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Abstract

A famous reduction by Regev shows that random instances of the
Learning With Errors (LWE) problem are asymptotically at least as hard
as a worst-case lattice problem. As such, by assuming that standard lat-
tice problems are hard to solve, the asymptotic security of cryptosystems
based on the LWE problem is guaranteed. However, it has not been clear
to which extent, if any, this reduction provides support for the security of
present concrete parametrizations.

In this work we therefore use Regev’s reduction to parametrize a cryp-
tosystem, providing a reference as to what parameters are required to ac-
tually claim security from this reduction. This requires us to account for
the concrete performance of this reduction, allowing the first parametriza-
tion of a cryptosystem that is provably secure based only on a conservative
hardness estimate for a standard lattice problem. Even though we attempt
to optimize the reduction, our system still requires significantly larger pa-
rameters than typical LWE-based cryptosystems, highlighting the signifi-
cant gap between parameters that are used in practice and those for which
worst-case reductions actually are applicable.

1 Introduction

With the conclusion of the third round of the NIST post-quantum standard-
ization process, lattice-based cryptography is one step closer to see widespread
adoption. As a result of this third round, NIST have selected the lattice-based
Key Encapsulation Mechanism (KEM) Kyber [35] for standardization.

Kyber is a cryptosystem with security based on the assumed hardness of a
structured version of the Learning With Errors (LWE) problem. LWE is a
relatively new problem that was first introduced by Regev in 2005 [30]. In the
same paper, Regev showed that it is asymptotically at least as hard to solve
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random instances of the LWE problem as it is to solve a worst-case instance
of a standard lattice problem on a quantum computer. As lattice problems are
believed to be hard to solve, Regev could reasonably claim that LWE is a hard
problem, even though no one had analyzed this problem before.

The hardness of structured versions of LWE, such as the module-LWE prob-
lem that Kyber is based on, are also supported by this type of reduction from
worst-case lattice problems [21, 24]. These reductions provide an argument for
using these problems for cryptography but are typically not used to argue for
the concrete security of cryptosystems. Instead cryptosystems typically base
their security directly on an estimate for the concrete hardness of the relevant
version of the LWE problem.

When estimating the hardness of LWE, one typically considers the primal
and dual lattice attacks. These attacks are based upon transforming an LWE
instance into a lattice problem, which is solved by using standard lattice algo-
rithms. As such, the concrete hardness of the LWE problem is extrapolated
based on the performance of lattice algorithms [3].

It may further be argued that the worst-case to average-case reductions serve
as a qualitative argument for the security of LWE-based cryptosystems with
Micciancio and Regev [25] meaning that it “assures us that there are no funda-
mental flaws in the design of our cryptographic construction”. This may serve
as a reason to prefer LWE-based schemes over other lattice-based schemes, such
as NTRU. Furthermore, as the hardness of the LWE problem is guaranteed if
lattice problems are hard, it may have resulted in less focus on non-lattice based
algorithms to solve LWE, since we in some sense are guaranteed that these can
not perform better than lattice algorithms.

However, although these types of arguments may be reasonable in an asymp-
totic sense, it has not previously been clear if they, at least to some extent, are
applicable to parameters used in practice. While Micciancio and Regev also
mention that using the reductions to set parameters seems to be overly conser-
vative, there has not really been any investigation to how large such parameters
actually would have to be.

If parameters supported by the reductions have similar size to the ones used
in practice, the reductions could serve as a lower bound on how much the se-
curity could drop in a cryptosystem. This reasoning has for example been used
by Peikert when arguing for the importance of worst-case reductions in lattice-
based security [29]. However, if the reductions only support schemes with sig-
nificantly larger parameters than typical cryptosystems, even at relatively low
security levels, then the support these worst-case reductions provide to typical
schemes is questionable.

In order to investigate to which extent such reductions provide any security

2



lower bounds or other qualitative support for typical LWE-based cryptosystems,
we investigate a cryptosystem with security that is actually based on such a
worst-case to average-case reduction. This cryptosystem is parametrized to
take into account the concrete performance of used reductions and is based on
a reasonable estimate on the concrete hardness of the underlying problem. This
guarantees that the system remains secure as long as there are no significant
improvements in the efficiency of lattice algorithms.

The concrete performance of Regev’s reduction have been analyzed in some
previous works [9, 14, 33]. Furthermore, a cryptosystem parametrized through
the reduction was also proposed in [14], with parameter sizes comparable to
a typical LWE-based cryptosystem. However, this parametrization mainly fo-
cused on the efficiency of the reduction and was not based on a realistic estimate
for the hardness of the underlying problem. Therefore, there has not previously
been any good reference for which parameters are required by a cryptosystem
to have its concrete security supported by Regev’s reduction.

Worth noting is that the specification of FrodoKEM [26], another LWE-based
cryptosystem very similar to ours, also includes a reduction from a worst-case
lattice problem. However, for FrodoKEM, this reduction is mainly as a quali-
tative argument for the security of the system and there is no analysis of which
concrete parameters are supported by the reduction. The reduction essentially
corresponds to a single classical step of Regev’s full quantum reduction, re-
sulting in the reduction solving a less standard lattice problem but with less
requirements on the cryptosystem. We do not expect this approach to support
the security of cryptosystems that use significantly smaller parameters than the
ones we propose in this paper and we therefore consider Regev’s full reduction
from a more standard lattice problem.

1.1 Our Contributions

In this work we construct a cryptosystem that is parametrized based on a ver-
sion of Regev’s original quantum reduction from worst-case lattice problems to
average case LWE [31]. As such, the security of this cryptosystem is actually
guaranteed by the concrete hardness of a well studied standard lattice problem.
This provides a reference to what parameters are required for similar reductions
to say something meaningful about the concrete security of a cryptosystem.

Using this reduction to parametrize our cryptosystem requires that we keep
track of its concrete performance, both in terms of running time and approxi-
mation factor for which it solves the underlying lattice problem. To allow our
cryptosystem to use smaller parameters, we modify Regev’s original reduction
in order to improve its concrete efficiency. Even with these modifications, both
the running time and the approximation factor of the reduction are relatively
large and our cryptosystem requires significantly larger parameters than typical
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LWE-based cryptosystems.

Currently proposed LWE based cryptosystems are typically parametrized
with a dimension n that is approximately 1000 when targeting 256 bits of se-
curity. Meanwhile, our cryptosystem that targets 128 bits of OW-CPA post-
quantum security requires using a dimension n ≈ 35800. We also consider an
alternative version of the LWE problem which allows a more efficient version of
Regev’s reduction. Using this version of the LWE problem for our cryptosystem
therefore allows a more efficient parametrization, with this version having the
same security guarantees while using n ≈ 29900.

Even if we completely ignore the running time of the reduction, our cryp-
tosystem requires a dimension n ≈ 9400 when targeting 128-bits of OW-CPA
security. It thus seems like significantly larger parameters than those used by
typical LWE-based cryptosystems are required in order for these types of worst-
case to average-case reductions to say anything meaningful about the systems
security. While this does not indicate that currently proposed LWE-based cryp-
tosystems are insecure, it does mean that the security of these schemes is far
from supported by arguments that rely on these types of reductions.

As such, we do not consider it reasonable to use these reductions as an ar-
gument for a lower bound on the security of LWE-based cryptosystems used in
practice. Furthermore, we do not deem similar worst-case to average-case re-
ductions to be a strong argument in favour of typical LWE-based cryptosystems
over other lattice-based systems, such as NTRU.

1.2 Overview

1.2.1 Cryptosystem

The cryptosystem we construct in this paper is based on the Lindner-Peikert
scheme [23], in a similar way to FrodoKEM [26]. To parametrize our cryp-
tosystem, we use a reduction from an approximate version of the Shortest In-
dependent Vector Problem (SIVP). This allows us to guarantee the claimed
security of our cryptosystem unless algorithms that solve this problem improve
significantly.

We also consider a slight modification of traditional LWE-based cryptosys-
tems by letting the system use a variable error distribution. As this version of
the cryptosystem allows a more efficient reduction, it can be parametrized with
smaller parameters while arguing for the same security.
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1.2.2 Considerations for Parametrization

In order to use Regev’s reduction to parametrize our cryptosystem, we must
analyze it in detail. While the efficiency of a reduction is often considered in
an asymptotic sense, this is not sufficient for a concrete parametrization of a
cryptosystem. Instead, we must know the concrete time the reduction requires
to solve the underlying problem when using an adversary against our cryptosys-
tem. This allows us to guarantee that any adversary against the claimed security
of our cryptosystem implies an algorithm that is more efficient than what our
conservative hardness estimate for the underlying lattice problem predict to be
possible.

To account for the efficiency of a reduction, we must consider its run time TR
and success probability pR. These depend both on the run time TO of the oracle
used by the reduction as well as its success probability pO. A combined measure
for a reductions efficiency is given by its tightness gap (TRpO)/(pRTO) as defined
in [9]. The tightness gap of Regev’s original reduction has been analyzed in
previous works [9, 14, 33], but these works did not attempt to optimize the
reduction for better concrete efficiency. Because of this, we provide our own
analysis of the efficiency of a somewhat optimized version of Regev’s reduction.

As defined, the tightness gap of a reduction relates to the efficiency of running
the reduction. It does however not take into account the concrete hardness of
the underlying problem, something which is arguably more important if using
the reduction to parametrize a cryptosystem. This aspect of the reduction was
not considered in any detail in any of the previous works that analyzed the
tightness gap in Regev’s reduction.

Our more realistic hardness estimate for approximate SIVP is the primary
reason why our parametrizations use significantly larger parameters than the
ones proposed in the master thesis of Gates [14], which also accounted for the
concrete efficiency of Regev’s reduction. Instead of considering the hardness of
approximate SIVP, Gates’s parametrization was based on the assumption that
this problem is as hard as an exact lattice problem. For the relatively large
approximation factor for which the reduction solves approximate SIVP, this
significantly overestimates the hardness of the underlying problem.

1.2.3 Security Proof and its Efficiency

We argue for the security of our cryptosystem through a series of reductions.
Here we present an outline of the different steps and their efficiency. For read-
ability, we omit some constants in this overview, a luxury we naturally can not
afford in the full proof.
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For the proof, we assume that there is an adversary against our cryptosystem
that requires time T to achieve advantage εa. Furthermore, we consider versions
of our cryptosystem that are parametrized with a dimension n and with elements
in Zq for some prime q.

The first step in our security proof is to show that we can use this adversary
against the OW-CPA security of our cryptosystem to solve a Decision-LWE
(DLWE) problem, which is accomplished through a standard hybrid argument.
This is detailed in Theorem 3.3 which, with k = n, results in an algorithm that
solves a DLWE instance with negligible failure probability in time O(n · T/εa).

While not having a large tightness gap, this step still has a significant impact
on the efficiency of the full reduction. This is due it determining how many
samples that are required by the constructed DLWE oracle in order to decide
if these samples are from an LWE distribution. As we are required to amplify
the initially small success probability of the adversary to essentially 1, we re-
quire N = O(n2/εa) LWE samples. Since the performance of later steps of the
reduction depends on this relatively large N , this greatly affects the efficiency
of the full reduction.

Next, we use this DLWE oracle in order to solve the search-LWE problem
that appears in Regev’s reduction. Part of this is accomplished by a search
to decision reduction that requires using an DLWE oracle nq times to solve a
search-LWE problem with the same error distribution, as detailed in Lemma 2.8.

The search-LWE problem that must be solved in Regev’s reduction is actually
stated in terms of an unknown error distribution. To handle this unknown error
distribution we may use the same approach as Regev used in [31], with somewhat
improved analysis. This results in having to use the DLWE oracle a total of
10N · n2q times with M = nN LWE samples in order to solve this search-LWE
problem, as detailed in Lemma 4.1 with τ = n. As N is large, this step has a
significant impact on the running time of the reduction.

We can also solve this search-LWE problem more efficiently by considering an
DLWE oracle constructed from an adversary against our modified cryptosystem
with variable error distribution. This approach, given by Lemma 4.2, only re-
quires using the DLWE oracle nq times to solve the search-LWE problem, while
also only requiring M = N different LWE samples. This step of the reduction
is thus significantly more efficient when using our modified cryptosystem, which
is the reason why it can be parametrized with smaller parameters.

Finally, Regev’s quantum reduction allows us to use our ability to solve search
LWE in order to solve an arbitrary approximate SIVP instance. By not consid-
ering an intermediate reduction from discrete Gaussian sampling, we somewhat
improve the efficiency of this step. This allows us to solve the target approximate
SIVP instance by using 3n2M calls to an LWE oracle that handles unknown
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error distribution, as detailed in Theorem 4.3.

In conclusion, an adversary against the cryptosystem with fixed error distri-
bution can be used to solve approximate SIVP in time

O(qn6N2 · T/εa) = O(qn10 · T/ε3
a)

with constants given in Theorem 5.1 with k = τ = n. Using the above men-
tioned improvements, an adversary against our cryptosystem with variable error
distribution can be used to solve approximate SIVP in time

O(qn4N · T/εa) = O(qn6 · T/ε2
a)

with constants given in Theorem 5.2 with k = n.

An adversary against the claimed 128 bits of security of our cryptosystems
will have T/εa ≤ 2128. By itself, this bound is not sufficient to calculate the
running time of the reduction. Instead, we consider the worst-case, where T = 1
and εa = 2−128. This results in the dependence on εa to be one of the most
significant reasons for the long run time of the reduction.

As such, one of the largest contributor to the inefficiency of the reduction is
the fact that the LWE oracle constructed from an adversary against our cryp-
tosystem requires a large number of LWE samples. Previous analysis of the
tightness gap of Regev’s reduction have not accounted for this and instead as-
sumed that the provided LWE oracle only requires as many LWE samples as
exposed in a single instance of a cryptosystem. 1 However, thanks to our opti-
mizations compared to previous works, our final reduction is still approximately
as efficient as the claimed efficiency in these previous works.

For our actual parametrization, we allow the reduction to have a small, but
noticeable, failure probability. This failure probability is accounted for in the
parametrization, but allows a more efficient reduction with τ < n and k < n
in Theorems 5.1 and 5.2. Furthermore, allowing the reduction to fail with a
noticeable probability allows us to argue that it can be used to solve approximate
SIVP with a smaller approximation factor than if it had to have a negligible
failure probability.

1.2.4 Hardness Estimate

In order to provide any concrete security guarantees from a reduction, we require
that an adversary against the cryptosystem could be used with the reduction
in order to solve some concrete problem more efficiently than we believe to be

1That the LWE oracle provided to Regev’s reduction will require many LWE samples was
also noticed in a paper by Koblitz et al. [20] that analyzed a similar reduction for ring-LWE.
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possible. As such, to parametrize our cryptosystem we need an estimate for the
difficulty of solving the underlying lattice problem.

With our security reduction, an adversary against our cryptosystem can be
used to solve a worst-case instance of approximate SIVP. This worst-case in-
stance is obviously at least as hard as a random instance of this problem. As
nothing indicates that SIVP on random lattices is an easier problem than SIVP
on other lattices, assuming that worst-case SIVP is as hard as SIVP on random
lattices should not significantly underestimate the hardness of the problem. As
such, the hardness of SIVP on random lattices serves as a reasonable hardness
estimate for worst-case SIVP.

For our hardness estimate on random lattices, we relate the hardness of SIVP
with a well studied approximate version of the shortest vector problem (SVP),
namely Hermite-SVP. This is in fact the same problem that is typically con-
sidered when estimating the hardness of LWE, allowing much of the previ-
ous research into the concrete hardness of LWE to be directly relevant for our
parametrization as well.

It is however important to note that the security of our cryptosystem is de-
pendent on the hardness Hermite-SVP in a completely different way compared
to a typical LWE-based cryptosystem. For a typical LWE-based cryptosystem,
algorithms that solve Hermite-SVP more efficiently would be sufficient to break
the cryptosystem. However, these cryptosystems could potentially be vulnerable
to other types of attacks, even without lattice algorithms improving.

In contrast to this, our proposed cryptosystem is provably secure as long
as lattice algorithms do not improve significantly. As such, while concrete at-
tacks against our cryptosystem could improve, they will be unable to break
the claimed 128 bits of OW-CPA security unless Hermite-SVP is a significantly
easier problem than we currently believe it is.

1.3 Paper outline

The remainder of the paper begins with some background in section 2, followed
by more details about our cryptosystem presented in section 3. Full details
regarding the tightness of the optimized version of Regev’s quantum reduction
is presented in section 4 where a theorem similar to the main theorem from [31]
is proven. The proof keeps track of required oracle calls and failure probabilities
and tries to minimize these as much as possible. Some of the lemmas used in
this proof are more or less unchanged compared to [31]. These lemmas are still
included for completeness but are placed in Appendix A. Finally, in section 5
we present the complete proof of security for our cryptosystem which are then
used in section 6 to create the different parametrizations of our cryptosystem.
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2 Background

2.1 Notation

Matrices are written with bold upper case letters A,S and vectors bold lower
case letters a, s. Sampling a value x from distribution X is expressed as x← X
and the result of a randomized function f with input x is similarly denoted
y ← f(x). Distributions are expressed with calligraphic letters X and U(X)
corresponds to the uniform distribution over the set X. The size of a set X is
denoted by |X|. Concatenation of bitstrings b0, b1 is denoted b0‖b1, while for
matrices and vectors A‖v corresponds to the matrix generated by the columns
of the concatenated matrices and vectors.

