
OCash: Fully Anonymous Payments between
Blockchain Light Clients

Adam Blatchley Hansen1⋆, Jesper Buus Nielsen1⋆⋆, and Mark Simkin2

1 Aarhus University
2 Ethereum Foundation

Abstract. We study blockchain-based provably anonymous payment systems between light clients.
Such clients interact with the blockchain through full nodes, who can see what the light clients read
and write. The goal of our work is to enable light clients to perform anonymous payments, while
maintaining privacy even against the full nodes through which they interact with the blockchain.
We formalize the problem in the universal composability model and present a provably secure solution to
it. In comparison to existing works, we are the first ones that simultaneously provide strong anonymity
guarantees, provable security, and anonymity with respect to the full nodes. Along the way, we make
several contributions that may be of independent interest.
We define and construct efficient compressible randomness beacons, which produce unpredictable values
in regular intervals and allow for storing all published values in a short digest. We define and construct
anonymous-coin friendly encryption schemes and we show how they can be used within anonymous
payment systems. We define and construct strongly oblivious read-once map, which can be seen as
a special data structure that needs to satisfy a stronger notion of obliviousness than what is usually
considered. We present a new approach, which is compatible with light clients, for mitigating double-
spending attacks in anonymous cryptocurrencies.

⋆ Partially funded by the Concordium Blockhain Research Center, Aarhus University and The Danish Independent
Research Council under Grant-ID DFF-3103-00077B (CryptoDigi).

⋆⋆ Founded by the Danish Independent Research Council under Grant-ID DFF-3103-00077B (CryptoDigi).

Table of Contents

1 Introduction . 4
1.1 Our Contribution. 5
1.2 Related Work. 7
1.3 Technical Overview. 10

2 Preliminaries . 19
2.1 Commitment Scheme . 20
2.2 Symmetric and Public Key Encryption . 20
2.3 Σ-Protocols . 20
2.4 Simulation-Sound NIZK Arguments . 22
2.5 Simulation-Extractable NIZK Arguments . 24

3 Ideal Functionality for Anonymous Cryptocurrency . 26
4 Modelling the Blockchain World . 32
5 Anonymous Coin Friendly Encryption (ANCOs) . 35
6 Compressible Randomness Beacons (CRaBs) . 37
7 Strongly Oblivious Read-Once Maps (SOROMs) . 38
8 OCash: Anonymous Transfers from Oblivious RAM . 40

8.1 Stateful Blockchains . 40
8.2 Overview . 41
8.3 Anonymous Coin-Flip on the Blockchain . 43
8.4 Relations for Zero-Knowledge . 44
8.5 OCash Protocol . 45
8.6 Proving Security in the UC Framework . 48

9 Instantiating the Building Blocks . 50
9.1 Commitment Scheme . 50
9.2 Anonymous Coin Friendly Encryption Scheme (ANCO) . 50
9.3 Compressible Randomness Beacon . 52
9.4 Strongly Oblivious Read-Once Maps . 55

10 Adding Strong Anonymity . 56
10.1 PRF Key Registration . 56
10.2 Hashed Identifier . 57
10.3 Rerandomized TID . 58
10.4 Pseudononymous Hashed Identifier . 58
10.5 Improved Reduction to DHI . 58
10.6 Extending the Relations and ZK Proofs . 59

A Generalised Dodis-Yampolskiy Theorem . 62
B Proof of Theorem 2 . 67

B.1 Observations . 67
B.2 Simulator . 74
B.3 Analysis . 79

C Proof System Instantiations . 85
C.1 Discussion of GUC NIZK PoK Definitions . 85
C.2 Proofs for Group Homomorphisms . 86
C.3 ∨-Construction Maintains Strong Special Soundness . 87
C.4 Σ-Protocols for Relations . 88
C.5 Extended Proof Systems for Strong Anonymity . 91

3

1 Introduction

Blockchains are structured decentralized databases, which are stored redundantly by network
participants, known as full nodes. In the context of cryptocurrencies, the databases are
ledgers, which keep track of all transactions of digital currency among all digital identities.
When new transactions are submitted, the full nodes check the validity of those transactions,
e.g. they check whether the payer has enough digital money, and if this is the case, the
transaction is added to the ledger. Being a full node in real-world systems such as Bitcoin or
Ethereum is a daunting task, as they are required to continuously store hundreds of gigabytes
of data. Since regular users cannot be expected to run full nodes, they can alternatively join
these distributed systems as light clients, who do not need to store all of the data, but can
still perform transactions, i.e., send and receive money. Without direct access to the full
ledger, however, light clients rely on benign full nodes to provide them with whatever data
they may need.

Both Bitcoin and Ethereum are pseudonymous systems, meaning that the real identities
of participants are hidden behind one or possibly even multiple pseudonymous aliases. Im-
portantly though, since all transactions are public on the ledger, any observer may see which
pseudonyms interacted with each other and what transactions were sent between them. It
may seem that pseudonymity can provide a “reasonable amount of anonymity”, but it has
been shown time and time again that this is not the case and that significant amounts of
information about the real identities can be learned by carefully inspecting the transactions
on the ledger [RH13, MPJ+13, HF16, JBWD18].

Various cryptocurrencies, such as ZCash [BCG+14], Mina [BMRS20], Dash, and Mon-
ero have been designed to provide some forms of anonymity for their users. The concrete
guarantees that are provided by these schemes differ in their details, but they all have the
same overarching goal of hiding which users have how much money and who interacts with
whom. Unfortunately, these solutions are all currently somewhat unsatisfactory in one way
or another, because they either require users to run full nodes, provide users with weak
anonymity guarantees, or require users to give up anonymity towards the full nodes through
which they interact with the ledger. As both usability and privacy are important for real-
world cryptocurrencies, we ask the natural question of whether we can have the best of both
worlds:

Can we support light clients and at the same time provide strong anonymity guar-
antees?

Answering this question is a challenging task, since the two goals may seem to be at odds
with each other at first sight. Purely intuitively speaking, anonymity seems to require that
users access large portions of the ledger to hide which data is relevant to them specifically,
but light clients require the opposite, namely that accesses are highly localized. Nonetheless
we will show in this work that, making some conservative assumptions, the question can be
answered positively.

4

1.1 Our Contribution.

We introduce OCash, a cryptocurrency that provides strong anonymity guarantees and that
supports light clients. Towards the goal of constructing OCash, we develop multiple tools
that may be of independent interest, beyond their applications in this work. In more detail,
we make the following contributions:

Formal Model of Fully Anonymous Light Payments. To set the stage for a rigorous
formal analysis of claims about anonymity, we first propose a conceptually simple model, in
the universal composability (UC) framework of Canetti [Can01], of what fully anonymous
payment schemes are. The UC framework ensures that any protocol proven secure, will
remain secure when run in a larger context, e.g. alongside other protocol executions.

We model the ledger as an append only list that can be accessed by full nodes. Light
clients can read from and write to the ledger through full nodes, but any position they access
and any message they post will be leaked to the adversary. Light clients will have accounts
on the ledger that store encrypted amounts of currency and they can perform anonymous
payments between each other. An adversary observing a payment on the blockchain, cannot
connect the sending and the receiving accounts, nor can they see the amount that is being
transferred. A bit more precisely, we will model payments as payers placing coins on the
ledger, which can then be collected by the payees. We distinguish between weak and strong
anonymity. In weak anonymity the payer can see when the payee claims a coin. In strong
anonymity they cannot. Security notions related to strong anonymity have been proposed
before, see [CHK23], but no formalization was provided.

OCash. We show that efficient payment schemes supporting light clients and satisfying
strong anonymity can be constructed by using ideas from the oblivious RAM (ORAM)
literature [Gol87, Ost90] in combination with several other tricks that we introduce in this
work. Placing or collecting a payment, even as a light client, only requires writing and reading
a polylogarithmic (in the total number of performed payments in the whole system) amount
of data from the ledger. We stress that our work is the first solution that allows for strong
anonymity with sublinear read and write overhead to the ledger.

Our construction will make two assumptions that are worth discussing. The first one is
the existence of a private off-chain communication channel between the payer and the payee.
As an example, the payer should be able to obtain the recipient’s account address without
needing to ask a full node and without needing to read the whole ledger. In the physical
world, a pizza shop accepting cryptocurrency payments could provide a QR code with its
address to hungry customers.

The second assumption our construction will make, is the existence of an anonymizer
service associated with the ledger, which can hold a private state and which regularly posts
messages on the ledger. In the case of proof-of-stake blockchains, one already often assumes
the existence of committees that post messages on the ledger regularly. Given such commit-
tees, one can realize the anonymizer service, which holds a private state, via secure multiparty

5

computation [BGG+20, GHK+21]. While our second assumption is stronger than our first
one, we still think that it can be reasonable in the context of proof-of-stake blockchains.

Compressible Randomness Beacons. Part of our construction will be a randomness
beacon that regularly publishes independent, unpredictable samples. Looking ahead, payees
will need to access certain beacon outputs for collecting coins that were paid to them. For
anonymity reasons, payees will not want to reveal, which outputs are relevant to them, but
if they are light clients, they can also not afford reading all of the outputs. We show how to
construct compressible randomness beacons, which allow the payee to read the latest beacon
output and from there they can derive all previous outputs. A very similar notion was recently
introduced by Beaver et al. [BCK+23], but in their construction the computational overhead
for computing a beacon value from the past is linear in the time between the latest and
the desired beacon output. In our construction, the computational overhead for computing
any value from the past is fixed and only amounts to a small number of symmetric key
operations.

Anonymous Double-Spending Mitigation. A recurring attack vector that cryptocur-
rencies have to deal with are so called double spending attacks. The gist of these attacks
is a malicious payer holding a single coin, trying to falsely convince two payees that they
both received it. How full nodes can prevent these types of attacks from happening is pretty
well understood, both in pseudonymous and anonymous cryptocurrencies. Making sure that
light clients can detect double spending attacks in an anonymous cryptocurrency, however,
is more challenging. Even if coins have identities and even if all spent coins’ identities are
publicly visible, then a light client can still not afford to check whether the received coin is
among all the already spent coins.

We propose a new method for mitigating double spending attacks that does not require
the payee to access the ledger at all, when being paid. Conceptually, the idea behind our
method is a two step approach. First, we assign a transaction identifier (tid) to each transac-
tion and ensure that a double spending attack would require two transactions with the same
tid. Next, we ensure that the tid is uniquely bound to the payee, but at the same time looks
pseudorandom to any outside observer. At this point, to prevent a double spending attack,
the payee will only need to make sure that a transaction with a given tid is really bound to
them and that it did not appear among their own transactions, rather than all transactions,
previously.

Anonymous Coin Friendly Encryption. The anonymizer service will move around en-
crypted coins inside of some data structure. To be able to both prove efficiently that each
individual movement was performed correctly and to also allow for an efficient and anony-
mous collection, the encryption scheme needs to satisfy certain additional properties. Ad-
ditionally, it needs to be proof friendly in the sense that associated zero-knowledge proofs
should ideally be simple and be concretely efficient. We abstract out the properties we need
from the encryption scheme into a new notion of an anonymous coin friendly encryption

6

(ANCO) scheme. Our actual construction is similar to the one used in Quisquis [FMMO19],
but in contrast to their work, we formalize and prove the properties that we require from
the encryption scheme.

1.2 Related Work.

We are far from the first to consider anonymous cryptocurrencies or light clients. To better
understand the challenges we need to overcome in our work, let us review existing anonymous
cryptocurrencies and see what challenges they face, when trying to support light clients.

Cryptocurrencies Based on Accumulators. Anonymous electronic payments saw their
birth in 1982 with David Chaum’s eCash system [Cha82]. His construction involves a bank,
a user, and a pizza shop. The user picks a random transaction identifier tid and asks the
bank to sign tid blindly, i.e., without actually seeing the signed message, in exchange for one
pound. The user receives signature σ = Sign(skB, tid), where skB is the signing key of the
bank. To pay the shop one pound, the user provides it with (tid, σ). The shop can verify the
validity of the signature σ and then collect back one pound from the bank by providing it
with (tid, σ). If tid was previously collected, the bank rejects the collection. Since the bank
has signed tid blindly, the original owner of this coin is anonymous among all parties that
have received a coin from the bank.

Rather than relying on a specific number-theoretic assumption, Fischlin [Fis06] showed
how to construct blind signatures from general assumptions. Combined with Chaum’s eCash
idea above, Fischlin’s approach would proceed as follows. The user would pick tid and send
a commitment c = Commit(tid; s) to the bank, which returns σ = SignskB

(c). Here tid is
the committed message and s is the commitment randomizer. The user would then locally
construct a non-interactive zero-knowledge proof of knowledge π for statement tid and witness
(σ, c, s), such that σ is a signature on c and c = Commit(tid; s). They could then use (tid, π)
to pay the shop.

Zerocoin [BCG+14], later deployed under the name ZCash, further generalizes Chaum’s
original eCash idea by replacing the centralized bank with a decentralized ledger. The user
posts c = Commit(tid; s) on the ledger and pays, with the currency of the ledger, for having
minted a new coin. The presence of c on the ledger is the authentication of c being a coin. To
collect a coin the shop computes a zero-knowledge proof of knowledge π for the statement
“I know (c, w, s) such that w is a witness that c is on the ledger and c = Commit(tid; s)” and
post (tid, π) to the ledger. If tid was used before, then the collection is rejected.

To compute the proof efficiently, the user first aggregates all coins on the ledger into an
accumulator value ac via a public aggregation procedure and then provides a proof π for the
statement “I know (c, w, s) where w is a proof that c is in ac and where c = Commit(tid; s)”.
The accumulator could, for example, be the root of a Merkle tree and w a path in it.
The size of the statement and proof would then be poly-logarithmic in size in the number
of coins. How to make such proofs concretely efficient was recently shown in a series of
works [CH22, CFH+22, ZBK+22, STW23].

7

Even though cryptocurrencies based on accumulators provide good anonymity guaran-
tees, it is unfortunately not clear how to make them compatible with light clients. To collect
a coin, a light client needs to aggregate all coins into the accumulated value ac and prove that
c is among them. The light client could outsource this task to a full node, but this would
reveal c and thus the coin the client aims to collect towards the full node. Alternatively,
the client could also ask the full node to not only compute the accumulator ac, but also an
individual proof of membership for every single coin aggregated into ac. The client could
then use private information retrieval [CGKS95] to obtain the one membership proof that
is relevant to them. This solution would in principle work, but it would incur a prohibitive
amount of computation on the full node, which renders this approach practically infeasible.

Cryptocurrencies Based on Mixers and Tumblers. A conceptually different approach
was suggested by cryptocurrencies like Dash an Monero, where coins get repeatedly anonymized
in small batches. In older systems like Dash this was done through the use of tumblers [Max13]
that take n coins as input, produce n coins as output, and ensure that no external observer
can link the owner of any input coin to any specific output coin. More recent systems, like
Monero, rely on linkable ring signatures [RST01, LWW04], which enable signers to generate
signatures for arbitrarily selected groups of n verification keys, concealing the specific secret
key used, while ensuring that the signing key belongs to one of the public keys. As all these
approaches require linear in n work for placing and collecting coins, their efficiency crucially
relies on the value n being not too large. In Monero3, for instance, the value n is chosen
to be just 16 and even though each individual mixing step only provides a small amount of
anonymity, the hope behind Monero and other systems of its kind is that eventually all coins
get mixed enough to be completely untraceable.

While we have a reasonably good understanding of the relevant cryptographic primitives
in isolation, we are currently lacking a solid understanding of the precise anonymity guaran-
tees that cryptocurrencies like Dash and Monero provide, which is evidenced by the various
attacks on these systems that have been found over the past years [KFTS17, YAY+19, DS21,
Vij23].

Intermezzo on Consensus and Long-Range Attacks. Before discussing the next ap-
proach for constructing cryptocurrencies, we need to look a bit more closely at what a
decentralized ledger really is and how it works from a consensus perspective. A ledger is,
simply speaking, a growing chain of blocks. When new transactions appear on the network,
they are placed into a new block, which is then appended to the end of the current chain.
What is considered to be the true state of the ledger is decided by a consensus mechanism
among the nodes, who are identified by their public signing keys, in the network4. A popular
method for incentivizing the nodes on the network to behave honestly, is to use financial re-
wards and punishments. In Ethereum, for instance, nodes that want to play a role in reaching

3 https://www.getmonero.org/resources/moneropedia/ring-size.html
4 In our discussion we focus on proof-of-stake blockchains as those are the focus of our work.

8

https://www.getmonero.org/resources/moneropedia/ring-size.html

consensus, need to deposit a fixed amount of money that may be partially or fully slashed if
they misbehave.

At some point in time, nodes that participate in the consensus may choose to get back
their deposit and leave the system. When this happens, their public and private keys become
worthless to them as they cannot be used to participate in any future consensus decision
making and they are not tied to any financial stake any longer either. To an attacker, however,
these keys may still be very valuable as they allow for key-buying long-range attacks. To
perform such an attack, an adversary attempts to buy as many of those “worthless” keys as
possible from nodes that used to participate in the consensus. Having acquired a sufficient
amount of keys, the adversary may change previous consensus decisions, thereby forking the
chain of blocks that used to be the true state of the ledger and creating an alternate chain,
which may then be falsely accepted by users. This attack is a serious real-world problem as
selling keys that are otherwise worthless is the financially rational thing to do.

A technique that aims to prevent this type of attack is checkpointing. Whereas classically
a blockchain grows from its first block, the genesis block, by following some fixed hardcoded
rules, the idea of checkpointing is to regularly accept intermediate blocks in the chain as un-
equivocal truths that cannot be changed. Once a block becomes a checkpoint, no adversarial
behavior can produce a fork prior to this block, thus severely limiting the scope of possible
key-buying long-range attacks.

Cryptocurrencies Based on Recursive Proofs. Armed with the above insights, the
last type of cryptocurrency we want to discuss is based on the idea of always proving the
validity of the latest block with respect to the genesis block using succinct proof systems.
In other words, if γ is the genesis block, then each new block comes along with a succinct
proof, attesting that the latest block is on a valid chain starting in γ. Computing such proofs
can be done efficiently by extending the proof of the previous block using incrementally
verifiable computation [Val08]. A bit more precisely, there exists an efficiently computable
predicate Ver and efficiently computable proof τ for message m and position p, such that
Ver(γ, p, m, τ) = ⊤, if and only if m is in position p on the ledger in a finalized block in a
chain starting from γ. A prominent example that relies on such an approach is the Coda
blockchain [BMRS20], which was later launched as Mina.

Cryptocurrencies based on recursive proofs as described above have some advantages,
when it comes to realizing anonymous payments. To place a coin on the ledger, we again
pick a uniformly random tid, randomizer s, and compute c = Commit(tid; s). Once the
coin is on the ledger in position p, the user obtains a succinct proof τ and they can then
pay the shop by providing it with the tuple (p, c, τ, s). To claim the coin, the shop simply
computes a zero-knowledge proof of knowledge π for the statement “I know (p, c, τ, s) such
that Ver(γ, p, c, τ) = ⊤ and c = Commit(tid; s)” and posts (tid, π) on the ledger. Since the
proof π hides both p and τ , the claimed coin is anonymous among all existing unclaimed
coins.

There are also some challenges that would need to be overcome, if one wants to make
the above approach work for light clients. The first issue is that light clients need a way of

9

efficiently making sure that tid is a fresh value that was not previously used. As part of our
construction in this work, we show how this problem can be overcome and we think that our
solution would also be applicable here. There is, however, a larger problem that does not have
a clear solution. The approach towards anonymous payments we are currently discussing,
inherently relies on the fact that we prove statements with respect to the genesis block γ, but
if we want security against key-buying long-range attacks then we need to prove statements
with respect to the latest checkpoint and not γ. If the proof τ that the user receives after
minting a coin is relative to the latest checkpoint, then claiming the coin as above would
reveal the checkpoint and thus reveal temporal information about which coin was claimed.
If the shop wants to compute a proof π that does not reveal the checkpoint, or which is
relative to the latest check point, then it is not clear how to compute the proof efficiently.
The shop may also try to outsource the proof computation to a full node, but similarly to
what we have already discussed in the context of accumulator-based cryptocurrencies, this
would incur a prohibitively high computational overhead on that full node.

1.3 Technical Overview.

Before discussing our construction, let us recall what we aim to construct. In our setting, we
consider a ledger, modeled as an append-only list, which can be accessed by full nodes. Light
clients can access the ledger through (possibly untrusted) full nodes and may want to either
perform payments by placing coins intended for some recipient or they may want to collect
coins that have been payed to them. In terms of anonymity, we would like to ensure that
no external observer, not even the full node through which a light client communicates with
the ledger, can determine who is paying who. We say that a construction satisfies strong
anonymity, if the payer cannot see when a payee collects a coin. We assume that light clients
have an off-chain communication channel between them and we also assume the existence
of a trusted anonymizer service, which can hold a private state and can repeatedly post
messages on the ledger. As mentioned before, the anonymizer service can be implemented
via secure computation protocols, but for the sake of this work, we just assume a trusted
party performing these actions. We note that the service never needs to interact with any of
the parties directly and merely operates on the values that are posted on the blockchain.

In terms of efficiency, we would like all parties, i.e., anonymizer service, full nodes, and
light clients, to do as little work as possible. More concretely, we would like them all to only
perform a polylogarithmic (in the total number of coins in the system) amount of work for
placing or collecting a coin.

High-Level Approach. On a conceptual level, our construction OCash uses the anonymizer
service to maintain an ORAM [Gol87, Ost90, SCSL11], which can be accessed by light clients
via full nodes for placing and collecting coins. Classically, ORAM can be thought of as an
encrypted array stored on an untrusted server, which can be accessed via read and write
operations by a data owner holding the corresponding secret key. The main security guarantee
of an ORAM, known as obliviousness, dictates that the server, not knowing the secret key,
cannot see which operations are performed at which locations. To achieve obliviousness the

10

data owner usually needs to perform dummy accesses along with the real operations and
shuffle around elements in the encrypted array. Efficiency of an ORAM is measured in terms
of how many dummy accesses are needed for each real operation and it is known that for an
array of length n, it is both necessary [LN18] and sufficient [Ost90] to perform Θ(polylog n)
dummy accesses. In our context, the ledger will play the role of the server, whereas the
anonymizer service will play the role of the data owner. The anonymity guarantees of our
payment system will heavily rely on the obliviousness guarantees of the underlying ORAM-
like primitive, which we will make use of.

There are several important differences between what an ORAM provides and what we
need. In terms of functionality, we do not strictly need an array with arbitrary read and
write accesses, but just some data structure that allows for inserting coins and then retriev-
ing them at most once. In terms of security, we will require a stronger notion than standard
obliviousness, because payees will be able to track coins that have been paid to them in the
data structure. This means that the adversary obtains additional leakage about the move-
ments of some elements in the ORAM, which is not part of the regular ORAM obliviousness
definition. Intuitively, we need to ensure that the movements of the adversarially tracked
coins within the ORAM do not reveal any information about the movements of the honest
users’ coins.

We call the cryptographic primitive we require a strongly oblivious read-once5 map (SOROM)
and as we show in this work, there are existing ORAM constructions, which almost immedi-
ately provide us with our desired primitive. In particular, we will make use of the tree-based
ORAM of Shi et al. [SCSL11]. In their construction, an array of length n is represented as
a binary tree with n leaves. Each node in the tree is a bucket, which can store a fixed num-
ber of data elements. The write operation inserts the new data elements into the root node
bucket and assigns each of them a uniformly random leaf index. A maintenance operation is
performed regularly and ensures that data elements are pushed down towards their assigned
leaves, thereby making sure that no buckets at the top (or anywhere else for that matter)
overflow with elements. The data structure obeys the invariant that each element is always
in one of the buckets on the path between root node and assigned leaf. Reading an element
is done by first magically determining the corresponding leaf index6 and then retrieving all
log n buckets on the path from root to leaf. To maintain obliviousness, the ORAM then
places the read element in the root node bucket and assigns it a fresh random leaf index.

In our context, we observe that no coin is spent twice and thus no coin is read more
than once in the ORAM. This means that the coin does not need to be moved back to the
root after being read and will always be on the path that it was assigned to upon its initial
insertion in the data structure. This in turn will simplify finding the leaf index belonging
to a specific data element. Additionally, we will show that using the maintenance operation
from [SCSL11], all elements’ movements are independent of each other and thus the adversary
does not learn anything about the positions of the honest coins by observing the movements

5 Spending a coin will require reading it and since no coin can be spent twice, we never need to read an element in
the map more than once.

6 We will elaborate on how this works in our context below.

11

of the adversarial coins. In summary, combining the above observations allows us to construct
our SOROM by modifying the construction of Shi et al. appropriately.

How to Place a Coin. Before discussing how to place a coin in OCash, we first make two
simplifying assumptions. We assume that all coins have a unit value and we only aim for
weak anonymity, where the payer can see when the payee collects the coin. We discuss how
we allow for placing arbitrary monetary values and achieve strong anonymity at the end of
the technical overview.

Let us now look at how we can pay a coin with identifier tid to a shop S, which is
identified by a public encryption key ekS. For this purpose, we will use an encryption scheme
that is both re-randomizable and key-indistinguishable. By re-randomizable we mean that
ciphertexts can be re-randomized without knowing the public key under which the encryption
was performed. By key-indistinguishability, which was originally introduced by Bellare et
al. [BBDP01], we mean that a ciphertext cannot be linked to the public encryption key with
which it was generated or, in other words, the ciphertext does not reveal who is the intended
recipient. Concretely, the shop will have an ElGamal [ElG85] public key (g, h = gx) ∈ G for
a group G, where the Diffie-Hellmann problem [DH76] is hard, and the encryption of tid ∈ G
will be

Enc(ekS, tid) = (gρ, hρ, gσ, hσ · tid)
for uniformly random ρ and σ. We note that the shop can use their secret key x to determine
whether a ciphertext is for them, by checking whether (gρ)x ?= hρ. The ciphertext can be
re-randomized with values ρ′ and σ′ by computing(

(gρ)ρ′
, (hρ)ρ′

, (gρ)σ′ · gσ, (hρ)σ′ · (hσ · tid)
)

=
(
gρρ′

, hρρ′
, gρσ′+σ, hρσ′+σ · tid

)
.

The coin will be placed in the top bucket of our SOROM with an associated label L,
chosen as described below, and whenever the maintenance operation of our data structure
will move around these encrypted values it will also always re-randomize them.

How to Find a Coin. Before we can talk about how the shop can find coins they receive,
we first need to talk about how the label L is chosen when a coin is inserted into our SOROM.
When picking the label several things must be taken into account. The payer cannot choose
it arbitrarily, as correctness properties of our SOROM rely on it being uniformly random.
The label can also not be publicly known during coin placement as the shop will later reveal
it during coin collection, which would lead to anonymity issues. Lastly, the payment process
should be non-interactive in the sense that the payer can simply post a single message on the
ledger, which means that the label can also not be chosen via a protocol that would require
active interaction between anonymizer service and payer.

Our idea for choosing the label L is to let the user U and the anonymizer service perform a
coin flip into the well [Blu82]. When placing the coin at time t, the user chooses a label LU and
provides it to both the shop and the anonymizer service. Providing LU to the shop happens

12

off-chain and providing it to the anonymizer can be done by placing an encryption thereof,
under the public key of the anonymizer service, on the ledger. The anonymizer service then
publishes its label share LA,t for time t and defines the coin’s label as Hash(LU∥LA,t), where
Hash is modeled as a random oracle. This approach already gives us most of what we want.
The label is uniformly random and if the U was honest, then it is also unpredictable for any
outside observer, who knows LA,t.

There is, however, still one problem. How does the shop, which runs a light client learn
LA,t? Retrieving all labels ever published by the anonymizer is not feasible for a light client
and asking a full node for the specific label would reveal the value t, which would in turn pose
a problem for anonymity as t would leak information about the time of the coin placement.

To circumvent this problem, we introduce the notion of a compressible randomness bea-
con. Rather than choosing the values LA,1, LA,2, . . . fully at random, we will let the anonymizer
have a secret key k and let them choose LA,t := PRF(k, t) using a special pseudorandom func-
tion (PRF), which is inspired by constrained PRFs [BW13, KPTZ13, BGI14]. Now rather
than publishing LA,t at time step t, we will let the anonymizer publish a short constrained key
k≤t, which allows anybody to compute LA,t′ for any t′ ≤ t, but keeps any value larger than
t fully unpredictable. This allows the light client to simply retrieve the latest randomness
beacon output and from there they can recompute whatever specific label they need locally.

How to Collect a Coin. At this point, we know how the coin is placed and we know
how the shop can figure out the path in our SOROM on which the coin will be. Given the
properties of our encryption scheme, the shop can also determine which specific ciphertext
in the buckets on the path corresponds to the coin intended for them. The last question that
remains is how the shop can collect the coin. For this, the shop simply posts tid on the ledger
and proves in zero-knowledge that one of the ciphertexts on the path in the SOROM opens
to tid. The obliviousness guarantees of the SOROM ensure that revealing the path does not
reveal anything about when the coin was inserted into our data structure.

If tid was already posted on the ledger, then the collection of the coin is rejected. If the
tid is chosen arbitrary by the payer, then the shop has no way of verifying that the identifier
is fresh and was not used before. The used tid may already appear among the published
identifiers on the ledger or maybe the same tid was used to pay another shop, who also did
not yet collect the coin.

To prevent these types of double-spending attacks, we endow the tid with some more
structure. We will assume that each user has a public nonce nU. Whenever the user puts a
new coin on the ledger, the nonce gets incremented. The transaction identifier chosen by U,
when paying shop S the amount a is defined as the commitment tid = Commit(U, S, nU, a).
Concretely, we will use tid = gξ

0 · gU
1 · gS

2 · g
nU
3 · ga

4 as our commitment, where ξ are the random
coins and the values U and S are assumed to be the involved parties’ identifiers interpreted as
finite field elements. When placing an encryption of this tid on the ledger, the user U proves
in zero-knowledge that everything is well formed and that the tid contains the correct U and
the correct value nU. Computing these zero-knowledge proofs can be done very efficiently as

13

we show in our work. All in all, the encryption of this tid has the form

c = Enc(ekS, tid) =

gρ, hρ, gσ, hσ · gξ
0 · gU

1 · gS
2 · g

nU
3 · ga

4︸ ︷︷ ︸
tid

 .

If the coin is well formed, the ledger accepts it and provides a proof τ , which attests that
the coin is on the ledger.

During payment, the user sends (c, (ρ, σ, ξ, U, S, a), τ) to the shop via their off-chain com-
munication channel. The shop checks that the received coin c was correctly constructed using
the values (ρ, σ, ξ, U, S, a) and that τ indeed attests that c is on the ledger. We stress that
these checks do not require the shop to interact with the ledger or any full node. The binding
property of the commitment scheme ensures that two valid coins for different shops cannot
have the same identifier tid. Thus the shop only needs to make sure that it did not already
accept that exact coin itself.

How to Achieve Strong Anonymity. With the currently described approach, the shop
needs to reveal tid during collection, which allows the payer to see when the coin is collected.
To achieve strong anonymity, we need to hide tid during collection. For this purpose, we
further extend the encryption that defines a coin by one component. Let hid = Hash(U, nU)
be the hashed identifier, where Hash is a collision-resistant hash function and let

c = Enc(ekS, tid) =
(
gρ, hρ, gσ, hσ · gξ

0 · gU
1 · gS

2 · g
nU
3 · ga

4 · ghid
5

)
.

When placing a coin, the user U proves that the ciphertext is well formed by proving in
zero-knowledge that the components g1, g3, g5 contain the correct U, nU, and hid, where
hid = Hash(U, nU). During collection, the shop proves that the g2-component is S. What
remains to be proven is that the coin was not previously collected. For this we note that the
value (U, nU) is unique as nU is incremented for each payment of U. By the collision-resistance
of the hash function, this means that hid is also computationally unique.

