
(∧n

i=1 O
′ (σi) = O′

(
σ

F[1,i]
i

))
= ⊤. Next, instantiate (2) for the executions (σi)

n+l+1
i=n+1

and (σ̂i)
n+l+1
i=n+1, with σ̂i = σ

F[1,i−1]
i , the number k′ =

∣∣F[1,n]
∣∣ and fault attack F[n+1,n+d+1],

which works because
∣∣F[n+1,n+d+1]

∣∣+ k′ =
∣∣F[n+1,n+d+1]

∣∣+
∣∣F[1,n]

∣∣ = |F| ≤ k, to get(
n+d+1∧
i=n+1

I (σi) = I
(
σ

F[1,i−1]
i

))
∧
(

∆P

(
σn+1, σ

F[1,n]
n+1

)
≤
∣∣F[1,n]

∣∣) ∧(n+d+1∧
i=n+1

A
(
σ

F[1,i]
i

)
= 0

)
=⇒

(
∆P

(
σn+2, σ

F[1,n+1]
n+2

)
≤
∣∣F[1,n]

∣∣+
∣∣F{n+1}

∣∣) ∧ (O′ (σn+1) = O′
(
σ

F[1,n+1]
n+1

))
.

Similarly to the basis step, past faults cannot lead to different inputs in the current state,
and therefore

(∧n+d+1
i=n+1 I (σi) = I

(
σ

F[1,i−1]
i

))
= ⊤. Moreover, the weaker term from n+ 1

to n + d + 1 of our assumption must also be true, i.e.,
(∧n+d+1

i=n+1 A
(
σ

F[1,i]
i

)
= 0
)

= ⊤.
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The left-hand side of the implication is ⊤, yieling
(

∆P

(
σn+2, σ

F[1,n+1]
n+2

)
≤
∣∣F[1,n+1]

∣∣) = ⊤

and
(
O′ (σn+1

)
= O′

(
σ

F[1,n+1]
n+1

))
= ⊤. Joining the previous facts about the output into(∧n+1

i=1 O
′ (σi) = O′

(
σ

F[1,i]
i

))
, we have proven the implication in (5). After generalization,

we get (5) itself.

B Vulnerabilities in Impeccable Circuits Implementations
The Skinny-64 and AES-128 implementations from Impeccable Circuit [AMR+20] protected
against 3 faults revealed to be vulnerable. For each cipher, we detail reproducible attack
scenarios providing the Plaintext, the Key, and the faults to be injected according to the
circuit nomenclature to produce incorrect ciphertexts without triggering an alert.

Skinny-64 red-4. Plaintext: 0x06034f957724d19d; Key: 0xf5269826fc681238; Ex-
pected ciphertext: 0xbb39dfb2429b8ac7; 1st fault: (bit-flip, round 0, Red_StateReg.
s_current_state[44]); 2nd fault: (bit-flip, round 0, SubCellOutput[46]); 3rd fault:
(bit-flip, round 0, Check1.in1[244]); Faulty ciphertext: 0x0897810d2aa02f8e.

AES-128 red-5. Plaintext: 0xd2228cc9f8b8f239b0162a9ad3632127; Key: 0x7f287089-
fbbebdb8f364377b97f5c9ef; Expected ciphertext: 0x6666b1677c13464929f286aca090eb74;
1st fault: (bit-flip, at round 0, InputMUX.Q[31]) ; 2nd fault: (bit-flip, at round 0,
RedFinalRoundControlLogicInst.Red_FinalRoundBit[2]); 3rd fault: (bit-flip, at round
0, Check1.result[2]); Faulty ciphertext: 0xfd711dada3bfa30b6406f71be54e20a1.
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