2.2 Public key cryptography

A public key encryption (PKE) scheme is defined by (Gen,Enc,Dec), a triplet of
algorithms for generating keys, encrypting messages and decrypting ciphertexts
respectively. The algorithm for key generation outputs both a public key pk
and a secret key sk. The encryption algorithm is defined over a message space
M and outputs a ciphertext c when given an arbitrary message m ∈ M and
a public key pk. When the decryption algorithm is given a ciphertext c and a
secret key sk it outputs a message m ∈M . The scheme is δ-correct if

E

[
max
m∈M

Pr

[
Dec(sk, c) 6= m | c← Enc(pk,m)

]]
≤ δ

with expectation taken over (pk, sk) ← Gen(). The security notion which is
relevant for public key encryption schemes in this paper is one wayness under
chosen plaintext attacks (OW-CPA) security which is defined from the OW-CPA
game shown in Figure 1.

Definition 1 (OW-CPA security). A public key cryptosystem is (T, ε)-secure
if any adversary A running in time at most T has an advantage at most ε in
the OW-CPA game where the advantage is given by

Pr

[
OW-CPA(A)

]
− Pr

[
OW-CPA(U(M))

]
= Pr

[
OW-CPA(A)

]
− 1

|M |
.

The cryptosystem is said to have d bits of OW-CPA security if it is (T, ε)-secure
for every T, ε such that T/ε < 2d.

A key encapsulation mechanism (KEM) is defined by three different algo-
rithms (Gen,Encaps,Decaps) for key generation, encapsulation and decapsula-
tion respectively. The key generation algorithm outputs a pair (pk, sk) with a
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OW-CPA(A)
(pk, sk)← Gen()
m← U(M)
c← Enc(pk,m)
m← A(pk, c)
return m′ = m

IND-CCA(A)
(pk, sk)← Gen()
b← U({0, 1})
(k0, c)← Encaps(pk)
k1 ← U(K)
b′ ← ADecaps∗(c, kb)
return b′ = b

Figure 1: Games for OW-CPA security of a PKE scheme and IND-CCA se-
curity for a KEM. In the IND-CCA game ADecaps∗ corresponds to the adver-
sary with access to a decapsulation oracle Decaps∗ such that Decaps∗(c∗) =
Decaps(c∗) for all c∗ except the challenge ciphertext c.

public and a secret key. The encapsulation algorithm takes a public key as input
and outputs a ciphertext c and some key k in the space of possible keys K. The
ciphertext is said to encapsulate the key k. The decapsulation algorithm takes
a ciphertext and a private key as input and outputs a key k from K.

The security of a KEM in the notion of being indistinguishable under cho-
sen ciphertext attacks (IND-CCA) is given by the following definition with the
relevant IND-CCA game shown in Figure 1.

Definition 2 (IND-CCA security). A KEM is (T, ε)-secure if any adversary A
running in time at most T has an advantage at most ε in the IND-CCA game
where the advantage of is given by

Pr

[
IND-CCA(A)

]
− Pr

[
IND-CCA(U({0, 1}))

]
= Pr

[
IND-CCA(A)

]
− 1

2

The KEM is said to have d bits of IND-CCA security if it is (T, ε)-secure for
every T, ε such that T/ε < 2d.

2.3 Statistical distance

To measure the similarity between two different distributions, this work makes
use of the statistical distance defined as the total variation distance between
distributions. The statistical distance between two distributions X1 and X2

with probabilities p1(x) and p2(x) for possible outcomes x ∈ X is defined as

∆(X1,X2) =
1

2

∑
x∈X
|p1(x)− p2(x)| .
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2.4 Gaussian distributions

Multiple different theorems related to Gaussian distributions are required for
the reduction from approximate SIVP to LWE. To begin with we recall that
a normal distribution N (0, σ2) with mean 0 and variance σ2 has the density
function

1√
2π · σ

· exp

(
−1

2

(x
σ

)2
)

where exp (y) is used to denote ey. For an n-dimensional vector x, we define

ρs(x) = exp
(
−π ‖x/s‖2

)
and we let ρ = ρ1. Furthermore, we let νs(x) =

ρs(x)/sn which is scaled so that it defines an n-dimensional probability density
function and corresponds to a normal distribution with mean 0 and standard
deviation s/

√
2π.

We also define ρs on sets by

ρs(A) =
∑
x∈A

ρs(x)

for a countable set A. The discrete Gaussian distribution DA,s on a countable
set A is defined via

∀x ∈ A, DA,s(x) =
ρs(x)

ρs(A)
.

Finally, we define Ψα for any α ∈ R+ to be a distribution corresponding to
sampling from a mean 0 normal distribution with standard deviation α√

2π
and

reducing the result modulo 1, meaning that the distribution can be expressed
as

∀r ∈ [0, 1), Ψα(r) =

∞∑
k=−∞

1

α
· exp

(
−π
(
r − k
α

)2
)

In order to calculate statistical distance between Ψα and Ψβ the following claim
will be used.

Claim 2.1 (Claim 2.2 from [31]). For any 0 < α < β ≤ 2α,

∆(Ψα,Ψβ) ≤ 9

(
β

α
− 1

)

The sum of samples from two different mean 0 normal distributions with
standard deviation α and β respectively is a mean 0 normal distribution with
standard deviation

√
α2 + β2. This also implies that the sum of a sample from

Ψα and one sample from Ψβ is distributed as a sample from Ψ√
α2+β2 .

The rounded Gaussian distribution Ψα is defined as a distribution over Zq for
some implicit q. A sample from this distribution is given by bqxe mod q with
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x ← Ψα. In general we define X for an arbitrary distribution X over [0, 1) to
be the rounded distribution over Zq given by bqxe mod q with x← X .

When working with these different versions of Gaussian distributions, we often
have to bound the probability of unlikely events. One way we accomplish this
is by using this next lemma to bound the probability of sampling an unusually
large vector from a discrete Gaussian over a lattice.

Lemma 2.2. Lemma 2.5 from [31] Let Bn denote the Euclidean unit ball. Then,
for any lattice L and any r > 0, ρr(L\r

√
nBn) < 2−2n · ρr(L) where L\r

√
nBn

is the set of lattice points of norm greater than r
√
n.

Finally, the next two lemmas are also used to limit the probabilities of unlikely
events in order to bound the probability of incorrect decryption in the cryptosys-
tem. These lemmas are similar to statements from [23] but differ somewhat as
we use a cryptosystem with a rounded Gaussian distribution whereas [23] use a
discrete Gaussian distribution.

Lemma 2.3. For any real s > 0, T > 0, and any x ∈ Rn, we have

Pr

[
|〈x, νs〉| ≥ T · s ‖x‖

]
< · exp

(
−πT 2

)
Proof. Multiplying a sample from N (0, σ2) by a number a results in a sample
from N (0, (aσ)2). The sum of a sample from N (0, σ2

a) and one from N (0, σ2
b )

results in a sample from N (0, σ2
a + σ2

b ). As such we have

〈x, νs〉 =
∑
i

xi · N
(

0,
s2

2π

)
=
∑
i

N
(

0,
s2x2

i

2π

)
= N

(
0,
s2 ‖x‖2

2π

)
and the lemma therefore simply states that

Pr

[ ∣∣∣∣∣N
(

0,
s2 ‖x‖2

2π

)∣∣∣∣∣ ≥ T · s ‖x‖
]
< 2 · exp(−πT 2)

or equivalently

Pr

[ ∣∣∣∣N (0,
1

2π

)∣∣∣∣ ≥ T] < 2 · exp(−πT 2) .

The probability density function for N (0, 1/(2π)) is e−πx
2

and the probability
that the absolute value of a sample from this distribution is greater than T is
therefore given by

2 ·
∫ ∞
x=T

exp(−πx2) = 1− erf(
√
πT ) = erfc(

√
πT )

where erf is the error function and erfc is the complementary error function. As
it is known that erfc(x) < e−x

2

[11], the Lemma follows.
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Sampling a vector from Ψ
n

α corresponds to sampling a vector from a distri-
bution with density function να, multiplying it by q, rounding each resulting
element to its nearest integer and then reducing it modulo q. This following
lemma uses this fact to bound the probability of sampling a vector from Ψ

n

α

which is unusually large by considering vectors sampled from να. When calcu-
lating the length of a vector in Znq we considered the length of the representatives
in (−bq/2c , bq/2c].

Lemma 2.4. The probability that a vector sampled from Ψ
n

α is longer than
c ·
√
nαq/

√
2π + 0.5

√
n is no more than (c · exp((1− c2)/2))n for any c > 1.

Proof. An element from Ψ
n

α is a vector sampled from a distribution with prob-
ability density function ναq with the entires rounded to nearest integer and
taken modulo q. The length of vectors does not increase when taken modulo
q. Furthermore, rounding a vector to the nearest integer can at most increases
the vectors length by 0.5

√
n. Because of this, we only have to ensure that the

length of a vector sampled from a distribution with density function νnαq is at

most c ·αq
√
n/2π with the claimed probability in order to prove our statement.

As ναq corresponds to a normal distribution with mean zero and standard
deviation αq/

√
2π, samples from the corresponding distribution can equivalently

be considered as a sample from a mean 0 normal distribution with standard
deviation 1 times the constant αq/

√
2π. The squared length of a vector from a

distribution with probability density function ναq thus corresponds to a sample
from a χ2 distribution with n degrees of freedom multiplied by (αq)2/(2π).

A sample from a χ2 distribution is at most c2n except for with a probability
of at most (c2 exp(1− c2))n/2. Thus the probability that a vector sampled from
a distribution with probability density function ναq is longer than c · αq

√
n/2π

is no more than

(c2 exp(1− c2))n/2 = (c exp((1− c2)/2))n

As the length is increased by at most 0.5
√
n by rounding, the total length of a

vector from Ψ
n

α is no more than

c
√
nαq/

√
2π + 0.5

√
n

with the same probability.

2.5 Fourier Transform

The Fourier transform is used throughout Regev’s reduction from SIVP to
LWE. In this paper, we ignore certain technical conditions required by the
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Fourier transform as they are always satisfied when relevant. Given a func-
tion h : Rn → C, its Fourier transform is defined as

ĥ(w) =

∫
Rn
h(x)e−2πi〈x,w〉dx .

From this definition of the Fourier transform, it is clear that if h(x) = g(x+ v)
then

ĥ(w) = e2πi〈v,w〉ĝ(w)

while similarly, if h(x) = e2πi〈v,x〉g(x) then

ĥ(w) = ĝ(w − v) .

Another property of the Fourier transform that will be used in this paper is that
a Gaussian function is its own Fourier transform with ρ̂ = ρ. More generally we
also have that ρ̂s = snρ1/s for arbitrary s.

2.6 Lattices

An integer lattice L is a subset of Zn such that for any two points v,w in the
lattice, the difference v − w is also in the lattice. A full rank lattice can be
described by an invertible basis B ∈ Zn×n, noted as L = L(B) where all lattice
points v can be written as v = Bx for some x ∈ Zn. The dual of a lattice is
defined as

L∗ = {v : v ·w ∈ Z ∀w ∈ L}
and a basis for the dual of a full rank lattice is given by B∗ = (B−1)T .

The determinant of a full rank lattice is equal to the absolute value of the
determinant of an arbitrary basis for the lattice. This is an unambiguous defi-
nition as, although there are multiple different bases for a single lattice, it can
be shown that the absolute value of the determinant is the same for all of them.
The determinant of the dual lattice is the inverse of the determinant of the
primal lattice.

The length of the shortest non-zero vector in a lattice L is denoted by λ1(L),
which is equivalent to the radius of the smallest ball around the origin that
contains a non-zero lattice vector. Similarly, λn(L) is the radius of the smallest
ball that contains n linearly independent lattice vectors.

Several lattice problems are known to be NP-hard. This includes problems
such as the closest vector problem (CVP) and the shortest independent vector
problem (SIVP). Regev’s quantum reduction from [31] is not directly related to
any of these NP-hard problems but instead to SIVPγ , an approximate version
of SIVP which is not believed to be NP-hard for the relevant approximation
factor. The definition of SIVPγ follows, with the exact problem corresponding
to γ = 1.
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Definition 3 (SIVPγ). An instance of the approximate shortest independent
vector problem (SIVPγ) is given by an n dimensional lattice L and an approx-
imation factor γ = γ(n). The goal is to output n linearly independent vectors
in L that all are shorter than γ(n) · λn.

We will also make use of a more general version of this problem, called the
Generalized Independent Vectors Problem (GIVP) with the following definition.
The function φ in the definition does not have to be efficiently computable and
thus SIVPγ is recovered by using φ(L) = λn(L).

Definition 4 (GIVPγ(n)·φ(L)). An instance of GIVPγ(n)·φ(L) is given by an
n dimensional lattice L. The problem is stated with an approximation factor
γ = γ(n) and a real valued function on lattices φ. The goal is to output n
linearly independent vectors in L that all are shorter than γ(n) · φ(L).

Another problem central to the LWE reduction is the Bounded Distance De-
coding (BDD) problem, which is defined next.

Definition 5 (BDDL,d). An instance of the bounded distance decoding problem
BDDL,d is given by a point x that is guaranteed to be at most a distance d from
the lattice L. The goal is to output the lattice point in L that is closest to x.

When given a point x which is guaranteed to not be further away from the
lattice L than λ1(L)/2 and thus has a unique closest lattice point, we denote
this point by κL(x).

Another lattice problem that will be considered in this work is an approximate
version of the Shortest Vector Problem (SVP) that is called Hermite-SVP. In
Hermite-SVP a solution is given by a vector that is relatively short compared to
the determinant of the lattice. This problem relates to Hermite’s constant γn,
which is given by the maximal value of λ1(L)2/ det(L)2/n over all n dimensional
lattices. For any γ ≥ √γn we are thus guaranteed that there is a vector in L

which is no larger than γ · det(L)1/n. Next follows the definition of γ-Hermite-
SVP which consists of finding such a vector that is shorter than γ · det(L)1/n.

Definition 6 (γ-Hermite-SVP). An instance of Hermite shortest vector prob-
lem (Hermite-SVP) is given by an n dimensional lattice L and an approximation
factor γ. The goal is to output a lattice vector of length shorter than γ·det(L)1/n.

The exact value of Hermite’s constant is only known for some small values of
n but can be bounded by by [12]

γn ≤
1.744n

2πe

for large n. In a random lattice, the shortest vector is expected to be shorter
than

√
γn · det(L)1/n and its length can instead be predicted by the Gaussian
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heuristic. The Gaussian heuristic can asymptotically be proven to be correct
for random lattices [10,32,37] and predicts that the expected value of λ1(L) is√

n

2πe
· det(L)1/n .

The so called smoothing parameter is used extensively throughout Regev’s
reduction.

Definition 7 (Smoothing parameter). For an n-dimensional lattice L and pos-
itive real ε > 0, the smoothing parameter ηε(L) is defined as the smallest s such
that ρ1/s(L

∗\{0}) ≤ ε.

To actually calculate the value of this parameter seems to be an hard problem
in it of itself. In the reduction its concrete value is therefore unknown and the
following bound is used instead.

Lemma 2.5 (Lemma 2.12 from [31]). For any n-dimensional lattice L and
ε > 0,

ηε(L) ≤
√

ln(2n(1 + 1/ε))

π
· λn(L)

One reason for the name of the smoothing parameter is the behaviour that
is specified in the following claim. This claim essentially says that a Gaussian
distribution with standard deviation greater than the smoothing parameter is
more or less uniformly distributed when considered modulo the lattice.

Claim 2.6 (Claim 3.8 from [31]). For any lattice L, c ∈ Rn, ε > 0 and r ≥ ηε(L)

ρr(L+ c) ∈ rn det(L∗)(1± ε)

2.7 Learning With Errors

The Learning With Errors (LWE) problem was introduced by Regev in [31] and
is parametrized by a dimension n, an integer modulus q and an error distribution
X . Regev showed a quantum reduction from SIVPγ for a polynomially sized γ
to the LWE problem with q a polynomially bounded prime and X the rounded
Gaussian distribution.

It was later shown that a similar hardness guarantee holds for arbitrary q [28].
Although other values for q, such as powers of 2, can be useful in practice, using
such q requires using additional non-tight reductions. Because of this, only the
original reduction that works for polynomially sized prime q is considered in
this work. In the reduction from SIVPγ , the following definition of an LWE
distribution is used.
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Definition 8 (LWE distribution). Let n, q be positive integers, and let φ
be a distribution over [0, 1). For s ∈ Zn, the LWE distribution As,φ is the
distribution over Znq × [0, 1) obtained by choosing a ∈ Znq uniformly at random
and an error e ∈ [0, 1) from φ and outputting the pair(

a, b =
〈a, s〉
q

+ e mod 1

)
∈ Znq × [0, 1)

However, it is usually preferable to only work with integers when using the
LWE problem in applications. Therefore, the following discrete version of an
LWE distribution is also used.