The idea behind achieving strong anonymity is to extend the shop’s public key by includ-
ing a commitment to a PRF key K and then, upon collection, letting it reveal an oblivious
transaction identifier otid = PRF(K, hid) along with a proof that otid was correctly com-
puted w.r.t. the claimed coin. If hid is used only once, then otid is pseudorandom and leaks
no information, even w.r.t. the user knowing hid. If the shop attempts to collect the same
hid multiple times, then otid will repeat and the collection will be rejected.

To make this proof efficient, we will use a slight modification of the Dodis-Yampolskiy
verifiable random function(VRF) [DY05]. In general VRFs can be seen as commitments
to random functions, which allow the committing party to open function evaluations at
arbitrary points. We extend the shops public key by a component gK

5 , where K is the corre-
sponding secret key and the random function is defined as

PRF(K, hid) = g
1/(K+hid)
5 .

14

During collection the shop reveals otid and proves knowledge of a vector (c, x, K, hid, ξ, a, U, S, nU),
where

c = Enc(ekS, tid) =
(
gρ, hρ, gσ, hσ · gξ

0 · gU
1 · gS

2 · g
nU
3 · ga

4 · ghid
5

)
=: (c1, c2, c3, c4),

such that

cx
1 = c2 ∧ cx

3 · g
ξ
0 · gU

1 · gS
2 · g

nU
3 · ga

4 · ghid
5 = c4 ∧ otid = PRF(K, hid) .

What Happens When the Anonymizer Service is Compromised? OCash relies on a
trusted anonymizer service that regularly performs some actions. While realizing it through
secure computation can remove the requirement of trusting any one single party and can make
compromising this service practically very difficult, it is still sensible to ask what the worst
thing that could happen upon compromise is. If one uses an MPC with public verifiability
then the worst thing that can happen is full leakage of all values seen by the MPC and that
the MPC stops performing its task. The compromised service could stop performing its duty
of maintaining the SOROM, which would result in too many coins accumulating in the root
node bucket. This would potentially prevent light clients from efficiently interacting with the
ledger, but would still allow them to send and receive money, if they are willing to perform
as much work as a full node as the coins could be collected from the ledger using for instance
an accumulator based backup system.

A more efficient approach for implementing the anonymizer service would be to use a sin-
gle semi-trusted party to do the routing of the coins. One could let this party prove that it is
moving the coins correctly. We conjecture that the shuffling proofs used in Quisquis [FMMO19]
might be adopted to prove correct movement according to a SOROM. If the party adds proofs
that the routing is done correctly, then the worst that can happen, when the party is cor-
rupted, is loss of liveness and loss of anonymity, as the they can see how coins are moving
and thus learn who is paying whom. Both of these problems could possibly be mitigated by
using several anonymizers a la a mix net, but we leave the investigation of this to future
work.

Modelling and Analysis. Lastly, let us now discuss how we define and prove security. By
anonymity we will mean that after a sequence of payments and collections, an attacker gets
no knowledge beyond some unavoidable leakage. As an example of unavoidable knowledge,
imagine S collects a payment at time t, then the coin was necessarily created at some earlier
time t′ ≤ t. As another example, consider a shop that keeps querying the ledger to check
whether it received a payment. Necessarily the shop will learn, when a payment was initiated.
Besides this kind of unavoidable knowledge, the adversary should learn nothing. This should
hold, even if they are given the tid’s of all payments in the system, to ensure that we do not
rely on the secrecy of the tid’s in the security or anonymity of the system.

Defining anonymity using game-based definitions can be subtle and error prone, so we
have opted for a simulation-based definition. We require that the view of a run of the system
can be simulated given only the unavoidable knowledge. Since payment systems are designed

15

to be potentially used in other contexts and may possibly interact with many different other
systems, it is natural to require general and concurrent composability. We therefore define
security in the UC framework [Can01] by giving an ideal functionality FAnonPay, modeling an
ideal payment system only leaking unavoidable information to the simulator. Then we say
that ΠAnonPay is a secure payment system, if it UC-securely realizes FAnonPay.

Consider the ideal functionality FAnonPay in Fig. 1. It can interact with several users and
several shops. Parties can have both roles, but for our explanation it is easier to think of users
and shops as separate entities. We illustrate the ideal functionality with one user and one
shop, but there can be any number of them. When FAnonPay gets a command from U to pay S,
then the ideal functionality will inform the adversary/simulator7 that U initiated a payment
but not to whom. This models the fact that we allow for leaking, say via traffic analysis, that
U is doing some payment, but we do not allow leaking any information about who is being
payed or what the amount is. We let the adversary/simulator decide when the payment
is completed. When this happens U is informed and its account is deducted a monetary
units. We let the adversary decide when events like payments happened to avoid explicitly
modeling time. We do not explicitly consider any liveness guarantees and we believe it is
better to analyze them separately for a concrete implementation of an anonymous payment
system. All we require from our protocols at the present level of abstraction, is that they
are non-trivial in the sense of [Can01], i.e., if all messages are delivered then the protocol
produces outputs. Implementing FAnonPay then guarantees that these are the right outputs
and that privacy is maintained.

When a payment is created then FAnonPay samples a random tid with a distribution
independent of U and S, i.e., the tids of all payments are sampled from the same distribution
and hence they leak nothing about the payment they are associated to. tid is then output to
U, but not the simulator/adversary. This means that when proving security, the simulator
needs to simulate without knowing tid towards an environment which does know tid. This
might look draconian, but is needed to ensure that tid can be used as desired in any context
without hurting security of the system. Later, the simulator/adversary can inform FAnonPay
that the payment has become observable, at which time S is informed about the transaction
identifier and the amount. In some implementations, it might be the case that the shop
can observe that a payment happened, before it can actually collect it. We have therefore
introduce another state called collectable. Again the adversary decides when a payment
becomes collectable. The simulator/adversary is not informed about the identity of S when
making these decision. They are given a handle on the payment (U : Pay, ?) and can use this
handle to say when the payment should become observable and collectable.8 Once a payment
is collectable the shop might collect it. This will leak tid to the simulator/adversary to model
the fact that the protocol is allowed to leak tid at this point. Note that this does not violate

7 When proving security of a protocol ΠAnonPay relative to FAnonPay, then FAnonPay interacts with the simulator on
the top interface. When FAnonPay is being used as an ideal functionality in a hybrid world, then FAnonPay interacts
with the adversary on the top interface.

8 This captures the fact that the timing of when a payment comes observable and collectable cannot depend on
the identity of the shop, which could otherwise have been a covert leakage channel. This is an example of the
simulation-based definition automatically capturing aspects one might not have explicitly thought about in game-
based definitions.

16

Collect, tid

Collected, tid

Observed, tid, aPaid, tid

U
:P
a
y
,
?

P
a
id

O
b
s
e
r
v
a
b
l
e

C
o
l
l
e
c
t
a
b
l
e

C
o
l
l
e
c
t
e
d

S
:C

o
l
l
e
c
t
,
tid

P
ic
k
r
a
n
d
o
m

tid

d
e
d
u
c
t
,
a

Simulator/Adversary

U

FAnonPay

S
bU bS

a
d
d
,
a

Party U

Party S

Pay, S, a

Collectable, tid

Fig. 1. A sketch of the ideal functionality FAnonPay for anonymous payment. When strong anonymity is modelled then
the ideal functionality does not leak tid during collection but only “S: Collect, ?”

anonymity as tid is random and independent of U and tid has so far not been leaked. From
the point of view of the simulator/adversary tid can originate from any previous payment.9,10

Again, the simulator/adversary decides when the collection completes and at this point the
account of the shop is incremented. The non-triviality of ΠAnonPay will guarantee that once
a payment is observable, it will always become collectable and once it is collectable any
attempt to collect it will succeed.

Note that our notion of anonymity is a relative one. We prove that the system leaks
no more information than the times at which payments are created and collected. To get a
feeling for the anonymity provided by this relative notion, consider a setting with n hon-
est users U1, . . . , Un and n honest shops S1, . . . , Sn. First, all users pay one unique shop
in some arbitrary order. Then each shop collects their payment in some order. What the
simulator/adversary will see is

(U1: Pay, ?), . . . , (Un: Pay, ?), (S1: Collect, tid1), . . . , (Sn: Collect, tidn) ,

where the tidi are uniform and independently distributed. This leaks nothing about who paid
whom. If, however, it is known that a shop always collects payments right after being paid,

9 Again, it might look odd that we gave tid to the environment, but the crucial point is that we did not give it to
the simulator. Giving it to the environment only gives stronger security: the simulator must simulate without tid
and must fool even an environment who knows tid.

10 Leaking tid models weak anonymity. We can model strong anonymity by not leaking tid. As discussed above this
models that even the user cannot see when the shop collects its coin.

17

then we know they Ui paid Si. This means that, externally to the system, some measures need
to be taken to mitigate traffic analysis. The payment system itself, however, is compatible
with any way to mitigate the traffic analysis, thereby breaking up the system into very
different problems, which can be handled using different tools.

L(Ledger)

Light
Client

Light
Client

Light
Client

append(m)

read(p)

rea
d(L

)

(p,
τ
)

mp

FLedger

1 : m1

p : mp

Ledger

A

B

A

B

C

πService
May hold secret state

Anonymous Off-Ledger Communication

A
:(m

,
p
,
τ
)

B
:(p

,
m

p)

C
:(L

,
L
(L
ed
g
er))

Fig. 2. A sketch of our UC model of a ledger accessed via full nodes, anonymous off-ledger communication, and a
service protocol updating the ledger. When writing m the client learns the position p and gets a proof τ that m is
on the ledger. The same is leaked to the adversary (upward arrows). When reading a position p or using a general
read function L it is leaked who read what to the adversary.

We then address how we model the protocol. We will model the ledger using an ideal
functionality, see Fig. 2. Instead of explicitly modeling both full nodes and light nodes,
we have absorbed the full nodes into the ideal functionality. All parties using the ideal
functionality are consider light clients. When a party performs a given operation, FLedger
leaks the identity of the light client and the information the full node would have learned

18

in the real-world setting to the adversary. This models the worst case, where there is only
a single full node, which is used by all light clients in the anonymous payment scheme. The
anonymous off-ledger communication is modeled using a separate ideal functionality called
FAAT. Finally there might be a “service” protocol which helps update the ledger. This service
is modeled as just another party and their access to the ledger is via the same interface as
light clients.

We then prove our protocol secure by proving that it implements FAnonPay in the hybrid
model with FLedger and FAAT. We only give full simulation-based security proofs for the
core features and weak anonymity. We then separately discuss how to extend the analysis to
cover strong anonymity and some other extensions.

Paper Outline The remainder of the paper is structured as follows: We recall all relevant
existing definitions in our preliminaries in Section 2. We provide ideal functionalities for
anonymous cryptocurrencies in Section 3 and we provide the ideal functionalities that model
the blockchain world within which we would like our cryptocurrency to exist in Section 4.
We define our notion of an anonymous coin friendly encryption scheme, our compressible
randomness beacon, and our strongly oblivious read-once maps in Sections 5, 6, and 7 re-
spectively. Finally, in Section 8 we go on to construct OCash. All primitives that are defined
and used are instantiated in Section 9. We show how to extend OCash to satisfy strong
anonymity in Section 10.

2 Preliminaries

We use λ to denote the security parameter. When we work with lists, for instance a list
Ledger to represent the ledger, we index from 1. We use Ledger[k] to denote position k and
use Ledger[k] = ⊥ to denote that it is not the case that 1 ≤ k ≤ |Ledger|.

We prove security in the UC framework [Can20]. We assume the reader is familiar with
the UC framework. When we specify ideal functionalities all inputs will start with a command
name, CmdName. A canonical implementation of a command on an ideal functionality will
be off the form. “On input (CmdName, x) from P do the following” Such a command
later gives an output y by outputting (CmdName, x, y) to P. We output the command
name and input x again to link (CmdName, x, y) uniquely to (CmdName, x). This allows
us to use the following short hand notion for parties interacting with ideal functionalities:
F .CmdName(x)→ y. It expands to mean “Input (CmdName, x) to F , wait for F to return
the first value of the form (CmdName, x, z), assign z to y and then proceed.”

We use Pr[F |E] to denote conditional probability, i.e., the probability of event F given
event E occured. When A is an algorithm or process and E an event defined in that process
we use Pr[A : E] and Pr[A∥E] to denote the probability that E occurs when executing
experiment A.

19

2.1 Commitment Scheme
Definition 1 (Commitment Scheme). A commitment scheme is a tuple of PPT algo-
rithms Com = (Gen, Commit), which are defined as follows:
ck← Gen(1λ): The key generation algorithm takes security parameter λ as input and outputs

commitment key ck.
com← Commit(ck, m): The randomized commitment algorithm takes commitment key ck

and message m as input and outputs commitment com.
Definition 2 (Perfect Hiding & Computational Binding). We say that Com =
(Gen, Commit) is a perfectly hiding, computationally binding commitment scheme if it has
the following properties:
Perfect Hiding: For all λ ∈ N, all correctly generated ck ← Gen(1λ) and all messages m0

and m1 of the same length, it holds that Commit(ck, m0) and Commit(ck, m1) have the
same distribution.

Computational Binding: For all λ ∈ N and all PPT adversaries A, it holds that

Pr
[

ck← Gen(1λ)
(m0, m1, ρ0, ρ1)← A(ck)

∥∥∥∥∥ Commit(ck, m0; ρ0) = Commit(ck, m1; ρ1)
∧ m0 ̸= m1

]
≤ negl(λ).

2.2 Symmetric and Public Key Encryption
A symmetric-key encryption scheme is a tuple of PPT algorithms SKE = (Gen, Enc, Dec). We
use the notion of IND-P2-C2 from [KY00] and will just denote it as IND-CCA. We also use an
INC-CCA secure public key encryption scheme PKE = (Gen, Enc, Dec) see, e.g., [BDPR98].

2.3 Σ-Protocols
We will make use of several zero-knowledge proofs of knowledge and membership in our
protocols. They will all be based on Σ-protocols [Cra97], which are three-move proof systems.
Definition 3 (Σ-Protocols). A Σ-protocol with challenge space E for a relation R ⊆
{0, 1}∗ × {0, 1}∗ is a tuple of PPT algorithms (A, Z, V), which are defined as follows:
a← A(x, w; ρ): The algorithm takes statement x, witness w with (x, w) ∈ R and random

coins ρ as input and generates the prover’s first round message a.
z ← Z(x, w, e, ρ): The algorithm takes statement x, witness w with (x, w) ∈ R, challenge

e ∈ E, and auxiliary input ρ as input and generates the prover’s third round message z.
b← V (x, a, e, z): The verification algorithm takes statement x, prover’s messages (a, z), and

challenge e ∈ E as input and outputs a bit b.
that are defined by tuples (R, A, E , Z, V, Ext, Sim, T), where R ⊂ {0, 1}∗ × {0, 1}∗ is a

poly-time binary relation, A, Z, V, Ext, Sim are poly-time algorithms, E is the finite challenge
space, and T is a unary predicate used to recognize trapdoors when defining strong special
soundness as explained below.

Σ-protocols are expected to be complete, special sound, and honest-verifier zero-knowledge
as defined below.

20

Definition 4 (Completeness). A Σ-protocol (A, Z, V) with challenge space E for relation
R is said to be complete, if for any (x, w) ∈ R, it holds that

Pr

a← A(x, w; ρ)

e← E
z ← Z(x, w, e, ρ)

∥∥∥∥∥∥∥∥ V (x, a, e, z) = ⊤

 = 1,

where the probability is taken over the random coins of all involved algorithms.

Definition 5 (Special Soundness). A Σ-protocol (A, Z, V) with challenge space E for
relation R is said to be special sound, if there exists a PPT algorithm Ext, such that for any
(x, a, e, z, e′, z′) with e ̸= e′, it holds that

V (x, a, e, z) = ⊤ ∧ V (x, a, e′, z′) = ⊤ =⇒ (x, Ext(x, a, e, z, e′, z′)) ∈ R.

Definition 6 (Honest-Verifier Zero-Knowledge). A Σ-protocol (A, Z, V) with chal-
lenge space E for relation R is said to be honest-verifier zero-knowledge, if there exists a
PPT algorithm Sim, such that for any (x, w) ∈ R, it holds that

a← A(x, w; ρ)
e← E

z ← Z(x, w, e, ρ)
return (x, a, e, z)

≡

e← E

(a, z)← Sim(x, e)
return (x, a, e, z)

 .

We will also require a notion of strong special soundness, as introduced by Kondi and
Shelat [KS22], which asks for extraction to work even in the case where e′ = e, but z′ ̸= z.
Most Σ-protocols have this stronger property or can be massaged into having it. If extraction
fails, the extractor is allowed to instead recover a “system parameter trapdoor”. We define
PPT algorithm T , which recognizes system parameter trapdoors, i.e., we call t a system
parameter trapdoor if and only if T (t) = ⊤.

Definition 7 (Strong Special Soundness). A Σ-protocol (A, Z, V) with challenge space
E for relation R is said to be strong special sound with respect to trapdoor predicate T , if
there exists a PPT algorithm Ext, such that for any (x, a, e, z, e′, z′) with z ̸= z′, it holds that

V (x, a, e, z) = ⊤ ∧ V (x, a, e′, z′) = ⊤
=⇒ (x, Ext(x, a, e, z, e′, z′)) ∈ R ∨ T (Ext(x, a, e, z, e′, z′)) = 1.

The idea is of course that when used in a protocol, it should be computationally hard to
obtain a system parameter trapdoor. In that case, the extractor will return a witness for x
except with negligible probability.

21

2.4 Simulation-Sound NIZK Arguments

In our constructions we will need universally composable zero-knowledge proofs of member-
ship (UC ZKM). For a PPT relation R, the corresponding language is defined as

LR = {x | ∃w (x, w) ∈ R}.

A proof of membership for x is a proof that x ∈ LR.11 Both Camenisch, Krenn, and
Shoup [CKS11] as well as Nielsen [Nie17] present (equivalent) definitions of UC ZKMs.
An ideal functionality FZKM, which is parameterized by a PPT relation R, for ZKMs is
specified. An honest prover P can prove statements x in front of a verifier V by providing
(x, w) as input to the functionality. If (x, w) ∈ R, then the functionality outputs (x,⊤) to V,
signaling that x is in the language. When a corrupt prover P wants to prove a statement x
in front of verifier V, then the simulator/adversary only provides x to the ideal functionality,
which will just output (x,⊤) to V. Importantly, the corrupt prover does not have to present
a witness w. At this point the two models of Camenisch, Krenn, and Shoup [CKS11] and
Nielsen [Nie17] differ slightly.

In [CKS11] the ideal functionality is called “gullibly” as it accepts x without a witness,
so it could be the case that x ̸∈ LR. However, UC ZKM of a protocol is then defined as
implementing FZKM using a simulator which only inputs x ̸∈ LR with negligible probability.
This means that if the real protocol accepts x ̸∈ LR with non-negligible probability then the
simulator cannot simulate, which guarantees soundness.

In [Nie17], when the simulator/adversary inputs x, the ideal functionality will check that
x ∈ LR. If this is not the case, it outputs Fail to the environment. Call this ideal functionality
FFail

ZKM. A protocol is called a UC ZKM, if it implements FFail
ZKM, and now there is no explicit

restriction on the simulator.12 However, since Fail is never output in the real protocol, it
follows that the simulation fails, if it happens that x ̸∈ LR with non-negligible probability.
This means that the simulator only inputs x ̸∈ LR with negligible probability. Therefore
the simulator is an admissible simulator for the definition in [CKS11]. The definitions are
therefore equivalent.

Nielsen [Nie17] furthermore shows that a protocol is UC ZKM, if it is complete, zero-
knowledge and weak simulation-sound against a PPT adversary running multiple sessions as
defined below. Below we give the definitions specifically for NIZK proofs.

Definition 8 (Non-Interactive Zero-Knowledge). A NIZK is a tuple of PPT algo-
rithms NIZK = (Gen, Prv, Ver), which are defined as follow:

crs← Gen(1λ): The public parameter generation algorithm takes security parameter λ as
input and returns common reference string crs.

π ← Prv(crs, x, w): The prover algorithm takes common reference string crs, statement x,
and witness w as input and returns a proof π.

11 We stress, however, that the verifier is not guaranteed that the prover knows a witness w, such that (x, w) ∈ R.
12 Note that FFail

ZKM, is not PPT as the check x ∈ LR is not necessarily poly-time. However, it is shown in [Nie17] that
composition still works: in any PPT protocol using FFail

ZKM as a blackbox we can securely replace FFail
ZKM with a UC

ZKM. After this the overall protocol is PPT.

22

b← Ver(crs, x, π): The verification algorithm takes common reference string crs, statement
x, and proof π as input and returns bit b.

Definition 9 (Completeness). A non-interactive zero-knowledge proof NIZK = (Gen, Prv, Ver)
for relation R is said to be complete, if for any PPT adversary A, it holds that

Pr

crs← Gen(1λ)

(x, w)← A(crs)
π ← Prv(crs, x, w)

∥∥∥∥∥∥∥∥ (x, w) ∈ R ∧ Ver(crs, x, π) ̸= ⊤

 ≤ negl(λ),

where the probability is taken over the random coins of the adversary and all involved algo-
rithms.

Definition 10 (Zero-Knowledge). A non-interactive zero-knowledge proof NIZK = (Gen, Prv, Ver)
for relationR is said to be zero-knowledge, if there exists a pair of PPT algorithms (SimGen, Sim),
such that for any PPT adversary A, it holds that

Pr

(crs, tSim)← SimGen(1λ)

b← {0, 1}
g ← AOSimOrReal

tSim,b (·,·)(crs)

∥∥∥∥∥∥∥∥∥ g = b

 ≤ 1
2 + negl(λ),

where the probability is taken over the random coins of the adversary and all involved algo-
rithms and where the oracle OSimOrReal

tSim,b (·, ·) takes as input pairs (x, w). If (x, w) ̸∈ R, then
the oracle returns ⊥. Otherwise, if b = 0, it returns π ← Sim(tSim, x) and if b = 1, it returns
π ← Prv(crs, x, w).

Definition 11 (Weak Simulation-Soundness). A non-interactive zero-knowledge proof
NIZK = (Gen, Prv, Ver) for relation R is said to be weak simulation-sound, if there exists a
pair of PPT algorithms (SimGen, Sim), such that for any PPT adversary A, it holds that

Pr
(crs, tSim)← SimGen(1λ)

(x, π)← AOSim
tSim(·,·)(crs)

∥∥∥∥∥∥ x ̸∈ LR ∧ Ver(crs, x, π) = ⊤
 ≤ negl(λ),

where the probability is taken over the random coins of the adversary and all involved algo-
rithms and where the oracle OSim

tSim(·, ·) takes as input pairs (x, w). If (x, w) ̸∈ R, then the
oracle outputs ⊥ and otherwise it computes π ← Sim(tSim, x) and returns π.

Definition 12 (UC NIZK). A non-interactive zero-knowledge proof NIZK = (Gen, Prv, Ver)
for relation R with an associated pair of simulation algorithms (SimGen, Sim) is said to be
UC NIZK proof of membership, if it simultaneously satisfies completeness, zero-knowledge,
and weak simulation-soundness as defined in Definitions 9, 10, and 11 respectively.

Lindell [Lin15] presents a generic compiler that transforms Σ-protocols into NIZK proofs
in the CRS model in the presence of a non-programmable random oracle. The transformation
is proven to have the three properties defined above and therefore it actually produces a UC

23

NIZK. Since the random oracle is only used for soundness, we can apply the Fiat-Shamir
heuristic and replace it by a real life hash function and get a UC NIZK in the random oracle
devoid model. We use this to compile Σ-protocols into UC NIZKs in the CRS model without
a random oracle.

We will not go into the details of how Lindell’s transformation works, but we want to
highlight one of its main ideas, which will be relevant to our work. To show that their
UC NIZK is sound, Lindell argues that one could hypothetically extract a witness from an
adversarially generated, but accepting, proof by rewinding an entire UC execution, including
the environment itself. Now clearly one is usually not allowed to rewind the entire UC
execution, but the fact that one can in principle extract a witness means that it must exist,
which is enough to show soundness. We refer to this proof strategy as global extraction.

Attema, Fehr, Klooß [AFK22] show that the Fiat-Shamir transformation applied to multi-
round Σ-protocols results in proofs of knowledge. Since a witness can be extracted from
a proof of knowledge, it must logically exist. This means that using Lindell’s approach
in combination with global extraction, one can show that multi-round Σ-protocols can be
transformed into UC NIZKs of membership as well. Note, however, that since extracting the
witness can only happen using extraction, the resulting proof system is not a UC proof of
knowledge, as the UC simulator cannot rewind its environment.

2.5 Simulation-Extractable NIZK Arguments

In some cases we will not just need non-interactive proofs of membership, but rather proofs of
knowledge. Turning Σ-protocols into non-interactive proofs of knowledge via the Fiat-Shamir
transformation [FS87] requires rewinding for extracting the witness and for this reason this
transformation does not give us proofs of knowledge in the UC setting. Fischlin [Fis05]
presents an alternative transformation, which has an online extractor, thus also works in
the UC setting, but requires the Σ-protocols to have unique responses z. Unfortunately, this
property is not satisfied by some of the protocols we would like to use in our work.

Kondi and Shelat [KS22] present a randomized version of Fischlin’s transformation, which
allows for online extraction and only requires the starting Σ-protocol to satisfy strong special
soundness. Lysyanskaya and Rosenbloom [LR22] show that Kondi and Shelat’s transforma-
tion can transform Σ-protocols into non-interactive proofs of knowledge in the UC model
with a so-called restricted, programmable, observable, random oracle GroRO. We point to
the work of Lysyanskaya and Rosenbloom for a formalization of GroRO. For our purposes it
suffices to know that GroRO is one of the possible formalizations of the usual random oracle
lifted to the UC model. The only technicality needed, is that the simulator is allowed to ob-
serve the queries made by the environment, but we do not allow the environment to observe
queries made by the simulator, which would make it trivial for it to know that it is in the
simulation. For more details on this, we refer the reader to the work of Lysyanskaya and
Rosenbloom. In the descriptions below we will denote the random oracle by O.

In our work, we will use a definition of GUC NIZK PoKs that is equivalent to the definition
given by Lysyanskaya and Rosenbloom [LR22, Definition 11], but is more convenient to work

24

with. We will state our definition here and defer the discussion of why the two definitions
are equivalent to Appendix C.1.

Definition 13 (Non-Interactive Zero-Knowledge Proof of Knowledge). A NIZK is
a tuple of PPT algorithms NIZKPoK = (Gen, Prv, Ver), all with access to oracle O, which are
defined as follow:

crs← Gen(1λ): The public parameter generation algorithm takes security parameter λ as
input and returns common reference string crs.

π ← Prv(crs, x, w): The prover algorithm takes common reference string crs, statement x,
and witness w as input and returns a proof π.

b← Ver(crs, x, π): The verification algorithm takes common reference string crs, statement
x, and proof π as input and returns bit b.

In all of the following security definitions related to NIZKPoK, we will assume that the
extractor Ext and simulator Sim can observe all queries made to the O by the adversary but
not vice versa.

Definition 14 (Completeness). A non-interactive zero-knowledge proof of knowledge
NIZKPoK = (Gen, Prv, Ver) for relation R is said to be complete, if for any PPT adversary
A, it holds that

Pr

crs← Gen(1λ)

(x, w)← AO(·)(crs)
π ← Prv(crs, x, w)

∥∥∥∥∥∥∥∥ (x, w) ∈ R ∧ Ver(crs, x, π) ̸= ⊤

 ≤ negl(λ),

Definition 15 (Zero-Knowledge). A non-interactive zero-knowledge proof of knowledge
NIZKPoK = (Gen, Prv, Ver) for relation R is said to be zero-knowledge, if there exists a pair
of PPT algorithms (SimGen, Sim, Ext), such that for any PPT adversary A, it holds that

Pr

(crs, tSim, tExt)← SimGen(1λ)

b← {0, 1}
g ← AOSimOrReal

tSim,b (·,·),OExt
tExt (·,·),O(·)(crs)

∥∥∥∥∥∥∥∥∥ g = b

 ≤ 1
2 + negl(λ),

where the probability is taken over the random coins of the adversary and all involved algo-
rithms and where the oracles are defined as follows:

π ← OSimOrReal
tSim,b (·, ·): The oracle takes pairs (x, w) as input and if (x, w) ̸∈ R, then it returns

⊥. Otherwise, if b = 0, it returns π ← Sim(tSim, x) and if b = 1, it returns π ←
Prv(crs, x, w). It adds (x, π) to Q.

⊤/⊥ ← OExt
tExt(x, π): The oracle takes (x, π) as input and checks whether VerO(crs, x, π) = ⊤.

If not, it returns ⊥. Otherwise, it proceeds as follows. If (x, π) ∈ Q, it returns ⊤ or if
(x, π) ̸∈ Q, it computes w ← ExtO(tExt, x, π). If (x, w) ∈ R it returns ⊤, otherwise it
returns Fail.

25

Definition 16 (Weak Simulation-Extractability). A non-interactive zero-knowledge
proof of knowledge NIZKPoK = (Gen, Prv, Ver) for relation R is said to be weak simulation-
extractable, if there exists a pair of PPT algorithms (SimGen, Sim, Ext), such that for any
PPT adversary A, it holds that

Pr
(crs, tSim, tExt)← SimGen(1λ)

AOSim
tSim(·,·),OExt

tExt (·,·),O(·)(crs)

∥∥∥∥∥∥OExt
tExt ↪→ Fail

 = negl(λ),

where the probability is taken over the random coins of the adversary and all involved algo-
rithms and where the oracles are defined as follows:

π ← OSim
tSim(x, w): The oracle takes pairs (x, w) as input and if (x, w) ̸∈ R, then it returns

⊥. Otherwise, it computes π ← SimO(tSim, x), adds (x, π) to Q, and returns π.
⊤/⊥ ← OExt

tExt(x, π): The oracle is as defined in Definition 15. We write OExt
tExt ↪→ Fail to

denote the event that OExt
tExt on some activation returned Fail.

Definition 17 (GUC NIZK PoK). A non-interactive zero-knowledge proof of knowledge
NIZKPoK = (Gen, Prv, Ver) for relation R with an associated pair of simulation algorithms
(SimGen, Sim) and extractor Ext is said to be UC NIZK PoK, if it simultaneously satis-
fies completeness, zero-knowledge, and weak simulation-extractability as defined in Defini-
tions 14, 15, and 16 respectively.

3 Ideal Functionality for Anonymous Cryptocurrency

We start by giving a security definition for anonymous cryptocurrency by an ideal function-
ality FAnonPay. The model is very idealised and is not an attempt to model all aspects which
would be relevant to a real-life implementation. The model is meant to capture the funda-
mental security properties that we want the system to have by giving an ideal functionality
with these properties and then defining security via the UC framework.

We consider an account based setting as it makes our definitions of anonymity more
intuitive. We assume accounts might have a known association with real world identities and
that transactions are between accounts. The motivation for the first assumption is that once
an account was used to pay for a good at an online shop and the shop shipped the good to
the user, the shop will know who owns the account. Our constructions can be applied to a
UTXO setting too, but would require a somewhat more involved modelling, so we pick an
account based model for simplicity. To mitigate that the owner of accounts might not be
fully anonymous we will require that the sending account and receiving account of a transfer
cannot be linked. The only thing which leaks about an account is how many sends and
receives it made. So anonymity is required at the level of transfers. We consider two levels
of anonymity. When the flavour is weak then the sender of a transfer may learn when the
receiver collects the transfer. When the flavour is strong then the sender is oblivious of when
the receiver collects the transfer.

We use Accounts to denote the set of accounts. For concreteness think of the set of
accounts as being the set of public keys for a signature scheme. We generally denote an

26

account by A. For concreteness think of each account having an associated key pair (pk, sk)
and A = pk being the name of the account. In the discussion below, when using A to name
the account we use skA to name the secret key. The part of FAnonPay related to account
creation is given in Fig. 3.

Parameters The ideal functionality is parameterised by a flavour of anonymity fla ∈ {strong, weak} and
an initial amount a0 ∈ N. On the first activation it asks the adversary S for a TID distribution Tid which
is used for sampling transfer identifiers. The adversary must give a distribution Tid back with exponential
collision-entropy, i.e., if S is a set of payment identifiers, then Pr[tid ∈ S | tid← Tid] ≤ |S|2−λ. This is to
ensure that we can ignore the event that a randomly sampled transfer identifier will hit an already used
one.

Init When activated for the first time, proceed as follows. Let Accounts = {} be the initial set of accounts.
Initialise a map Balance : Accounts → N with Balance[A] = 0 for all A. Initialise the abstract transfer
identifier atid = 0.

Create Account On input (CreateAccount) from a party P, leak (CreateAccount, P) to S.
Callback Account Observable On a subsequent input (MakeAccountObservable, P, A) from S,

where A ̸∈ Accounts, add A to Accounts and output (CreateAccount, A) to P. From now on let PA
denote P and if we say that A does something, we mean that PA does that thing.
If this was the first account created, i.e., |Accounts| = 1, then let FA = A and let Balance[FA] = a0.

Fig. 3. Functionality Ffla,a0
AnonPay. Events related to creation.

Remark 1 (Where is the secret key?). When an account is created by party P the name A
of the account is returned by the command, as opposed to letting P input the account name
to the command. Another design choice is that only the account name is output, not any
secret key material used for controlling the account. In terms of an implementation, think
of the key material (pk, sk) as being generated as part of the account creation command.
After the account was created the command returns A = pk to the user on its API and the
corresponding secret key skA is securely stored locally. When the party PA, having created
A, wants to use the account A = pk then the secret key skA is recovered from storage. This
prevents that we give skA as output and have to give it as input. Since it is the environment
which sees outputs and gives inputs in the UC model and the environment talks to the
adversary, having made the secret key sk an output would have created problems.

One might then be worried about how to authenticate access to skA. Since A = pk is public
knowledge and one identifies the payer in a payment (Pay, A, B, a) just by naming A, cannot
anyone walk up and ask to transfer in the name of A? The answer is no and is guaranteed by
the party identifier logistics of the UC framework. In the UC framework, it is only the party
with party identifier pid who can give inputs in the name of pid to an ideal functionality. In
our case we call parties P which technically just means that the party identifier is pid = P.
The ideal functionality therefore by UC design remembers which P received A, call it PA,
and then only takes commands to control A from PA. In terms of an implementation, think
of it as follows. Anyone can run the command (CreateAccount, P). During this a key
pair (pk, sk) is generated. By doing this the party having run (CreateAccount, P) learns

27

(pk, sk). It outputs A = pk on the API so it can be used by outer protocols, but it stores
skA = sk locally. This is what implements that only P can control sk. Since the standard
corruption behaviour of the UC model is so-called pid-wise corruption it holds that the party
PA in an implementation of FAnonPay is corrupted if and only if the party calling party PA on
FAnonPay is corrupted. Therefore skA becomes known to the adversary if and only if the party
with party identifier PA is corrupted in the surrounding protocol. ◦

Remark 2 (Why does the adversary pick the account name?). We discuss a final subtlety of
the model of account creation. In the ideal functionality we let the adversary pick the name
A of the account. This might look weird, but it just models that the name of the account
can be anything. In a proof of security it is the simulator which is the adversary towards
FAnonPay and the simulator will just set A to be the public key that identifies the account in
the implementation. If we did not allow the adversary to pick A then the simulator could
not do this alignment of account names in the implementation and the ideal functionality.
In terms of using FAnonPay as an ideal functionality in a larger construction the design choice
means that an outer protocol should not rely on the account names having a particular form
or distribution, which seems as a healthy design principle independently of the subtleties of
UC modeling. ◦

Remark 3 (Could not the adversary steal the founding account?). Yes! Note that we simply
say that the first account created is the funding account and it gets the initial amount a0.
This in principle allows a corrupted party to open the funding account. We picked this model
for simplicity. Who is allowed to open the funding account is decided non-algorithmically and
will in practice typically be decided even before the blockchain exists. We see no advantage
in attempting a detailed model of this genesis ceremony. When using FAnonPay in some larger
context one can simply assume that the environment only allows the intended party P to
open the funding account.

We now describe and discuss how we model anonymous transfer. A transfer consists of a
payment and a collection.

Transfer Anonymity. We assume that accounts can be associated to users, or rather, we
do not assume that the user-account association can be reliably hidden from the adversary.
It is therefore a conservative model to just assume that the adversary knows who owns
which accounts. Anonymity will therefore be implemented by ensuring that if a payment is
made from account A to account B, then A and B cannot be linked. When the amount is
deducted from A the identity of B is hidden. When the amount is added to B the identity
of A is hidden. We require a strong notion of anonymity which ensures that if an amount
is deposited on B then this could be from any previous outgoing payment from any other
account in the system. The adversary might have prior knowledge on who pays who, but
observing the communication of the payment system should give it no additional knowledge.
More concretely we want to require the following. First of all, we assume that the receiver of
a payment is hidden for anyone but the sender and the receiver. We require that transferred
amounts are hidden from anyone but the sender and receiver: this prevents linking outgoing

28

and ingoing payments using the amounts. We allow that the receiver learns which account
sent the payment and that the payer learns who is being payed.

Collection. In any anonymous payment system there will be some notion of the receiver
“collecting” the payment later than when it is being made.13 We cannot have that the account
of the receiver is updated at the same time as the payment is being made. This would allow
trivial traffic analysis attacks. Hence the “collection” must happen later. We do not want to
add to the ideal functionality how long a collection is delayed. We consider this an external
choice. What the ideal functionality allows is to completely decouple the deduction and
collection events. The only information any party, not being sender or receiver, may learn is
that the collection was after the deduction, which is an a priori fact.

Strong versus Weak Anonymity. We consider two flavours of anonymity, weak and
strong. With weak anonymity the payer can see when its own payment is being “collected”.
This might not be tolerable in all cases as it allows timing attacks. Maybe the payer knows
that the receiver collects coins only when at a specific location. With strong anonymity we
also hide the time of collection from the payer.

Observability. The ideal functionality also has a notion of observability. Consider a cus-
tomer paying anonymously in a pizza shop. There is a point where the customer initiates the
payment, for instance by holding a smart phone next to a device in the shop and approving
the amount. At some point the shop will learn that the payment went through. This might
be well before it is collected, as discussed above. We therefore want to model explicitly this
property that a payment has been observed to be “collectable”. At this point the shop can
safely hand out the pizza. It then chooses to collect the coins later to preserve the anonymity
of the payer.

Transfer Identifiers. Once a payment has been initiated it gets a transfer identifier (TID)
tid. This is just a common name the payer and collector can use to refer to the payment.
If the same payer pays the same receiver the same amount twice about the same time, it is
often necessary to have a way to distinguish the payments externally to the payment service.
This is the role of tid. Since tid is the same for the sender A and the payer B it could be used
to break anonymity. Therefore we do not leak tid. When considering only weak security we
leak tid during collection. This will allow the sender to learn when the transfer was collected.
Third parties learn nothing as we do not leak tid at the time of payment. To make it safe to use
tid externally to the ideal functionality we want that tid in and of itself leaks nothing about
the transfer, like the identifier of the parties, the amount, or time of payment or collection.
A simple way to do this is to require that each tid is sampled from the same distribution Tid.
This is the design choice we took. To ensure that the tid’s are unique (except with negligible
probability) we require that Tid has collision entropy λ, where λ is the security parameter.
13 In a UTXO system this would correspond to when a UTXO is being spent in the future.

29

Initiate Pay On input (Pay, A, B, a) from PA where B ∈ Accounts and a ≤ Balance[A], let atid = atid + 1
and leak (Pay, A, atid) to S. Here A is the sender, B the receiver, a is the amount, and atid is an abstract
transfer identifier used to refer to the transfer internally. If PA or PB is corrupted then instead leak
(Pay, A, B, a, atid). If PA or PB is corrupted, then ask S for a transfer identifier tid; It must specify a tid
not used between A and B before, i.e., (A, B, tid) must be unique. When PA is corrupted, then S knows
the previous tid’s used, so it can pick a unique one. If S specified a tid used before, then FAnonPay ignores
it and samples a random identifier tid ← Tid. Add (Pay, atid, tid, A, B, a) to BeingDeducted. If PA or PB
is corrupt, then leak (Pay, A, B, tid, a) to S.
Callback Deduct On input (MakeDeducted, ãtid) from S, where some (Pay, ãtid, tid, A, B, a) ∈

BeingDeducted, remove (Pay, ãtid, tid, A, B, a) from BeingDeducted. If Balance[A] ≥ a, then let
Balance[A] = Balance[A] − a and add (Pay, ãtid, tid, A, B, a) to Deducted. Output (Pay, A, B, tid, a)
to PA.

Callback Observable On input (MakeObservable, ãtid) from S, where some (Pay, ãtid, tid, A, B, a) ∈
Deducted, add (Pay, ãtid, tid, A, B, a) to Observable.

Callback Collectable On input (MakeCollectable, ãtid) from S where some
(Pay, ãtid, tid, A, B, a) ∈ Observable, add (Pay, ãtid, tid, A, B, a) to Collectable.

Observe On input (Observe, tid, A, B, a) from PB, let J = ⊤ if some (Pay, ãtid, tid, A, B, a) ∈ Observable
and J = ⊥ otherwise, and return (Pay, tid, A, B, a, J) to PB.

Collect On input (Collect, tid, A, B, a) from PB proceed as follows.
– If (Pay, ãtid, tid, A, B, a) ̸∈ Observable ignore and return.
– If (Pay, ãtid, tid, A, B, a) ∈ Observable \ Collectable, leak (Collect, B, Too Early) to the adversary
S and return.

– If (Pay, ãtid, tid, A, B, a) ∈ Collectable, let atid = atid + 1, leak (Collect, B, atid) to S (in case of
fla = weak leak (Collect, B, atid, tid) to S), and add (Pay, atid, tid, A, B, a) to BeingCollected.

Callback Collected On input (MakeCollected, ãtid) from S, where some (Pay, ãtid, tid, A, B, a) ∈
BeingCollected and (Pay, tid, A, B, a) ̸∈ Collected remove (Pay, ãtid, tid, A, B, a) from BeingCollected
and add (Pay, tid, A, B, a) to Collected and let Balance[B] = Balance[B] + a. Then output
(Collect, tid, A, B, a) to PB.

Fig. 4. Functionality Ffla,a0
AnonPay. Events related to payment and collection.

30

Under these restrictions we let the adversary pick the distribution. If the sender is corrupted
we allow it to pick the payment identifier in a non-random manner. We enforce, however,
that it cannot reuse a payment identifier, as this could lead to confusion and subtle attacks.
We therefore make FAnonPay enforce that payment identifiers are unique even when picked by
a corrupt sender. Note that this puts the same requirement on an implementation.

Discussion of Commands. The part of FAnonPay related to payment and collection is given
in Fig. 4. We discuss some technicalities of how the ideal functionality is specified. We let
S denote the adversary. The value atid is an abstract transfer identifier which is internal to
the ideal functionality for book keeping only. This is just a way in which the adversary can
denote a given payment for which it does not known the sender, receiver or amount. The
value tid is a transfer identifier used by the sender and receiver to refer to the transfer. It will
identify the transfer, so it must be hidden from S and cannot be used as a pointer for book
keeping. We add a delay to some events to get a more realistic model. We let the adversary
determine when events happen by giving a callback when the event should take place.

We now go over the commands and explain how they may relate to a real-life implemen-
tation. On input (CreateAccount) party P would start making the key material for an
account and post it on the blockchain. Once the account has been posted it would be ob-
servable by other parties. This corresponds to the (MakeAccountObservable, A) event.

On input (Pay, A, B, a) party P starts interacting with the blockchain to create the pay-
ment. The value atid does not appear in the implementation, it is only a pointer used for
bookkeeping in the ideal functionality. Since P might have its secret key stored in several
places and accidentally have different sites act at the same time, we do not assume that PA
knows that it did not try to spend more than Balance[A]. We assume that it checks that
for a given transfer of a it holds that a ≥ Balance[A], but we allow that it might happen
that several such payments are initiated concurrently and would create a negative balance
if all were executed. We consider this possible honest behaviour and will not punish it. It
seems a crucial security requirement that an honest party does not lose safety just because
it accidentally attempts a “double spend”.

At some point the payment might get so far underway (if there are sufficient funds) that
the account A is deducted the amount a. This is the callback event MakeDeducted. Here
we will do the check that the balance will not get negative, and reject deductions that would
cause this. Further down the road the payment will reach a state where B can observe that
the payment was made and can be sure that it will eventually be able to collect it. This
might happen before it is actually collectable, and it is an interesting event as it would
allow the receiver to safely hand out goods or service. Therefore we make this a separate
callback event MakeObservable. At the end of the payment process the transfer reaches
a state where it can be collected at the discretion of the receiver. This is the callback event
MakeCollectable.

Finally, once a coin is collectable, the receiver might chose to collect it. This is done
using the command (Collect, tid, A, B, a) from PB. It is leaked to the adversary when this
happens and who B is. In case of weak anonymity we also leak the transfer identifier tid. But

31

the connection to the payment is not revealed, as we did not leak tid during payment. We
also use independent values of atid during payment and collection so the adversary cannot
link payment and collection via the interaction with FAnonPay. Once collection has begun it
will eventually terminate. We say that the collection terminated when the funds become
available to the receiver. This is modelled using the callback event MakeCollected.

Remark 4 (Why does the adversary specify the distribution of transfer identifiers?). We want
that the distribution of transfer identifiers can depend on the implementation. Allowing
the adversary to specify it will allow the simulator to simply set it to be the one of the
implementation. ◦

Remark 5 (How does the receiver learn about the payment?). Note that to collect a payment
the receiver has to input (Collect, tid, A, B, a). This might raise the question of how it
learns tid and a, and maybe even how it learns that PA wants to pay PB at all? Why not let
FAnonPay signal these values to PB when the payment takes place? We have chosen not to do
this to not enforce implementations where PB is online during payment or where PA knows
how to contact PB. It could be that PA wants to pay an anonymous account B and does
not know who the owner PB is. It could also be that PA wants to use a particular channel
to inform PB of the payment that we do not model in our setting. This could for instance
be a text message or a channel not leaking the physical identity of PA to PB. We therefore
assume that there is some out-of-band way that PA learns that a payment took place, and
the workflow of the payment on FAnonPay resumes when PB learned about the payment and
inputs (Collect, tid, A, B, a). ◦

4 Modelling the Blockchain World

We now describe how to model the setting in which we want to implement the anonymous
cryptocurrency. We will call this the blockchain world. The blockchain world will contain
a public ledger FLedger and an authenticated anonymous channel FAAT, both modelled as
ideal functionalities.

The public ledger is an authenticated append-only ledger. We also assume it can do so-
called filtering, i.e., a message can be posted along with a claim of having some given property
ϕ. The property might depend on the current state, Ledger, of the ledger. Technically we will
append (m, ϕ) and we only add this message to Ledger if ϕ(Ledger, m) = ⊤. We add ϕ to
the ledger to model that it is known how a given m was filtered. An example of a property
could be that m specifies a payment for which there currently is enough balance on Ledger.

The ideal functionality FAAT models an authenticated anonymous channel between payers
and receivers. This is a means by which a payer can send a message to the receiver without
this event becoming visible on the public ledger, or to other senders or receivers.

The blockchain world will always contain a protocol ΠAnonPay for payment. This is a pro-
tocol using FLedger and FAAT. The blockchain world might also contain a protocol ΠService
which has access to FLedger and might do off-ledger computations and post messages to
the ledger to aid the execution of the anonymous payment service. Concretely, in our im-
plementation, they will perform the mixing of the coins. We can model this setting in the

32

UC framework by letting FLedger be a global sub-routine of both ΠService and the protocol
ΠAnonPay (cf. [BCH+20]). We now describe FAAT and then FLedger.

Anonymous, Authenticated Channels. We formalise a notion of anonymous, authenti-
cated channels where the sender can send a message to a receiver without anyone else being
aware that a message is being sent.

What we mainly want to model is that there is an off-chain way to deliver a message
between Sender and Receiver without the parties running the blockchain learning about
the communication. This is a tricky notion to formalise, so for simplicity we assume the
anonymity is perfect, i.e., no one learns anything about the transfer. In practice this is rarely
possible to implement. Imagine for instance a setting where you are in a shop and bring your
credit card close to a reader using Near Field Communication to read a message from the
card. Or consider a situation where you send an e-mail to the address of the Receiver using a
Tor like solution. In both these situation there are parties which learn some leakage. Another
customer in the shop might know that the shop uses a blockchain based payment system
and inspect the blockchain to see which payments were made at the particular point in time
of your purchase. This might allow them to link the purchase to a particular account on
the blockchain and thereby you. You do not necessarily want other customers to learn your
identity. The Tor servers at the edge do learn some information on when certain entities were
active and hence also learn some, possibly vague, information about the communication. But
in both cases we can allow ourselves to ignore the leakage of the off-chain channel with open
eyes and keep in mind that a scheme proven secure in our model would therefore have to
be analysed for traffic analysis attacks when implemented in practice and using concrete
real-world channels.

Init Let did = 0 be a delivery id.
Drop Off On input (DropOff, P, Q, mid, m) from P, let did = did + 1, and send (DropOff, did) to S.

Callback DropOff On input (DropOff, did) from S add (DropOff, A, B, mid, m) to Dropped.
Collect On input (Collect, P, Q, mid) from Q, where some (DropOff, P, Q, mid, m) ∈ Dropped, return

(DropOff, P, Q, mid, m) to Q.

Fig. 5. Functionality FAAT.

We believe that a very precise and detailed model of these settings which would allow
to catch and quantify the above problems would hide the big picture of our model which is
meant to be simple and foundational. We therefore went for the very abstract models of the
off-chain channels. The model is given in Fig. 5.

Ledger. At the most abstract level a blockchain is an append-only ledger with no associated
secret state beyond the list of messages. It just allows several parties to broadcast messages
and creates an agreed upon total order on the messages. This is also called total-ordered

33

broadcast and atomic broadcast. We model this as an ideal functionality FLedger in Fig. 6,
where one can broadcast messages and lookup information on the ledger.

Any party can broadcast a message. A very unrealistic aspect of our model is that all
parties see the same ledger at all times. This is physically impossible. There will always be
some difference in the exact physical time at which two parties receiver the message making
them update their view. We have for simplicity chosen to not model time and liveness in
detail. However, for our construction one can see by inspection that there is no use of this
perfect synchronisation feature. Our protocols can also be proven secure in more realistic
models of time.

When posting a message m we also assume that a filtering/validity predicate ϕ is posted.
It is used to reject invalid messages from being posted. When ϕ(Ledger, m) = ⊤ then we
say that m is valid to be appended to Ledger, otherwise it is invalid. We assume that
the ledger only post message in valid positions, i.e., for all ways to write the ledger as
Ledger = Ledger′∥(m, ϕ)∥Ledger′′ it holds that ϕ(Ledger′, m) = ⊤. If we post a message with-
out mentioning ϕ, then we are tacitly using the constantly true ϕ = ⊤. We note that not all
blockchains allow filtering. However, most modern blockchain allows some notion of smart
contract. One can implement filtering by inputting the message to a smart contract which
accept the message only if it is valid. The filtering functions we use are relatively simple, so
it could be practical on most blockchains.

We have a read command, where an account holder can choose to read only part of
the blockchain. This is done by submitting a function R and getting back R(Ledger). The
function R will be leaked to the adversary. In practice this could be implemented by the
account holder submitting R to one or more reader nodes of the blockchain and getting back
(an authenticated version of) R(Ledger). For this implementation to be secure it is important
that we let FLedger leak R. We require that R is monotone in the following sense. The output
of R is ⊥ or a bit-string. If R(Ledger) ̸= ⊥ then for all Ledger′ which are extensions of Ledger
it holds that R(Ledger′) = R(Ledger). Think of ⊥ as having tried to read a part of the
blockchain that did not exist yet. We call such R lookup functions.

Main Theorem Statement. With the model in place we are ready to state or main theo-
rem. Our protocol ΠAnonPay follows the technical overview in the introduction. It uses several
standard primitives formalised in Section 2 for completeness, including commitments, encryp-
tion, and zero-knowledge. It also uses several new primitives, namely a strongly oblivious
read-once memory (SOROM), a compressible random beacon (CRaB), and an anonymous
coin-friendly encryption scheme (ANCO) which we formalise in the full version.

Theorem 1 (informal). Under the security of the primitives SOROM SOROM, UC ZK
proof of knowledge NIZKPoK, UC ZK proof of membership NIZK, perfectly hiding commit-
ment scheme Com, IND-CCA secure public-key encryption scheme PKE, IND-CCA secure
secret-key encryption scheme SKE, ANCO RPKE, CRaB CRaB the protocol ΠAnonPay UC-
securely implements FAnonPay in the hybrid world with ideal functionalities FLedger, FAAT,
and FService.

34

The ledger FLedger interacts with parties P and the adversary A.

Init (Internal Command) Initialize an empty list Ledger and empty sets InTransit, Proven.
Broadcast On input (Broadcast, m, ϕ) from P, where m ∈ {0, 1}∗ is the message and ϕ : ({0, 1}∗)∗ →
{⊤,⊥} is a PPT filtering predicate, leak (Broadcast, P, m, ϕ) to the adversary and add (P, m, ϕ) to
InTransit. We assume ϕ is given in some representation ensuring that it is PPT.
Callback Broadcast On input (Broadcast, P, m, ϕ) from A, where (P, m, ϕ) ∈ InTransit and

ϕ(Ledger, m) = ⊤ and (P, m, ϕ) ̸∈ Ledger, append (m, ϕ) to Ledger.
Read On input (Read, R) from P, where R is a lookup function, leak (Read, P, R) to the adversary and

return (Read, R, R(Ledger)) to P.
Prove Valid On input (ProveValid, p) from P, where Ledger[p] ̸= ⊥, send (ProveValid, P, p) to A and

get back TxProof ∈ {0, 1}λ. Add (p, Ledger[p], TxProof) to Proven and return (ProveValid, p, TxProof)
to P.

Verify Valid On input (VerValid, p, (m, π), TxProof) from P return (VerValid, p, (m, π), J ∈ {⊤,⊥}) to
P where J = ⊤ if and only if (p, (m, ϕ), TxProof) ∈ Proven.a

a This command by design does not leak information to the adversary.

Fig. 6. Blackbox Ledger FLedger

Unfortunately the page limit does not allow us to formalise all the new primitives nor
their implementations. Their formalisations are given in the supplementary material. Here
we formalise only the notion of SOROM which is central for giving anonymity against an
adversary who can follow its own elements in an oblivious data structure and ANCO which
specifies the encryption scheme for encrypting coins.

5 Anonymous Coin Friendly Encryption (ANCOs)

We now introduce some tools we need for building OCash. The first is a anonymous coin
friendly encryption scheme.

Definition 18 (Rerandomizable Public Key Encryption). A rerandomizable public
key encryption (RPKE) scheme is a tuple of PPT algorithms RPKE = (Params, Gen, Enc,
Dec, Ran), which are defined as follows:

pp← Params(1λ): The parameter generation algorithm takes security parameter λ as input
and outputs public parameters pp.

(ek, dk)← Gen(pp): The key generation algorithm takes public parameters pp as input and
returns public key pk and corresponding secret key sk.

ct← Enc(ek, m): The encryption algorithm takes public key pk and message m ∈ M as
input and returns ciphertext ct ∈ C.

m← Dec(dk, ct): The decryption algorithm takes decryption key dk and ciphertext ct ∈ C as
input and returns plaintext m ∈M.

ct′ ← Ran(pp, ct): The rerandomization algorithm takes public parameter pp and ciphertext
ct as input and returns ciphertext ct′.

35

For an integer k ∈ N, we write Rank(pp, ct) to denote the k-fold application of the random-
ization procedure to ciphertext ct.

We will consider encryption schemes in the presence of a relation REnc for statements
x = (pp, ct, m) and witnesses w = ρ. The pair (x, w) is inREnc if and only if, there exists a key
pair (ek, dk) in the support of Gen(pp), such that ct = Enc(ek, m; ρ). We require the relation
to be efficiently checkable, when given only x and w, meaning that one can efficiently check
whether a ciphertext is indeed a valid encryption without knowing the actual encryption or
decryption key. Looking ahead, this property will be crucial for allowing us to place and spend
coins securely and anonymously. The property is not as mysterious as it first appears. In our
scheme ct = Enc(ek, m; ρ) contains a perfectly binding committing to ek and w containsthe
opening. What is crucial for anonymity is that ek is not mentioned in the instance x, which
will be put on the ledger.

We will also require our encryption scheme to satisfy several other properties that we
state in the following. We require honestly generated ciphertexts ct to decrypt to the correct
plaintext.

Definition 19 (Correctness). We say an encryption scheme RPKE = (Params, Gen, Enc,
Dec, Ran) is correct, if for all λ ∈ N, all k ∈ N and all m ∈M, it holds that

Pr

pp← Params(1λ)

(ek, dk)← Gen(pp)
ct← Rank(Enc(ek, m))

∥∥∥∥∥∥∥∥ Decdk(c) = m

 = 1,

where the probability is taken over the random coins of all involved algorithms.

The next property, called key-indistinguishability under rerandomization, requires that no
adversary can determine under which key a given ciphertext was encrypted. Our notion is
stronger than the classical notion of key-indistinguishability as originally formalized Bellare
et al. [BBDP01], since we allow the adversary to rerandomize the ciphertext an adversarially
chosen amount of times.

Definition 20 (Key-Indistinguishability Under Rerandomization). We say encryp-
tion scheme RPKE = (Params, Gen, Enc, Dec, Ran) is key-indistinguishable under rerandom-
ization, if for any PPT adversary A = (A1,A2) and any λ ∈ N, it holds that

Pr

pp← Params(1λ)
(ek0, ·)← Gen(pp); (ek1, ·)← Gen(pp)

(m0, m1, k0 ≥ 1, k1 ≥ 1, st)← A1(pp, ek0, ek1)
b

$←{0, 1}
ctb = Rankb(Enc(ekb, mb))

b′ ← A2(st, ctb)

∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥
b′ = b

= 1

2 ± negl(λ),

where the probability is taken over the random coins of the involved algorithms and the
adversary.

36

We will require our encryption scheme to message binding in the sense that any ciphertext
can decrypt to at most one message, no matter which decryption key is used.

Definition 21 (Strong Message Binding). We say encryption scheme RPKE = (Params,
Gen, Enc, Dec, Ran) with associated relation is strongly message binding, if for any PPT ad-
versary A and any λ ∈ N, it holds that

Pr
[

pp← Params(1λ)
(c, m, w)← A(pp)

∥∥∥∥∥ ((pp, ct, m), w) ∈ REnc ⇒ Dec(·, ct) ∈ {m,⊥}
]

= 1− negl(λ).

We will call encryption schemes that satisfy the above properties anonymous coin friendly
encryption schemes (ANCOs)

Definition 22 (Anonymous Coin Friendly Encryption Schemes). We say a reran-
domizable encryption scheme (Params, Gen, Enc, Dec, Ran) is an anonymous coin friendly
encryption scheme, if it simultaneously satisfies correctness, key-indistinguishability under
rerandomization, and strong message binding as defined in Definitions 19, 20 and 21.

6 Compressible Randomness Beacons (CRaBs)

In this section, we formally introduce the notion of compressible randomness beacons. We
refer the reader to the technical overview in Section 1.3 for a discussion of what this primitive
is and why we need it.

Definition 23. A compressible randomness beacon (CRaB) with input domain [T] and range
Y is defined by a tuple of PPT algorithms CRaB = (Gen, Eval, Prefix), which are defined as
follows:

k ← Gen(1λ): The key generation algorithm takes the security parameter as input and returns
a key k.

v ← Eval(k, i): The evaluation algorithm takes the key k and index i ∈ [T] as input and
returns an evaluation v ∈ Y.

k∗ ← Prefix(k, 1i): The prefix algorithm takes a key k and index 1i ∈ [T] in unary as input
and returns a key k∗.

Remark 6. We note that our prefix algorithm takes the index as a unary input, which may
seem odd at first. This is done for technical reasons and will later on allow us to both instan-
tiate and use our construction in OCash. In our main protocol, the polynomially bounded
parties will only run for a polynomial number of time steps and therefore only input a polyno-
mially large index, thus the provided interface of the prefix algorithm is sufficient. Looking
ahead, in the proof of our compressible randomness beacon construction, we will need to
guess the largest index provided by the adversary, but because there are only polynomially
many that the adversary could query, we will be able to do this with a polynomial loss,
instead of a super-polynomial loss. ◦

37

We would like our randomness beacon to be correct in the sense that the prefix keys
produce evaluations that are consistent with the master secret key.

Definition 24 (Correctness). We say B = (Gen, Eval, Prefix) with input domain [T] is
correct, if for all i, j ∈ [T] with i ≤ j it holds that

Pr
 k ← Gen(1λ)
k∗ ← Prefix(k, 1j)

∥∥∥∥∥∥ Eval(k, i) = Eval(k∗, i)
 = 1,

where the probability is taken over the algorithm’s random coins.

From a security perspective, we want keys for prefixes to not reveal anything about
outputs on indices outside that prefix. Given keys for prefixes up to index j, the adversary
should not be able to predict any value at any index i with i > j. Conceptually, our notion
is reminiscent of notions for constrained PRFs [BW13, KPTZ13, BGI14].

Definition 25 (Unpredictability). We say B = (Gen, Eval, Prefix) with input domain [T]
and output domain [N] is unpredictable, if for any PPT adversary A it holds that

Pr

 k ← Gen(1λ)
(i, v)← AEval(k,·),Prefix(k,·)(1λ)

∥∥∥∥∥∥∥∥
Eval(k, i) = v ∧

max QP < i ∧
i ̸∈ QE

 ≤ 1
N

+ negl(λ),

where the randomness is taken over the coins of all algorithms and the adversary, QE is the
set of inputs queried by the adversary to the oracle Eval(k, ·), and QP is the set of inputs to
oracle Prefix(k, ·).

The property that makes CRaBs non-trivial to construct and interesting for our applica-
tion is the δ-compressibility requirement, which states that prefix keys should be of size at
most δ.

Definition 26 (Compressibility). We say B = (Gen, Eval, Prefix) with input domain [T]
and range Y is δ-compressing for some δ = δ(T), if for all k ← Gen(1λ) and i ∈ [T] it holds
that

|Prefix(k, i)| ≤ δ.

Constructing CRaBs that are Õ(T)-compressing is trivial, but also not particularly in-
teresting, so our focus lies on building CRaBs that are o(T)-compressing.

7 Strongly Oblivious Read-Once Maps (SOROMs)

In this section, we formally introduce the notion of strongly oblivious read-once maps
(SOROMs), which are defined by a tuple of PPT algorithms SOROM = (Pos, Route, Read).
For a high-level discussion of what this primitive is and how it will be used in our context,
we refer the reader to the technical overview in Section 1.3.

38

We model SOROMs as encrypted memory arrays. When inserting an element into the
data structure, a random label L is chosen and assigned to the element. The element along
with the label are encrypted and are always initially placed into position 0 of the memory.