Definition 9 (Discrete LWE distribution). Let n, q be positive integers, and
let X be a distribution over Zq. For s ∈ Zn the LWE distribution As,X is the
distribution over Znq × Zq obtained by choosing a ∈ Znq uniformly at random
and an integer error e ∈ Zq from X and outputting the pair

(a, b = 〈a, s〉+ e mod q) ∈ Znq × Zq

In this work, both types of LWE distributions are considered and can be
distinguished by the sample space of its error distribution.

The following lemma shows that the discrete version of the problem with a
rounded error distribution is no easier than the continuous version of the prob-
lem. The statement in [31] is somewhat different from the one we present here
as we require additional information to handle the tightness of the reduction.
However, our statement follows from the same proof as in [31] and we therefore
do not include a different proof of our variant of the statement.

Lemma 2.7 (Lemma 4.3 from [31]). Let n, q ≥ 1 be some integer, let φ be
some probability density distribution on [0, 1) and let φ be its discretization to
Zq. There is a transform that, given samples from As,φ produces the same
number of samples from As,φ.

There is both a search and a decision version of the LWE problem. The
search problem LWE(X , N) is to find the secret s when given at most N samples
from As,X .

Meanwhile, the decision learning with errors problem, DLWE(X , N) is to
determine if an unknown distribution D is a uniform distribution or As,X for
some s when given at most N samples from D.

The following lemma shows that the search and decision LWE problems are
more or less equivalent. This is the same statement as in Lemma 4.2 from [31]
except for also including the number of calls and the probability of success.
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Lemma 2.8. Let n ≥ 1 be some integer, 2 ≤ q ≤ poly(n) be a prime and X be
some distribution on Zq. Assume that we have access to some procedure W that
solves the DLWE(X , N) problem with failure probability at most ε. Then there
exists an algorithm W ′ that solves the LWE(X , N) problem with probability at
least 1− nqε while requiring nq calls to W for each call to W ′.

Proof. The idea is to use W in order to sequentially determine each element of
s. This is accomplished by guessing the value of an element of s and with the
help of W determining if the guess is correct. For the first coordinate this is
done by transforming samples (a, b) from As,X into

(a + (r, 0, . . . , 0)T , b+ r · k) = (a′, 〈a′, s〉+ e+ r · (k − s1))

where r is selected uniformly at random from Zq, k is the guessed first coordinate
of s and s1 is the actual value of its first coordinate.

We note that a′ = a + (r, 0, . . . , 0)T is uniformly random in Znq and thus if
the guess is correct, with k = s1, this transforms takes As,X to itself. If instead
the guess is incorrect, we have that, since q is a prime, r · (k − s1) is uniformly
distributed in Zq. As such, if the guess is incorrect, the transformed samples
are uniformly random in Zn+1

q .

Using W with the transformed samples as input, we determine if the trans-
formed samples are uniformly random or As,X , with a result that is correct
except for with probability at most ε. This determines if k is the correct guess
for s1 and we have to try at most q different guesses for s1 in order to be guar-
anteed to guess correctly once. Each guess for s1 corresponds to a single call to
W and we require that none of these calls fail.

The process is identical for the other n coordinates, resulting in at most nq
calls to W in order to recover the full secret s. Each time W is used, it requires
N samples from the transformed distribution. However, the same N samples
As,X can be reused through all the nq different transformed distributions that
are provided to W . The probability of these N samples giving the incorrect
answer in any of the nq calls is at most nqε, which is our error probability.

The average case-version of LWE which is used in our cryptosystems is the
so called normal form LWE. In normal form LWE, elements of the secret vector
are sampled from the error distribution. This following lemma shows that LWE
problems with secrets sampled in this way is essentially as hard as a worst case
instance of LWE. This specific version of the lemma is directly taken from [4]
with additional notes about the parameter k and the number of samples pro-
duced.
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Lemma 2.9 (Theorem 5.10 from [4]). Let q = pe be a prime power. There is a
deterministic polynomial time transformation T that, for arbitrary s ∈ Znq and
error distribution X , maps As,X to Ax,X where x← Xn, and maps U(Znq ×Zq)
to itself. The process fails with probability at most 2−k for arbitrary k by using
an initial n + k samples from As,X . After these initial samples, samples from
As,X are directly transformed into samples from Ax,X .

2.8 Lattice reduction

In practice the BKZ algorithm [34] is the best performing algorithm for solving
the approximate shortest vector problem. However, a similar algorithm, called
slide-reduction [13], has better provable performance. Both these algorithms
work by considering sub-blocks of a lattice basis and solving a (more-or-less)
exact SVP problem on the lattice spanned by these blocks. As these blocks span
sub-lattices of a lower dimension than the full lattice, it is easier to solve exact
SVP in this sub-lattice than it is to solve it in the full lattice.

When evaluating the security of lattice based schemes one often considers
the core-SVP metric [3] where the cost of a lattice reduction with blocksize β
is conservatively approximated as the cost of a single call to an SVP solver.
There exist multiple different methods to solve the exact SVP instances that
are solved in the sub-lattices. The asymptotically most efficient of these are
sieving algorithms. These algorithms have a large memory requirement, but in
this work we only account for the running time of these algorithms.

The running time of sieving algorithms is typically on the form 2Cβ+o(β) when
running in lattice dimension β and where the constant C depends on the specific
algorithm. The best asymptotic performance is achieved by sieving algorithms
that run on quantum computers [8] where the minimal value for C is 0.2563. If
only considering non-quantum algorithms, the best performance is given by [7]
where the constant C is 0.292.

The approximation factor achieved by lattice reduction algorithms improves
with increasing block-size β. For performance of the BKZ algorithm on an n-
dimensional lattice L, we assume as in [3] that it finds a lattice vector of length
∆n detL1/n with

∆ =

(
(πβ)1/β β

2πe

) 1
2(β−1)

.

By using some heuristic assumptions this formula is proven to be asymptotically
correct for random lattices in [10].

The slide-reduction algorithm has better provable performance while not per-
forming as well in practice. Slide reduction using blocksize β in dimension n is
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able to find vectors of length [13]

(γβ(1 + ε))
n−β
β−1 λ1(L)

where γβ is the Hermite constant in dimension β and ε is a reduction-factor
greater than zero which also influences the running time of the algorithm. When
we consider the concrete performance of the slide reduction, we conservatively
assume that ε = 0 without impacting the algorithms performance. Using that
the Hermite constant, for large β, can be bounded by [12]

γβ ≤
1.744β

2πe

this gives that we estimate the slide reduction finds vectors of length

(
1.744n

2πe

)n− β
β − 1 · λ1(L) . (1)

2.9 Quantum states

Here we introduce some concepts related to quantum states and quantum com-
putation but assume some previous familiarity with the subject. For an intro-
duction to quantum computation see for example [27].

A mixed quantum state is a probability distributions of quantum states and
can be expressed by a density matrix. The pure quantum state |φ〉 corresponds
to the density matrix |φ〉〈φ| while the mixed state∑

i

pi|φi〉〈φi|

corresponds to a distribution where the quantum state |φi〉 occurs with prob-
ability pi. The trace distance between two different mixed states is defined
as

T (ρ, σ) =
1

2
Tr

[√
(ρ− σ)†(ρ− σ)

]
and performing the same operations on two different states never increases the
trace distance between the states.

When only considering completely classical states, the classical statistical dis-
tance and trace distance between two different states is the same. Furthermore,
performing measurements on two different quantum states results in outcomes
from probability distributions that have a statistical distance that is no larger
than the trace distance between the original quantum states [27].
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A useful special case for calculating the trace distance is when ρ = |ψ〉〈ψ| and
σ = |φ〉〈φ| are pure quantum states as the trace distance between such states is

given by

√
1− |〈ψ|φ〉|2. Using this formula, we prove the following version of

Lemma 2.2 that limits the trace distance between two quantum states that are
proportional to Gaussian distributions.

Lemma 2.10. For any n-dimensional lattice L and any r > 0, the trace distance
between the quantum states proportional to∑

x∈L
ρ√2r(x)|x〉 (2)

and ∑
x∈L,‖x‖<r

√
n

ρ√2r(x)|x〉 (3)

is no larger than 2−n.

Proof. We want to limit the trace distance T (|ψ〉〈ψ|, |φ〉〈φ|) where we define the
quantum states

|ψ〉 =
∑
x∈L

ρ√2r(x)√
ρr(L)

|x〉 = α
∑
x∈L

ρ√2r(x)|x〉

|φ〉 =
∑

x∈L,‖x‖<r
√
n

ρ√2r(x)√
ρr(L ∩ r

√
nBn)

|x〉 = β
∑

x∈L,‖x‖<r
√
n

ρ√2r(x)|x〉

with normalisation constants α and β. For these states, the special case men-
tioned above is applicable, giving that the squared trace distance is

1− |〈ψ|φ〉|2 = 1−

∣∣∣∣∣∣
∑

x∈L,‖x‖<r
√
n

αβ · ρ2√
2r

(x)

∣∣∣∣∣∣
2

= 1− α2β2ρr(L ∩ r
√
nBn)2

where we use that ρ2√
2r

(x) = ρr(x). Using Lemma 2.2 we have that

ρr(L ∩ r
√
nBn) = ρr(L)− ρr(L \ r

√
nBn) ≥ (1− 2−2n)ρr(L)

which gives

|〈ψ|φ〉|2 = α2β2 · ρr(L ∩ r
√
nBn)2 ≥ (1− 2−2n)ρr(L)(ρr(L ∩ r

√
nBn)

ρr(L)ρr(L ∩ r
√
nBn)

= 1− 2−2n

and thus the squared trace distance is at most

1− |〈ψ|φ〉|2 ≤ 2−2n .

This gives that the trace distance between the |ψ〉 and |φ〉 is at most 2−n.
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A classical function f can be modeled as a unitary quantum operator U by
U |x〉|0〉 = |x〉|0⊕f(x)〉. This operator is its own inverse and this same operator
can be used to erase a register

U−1|x〉|f(x)〉 = U |x〉|f(x)〉 = |x〉|f(x)⊕ f(x)〉 = |x〉|0〉 .

This following lemma shows that we can approximate this unitary operator U
if we are given a probabilistic function g(x; r) which almost always equals f(x).

Lemma 2.11. Let f(x) be a function and g(x; r) be a probabilistic function
such that g(x; r) = f(x) except for with probability at most ε with probability
taken over the internal randomness r. Furthermore, let X be input space to f, g
and R randomness space for g. Then the trace distance between

|ψ〉 =
1√
|R|

∑
x∈X

∑
r∈R

αx|x〉|r〉|yx ⊕ f(x)〉

and

|φ〉 =
1√
|R|

∑
x∈X

∑
r∈R

αx|x〉|r〉|yx ⊕ g(x; r)〉

is no more than
√

2ε for arbitrary αx and yx.

Proof. First, we note that

1

|R|
∑
r∈R
〈yx ⊕ f(x)|yx ⊕ g(x; r)〉 ≥ (1− ε)

as f(x) and g(x, r) are different for at most ε · |R| different values of r. This
gives that

〈ψ|φ〉 =
1

|R|
∑
x∈X

α2
x〈x|x〉

∑
r∈R
〈yx ⊕ f(x)|yx ⊕ g(x; r)〉 ≥ (1− ε)

and since both of the states are pure quantum states, we have that the trace
distance between them is bounded by√

1− |〈ψ|φ〉|2 ≤
√

1− |(1− ε)|2 =
√

2ε− ε2 ≤
√

2ε .

3 Cryptosystem Specification

In this paper, we construct a PKE scheme which we parametrize to target
128 bits of OW-CPA security. The cryptosystem is essentially constructed
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as the Lindner-Peikert scheme [23], in a similar way to FrodoKEM [26]. Our
cryptosystem also supports using a variable error distribution and we provide
parametrizations both with fixed and variable error distributions. Using a vari-
able error distribution allows the cryptosystem to be supported by a more effi-
cient security reduction and therefore allows the system to use smaller param-
eters while arguing for the same security.

The algorithms for key generation, encryption and decryption in our cryp-
tosystem are described in Figure 2. Parameters for the cryptosystem are posi-
tive integers n, n and B, a prime q and a set I ⊂ (0, 1) which determines which
error distributions the cryptosystem uses. The resulting cryptosystem encrypts
` = B · n2 bits per encryption and has a decryption failure probability that
depends on the parametrization, as detailed in Section 3.1.

The specific error distributions used by the cryptosystem are determined by
the set I, with the squared standard deviation of the error distribution de-
termined by a sample from U(I) every time that a new LWE distribution is
required. An ordinary LWE-based cryptosystem is recovered by using a set
with a single element I = {α2} while our other parametrization uses a larger
set with I = [α2, 3α2/2].

We parametrize all our cryptosystems with B = 4 and with n either 8 or 12.
Remaining parameters are selected such that αq ≈ 2

√
n and so that the de-

cryption failure probability is sufficiently small. This leads to us selecting
q = O(n3/2) and α = O(n−1). Thus, all other parameters are determined
by the choice of dimension n and a search over values of n allows us to find the
smallest dimension that achieves our targeted security. More details regarding
the chosen parameters are presented in Section 6.

The LWE sampling algorithm in Figure 2 returns (bi = Asi + ei, si) for
a given A and is repeated n times in both key generation and encryption.
From these sampled columns, we construct the matrices B = b1‖ . . . ‖bn and
S = s1‖ . . . ‖sn, which is denoted as (B,S) = LWEGenI(.)

n in the algorithm
descriptions.

For encryption, A and B are concatenated and transposed, which is used to
generate

C = (A‖B)TS′ + E′ .

The next step thus splits this matrix to C1 ≈ (S′)TA and V ≈ (S′)TB with
the approximate equality hiding their respective parts of the error matrix E′.

3.1 Correctness of decryption

We choose parameters to our cryptosystems such that there is a small probability
δ of incorrect decryption in the system. This decryption failure probability plays
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PKE.Gen()

A← U(Zn×nq )

(B,S)← LWEGenI(A)n

return (pk = (A,B), sk = S)

PKE.Enc(pk,m)
(A,B) = pk
(C,S′) = LWEGenI((A‖B)T )n

Split C ∈ Z(n+n)×n
q into C1 ∈ Zn×nq

and V ∈ Zn×nq with C = CT
1 ‖V T

M ∈ Zn×nq = encode(m)
C2 = V + M mod q
return ct = (C1,C2)

PKE.Dec(S = sk, ct)
(C1,C2) = ct
m = decode(C2 −C1S mod q)
return m

LWEGenJ(A ∈ Zm×kq )

α2 ← U(J)

s← Ψ
k

α; e← Ψ
m

α

b = As + e mod q
return (b, s)

Encoding encode(m) with |m| = ` = B · n2

Split m into B-bit substrings and interpret as numbers bi, for inte-
gers 0 ≤ i < n2

Let M be a n× n matrix
On position x, y in M let it have the value bx+n·y ·

⌊
q/2B

⌋
return M

Decoding decode(M) with M ∈ Zn×nq

For integers 0 ≤ x < n and 0 ≤ y < n let Mx,y be the element on position
x, y in M
Let bx+y·n =

⌊
Mx,y · 2B/q

⌉
mod 2B

return m = b0‖b1 . . . ‖bn2−1, bitstring combined from all bi

Figure 2: Algorithms for the cryptosystem with PKE.Gen() for key-generation,
PKE.Enc(pk,m) for encryption and PKE.Dec(sk, ct) for decryption with the
other algorithms used as subroutines.

an important role in the FOZ⊥ transform detailed in subsection 6.3 and a too
large decryption failure probability will also limit the usefulness of our PKE.

Parameters for our cryptosystem are therefore selected so that the decryption
failure probability is sufficiently small. The following lemma, adapted from [23],
allows us to bound the probability of incorrect decryption in our OW-CPA
secure PKE scheme. This lemma gives a probability δ of incorrect decryption
for a single symbol, not for the entire ciphertext. As such, the probability that
the entire ciphertext is decrypted correctly, meaning that all of the n2 symbols
are recovered correctly, is at least 1− n2δ by a union bound.

Lemma 3.1. Let δ > 2−n be a real number, ζ2 be the maximal value in I
and assume that ζq > 2

√
n and ζ < n−1/22−(B+4). Then, the decryption error
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probability per symbol is bounded from above by δ if

(ζq)
2 ≤ q

√
π

2B+2
√

2n ln(1/δ)
.

Proof. The proof of this lemma is similar to the proof of Lemma 3.1 of [23], but
using a rounded Gaussian distribution instead of a discrete Gaussian distribu-
tion.

First, we note that the decryption of a message is given by

decode(C2 −C1S) = decode(S′B + E′′ + encode(m)− (S′A + E′)S)

= decode(S′(AS + E) + E′′ + encode(m)− (S′A + E′)S)

= decode(encode(m) + S′E + E′′ −E′S) .

A single element of decode(encode(m) + X) can be written as⌊
(mx,y ·

⌊
q/2B

⌋
+Xx,y mod q) · 2B/q

⌉
mod 2B

where mx,y is a B bit number corresponding to B bits of m. From this we see
that if |Xx,y| < q/2B+1 this coefficient equals mx,y and is therefore correctly
decoded. As such, decoding an encoded message is correct even if adding noise
X as long as all elements of X are smaller than t = q/2B+1. Decryption is
therefore correct if the elements of S′E + E′′ − E′S are smaller than t. We
note that the probability that these elements are larger than t increases as the
standard deviation for the error distributions increase. Therefore, we consider
the worst case, where all error distributions are Ψζ with the maximal ζ2 ∈ I.