To make sure that we can always insert new elements into position 0 and to ensure our
strong oblivious guarantees, we need to route elements around in the memory after each
insertion. For each i ∈ N, after the i-th insertion operation, the memory positions indicated
by Pos(i) will be the ones that are touched for routing purposes. Data in these positions may
be moved around and data outside these positions stays where it is for the moment. The
positions returned by Pos(i) and the labels of elements in those positions are given as input to
Route, which determines how these elements should be moved around. More precisely, Route
outputs a permutation π on [|Pos(i)|] specifying how data elements are permuted within
the positions from Pos(i). Since the actual data elements are just dragged along with their
corresponding labels and not important for the routing we completely leave them out of the
definition. Only labels are routed around. The function Read(L) returns a set of memory
positions, ensuring that one of those positions stores label L.

Informally, we define strong obliviousness to mean that L leaks nothing about when the
data was inserted, even if the adversary gets to see the movements of a set of adversarially
corrupted labels. This means one can retrieve data by reading at locations returned by
Read(L) without leaking which was the corresponding write operation.

Definition 27. A read-one map with label space L and memory size N is a tuple of PPT
algorithms (Pos, Route, Read), which are defined as follows:

S ← Pos(i): The positions algorithm takes an index i ∈ N as input and returns a set of
memory positions S ⊂ [N].

π ← Route(j1, . . . , jℓ, L1, . . . , Lℓ): The routing algorithm takes memory indices j1, . . . , jℓ ∈
[N] and labels L1, . . . , Lℓ ∈ L as input and returns a permutation π : [ℓ]→ [ℓ].

S ← Read(L): The read algorithm takes a label L ∈ L as input and returns a set of memory
locations S ⊂ [N].

In the following security definitions, we view the memory M as a function mapping
indices to labels, i.e. M : [N] → L. For notational convenience for a set S ⊂ [N], we write
M(S) := {L | ∃i ∈ S :M(i) = L}.

Definition 28 (Correctness). We say a read-one map (Pos, Route, Read) with label space
L and memory size N is correct, if at the end of an execution of running ExecSOROM with
final insertion counter i ∈ N, it holds that

Pr [∀i′ < i (Li′ ∈M[Read(Li′)])] ≥ 1− negl(λ) .

We define the strong obliviousness property that we require from our data structure
through the game depicted in Figure 7. In this game, the adversary is allowed to adaptively
insert honest or corrupted data elements. The movements of the corrupt ones they can track,
those of the honest ones they cannot. For the honest ones, the adversary either always gets
the real corresponding labels or independent random labels. By just seeing the movements

39

Game ExecSOROMSOROM
A (1λ).

1. Initialise an insertion counter ι = 0, a set of corrupt insertions C and a set of honest insertions H. Let M
be the initial memory with M[j] = 0λ for all j. Sample a uniformly random challenge bit b.

2. Run A to get an output o where o ∈ {honest, corrupt} or o = (done, g ∈ {0, 1}).
3. If o ∈ {honest, corrupt}, proceed as follows:

(a) Sample uniformly random Li ← L. If Li = Li′ for any i′ < i then stop the game with output 0
(meaning that the adversary wins).a

(b) If o = corrupt then add i to C and give Li to A.
(c) If o = honest then add i to H. Furthermore, if b = 0 give Li to A. If b = 1 sample uniformly random

L∗
i ← L and give L∗

i to A.
(d) Update M[0] = Li.
(e) Compute the positions to route among (j1, . . . , jℓ) = Pos(i).
(f) For h = 1, . . . , ℓ let Lh =M[jh].
(g) Sample π ← Route(j1, . . . , jℓ, L1, . . . , Lℓ).
(h) For h = 1, . . . , ℓ let M[jh] = Lπ(h).
(i) For all i ∈ C tell A the new position of Li.
(j) Let i = i + 1 and go to step 2.

4. If o = (done, g) then terminate with output g ⊕ b.b

a This is a technicality allowing us to proceed below under the assumption that all labels are unique.
b Note that output 0 means that the adversary guessed b correctly.

Fig. 7. Security game for SOROMs.

of the corrupt labels, the adversary then needs to decide in which of those two worlds it lives
in.

Definition 29 (Strong Obliviousness). We say a read-one map (Pos, Route, Read) with
label space L and memory size N is strongly oblivious, if for any adversary A, it holds that
Pr

[
ExecSOROMA(1λ) = 1

]
≤ 1

2 + negl(λ), where ExecSOROMA(1λ) is defined in Figure 7
and the probability is taken over the random coins of the experiment and the adversary.

8 OCash: Anonymous Transfers from Oblivious RAM

We are now finally ready to present OCash. We describe a version of our construction that
satisfies weak anonymity here and discuss how to achieve strong anonymity in Section 10.

8.1 Stateful Blockchains

We model a blockchain as an append-only datastructure, which in the following descriptions
is a bit cumbersome. We note that we can talk about a blockchain containing a state or
datastructure as follows. Consider a datastructure with dataspace D and initial state d0 ∈ D,
and update space U , and read space R. For a datastructure d and an update u ∈ U we let
d′ = Update(d, u) be the datastructure obtained from d by applying u. For a datastructure d
and a read r ∈ R we let v = Read(d, r) be the value obtained by performing read operation

40

r on d. For a sequence u = (u1, . . . , um) we let d = Update(u) be d = dm, where di =
Update(di−1, ui) for i = 1, . . . , m.

To put a datastructure d on the blockchain we simply post the updates u1, . . . , um as they
are made, with appropriate meta data to signal which data structure they are updating. To
perform read r ∈ R, read the blockchain with operation (Read, L) where L is the following
lookup function: Retrieve from the blockchain the sequence of updates u = (u1, . . . , um)
performed. Compute d = Update(u). Return Read(d, r). In practice one would of course
not recompute d on each read. If many reads are performed by the same full node on the
network it can maintain d. One can also imagine reading through a reader node which keeps
d and returns r, possibly along with a proof that r is the correct value relative to some
block on the blockchain. This could significantly reduce the communication complexity of
the receiver. This would also be a secure implementation if the reader node is semi-honest,
as a read operation (Read, L) leaks L and the identity of the reader to the adversary. It
is therefore simulatable to tell the reader node what read operation is being performed on
which datastructure. To implement this efficiently will vary between concrete blockchains
and is not in scope for present paper.

8.2 Overview

We run in a hybrid model with a ledger FLedger and anonymous, authenticated transfer
FAAT. For now ΠService is implemented as an ideal functionality FService. We later discuss
how to implement it using an MPC protocol. We also assume a random oracle O = GroRO
as formalised in [LR22].

Transfer will be done by sending coins (which are just commitments) containing amounts.
When a coin of amount a is created the sender A deducts a from its account. When a coin
of amount a is collected the receiver B adds a to its account.

Accounts will be of the form (A, cA, ekA, nonceA), where the account holder knows the
corresponding secret key (bA, ρA, dkA). The value A is the public identifier of the account and
cA = Com.Commitck(bA; ρA) is a perfectly hiding commitment to account balance bA using
randomness ρA and commitment key ck. The value ekA is the encryption key of an ANCO
scheme RPKE (Definition 22), dkA is the corresponding decryption key, and nonceA is a nonce
incremented for each payment done from account A.

Transfer identifiers will be of the form

tid = Commitck((A, B, a, nonceA); s),

where A is the account of the payer, B is the account of the receiver, ck is the global
commitment key, a is the amount, nonceA is the unique nonce of the sender incremented
whenever A does a payment, and s is a randomiser for the commitment algorithm.

Recall that we want tid’s to be unique, which we ensure by enforcing that nonceA is fresh
in each payment from A and that A actually knows an opening of tid. So, if A manages to
use the same tid twice, then it must be the case that

Commitck((A, B, a, nonceA), s) = Commitck((A, B′, a′, nonce′
A), s′)

41

for nonceA ̸= nonce′
A and thus A would have broken the commitment’s binding property.

Similarly, if two different parties used the same tid, a collision must have been found as the
account identifiers are in the commitment.

A coin will be an encryption of the tid under the receiver’s public key. Each receiver B
has an encryption key ekB on the ledger. A coin is of the form

coin← RPKE.Enc(ekB, tid).

The payer will put coin on the ledger and deduct its account by a. It proves in ZK that coin
contains a tid which opens to a vector of the form (A′, B′, a′, nonce) where a′ is the amount it
deducted from its account and where A′ = A, and nonce = nonceA. It then increments nonceA
on the ledger. Since the commitment is perfectly hiding the proof that it contains consistent
values need to be a proof of knowledge. A proof of membership for the statement would be
trivial, as tid can in principle be opened to any value.

The key-indistinguishability property of the ANCO scheme RPKE ensures that encryp-
tions under different encryption keys have indistinguishable distributions, thereby ensuring
that coin does not leak B. Note that during payment, the payer does not prove that it used
the correct key ekB as this is not needed. If a malicious payer uses the incorrect key, then
it simply burned a units. The amount will be deducted from the payer’s account, but the
receiver will not accept the payment.

To collect a payment the receiver B will put tid on the ledger and prove that some coin on
the chain contains tid. This proof only needs to be a proof of membership, as the encryptions
are perfectly binding. It adds a to its own account and then it shows in zero-knowledge that
tid opens to a vector of the form (A′, B′, a′, nonce) where a′ is the amount a they just added
to its account and where B′ = B. Showing that some coin contains tid, shows that at some
previous point in time that amount a was paid by some other account. To prevent double
spending we post tid during collections and only allow a given tid to be collected once. Since
tid’s are computationally unique, an honest receiver cannot be prevented from collecting a
coin by some other parties using the same tid.

Up to this point, our design does not deviate that much from existing constructions
like ZeroCash [BCG+14]. The big deviation is in how one proves that some coin on the
chain contains tid, which is a priori a complicated statement that may naively involve all
existing coins. As already outlined in Section 1.3, we rely on techniques from oblivious data
structures literature to reduce the statement size. In OCash, a service will regularly mix coins
by moving them around inside a SOROM. The service will regularly taking small sets of coins
from the ledger, permuting them according to the SOROM, randomizing their encryptions,
and writing them back to the ledger. When collecting a coin, we will only touch a small set
of coins, instead of touching all of them, as is done by currencies like ZerOCash. The receiver
will use their knowledge of a label associated to the coin they are looking for to determine
the positions specified by SOROM.Read and collect the rerandomized coin coin′ by revealing
the identifier tid inside coin′. The collector then proves that tid is inside one of the coins
specified by the label. The receiver now just has to prove in zero-knowledge that tid contains
B and that the amount in the coin matches the amount added to the receiver’s account. This
last proof needs to be a proof of knowledge as tid is perfectly hiding.

42

8.3 Anonymous Coin-Flip on the Blockchain

Using an SOROM for shuffling, leaves a technical issue to be solved. For the security of a
SOROM, it is important that the labels are chosen at random, meaning that we cannot let
any one single party pick these labels. In fact, we cannot even let the sender and receiver
pick the label jointly as they might both be corrupted. We therefore need that ΠService is
involved in picking the label. At the same time, we would like to avoid that the payer A needs
to wait for the service to come online and act to be able to pay. Ideally, payments should be
as quick as posting a single message to the blockchain. Additionally, we ideally would also
like a passive receiver. If Alice pays Bob, then Bob need not be online while Alice is. This
is important for applications like anonymously paying to a smart contract. We also want
Bob to be anonymous in the sense that one cannot link A and B by observing the ledger.
Finally, we also do not want Bob to run a full node to receive a payment. Bob should be
able to learn the label associated to the coin it receives by reading as little as possible from
the blockchain. Let us now sketch the protocol flow of the coin flip protocol that we will use.

1. Initially service samples and stores k ← CRaB.Gen(1λ). It also samples (ek, dk) for a PKE
scheme and makes ek public on the ledger.

2. To initiate a coin-flip Alice samples LA ← {0, 1}λ and broadcasts d← PKE.Enc(ek, (A, LA); ρ4).
Alice waits for d to appear in some position p on the ledger and anonymously sends
(d, LA, ρ4) along with a proof that d was posted in position p to Bob.

3. Bob rejects Alice’s message, if d ̸= PKE.Encek((A, LA); ρ4) or if the proof that d is in
position p is not valid. Note that Bob does not need to access the ledger for this.

4. Once d appears on the ledger in position p, the service broadcasts k∗
p ← CRaB.Prefix(k, p)

on the ledger.
5. The service computes LS = CRaB.Eval(k, p), decrypts (A, LA) = PKE.Decdk(d), and deter-

mines the label L = LA ⊕ LS.
6. Alice waits for k∗

p to appear on the ledger and computes LS = CRaB.Eval(k∗
p, p). Since

Alice also knows LA, she can also determine L = LA ⊕ LS.
7. When Bob wants to learn some value L, he retrieves the latest k∗

p′ with p′ > p posted on
the ledger. Bob can then compute LS = CRaB.Eval(k∗

p′ , p) and since he received LA from
Alice, he can also compute L = LA ⊕ LS. Note that Bob reads the latest k∗

p′ and not k∗
p,

thereby ensuring that the position p cannot be linked to Bob.

The above protocol has all the properties we need. Alice, Bob, and the service learn L,
whereas any external observer does not. The coin-flip is random, even when both Alice and
Bob are corrupt. Bob does not need to be active while Alice and the service are. Bob can
learn the desired label L by reading the latest succinct prefix key from the ledger.

We note that in our formal description, we do not prove any properties of the above
protocol in isolation, but rather as part of the overall security proof of OCash. We also
note that the parties cannot learn a coin, until the service was active. In our payment
application, this means Bob cannot collect a coin, until the service was active. This might
seem disappointing, since we wanted to avoid that the service was active before the payment
was done. There is, however, no avoiding this, as we want the outcome to be random, even

43

if Alice and Bob are corrupt. It is therefore optimal to only have collection and not payment
be blocked by a slow service. This is particularly the case, because anonymity requires that
Bob waits some time before picking up the coin.

8.4 Relations for Zero-Knowledge

Our construction will make use of zero-knowledge proofs for several distinct relations. In the
following, let us formally define those relations. The relation RIsZero is for proving that a
commitment indeed commits to 0, i.e.,

(x = (ck, c), w = ρ) ∈ RIsZero ⇐⇒ c = Com.Commitck(0, ρ)

and the relationRIsFund is a generalization thereof that allows for proving that a commitment
commits to a specific (non-zero) amount a0, i.e.,

(x = (ck, c), w = ρ) ∈ RIsFund ⇐⇒ c = Com.Commitck(a0, ρ).

The relation ROrDec is for showing that one out of several ciphertexts contains a given
plaintext:

(x = (pp, ek, {cj}ℓ
j∈1, m), w = dk) ∈ ROrDec ⇐⇒

ℓ∨
j=1

RPKE.Decdk(cj) = m .

The relation RCollect is for proving that the receiver updated their account correctly during
collection. This is done by showing that a commitment c′

B is a valid commitment to the sum
of the previous account balance committed in cB and the amount of money committed in
transaction tid, i.e.,

(x = (ck, cB, B, tid, c′
B), w = (bB, , (A, a, nonceA, ρ1), ρB, ρ′

B)) ∈ RCollect

⇐⇒ cB = Com.Commitck(bB, ρB)∧
tid = Com.Commitck(A, B, a, nonceA, ρ1)∧
c′

B = Com.Commitck(bB + a, ρ′
B) .

Lastly, the relation RPay allows for proving correctness of a payment by showing that the
payer’s account balance cA is being correctly updated to c′

A with respect to the amount of
money a tied up in the generated coin coin, i.e.,

(x = (A, nonceA,ck, cA, coin, c′
A), w = ((bA, ρA), (B, a, ρ1, ρ2), ρ′

A)) ∈ RPay ⇐⇒
cA = Com.Commitck(bA, ρA)∧

((coin,Com.Commitck(A, B, a, nonceA; ρ1)), ρ2) ∈ REnc ∧
c′

A = Com.Commitck(bA − a, ρ′
A) ∧ bA ≥ a ≥ 0 .

We provide concretely efficient proof systems, satisfying the properties we need, for all these
relations in Appendix C.

44

8.5 OCash Protocol

We now proceed to provide pseudocode for the OCash protocol. In our pseudocode we will
assume that one can see who posts which messages on the ledger. In practice this would
involve putting a public key of a signature scheme in each account and signing messages
from the account using the corresponding secret key. For the sake of clarity, we do not
deal with this explicitly in our pseudocode. We will use both a GUC proof of knowledge
NIZKPoK and a UC proof of membership NIZK. We have a single crs which is the pair of
CRSs implicitly. We let both schemes use crs and tacitly assume they pick the part they
need.

In Figure 8, we show how the initialization part of the anonymizer service is done. In
Figure 9, we provide the pseudocode for creating accounts. Initially, there are no accounts
and there is no money on the blockchain. For the sake of simplicity, we simply provide the first
party that generates an account with an initial account balance of a0. Once this account is
created, all other parties can only create accounts that have an account balance of 0 initially.
How money is bootstrapped into a blockchain in the real world is a non-cryptographic process
and using our formal modeling outlined above, we have abstracted this process away in our
work.

In Figure 10 we give the pseudocode for initiating a payment by putting a coin on the
ledger. In Figure 11 we give the pseudocode for the part of the service doing the mixing of
the coins. Finally, in Figure 12 we give the code for observing and collecting a payment.

Init When activated the first time do the following:
1. Let crsknow ← NIZKPoK.Gen(1λ), crsmemb ← NIZK.Gen(1λ), and crs = (crsknow, crsmemb).

This is the setup for proving statements to the ledger in ZK.
2. ck← Com.Gen(1λ). This is the key for creating transfer IDs and committing to balances.
3. (ek, dk)← PKE.Gen(1λ) and save dk. This is the key for sending secret messages to the committee.
4. pp← RPKE.Params(1λ) This is the public parameters for the randomisable public-key encryption used

for encrypting coins.
5. Initialise an empty set Spent on FLedger. This is the set of spent transaction identifiers.
6. Set up the key material for anonymous coin-flip on the blockchain.

(a) k ← CRaB.Gen(1λ) and save k.
(b) k∗ ← Prefix(k, 0).
(c) Let pupdated = 0 be the last updated position.

7. Post (crs, ck, ek, pp, k∗, pupdated) on FLedger.
8. Set up the key material for running the SOROM on the blockchain.

(a) ι = 0.
(b) K ← SKE.Gen(1λ) and save K. This is the key under which the service encrypt labels for the

SOROM.
(c) Let N = 2λ and initialise on the blockchain an oblivious map OM where for each i ∈ [N] the

service store OM[i] = (labi, coini) where labi is an encryption under K or ⊥ and coini is a coin
or ⊥. Initially let OM[i] = (⊥,⊥) for all i.

Fig. 8. Ideal Functionality FService.

45

Create Account On input (CreateAccount) from P, where there are already other accounts on the
ledger, it proceeds as follows.
1. Wait until ck, crs and pp appear on FLedger.
2. cA ← Com.Commitck(0; ρ).
3. π ← NIZKPoK.Prvcrs(RIsZero, (ck, cA), ρA).
4. (ekA, dkA)← RPKE.Gen(pp).
5. Let nonceA = 0.
6. Run FLedger.Broadcast(Tx, ϕTx) with Tx = (cA, ekA, nonceA, π) and

Filtering Function ϕTx(Ledger, Tx) ≡ Parse (cA, ekA, nonceA, π) = Tx, fetch (crs, ck) from Ledger
and check that NIZKPoK.Vercrs(RIsZero, (ck, cA), π) = ⊤, that nonceA = 0, and that some other
account already appears in Ledger.

7. When Tx = (cA, ekA, nonceA, π) appears on FLedger in some position p, compute
FLedger.ProveValid(p) → TxProof and let A = (ekA, ϕAcc, p, TxProof). Then output
(CreateAccount, A) to P and save (A, bA = 0, cA, ρA, ekA, dkA, nonceA). This is the initial se-
cret state of the account. This establishes the invariant that for the current balance bA of account A
party P knows ρA such that cA = Com.Commitck(bA, ρA).
Store the updated account (A, cA, ekA, nonceA, π) on FLedger.a

Create Account (Initial Funding Account) On input (CreateAccount) from P, where so far there
are no other accounts on the ledger, it proceeds as above with the following changes.
2. cA ← Com.Commitck(a0; ρ).
3. π ← NIZKPoK.Prvcrs(RIsFund, (ck, cA), ρA).
6. Use

Filtering Function ϕTx(Ledger, Tx) ≡ Parse (cA, ekA, nonceA, π) = Tx, fetch (crs, ck) from Ledger
and check that NIZKPoK.Vercrs(RIsFund, (ck, cA), π) = ⊤, that nonceA = 0, and that until now no
other account appears in Ledger.

7. Save (A, bA = a0, cA, ρA, ekA, dkA, nonceA).

a When we say that we store a value which can already be computed from the values on the ledger, we mean
that we use the “stateful ledger” abstraction from Section 8.1 to define and later fetch the value.

Fig. 9. Pseudocode of creator P. Part of ΠAnonPay.

46

Initiate Pay On input (Pay, A, B, a) to PA proceeds as follows.
1. Fetch (A, bA, cA, ρA, ekA, dkA, nonceA) from local storage and terminate if a > bA. Get

(A, bA, cA, ρA, ekA, dkA, nonce′
A) from FLedger and terminate if nonce′

A ̸= nonceA. Check that there
is balance and that the local information is up to date. This can happen not to be the case if two
payments were started in parallel.

2. Get the public values (crs, ek, ck, k∗) of the service from FLedger.
3. Parse (ekB, ϕAcc, p, TxProofB) = B and run FLedger.VerValid(p, (ekB, ϕAcc), TxProofB)→ J . If J = ⊥,

then abort. Check B’s account exists.
4. Compute the transfer identifier tid = Com.Commitck((A, B, a, nonceA); ρ1).
5. Compute the coin coin = RPKE.EncekB (tid; ρ2).
6. Let b′

A = bA − a, compute c′
A = Com.Commitck(b′

A, ρ′
A).

7. π ← NIZKPoK.Prvcrs(RPay, (cA, coin, cA′ , A, nonceA), ((bA, ρA), (B, a, ρ1, ρ2), ρ′
A)).

8. Sample LA ← {0, 1}λ , compute d← PKE.Encek((A, LA); ρ4).
9. Run FLedger.Broadcast(Tx, ϕPay) with Tx = (A, c′

A, coin, π, d) and
Filtering Function ϕPay(Ledger, Tx) ≡ Parse (A, c′

A, coin, π, d) = Tx,
fetch (crs, ek, k∗) and (A, cA, ekA, nonceA) from Ledger and check that
NIZKPoK.Vercrs(RPay, (cA, coin, cA′ , A, nonceA), π) = ⊤.

10. Wait for (Tx, ϕPay) to appear on FLedger in some position p. When this happens the blockchain stateful
abstraction layer replaces (A, cA, ekA, nonceA) by (A, c′

A, ekA, nonce′
A = nonceA + 1). Note that if Tx is

rejected or never posted, the transaction deadlocks here.
11. The first time when PA is activated again, store (A, b′

A, c′
A, ρ′

A, ekA, dkA, nonce′
A = nonceA + 1).

12. Run FLedger.ProveValid(p)→ TxProof.
13. Run FAAT.DropOff(PA, PB, tid, m) where

m = ((Tx, p, TxProof, (nonceA, ρ1, ρ2)), (LA, ρ4)) .

14. Output (Pay, A, B, a, tid) to PA.

Fig. 10. Pseudocode of payer A. Part of ΠAnonPay.

47

Receive Coin Whenever a new payment (Tx, ϕPay) appears in some position p, proceed as follows. Trans-
actions must be consumed in order of increasing p.
1. Parse (A, c′

A, coin, π, d)← Tx.
2. Keep track of the number of payments so far: ι = ι + 1.
3. Compute PA’s contribution to the coinflip: (C, LA) = PKE.Decdk(d). If C ≠ A then terminate. a

4. Service’s contribution to the coinflip: LS = CRaB.Eval(k, p), where p is the position of Tx on the
ledger.

5. Coinflip: L = Hash(LA ⊕ LS).
6. Encrypted coinflip: lab = SKE.EncK(L).
7. Updated CRaB key: k∗ ← CRaB.Prefix(k, p) and pupdated = p.
8. Update k∗, pupdated, and OM[0] = (lab, coin) on FLedger.
9. Go to Route

Route
1. Compute (j1, . . . , jℓ) = SOROM.Pos(ι).
2. For k = 1, . . . , ℓ read (labk, coink)← OM[jk] from FLedger.
3. For k = 1, . . . , ℓ let Lk = SKE.DecK(labk).
4. Compute the routing permutation: π = SOROM.Route(ι, L1, . . . , Lℓ).
5. For k = 1, . . . , ℓ let lab′

k ← SKE.EncK(Lπ(k)).
6. For k = 1, . . . , ℓ let coin′

k ← RPKE.Ran(coinπ(k)).
7. For k = 1, . . . , ℓ update OM[jk]← (lab′

k, coin′
k) on FLedger.

a This prevents replay attacks with the d’s.

Fig. 11. Pseudocode of service FService

8.6 Proving Security in the UC Framework

We will prove the following statement:

Theorem 2. Under the security of the primitives SOROM (Section 7), NIZKPoK (Sec-
tion 2.5), NIZK (Section 2.4), Com (Section 2.1), PKE (Section 2.2), RPKE (Section 5),
CRaB (Section 6), and SKE (Section 2.2) the protocol ΠAnonPay UC-securely implements
FAnonPay with weak anonymity in the hybrid world with ideal functionalities FLedger, FAAT,
and FService.

The design rational for the protocol has already been discussed above. The proof of
security follows the intuition fairly closely, but via an intricate sequence of hybrids. As TID
distribution the simulator uses random commitments to 0, i.e., Tid ← Commitck(0). This
will give honest tid the same distribution as in the protocol. During the simulation the
simulator will simulate the proofs that the honest tid contain the right values. For corrupted
parties the simulator uses the tid produced in the simulated protocol. The use of binding
commitments to compute tid ensures that tid’s cannot be reused. This in turn ensures that if
B observes a payment it will also eventually be able to pick it up. The correctness of SOROM
ensures that no encryptions of new tid’s can be introduced. Therefore each tid collected can
be linked to a unique payment. The proofs ensure that it is of the same amount a. We can
use extractability of the proofs to extract the link between payments and let the simulator
input these to FAnonPay in the simulation to make it do the same transfers as the simulated
protocol. The fact that tid is perfectly hiding ensures that tid cannot be linked to A or a.

48

Observe On input (Observe, tid, A, B, a) to PB it proceeds as follows. Fetch (B, bB, cB, ρB, ekB, dkB, nonceB)
from local storage. Run FAAT.Collect(PA, PB, tid)→ m. If

m = ((Tx = (A, ·, coin, ·, d), p, TxProof, (nonceA, ρ1, ρ2)), (LA, ρ4))

where
FLedger.VerValid((Tx, p, ϕPay), TxProof)→ ⊤

tid = Com.Commitck((A, B, a, nonceA), ρ1)
coin = RPKE.EncekB (tid, ρ2)
d = PKE.Encek((A, LA), ρ4)

then return (Observe, tid, A, B, a,⊤).
Collect On input (Collect, tid, A, B, a) to PB it proceeds as follows.

1. First run (Observe, tid, A, B, a) if this was not already done. If the result is (Observe, tid, A, B,⊤),
then proceed as below, using the values defined while running (Observe, tid, A, B, a). a

2. Fetch the LA where d = PKE.Encek((A, LA), ρ4) and the position p.
3. From FLedger fetch the most recent CRaB key k∗ and position pupdated. If pupdated < p terminate. b

4. Let LS = CRaB.Eval(k∗, p).
5. Let L = Hash(LA ⊕ LS).
6. Compute pos = SOROM.Pos(L).
7. Fetch the data at positions j ∈ pos in OM from FLedger and for j ∈ pos let OM[j] = (·, coinj). Let

j0 ∈ pos be the position where OM[j0] = (·, coin′) and RPKE.DecdkB (coin′) = tid.
8. π1 ← NIZK.Prvcrs(ROrDec, (ck, {coinj}j∈pos, tid), dkB).
9. Let b′

B = bB + a, compute c′
B = Com.Commit(b′

B, ρ′
B).

10. π2 ← NIZKPoK.Prvcrs(RCollect, (ck, cB, B, tid, c′
B), ((bB, ρB), (A, a, nonceA, ρ1), ρ′

B)).
11. Run FLedger.Broadcast(Tx, ϕCollect) with Tx = (B, L, tid, π1, π2) and

Filtering Function ϕCollect(Ledger, Tx) ≡ Parse (B, L, tid, π1, π2) = Tx, fetch Spent, OM,
(crs, ek, ck, k∗) and (B, cB, ekB, nonceB) from Ledger along with {coinj}j∈pos for pos =
SOROM.Pos(L) and check that

NIZK.Vercrs(ROrDec, (ck, {coinj}j∈pos, tid), π1) = ⊤
NIZKPoK.Vercrs(RCollect, (ck, cB, B, tid, c′

B), π2) = ⊤
(B, tid) ̸∈ Spent

12. When the transaction is posted the blockchain stateful abstraction layer replaces (B, cB, ekB, nonceB)
by (B, c′

B, ekB, nonceB) and Spent = Spent ∪ {tid}.
13. Store (B, b′

B, c′
B, ρ′

B, ekB, dkB, nonceB) on local storage.

a If the result (Observe, tid, A, B,⊤) is not returned it corresponds to the case where FAnonPay aborts the
collection.

b This corresponds to the case where FAnonPay returns Too Early.

Fig. 12. Pseudocode of receiver B. Part of ΠAnonPay.

49

The security of the coin-flip into the well ensures that the labels are random, which ensures
the correctness and strong obliviousness of the SOROM. In proving the coin-flipping secure
it is crucial that the PKE is IND-CPA and that the encryption contains the name of A as it
ensures that A’s contribution LA is independent of the contribution of other parties. Therefore
the label are random and independent. In doing the reduction to the strong obliviousness of
the SOROM we model Hash as a random oracle in L = Hash(LA ⊕ LS), which allows us to
embed the label we get from to SOROM game into the simulation by programming Hash.
The strong obliviousness of the SOROM ensures that the label L posted in collection does
not leak anything about when the collected coin was added to the SOROM. In the simulation
we can therefore for transfers between honest parties make dummy payments and collections
of 0 and randomly map collections to payments. This will have the same distribution in the
view of the environment. We defer the full proof to Appendix B.

9 Instantiating the Building Blocks

In this section, we will now instantiate all the building blocks that our OCash in Section 8
construction relied upon.

9.1 Commitment Scheme

Our commitment scheme for constructing transaction identifiers and accounts is a Pedersen
commitment [Ped92] in a group G of prime order q where the discrete logarithm problem
is hard. Specifically we assume that five uniformly random, independent generators ck =
(g0, g1, g2, g3, g4) have been chosen. We assume that q has been chosen large enough that
account names, nonces and amounts can be represented bijectively in Zq. To commit to
(A, B, nonce, a) ∈ Zq using randomness s ∈ Zq we compute

tid = Commitck(A, B, nonce, a; s) = gs
0gA

1 gB
2 gnonce

3 ga
4 .

This scheme is perfectly hiding and is computationally binding is the DL problem is hard
in G [Ped92]. When using the commitment scheme to commit to account balances we let
Commitck(a) = Commitck(0, 0, 0, a; s) = gs

0ga
4 .