As we are bounding the per symbol decryption error probability, we want to
bound the probability that an arbitrary element of S′E+E′′−E′S is larger than
t. A single element of this matrix can be represented by 〈s′, e〉+ e′′ − 〈e′, s〉
where s, e, s′, e′ all are vectors in their respective matrices and e′′ is an element
of E′′. We introduce v = e‖(−e′)‖e′′ and w = s′‖s‖1 and can thus rephrase
the required inequality as 〈v,w〉 < t. As Ψζ is a symmetric distribution we
know that the elements of −e′ follow the same distribution as e. Therefore, all
elements in v and the first 2n elements of w are distributed as if sampled from
Ψζ . This allows limiting the norm of w by using Lemma 2.4 on the first 2n
coordinates. With c = 2 this gives

‖w‖ ≤ 2ζq ·
√
n

π
+

√
n

2
+ 1 ≤ 2ζq

√
n (4)

where the second inequality holds if 1 +
√
n/2 < 2ζq

√
n(1− 1√

π
) which is true

with ζq > 2
√
n and n ≥ 1. The choice of c = 2 results in an inequality that

holds except for with probability at most Cn = 2n exp (−3n/2) ≤ 2−n.
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Next, we consider v that is distributed as Ψ
2n+1

ζ . The vectors v are thus sam-
pled from a distribution with probability density function νζq, with the elements
of the sampled vector rounded to the nearest integer modulo q. However, as we
consider ζ < 2−(B+4)/

√
n, the probability that elements of the sampled vector

are not in the range [−(q − 1)/2, (q − 1)/2] is exponentially small. Thus, besides
with an insignificant probability, the vector v is the same as if sampled from
the same distribution and rounded to the nearest integer, without performing
the modulo q operation.

Compared to if v was sampled from a distribution with probability density
function νζq, the value of |〈v,w〉| cannot increase by more than ‖w‖ from the
rounding. By instead considering z distributed according to νζq we are able to
use Lemma 2.3 to see that

Pr

[
|〈z,w〉| ≥ T · ζq ‖w′‖

]
< exp

(
−πT 2

)
and thus

Pr

[
|〈v,w〉| ≥ T · ζq ‖w‖+ ‖w‖

]
< exp

(
−πT 2

)
. (5)

Next, we select T = t/(ζq ‖w‖) − 1/(ζq) in order to bound Pr

[
|〈v,w〉| ≥ t

]
which in combination with (4) gives

T ≥ t

2ζ2q2
√
n
− 1

ζq
.

Together with (5) this gives that |〈v,w〉| ≥ t with probability at most

δ = exp

(
−π
(

t2

4ζ4q4n
− t

ζ3q3
√
n

+
1

4ζ2q2

))
≤ exp

(
−π t2

8ζ4q4n

)
with ζ < n−1/22−(B+4) guaranteeing the inequality. This gives a bound on ζq
in terms of δ as

(ζq)4 ≤ πt2

8n · ln(1/δ)

which, by taking a square root and inserting t = q/2B+1, gives the bound
claimed by the lemma. We ignore the probability that the inequality in (4) does
not hold and the probability that elements from νζq are not in the desired range.
This is justified as these probabilities are insignificant compared to the actual
targeted decryption failure probabilities where δ � 2−n/4.

By using Lemma 3.1, we select parameters so that the probability of decryp-
tion failures is limited. Using a fixed error distribution I = {α2} we require that
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αq > 2
√
n in order to use Theorem 5.1. Selecting αq = µ

√
n for some µ > 2

and inserting into the bound given by Lemma 3.1 gives

µ2n ≤ q
√
π

2B+2
√

2n ln(1/δ)
.

This bounds q via

q ≥ µ2 · 2B+2 · n3/2 ·
√

2 ln(1/δ)

π

and also gives

α =
µ
√
n

q
≤ 1

2B+2µn
√

2 ln(1/δ)

which, at least if n ≥ 2, is sufficiently small for Lemma 3.1 that requires
α < 1

2B+4
√
n

. In order to use Theorem 5.1 to solve SIVPγ with the smallest

possible approximation factor γ, we select parameters that minimize q. There-
fore, we select µ as the smallest value greater than 2 such that q is a prime.

Essentially the same analysis holds for the cryptosystem parametrized with
I = [α2, 1.5α2]. For Theorem 5.2 to be applicable we still require αq > 2

√
n.

However, for Lemma 3.1 we now have to consider γ2 = 1.5α2 as this is the
maximal value of I. Because of this we select parameters with γq = µ

√
n

but with µ > 2 ·
√

1.5 =
√

6. The other calculations for the parametrization
of the cryptosystem with fixed error distribution are also applicable for this
parametrization. We therefore chose parameters similarly with µ >

√
6 chosen

so that q is as small prime as possible, minimizing the approximation factor of
Theorem 5.2.

3.2 Security

In order to argue for the OW-CPA security of our cryptosystem we begin by
showing that an adversary against this system can be used to solve an arbitrary
DLWE instance. By using an adversary with low success probability we are
able to solve an arbitrary DLWE instance with essentially probability 1. While
this requires using the adversary several times, this is partially compensated for
by the increased success probability. However, each time the adversary is used,
new samples are required from the target DLWE distribution. An adversary
with a low success probability thus leads to an DLWE oracle that requires a
large number of samples from the unknown distribution. This greatly impacts
the tightness of Regev’s quantum reduction from [31] as its performance directly
depends on this number of samples that the DLWE oracle requires.

An adversary against our cryptosystem parametrized with a variable error
distributions can be used to solve a DLWE problem with variable error distri-
bution. To formalize this, we introduce the following definition for an LWE
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distribution with random error distributions. We define this as a distribution
over LWE distributions such that all sampled LWE distributions share the same
secret. The different LWE distributions do however not necessarily share the
same error distribution.

Definition 10 (LWE with variable error distribution). Let n, q be positive
integers, J ⊂ [0, 1) be a set and s ∈ Znq . We define As,J to be a distribution
where a sample consists of the distribution As,Ψζ with ζ2 ← U(J).

We also define a decision LWE problem related to these distributions of dis-
tributions. This DLWE(J,N) problem is a more general version of the ordinary
DLWE(Ψα, N) problem, which is recovered by simply letting J = {α2}.

Definition 11. Let J ⊂ [0, 1) be a set and n, q,m be positive integers. Let D
either be As,J or a distribution of distributions that always returns U(Zn+1

q ).
The DLWE(J,N) problem is to determine which is the case when given a total
of at most N samples in Zn+1

q from distributions given by D.

This DLWE(J,N) problem does not directly occur in Regev’s reduction from
SIVPγ . Instead, Regev’s reduction requires an oracle that recovers s when given
As,Ψβ for unknown β ∈ [α/

√
2, α]. However, by using this following lemma and

Lemma 2.8 we see that finding this s is possible if we can solve the DLWE(I ′, N)
problem with I ′ = [β2, β2 + α2].

Lemma 3.2. Let α, β be two positive numbers and let I ′ = [β2, β2 + α2]. Then,
an instance of the DLWE(Ψβ , N) problem can be transformed into an instance
of the DLWE(I ′, N) problem without knowing β.

Proof. For each new distribution requested in the DLWE(I ′, N) instance, sam-
ple a new ζ uniformly at random from [0, α2]. Samples from this new distribution
are produced by sampling (a, b) from the DLWE(Ψβ , N) instance and returning
(a, b+ e mod 1) where e is sampled from Ψ√ζ .

If the input distribution was uniformly random, then so is the output distri-
bution. If instead b = 〈a, s〉+ e′ for some s and with e′ ← Ψβ , we see that the
sum e+ e′ mod 1 is distributed as Ψ√

β2+ζ
. Therefore, the resulting distribu-

tion is As,Ψ√
β2+ζ

. As ζ ← U([0, α2]), this corresponds exactly to As,Ψ√
ζ′

with

ζ ′ ← U([β2, β2 + α2]) which is the expected distribution for an DLWE(I ′, N)
instance.

As β is unknown and varies, this set I ′ can not directly be used in our cryp-
tosystem. However, we ensure that I ′ contains I for every possible β and that
|I ′| / |I| is not too large. This implies that a distribution from As,I′ is dis-
tributed as if sampled from As,I with relatively high probability. This allows
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us to use Theorem 3.3 with an adversary against our cryptosystem to solve the
DLWE(I ′) problem, even though I ′ is unknown.

Theorem 3.3 also details the number of required calls to the adversary and
the required number of samples from the unknown distribution in the target
DLWE(I ′) problem. As adversaries with small advantage εa must be considered,
we see that the primary contributor to both number of oracle calls and required
samples is a factor 1/εa. However, as the success probability is amplified from
approximately εa to essentially 1, the actual tightness gap of this reduction does
not depend on εa.

Theorem 3.3. Let I ′ ⊆ (0, 1) be some unknown set that contains I such that
|I| / |I ′| = κ ≤ 1 and let k > 0 be an integer. Furthermore, assume that A
is an algorithm with advantage εa against the OW-CPA security of our PKE
and that εaκ

2n/2 ≥ 2−`. Then, we can solve a DLWE(I ′, N) instance where

N = 3n · 214 n2k
εaκ4n by using A no more than 215 n3k

εaκ4n times. The resulting

DLWE algorithm has a failure probability of at most 2(n+ 1)2−k.

The proof of Theorem 3.3 uses the fact that an adversary will have no advan-
tage against a version of the cryptosystem that use uniformly random samples
instead of LWE samples. As multiple different secrets are used for the same en-
cryption, each sharing the same public matrix A, we can not directly replace all
LWE distributions in the cryptosystem with the unknown distribution. Instead,
a hybrid argument over all the different LWE distributions in the cryptosystem
shows that an adversary will have a noticeable difference in success probability
between some hybrid games that only differ by one LWE distribution.

We then consider these hybrid versions of our cryptosystem with the critical
LWE distribution replaced with the input unknown distribution. The adversary
will thus have a noticeable difference in success probability depending on if the
unknown distribution is an LWE distribution or is uniformly random. Estimat-
ing the success probability of the adversary in this case thus allows us to solve
the input DLWE problem. To actually prove this theorem while keeping track
of all the details requires quite a bit of work and we therefore dedicate the next
subsection to this proof.

In comparison to Theorem 3.3 with a tightness gap that does not depend on
εa, previous tightness analysis have directly used the worst-case to average-case
reduction from [31]. Using this worst-case to average-case reduction results in a
much larger tightness gap that depends on εa. The smaller tightness gap of our
theorem is possible partly thanks to directly relating the systems OW-CPA se-
curity to the hardness of worst-case DLWE, without considering an intermediate
average-case version of this problem.
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3.3 Proof of Theorem 3.3

This section is dedicated to the proof of Theorem 3.3, which shows that an
adversary against the OW-CPA security of our cryptosystem can be used to
solve DLWE. In order to use it for our concrete parametrization we keep track
of the efficiency of the reduction as well as the success probability of the resulting
algorithm. Furthermore, the proof also keeps track of the number of samples
the resulting decision algorithm requires from the unknown distribution.

The proof of Theorem 3.3 uses a number of hybrid PKE schemes, as defined in
Figure 3. As these hybrid schemes are only used to test an adversary, they do not
include any secret keys or an algorithm for decryption. The hybrid cryptosystem
HI
j is the original cryptosystem but with the j first LWE distributions replaced

by uniform distributions. As both key-generation and encryption use n separate
LWE distributions, this defines different cryptosystems for 0 ≤ j ≤ 2n.

An adversary against the OW-CPA security of our cryptosystem, correspond-
ing to HI

0 , will correctly decrypt messages with a noticeable probability. Mean-
while, no algorithm has an advantage over random guessing when messages are
hidden by uniformly random noise, which is the case in hybrid cryptosystem
HI

2n. As such, a standard hybrid argument shows that there is some j such
that the adversary can distinguish between HI

j and HI
j+1, allowing using the

adversary to solve DLWE(I,N).

Theorem 3.3 actually claims something stronger, namely that the adversary
can be used to solve DLWE(I ′, N) for some unknown I ′ that contains I. This is
shown by also considering hybrid versions HI′

j that are similar to HI
j but with

the set I replaced with I ′ for one of the LWE distributions that the cryptosystem
uses. For each encryption with cryptosystem HJ

j only a single sample is used
from U(J). As such, if I and I ′ are similar, an adversary against cryptosystem
HI
i will work almost as well against cryptosystem HI′

i .

By using an adversary with a sufficiently large advantage compared to random
guessing, we can see that there is some j such that it has a noticeable difference
in success probability between HI′

j and HI
j+1. As such, the adversary can be

used to distinguish between HI′

j and HI
j+1, allowing us to solve DLWE(I ′).

The following lemma details how we transform a DLWE(I ′) instance into
different hybrid versions of our cryptosystem dependent on the answer to the
DLWE instance.

Lemma 3.4. Let n, q, n be positive integers, 0 ≤ j < 2n be an integer and D a
distribution over distributions which either always returns a uniform distribution
over Zn+1

q or is As,I′ for some set I ′ and s ∈ Znq . It is then possible to encrypt

an arbitrary message using HJ
h where (h, J) = (j, I ′) if D = As,I′ and (h, J) =

(j + 1, I) if samples from D are uniform distributions. For each encrypted
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PKE.Gen()

A← U(Zn×nq )

B1 ← U(Zn×min(j,n)
q )

Let k = n− j − 1
(b, s)← LWEGenJ(A)
(B2,S)← LWEGenI(A)k

return pk = (A,B1‖b‖B2)

PKE.Enc(m)

A← U(Zn×nq )

B ← U(Zn×nq )
Let h = max(0, 2n− j − 1)
Let A′ = (A‖B)T

E1 ← U(Z(n+n)×(j−n)
q )

(b, s)← LWEGenJ(A′)
(E2,S

′) = LWEGenI(A
′)h

Let C = E1‖b‖E2

Split C ∈ Z(n+n)×n into C1 ∈ Zn×n
and V ∈ Zn×n with C = CT

1 ‖V T

M ∈ Zn×n = encode(m)
C2 = V + M mod q
return ct = (C1,C2), pk = (A,B)

Figure 3: The hybrid version HJ
j of the cryptosystem. If j < n only the

key generation is altered and the encryption procedure is identical to original
cryptosystem. If instead j ≥ n no key generation is required as it is uniformly
random and generated as part of the encryption algorithm. The LWEGenI(A)
method is defined with the ordinary cryptosystem in Figure 2.

message, we require 3n samples from a single distribution sampled from D in
order to ensure that the encryption succeeds except for with a probability of at
most 2n−n.

Proof. The transform is described in Figure 4 and uses a subroutine denoted by
NormalForm(D), corresponding to Lemma 2.9, in order to transform a random
distribution C′ from D into C. If C′ initially was uniformly distributed then C
is also uniformly distributed while if C′ was As,Ψγ for some γ2 ← I ′ then C is

distributed as As′,Ψγ
where s′ ← Ψγ . Note that we also let this subroutine

transform the input distribution to a rounded distribution over Zn+1
q .

Comparing the algorithms in Figure 3 and Figure 4 the correctness of the
transform is clear. Instead of using an LWE distribution from LWEGenJ(·),
the system uses the unknown distribution. Thus, it corresponds to HI′

j if the

unknown distribution is an LWE distribution and otherwise is HI
j+1.

Selecting k = n − n for the normal form transformation of Lemma 2.9 leads
to the claimed failure probability. As at most n+ n samples are required from
the transformed distribution, this corresponds to a total requirement of at most
3n samples.

The proof of Theorem 3.3 requires that we distinguish between different prob-
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PKE.Gen()
C ← NormalForm(D)
(A, b)← Cn
Let k = n− j − 1

B1 ← U(Zn×min(j,n)
q )

(B2,S)← LWEGenI(A)k

return pk = (A,B1‖b‖B2)

PKE.Enc(m)
C ← NormalForm(D)
(A′, b)← Cn+n

Let h = max(0, 2n− j − 1)

E1 ← U(Z(n+n)×(j−n)
q )

(E2,S
′) = LWEGenI(A

′)h

Let C = E1‖b‖E2

Split C ∈ Z(n+n)×n into C1 ∈ Zn×n
and V ∈ Zn×n with C = CT

1 ‖V T

M ∈ Zn×n = encode(m)
C2 = V + M mod q
Let A‖B = (A′)T

return ct = (C1,C2), pk = (A,B)

Figure 4: The method to use an unknown distribution D to encrypt messages
with hybrid cryptosystem HJ

h for (h, J) depending on D. When j < n only the
key generation is altered, while if j ≥ n no key generation is required with pk
created in the encryption algorithm instead.

ability distributions that are noticeably different. This is accomplished with the
following lemma that corresponds to using a version of the Chernoff-Hoeffding
theorem multiple times.

Lemma 3.5. Let A and B be Bernoulli distributed random variables that have
unknown success probabilities pA and pB respectively. Also, let k ≥ 3 be an
arbitrary integer. Given some c and δ such that δ < pA ≤ cδ it is possible to
determine if pA − pB < δ or pA − pB > δ/2 with either answer being correct if
both inequalities hold. This requires at most 28k cδ samples from each of A and
B while giving a correct result except for with a probability of at most 2−k.