9.2 Anonymous Coin Friendly Encryption Scheme (ANCO)

We give our instantiation of a rerandomisable public key encryption scheme

RPKE = (Params, Gen, Enc, Ver, Dec, Ran)

and prove that it is an ANCO. Let G be a group of prime order q where the DDH problem
is hard. The public parameters will be of the form g0 ∈ G, where g0 is a generator. A
public key will be of the form h = gx

0 where x ∈ Zq is the secret key. A ciphertext will
be of the form ct = (A, B, C, D) where A ̸= 1 and B = Ax for the unique secret key for
which the ciphertext is intended and m = DC−x is the message. Note that the part (A, B) of

50

ciphertext uniquely fixes the secret key x and the part (C, D) is a normal ElGamal encryption
for that secret key. The reason why we carry (A, B) along is to be able to rerandomise a
ciphertext without knowing the public key: (C ′, D′) = (Aρ′

C, Bρ′
D). The part (A, B) will

simply be a rerandomized version of the receivers public key and will be rerandomized as
(A′, B′) = (Aρ, Bρ). To decrypt (A, B, C, D) using x we define the output to be ⊥ if B ̸= Ax.
If B = Ax the output is m = DC−x. The scheme is summarised in Fig. 13. The ciphertext
space is the set of all ct = (A, B, C, D) ∈ G4 where A ̸= 1. Note that this implies that A has
order q and therefore the discrete logarithm DLA : G→ Zq is well-defined. We call x = DLA B
the secret key of the ciphertext. This defines the keyless decryption RPKE.Dec·(ct) as follows.
Let x = DLA B and then return RPKE.Decx(ct). Note that RPKE.Dec·(ct) is well defined but
not poly-time.

Params(1λ)

1. Sample (G, g0, q), where G is a group with prime
order q where DDH is hard and ⟨g0⟩ = G.

2. Output pp = (g0, q)

Gen(pp)

1. Input pp = (g0, q)
2. x

$←Zq

3. h = gx
0

4. Output (ek = (g0, h), dk = x)

Enc(ek, m)

1. Input: pp = (g0, q), ek = h, m
2. ρ

$←Z∗
q

3. ρ′ $←Zq

4. Output ct = (gρ
0 , hρ, gρ′

0 , hρ′
m)

Dec(dk, ct)

1. Input: pp = (g0, q), sk = x, ct = (A, B, C, D)
2. If B = Ax let m = DC−x, otherwise let m = ⊥.
3. Output m

Ran(ct)

1. Input: pp = (g0, q), ct = (A, B, C, D)
2. ρ

$←Z∗
q

3. ρ′ $←Zq

4. Output ct′ = (Aρ, Bρ, Aρ′
C, Bρ′

D)

REnc(x = (pp, ct, m), w = (ρ, ρ′))

1. (A, B, C, D)← ct
2. (g, h) = ek← (Aρ−1

, Bρ−1)
3. Output g

?= g0 ∧ ct ?= Enc(ek, m; (ρ, ρ′))

Fig. 13. The ANCO RPKE

Theorem 3. The scheme RPKE in Fig. 13 is IND-CKMA according to Section 5 if DDH is
hard in G.

Proof. We have to prove that (x, w) is in REnc if and only if there exists a key pair (ek, dk) in
the support of Gen(pp), such that ct = Enc(ek, m; w). This is easy to see, as (A, B, C, D) =
Enc(ek, m; (ρ, ρ′)) implies that (A, B) = (gρ

0 , hρ), so ek = (Aρ−1
, Bρ−1).

It is clear that if ct is in the ciphertext space then Ranpp(ct) is also in the ciphertext space
as ρ ̸= 0 so Aρ ̸= 1. Finally, it follows that Dec·(Ran(ct)) = Dec·(ct) as DLAρ Bρ = DLA B
and Bρ′

D(Aρ′
C)−x = DC−x when B = Ax. From this it also follows that Decx(Ran(ct)) =

Decx(ct), and we get Correctness.

51

To show Strong Message Binding we have to assume that ((pp, ct, m), w) ∈ REnc
and show that Dec(·, ct) = m. This is clear as ((pp, ct, m), w) ∈ REnc implies that ct =
Enc(ek, m; (ρ, ρ′)) so we can appeal to correctness.

Finally we have to prove that Key-Indistinguishability Under Rerandomization.
We are given any PPT adversary A1 and runs (m0, m1, r0 ≥ 1, r1 ≥ 1, st)← A1(pp, ek0, ek1)
for uniformly random public keys ek0 and ek1. Then we compute ct0 = Ranr0(Encek0(m0))
and ct1 = Ranr1(Encek1(m1)) and have to argue that A1 cannot guess b given cb.

We have that the distribution of ct0 = Encek0(m0) and ct1 = Encek1(m1) is given by

ct0 = (gρ0
0 , hρ0

0 , g
ρ′

0
0 , hρ′

0m0)

ct1 = (gρ1
1 , hρ1

0 , g
ρ′

1
1 , hρ′

1m1)

for uniformly random ρ0, ρ1 ∈ Z∗
q and ρ′

0, ρ′
1 ∈ Zq. It is easy to see that because reran-

domization uses a uniformly random ρ ∈ Z∗
q and uniformly random ρ ∈ Zq the exact

same distributions described Ranr0(ct0) and Ranr1(ct1). It is therefore sufficient to prove
that ct0 ≈ ct1, where ≈ denotes computational indistinguishability. This clearly holds un-
der the DDH assumption in G, and follows using essentially the same proof as the proof of
IND-CPA of ElGamal encryption. Namely, assume we get (A, B, C, D) ∈ G4 which in case
A are four independent uniformly random elements and which in case B are three indepen-
dent uniformly random elements A, B, C and D = CDLA B. These two distributions are by
definition computationally indistinguishable under the DDH assumption. Now output input
ct = (A, B, C, Dmb) to A in the game instead of ctb. In case A this information theoretically
hides b, so the adversary guesses b with probability exactly 1

2 . In case B this gives ct exactly
the same distribution as ctb. Since cases A and B are indistinguishable it follows that the
adversary guesses b with probability negligibly close to 1

2 . Otherwise we could use g ⊕ b to
distinguish case A or case B. ⊓⊔

9.3 Compressible Randomness Beacon

Our construction of a compressible randomness beacon is a conceptually simple adaptation
of existing approaches that construct puncturable PRFs [BW13, KPTZ13, BGI14] from the
PRF construction of Goldreich, Goldwasser, and Micali (GGM) [GGM84].

Before explaining our construction, let us first recall the GGM construction, which con-
structs a PRF F : {0, 1}ℓ → {0, 1}λ from a PRG G : {0, 1}λ → {0, 1}2λ. For notational
convenience, let us define G0 and G1 to be functions that output the first and second half of
the output of G, i.e. G(s) = G0(s)∥G1(s). On input x = x1∥ . . . ∥xℓ ∈ {0, 1}ℓ, the output of F
with key k is defined to be Gxℓ

(. . . Gx2(Gx1(k)) . . .). Pictorially, one can view the evaluation
of F as traversing a binary tree of depth ℓ from top to bottom via a route that is determined
by input x and then returning the value of the leaf node that is reached. The root node’s
value is k and for any (non-leaf) node with value v, the left child’s value is G0(v) and the
right child’s value is G1(v). On input x = x1∥ . . . ∥xℓ ∈ {0, 1}ℓ, one traverses the tree by
iterating over the bits and going left if the current bit is zero and right if the current bit is
one.

52

Our construction of a compressible randomness beacon will be based on the GGM PRF
construction and will make use of a simple, but very powerful observation, which was already
exploited in works that constructed puncturable PRFs [BW13, KPTZ13, BGI14]. The obser-
vation is that one can take the PRF key k and produce a key, which only allows evaluating
the PRF on a subset of inputs. Note that computing a certain leaf’s value, i.e. a PRF output,
requires knowing the value of at least one node between that leaf and the root node and
if no such value is known, then the leaf’s value is computationally hidden. As an example,
one could provide the left child of the root node as a constrained key, which would allow
for evaluating the PRF on all inputs starting with a zero bit, but prevent anybody from
predicting the output values for any inputs that start with a one bit.

The idea behind our compressible randomness beacon is to view the i-th leaf (counted
from the left) as the i-th random beacon output. Along with the random output, we will
provide a small constrained key, which will allow for computing all previous outputs, but not
any future ones. In the setting of puncturable PRFs based on the GGM construction, one can
generally not reveal multiple arbitrary constrained keys as this would allow the adversary
more outputs than they should. The main additional observation behind our construction,
when compared to existing puncturable PRF construction, is that one can repeatedly output
constrained keys in the GGM construction without leaking too much information, when the
sequence of revealed keys is fixed to be the sequence which allows for evaluating the first leaf
and iteratively allows evaluating more leaves to the right of it.

To formally present our construction, let us introduce some notation. We assume all nodes
the binary tree can be addressed by bit-strings, where the string x1∥ . . . ∥xk would point to
the node that is reached by starting at the root node and going left or right depending on
x1, then making the same decision based on x2 and so on. The root node has address ⊥.
For a node with address v, we refer to the node’s value by Value(v). The parent of that
node is Parent(v), the left child is Left(v), and the right child is Right(v). Let Pred(v) be
the set of predecessors (along with their values) of v, i.e. the parent of v and the parent of
the parent of v and so on. Let Span(v) be the set of all nodes addresses (and their values)
that has v as a predecessor. For a given node v and a leaf index i ∈ Span, let Compute(v, i)
be the function that computes the value of node i according to the GGM construction by
appropriately cutting off the prefix bits of i that would be “above” node v.

Theorem 4. Let λ, ℓ ∈ N with ℓ = poly(λ). Let G : {0, 1}λ → {0, 1}2λ with G0 : {0, 1}λ →
{0, 1}λ and G1 : {0, 1}λ → {0, 1}λ, such that for all s ∈ {0, 1}λ, it holds that G(s) =
G0(s)∥G1(s), be a secure pseudorandom generator. Then the construction in Figure 14 is a
correct, unpredictable and O(ℓ · λ)-compressing randomness beacon.

Proof (Sketch). Let us start with observing that our construction is correct. Let k be an
arbitrary key, let i ∈ [2ℓ− 1], and let S := Prefix(k, 1i). If i = 2ℓ− 1, then the algorithm just
returns the root and from there clearly any leaf can be computed. So assume i < 2ℓ − 1 and
let j < i as the i-th leaf is always included in S by construction. Let v be the lowest common
ancestor of node i and j. Since i > j, we know that reaching i requires going down the right
and reaching j requires going down the left path. This means that during the computation

53

Gen(1λ)

1. k ← {0, 1}λ

2. Return k

Eval(k, i)

1. If i ̸∈ Span(k)
2. Return ⊥
3. Else
4. Parse i as i1∥ . . . ∥iℓ

5. Let v ∈ k ∩ Pred(i)
6. Return Compute(v, i)

Prefix(k, 1i)

1. If i = 2ℓ − 1
2. Return k
3. cur := ⊥
4. S = {i}
5. While cur ̸= i
6. If Left(cur) ∈ Pred(i)
7. cur := Left(cur)
8. If Right(cur) ∈ Pred(i)
9. S := S ∪ {Left(cur)}

10. cur := Right(cur)
11. Return S

Fig. 14. Compressible randomness beacon construction.

of Prefix(k, i), the left child of v was included in S from which one can compute the value of
node j.

To see that the construction is O(ℓ · λ)-compressing, we observe that at each layer, we
include at most one λ-bit long string into S. Since the depth of the tree is ℓ, the compression
follows.

To argue unpredictability, we would like to follow the proof strategy of Goldreich, Gold-
wasser, and Micali [GGM84], which reduces the security of their PRF to the security of a
PRG, but we face an additional challenge. The adversary against randomness beacon’s un-
predictability is additionally allowed to query the Prefix(k, ·) oracle and we thus may need
to provide internal nodes of the tree, which allow for computing certain evaluations of the
beacon. This means that during the proof, we cannot just simulate leaves by random values
as this may then end up being inconsistent with the internal nodes we would need to provide.

Let A be a polynomial time adversary that runs in time q(λ). By the bound on the
runtime on A, we know that any index queried to the prefix oracle is of size at most q(λ).
We consider a modified unpredictability experiment, where the challenger initially guesses
the largest index i∗ ∈ [q(λ)], which the adversary A against the unpredictability will query
to the prefix oracle. Since A is PPT, it means that the guess will be correct with an inverse
polynomial probability. The challenger honestly picks uniformly random node values for the
nodes in the set that would be returned by Prefix(k, i∗). Note that for any i ≤ i∗ this allows
consistently answering any query Prefix(k, i) or Eval(k, i∗) as both responses can be computed
from the output of Prefix(k, i∗). For any i > i∗, any query to the Eval oracle with index i,
we let the challenger pick a fresh uniformly random value (unless it was previously already
picked in which case we use the already selected value) and return that value. Finally, at
some point the adversary A will output a pair (i, v). If our guess for i∗ was incorrect, then
the challenger in our hybrid simply aborts and makes a random guess. If the challenger’s
guess was correct, then clearly the adversary can do no more than guess an output, since
they are all uniformly random and independently chosen values.

54

What remains to show is that this modified experiment and the original experiment
are indistinguishable from A’s perspective. This is done by an argument that is essentially
identical to the one of the GGM PRF, just applied to a part of the tree and not the full tree
itself. Due to the guessing, our proof incurs an additional polynomial security loss. Since the
proofs from this point on are virtually identical, we refer the interested reader to the original
proof of Goldreich, Goldwasser, and Micali [GGM84]. ⊓⊔

9.4 Strongly Oblivious Read-Once Maps

Our construction of a strongly oblivious read-once map closely follows the ORAM construc-
tion of Shi et al. [SCSL11]. As outlined in Section 1.3, their construction arranges their
memory of size 2n in a full binary tree of depth n, where each node can store up to B data
items. If we ever try to insert more than B items into a node, we assume that the data struc-
ture simply aborts and outputs ⊥. As discussed in Section 7, we will view this data structure
as a storage for uniformly random labels and omit explicitly mentioning the associated data
items as they are simply dragged along with their respective labels.

We will consider a tree of depth λ and we define the label space to be L := {0, 1}λ, where
we interpret a label as a pointer to a leaf in the tree and the data structure will maintain
the invariant that a label is always stored in some node between the root node and the leaf
node that the label points to. Note that there are are exponentially many leafs (in λ) in the
tree, but we only need to explicilty store those that have been touched at least once during
the lifetime of the data structure. For a node v, we write ToLeft(v) and ToRight(v) to refer
to the subset of labels stored in v that point to the left child and right child respectively. We
refer to the root node as root. For a label L, we write Path(L) to denote set of nodes that
are on the path between the root node and the leaf indicated by L.

After each insertion of a label into the memory, an eviction procedure is invoked, which
goes through the tree top to bottom, selects ν nodes at random in each layer, and pushes all
labels into the child that is indicated by the label. Formally, both Route and Read operate on
memory addresses, but for notational convenience we will let them operate on node addresses
and labels. In the case of Route, this means that instead of memory locations for labels, we
get the node that contains the label instead. Given a canonical representation of a binary
tree in a memory array, this could in principle then be mapped to memory addresses as well,
but we will omit this step.

Theorem 5. The construction in Figure 15 with label space L = {0, 1}λ with a bucket size
of B = Θ(polylog(λ)) is a strongly oblivious read-once map and for any polynomial number
of operations is correct with probability 1 − negl(λ). Furthermore, each invocation of Route
needs to touch O(λ ·B) labels.

Proof (Sketch). Let us start by arguing correctness of our construction. For this we need to
show that we will never attempt to store more than B items in any one node at a time.
Concretely, this requires showing that the root node will never overflow and that we will
never try to push more than B elements into any node during our eviction procedure. As
already previously alluded to, our construction is closely related to the ORAM construction

55

Pos(i)

1. S = ∅
2. For i = 1 . . . λ :
3. v1, . . . , vν ← [2i] // Random nodes at depth i
4. S = S ∪ {v1, . . . , vν}
5. Return S

Route(v1, . . . , vℓ, L1, . . . , Lℓ)

1. π := {} → {}
2. For i = 1 . . . ℓ :
3. If Li ∈ ToLeft(vi)
4. π(vi, Li) := Left(vi)
5. If Li ∈ ToRight(vi)
6. π(vi, Li) := Right(vi)
7. Return π

Read(L)

1. Return Path(L)

Fig. 15. Strongly oblivious read-once map construction.

of Shi et al. [SCSL11] and indeed their analysis for showing that no node overflows is directly
applicable to our construction.

The main differences between our constructions are that we never move elements from
internal nodes of the tree back to the root node and that we do not need to store a position
map recursively, since we access data elements by their uniformly random labels and do not
actually consider a memory array. Never moving elements back to the root node is identical
to only considering access sequences that perform write operations to distinct addresses in
the ORAM of Shi et al.

What remains to show is that our construction satisfies strong obliviousness. This, how-
ever, is easy to see. All elements move towards the leaf indicated by their uniformly random
label. All elements move independently of each other and thus seeing the movement of some
corrupted elements, provides no information about the movement of other elements. ⊓⊔

10 Adding Strong Anonymity

In this section, we sketch how to extend our OCash construction to satisfy strong anonymity.
OCash, as described in Section 8, currently leaks tid during payment. This allows the user,
who knows tid, to learn when the shop collected its coin. To mitigate this we will instead
let the shop post what is essentially PRFK(tid) for a key K bound to the shop. When K is
fixed then PRFK(tid) repeats whenever tid repeats. Furthermore, if the shop is honest then
K is random and unknown and therefore PRFK(tid) leaks nothing about tid.

10.1 PRF Key Registration

To make this proof concretely efficient, we use a PRF which is a slightly modified version of
the Dodis-Yampolskiy VRF [DY05]. We extend the public parameters of the commitmnent

56

scheme with an independent generator g5. Each shop commits to a key K = s by putting

vk = gK
5 (1)

in its account information. Then, during Create Account they give a proof using NIZKPoK
for the relation Rkey(vk, K) ≡ vk = gK

5 . Clearly Φ(K) = gK
5 is a group homomorphism, so we

can use the proofs described in Section C.2 to make this proof efficient. During simulation,
the simulator will for honest parties not learn K, but instead use gρ

5 for uniformly random ρ.
This will be indistinguishable by the DDH assumption. It then uses the NIZKPoK simulator
to simulate the proof for vk, which will again be indistinguishable. For the corrupted parties,
it will use the NIZKPoK extractor to learn K.

The key K defines a pseudorandom function

PRFK : Zq → G , y = PRFK(x) = g
1/(K+x)
5 . (2)

Using the Diffie-Hellman inversion (DHI) assumption, one can show that the function is a
PRF, even if one is given vk. This was proven by Dodis and Yampolskiy [DY05], but their
reduction runs in exponential time. The specific reduction in [DY05] runs in time 2160 and
asymptotically runs in time 2λ, where λ is the output length of a collision resistant hash
function14. To withstand an adversary running in time 2τ we must have λ > 2τ because of
the birthday bound. In our setting this is not satisfactory, as it would force us to use a group
G of size 22τ , where in practice one would hope to get by using a group of size about 2τ . In
Appendix A we give a more fine grained reduction allowing us to do a poly-time reduction
for our use of DY. The reduction is not novel, but formalizes what seem to be folklore in the
way DY is used in the literature.

10.2 Hashed Identifier

We furthermore add a new component hid = Hash(mU, nU), called the hashed identifier,
to the commitment tid. Here mU is the user number of U. Each registration appears on the
total ordered ledger, so we can order the users as 1, 2, . . . according to when their registration
appears. We need that Hash maps two polynomially large m and n collision resistantly into
Zq. In fact, since q is exponential the map is easy to make injective. When the coin is posted
it has the form

c = (G = gρ, H = hρ, Gr, Hr · gs
0 · gU

1 · gS
2 · g

nU
3 · ga

4 · ghid
5) . (3)

The user will prove that hid was computed as hid = Hash(mU, nU). This can be done basically
by opening the g5 component and checking. We discuss how to extend RPay in Section C.5.
This is then maintained during re-randomizations and therefore does not have to be reproven
when the coin is collected. The current proof already proves that when a coin is collected,
then the committed values are the same as in some coin constructed during a payment,
14 Observe that a(k) in Theorem 1 in [DY05] needs to be λ and also see also Remark 1 [DY05].

57

cf. Lemma 9. Therefore, when the coin is collected a rerandomized version is posted of the
following form:

c′ = (G = gρ′
, H = hρ′

, Gr′
, Hr′ · gs

0 · gU
1 · gS

2 · g
nU
3 · ga

4 · ghid
5) , (4)

where hid = Hash(mU, nU).

10.3 Rerandomized TID

The next modification we make is that the shop will put

tid′ = tid · gρ
0

and
h = gρ

1

on the ledger instead of tid, as tid is known by the user. Here ρ is uniform in Zq. Therefore,
by DDH, (tid′, h) is indistinguishable from (tid′, h′) for uniformly random h′ ∈ G. And in
this distribution tid′ is uniform in G and independent of tid and h′, which can essily be seen
to give strong anonymity. Note that after this

tid′ = gs′

0 · gU
1 · gS

2 · g
nU
3 · ga

4 · ghid
5 .

for s′ = s + ρ mod q.

10.4 Pseudononymous Hashed Identifier

What remains is to prove that the coin was not collected before. Note that the value (mU, nU)
is unique as nU is incremented for each payment by U. It is therefore sufficient to check that
(mU, nU) was not used before by the shop. By collision resistance of Hash and the fact that
hid was computed correctly, this is the same as checking that hid was not used before. Let vk
be the public key of the shop and let K be its key such that vk = gK

5 . Since PRFK : Zq → G
is an injective function and K is bound to the shop is it therefore enough to check that
the pseudononymous hashed identifier otid = PRFK(hid) was not used before. We check this
simply by letting the shop post

otid = g
1/(K+hid)
5

and prove that this values was constructed correctly. The collection is ignored if this proof
fails or otid was used before.

10.5 Improved Reduction to DHI

Let us return to the security loss in the reduction to DHI. In Appendix A we provide an
improved analysis for the PRF, using a reduction to DHI with running time |X| poly(λ),
where X is a set which can be computed before the PRF key K is sampled and where it

58

is guaranteed that all queries to PRFK will be from X. The reduction essentially does |X|
group operations in G.

Note that in our construction we only need PRFK to be a PRF when the collector is
honest. Furthermore, in this case we apply it to Hash(m, n) where m ∈ [U] and n ∈ [P],
where U is a upper bound on the maximal number of users in the lifetime of the system and
P an upper bound on the number of payments per user. So we set X = Hash([U], [P]). These
bounds are both polynomial and we do not need to estimate them for the construction, only
the reduction. In the reduction we can set U = P to be the running time of the environ-
ment. A poly-time environment can start at most poly-many collections, so the reduction is
asymptotically poly-time.

Our construction seems to be the first to use the DY PRF for strong anonymity while
applying it only to a polynomial domain. For instance [CHK23] applies the PRF to the coins
c, which are harder to control as they can be constructed by the adversary. Constructions,
like [CHK23] apply it to an exponential domain and therefore a priori suffer the exponential
security loss. We note, however, that the complexity of the reduction seems to be controllable
using a programmable random oracle. In [CHK23], the PRF is applied to Hash(c), where Hash
could be modelled as a programable random oracle. Before the reduction is run one could
then sample a large set X of uniformly random values and then when the random oracle
is queried by the adversary return a fresh value from X. Now it is known that the PRF
will only be applied to elements from X. However, at the time of writing the SHA256 hash
function is being computed about 275 times per second by the Bitcoin network. Over a ten
year period this is more than 2100 hashes. This approach therefore still gives a substantial
security loss, though still asymptotically polynomial.

10.6 Extending the Relations and ZK Proofs

We show how to extend our proof systems to the new coin format in Section C.5.

References
AC20. Thomas Attema and Ronald Cramer. Compressed Σ-protocol theory and practical application to plug &

play secure algorithmics. In Daniele Micciancio and Thomas Ristenpart, editors, CRYPTO 2020, Part III,
volume 12172 of LNCS, pages 513–543. Springer, Heidelberg, August 2020.

AFK22. Thomas Attema, Serge Fehr, and Michael Klooß. Fiat-shamir transformation of multi-round interactive
proofs. In Eike Kiltz and Vinod Vaikuntanathan, editors, Theory of Cryptography - 20th International
Conference, TCC 2022, Chicago, IL, USA, November 7-10, 2022, Proceedings, Part I, volume 13747 of
Lecture Notes in Computer Science, pages 113–142. Springer, 2022.

BBDP01. Mihir Bellare, Alexandra Boldyreva, Anand Desai, and David Pointcheval. Key-privacy in public-key
encryption. In Colin Boyd, editor, ASIACRYPT 2001, volume 2248 of LNCS, pages 566–582. Springer,
Heidelberg, December 2001.

BCG+14. Eli Ben-Sasson, Alessandro Chiesa, Christina Garman, Matthew Green, Ian Miers, Eran Tromer, and
Madars Virza. Zerocash: Decentralized anonymous payments from bitcoin. In 2014 IEEE Symposium on
Security and Privacy, pages 459–474. IEEE Computer Society Press, May 2014.

BCH+20. Christian Badertscher, Ran Canetti, Julia Hesse, Björn Tackmann, and Vassilis Zikas. Universal com-
position with global subroutines: Capturing global setup within plain UC. In Rafael Pass and Krzysztof
Pietrzak, editors, Theory of Cryptography - 18th International Conference, TCC 2020, Durham, NC,
USA, November 16-19, 2020, Proceedings, Part III, volume 12552 of Lecture Notes in Computer Science,
pages 1–30. Springer, 2020.

59

BCK+23. Donald Beaver, Konstantinos Chalkias, Mahimna Kelkar, Lefteris Kokoris-Kogias, Kevin Lewi, Ladi
de Naurois, Valeria Nikolaenko, Arnab Roy, and Alberto Sonnino. STROBE: streaming threshold ran-
dom beacons. In Joseph Bonneau and S. Matthew Weinberg, editors, 5th Conference on Advances in
Financial Technologies, AFT 2023, October 23-25, 2023, Princeton, NJ, USA, LIPIcs. Schloss Dagstuhl
- Leibniz-Zentrum für Informatik, 2023.

BDPR98. Mihir Bellare, Anand Desai, David Pointcheval, and Phillip Rogaway. Relations among notions of security
for public-key encryption schemes. In Hugo Krawczyk, editor, CRYPTO’98, volume 1462 of LNCS, pages
26–45. Springer, Heidelberg, August 1998.

BGG+20. Fabrice Benhamouda, Craig Gentry, Sergey Gorbunov, Shai Halevi, Hugo Krawczyk, Chengyu Lin, Tal
Rabin, and Leonid Reyzin. Can a public blockchain keep a secret? In Rafael Pass and Krzysztof Pietrzak,
editors, TCC 2020, Part I, volume 12550 of LNCS, pages 260–290. Springer, Heidelberg, November 2020.

BGI14. Elette Boyle, Shafi Goldwasser, and Ioana Ivan. Functional signatures and pseudorandom functions. In
Hugo Krawczyk, editor, PKC 2014, volume 8383 of LNCS, pages 501–519. Springer, Heidelberg, March
2014.

Blu82. Manuel Blum. Coin flipping by telephone. In Proc. IEEE Spring COMPCOM, pages 133–137, 1982.
BMRS20. Joseph Bonneau, Izaak Meckler, Vanishree Rao, and Evan Shapiro. Coda: Decentralized cryptocurrency

at scale. Cryptology ePrint Archive, Report 2020/352, 2020. https://eprint.iacr.org/2020/352.
BW13. Dan Boneh and Brent Waters. Constrained pseudorandom functions and their applications. In Kazue

Sako and Palash Sarkar, editors, ASIACRYPT 2013, Part II, volume 8270 of LNCS, pages 280–300.
Springer, Heidelberg, December 2013.

Can01. Ran Canetti. Universally composable security: A new paradigm for cryptographic protocols. In 42nd
FOCS, pages 136–145. IEEE Computer Society Press, October 2001.

Can20. Ran Canetti. Universally composable security. J. ACM, 67(5):28:1–28:94, 2020.
CFH+22. Matteo Campanelli, Dario Fiore, Semin Han, Jihye Kim, Dimitris Kolonelos, and Hyunok Oh. Succinct

zero-knowledge batch proofs for set accumulators. In Heng Yin, Angelos Stavrou, Cas Cremers, and
Elaine Shi, editors, ACM CCS 2022, pages 455–469. ACM Press, November 2022.

CGKS95. Benny Chor, Oded Goldreich, Eyal Kushilevitz, and Madhu Sudan. Private information retrieval. In 36th
FOCS, pages 41–50. IEEE Computer Society Press, October 1995.

CH22. Matteo Campanelli and Mathias Hall-Andersen. Veksel: Simple, efficient, anonymous payments with
large anonymity sets from well-studied assumptions. In Yuji Suga, Kouichi Sakurai, Xuhua Ding, and
Kazue Sako, editors, ASIA CCS ’22: ACM Asia Conference on Computer and Communications Security,
Nagasaki, Japan, 30 May 2022 - 3 June 2022, pages 652–666. ACM, 2022.

Cha82. David Chaum. Blind signatures for untraceable payments. In David Chaum, Ronald L. Rivest, and
Alan T. Sherman, editors, CRYPTO’82, pages 199–203. Plenum Press, New York, USA, 1982.

CHK23. Matteo Campanelli, Mathias Hall-Andersen, and Simon Holmgaard Kamp. Curve trees: Practical and
transparent zero-knowledge accumulators. In Joseph A. Calandrino and Carmela Troncoso, editors, 32nd
USENIX Security Symposium, USENIX Security 2023, Anaheim, CA, USA, August 9-11, 2023. USENIX
Association, 2023.

CKS11. Jan Camenisch, Stephan Krenn, and Victor Shoup. A framework for practical universally composable
zero-knowledge protocols. In Dong Hoon Lee and Xiaoyun Wang, editors, Advances in Cryptology -
ASIACRYPT 2011 - 17th International Conference on the Theory and Application of Cryptology and
Information Security, Seoul, South Korea, December 4-8, 2011. Proceedings, volume 7073 of Lecture Notes
in Computer Science, pages 449–467. Springer, 2011.

Cra97. Ronald Cramer. Modular Design of Secure yet Practical Cryptographic Protocols. PhD thesis, January
1997.

DH76. Whitfield Diffie and Martin E. Hellman. New directions in cryptography. IEEE Transactions on Infor-
mation Theory, 22(6):644–654, 1976.

DS21. Dominic Deuber and Dominique Schröder. CoinJoin in the wild - an empirical analysis in dash. In Elisa
Bertino, Haya Shulman, and Michael Waidner, editors, ESORICS 2021, Part II, volume 12973 of LNCS,
pages 461–480. Springer, Heidelberg, October 2021.

DY05. Yevgeniy Dodis and Aleksandr Yampolskiy. A verifiable random function with short proofs and keys. In
Serge Vaudenay, editor, PKC 2005, volume 3386 of LNCS, pages 416–431. Springer, Heidelberg, January
2005.

ElG85. Taher ElGamal. A public key cryptosystem and a signature scheme based on discrete logarithms. IEEE
Transactions on Information Theory, 31(4):469–472, 1985.

60

https://eprint.iacr.org/2020/352

Fis05. Marc Fischlin. Communication-efficient non-interactive proofs of knowledge with online extractors. In
Victor Shoup, editor, CRYPTO 2005, volume 3621 of LNCS, pages 152–168. Springer, Heidelberg, August
2005.

Fis06. Marc Fischlin. Round-optimal composable blind signatures in the common reference string model. In
Cynthia Dwork, editor, CRYPTO 2006, volume 4117 of LNCS, pages 60–77. Springer, Heidelberg, August
2006.

FMMO19. Prastudy Fauzi, Sarah Meiklejohn, Rebekah Mercer, and Claudio Orlandi. Quisquis: A new design for
anonymous cryptocurrencies. In Steven D. Galbraith and Shiho Moriai, editors, ASIACRYPT 2019,
Part I, volume 11921 of LNCS, pages 649–678. Springer, Heidelberg, December 2019.

FS87. Amos Fiat and Adi Shamir. How to prove yourself: Practical solutions to identification and signature
problems. In Andrew M. Odlyzko, editor, CRYPTO’86, volume 263 of LNCS, pages 186–194. Springer,
Heidelberg, August 1987.