The proof of this lemma essentially consists of using the Chernoff-Hoefding
theorem multiple times, letting it distinguish two different Bernoulli distribu-
tions with a sufficiently large difference in success probability. We therefore
begin by presenting the version of the Chernoff-Hoeffding theorem that we will
be using.

Theorem 3.6 (Variant of Theorem 1 from [17]). If X1, . . . , Xn are independent
and 0 ≤ Xi ≤ 1 for i = 1, . . . , n then for 0 < t < 1− µ

Pr

[
1

n

∑
i

Xi ≥ µ+ t

]
≤ e−D(µ+t‖µ)n

and

Pr

[
1

n

∑
i

Xi ≤ µ− t

]
≤ e−D(µ−t‖µ)n
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where µ =
1

n
E(
∑
iXi) is the expected mean of all the Xi.

In these expression D(x‖y) is the Kullback-Leibler which is bounded via

D(x‖y) ≥ (x− y)2

2x
, x ≥ y (6)

and

D((1 + x)p‖p) ≥ 1

4
x2p, −1

2
≤ x ≤ 1

2
. (7)

We now prove Lemma 3.5 by using this version of the Chernoff-Hoeffding The-
orem multiple times. This allows us to distinguish between two input Bernoulli
distributions and determine which of the input distribution has the highest suc-
cess probability.

Proof of Lemma 3.5. By taking N samples from the different distributions we
get SA and SB success respectively. These number of successes depend on the
unknown success probabilities pA and pB and we determine that pA − pB > δ if
SA − SB is at least 3Nδ/4 and otherwise we determine that pA − pB < δ/2. In
the case that pA > pB + δ the Chernoff-Hoeffding Theorem with inequality (7)
shows that SA − SB is at least 3Nδ/4 with high probability.

To more exactly bound the probability that SA − SB > 3Nδ/4, we first see
that SA is at least N(pA − δ/8) except for with probability at most

exp

(
−1

4

(
δ

8pA

)2

pAN

)
= exp

(
−2−8 δ

pA
δN

)
≤ exp

(
−2−8N

c
δ

)
as pA ≤ cδ. Furthermore, with pA ≥ pB + δ we have that SB is less than(
pB + 1

8δ
)
N ≤

(
pA − 7

8δ
)
N except for with probability at most

exp

(
−1

4

(
δ

8pB

)2

pBN

)
≤ exp

(
−2−8 · δ · δ

pA − δ
N

)
≤ exp

(
−2−8 N

c− 1
δ

)
using pB ≤ pA − δ ≤ (c − 1)δ, assuming pB > δ/4 so that inequality (7) is
applicable. If instead pB < δ/4 we use inequality (6) to see that the probability
of SB >

(
pB + 1

8δ
)
N is at most

exp

(
−
(
δ
8

)2
pB + δ

8

N

)
≤ exp

(
−2−6 δ

2

3δ
8

N

)
= exp

(
−2−3δN/3

)
which is smaller than exp

(
−2−8 N

c−1δ
)

. As such we can use the same bound

when pB < δ/4 and we have SA − SB > 3Nδ/4 except for with a probability of
at most

exp

(
−2−8 N

c− 1
δ

)
+ exp

(
−2−8N

c
δ

)
≤ 2 · exp

(
−2−8N

c
δ

)
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if pA − pB > δ.

In the second case we have pA − pB < δ/2 and we want to bound the proba-
bility of getting the incorrect answer. To this end, we note that the probability
of getting more than

(
pA + 1

8δ
)
N successes for A to be at most

exp

(
−1

4

(
δ

8pA

)2

pAN

)
= exp

(
−2−8 δ

pA
δN

)
≤ exp

(
−2−8N

c
δ

)
.

Meanwhile, the probability of getting less than (pB − 1
8δ)N successes for B is

at most

exp

(
−1

4

(
δ

8pB

)2

pBN

)
= exp

(
−2−8 δ

pB
N

)
≤ exp

(
−2−8N

c
δ

)
by using pB ≤ pA ≤ cδ. As such, if pA − pB < δ/2 we have SA − SB < 3Nδ/4
except for with a probability of at most

exp

(
−2−8N

c
δ

)
+ exp

(
−2−8N

c
δ

)
≤ 2 · exp

(
−2−8N

c
δ

)
giving that the total probability of answering incorrectly is at most

max

(
2 · exp

(
−2−8N

c
δ

)
, 2 · exp

(
−2−8N

c
δ

))
= 2 · exp

(
−2−8N

c
δ

)
and thus with N = 28k cδ the error probability is at most

2 · exp (−k)) ≤ 2−k

with inequality holding for k ≥ 3.

With this lemma, we now finally present the actual proof of Theorem 3.3.

Proof of Theorem 3.3. Let a sample from BIj for 0 ≤ j < 2n be generated by

taking a random message m, encrypting it with HI
j and letting A attempt to

decrypt it, with the sample being 0 unless A correctly recovers the message m,
in which case it is 1. As such, samples from BIj are Bernoulli distributed with

unknown success probability pIj .

The advantage of the adversary against the actual PKE is at least εa, corre-
sponding to a success probability of at least εa+2−` and thus pI0 ≥ εa+2−` > εa.
We also know that pJ2n = 2−` as no strategy in decrypting random messages
encrypted with HJ

2n performs better than random guessing, independent of J .

The remaining success probabilities pJj are unknown. However, we can relate

the probabilities pI
′

j and pIj by using the fact that only a single sample from J
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is used for encryptions with HJ
j for j < 2n. As |I| / |I ′| = κ, this implies that

pI
′

j ≥ κpIj . We want to use A in order to distinguish between HI′

j and HI
j+1

for some j. As I ′ is unknown, we can not directly encrypt with HI′

j and we

therefore instead find a j such that A can be used to distinguish between HI
j

and HI
j+1 with sufficiently large advantage.

We claim that for ∆ = εaκ
2n

4n , it is guaranteed to be a j such that

pI
′

j − pIj+1 ≥ κpIj − pIj+1 ≥ ∆ . (8)

This is seen by noting that the second inequality in (8) equivalently says

pIj ≥ (pIj+1 + ∆)/κ .

If there is no j where this inequality holds, it would imply

pI0 <
p2n

κ2n
+ ∆ ·

2n∑
j=1

κ−j ≤ 2−`κ−2n + 2nκ−2n · εaκ
2n

4n
≤ 2−`κ−2n + εa/2 ≤ εa

with the final inequality given by the assumption that εaκ
2n/2 ≥ 2−`. This

contradicts pI0 > εa, showing that (8) must hold for some j.

We now find a j such that κpIj − pIj+1 > ∆/2. To accomplish this, we define

κBIj as a distribution that with probability κ is a sample from BIj and otherwise

is 0. Thus a sample from κBIj+1 is non-zero with probability κpIj+1. For j = 0

to j = 2n − 1, we test κBIj against BIj+1 by using Lemma 3.5 with δ = ∆. As
it is guaranteed to be some j where

κpIj − pIj+1 ≥ ∆ , (9)

comparing these distributions with Lemma 3.5 for all different values of j will
give us a j where κpIj − pIj+1 > ∆/2, assuming that the lemma never fails.

The tests are performed sequentially with j increasing from 0 to 2n− 1, abort-
ing the process with the first j where the difference in success probability is
found to be sufficiently large. The failure probability of Lemma 3.5 is at most
2−k and, for the at most 2n different j used, the probability that there is some
failure is thus at most 2n · 2−k.

The preconditions for Lemma 3.5 are fulfilled for the relevant j, unless the
lemma has already failed for a smaller value of j. First of all, we see that
the condition ∆ < κpIj must be fulfilled unless there is some i < j such that

κpIi − pIi+1 > ∆. As this i should have already been found by Lemma 3.5 we
can assume that this precondition is true.

Furthermore, with c = 2εa/∆, we can assume that κpIj ≤ c∆. Otherwise,

there is some j such that pIj ≥ 2εa/κ > εa + 2−` which would allow a more
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efficient way to distinguish between the hybrid games by only considering the
versions with i ≥ j.

The same samples from BIj can be used when κBIj−1 is compared to BIj as

when κBIj is compared to BIj+1 and thus it is sufficient with 29εak/∆
2 samples

from each distribution. This results in a total requirement of

2n · 29εa ·
k

∆2
= 214 n3k

εaκ4n

samples from different BIj and each such sample corresponds to one call to A.

Having found this j, we use Lemma 3.4 with the unknown distribution from
the target DLWE(I ′) instance in order to encrypt random messages. This corre-
sponds to an encryption with HJ

i where (i, J) = (j, I ′) if the unknown distribu-
tion is As,I′ and (i, J) = (j+ 1, I) otherwise. We define a Bernoulli distribution
BJi for the outcome of an adversary against this cryptosystem in the same way
as the other Bernoulli distributions.

Using Lemma 3.5 with δ = ∆/2, we compare this distribution with BIj+1. If
(i, J) = (j, I ′) the difference in success probability is at least ∆/2 by the choice
of j. As such, the only correct response by the lemma is that the difference in
success probability is greater than δ/2 = ∆/4. If instead (i, J) = (j + 1, I) the
difference in success probability is 0 and thus the only correct answer from the
lemma is that the difference is less than δ = ∆/2.

The preconditions for Lemma 3.5 are satisfied in the comparison between BI
′

j

and BIj+1 as they held in the process of finding this j. When BIj+1 is compared

to itself, the precondition that δ < pIj+1 might not hold. The answer is however
still correct, as if both distribution have the same low success probability, there
is only an insignificant probability that there is a large difference in number of
successful trials.

For this application of Lemma 3.5 to have a failure probability of 2−k we

require T = 210εa
k

∆2 = 214 n2k
εaκ4n samples from both distributions. As each sam-

ple from either of the distributions require using A, this corresponds to 2T calls
to A. This also corresponds to T encryptions with samples from the unknown
distribution which, because of the usage of Lemma 3.4, implies that we require
3n · T samples from the unknown distribution.

Lemma 3.4 has a failure probability of at most 2n−n per use and thus the
probability of at least one failure is no more than T ·2n−n. Combining this with
the probability that Lemma 3.5 fails at least once gives the total failure proba-
bility of at most T · 2n−n + (2n+ 1)2−k ≤ 2(n+ 1)2−k with inequality holding
for sufficiently large n. Meanwhile, the number of required calls to A directly
corresponds to the samples from the different Bernoulli distributions BJi and is
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therefore at most

214 n3k

εaκ4n
+ 215 n2k

εaκ4n
≤ 215 n3k

εaκ4n

with inequality holding for n ≥ 2.

4 Discrete Gaussian sampling from Worst-Case
DLWE

In this section we detail the reductions which prove that a DLWE(I,M) oracle
can be used to solve SIVPγR . Combined with Theorem 3.3, this allows the
security of our cryptosystem to be based upon the assumed hardness of this
standard lattice problem.

In order to solve an SIVPγR instance, we consider a version of Regev’s quan-
tum reduction from [31] which we detail in subsection 4.2. Our version of this
reduction requires an LWE oracle that, with overwhelming probability, solves
LWE(Ψβ , N) for some unknown β ∈ [α/

√
2, α] with α a known parameter. Such

an oracle is not directly given by using an adversary against our cryptosystem
with Theorem 3.3 and we require an additional step to construct such an LWE
oracle. This oracle is constructed in different ways depending on if we consider a
parametrization with fixed or variable error distribution. We begin by detailing
these constructions in subsection 4.1.

4.1 Solving LWE with a DLWE Oracle

For our version of the main reduction of [31] we must solve instances of the
LWE(Ψβ , N) for some unknown β ∈ [α/

√
2, α]. This version of the LWE prob-

lem is solved in two separate ways depending on which type of DLWE oracle
an adversary against the specific parametrization of our cryptosystem provides.
For parametrizations with I = {α2} we use the same approach as in [31]. For
the parametrizations with I = [α2, 3α2/2] we have an alternative, more efficient
way, to construct the required LWE oracle.

We first consider our parametrizations that use a fixed error distribution with
I = {α2}. In this case, using Theorem 3.3 allows using an adversary against
our cryptosystem to solve DLWE(Ψα, N). Using Lemma 2.8, this allows us to
also solve LWE(Ψα, N). Finally, we use the following lemma in order to actually
solve LWE(Ψβ , τ ·N) for unknown β ∈ [α/

√
2, α] and the value of τ determining

the success probability of the algorithm.

Lemma 4.1 (Variant of Lemma 3.7 from [31]). Let n, q, τ be positive integers,
α ∈ (0, 1) and W be an algorithm that solves LWE(Ψα, N), with a failure proba-
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bility of at most 1/20. Then there is an algorithm W ′ that, by using W at most
10τN times, solves LWE(Ψβ , τN) for arbitrary β ∈ [α/

√
2, α], except for with

probability at most
2−τ + 10Nτ exp(−9N/80) .

Proof. We define a set Z to be all integer multiples of α2/(20N) between α2/2
and α2. For each of the elements ζ ∈ Z, we add a sample from Ψ√ζ to each of the
nN samples provided from As,Ψβ . This results in nN samples from As,Ψ√

β2+ζ

for each ζ ∈ Z. This guarantees that there is some ζ ∈ Z such that

α2 ≤ β2 + ζ ≤
(

1 +
1

20N

)
α2

and Lemma 2.1 gives us that, for this ζ, the statistical distance between Ψ√
β2+ζ

and Ψα is at most 9/(20N). As such, the statistical distance between N samples
from As,Ψα and N samples from As,Ψ√

β2+ζ
is at most 9/20 for this choice of ζ.

As the LWE oracle has a failure probability of at most 1/20, this guaran-
tees that the oracle succeeds in recovering s with success probability at least
1/2 when given N samples from As,Ψ√

β2+ζ
instead of N samples from As,Ψα .

Repeating this same procedure τ times, with independent samples, thus en-
sures that, except for with probability at most 2−τ , we will produce the correct
solution at least once.

As we perform this procedure for every ζ ∈ Z, we are thus guaranteed that,
except for with probability at most 2−τ , the correct s is found at least once.
By using the procedure from Lemma A.7, corresponding to Lemma 3.6 of [31],
we are able to verify when we have the correct solution. This is performed on
at most τ · 10N candidate solutions and if the lemma at any point incorrectly
claims that some s′ 6= s equals s we will return an incorrect solution s′. We
therefore require that this procedure never fails, giving a total failure probability
of at most

2−τ + 10τN exp(−9N/80)

by using N samples from As,Ψ√
β2+ζ

that were not used to find the candidate

solution. Finally, the number of required calls to W is 10τN as there is 10N
different γ ∈ Z and each γ requires τ calls to W .

Compared to previous analysis of the efficiency of Lemma 3.7 in [31], our
version in Lemma 4.1 requires a factor N/10 less LWE oracle calls and as N is
large, this is a significant difference. This is accomplished by choosing the set
Z more carefully compared to how it was chosen in Regev’s original proof [31].

For our alternative parametrization, where I = [α2, 3α2/2], Theorem 3.3 al-
lows an adversary to be used to solve an DLWE(I ′, N) instance for some I ′
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that contains I. With β ∈ [α/
√

2, α] we are guaranteed that I ′ = [β2, β2 + α2]
contains I and that |I ′| / |I| = 2. This motivates the following lemma which
allows us to solve DLWE(Ψβ , N), even though β is unknown. Using Lemma 2.8
this also allows us to solve the corresponding search-LWE problem.

Lemma 4.2. Let α, β be two positive numbers and let I ′ = [β2, β2 + α2]. Then,
an instance of the DLWE(Ψβ , N) problem can be transformed into an instance
of the DLWE(I ′, N) problem without knowing β.

Proof. For each new distribution requested in the DLWE(I ′, N) instance, sam-
ple a new ζ uniformly at random from [0, α2]. Samples from this new distribution
are produced by sampling (a, b) from the DLWE(Ψβ , N) instance and returning
(a, b+ e mod 1) where e is sampled from Ψ√ζ .

If the input distribution was uniformly random, then so is the output distri-
bution. If instead b = 〈a, s〉+ e′ for some s and with e′ ← Ψβ , we see that the
sum e+ e′ mod 1 is distributed as Ψ√

β2+ζ
. Therefore, the resulting distribu-

tion is As,Ψ√
β2+ζ

. As ζ ← U([0, α2]), this corresponds exactly to As,Ψ√
ζ′

with

ζ ′ ← U([β2, β2 + α2]) which is the expected distribution for an DLWE(I ′, N)
instance.

4.2 Solving SIVP with the Help of an LWE Oracle

By using a version of Regev’s quantum reduction from [31], we are able to solve
SIVP with the help of an LWE oracle. The efficiency of Regev’s reduction has
already been investigated in previous works [9,14,33] with the most recent result
concluding that 2n3 · 3n3N3 LWE oracle calls are required when using an LWE
oracle that requires N LWE samples.

Previous works that analyzed the efficiency of this reduction have not con-
sidered its failure probability. Furthermore, they have analyzed the reduction
exactly as stated by Regev and have not altered it in order to improve its con-
crete efficiency. Our version of this reduction has somewhat improved efficiency
compared to the original and we keep track of its concrete failure probability.

To allow as tight proof as possible, we somewhat alter some of the steps of
Regev’s reduction. However, many of the lemmas from [31] are used essentially
as is, without major modifications. As the original proofs did not concretely
handle tightness, the proofs must still be redone in greater detail. In this section
we only present the main part of the reduction, which has a large impact on the
non-tightness of the reduction and has been altered somewhat to improve its
efficiency. For most other lemmas, the analysis of their tightness is similar to the
analysis in previous works that analyzed this reductions tightness. We therefore
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do not present these lemmas here, instead including them in Appendix A for
completeness.

To solve an SIVPγ instance, Regev’s reduction from [31] constructs a discrete
Gaussian distribution over the lattice with a relatively small standard devia-
tion. The length of vectors sampled from this distribution are related to its
standard deviation and vectors sampled from this distribution are therefore rel-
atively short. With sufficiently many sampled vectors, there is an overwhelming
probability that a subset of n sampled vectors are linearly independent. These
vectors thus solve a SIVPγ instance for some γ related to the standard deviation
of the discrete Gaussian distribution.

To produce samples from a discrete Gaussian distribution, the reduction uses
multiple iterative steps. Each iterative step makes use of samples from a discrete
Gaussian distribution in order to produce samples from a discrete Gaussian
distribution with smaller standard deviation. This process can be repeated with
the same input samples in order to produce an arbitrary number of samples
from the output discrete Gaussian distribution. As such, the process can be
applied iteratively in order to sample from discrete Gaussian distributions with
successively smaller standard deviations.

The iterative step can be considered as two separate parts. One part of the
iterative step is a classical algorithm that solves a BDD problem on the dual
of the lattice. This is accomplished by using the provided LWE oracle together
with samples of a discrete Gaussian distribution over the lattice. The other part
of the reduction consists of a quantum algorithm that produces samples from
a discrete Gaussian distribution. This requires solving a BDD problem on the
dual lattice which is accomplished by using the first part of the reduction.

The classical part of the algorithm requires one input discrete Gaussian sam-
ple for each of the LWE samples required by the LWE oracle. With the LWE
oracle requiring N LWE samples, each iterative step must therefore be repeated
at least N times in order to provide enough input samples for the next iterative
step. As the number of input samples N that the LWE oracle constructed by
Theorem 3.3 is quite large, this repetition to produce enough samples is one of
the largest contributors to the non-tightness of the reduction.

In order to improve the efficiency of the reduction, our version of this the-
orem solves SIVPγR directly. The original reduction solves the target SIVPγR
instance by solving multiple discrete Gaussian sampling problems, as detailed in
Lemma 3.17 of [31]. We instead use that the solution to the discrete Gaussian
sampling problem already samples from many intermediate discrete Gaussian
distributions. By using these samples, we are able to solve SIVPγR directly,
saving a factor 2n3 in the number of required oracle calls compared to using
Lemma 3.17 from [31].

Theorem 4.3 (Version of Theorem 3.1 in [31]). Let L be an arbitrary lattice,
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n, q,M be positive integers, α < 1 some positive number such that αq > 2
√
n

and let ε = ε(n) > 0. Furthermore, let W be an oracle that solves LWE(Ψβ ,M)
for arbitrary β ∈ [α/

√
2, α], except for with probability at most ε. Then there is a

quantum algorithm that, by using W at most 3n2M times, solves GIVPq
√

2n·ηε(L)

except for with probability

3nM ·
√

18Mnε+ 10Mn2 · 2−n/2 .

Proof. We begin by using LLL on the input n-dimensional lattice L. This gives
us a basis for L where the length of the longest vector is λ̃n(L) and where it is
known that

λn(L) ≤ λ̃n(L) ≤ 2nλn(L) .

We let r = r0 = λ̃n(L)2−n ≤ λn(L) and ri = r · (αq/
√
n)i. As αq > 2

√
n

implies r3n > 23nr > 22nλn(L), we can use Lemma A.4 to efficiently produce
samples from a distribution that is statistically close to DL,r3n . Starting with
samples from this distribution, the iterative step given by Lemma A.13 is used
to produce samples that are statistically close to samples from another discrete
Gaussian distribution.

The initial samples from Lemma A.4 have a width r3n > 22nλn and are of
statistical distance less than 2−n/2 from discrete Gaussian samples on the lat-
tice. We use M samples from this distribution and the total statistical distance
of these samples from their desired distribution is thus no more than M · 2−n/2.
With these M samples, the iterative step is used M times in order to produce
M samples from a distribution that is statistically close to DL,r3n−1

. These
samples are then similarly used to produce samples from DL,r3n−2

and the pro-
cess continues similarly until samples corresponding to DL,ri are produced for
all relevant i.

We have that ri ≤
√

2qηε(L) for sufficiently small i. This implies that ri is
to small for samples from DL,ri to be useable as input to the iterative step of
Lemma A.13. However, ηε(L) is unknown and we therefore have no efficient
way to verify if ri is large enough for produced samples to be used as input to
Lemma A.13. Furthermore, it may not necessarily be easy to detect that the
lemma fails to produce the expected output. Therefore, we always continue the
process until we produce samples that would correspond to DL,r0 if every step
succeeds.

With ri <
√

2qηε(L) there is no guarantee that the produced samples follow
a distribution that is even remotely close to DL,ri−1

. However, the smallest
lattice vectors produced by this iterative process must be at least as short as
vectors provided by a distribution close to DL,rj where rj is big enough for
Lemma A.13 to be applicable. Because of this, taking the shortest set of n
linearly independent vectors produced by the iterative step for all rj gives the
desired solution.
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To calculate the approximation factor for this reduction, we note that r0 is
too small for Lemma A.13 to be applicable while r3n is guaranteed to be large
enough that it is applicable. There must therefore be some largest j ≥ 0 such
that rj <

√
2qηε(L), implying that rj+1 ≥

√
2qηε(L). As such, Lemma A.13 can

use input samples from DL,rj+1
to produce samples statistically close to DL,rj .

Corollary A.15 shows that M vectors produced from DL,rj contains a set of

n linearly independent vectors except for with probability at most n(9/10)M/n.
Furthermore, by Lemma 2.2 a vector produced from DL,rj is of length less than√
nrj < q

√
2n · ηε(L) except for with probability

ρrj (L\
√
nrjBn)

ρrj (L)
< 2−2n .

As such, with high probability, the procedure produces n vectors shorter than
q
√

2n · ηε(L) and thus solve GIVPq
√

2n·ηε(L).

In total this process uses 3Mn repetitions of the iterative step, which in-
cludes producing M samples from the distributions corresponding to DL,ri for
all 0 ≤ i ≤ 3n. As each iterative step requires n calls to W , this full process re-
quires 3Mn2 calls to W . Furthermore, if given the expected input, each iterative
step results in samples that are at most a statistical distance of

√
18Mnε+ 3n · 2−n/2

from the desired distribution. Thus, M samples produced by Lemma A.13 have
a statistical distance of at most

√
18M3nε+ 3Mn · 2−n/2

from M samples from the desired distribution. As at most 3n steps are per-
formed the total statistical distance betweenM samples at step j andM samples
from DL,rj is at most

9
(√

2M3n3ε+Mn2 · 2−n/2
)
. (10)

This assumes that rj is large enough for Lemma A.13 to produce samples from
a distribution close to DL,rj and also assumes that the initial distribution was

DL,r3n . As the initial samples are a statistical distance M · 2−n/2 from the
expected input, the actual statistical distance between the samples from the
produced distribution and samples from DL,rj is bounded by (10) plus M ·2−n/2.

For the failure probability of this procedure, we must account for the sta-
tistical distance from the desired distribution, the probability that all elements
from this distribution are shorter than

√
2nqηε(L) and the probability that these

vectors contain n linearly independent vectors. This results in a total failure
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probability of at most

9Mn
(√

2Mnε+ n · 2−n/2
)

+M2−n/2 +M2−2n + n(9/10)M/n

≤ 9
√

2M3n3ε+ 10Mn2 · 2−n/2

with the final inequality holding for all relevant parameters.

5 Security from lattices

5.1 Cryptosystem with fixed error distribution

The concrete OW-CPA security of our cryptosystem with fixed error distribu-
tion is given by a combination of Theorems 3.3 and 4.3. This is detailed in the
following theorem, which directly relates the concrete security of our cryptosys-
tem with the hardness of worst-case SIVP.

Theorem 5.1. Let τ, k be arbitrary integers and let ε > 0 be a real num-
ber. Furthermore, let our PKE scheme be parametrized by n, n, B, q and with
I = {α2} such that αq > 2

√
n. Assume that A is an adversary that, running

in time at most T , achieves an advantage of at least 2−d against the OW-CPA
security of this parametrization. Then there exists a quantum algorithm that
solves worst-case SIVPγ in time

270τ2k3n5n7q · 23d+43 · T

with approximation factor

γ = q ·
√

2n · ln(2n(1 + 1/ε))

π
.

This algorithm has a failure probability of at most

23d/2+21 · τ(3nn)3 ·
√

6k3ε+ 30τkn3n2 · 2d+14−n/2

as long as 2−τ < 3nn2k · 2d+14ε, k ≥ log(40nq(n+ 1)), 2−` < 2−d−1.

Proof. This is a combination of Theorems 3.3 and 4.3 with Lemmas 4.1, 2.7
and 2.8, combining the number of calls required. Furthermore, in this case
I = I ′ = {α2} which allows Theorem 3.3 to be used with κ = 1.

The number of required calls to the adversary is at most

3Mn · 10τN · 2d+15kn3 · nq = 270τ2k3n5n7q · 23d+43
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where M = τN is given by Lemma 4.1 while N = 3nn2k · 2d+14 is given by
Theorem 3.3 with κ = 1. The running time is then given from this combined
number of calls and the fact that each call to A takes time at most time T .

Theorem 4.3 produces vectors of length at most q
√

2n · ηε(L). By Lemma 2.5
we see that the length of these vectors is at most

q ·
√

2n ln(2n(1 + 1/ε))

π
· λn

and the process therefore solves SIVPγ for γ = q ·
√

2n ln(2n(1 + 1/ε))

π
.

The failure probability of this procedure is given by Theorem 4.3 to be at
most

9τNn
√

2Nnε+ 10τNn2 · 2−n/2

= 23d/2+21 · τ(3nn)3 ·
√

6k3ε+ 30τkn3n2 · 2d+14−n/2

as long as the provided LWE oracle has a failure probability of at most 1/20. As
we are using the LWE oracle created by combining Theorem 3.3 and Lemma 2.8
it has an error probability of at most 2nq(n+ 1)2−k and we therefore require
k ≥ log(40nq(n+ 1)).

Due to Theorem 4.3, we also require that the failure probability of oracle
produced by Lemma 4.1 is at most Nε, which corresponds to

2−τ < Nε = 3nn2k · 2d+14ε .

5.2 Cryptosystem with variable error distribution

For the cryptosystem with variable error distribution we have the following,
more efficient, version of Theorem 5.1. This improved efficiency is possible as
an adversary against this cryptosystem can be used to solve an LWE problem
with a variable error distribution. Together with Lemma 4.2, this allows solving
LWE instances where the error distribution is unknown. The resulting LWE
oracle is significantly more efficient than the LWE oracle given by Theorem 5.1.

Theorem 5.2 (Alternative version of Theorem 5.1). Let our PKE scheme be
parametrized by n, n, B, q and with I = [α2, 1.5α2) such that αq > 2

√
n.

Furthermore, let k be an arbitrary integer and ε > 0 be some real number.
Assume that A is an adversary that runs in time at most T and achieves an
advantage at least 2−d against the OW-CPA security of this parametrization of
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our PKE scheme. Then, there exists a quantum algorithm that solves worst-case
SIVPγ in time

9k2n4n5q · 22d+29+4n · T

for approximation factor

γ = q

√
2n · ln(2n(1 + 1/ε))

π

with a failure probability of at most

23d/2+6n+21 · (3nn)3
√

6k3ε+ 30n3n2k · 2d+14+4n−n/2

as long as 3kn22d+14 > 4n, 2−` < 2−d−2n−1 and

k · 2k ≥ 2−d−13−4n · q(n+ 1)

3n2ε
.

Proof. Using Theorem 3.3, an adversary against the OW-CPA security of our
PKE scheme can be used to solve the DLWE(I ′, N) problem for arbitrary I ′ that
contains I. Using Lemmas 2.8, 4.2 and 2.7 this allows solving the LWE(Ψβ , N)
problem for any β ∈ [α/

√
2, α]. Finally, using Theorem 4.3 provides a solution

to an arbitrary GIVPq
√

2n·ηε(L) instance.

With β2 ∈ [α2/2, α2] and I ′ = [β2, β2 + α2] we have that I ′ contains I and
|I| / |I ′| = 1/2. As such we have κ = 1/2 in Theorem 3.3 which means that the
number of required calls to A for every use of Theorem 3.3 is 2d+15+4nn3k. The
total number of required calls to solve this GIVP instance is

3Nn2 · kn3 · 2d+15+4n · nq = 9k2n4n5q · 22d+29+4n

where N = 3nn2k · 2d+14+4n is given by Theorem 3.3.

For Theorem 4.3 to be applicable, the failure probability of the LWE oracle
can be at most Nε. As the LWE oracle is given by a combination of Theorem 3.3
and Lemmas 2.8 and 2.7 it has a failure probability of at most 2nq · (n+ 1) ·2−k
and to have this smaller than εN corresponds to

k · 2k ≥ 2−d−13−4n · q(n+ 1)

3n2ε

with value of N inserted. With this inequality holding the total failure proba-
bility of the reduction is no more than

9nN ·
√

2Nnε+ 10Nn2 · 2−n/2 =

23d/2+6n+21 · (3nn)3
√

6k3ε+ 30n3n2k · 2d+14+4n−n/2

as given by Theorem 4.3. Finally, the analysis for SIVP approximation factor is
identical to the one given in Theorem 5.1 and therefore not repeated here.
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6 Parametrization

In this section we parametrize our cryptosystem while accounting for the reduc-
tions efficiency. Besides its running time, we must also account for the failure
probability of the reduction, and how we do this is detailed in subsection 6.1.
The security must also be based on a reasonable estimate for the concrete hard-
ness of the underlying problem, which we detail in subsection 6.2.

The primary parametrizations in this paper is for a PKE that targets 128-
bits of OW-CPA security. We also provide separate parametrizations of a KEM
that target 128-bits of IND-CCA security. These parametrizations are based
on the FOZ⊥ transform, which introduces additional parameter constraints and
another non-tight reduction. Details about the FOZ⊥ transform and these IND-
CCA secure parametrizations are provided in subsection 6.3

Next, in subsection 6.4 it is detailed how the concrete parameters are selected
to target 128-bits of security by using the reductions presented in this paper.

Our concrete parametrizations are based on conservative estimates of the
concrete hardness of worst-case SIVP. There does not seem to be anything that
indicates that the worst-case problem is significantly harder than the average-
case version of the problem. As such, there does not seem to be to be any
reasonable way to argue that the worst-case nature of the underlying problem
contributes to the concrete hardness of this problem and the concrete security
of our cryptosystem. We therefore base our parametrization on a hardness
estimate for average-case SIVP.

As a secondary result, we also want to provide an indication as to what ex-
tent typical LWE-based cryptosystems qualitatively can argue for security from
the reduction. Our concrete parametrizations provide a first indication for this.
However, these do not account for the worst-case nature of the underlying prob-
lem as we do not deem it reasonable to account for this when basing the security
on the reduction. However, the security of cryptosystems that use smaller pa-
rameters could still be argued to be partially supported by the reduction based
on the fact that it solves a worst-case problem.

As there are no known instances of SIVPγ that are significantly harder than
typical instances of the problem, such an argument can not reasonably be used
for a concrete parametrization of our cryptosystem. Furthermore, assuming the
existence of hard problem instances is not not an easily falsifiable assumption.
Even if lattice algorithms improve against some class of lattices, we could still
claim that there exist some other, harder class of lattices. However, in order
to bound which parameters the to reduction could provide any support for, we
still investigate what parameters are supported by such an argument.

Our bound on parameters supported by the reduction is such that attacks
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against cryptosystems that use smaller parameters would not even result in im-
proved algorithms against a hypothetical worst-case instance of SIVPγ . This
worst-case instance may not be efficiently solvable with the heuristic algorithms
typically considered. However, using a less efficient, but provably correct lat-
tice algorithm, we should be able to solve an arbitrary instance of a lattice
problem. Thus, we provide such a parameter bound by comparing the reduc-
tion to the efficiency of provably correct lattice algorithms, which we detail in
subsection 6.5.

6.1 For low reduction failure probability

The failure probability of the reduction in Theorem 5.1 is given by

23d/2+21 · τ(3nn)3 ·
√

6k3ε+ 30τkn3n2 · 2d+14−n/2

while it for the reduction in Theorem 5.2 is

23d/2+6n+21 · (3nn)3
√

6k3ε+ 30n3n2k · 2d+14+4n−n/2 .

To limit these failure probabilities, we choose a sufficiently small value for ε.
Both the running time of the reductions and the approximation factor the re-
ductions achieve increase with smaller values of ε. Therefore, ε is chosen as large
as possible while still achieving an acceptable reduction failure probability.