GGM84. Oded Goldreich, Shafi Goldwasser, and Silvio Micali. How to construct random functions (extended
abstract). In 25th FOCS, pages 464–479. IEEE Computer Society Press, October 1984.

GHK+21. Craig Gentry, Shai Halevi, Hugo Krawczyk, Bernardo Magri, Jesper Buus Nielsen, Tal Rabin, and Sophia
Yakoubov. YOSO: You only speak once - secure MPC with stateless ephemeral roles. In Tal Malkin
and Chris Peikert, editors, CRYPTO 2021, Part II, volume 12826 of LNCS, pages 64–93, Virtual Event,
August 2021. Springer, Heidelberg.

GK15. Jens Groth and Markulf Kohlweiss. One-out-of-many proofs: Or how to leak a secret and spend a coin. In
Elisabeth Oswald and Marc Fischlin, editors, EUROCRYPT 2015, Part II, volume 9057 of LNCS, pages
253–280. Springer, Heidelberg, April 2015.

Gol87. Oded Goldreich. Towards a theory of software protection and simulation by oblivious RAMs. In Alfred
Aho, editor, 19th ACM STOC, pages 182–194. ACM Press, May 1987.

HF16. Martin Harrigan and Christoph Fretter. The unreasonable effectiveness of address clustering. In 2016 intl
ieee conferences on ubiquitous intelligence & computing, advanced and trusted computing, scalable com-
puting and communications, cloud and big data computing, internet of people, and smart world congress
(uic/atc/scalcom/cbdcom/iop/smartworld), pages 368–373. IEEE, 2016.

JBWD18. Marc Jourdan, Sebastien Blandin, Laura Wynter, and Pralhad Deshpande. Characterizing entities in the
bitcoin blockchain. In 2018 IEEE international conference on data mining workshops (ICDMW), pages
55–62. IEEE, 2018.

KFTS17. Amrit Kumar, Clément Fischer, Shruti Tople, and Prateek Saxena. A traceability analysis of monero’s
blockchain. In Simon N. Foley, Dieter Gollmann, and Einar Snekkenes, editors, ESORICS 2017, Part II,
volume 10493 of LNCS, pages 153–173. Springer, Heidelberg, September 2017.

KPTZ13. Aggelos Kiayias, Stavros Papadopoulos, Nikos Triandopoulos, and Thomas Zacharias. Delegatable pseu-
dorandom functions and applications. In Ahmad-Reza Sadeghi, Virgil D. Gligor, and Moti Yung, editors,
ACM CCS 2013, pages 669–684. ACM Press, November 2013.

KS22. Yashvanth Kondi and Abhi Shelat. Improved straight-line extraction in the random oracle model with
applications to signature aggregation. In Shweta Agrawal and Dongdai Lin, editors, Advances in Cryp-
tology - ASIACRYPT 2022 - 28th International Conference on the Theory and Application of Cryptology
and Information Security, Taipei, Taiwan, December 5-9, 2022, Proceedings, Part II, volume 13792 of
Lecture Notes in Computer Science, pages 279–309. Springer, 2022.

KY00. Jonathan Katz and Moti Yung. Complete characterization of security notions for probabilistic private-key
encryption. In 32nd ACM STOC, pages 245–254. ACM Press, May 2000.

Lin15. Yehuda Lindell. An efficient transform from sigma protocols to NIZK with a CRS and non-programmable
random oracle. In Yevgeniy Dodis and Jesper Buus Nielsen, editors, TCC 2015, Part I, volume 9014 of
LNCS, pages 93–109. Springer, Heidelberg, March 2015.

LN18. Kasper Green Larsen and Jesper Buus Nielsen. Yes, there is an oblivious RAM lower bound! In Hovav
Shacham and Alexandra Boldyreva, editors, CRYPTO 2018, Part II, volume 10992 of LNCS, pages
523–542. Springer, Heidelberg, August 2018.

LR22. Anna Lysyanskaya and Leah Namisa Rosenbloom. Universally composable $\varsigma $-protocols in the
global random-oracle model. In Eike Kiltz and Vinod Vaikuntanathan, editors, Theory of Cryptography
- 20th International Conference, TCC 2022, Chicago, IL, USA, November 7-10, 2022, Proceedings, Part
I, volume 13747 of Lecture Notes in Computer Science, pages 203–233. Springer, 2022.

LWW04. Joseph K. Liu, Victor K. Wei, and Duncan S. Wong. Linkable spontaneous anonymous group signature
for ad hoc groups (extended abstract). In Huaxiong Wang, Josef Pieprzyk, and Vijay Varadharajan,
editors, ACISP 04, volume 3108 of LNCS, pages 325–335. Springer, Heidelberg, July 2004.

61

Max13. Greg Maxwell. Coinjoin: Bitcoin privacy for the real world. Post on Bitcoin Forum, 2013.
MPJ+13. Sarah Meiklejohn, Marjori Pomarole, Grant Jordan, Kirill Levchenko, Damon McCoy, Geoffrey M Voelker,

and Stefan Savage. A fistful of bitcoins: characterizing payments among men with no names. In Proceedings
of the 2013 conference on Internet measurement conference, pages 127–140, 2013.

Nie17. Jesper Buus Nielsen. Universally composable zero-knowledge proof of membership. Cryptology ePrint
Archive, Paper 2017/362, 2017. https://eprint.iacr.org/2017/362.

Ost90. Rafail Ostrovsky. An efficient software protection scheme (rump session). In Gilles Brassard, editor,
CRYPTO’89, volume 435 of LNCS, pages 610–611. Springer, Heidelberg, August 1990.

Ped92. Torben P. Pedersen. Non-interactive and information-theoretic secure verifiable secret sharing. In Joan
Feigenbaum, editor, CRYPTO’91, volume 576 of LNCS, pages 129–140. Springer, Heidelberg, August
1992.

RH13. Fergal Reid and Martin Harrigan. An analysis of anonymity in the bitcoin system. In Security and
Privacy in Social Networks, 2013.

RST01. Ronald L. Rivest, Adi Shamir, and Yael Tauman. How to leak a secret. In Colin Boyd, editor, ASI-
ACRYPT 2001, volume 2248 of LNCS, pages 552–565. Springer, Heidelberg, December 2001.

SCSL11. Elaine Shi, T.-H. Hubert Chan, Emil Stefanov, and Mingfei Li. Oblivious RAM with O((log N)3) worst-
case cost. In Dong Hoon Lee and Xiaoyun Wang, editors, ASIACRYPT 2011, volume 7073 of LNCS,
pages 197–214. Springer, Heidelberg, December 2011.

STW23. Srinath T. V. Setty, Justin Thaler, and Riad S. Wahby. Unlocking the lookup singularity with lasso.
IACR Cryptol. ePrint Arch., page 1216, 2023.

Val08. Paul Valiant. Incrementally verifiable computation or proofs of knowledge imply time/space efficiency.
In Ran Canetti, editor, TCC 2008, volume 4948 of LNCS, pages 1–18. Springer, Heidelberg, March 2008.

Vij23. Saravanan Vijayakumaran. Analysis of cryptonote transaction graphs using the dulmage-mendelsohn
decomposition. In 5th Conference on Advances in Financial Technologies, AFT 2023, October 23-25,
2023, Princeton, NJ, USA, volume 282 of LIPIcs, pages 28:1–28:22. Schloss Dagstuhl - Leibniz-Zentrum
für Informatik, 2023.

YAY+19. Zuoxia Yu, Man Ho Au, Jiangshan Yu, Rupeng Yang, Qiuliang Xu, and Wang Fat Lau. New empirical
traceability analysis of CryptoNote-style blockchains. In Ian Goldberg and Tyler Moore, editors, FC
2019, volume 11598 of LNCS, pages 133–149. Springer, Heidelberg, February 2019.

ZBK+22. Arantxa Zapico, Vitalik Buterin, Dmitry Khovratovich, Mary Maller, Anca Nitulescu, and Mark Simkin.
Caulk: Lookup arguments in sublinear time. In Heng Yin, Angelos Stavrou, Cas Cremers, and Elaine
Shi, editors, ACM CCS 2022, pages 3121–3134. ACM Press, November 2022.

A Generalised Dodis-Yampolskiy Theorem

In this section we give a generalised proof of the security of the Dodis-Yampolskiy VRF
without using a random oracle. In our work, we only treat it as a PRF as this is all we
need from it. Dodis and Yampolskiy [DY05] prove their VRF construction secure under the
Diffie-Hellman inversion (DHI) problem, but their reduction has an exponential security loss,
meaning that the DHI assumption needs to hold with exponential security. More concretely
this means that the DHI problem needs to be secure against an adversary making 2λ queries,
where λ is the output length of a collision-resistant hash function. The reduction at some
point iterates over all possible output of the hash function used.

At the time of writing, most groups used in practice for DHI are shorter than the length
of hash functions that are considered collision resistance. Because of the birthday paradox
this would appear to be a staying situation. Here we do a more fine grained version of
the DY reduction which allows us to avoid the exponential security assumption on DHI.
We emphasize that we are not adding anything fundamentally different, we merely squeeze
concretely better parameters out of the existing proof technique by iterating only over some
controlled subsets of the outputs of the hash function.

62

https://eprint.iacr.org/2017/362

Definition 30 (DHI). We say that G is (ϵ, ℓ)-DHI against A if AdvDHI
A ≤ ϵ, where

AdvDHI
A,ℓ := Pr

g
$←G

β
$←Zq

G0 ← gβ−1 mod q

G1
$←G

b
$←{0, 1}

c← A(g, gβ, . . . , gβℓ

, Gb)

∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥
c = b

− 1

2 .

We make a definition which is equivalent to the DY VRF being adaptive secure.

Definition 31 (DY). We say that G is ϵ-DY secure against A if AdvDY
A ≤ ϵ, where

AdvDY := Pr

h
$←G

α
$←Zq

G← hα

O0(x) :=

add x to initially empty Q

return h(x+α)−1 mod q

x∗ ← AO0(h, G)
X1

$←G

X0 ←

X1 if x∗ ∈ Q

h(x∗+α)−1 mod q otherwise

O1(x) :=

⊥ if x = x∗

h(x+α)−1 mod q otherwise
b

$←{0, 1}
c← AO1(h, G, Xb)

∥∥

c = b

≤ 1
2 ± negl(λ) .

Our goal is to reduce DY to DHI. As a stepping stone we use another assumption which
we call DYZ (Dodis-Yampolskiy with Zero challenge). It is equivalent to the DY VRF being
secure if the adversary is always challenging on m∗ = 0

63

Definition 32 (DY zero). We say that G is ϵ-DYZ against A if AdvDYZ
A ≤ ϵ, where

AdvDYZ
A := Pr

h
$←G

β
$←Zq

H ← hβ

H0 ← hβ−1 mod q

H1
$←G

O(x) :=

⊥ if x = 0
h(x+β)−1 mod q otherwise

b
$←{0, 1}

g ← AO(h, H, Hb)

∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥

g = b

− 1
2 .

Let X be a set such that we are guaranteed that Q ⊆ X. Ultimatly we could set X = Zq

but we might be in a setting where we can limit the query set further. Let Y be a set such
that it is guaranteed that x∗ ∈ Y in the DY game. We call A for the DY game (ℓX, ℓY)-limited
it it starts by outputting (X, Y) which limits it as above and where |X| ≤ ℓX and |Y | ≤ ℓY.
We call A for the DYZ game ℓX-limited it it starters by outputting X with |X| ≤ ℓX.

Theorem 6. For all (ℓX, ℓY)-limited adversary A for the DY game there exists an adversary
B for the ξ-DHI game, with ξ = ℓX + 1, which runs A once plus some Õ(ℓX) operations in
the group G, and such that

AdvDY
A ≤ ℓY · AdvDHI

B,ξ

Lemma 1. For all (ℓX, ℓY)-limited adversary A for the DY game there exists an ℓX-limited
adversary B for the DYZ game, which runs A once and such that

AdvDY
A ≤ ℓY · AdvDYZ

B .

Proof. Assume we have an adversary A for the DY game. We construct B for the DYZ game.
First run A to get (X, Y). Sample a uniformly random x0 ← Y . This is our guess at what
x∗ will be. Output X ′ = {x − x0 |x ∈ X}. Now we receive (h, H, Hb) from the DYZ game
where H = hβ, H0 ← hβ−1 mod q, and H1

$←G. Define

α := β − x0 mod q

such that β = x0 + α mod q. Compute

G← h−x0 = hβh−x0 = hβ−x0 = hα .

Let
O0(x) = O(x− x0) .

Note that if x ∈ X then x− x0 ∈ X ′, so B is also ℓX-limited. Note also that

O0(x) = O(x− x0) = h((x−x0)+β)−1 mod q = h(x+α)−1 mod q .

64

Run
x∗ ← AO0(h, G) .

If x∗ ̸= x0 then output a random guess c
$←{0, 1}. Otherwise, proceed as follows. Below we

assume x∗ is fresh, i.e., x∗ ̸∈ Q. This is without loss of generality. Let O1(x) = ⊥ if x = x∗

and let O1(x) = O(x− x0) otherwise. For d = 0, 1 define

Xd = Hd .

Note that we know Xb and that

X0 = hβ−1 mod q = h(x0+α)−1 mod q = h(x∗+α)−1 mod q

X1 = H1
$←G .

By construction, when x∗ = x0 then the values shown to A are exactly as in the DY game.
Since x∗ ∈ Y we have that x0 = x∗ correctly with probability 1/ℓY. Therefore

AdvDYZ
B = AdvDY

A /ℓY .

Lemma 2. For all ℓX-limited adversary A for the DYZ game there exists an adversary B
for the ξ-DHI game, with ξ = ℓX + 1, which runs A once plus some Õ(ℓX) operations in the
group G and such that

AdvDYZ
A ≤ AdvDHI

B,ξ .

Proof. We are given A for the DYZ game and describe B for the DHI game. Run A to get
X such |X| ≤ ℓX and such that all queries to O are in X and 0 ̸∈ X. Let ξ = ℓX + 1 and be
given

g, g1 = gβ, g2 = gβ2
, . . . , gξ = gβξ

, Gb ,

where G0 = gβ−1 mod q and G1
$←G. Define

f(x) :=
∏

z∈X

(x + z) .

Compute coefficients c0, c1, . . . , cℓX such that

f(x) =
ℓX∑

i=0
cixi .

Define

h :=
ℓX∏

i=0
gci

i = g
∑ℓX

i=0 ciβ
i = gf(β) .

Note that
hβ = g

(∑ℓX
i=0 ciβ

i

)
β = g

∑ℓX
i=0 ciβ

i+1
.

65

So, we can compute H as in the DYZ game as follows:

H =
ℓX∏

i=0
gci

i+1 = hβ .

This is the place where we use ξ = ℓX + 1. To answer O(x) as in the DYZ game we proceed
as follows. Define the polynomial

fx(x) :=
∏

z∈X\{x}
(x + z) = f(x)/(x + x) .

Compute coefficients d0, d1, . . . , dℓX−1 such that

fx(x) =
ℓX−1∑
i=0

dixi .

As above we can compute

O(x) =
ℓX−1∏
i=0

gdi
i = g

∑ℓX−1
i=0 diβ

i = gfx(β) = gf(β)/(β+x) = h(β+x)−1 mod q .

Finally we address how to compute the challenges. Define

f0(x) := f(x)/x .

We have that

f0(x) = c0/x +
ℓX∑

i=1
cixi−1 ,

f0(β) mod q = f(β)β−1 mod q .

Compute

Hb ← Gc0
b

ℓX∏
i=1

gci
i−1 .

Note that

H0 = Gc0
0

ℓX∏
i=1

gci
i−1 = gc0β−1+

∑ℓX
i=1 ciβ

i−1 = gf0(β) = gf(β)/β = hβ−1 mod q ,

as in the DY game. Since x ̸∈ X we have that c0 ̸= 0. Therefore it follows from G1 being
uniform that

H1 = Gc0
1

ℓX∏
i=1

gci
i−1

is uniform, as desired. We compute c = AO(h, H, Hb) and return c. It is easy to see that all
values by construction are as in the DY game, so AdvDHI

B,ξ = AdvDYZ
A . ⊓⊔

66

B Proof of Theorem 2

In this section, we provide the full proof of Theorem 2. Recall that to prove security in the
UC framework we need to construct a simulator S such that for all environments E it holds
that

ExecFAnonPay,S,E(1λ) ≈ ExecΠAnonPay,FLedger,FAAT,FService,E(1λ) . (5)
Note that we prove security for the dummy adversary and therefore leave it out of the
notation.

In ExecFAnonPay,S,E(1λ) it is the environment which gives inputs to FAnonPay and receives out-
puts from FAnonPay. In ExecΠAnonPay,FLedger,FAAT,FService,E(1λ) the inputs from E goes to ΠAnonPay
and the outputs of the parties go back to E . In ExecΠAnonPay,FLedger,FAAT,FService,E(1λ) the leakage
of FLedger, FAAT, and FService goes to E and it is E giving commands to these ideal func-
tionalities as adversary. In ExecFAnonPay,S,E(1λ) it is simulator S which gets the leakage from
FAnonPay and which gives adversarial commands to FAnonPay. The simulator S also interacts
with E and presents E with the same adversarial interface as FLedger, FAAT, and FService
have. It tries to convince E that E is observing a run of ExecΠAnonPay,FLedger,FAAT,FService,E(1λ).
It must produce the same leakage to E as the FLedger, FAAT, and FService would in

ExecΠAnonPay,FLedger,FAAT,FService,E(1λ)

and it must receive adversarial commands from E to FLedger, FAAT, and FService and translate
these into adversarial commands to FAnonPay with the same effects. It must in particular make
FAnonPay give the same outputs as the protocol ΠAnonPay. The main challenge in constructing
S is that in ExecFAnonPay,S,E(1λ) it does not receive the inputs of honest parties, only the
limited leakage provided by FAnonPay.

We only prove static security, i.e., it is decided before the execution which parties are
corrupted.

In the simulation there are two types of differences from the protocol to handle. First of
all, there is structural simulation, i.e., we construct the simulator to send values which are
structured as in the protocol and are sent at the same time as the protocol, and construct it
to give appropriate inputs to FAnonPay to make it give the same outputs as the protocol at the
same times. There is also content simulation, i.e., some of the values sent at the correct times
during the simulation might have a different distribution than in the protocol, for instance
an encryption of a dummy label instead of the correct label. We prove indistinguisability of
structure and contents slight differently. We argue during the presentation of the simulator,
inside the pseudo-code, that the simulation has the correct temporal structure, as we think
this helps to understand why the simulator is constructed as it is and therefore makes it
easier to read. After that we then argue that the messages sent in the simulation are also
indistinguishable from those of the protocol using a hybrids argument.

B.1 Observations

We first make some observations about the protocol which help better understand the struc-
ture of the simulator and prove it secure.

67

In the below we will change to a hybrid where the CRS crsknow for the proof of knowledge
is generated by FService as follows:

(crsknow, tSim, tExt)← NIZKPoK.SimGen(1λ) .

By Zero-Knowledge in Section 2.5 it follows that this change will be indistinguishable
to the adversary and environment. Furthermore, by Weak Simulation Extractability in Sec-
tion 2.5 it follows that we can use tExt to extract accepting proofs given by the adversary, and
this will yield a witness except with negligible probability. This is because we are not using
tSim to simulate any proofs and therefore in particular are simulating no false statements.
The reason why we need to extract some proofs from the adversary will become apparent
by Definition 33 below.

Lemma 3 (No Account Collisions). If FLedger accepts two accounts A1 and A2 then
A1 ̸= A2.

Proof. The position pi at which Ai appears in Ledger is part of Ai and p1 ̸= p2.

Recall that we model Hash as a random oracle.

Lemma 4 (Hidden Query Point). For all executions it holds except with negligible prob-
ability that whenever Step 5 Receive Coin in Fig. 11 is executed, then Hash has not yet
been queried on L = LA⊕ LS. Furthermore, if both A and B in a payment (Pay, A, B, · · ·) are
honest, then Hash has not yet been queried on L = LA ⊕ LS by the adversary when Step 5 in
Collect in Fig. 12 is executed.

Proof. We can set up the execution such that we only use the CRaB key k via blackbox
access to Eval(k, ·) and Prefix(k, ·). At a given point let p0 be the maximal value we queried
Eval(k, ·) or Prefix(k, ·) on. Let p be the position of (Tx, ϕTx) in Fig. 11. It is not hard
to see that just before we execute Step 5 in Fig. 11 we have that p > p0. So if we can
compute (p, LS) such that CRaB.Eval(k, p) = LS with probability non-negligibly better than
2−λ then we can win Definition 25, which we have assumed that we cannot. Note that before
Step 5 in Fig. 11 we can compute the, possibly corrupted, PA’s contribution to the coinflip
as (A, LA) = PKE.Decdk(d). Keep track of the points Q on which Hash was queried and
compute Q ⊕ LA = {x ⊕ LA|x ∈ Q}. Assume for the sake of contradiction that Hash was
queried on L = LA⊕ LS. This is the same as LA⊕CRaB.Eval(k, p) ∈ Q which is equivalent to
CRaB.Eval(k, p) ∈ Q⊕LA. This allows us to guess CRaB.Eval(k, p) with noticeable probability
|Q|−1 by outputting a uniformly random point from Q ⊕ LA. But we have argued that this
cannot be the case. Then note that the adversary gets no additional information on L until
Step 5 in Collect in Fig. 12 when both the sender and receiver are honest. ⊓⊔

When describing the simulator, and in the proofs, we will assume that whenever Step 5
in Receive Coin in Fig. 11 is executed then Hash has not been queried on L = LA ⊕ LS.
Similarly for Step 5 in Collect in Fig. 12 when both the sender and receiver are honest. We
can without loss of generality ignore the negligible probability that this is not the case.

68

We then prove a lemma about when an honest payment can fail. Let us first see that there
is something to do. Note that in Step 1 in Fig. 10 the payer checks that a ≤ bA. However,
when the transaction is sent in Step 9 then the control goes back to the environment which
may now initiate a new payment for the same A. This payment would be made with the
same nonceA so it will be in contradiction to the previous payment. Assume for sake of
argument that both payments are of the amount a = bA and that a > 0. Then clearly it
is a feature that at most one should go through. We could change the code to avoid that
such parallel payments are done. The honest user could set a local bit indicating that a
payment is in process. This is, however, not a practical solution. In practice keys often exist
in several places, say in a mobile wallet and a desktop wallet, so it is hard to implement such
a semaphore. Users also often make multiple retries on purpose. It can for instance happen
that a user makes a payment, but during the payment the payment app crashes and/or the
payment takes a very long time to arrive on the blockchain. The user in these cases often will
try to make the payment again until it goes through. We therefore want to allow multiple
conflicting payments being in progress as a feature. The first to arrive on the chain will be
the one accepted.

Notice that the payment transaction (Tx, ϕTx) contains nonceA. Call this value nonce(Tx, ϕTx).

Lemma 5 (Unique NONCE). If A is honest then for each nonceA at most one payment
(Tx, ϕTx) with nonce(Tx, ϕTx) = nonceA is posted. Furthermore, for each nonceA it is always
possible that some payment will go through for nonceA, at least as long as bA > 0 and a
covered payment is made (i.e., one where a ≤ bA) while nonceA is the value stored on FLedger.
Furthermore, the (Tx, ϕTx) to go through for nonceA is the first covered one to be scheduled
by the adversary for which nonce(Tx, ϕTx) = nonceA.

Proof. We first prove that at most one transaction is posted for each nonceA. Note that if any
(Tx, ϕTx) initiated with nonceA = nonce is posted on FLedger, then nonce is part of (Tx, ϕTx).
Let us write nonce(Tx, ϕTx) = nonce. Assume (Tx, ϕTx) is posted on FLedger. Let nonceA be
the value on FLedger when (Tx, ϕTx) is posted. It is easy to see that by construction of ϕTx
and soundness of NIZKPoK it holds that nonce(Tx, ϕTx) = nonceA when (Tx, ϕTx) is posted.
And by construction it will hold that nonceA = nonce(Tx, ϕTx) + 1 right after. So for each A
and each nonceA at most one (Tx, ϕTx) with nonce(Tx, ϕTx) = nonceA is posted.

We then prove that for each nonceA it is always possible that some covered payment
will go through for nonceA and that it is the first one scheduled by the adversary for which
nonce(Tx, ϕTx) = nonceA. Say that A is locally consistent when the values stored locally by A
match the values on the ledger, i.e., cA = Commitck(bA; ρA) and the value of nonceA in local
storage is the same as the one on FLedger. There is only one period of time where A is not
locally consistent and that is from when Tx is posted on FLedger in Step 10 and A updates
its state in Step 11. In Step 10 the blockchain stateful layer updates to nonce′

A = nonceA + 1
and this is only done by A in Step 11. We show that if a covered payment is made for nonceA
then one will eventually go through. Assume first the payment is made when A is not locally
consistent. Note that any payment initiated when A is not locally consistent will terminate
already in Step 1 as the check nonceA ̸= nonce′

A will be true. This can only happen if already
some other payment with nonceA was initiated. And this payment will terminate when A

69

is again scheduled to run from Step 11 and then a payment was made for nonceA. Assume
then the payment is made when A is locally consistent. Then by construction (Tx, ϕTx) with
nonce(Tx, ϕTx) = nonceA is posted. Furthermore, when the first such (Tx, ϕTx) is scheduled,
then the ledger updates nonce′

A = nonceA +1 and no other such payment can now get posted.
Once A is scheduled again it will execute from Step 11 and the payment has gone through.

⊓⊔

We now define the “information inside a transfer”, which is not a straight-forward notion
as the commitments are information theoretically hiding. We instead use extraction of the
proof system to get the information. This is the first place where we use that we set up
crsknow with known tExt.

Definition 33 (Transfer Information). In the protocol we can inspect FService to learn
tExt. This allows us to define what information is in the coin of a payment as follows. When
during a payment a (Tx, ϕPay) appears on the ledger in position p, get the proof π from Tx. By
construction of ϕPay we know that NIZKPoK.Vercrs(RPay, (cA, coin, cA′ , A, nonceA), π) = ⊤. By
definition ofRPay we can therefore use tExt to compute a witness w = ((bA, ρA), (B, a, ρ1, ρ2), ρ′

A)
such that cA = Com.Commitck(bA, ρA) and ((coin, Com.Commitck(A, B, a, nonceA; ρ1)), ρ2) ∈
REnc and c′

A = Com.Commitck(bA − a, ρ′
A), and bA ≥ a ≥ 0. We say that coin is a payment

from A to B of amount a with transfer identifier tid = Com.Commitck(A, B, a, nonceA; ρ1),
nonce nonceA and appearing in position p. We write PayInfotExt(Tx) = (A, B, tid, a, nonceA, p).
Similarly for a collection (Tx, ϕCollect) in position p. By construction of ϕCollect we have
that

NIZKPoK.Vercrs(RCollect, (ck, cB, B, tid, c′
B), π2) = ⊤ ,

so we can use tExt to compute an opening tid = Com.Commitck(A, B, a, nonceA, ρ1). We write
ColInfotExt(Tx) = (A, B, tid, a, nonceA, p).

Note that the extractions needed in the above definition will indeed succeed by weak
simulation extraction. Since we do not simulate any false statements or extract any simulated
proofs, the failure of an extraction would allow us to win the game in Weak Simulation
Extraction in Definition 16.

Note that PayInfotExt(Tx) can be computed in PPT given tExt. We can assume without
loss of generality that NIZKPoK.ExtractO is deterministic, making PayInfotExt(Tx) a function.
Even if NIZKPoK.ExtractO was randomised it is easy to see that if different computations of
PayInfotExt(Tx) would lead to different information, then we would have broken computational
binding of Com.Commitck. Similarly for ColInfo.

Lemma 6 (Correct Nonce). Let (Tx, ϕPay) be a payment on FLedger. Let PayInfotExt(Tx) =
(A, B, tid, a, nonceA, p). Then except with negligible probability nonceA is the value of nonceA
from A’s account on FLedger just before (Tx, ϕPay) was posted.

Proof. This follows by the fact that NIZKPoK.Vercrs(RPay, (cA, coin, cA′ , A, nonceA), π) = ⊤,
soundness of NIZKPoK and construction of RPay. ⊓⊔

70

Lemma 7 (Unique Coins and Identifiers). The following holds in all executions ex-
cept with negligible probability. Let (Tx1, ϕ1

Pay) and (Tx2, ϕ2
Pay) be two payments on FLedger

containing coins coin1 and coin2 respectively. Then coin1 ̸= coin2. Furthermore, if we let
PayInfotExt(Tx1) = (·, ·, tid1, · · ·) and PayInfotExt(Tx2) = (·, ·, tid2, · · ·), then tid1 ̸= tid2.

Proof. Let RPKE.Dec·(coini) = tidi define the transfer identifier tidi inside coini. Note that
if coin1 = coin2 then tid1 = tid2, so it is enough to prove that tid1 ̸= tid2. Assume for
the sake of contradiction that tid1 = tid2 =: tid. As in Definition 33 we can use tExt to
open coin from the proofs posted on FLedger in PPT. This allows us to compute tid in
PPT and by definition of REnc we get that tid = Com.Commitck(A, B, a, nonceA; ρ1). So
PayInfotExt(Tx1) = (A, B, tid, a, nonceA, · · ·) and PayInfotExt(Tx2) = (A, B, tid, a, nonceA, · · ·).
This, however, cannot be the case. One of the two payments were posted first, say Tx1.
When this happened nonceA was the value of nonceA from A’s account on FLedger just before
Tx1 was posted (by Lemma 6). By inspection of Fig. 10 it can be seen that when Tx1

was posted FLedger the value of nonceA from A’s account on FLedger was incremented to
nonceA + 1. And this value never decreases. Therefore PayInfotExt(Tx2) = (A, B, tid, a, nonceA)
is in contradiction with Lemma 6.

From Lemma 7 we get that if there is a coin coin appearing in a payment then except
with negligible probability it appears in a unique Tx. We can therefore make the definition

PayInfo(coin) = (A, B, tid, a) ,

where PayInfotExt(Tx) = (A, B, tid, a, nonceA) and Tx is the unique Tx in which coin appears.
This definition is well-formed except with negligible probability. We will tacitly ignore the
executions where this definition is not well-defined.

Lemma 8 (TID Distribution). Consider the distribution Tid obtained by sampling tid←
Com.Commitck(0). All tid produced by honest parties have this distribution. Furthermore, for
all transfers Tx produced by corrupted parties and PayInfotExt(Tx) = (A, B, tid, · · ·) it holds
that tid is different from all other tid used by honest or corrupt parties, except with negligible
probability.

Proof. The transfer identifier used by an honest party is computed as

tid = Com.Commitck((A, B, a, nonceA); ρ1)

for a uniformly random ρ1. It follows from perfect hiding that this has the same distribution
as Tid. The second part of the lemma follows from Lemma 7.

Definition 34 (Account Information). For an account Account = (A, cA, ekA, nonceA)
on FLedger we let AccountInfo(Account) = (A, bA, ρA) where cA = Com.Commitck(bA; ρA). Note
that if A is honest then AccountInfo(Account) can be read from the local storage of PA. In the
protocol we can inspect FService to learn tExt. This allows us to compute AccountInfo(Account)
for corrupt A in PPT as follows. In Create Account use tExt to extract the proof π for

71

RIsZero to learn bA = 0 and ρA such that cA = Com.Commitck(bA; ρA). Similarly if the account
is the funding account. In Initiate Pay use tExt to extract the proof π for RPay to learn
b′

A and ρ′
A such that c′

A = Com.Commitck(b′
A; ρ′

A). In Collect use tExt to extract the proof π
for RCollect to learn b′

A and ρ′
A such that c′

A = Com.Commitck(b′
A; ρ′

A). All these proofs can
be extracted as they were given using NIZKPoK.