The concrete failure probability of the reduction is accounted for in the same
way as in the calculation of the tightness gap. As such, if the reduction run-
ning in time T achieves a success probability p it is considered equivalent to
an alternative reduction running in time T/p that never fails. With this way
of accounting for the failure probability of the reduction, there should be some
optimal choice for ε that achieves as efficient parametrization as possible. How-
ever, altering this variable only has a minor impact on the final parametrization
and we therefore accept a suboptimal choice for this parameters.

For simplicity we target a total reduction failure probability of approximately
1/10. To achieve this, we ignore the contribution of the second term of the
failure probability, as it is exponentially small in n, and is insignificant for
relevant values of n. We therefore select

ε =
1

600k3
· 2−3d−42

τ2(3nn)6

in the system with fixed error distribution and

ε =
1

600k3
· 2−3d−12n−42

(3nn)6

in the system with variable error distribution. We also have requirements on k
and τ from the respective theorems, and we select these parameters as small as
possible while these inequalities still hold.
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As such, in the analysis of the cryptosystem with fixed error distribution we
select k to be the smallest integer greater than log(40nq(n + 1)) while τ is the
smallest integer such that

2−τ < 3nn2k · 2d+14ε =
1

600k2
· n · 2

−2d−28

τ2(3nn)5

which corresponds to

τ−22τ > 600k2 · 22d+28 · (3n)5n4 .

For the system with variable error distribution, we instead select k as the small-
est integer such that

k · 2k ≥ 2−d−13−4n · q(n+ 1)

3n2ε
= 600k3 · 22d+8n+2935n6n4 · q(n+ 1)

which corresponds to

k−2 · 2k ≥ 600 · 22d+8n+2935n6n4 · q(n+ 1)

while τ is not a parameter for the reduction.

6.2 Hardness estimate

There seems to have been barely any research into the concrete hardness of
SIVP with the approximation factors relevant for the theorems in Section 5.
Meanwhile, the concrete hardness of Hermite-SVP, which is a similar problem,
has been studied extensively. Both problems are solved by finding short vectors
in a lattice. The vectors required to solve SIVPγ must be shorter than γ ·λn(L)
while the solution to a η-Hermite-SVP instance is a vector that is shorter than
η · det(L)1/n.

In order to relate solutions of SIVPγ and solutions to η-Hermite-SVP we
want to relate the different approximation factors. However, in general it is not
possible to bound λn(L) in terms of det(L)1/n. This can for example be seen in
the lattice generated by the basis [

k 0
0 1

k

]
which has determinant 1 but λ2 = k for arbitrary k ≥ 1. However, on a random
lattice the Gaussian heuristic predicts the length of the shortest vectors in terms
of the determinant. This allows the following lemma to bound λn in terms of
the determinant of the lattice, showing that on a random lattice, a solution to
SIVPγ also implies a solution to (

√
2nπe · γ)-Hermite-SVP.
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Lemma 6.1. Given a lattice L such that the Gaussian heuristic holds on L∗,
we have λn ≤

√
2nπe · det(L)1/n.

Proof. The lemma is directly given by combining that λ∗1λn ≤ n, which is a
transference theorem from [6], and the Gaussian heuristic for the length of the
first minima on the dual lattice.

The concrete hardness of η-Hermite-SVP is estimated from the efficiency of
currently known algorithms that solve this problem. In practice, the most ef-
ficient algorithms that solve Hermite-SVP are variants of the BKZ lattice re-
duction algorithm [34]. Assuming that this is the most efficient algorithm that
solves Hermite-SVP on random lattices also bounds the performance of algo-
rithms that solve SIVPγ .

Our parametrizations are based on a conjectured optimal performance of al-
gorithms that solves SIVPγ , as detailed in Conjecture 1. The conjecture follows
from the assumed optimal performance of BKZ in solving Hermite-SVP. With
Lemma 6.1 this also limits the performance of algorithms that solve SIVPγ
on random lattices. As the reduction is a quantum algorithm, we consider the
quantum performance of BKZ. The potential failure probability of the algorithm
is also accounted for in the conjecture in the same way as in the tightness gap
definition from [9].

Conjecture 1 (Concrete hardness of approximate SIVP). There is no quantum
algorithm that, with probability εC , solves SIVPγC on random lattices in time
TC such that TC/εC < 20.2563β for approximation factor

γC =

(
(πβ)1/β β

2πe

) n
2(β−1)

· 1√
2nπe

.

Conjecture 1 does not directly correspond to an algorithm that solves SIVPγC .
It is therefore possible that SIVPγC is significantly harder than assumed by the
conjecture. However, it seems likely that an algorithm with similar performance
to that claimed optimal by the conjecture can be used to solve SIVPγC on ran-
dom lattices. Running BKZ with a randomized initial lattice basis, solving
(
√

2nπe · γC)-Hermite-SVP multiple times, can reasonably be assumed to pro-
duce n linearly independent lattice vectors shorter than γC · λn after a small
polynomial number of repetitions. This algorithm should thus reasonably solve
SIVPγC on random lattices with performance similar to the conjectured opti-
mal performance. As such, it does not seem like the conjecture significantly
underestimates the hardness of SIVPγC .
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6.3 QROM IND-CCA security

We use the FOZ⊥ transform [18] in order to transform our OW-CPA secure PKE
scheme into an IND-CCA secure KEM. The security of this KEM is guaran-
teed by a non-tight proof in the quantum random oracle model. While the
FOZ⊥ transform was used by many of the NIST candidates for post-quantum
cryptography, these schemes did not account for the non-tightness of its secu-
rity proof. This is motivated by the facts that no attacks are able to make use
of the non-tightness and that tighter proofs exist in the classical random oracle
model. However, the non-tight proof does imply a loss of provable security in
the quantum random oracle model and is therefore accounted for in this paper.
The concrete loss of provable security is quantified in the following theorem
from [19], where KEM-I is the FOZ⊥ transform of PKE.

Theorem 6.2 (Theorem 1 from [19]). If PKE is δ-correct, for any IND-CCA B
against KEM-I, issuing at most qD queries to the decapsulation oracle Decaps,
at most qG queries to the random oracle G and at most qH queries to the random
oracle H, there exists a OW-CPA adversary A against PKE such that

AdvIND-CCA
KEM-I (B) ≤ 2qH√

|M |
+ 4qG

√
δ + 2(qG + qH) ·

√
AdvOW-CPA

PKE (A)

and the running time of A is about that of B.

By using this theorem, we want to argue that a KEM defined as the FOZ⊥

transform of a parametrization of our PKE scheme achieves d bits of IND-CCA
security. We limit the adversary to 2Q QROM queries and parametrize our PKE
so that it has a message space size of |M | = 2` ≥ 22d+4+2Q. Furthermore, we
parametrize it to have a decryption failure probability δ ≤ 2−(2d+6+2Q) while
the PKE is instantiated to have at least (2d+4+2Q) bits of OW-CPA security.
Considering an adversary B against our KEM that runs in time T with advan-
tage εB this parametrization guarantees that T/εB > 2d. This is seen by noting
that εB < 2−d directly follows from this parametrization in the worst-case where
T = 1.

For the concrete parametrizations presented in this paper, we target 128 bits
of IND-CCA security and limit the adversary to 2128 QROM queries. Therefore,
we instantiate our underlying PKE to target 516 bits of OW-CPA security. We
also require that the underlying PKE scheme should have a decryption failure
probability of δ ≤ 2−518 with a message space M that at least has size 2516.
Furthermore, Theorems 5.1 and 5.2 require that 1/ |M | = 2−` is sufficiently
small. We therefore parametrize the PKE schemes with B = 4 and n = 12,
giving 2` = |M | = 2576. With n = 12 < 24 we target a per-symbol decryption
error probability of 2−526 by using Lemma 3.1.
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6.4 Selected parametrizations

Assuming Conjecture 1, the security of the proposed concrete parametrizations
of our cryptosystems are guaranteed by either Theorem 5.1 or Theorem 5.2. All
our parametrizations use B = 4, encrypting 4 bits in each element of C2. The
parametrizations of our PKE scheme that target OW-CPA security use n = 8
and therefore have a message space of size 2` = 2256. For our parametrizations of
a KEM that targets 128 bits of IND-CCA security by using the FOZ⊥ transform,
we instead use n = 12 and therefore have a message space size of 2` = 2576.

Our parametrizations target a per symbol decryption failure probability of
2−64 for the OW-CPA secure PKEs and 2−526 for the IND-CCA secure KEMs,
as detailed in Section 6.3.

The systems with fixed error distribution use error interval I = {α2} while
the variable error distribution systems use I = [α2, 3α2/2]. In both cases α and
q are selected so that q is a prime, αq > 2

√
n and α is as large as possible,

as detailed in Section 3.1. The following theorem shows that, assuming that
Conjecture 1 holds, our cryptosystem parametrized in this way, with n and q
detailed in Table 1, provably has 128 bits of the claimed security. Furthermore,
these specific parametrizations use the smallest possible n for which this is
guaranteed by Conjecture 1 with our approach to choosing parameters.

Theorem 6.3. Assuming that Conjecture 1 holds, there is no adversary against
128-bits of OW-CPA (IND-CCA) security of the parametrizations of our PKE
(KEM) scheme that are detailed in table 1.

Proof. First we consider the parametrizations of our PKE scheme that are
claimed to have 128-bits of OW-CPA security. Any adversary against the
claimed security of these systems could be used to create a quantum algorithm
for solving approximate SIVP, using either Theorem 5.1 or Theorem 5.2. This
quantum algorithm is more efficient than what is possible according to Conjec-
ture 1, meaning that no such adversary can exist if the Conjecture is true.

In more detail, both the algorithms corresponding to Theorem 5.1 and The-
orem 5.2 solve SIVPγR with the approximation factor

γR(n) = q ·
√

2n · ln(2n(1 + 1/ε))

π
,

in time TR that is detailed in these theorems. An adversary against the OW-
CPA security of our PKE scheme that achieves an advantage εa in time Ta
breaks the claimed d bits of security if Ta/εa < 2d. For our parametrizations we
consider the worst possible case, where Ta = 1 and εa = 2−d. By considering
such an adversary we can calculate a concrete reduction running time for our
parametrizations. This running time is presented in the column dlog(TR)e of
Table 1.
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Security OW-CPA OW-CPA IND-CCA IND-CCA
Error distribution Fixed Variable Fixed Variable

n 39419 32890 104056 79510
dlog(q)e 34 34 37 37
dlog(TR)e 614 491 1796 1313
dlog(γR)e 50 50 55 54

β 2395 1915 7007 5122

Table 1: Values for n and dlog(q)e for different parameterizations that target 128
bits of the type of security specified in “Security” row with type of system given
by the “Error distribution” row. The dlog(TR)e and dlog(γR)e rows indicates
the reduction running time and its approximation factor respectively. Finally,
the β row shows which block-size β the reductions performance is compared
against.

Next, we compare this computed reduction running time to the conjectured
optimal performance from Conjecture 1. To this end, we let pR be the suc-
cess probability of the reduction and set β = β(n) = log(TR/pR)/0.2563. This
gives that the conjectured optimal approximation factor that the reduction can
achieve is

γC(n) =

(
(πβ)1/β β

2πe

) n
2(β−1)

· 1√
2nπe

.

The parameters are chosen such that we have γC(n) > γR(n) and the re-
duction thus solves SIVPγR more efficiently than what Conjecture 1 claims to
be possible. Thus, no adversary against the claimed security of the proposed
parametrizations can exist, unless Conjecture 1 is incorrect.

The concrete parameters presented in Table 1 are chosen by performing a
search over n. For a given n, the values for q and α are selected so that q is a
prime, αq > 2

√
n and the decryption failure probability is sufficiently small, as

detailed in subsection 3.1. With α,q and n we then calculate γC and γR and
compare them in order to determine if the parametrization is provably secure
under Conjecture 1. The parameters presented in Table 1 are with the minimal
n that, with parameters selected in this way, have γC > γR.

For the parametrizations of our IND-CCA secure KEM, the same reasoning
is used to prove the OW-CPA security of the PKE scheme that is used in the
FOZ⊥ transform. In order for the resulting parametrizations to claim 128 bits
of IND-CCA security, these PKE schemes target 516 bits of OW-CPA security
as detailed in Section 6.3. Besides also targeting different decryption failure
probabilities, the presented parameters are found in exactly the same way as
for our OW-CPA secure PKE schemes.

The proposed parametrizations use significantly larger dimensions n than
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other lattice based cryptosystems. Part of the reason for the larger parameters
is the tightness gap of the used reductions. However, even if we completely
disregard the tightness gap of the reduction, our conservative hardness estimate
for approximate SIVP still leads to a parametrization with n ≈ 9400. As such,
an arguably bigger reason for the large parameters in our parametrizations is
due to the large approximation factors γR for the SIVPγR instances solved by the
reduction, resulting in the problem seemingly being easier than corresponding
LWE instances.

In order to compare the performance of our reduction to the analysis in [9,33]
we consider the tightness gap of our reduction. The tightness gap is calcu-
lated in the same way as in these works and is thus given by TR/pR · 2−128

where TR is the reduction running time and pR is its success probability. With
our parametrization, the success probability is at least 9/10 and our reduction
running time is given in Table 1.

We note that the tightness gaps for the OW-CPA secure cryptosystems con-
structed in this paper are smaller than the gap of 2524 that was calculated for
n = 1024 in [33]. This is the case even though the previous analysis did not
take account for the large number of LWE samples required in order to use an
adversary to solve DLWE with a negligible failure probability. Furthermore,
the concrete value of the tightness gap depends on n, meaning that the larger
values for n used for our parametrization also increase the tightness gap. As the
calculated tightness gap is still comparable to the previously claimed values, it
is clear that the more thorough analysis of the reduction allowed a significantly
more efficient reduction.

6.5 Parameter lower bound

The cryptosystems parametrized in the previous section are provably secure
based only on assuming that Conjecture 1 is correct. This conjectured hardness
of SIVPγ essentially corresponds to assuming that the heuristic lattice algo-
rithms that are known today are optimal. However, Theorems 5.1 and 5.2 solve
worst-case SIVPγR , a problem that potentially could be significantly harder
than the average-case problem. As there seems to be no research directly in-
dicating that this is the case, this can not reasonably be accounted for in the
parametrization of a cryptosystem.

There is however nothing guaranteeing that there exist some worst-case in-
stances of SIVPγR that are significantly harder to solve than typical instances.
In particular, it is not guaranteed that efficient heuristic lattice algorithms are
able to always solve this worst-case problem. If there exists such hard instances
of SIVPγR , we could base the security of our cryptosystem on their hardness
instead of on the hardness of the problem on random lattices. This would allow
the reduction to support the security of cryptosystems that use smaller parame-

53



ters than the ones in Table 1. While not a reasonable assumption for a concrete
parametrization, the potential of harder SIVPγR instances should be accounted
for if we want to bound which parameters could be argued to have security, at
least partially, supported by the reduction.

We consider the performance of provably correct lattice algorithms in order
to bound the hardness of a worst-case instance of SIVPγR . These algorithms
are significantly less efficient than the heuristic algorithms that are typically
considered, but as they are provably correct, these algorithms should be able
to solve arbitrary SIVPγR instances. In this section, we parametrize a our
cryptosystem by using such a bound on the hardness of worst-case SIVPγR .
This serves as a bound on which parameters can claim any support from this
reduction. Attacks against these parametrizations does not necessarily result in
improved lattice algorithms in practice. Instead, such an attack would result in
an improved provably correct lattice algorithms.

There does not seem to have been any significant research of algorithms that
provably solve SIVPγR for the relevant approximation factors. Instead, it seems
that the most efficient way to provably solve SIVPγR is via the following lemma
from [36].

Lemma 6.4 (Corollary 4.2 from [36]). For any γ = γ(n) > 1 there is a dimen-
sion preserving reduction from SIVPγ′ to γ-SVP where

γ′ =

√
n+ 3

2
· γ

and the reduction use the γ-SVP oracle n times.

There are other algorithms that provably solve approximate SIVP directly,
such as the algorithm from [1] that provably solves SIVPO(

√
n logn) in time

2n/2+o(n). However, this approximation factor is significantly smaller than the
reduction approximation factor γR. Using Lemma 6.4 with an algorithm that
solves (2γR/

√
n+ 3)-SVP is therefore a more efficient method to solve SIVPγR .

This allows comparing the performance of well studied provably correct lat-
tice reduction algorithms against the performance of the reductions from The-
orems 5.1 and 5.2.

The slide-reduction [13] algorithm has the best provable performance in solv-
ing the relevant approximate SVP instances. As with BKZ, slide-reduction
works by solving solving (almost) exact SVP in projected sublattices of dimen-
sion β. It seems likely that the SVP instances that must be solved during
a slide-reduction can be solved by heuristic algorithms. Even in a potential
worst-case lattice, we can randomize the initial basis which randomizes the pro-
jected sublattices in which SVP must be solved. However, the distribution of
these sublattices is hard to predict and it could be the case that there exist
worst-case lattices that fails to be slide-reduced when using a heuristic SVP
algorithm.
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We therefore consider the performance of SVP solvers that are provably cor-
rect. The most efficient provably correct SVP solver is the one presented in [2],
which has an asymptotic run time of 2k/2+o(k). To exactly analyze the concrete
performance of this algorithm is outside the scope of this paper. Instead, we
conservatively assume that using slide reduction with this SVP solver has a
running time of 20.5β for blocksize β while finding a vector of the length given
in (1). This ignores both polynomial factors in running time of the algorithm as
well as more complicated expression for the approximation factor present in the
algorithm from [2]. However, this still gives an indication as to what parameters
can claim partial support from the reduction.