Since A is unique for the accounts, as the position p is part of A, we have a well-defined
map from A to Account = (A, cA, ekA, nonceA) on FLedger. We therefore also have a well-
defined map from to A to the balance bA, computed as follows. Given A, find Account =
(A, cA, ekA, nonceA), compute AccountInfo(Account) = (A, bA, ρA), and output bA. We call this
map Balancereal below.

Lemma 9 (Coin Matching). Any collection can be matched to a unique, earlier payment
with the same transfer information about parties, amount and nonce. In a bit more detail, let
P be the set of payments, i.e., all transactions Tx which appear as part of some (Tx, ϕPay) on
Ledger. Similarly let C be the set of collections, i.e., transactions Tx appearing as part of some
(Tx, ϕCollect) on Ledger. Then except with negligible probability we can use tExt to efficiently
compute a map CoinMap : C → P such that CoinMap is injective and for all Tx = (·, ·, tid, ·, ·)
and CoinMap(Tx) = Tx′ = (·, ·, coin, ·, ·) it holds that RPKE.Decdk(coin) = tid. Furthermore, if
ColInfotExt(Tx) = (A, B, tid, a, nonceA, p) and PayInfotExt(Tx′) = (A′, B′, tid′, a′, nonce′

A, p′) then
p′ < p and (A′, B′, tid′, a′, nonce′

A) = (A, B, tid, a, nonceA).

Proof. Let Tx = (B, L, tid, π1, π2) be any collection. By construction of ϕCollect if we fetch
the coins {coinj}j∈pos for pos = SOROM.Pos(L) then

NIZK.Vercrs(ROrDec, (ck, {coinj}j∈pos, tid), π1) = ⊤
NIZKPoK.Vercrs(RCollect, (ck, cB, B, tid, c′

B), π2) = ⊤
tid ̸∈ Spent .

From NIZK.Vercrs(ROrDec, (ck, {coinj}j∈pos, tid), π1) = ⊤ and simulation soundness of NIZK
we get that for some j it holds that tid = RPKE.Decdk(coinj). By inspection of FService it
can be seen that each coinj is either a coin posted in a payment transaction or such a coin
rerandomized some number of times using RPKE.Ran. By correctness of RPKE this means
that we can find an earlier payment Tx′ = (A, c′

A, coin, π, d) such that RPKE.Decdk(coin) =
RPKE.Decdk(coinj) = tid. By Unique Coins and Identifiers there is in fact a unique such Tx′,
but this is not central to the proof. We can pick any such Tx′ and let CoinMap(Tx) = Tx′.
Then we have that RPKE.Decdk(coin) = tid as desired.

That the map is injective except with negligible probability follows from the fact that
ϕCollect checks that tid ̸∈ Spent, so for each collection Tx the value Tx.tid is unique.
Therefore two different collections Tx1 and Tx2 will also map to different payments Tx′

1 =
CoinMap(Tx1) and Tx′

2 = CoinMap(Tx2) as RPKE.Decdk(Tx′
1.coin) = Tx1.tid ̸= Tx2.tid =

RPKE.Decdk(Tx′
2.coin). Now let ColInfotExt(Tx) = (A, B, tid, a, nonceA, p) and PayInfotExt(Tx′) =

(A′, B′, tid′, a′, nonce′
A, p′). The fact that p′ < p follows from coinj being a coin already on

the ledger when Tx was posted, so it is a rerandomization of an earlier payment. Finally,

72

(A′, B′, tid′, a′, nonce′
A) = (A, B, tid, a, nonceA) follows from tid′ = RPKE.Decdk(Tx′.coin) = tid,

computational binding of Commitck and the fact that we can compute openings tid =
Commitck(A, B, tid, a, nonceA; ρ1) and tid′ = Commitck(A′, B′, tid′, a′, nonce′

A; ρ′
1), cf. the defi-

nition of Transfer Information. ⊓⊔

Since each collection Tx has a unique tid we can define a function CoinMap(tid) =
CoinMaptExt(Tx) giving for each tid in a collection the corresponding payment.

Lemma 10 (Balance Correctness). Except with negligible probability balances, as de-
fined by AccountInfo(A), are updated according to the logic of FAnonPay as if run on the pay-
ment information PayInfo(coin) in the protocol. In a bit more detail, consider a run of the
protocol ΠAnonPay and keep a copy for FAnonPay synchronised with it as follows. Whenever
there is an account A created in the protocol by P ask P to create an account on FAnonPay
and reply on behalf of S with the account name A. Whenever there is a payment Tx in
ΠAnonPay with PayInfo(Tx) = (A, B, tid, a, · · ·) ask PA on FAnonPay to do the same payment
using input (Pay, A, B, a) and make the payment deducted. Then remember that this is the
payment corresponding to tid. Note that it might get some other tid′ on FAnonPay, which
does not matter. Whenever there is a collection Tx in the protocol with transfer identifier
tid let Tx′ = CoinMap(tid) be the corresponding payment. Find the corresponding payment
in FAnonPay, make it observable, let pid′ be the payment identifier it has in FAnonPay, input
(Collect, tid′, A, B, a) to PB and then use the callback MakeCollected to make the call
collected. For all accounts A let FAnonPay.Balance[A] be the balance in FAnonPay. Recall that we
defined the map bA = Balancereal(A) above giving the balance in the protocol via the account
information function AccountInfo. Except with negligible probability it holds for all points of
time in the execution and all A that Balancereal(A) = FAnonPay.Balance[A].

Proof. It can be seen that in both FAnonPay and ΠAnonPay the first account will have balance a0
and all other accounts will have balance 0. We then show that payments and collections move
the balances in synchrony. This follows by the fact that NIZKPoK is simulation extractable,
Coin Matching, the proofs for RCollect and RPay, and the binding of Com.Commitck. We
give a bit more details for payment and collection separately.

During payment, in the proof of RPay we get a witness opening the old cA to some bA.
This must be the bA = Balancereal(A) or we broke binding of the commitment scheme. By
induction we can assume that bA = FAnonPay.Balance[A]. Furthermore, the coin is opened to
the a in PayInfo(coin), or we broke binding of the commitment scheme. This is the a that
we use when doing the corresponding payment (Pay, A, B, a) on FAnonPay. The relation RPay
then ensures that the balance b′

A in the new c′
A will be b′

A = bA−a, or we broke binding of the
commitment scheme. I.e., in the new state of ΠAnonPay we have that Balancereal(A) = bA−a.
The same update will happen to FAnonPay.Balance[A] when we make the payment deducted.

During collection, in the proof of RCollect we get a witness opening the old cA to some
bA. This must be the bA = Balancereal(A) or we broke binding of the commitment scheme. By
induction we can assume that bA = FAnonPay.Balance[A]. Furthermore, the transfer identifier
tid is opened to the a in ColInfo(tid), or we broke binding of the commitment scheme. This is
also the a that we used when doing the corresponding payment on FAnonPay by Coin Matching.

73

The relation RCollect then ensures that the balance b′
A in the new c′

A will be b′
A = bA +a, i.e.,

in the new state of ΠAnonPay we have that Balancereal(A) = bA +a, or we broke the binding of
the commitment scheme. The same update will happen to FAnonPay.Balance[A] when we make
the payment collected, as it uses the a from the corresponding payment (Pay, A, B, a). ⊓⊔

The following lemma follows form Coin Matching.

Lemma 11 (UCHP). Let I be the number of payments initiated from an honest A to an
honest B and let C be the number of payments collected from an honest A to an honest B.
Then it is always that case that C ≤ I.

Finally we prove a helping lemma about when a coin is collectable. First a definition.

Definition 35 (Observable, Collectable). If B is honest and there is a coin in posi-
tion p on FLedger with PayInfo(coin) = (A, B, tid, a) then we call it observable if a call to
(Observe, tid, A, B) would make B return (Observe, tid, A, B,⊤). We call it collected if
FLedger contains (Tx, ϕCollect) with tid in Tx. We call it collectable if it is collected or a call
to (Collect, tid, A, B) would make B post (Tx, ϕCollect) with tid in Tx and which would be
accepted by FLedger if scheduled by the adversary.

Lemma 12 (Observable implies Collectable). If B is honest and there is a coin in
position p on FLedger with PayInfo(coin) = (A, B, tid, a) and the current value of pupdated on
FLedger is such that pupdated ≥ p, then coin is collectable whenever it is observable.

Proof. If pupdated ≥ p then coin has been added to OM so by completeness it can be found
at one of the positions SOROM.Pos(L). And if Observe returns ⊤ then B can learn all the
values needed to construct the proofs for Tx. ⊓⊔

Note that the above lemma shows that if a coin is observable, then it eventually becomes
collectable as the service will eventually ensure that pupdated ≥ p.

B.2 Simulator

We first construct S and then analyse it to prove (5). Our strategy will be to run a copy of

ExecΠAnonPay,FLedger,FAAT,FService,·(1λ)

inside S and present the adversarial interface of FLedger, FAAT, FService to E . We call this
the dummy execution. Note that since it is S running FLedger, FAAT, FService it will see all
inputs to these and may run them in deviation from their real code, as long as this it not
noticed by E . Note that O is a global ideal functionality, as formalised in [LR22], so it is not
the simulator running it. However, the simulator has access to programming it and seeing all
queries made by the environment so it can extract all the proofs made by the environment
(by definition of the proof being a GUC NIZK PoK).

When an honest party does a transfer to an honest party we will not learn the amount nor
the receiver. We will therefore run on dummy inputs and use the ZK simulator to cheat with

74

the proofs. The simulator S runs FService.Init as in the protocol and saves all values, with the
one difference that it computes crsknow as (crsknow, tSim, tExt)← NIZKPoK.SimGen(1λ). Note
in particular that S learns the simulation trapdoor tSim of crsknow along with the extraction
trapdoor tExt. Note also that this allows us to apply the observations in the previous section
to the simulation.

Init The simulator runs a copy of FLedger, FAAT and FService. These ideal functionalities are mostly run
honestly with some deviations described below. Notice that hereby the simulator knows all secret keys
generated by the service. It also runs a simulated version of ΠAnonPay with many deviations described
below. When FAnonPay asks for a distribution Tid on transaction identifiers return the following distribution:
tid← Com.Commitck(0).

Create Account On input (CreateAccount, P) from FAnonPay for an honest P run ΠAnonPay.CreateAccount
honestly. This is possible as there are no secret inputs to P. Store all secrets generated in
ΠAnonPay.CreateAccount for later use in the simulation. Let A be the generated account name. When
(A, . . .) appears on the simulated FLedger input (MakeAccountObservable, P, A) to FAnonPay. This will
be a perfect simulation unless A ∈ Accounts already, but this cannot happen by Lemma 3.

Honest/Corrupt Payment We call a payment honest when both the sender and receiver are honest. We
call it corrupt if either the sender or the receiver is corrupt. Note that if the payment is corrupt then the
ideal functionality leaks some (Pay, A, B, atid, a). We therefore know all inputs and can run the honest
party (if there is any) according to the protocol. We will do this. We therefore only specify how to simulate
honest parties in honest payments and corrupted parties in corrupted payments.
We let UCHP be the set of uncollected, collectible honest payments, initially empty. These will be used
for simulating collection of honest payments, where we do not know the sender. We learn in the ideal
functionality that some collectible payment was collected by B, but not which one. We will therefore in
the simulation let B collect some payment from UCHP.

Service Simulate FService by running it honestly as in Fig. 11.

Fig. 16. Simulator S (Init, Creation, Service)

The simulation of initialisation, account creation and the service is given in Fig. 16. The
simulation of payment by an honest sender is given in Fig. 17. If the receiver is corrupt we
learn the information to do the payment honestly. If the receiver is honest we do not learn
the payment information, so we use ZK to just do a dummy payment of 0. The simulation of
observation of a payment is given in Fig. 18, but there is not really anything to simulate as the
protocol does not generate communication during observation. The simulation of collection
between honest sender and honest receiver is given in Fig. 19. This is the interesting case as it
is not known to the simulator which payment is collected. We simply collect some previously
uncollected and currently collectible payment by some honest party. The simulation of a
corrupted payment is given in Fig. 20. Here we use extraction to find the payment information
and ask FAnonPay do the same payment on behalf of the corrupt sender. The collection of a
corrupt payment by an honest receiver is given in Fig. 21 by just following the protocol.
Finally, collection by a corrupt party is simulated in Fig. 22. We just run the protocol
honestly, but introduce a few cases where we abort the simulation for use in the following
hybrid arguments. All these cases occur with negligible probability.

75

Initiate Pay (Honest Sender, Corrupt Receiver) On leakage (Pay, A, B, a, atid) from FAnonPay, i.e.,
where B is corrupted, simulate by running A according to the protocol in Fig. 10. Once tid has been
computed, specify this tid to FAnonPay as the one to use for atid.

Initiate Pay (Honest Sender, Honest Receiver) On input (Pay, A, atid) from FAnonPay proceed as be-
low. In this case both A and the unknown B are honest. We know that some (Pay, A, B, a) was input to
PA on FAnonPay but we do not get a nor B. Simulate as follows.
1. Fetch (A, bA, cA, ρA, ekA, dkA, nonceA) from local storage.a
2. Get the public values (crs, ek, ck, k∗) of the service from FLedger.
3. If not done before generate (ekS , dkS)← RPKE.Gen(pp) and let ek′

B = ekS .b
4. Let a′ = 0 and B′ = A and let tid′ = Com.Commitck((A, B′, a′, nonceA); ρ1). c

5. Compute the coin coin = RPKE.Encek′
B
(tid′; ρ2).

6. Let b′
A = bA − a′, compute c′

A = Com.Commitck(b′
A, ρ′

A).
7. π ← NIZKPoK.SimO

tSim(RPay, (cA, coin, cA′ , A, nonceA).
8. Sample LA ← {0, 1}λ, compute d← PKE.Encek((A, LA); ρ4).
9. Run FLedger.Broadcast(Tx, ϕPay) with Tx = (A, c′

A, coin, π, d) and the same ϕPay as the protocol.
10. Wait for (Tx, ϕPay) to appear on FLedger in some position p. When this happens the blockchain stateful

abstraction layer replaces (A, cA, ekA, nonceA) by (A, c′
A, ekA, nonce′

A = nonceA + 1).
11. Store (A, b′

A, c′
A, ρ′

A, ekA, dkA, nonce′
A = nonceA + 1).

12. Run FLedger.ProveValid(p)→ TxProof.
13. Run FAAT.DropOff(PA, PB′ , tid, m), where m = ((Tx, p, TxProof, (nonceA, ρ1, ρ2)), (LA, ρ4)).
14. Input (MakeDeducted, atid) to FAnonPay.d

Callback Observe (Honest Sender, Honest Receiver) When the m sent via FAAT.DropOff gets de-
livered by the adversary input (MakeObservable, atid) to FAnonPay. e

Callback Collect (Honest Sender, Honest Receiver) When it happens on FLedger that pupdated ≥ p
input (MakeCollectable, atid) to FAnonPay and add atid to UCHP. f

a Note that at this step the protocol terminates if a > bA. In the simulation we would never make it here
when a > bA as we only get (Pay, A, atid) from FAnonPay if a ≤ bA. So the protocol and simulation check
a ≤ bA at the same time and behave the same when a > bA.

b In this step the protocol retrieves ekB and we know this would work as the ideal functionality checked
B ∈ Accounts. However, we do not know ekB in the simulation. To mitigate this we generate a set of keys
for the simulator and use the simulators key for all unknown receivers.

c Here the protocol computes tid. Instead now tid is generated by FAnonPay using the distribution Tid that we
gave. We do not learn tid, so we use a dummy transfer identifier tid′ committing to dummy values.

d Here the protocol outputs (Pay, A, B, a, tid) to PA if the payment was accepted by the blockchain and in
the simulation we only reach this step if (Tx, ϕPay) appeared on FLedger. Inputting (MakeDeducted, atid)
to FAnonPay makes it also output (Pay, A, B, a, tid) to PA.

e This is a perfect simulation as in the protocol when the m is delivered for an honest-honest payment then a
call to Observe on the receiver will return (Observe, tid, A, B, a,⊤). Inputting (MakeObservable, atid)
to FAnonPay makes it behave the same.

f This is a perfect simulation as in the protocol the party B rejects if and only if pupdated < p, cf. Lemma 12.

Fig. 17. Simulator S (Pay, Honest Sender)

Observe (Honest Receiver) Here there is nothing to simulate. The cases Callback Observable (Honest
Sender, Honest Receiver) and Callback Observable (Corrupt Sender, Honest Receiver) are
constructed to make the protocol and FAnonPay give the same replies.

Observe (Corrupt Receiver) Here there is nothing to simulate. In the simulation the command does not
affect the state of FAnonPay and in the (simulated) protocol there is no notion of the adversary having
carried out this command. It can do this simply by looking at Ledger.

Fig. 18. Simulator S (Observe)

76

Collect (Honest Sender, Honest Receiver, Too Early) On input (Collect, B, atid, Too Early)
simulate as follows.
1. Simulate the run of Observe by doing nothing. This is a perfect simulation as FAAT does not leak

anything on collection.a
2. Simulate the fetching of the unknown LA and p by doing nothing.
3. From FLedger fetch the most recent CRaB key k∗ and position pupdated. Then simulate that we learned

that pupdated < p by terminating, as would the protocol.
Collect (Honest Sender, Honest Receiver, Timely) On input (Collect, B, atid, tid) simulate as fol-

lows.
1. If UCHP is empty then terminate the simulation. By Lemma 11 this happens with negligible proba-

bility, so we can ignore it. Otherwise, pick the lexicographically smallest atid′ ∈ UCHP and remove
it from UCHP.b Let (Pay, A′, atid′) be the input from FAnonPay that made S add atid′ to UCHP and
m′ = ((Tx = (A′, ·, coin, ·, d′), p′, TxProof′, (nonce′

A, ρ′
1, ρ′

2)), (LA′ , ρ′
4)) be the message sent in that

payment.
2. Fetch the L′

A′ where d′ = PKE.Encek((A′, LA′), ρ′
4) and the position p′ from m′.

3. From FLedger fetch the most recent CRaB key k∗ and position pupdated. Since atid′ ∈ UCHP we have
that pupdated ≥ p′.

4. Let L′
S = CRaB.Eval(k∗, p′).

5. Let L′ = Hash(L′
A′ ⊕ L′

S).
6. Compute pos = SOROM.Pos(L′).
7. Fetch the data at positions j ∈ pos in OM from FLedger and for j ∈ pos let OM[j] = (·, coinj).
8. π1 ← NIZK.SimtSim(ROrDec, (ck, {coinj}j∈pos, tid)).
9. Let a′ = 0 and let b′

B = bB + a′, compute c′
B = Com.Commit(b′

B, ρ′
B)

10. π2 ← NIZKPoK.SimO
tSim(RCollect, (ck, cB, B, tid, c′

B)).
11. Run FLedger.Broadcast(Tx, ϕCollect) with Tx = (B, L′, tid, π1, π2) and the same ϕCollect as in the

protocol.
12. When the transaction is posted the blockchain stateful abstraction layer replaces (B, cB, ekB, nonceB)

by (B, c′
B, ekB, nonceB) and lets Spent = Spent ∪ {tid}.

13. Store (B, b′
B, c′

B, ρ′
B, ekB, dkB, nonceB) on local storage.

a Since we get input (Collect, B, Too Early) we know that we are in the case where
(Pay, ãtid, tid, A, B, a) ∈ Observable \ Collectable. Note that by construction of Callback Collect we have
that (Pay, ãtid, tid, A, B, a) ∈ Collectable if and only if (Pay, ãtid, tid, A, B, a) ∈ Observable and pupdated ≥ p,
where p is the position of the payment on FLedger. So we conclude that pupdated < p. But we do not know
p nor which simulated payment is being collected.

b Since we get input (Collect, B, atid, tid) (as opposed to (Collect, B, Too Early)) we know that we are
in the case where (Pay, ãtid, tid, A, B, a) ∈ Collectable. Note that by construction of Callback Collect
we have that (Pay, ãtid, tid, A, B, a) ∈ Collectable if and only if (Pay, ãtid, tid, A, B, a) ∈ Observable and
pupdated ≥ p. By inspection of Steps 1–3 in Collect in Fig. 12 we see that the protocol will proceed to
collect a coin in this case. The simulation should do the same, but we do not know A or which simulated
payment corresponds to tid. So we collect some other collectible coin instead.

Fig. 19. Simulator S (Collect, Honest Sender / Honest Receiver)

77

Initiate Pay (Corrupt Sender) If in the simulation (Tx, ϕPay) appears on FLedger in some position p where
Tx = (A, c′

A, coin, π, d) and where PA is corrupted, then proceed as follows.
1. Use the extraction trapdoor tExt for NIZKPoK to compute a witness w = ((bA, ρA), (B, a, ρ1, ρ2), ρ′

A)
such that ((cA, coin, cA′ , A, nonceA), w) ∈ RPay. This is possible by construction of ϕPay and simulation
extraction of NIZKPoK. Note that this in particular means that

cA = Com.Commitck(bA, ρA)∧
((coin,Com.Commitck(A, B, a, nonceA; ρ1)), ρ2) ∈ REnc ∧

c′
A = Com.Commitck(bA − a, ρ′

A) ∧ bA ≥ a ≥ 0

2. Input (Pay, A, B, a) to PA on FAnonPay and get back (Pay, A, atid). In response to this FAnonPay will ask
S for a transfer identifier. Use

tid = Com.Commitck(A, B, a, nonceA; ρ1) .

If FAnonPay rejects tid because tid was not fresh, then abort the simulation. By Lemma 8 we can ignore
this event.

3. Input (MakeDeducted, atid) to FAnonPay to add (Pay, atid, tid, A, B, a) to Deducted.
Callback Observable (Corrupt Sender, Honest Receiver) If Initiate Pay (Corrupt Sender) was

executed and B is honest and the adversary delivers on FAAT to B a message m with message identifier
tid such that the check in Observe in Fig. 12 would go through, then input (MakeObservable, atid) to
FAnonPay. a

Callback Collectable (Corrupt Sender, Honest Reiver) If Initiate Pay (Corrupt Sender) and
Callback Observable (Corrupt Sender, Honest Receiver) was executed and Tx appears in po-
sition p and it happens that pupdated ≥ p then input (MakeCollectable, atid) to FAnonPay. b

a This is a perfect simulation as FAnonPay and the protocol would now respond identical.
b This is a perfect simulation as FAnonPay and the protocol would now respond identical, cf. Lemma 12.

Fig. 20. Simulator S (Pay, Corrupt Sender).

Collect (Corrupt Sender, Honest Receiver, Too Early) As in the protocol.
Collect (Corrupt Sender, Honest Receiver, Timely) As in the protocol. This will be a perfect simu-

lation by Lemma 12.

Fig. 21. Simulator S (Collect, Corrupt Sender / Honest Receiver)

78

Collect (Corrupt Receiver) If (Tx, ϕCollect) appears on FLedger with Tx = (B, L, tid, π1, π2) then simulate
as follows.
1. Use the extraction trapdoor tExt to extract witnesses such that

((ck, cB, B, tid, c′
B), ((bB, ρB), (A, a, nonceA, ρ1), ρ′

B)) ∈ RCollect

and tid ̸∈ Spent.
2. Abort the simulation if the following happens: 1) A is corrupt and there was no previous execution

of Initiate Pay (Corrupt Sender) where S input (Pay, A, B, a) to FAnonPay got back some atid
and then specified the transfer identifier tid to be used by FAnonPay or 2) A is honest and there was
no previous execution of Initiate Pay (Honest Sender, Corrupt Receiver) where S got input
(Pay, A, B, a, atid) from FAnonPay and then specified tid. This happens with negligible probability by
Lemma 10.

3. Input (MakeObservable, atid) followed by (MakeCollectable, atid) to FAnonPay, and then input
(Collect, tid, A, B, a) to FAnonPay on behalf of PB. This is allowed as B is corrupted.
This maintains the amount invariant if (Pay, ·, tid, A, B, a) ̸∈ Collected. This is the case as tid ̸∈ Spent.

Fig. 22. Simulator S (Collect, Corrupt Receiver).

B.3 Analysis

We now prove (5). We do the proof by a hybrid argument where we define distributions
H1, . . . , H11 and prove that

ExecFAnonPay,S,E(1λ) ≈ H1 (6)

and Hi ≈ Hi+1 for i = 1, . . . , 10, and

H11 ≈ ExecΠAnonPay,FLedger,FAAT,FService,O,E(1λ) . (7)

Letting H1 = ExecFAnonPay,S,E(1λ) and H11 = ExecΠAnonPay,FLedger,FAAT,FService,O,E(1λ) makes
the end cases trivial. We now look at the steps.

Hybrid 2 Let H2 be defined as the simulation ExecFAnonPay,S,E(1λ) except that:

Change 2.1. In Step 2 in Collect (Honest Sender, Honest Receiver, Timely) in
Fig. 19, instead of getting L′

A′ from d′ we use the atid′ from UCHP to find the matching
execution of Initiate Pay (Honest Sender, Honest Receiver) in Fig. 17 and then
we fetch L′

A′ from Step 8 in that execution.
Change 2.2. Run the F (2)

Service in Fig. 23 instead of FService.

Lemma 13. H2 ≈ H1.

Proof. This follows from correctness of PKE. Whether we decrypt the ciphertexts d′ and d
or recall what plaintext we have put inside them does not matter. ⊓⊔

79

Receive Coin Whenever a new payment (Tx, ϕPay) appears in position p, proceed as follows. Transactions
must be consumed in increasing order.
1. Same: Parse (A, c′

A, coin, π, d)← Tx.
2. Same: Let ι = ι + 1.
3. If d comes from an execution of Initiate Pay (Honest Sender, Honest Receiver) then inspect

that execution and find the identity C of the sender and the label LC encrypted in d. If C ̸= A then
terminate. Otherwise let LA = LC. If d does not come from an execution of Initiate Pay (Honest
Sender, Honest Receiver) then let (C, LA) = PKE.Decdk(d). If C ≠ A then terminate.

4. All other steps are as in FService.

Fig. 23. The F (2)
Service used in H2.

Receive Coin Whenever a new payment (Tx, ϕPay) appears in position p, proceed as follows. Transactions
must be consumed in increasing order.
1. Parse (A, c′

A, coin, π, d)← Tx.
2. Let ι = ι + 1.
3. If d comes from an execution of Initiate Pay (Honest Sender, Honest Receiver) with sender
C where d was supposed to contain (C, LC), then proceed as follows. If C ≠ A then terminate. This
prevents replay attacks if and when that protocols does the same. If C = A then let LA = LC . When
d does not come from an execution of Initiate Pay (Honest Sender, Honest Receiver) then let
(C, LA) = PKE.Decdk(d). If C ≠ A then terminate.

4. Let LS = CRaB.Eval(k, p), where p is the position of Tx on the ledger.
5. Let L = Hash(L′

A ⊕ LS).
6. Let lab = SKE.EncK(0λ) and recall that lab was supposed to encrypt using a map Plain(lab) = L.
7. Update CRaB key: k∗ ← CRaB.Prefix(k, p) and pupdated = p.
8. Update k∗, pupdated, and OM[0] = (lab, coin) on FLedger.
9. Go to Route

Route
1. Compute (j1, . . . , jℓ) = SOROM.Pos(ι).
2. For k = 1, . . . , ℓ read (labk, coink)← OM[jk] from FLedger.
3. For k = 1, . . . , ℓ let Lk = Plain(labk).
4. Compute the routing permutation π = SOROM.Route(ι, L1, . . . , Lℓ).
5. For k = 1, . . . , ℓ let lab′

k ← SKE.EncK(0λ) and Plain(lab′
k) = Lπ(k).

6. For k = 1, . . . , ℓ let coin′
k ← RPKE.Ran(coinπ(k)).

7. For k = 1, . . . , ℓ update OM[jk]← (lab′
k, coin′

k) on FLedger.

Fig. 24. The F (3)
Service used in H3 and H4.

80

Hybrid 3 Let H3 be defined as H2 except that:

Change 3.1. In Step 8 in Initiate Pay (Honest Sender, Honest Receiver) in Fig. 17
we let d be an encryption of ⊥ instead of (A, LA). However, recall that d was supposed to
contain (A, LA).

Change 3.2. In Step 5 in Initiate Pay (Honest Sender, Honest Receiver) in Fig. 17
we encrypt ⊥ instead of tid′.

Change 3.3. We replace the run of F (2)
Service by F (3)

Service in Fig. 24.

Lemma 14. H3 ≈ H2.

Proof. Change 3.1 does not matter by IND-CCA security of PKE. We no longer decrypt the
d’s from Step 8 in Initiate Pay (Honest Sender, Honest Receiver) anywhere in the
simulation. So we could get them from an IND-CCA oracle encrypting either ⊥ or (A, LA)
and embed them in the simulation.

Change 3.2 does not matter by IND-CPA of RPKE as we do not decrypt coin anywhere.
Whereever coin is used, we give simulated proofs. We could therefore get encryptions of
either tid′ or ⊥ and embed them in the simulation.

After the above two changes Change 3.3 does not matter by correctness of SKE and
IND-CPA of SKE. Whether we decrypt a ciphertext or recall what is it in does not matter
by correcteness. And after that we can change what it encrypts to 0λ by IND-CPA. ⊓⊔

Hybrid 4 Let H4 be defined as H3 except that:

Change 4.1. In Step 6 in Fig. 24 we do the following instead. Let lab = SKE.EncK(0λ).
Then if the payment is from honest A to some (unknown) honest B sample a uniformly
random L∗ ← L and let Plain(lab) = L∗. Otherwise let Plain(lab) = L.

Note that this just means that for honest-honest payments we route a fresh uniformly
random label and not the one returned by Hash.

Lemma 15. H4 ≈ H3.

Proof. We can prove this via an easy reduction to the SOROM game. We play the role
of adversary in the SOROM game. We then produce a version of the simulation via our
blackbox access to the SOROM game. When b = 0 in the SOROM game we produce H3.
When b = 1 in the SOROM game we produce H4. So, if H3 and H4 could be distinguished
we could use this to win the SOROM game. This shows that H4 ≈ H3 when the SOROM
construction is secure.

Let lab = SKE.EncK(0λ) and update the map Plain as follows. If the payment is honest-
honest then let Plain(lab) = ⊥. Otherwise let Plain(lab) = L. The reason for this definition
is that for the corrupt lab we know the corresponding label L being routed by the SOROM
game. But for honest-honest labels we do not know the label being routed. If b = 0 it is
the L we were returned above. But if b = 1 it is another independent and uniformly random
label. So, read Plain(lab) = ⊥ as “label unknown”.

Then replace the Route part of F (3)
Service by the following.

81

1. Compute (j1, . . . , jℓ) = SOROM.Pos(ι). These will be the same as the positions used by
the SOROM game as Pos is deterministic.

2. For k = 1, . . . , ℓ read (labk, coink)← OM[jk] from FLedger.
3. For k = 1, . . . , ℓ let Lk = Plain(labk).
4. The routing permutation π = SOROM.Route(ι, L1, . . . , Lℓ) is computed by the SOROM

game. For the corrupted labels Lk it tells us where they are routed to, and we can compute
π′ moving the corrupted label correctly. It can move the honest labels in any way, say fill
up empty slots in lexicographic order.

5. For k = 1, . . . , ℓ let lab′
k ← SKE.EncK(0λ) and Plain(lab′

k) = Lπ′(k).
6. For k = 1, . . . , ℓ let coin′

k ← RPKE.Ran(coinπ′(k)).
7. For k = 1, . . . , ℓ update OM[jk]← (lab′

k, coin′
k) on FLedger.

Notice that we can indeed run the above process in poly-time as to produce H4 we never
used the value of Plain(lab) anywhere except in Route, so the fact that we do not know the
value in the above will not become a problem. Note, in particular, that in Step 5 in Fig. 19
when we simulate picking up a coin we get the label from Hash and not from the SOROM.

It is easy to see that when b = 0 we produce exactly H3 and when b = 1 we produce
exactly H4. ⊓⊔

Hybrid 5 Let H5 be defined as H4 except that:

Change 5.1. In Step 1 in Collect (Honest Sender, Honest Receiver, Timely) in
Fig. 19 we pick atid′ from UCHP differently. We inspect FAnonPay to learn which payment
(Pay, A, B, a) created tid and then we find the atid in FAnonPay corresponding to this
payment, i.e., the atid such that (Pay, atid, tid, A, B, a) ∈ Collectable. Then we let atid′ =
atid. Note that this atid is in fact in UCHP by Lemma 10, as it cannot have been collected
by another party and still has not been collected by B. ⊓⊔

Lemma 16. H5 ≈ H4.

Proof. This holds information theoretically. At this point in the hybrids all uncollected
honest-honest payments look exactly the same to the adversary. The SOROM are rout-
ing uniformly random labels independent of the labels Hash(LA ⊕ LS) used by the transfers
and these labels are not leaked anywhere else until used for collection. In more detail, after
Change 3.1 where in Step 8 in Initiate Pay (Honest Sender, Honest Receiver) in
Fig. 17 we let d be an encryption of ⊥ instead of (A, LA) we can defer even defining LA until
the payment is picked up. So as part of initiating the payment we do not sample LA. Only
when we do the collection do we sample LA and then we define Hash(LA ⊕ LS) = L. This
is possible by Lemma 4. To do this we do not even have to decide on which corresponding
payment LA was made. Therefore the only thing connecting a collection to the corresponding
payment is the point p that we use to compute LS. But information of p only goes into LS
and even if we gave LA ⊕ LS to the adversary, this would be a one-time encryption of LS.
Hence p is information theoretically hidden from the adversary. ⊓⊔

82

Hybrid 6 In H6 we reverse all changes again, except that we keep the change from H5, i.e.,
we now have the following situation.

Change 6.1. Everything is run as in H1 = ExecFAnonPay,S,E(1λ), except that:
Change 6.2. In Step 1 in Collect (Honest Sender, Honest Receiver, Timely) in

Fig. 19 we pick atid′ from UCHP differently. We inspect FAnonPay to learn which payment
(Pay, A, B, a) created tid and then we find the atid in FAnonPay corresponding to this
payment, i.e., the atid such that (Pay, atid, tid, A, B, a) ∈ Collectable. Then we let atid′ =
atid. Note that this atid is in fact in UCHP by Lemma 10, as it cannot have been collected
by another party and still have not been collected by B.

The following holds by using the same arguments as when we introduced the changes
that we now reversed.

Lemma 17. H6 ≈ H5.

Hybrid 7 Let H7 be defined as H6 except that:

Change 7.1. In Fig. 17 Initiate Pay (Honest Sender, Honest Receiver) inspect the
copy of FAnonPay to find the correct value of the receiver B and amount a. Note that the
UC simulator is not allowed to do this, but we are describing a hybrid and is free to do
as we please for sake of argument. Then in Step 3 use ek′

B = ekB instead of ek′
B = ekS .

And in Step 3 we use a′ = a and B′ = B instead of a′ = 0 and B′ = A.

Lemma 18. H7 ≈ H6.

Proof. The change is indistinguishable to the adversary by hiding of Com and key anonymity
of RPKE. ⊓⊔

The reason why we do not yet replace the second simulated proof is that the instance
might not be true yet. We are still not updating accounts correctly when picking up payments,
so the accounts might not have sufficient balance. We fix this in the next two hybrids.

Hybrid 8 Let H8 be defined as H7 except that:

Change 8.1. We change FAnonPay such that when it picks tid for an honest-honest payment
then it uses tid = tid′ for the tid′ = Com.Commitck((A, B′, a′, nonceA); ρ1) computed in
Step 4 in Fig. 17.

Lemma 19. H8 ≈ H7.

Proof. This follows from hiding of Com. We could simply get tid or tid′ from an oracle at
this point. We do not use the opening of the transfer identifier anywhere, as collection is still
simulated.

83

Hybrid 9 Let H9 be defined as H8 except that:
Change 9.1. In Fig. 19 in Step 8 compute

π1 ← NIZK.Prvcrs(ROrDec, (ck, {coinj}j∈pos, tid), dkB)

instead of
π1 ← NIZK.SimtSim(ROrDec, (ck, {coinj}j∈pos, tid)) .

This is possible as now the instance is true and we know the witness.
Change 9.2. In Step 9 use replace a′ = 0 by a′ = a where a is the correct value being

transferred. We can learn this value by inspecting FAnonPay and it is by the changes in
Hybrid 7 also the value inside the coin we are picking up.

Change 9.3. In Fig. 19 in Step 10 compute

π2 ← NIZKPoK.PrvO
crs(RCollect, (ck, cB, B, tid, c′

B), ((bB, ρB), (A, a′, nonceA, ρ1), ρ′
B))

instead of
π2 ← NIZKPoK.SimO

tSim(RCollect, (ck, cB, B, tid, c′
B)) .

Note that by now the tid given as input is the tid′ produced in Step 4 in Fig. 17, so we
indeed know an opening of tid to a′ = a, so we have a true instance and we know the
witness.

Lemma 20. H9 ≈ H8.
Proof. The second change is indistinguishable to the adversary by hiding of Com. The two
other changes are indistinguishable to the adversary using zero-knowledge of NIZKPoK. ⊓⊔

Hybrid 10 Finally let H10 be like H9 except that
Change 10.1. In Step 1 in Initiate Pay (Honest Sender, Honest Receiver) in Fig. 17

we inspect FAnonPay and learn the amount a being transferred. If a > bA then we stop the
simulation.

Change 10.2. In Step 7 in Initiate Pay (Honest Sender, Honest Receiver) in Fig. 17
we compute

π ← NIZKPoK.Prvcrs(RPay, (cA, coin, cA′ , A, nonceA), ((bA, ρA), (B, a′, ρ1, ρ2), ρ′
A))

instead of
π ← NIZKPoK.SimtSim(RPay, (cA, coin, cA′ , A, nonceA) .

Lemma 21. H10 ≈ H9.
Proof. After H9 all commitments to account values are updated as in the protocol. Therefore,
by Lemma 10, the balances committed to for honest parties is the same as the balances
held by FAnonPay. And FAnonPay would only have given the simulator input (Pay, A, atid)
if a ≤ bA in FAnonPay. Hence the check a ≤ bA only fails with negligible probability in
the (simulated) protocol. The second change is indistinguishable to the adversary by zero-
knowledge of NIZKPoK, as we now know a correct witness. We clearly know the witnesses
needed and they satisfy RPay as a ≤ bA, so we can do a reduction to zero-knowledge. ⊓⊔

84

For clarity we did the changes in Hybrids 9 and 10 in two steps, but note that technically
we need to give a single reduction to the ZK of the GUC NIZK PoK proof system, as the ZK
notion does not allow to replace some simulated proofs with real proofs and some not. We can
do this as follows. First we do the changes in Change 9.1, Change 9.2 and Change 10.1
and then we do the changes in Change 9.3 and Change 10.2 and prove indistinguishability
of this step using a single reduction.

Hybrid 10 Finally let H11 = ExecΠAnonPay,FLedger,FAAT,FService,E(1λ) be the execution of the
protocol.

Lemma 22. H11 ≈ H10.

Proof. By H10 the honest parties are being run according to the protocol except for syntac-
tical difference which do not matter. Furthermore, FAnonPay and the simulated protocol have
been aligned. We argued that structurally FAnonPay and the protocol gives the same types
of outputs at the same time. Collections are mapped to the correct payments. Furthermore,
by Lemma 10 the balances in FAnonPay and in the protocol are now the same except with
negligible probability. And the protocol now uses the same tid’s as the ideal functionality.
Therefore the protocol and the ideal functionality gives exactly the same outputs at exactly
the same times, except with negligible probability. The only difference is that in H10 we
compute crsknow using NIZKPoK.SimGen and in H11 we use NIZKPoK.Gen, but this is indis-
tinguishable by Zero Knowledge of NIZKPoK. ⊓⊔

C Proof System Instantiations

In this section, we show how to instantiate the proof systems that are needed for our OCash
construction with weak and strong anonymity.

C.1 Discussion of GUC NIZK PoK Definitions

In Section 2.5 we gave a slight reformulation of the notion of GUC NIZK Proof of Knowledge
in [LR22]. We here sketch why it is equivalent to Definition 11 in [LR22].

In [LR22] the definition of GUC NIZK PoK is given indirectly by letting the NIZK PoK
Ideal Functionality from their Definition 8 generate simulated proofs for honest parties and
generate a failure event observable by the environment if it cannot at the same time extract
all accepting proofs (which are not among the simulated ones). In their Definition 11 it is
then required that this ideal functionality is indistinguishable from the real protocol, where
the honest proofs are generated correctly and there are no attempts at extracting accepting
proofs and therefore no observable failure events. This implies that the failure event must
be negligible. Namely, it never occurs in the real world, so if it occurred in the simulation
with non-negligible probability simulation would be impossible. This gives what is normally
called simulation extractability. At the same time, in the real world real proofs are given
and in the simulation the proofs are simulated (see Prove in their Definition 8). This means

85

that it follows from their Definition 8 in conjunction with their Definition 11 that real proofs
must be indistinguishable from simulated proofs. This gives what is normally called zero-
knowledge. Finally, Prove in their Definition 8 creates an observable failure if a simulated
proof does not verify. Since no such failure event is possible in the real world it follows from
their Definition 8 in conjunction with their Definition 11 that simulated proofs verify except
with negligible probability. Since simulated proofs are indistinguishable from real proofs, it
follows that real proofs verify except with negligible probability, which is normally called
completeness.

In Section 2.5 we explicitly state these three properties. They are equivalent to Definition
11 in [LR22] qua the above discussion.

C.2 Proofs for Group Homomorphisms

We will need several Σ-protocols with strong special soundness for relations defined via
collision resistant group homomorphisms, and we describe the general theory here. We first
present the canonical Σ-protocol for group homomorphisms. Let (G, +) and (H, ·) be Abelian
groups, we write G additively and H multiplicatively. Assume G has a known prime order q.
For g, h ∈ G and e ∈ Z let eg and he denote the usual group actions of adding/multiplying
the element with itself e times.

The relation is given by R ⊂ H × G with x = Φ(w). The first message is computed
as a = Φ(r) for uniformly random r ∈ G. The challenge is space is E = Zq. The reply
is computed as z = ew + r, and the verification is Φ(z) = xea. Completeness is clear:
Φ(ew + r) = Φ(w)eΦ(r) = xea. To prove SHVZK we pick z ∈ G uniformly at random and
let a = x−eΦ(z). This has a distribution identical to the basic run, as z is uniform in both
distributions and a = x−eΦ(z) in both distributions.

For special soundness note that if Φ(z) = xea and Φ(z′) = xe′
a, then Φ(z − z′) =

Φ(z)/Φ(z′) = xe−e′ . Therefore, if we let d = (e − e′)−1 mod q and w = d(z − z′), then
Φ(w) = xd(e−e′) = x.

Now let a system parameter trapdoor be any element z ∈ G\{0} such that Φ(z) = 1 ∈ H.
Formally, T (t) ≡ t ∈ Φ−1(1)\{0}. We can then argue strong special soundness. Assume that
(e′, z′) ̸= (e, z) and Φ(z) = xea and Φ(z′) = xe′

a. If e′ ̸= e then we get w such that (x, w) ∈ R
from special soundness. If e = e′, then z′ ̸= z and therefore Φ(z′ − z) = (xe′

a)(xea)−1 =
(xea)(xea)−1 = 1 is a system parameter trapdoor.

To illustrate the definition, we consider Pedersen vector commitments. The system pa-
rameters are uniform and independent generators g1, . . . , gℓ of a group H of order q. We let
G = (Zq)ℓ and Φ(w1, . . . , wℓ) = ∏ℓ

i=1 gwi
i . Clearly G has order q and Φ is a group homo-

morphism G → H. A system parameter trapdoor is a non-zero element (w1, . . . , wℓ) ∈ Zℓ
q

such that ∏
i gwi

i = 1. It is well-known and straight-forward to verify that finding such a
non-trivial representation of 1 is equivalent to the discrete logarithm problem in H under
poly-time reduction.

Consider then a Pedersen vector commitment c = ∏ℓ
i=1 gwi

i , where for instance wℓ is the
randomizer. Proving knowledge of an opening of c is the same as proving knowledge of w ∈ G
such that Φ(w) = c. By the above discussion, we have a strong special sound Σ-protocol for

86

this with a system parameter trapdoor which is computationally hard to find under the DL
protocol in H.

In Section 8.4 we formalise the relations for which we need ZK proof in our construction.
In Appendix C.4 we give instantiations of strong simulation sound Σ-protocols for these
relations.

C.3 ∨-Construction Maintains Strong Special Soundness

We now recall that the OR construction of Σ-protocols is strong special sound. This is proven
in [KS22, LR22] and we recall it here for completeness.

Consider two Σ protocols

Σ0 = (R0, A0, E , Z0, V0, W0, S0, T0)

and
Σ1 = (R1, A1, E , Z1, V1, W1, S1, T1)

with the same challenge space, which is also an Abelian group. Here Wi is the witness extrac-
tor, Si the simulator, and Ti the system trapdoor predicate. We can define the disjunction
between these to be (R∨, A∨, E , Z∨, W∨, V∨, S∨, T∨), where the relation ((x0, x1), w) ∈ R∨ is
given by (x0, w) ∈ R0 or (x1, w) ∈ R1 and T∨(t) ≡ T0(t) ∨ T1(t).

1. The input to the prover is ((x0, x1), w) ∈ R∨, i.e., (x0, w) ∈ R0 or (x1, w) ∈ R1. The
input to the verifier is (x0, x1). Below we proceed for the case (x0, w) ∈ R0. The other
case is symmetric.

2. Let a0 ← A0(x0, w; r), sample e1 ∈ E uniformly at random, and let (a1, z1)← S1(x1, e1).
3. The verifier samples and sends a uniformly random challenge e ∈ E .
4. The prover computes e0 = e−e1, computes z0 ← Z0(x0, w, e0, r) and sends z = ((e0, e1), (z0, z1))
5. The verifier checks that e0 + e1 = e and V1(x0, a0, e0, z0) = V2(x1, a1, e1, z1) = ⊤.

Completeness is straight-forward and SHVZK follows from just simulating both tracks, so
we focus on strong special soundness. Consider two transcripts ((a0, a1), e, z) = ((e0, e1), (z0, z1)),
where e0 + e1 = e and V1(x0, a0, e0, z0) = V2(x1, a1, e1, z1) = ⊤, and ((a0, a1), e′, z′) =
((e′

0, e′
1), (z′

0, z′
1)), where e′

0 + e′
1 = e′ and V1(x0, a0, e′

0, z′
0) = V2(x1, a1, e′

1, z′
1) = ⊤.

We can assume that (e′, z′) ̸= (e, z) and has to compute a witness or a system parameter
trapdoor. We prove in two cases e′ ̸= e and e′ = e. If e′ ̸= e then e′

0 ̸= e0 or e′
1 ̸= e1.

This gives us that (e′
0, z′

0) ̸= (e0, z0) or (e′
1, z′

1) ̸= (e1, z1). This either allows to use W0 to
compute w0 such that (x0, w0) ∈ R0 or T0(w0) = ⊤ or allows to use W1 to compute w1
such that (x1, w1) ∈ R1 or T1(w1) = ⊤. This gives use a witness w ∈ {w0, w1} for R∨
or t such that T (t) = ⊤. If e = e′ then it follows from (e′, z′) ̸= (e, z) that z′ ̸= z, i.e.,
((e′

0, e′
1), (z′

0, z′
1)) ̸= ((e0, e1), (z0, z1)). If e′

0 ̸= e0 then we are done by the above reasoning. If
e′

0 = e0 then e′ = e implies that e′
1 = e1. We must therefore have that (z′

0, z′
1) ̸= (z0, z1). So

for some b we have that z′
b ̸= zb, and then we are done by strong special soundness of Σb as

above.

87

C.4 Σ-Protocols for Relations

We now give the Σ-protocols for the relations used in OCash. Note that for the relations
where we give proof of knowledge (using NIZKPoK) we need the protocols to have strong
special soundness (cf. Section 2.5). This is all relation but ROrDec.

We first consider the relation (x = (ck, c), w = ρ) ∈ RIsZero ⇐⇒ c = Com.Commitck(0, ρ).
Let Ψ(ρ) = Commitck(0; ρ). This is clearly a group homomorphism Ψ(ρ1 + ρ2) = Ψ(ρ1)Ψ(ρ2),
so we can use the Σ-protocol from Appendix C.2, which has strong special soundness.

Consider then the relation (x = (ck, c), w = ρ) ∈ RIsFund ⇐⇒ c = Com.Commitck(a0, ρ).
We have that c = Commitck(a0, ρ) ⇐⇒ Com.Commitck(0, ρ) = c · g−a0

4 , so we can use the
Σ-protocol for RIsZero.

We then consider (x = (pp, ek, {cj}ℓ
j∈1, m), w = dk) ∈ ROrDec ⇐⇒

∨ℓ
j=1 RPKE.Decdk(cj) =

m. Note that here we do not need a proof of knowledge, just a proof of membership. We
have that ek = gsk

0 and for c = (A, B, C, D) we have that RPKE.Decdk(c) = ⊥ if B ̸= Ask,
and otherwise RPKE.Decdk(c) = DC−sk. Therefore RPKE.Decdk(c) = m is equivalent to the
existence of x such that ek = gx

0 and B = Ax and Dm−1 = Cx. Consider the group G = G3

and for fixed g = (g0, A, C) ∈ G consider the group homomorphism Ψ : Zq → G given by
Ψ(w) = gw = (gw

0 , Aw, Cw). Let h = (ek, B, Dm−1). Then RPKE.Decdk(c) = m is equivalent
to ∃w Ψ(w) = h. So we can use the Σ-protocol from Appendix C.2. We could then use the∨-construction from Appendix C.3 to get a Σ-protocol for ROrDec, but the communica-
tion would be linear in ℓ. We can do better than this using [GK15] as discussed now. For
j = 1, . . . , ℓ let cj = (Aj, Bj, Cj, Dj), gj = (g0, Aj, Cj) ∈ G, and hj = (ek, Bj, Djm

−1) ∈ G.
Then

(x = (pp, ek, {cj}ℓ
j∈1, m), w = dk) ∈ ROrDec ⇐⇒

ℓ∨
j=1

hj = gw
j .

We can therefore directly use the one-out-of-many DL Σ-protocol in [GK15]. The commu-
nication complexity is in the order of log ℓ times that of a single proof for Ψ .

Consider then

(x = (ck, cB, B, tid, c′
B), w = ((bB, ρB), (A, a, nonceA, ρ1), ρ′

B)) ∈ RCollect

⇐⇒ cB = Com.Commitck(bB, ρB)∧
tid = Com.Commitck(A, B, a, nonceA, ρ1)∧
c′

B = Com.Commitck(bB + a, ρ′
B).

This is equivalent to

cB = gρB
0 gbB

4 ∧ tidg−nonceA
4 g−B

2 = gρ1
0 gA

1 ga
2 ∧ c′

B = g
ρ′

B
0 gbB+a

4 .

Let h = (cB, tidg−nonceA
4 g−B

2 , c′
B) and consider the group homomorphism Ψ : Z6

q → G3 given
by

Ψ(ρB, bB, ρ1, A, a, ρ′
B) = (gρB

0 gbB
4 , gρ1

0 gA
1 ga

2 , g
ρ′

B
0 gbB+a

4) .

Let w = (ρB, bB, ρ1, A, a, ρ′
B). Then RCollect is equivalent to Φ(w) = h, so we can use the

Σ-protocol from Appendix C.2, which has strong special soundness.

88

We finally consider

(x = (A, nonceA, ck, cA, coin, c′
A), w = ((bA, ρA), (B, a, ρ1, ρ2), ρ′

A)) ∈ RPay

⇐⇒ cA = Com.Commitck(bA, ρA)∧
((coin, Com.Commitck(A, B, a, nonceA; ρ1)), ρ2) ∈ REnc ∧
c′

A = Com.Commitck(bA − a, ρ′
A) ∧ bA ≥ a ≥ 0 .

Let coin = (A, B, C, D) and tid = Com.Commitck(A, B, a, nonceA; ρ1). As part of the proof
we want to show that ((coin, tid), ρ2) ∈ REnc. We use that the sender knows r such that
C = Ar and D = Brrid, (cf. Fig. 13) and let ρ2 = r. Then ((coin, tid), r) ∈ REnc is equivalent
to C = Ar ∧ D = Brgρ1

0 gA
1 gB

2 ga
3gnonceA

4 . What we want to prove is therefore knowledge of
((bA, ρA), (B, a, ρ1, r), ρ′

A) such that

cA = gρA
0 gbA

4 ∧ C = Ar ∧D = Brgρ1
0 gA

1 gB
2 ga

3gnonceA
4 ∧ c′

A = g
ρ′

A
0 gbA−a

4 ∧ bA ≥ a ≥ 0 . (8)

Let h = (cA, C, Dg−A
1 g−nonceA

4 , c′
A) and define the group homomorphism

Ψ(ρA, bA, r, ρ1, B, a, ρ′
A) = (gρA

0 gbA
4 , Ar, Brgρ1

0 gB
2 ga

3 , g
ρ′

A
0 gbA−a

4) ,

then ignoring the condition bA ≥ a ≥ 0 what we have to prove is knowledge of (ρA, bA, r, ρ1, B, a, ρ′
A)

such that Ψ(ρA, bA, r, ρ1, B, a, ρ′
A) = h. We do this using the Σ-protocol from Appendix C.2,

which has strong special soundness.
We then focus on bA ≥ a ≥ 0. This is the same as showing knowledge of

w′ = (b′
A, a, ρ′

A, ρ′′
A)

such that
c′

A = g
ρ′

A
0 g

b′
A

4 ∧ cA/c′
A = g

ρ′′
A

0 ga
4 ∧ b′

A ≥ 0 ∧ a ≥ 0 . (9)

It is sufficient to give a separate proof for this fact. I.e., we give one proof of knowledge
of w = (ρA, bA, r, ρ1, B, a, ρ′

A) such that Ψ(ρA, bA, r, ρ1, B, a, ρ′
A) = h and at the same time

we give a proof of knowledge for w′ such satisfying Eq. (9) without, e.g., trying to prove
that b′

A = bA. However, collision resistance will ensure that the shared values between w
and w′ will be identical. Assume namely that we have a witness w′ for Eq. (9) and a wit-
ness (ρA, bA, r, ρ1, B, a, ρ′

A) such that Ψ(ρA, bA, r, ρ1, B, a, ρ′
A) = h. Under the DL assumption

this implies that bA ≥ a ≥ 0. To see this, note that from (ρA, bA, r, ρ1, B, a, ρ′
A) such that

Ψ(ρA, bA, r, ρ1, B, a, ρ′
A) = h we can compute a potential witness

w = (b′
A, a, ρ′

A, ρ′′
A) = (bA − a, a, ρ′

A, ρA/ρ′
A) .

It follows from Eq. (8) that c′
A = g

ρ′
A

0 g
b′

A
4 and c′

A = g
ρ′

A
0 gbA−a

4 which implies that

c′
A = g

ρ′
A

0 g
b

′
A

4 ∧ cA/c′
A = g

ρ′′
A

0 ga
4 .

89

From the DL assumption it then follows that w = w′. Therefore it follows from w′ being a
witness for Eq. (8) that

b
′
A ≥ 0 ∧ a ≥ 0 .

By construction b
′
A = bA − a and a = a which gives us that

bA − a ≥ 0 ∧ a ≥ 0 ,

which gives the desired conclusion that bA ≥ a ≥ 0.
Then note that since a witness w′ for Eq. (9) can be computed from Eq. (8) we do not

need that the proof for Eq. (9) can be extracted using tExt. If we can use tExt to extract a
witness (ρA, bA, r, ρ1, B, a, ρ′

A) such that Ψ(ρA, bA, r, ρ1, B, a, ρ′
A) = h. From this it can compute

w as above with c′
A = g

ρ′
A

0 g
b

′
A

4 and cA/c′
A = g

ρ′′
A

0 ga
4 . If in addition b

′
A ≥ 0 and a ≥ 0 then we

have a witness for RPay and is done. If it is not the case that b
′
A ≥ 0 and a ≥ 0 then we can

break DL as follows. We can rewind the entire UC experiment to compute another witness
w′ for Eq. (9).15 Since b′

A ≥ 0 and a ≥ 0 except with negligible probability by soundness
of the proof it follows that w′ ̸= w. But then we broke DL, a contradiction. We therefore
except with negligible probability also get a witness for RPay when we extract the witness
for Eq. (8).

To recap, we give the proof for RPay by giving a proof for

(x = (A, nonceA, ck, cA, coin, c′
A), w = ((bA, ρA), (B, a, ρ1, ρ2), ρ′

A)) ∈ R1
Pay

⇐⇒ cA = Com.Commitck(bA, ρA)∧
((coin, Com.Commitck(A, B, a, nonceA; ρ1)), ρ2) ∈ REnc ∧
c′

A = Com.Commitck(bA − a, ρ′
A)

using NIZKPoK and giving a separate proof for

(x2 = (ck, cA, c′
A), w′ = (b′

A, ρ′
A, a, ρ′′

A)) ∈ R2
Pay

⇐⇒ c′
A = Com.Commitck(b′

A, ρ′
A)∧

cA/c′
A = Com.Commitck(a, ρ′′

A) ∧ b′
A ≥ 0 ∧ a ≥ 0 .

using NIZK, letting the honest prover use ρ′′
A = ρA − ρ′

A. Furthermore, a witness for R1
Pay

will also be a witness for RPay by global extractability of the proof for R2
Pay and the DL

assumption.
We then turn to how we make a proof for R2

Pay for NIZK with global extraction. We will
use that a0 ≥ b′

A ≥ 0, where a0 is the initial amount. This is maintained by invariant in the
protocol. For the same reason on a0 ≥ a ≥ 0 makes sense. We can therefore pick the order
q of G such that q > 2λa0. It is then sufficient to give a proof that b′

A, a0 ∈ [0, 2λa0 − 1]
where the honest prover always has b′

A, a0 ∈ [0, a0]. We can therefore in principle use any off-
the-shelf range proof. However, using the range proof from [AC20] we can get a Σ-protocol
secure under the DL assumption. We can then apply Section 2.4 to get a UC NIZK PoM
NIZK for this Σ-protocol.
15 Of course the UC simulator cannot rewind the UC execution, but we as the provers of security is allowed to do

this as a Gedankenspiel.

90

C.5 Extended Proof Systems for Strong Anonymity

We now discuss how to extend the relations RPay, ROrDec, RCollect, and their proofs to the
case with strong anonymity.

We first look at payment. In the proof for R1
Pay we simply use the target value

h′ = (cA, C, Dg−A
1 g−nonceA

4 g
−Hash(mA,nonceA)
5 , c′

A)

instead of
h = (cA, C, Dg−A

1 g−nonceA
4 , c′

A) .

This ensures that the correct hid was used. We then extrend ROrDec. Note that the ρ used in
tid′ = tid · gρ

0 used is fixed by g1 and h = gρ
1 . Therefore tid is fixed by g1 and h and tid′. What

remains is to prove that this well-defined tid is in one of the encryptions. We can prove this
with a proof for the relation

(x = (pp, ek, {cj}ℓ
j∈1, m), w = (dk, ρ)) ∈ ROrDec ⇐⇒ h = gρ

1∧
ℓ∨

j=1
(RPKE.Decdk(cj)) gρ

0 = m ,

by using m = tid′ and ρ being the witness that m = tidgρ
0 . Note that here we do not need a

proof of knowledge, just a proof of membership.
We have that ek = gsk

0 so for a ciphertext c = (A, B, C, D) we have that RPKE.Decdk(c) =
⊥ if B ̸= Ask, and otherwise RPKE.Decdk(c) = DC−sk. Therefore RPKE.Decdk(c)gρ

1 = m is
equivalent to the existence of ρ and x such that h = gρ

1 and ek = gx
0 and B = Ax and

DC−x = mg−ρ
0 , where the last equaiton can be rewritten as Dm−1 = g−ρ

0 Cx. Consider
the group G = G4 and the group homomorphism Ψ : Zq × Zq → G given by Ψ(w, ρ) =
(gρ

1 , gw
0 , Aw, g−ρ

0 Cw). Let h = (h, ek, B, Dm−1). Then RPKE.Decdk(c)Cρ = m is equivalent to
∃w Ψ(w) = h. So we can use the Σ-protocol from Appendix C.2 and the one-out-of-many
DL Σ-protocol in [GK15] to get communication complexity is in the order of log ℓ times that
of a single proof for Ψ .

We finally look at collection. During payment the shop posts

y = PRFK(hid) = g
1/(K+hid)
5 , (10)

where 1/(K + hid) denotes multiplicative inverse modulo the order of G. It then shows that
it knows (s′, U, S, nU, a, hid, K) such that

tid′ = gs′

0 · gU
1 · gS

2 · g
nU
3 · ga

4 · ghid
5 ∧ vk = gK

5 ∧ y = g
1/(K+hid)
5 . (11)

We do not know a Σ-protocol with strong special soundness for this relation, so we will use
the same trick as for RPay where we gave a proof for R1

Pay using NIZKPoK and gave a proof
of R2

Pay with global extraction using NIZK. In the present case we will give a proof for

tid′ = gs′

0 · gU
1 · gS

2 · g
nU
3 · ga

4 · ghid
5 ∧ vk = gK

5 (12)

91

using NIZKPoK by using a straight-forward group homomorphism proof. In parallel we give
a proof for Eq. (11) using a NIZK proof with global extraction. This proof is about a mul-
tiplicative relation in the exponent and can therefore be constructed using [AFK22]. If the
witness extracted from NIZKPoK for Eq. (12) by the UC simulator does not fulfill Eq. (11),
then we can use global extraction of NIZK to get another witness which does fulfill Eq. (11)
and therefore also Eq. (12). But clearly, computing two different openings of Eq. (12) in
poly-time breaks DL using a stand poly-time reduction.

92

	 OCash: Fully Anonymous Payments between Blockchain Light Clients
	Introduction
	Our Contribution.
	Related Work.
	Technical Overview.

	Preliminaries
	Commitment Scheme
	Symmetric and Public Key Encryption
	-Protocols
	Simulation-Sound NIZK Arguments
	Simulation-Extractable NIZK Arguments

	Ideal Functionality for Anonymous Cryptocurrency
	Modelling the Blockchain World
	Anonymous Coin Friendly Encryption (ANCOs)
	Compressible Randomness Beacons (CRaBs)
	Strongly Oblivious Read-Once Maps (SOROMs)
	OCash: Anonymous Transfers from Oblivious RAM
	Stateful Blockchains
	Overview
	Anonymous Coin-Flip on the Blockchain
	Relations for Zero-Knowledge
	OCash Protocol
	Proving Security in the UC Framework

	Instantiating the Building Blocks
	Commitment Scheme
	Anonymous Coin Friendly Encryption Scheme (ANCO)
	Compressible Randomness Beacon
	Strongly Oblivious Read-Once Maps

	Adding Strong Anonymity
	PRF Key Registration
	Hashed Identifier
	Rerandomized TID
	Pseudononymous Hashed Identifier
	Improved Reduction to DHI
	Extending the Relations and ZK Proofs

	Generalised Dodis-Yampolskiy Theorem
	Proof of Theorem 2
	Observations
	Simulator
	Analysis

	Proof System Instantiations
	Discussion of GUC NIZK PoK Definitions
	Proofs for Group Homomorphisms
	-Construction Maintains Strong Special Soundness
	-Protocols for Relations
	Extended Proof Systems for Strong Anonymity