Combining the performance of slide reduction using this provable SVP solver
together with Lemma 6.4 provides an upper bound on how hard a worst-case
SIVPγR instance could be, as detailed in the following remark. This remark
is used to lower bound parameters that can claim partial support from our
reduction, similarly to how Conjecture 1 is used for the parametrization in
section 6.4.

Remark 1 (Upper bound on hardness of approximate SIVP). There is a quan-
tum algorithm that provably solves worst-case SIVPγ in time n ·2β/2 for approx-
imation factor

γ =

√
n+ 3

2
·
(

1.744n

2πe

)(n−β)/(β−1)

.

The parameters in Table 2 are chosen so that any attack against the claimed
security would imply a more efficient algorithm than the one corresponding to
Remark 1. The parameters are chosen minimal in the same way as in Sec-
tion 6.4. Therefore, attacks against cryptosystems with smaller parameters will
not even result in a lattice algorithm with better provable performance than
current algorithms. This shows that the parameters that are used for LWE
based cryptosystems in practice are significantly smaller than what is needed to
claim any concrete security from Regev’s quantum reduction. Attacks against
these cryptosystems could therefore improve significantly without necessarily
implying any progress in algorithms for standard lattice problems.

7 Conclusion

The parameters we use for our cryptosystem are significantly larger than what
is typically used for LWE-based cryptosystems. A large reason for this is the
inefficiency of Regev’s quantum reduction and further improving its efficiency
could potentially allow it to support the security of cryptosystems that use
smaller parameters. However, only optimizing the run time of the reduction is
insufficient for it to support the security of typical LWE-based cryptosystems.
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Security OW-CPA OW-CPA IND-CCA IND-CCA
Error distribution Fixed Variable Fixed Variable

n 5782 4701 17093 12767
dlog(q)e 30 30 34 33
dlog(TR)e 590 470 1774 1293
dlog(γR)e 43 42 48 48

β 1155 915 3519 2559

Table 2: Equivalent parametrizations as in Table 1 but instead of assuming
Conjecture 1 assumes that Remark 1 corresponds to an optimal algorithm.

To see this, we consider a parametrization where we completely disregard the
run time of the reduction and thus assume that an adversary against the cryp-
tosystem implies a solution to SIVPγR in time 2128. This approach still results
in a parametrization using a dimension n ≈ 9400 to argue for 128 bits of OW-
CPA security. Thus, the large approximation factors for which the reduction
solves approximate SIVP is an arguably bigger reason for the large parameters
required in our cryptosystem.

Our primary parametrizations do not account for the fact that the reduction
solves a worst-case instance of approximate SIVP. In practice, there does not
seem to be anything that indicates that such a worst-case instance is significantly
harder to solve than a typical problem instance. Accounting for the possibility
of harder instances of approximate SIVP can be done by comparing the perfor-
mance of the reduction and that of provably correct lattice algorithms. However,
even such a comparison is unable to support the security of cryptosystems with
parameters of similar size to those of typical LWE-based schemes.

As such, it seems hard to improve this reduction to such an extent that it ac-
tually supports parametrizations close to those of typical LWE-based schemes.
Any such improvement would not only have to significantly improve the reduc-
tions efficiency, but also solve a harder lattice problem.

This does not directly indicate that typical LWE-based cryptosystems are in-
secure. However, it does mean that attacks against these systems could improve
significantly, without necessarily implying any progress in algorithms for gen-
eral lattice problems. As such, arguments about the concrete security of typical
lattice-based cryptosystems can not reasonably be considered to be supported
by similar worst-case to average-case reductions.

In contrast to this, our parametrizations are provably secure based on the
assumed hardness of standard lattice problems. Thus, unless lattice algorithms
improve significantly, these parametrizations are guaranteed to be secure. While
far too inefficient for most use-cases, our parametrizations actually provide the
first concrete systems with provable security based only on the hardness of
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standard lattice problems.
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A Lemmas Used for Proof of Theorem 4.3

Here we present the remaining parts of the full proof from [31] while we keep
track of the reduction tightness and the number of LWE samples it requires.

To begin with, we introduce some background lemmas that are used in the
proofs of this section. First is this following version of the Poisson summation
formula.

Lemma A.1 (Poisson summation formula). For any lattice L and any function
f : Rn → C

f(L) = det(L∗)f̂(L∗) .

Next, this following lemma is used to bound the difference in value on a
Gaussian function between two points that are at most a distance l from each
other.

Claim A.2 (Claim 2.1 from [31]). For all s, t, l > 0 and x,y ∈ Rn with ‖x‖ ≤ t
and ‖x− y‖ ≤ l

ρs(y) ≥ (1− π(2lt+ l2)/s2)ρs(x)

Finally the following bound on the value of νs on a lattice follows from
Lemma A.1.
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Claim A.3. For any r ∈ R and lattice L ⊆ Zn we have that νr(L) ≥ det(L∗)
and if r > λ∗1/

√
n we also have νr(L) ≤ det(L∗)(1 + 2−2n).

Proof. By Lemma A.1 we have that ρr(L) = det(L∗) · rnρ1/r(L
∗) ≥ det(L∗) · rn

giving ∑
x∈L

νr(x) = ρr(L)/rn ≥ det(L∗)

Furthermore, if r >
√
n/λ1(L∗) we can apply Lemma 2.2 giving

νr(L) = det(L∗) · ρ1/r(L
∗) ≤ det(L∗) · (1 + 2−2n)

The iterative procedure used by Regev’s reduction requires samples from DL,r

in order to produce samples from DL,r′ with r′ < r. To start this process we
must therefore have samples from DL,r for some r. Such samples are produced
by using the following bootstrapping lemma. The proof is the same as in [31]
but keeps track of the statistical distance from the target distribution.

Lemma A.4 (Bootstrapping, Lemma 3.2 from [31]). There exists an efficient
algorithm that, given any n-dimensional lattice L and r > 22nλn(L), outputs
a sample from a distribution that is within statistical distance 2−n/2 of DL,r if
n ≥ 20.

Proof. The procedure begins by using LLL basis reduction algorithm [22] to
obtain a basis B for L where the longest vector of B has length at most 2nλn(L).
Next, a vector y ∈ Rn is sampled from νr, which can be done efficiently with
high precision. The output of the procedure is given by y − (y mod P(B)) ∈ L,
which is efficiently computable from y and B.

To show its correctness, we first note that by Lemma 2.2 only x such that
‖x‖ ≤ r

√
n have to be considered. By definition, the target distribution DL,r

is ρr(x)/ρr(L) where Lemma A.1 gives the denominator as

ρr(L) = det(L∗) · rn · ρ1/r(L
∗) ≥ det(L∗) · rn .

As such, the probability of any x in the target distribution is at most

ρr(x)/(det(L∗) · rn) = det(L)νr(x) .

On the other hand, our procedure samples an x ∈ L with the probability∫
x+P(L)

νr(y)dy ≥
∫
x+P(L)

(
1− π 2 ‖x‖ ‖y − x‖+ ‖y − x‖2

r2

)
νr(x)dy

≥ (1− 3πn1.52−n) det(L)νr(x)
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where the first inequality use claim A.2 and the second inequality use that
‖y − x‖ ≤ diam(P(L)) ≤ n · 2nλn(L) , ‖x‖ ≤ r

√
n and r ≥ 22nλn(L). This

gives a statistical distance between the target and the produced distribution of
no more than∑

x∈L
3πn1.52−n · det(L)νr(x) ≤ 3πn1.52−n(1 + 2−2n) ≤ 2−n/2

where the first inequality follows from claim A.3 as λ1(L∗) ≥ 1/λn(L) >
√
n/r.

The final inequality holds for n ≥ 20 and is not very tight for larger n. However,
as the statistical distance of 2−n/2 is sufficiently small this does not impact the
results.

There are other algorithms that can sample from discrete Gaussian distribu-
tions with smaller standard deviation, such as the sampler from [15]. However,
there are no efficient algorithms that produce samples from DL,r for r that is
some subexponential factor larger than λn. As such, using a better discrete
Gaussian samplers would only have a minor impact on the reduction and we
would still require O(n) iterative steps to produce samples from the target dis-
tribution DL,poly(n)·λn . Because of this, for simplicity we choose to use the same
discrete Gaussian sampler as in [31].

The bootstrapping procedure is used to produce input samples to the first
iterative step, where these samples together with the LWE oracle are used in
order to solve a BDD instance on the dual of the lattice. This process that,
with the help of discrete Gaussian samples and an LWE oracle, solves BDD on
the dual of the lattice is detailed in the following lemma.

Lemma A.5 (Lemma 3.4 from [31]). Let ε = ε(n) be a negligible function,
q = q(n) ≥ 2 be an integer and α = α(n) ∈ (0, 1) be a real number. Furthermore,
let L be any n-dimensional lattice and r be a number such that r >

√
2qηε(L).

Assume that we have access to an oracle W that can solve LWE(Ψβ ,M) for arbi-
trary β ∈ [α/

√
2, α] with a failure probability of at most ε. Then, there exists an

algorithm that, except for with probability at most 9Mnε, solves BDDL∗,αq/(
√

2r)

by using M samples from DL,r and by using W at most n times.

The proof of this lemma consists of a combination of several other lemmas and
we present these before actually proving Lemma A.5. First, the next lemma es-
sentially says that, if we can solve a BDDL,d instance modulo q, then we can also
solve the full problem. To formalize this, we define the following intermediate
problem.

Definition 12 (BDD
(q)
L,d). An instance of the BDD

(q)
L,d problem is given by a

vector x that is guaranteed to be at most a distance d from the lattice L. The
problems solution is B−1κL(x) mod q for an arbitrary basis B of the lattice
L.
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The idea behind the proof is to find the solution to the initial BDDL,d instance

modulo q by using the BDD
(q)
L,d oracle, remove this part from the initial problem

instance and then divide by q. As the solution modulo q is removed, this result
in a correctly constructed BDD instance, but where the distance from the lattice
has decreased by a factor q. Repeating this process eventually results in a BDD
instance that can be solved efficiently by using Babai’s algorithm. The steps
that led to this easy BDD instance are then performed backwards in order to
provide a solution to the original BDD instance. The proof follows the same
steps as the proof in [31] but keeps track of number of required calls and error
probabilities.

Lemma A.6 (Lemma 3.5 from [31]). Let L be a lattice, d < λ1(L)/2 some

number, q ≥ 2 an integer and W be an oracle that solves BDD
(q)
L,d with fail-

ure probability at most ε. Then there exists an algorithm that, except for with
probability at most nε, solves BDDL,d by using W a total of n times.

Proof. Let B be any basis for the lattice L. The input to the problem is a point
x within distance d of L. We define the sequence of points x1 = x,x2,x3, . . .
by letting ai = B−1κL(xi) ∈ Zn and xi+1 = (xi −B(ai mod q))/q. By using
the oracle W we are able to calculate ai mod q = B−1κL(xi) mod q if xi is
close enough to L. The distance between x1 to L is at most d and each further
step in the series decreases the distance between xi and the lattice by a factor
q, meaning that xi+1 is at most a distance d/qi from L. Therefore, the points
xi are all close enough to the lattice for the oracle W to be used to calculate
the next point in the series.

Using the oracle n times thus allows us to calculate the whole sequence up to
xn+1. We are guaranteed that xn+1 is within a distance d/qn from the lattice.
This allows us to use Babai’s nearest plane algorithm [5] to efficiently find the
lattice point closest to xn+1. The resulting lattice point Ba is at most a distance
d/qn < λ1(L)/2 from xn+1 and is thus the unique lattice point closest to xn+1.
As such, we have recovered an+1 = a from which it is easy to calculate all the
ai via

ai = qai+1 + (ai mod q)

where (ai mod q) are the solutions to BDD
(q)
L,d that have already been calcu-

lated. This allows calculating the whole series an+1,an . . . ,a1 which gives the
lattice point closest to x = x1 via Ba1.

Next, we bound the failure probability of this procedure by noting that we re-
quire all n calls to the BDD(q) oracle to succeed. This happens with probability
at least

(1− ε)n ≥ 1− nε

which gives the claimed procedure failure probability of at most nε.
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This lemma could be somewhat optimized by applying Babai’s algorithm on
xi for some i < n instead of i = n+ 1. For example, i = n/ log(q) steps should
be sufficient as then d/qi = d · 2−n ≤ λ1 · 2−n is small enough that Babai’s al-
gorithm can find the lattice point closest to xi. However, this is only a minor
factor in the performance of the full reduction and does not significantly alter
the end result.

The next lemma was the focus of the work of [33] where it was noted that, if
used exactly as stated by Regev in [31], it would require n to be around 400000
in order for it to have a reasonable failure probability. However, the work also
noted that for parametrizations of LWE based schemes that are used in practice,
a minor tweak of the lemma would be sufficient for it to have a reasonable failure
probability. The lemma is used to verify whether or not a candidate solution to
an LWE instance actually is the solution.

Lemma A.7 (Verifying solution of LWE, Lemma 3.6 of [31]). Let q = q(n) ≥ 1
be some integer. There exists an efficient algorithm that, given s′ and m samples
from As,Ψα for some (unknown) s ∈ Znq and α < 1/

√
n, outputs whether s = s′

and is correct except with probability at most exp(−9m/80) assuming n > 60.

Proof. The idea is to perform a statistical test on the samples from As,Ψα that
checks if s′ = s. Let ξ be the distribution obtained by taking samples (a, x)
from As,Ψα and outputting y = x−〈a, s′〉/p mod 1. The test consists of taking
m samples yi from ξ, calculating

z =
1

m

m∑
i=1

cos (2πyi)

and accepting that s′ = s if z > t. In Regev’s analysis [31] of this procedure,
t = 0.02 and m = n was used to get a proof that asymptotically gives the correct
answer with overwhelming probability. Later Sarkar and Singha showed [33]
that this would require a very large n in practice. However, in the same paper
they also note that, with a different value for t and with values of α used in
practice, the same idea works for reasonably small values of n.

To show that the test correctly distinguishes between s′ = s and s′ 6= s we
let

(a, x = as + e)← As,Ψα

with e← Ψα. This gives that a sample from ξ is given by

x− 〈a, s′〉/q mod 1 = 〈a, s− s′〉/q + e mod 1

and thus if s = s′, this sample from ξ equals e and thus ξ = Ψα. Furthermore,
if s 6= s′ then ξ will have some periodicity 1/k. To see this, consider some
coordinate j such that s′j 6= sj . For this j we can see that aj(sj − s′j) mod q
is periodic with period gcd(q, sj − s′j) < q. This implies that aj(sj − s′j)/q

64



mod 1 has some period 1/k with 2 ≤ k ≤ q. Since a sample from ξ is obtained
by adding aj(sj − s′j)/q mod 1 and an independent sample from some other
distribution, this shows that ξ also has the same period 1/k.

Next, the expectation z̃ of cos(2πy) with y ← ξ is calculated as

z̃ = Exp
y∼ξ

[cos(2πy)] =

∫ 1

0

cos(2πy)ξ(y)dy = Re

[∫ 1

0

exp (2πiy) ξ(y)dy

]
where a calculation shows that ξ = Ψα gives z̃ = exp

(
−πα2

)
. Furthermore, if

ξ has a period 1/k then

z̃ =

∫ 1

0

exp (2πiy) ξ(y)dy =

∫ 1

0

exp

(
2πi

(
y +

1

k

))
ξ(y)dy

= exp (2πi/k)

∫ 1

0

exp (2πiy) ξ(y)dy

which is possible only if z̃ = 0 as k ≥ 2.

Now the probability of getting the incorrect result is bounded by using the
Hoeffding inequality, in the same way as done in [33]. Let ξ0 = Ψα be the
distribution of y if s = s′ and ξ1 be the distribution of y if s 6= s′. The
Hoeffding inequality gives that the probability to incorrectly claim that s does
not equal s′ when s = s′ is

Pr
y∼ξ0

[z ≤ t] = Pr
y∼ξ0

[z − µ0 ≤ −(µ0 − t)] ≤ exp
(
−m(µ0 − t)2/2

)
where µ0 = exp(−πα2) is the expected value of Ψα. Meanwhile, the probability
to incorrectly claim that s equals s′ when s 6= s′ is bounded by

Pr
y∼ξ1

[z > t] ≤ exp
(
−mt2/2

)
as the expected value of ξ1 is 0.

The specific choice of t can be tweaked somewhat in order to change which
types of failure are more common, incorrectly accepting an s′ 6= s or rejecting
the correct s′ = s. However, this has a negligible impact on the end result and t
is instead chosen so that both types of failures have the same probability. This
means that we choose µ0 − t = t and thus

t = µ0/2 = exp
(
−πα2

)
/2

which gives that the probability is exp(−m exp(−2πα2)/8) for both types of
errors. With α < 1/

√
n this probability is at most exp(−m exp(−2π/n)/8) and

with n > 60 we have exp(−2π/n) > 0.9 which gives the claimed probability of
less than exp(−9m/80)) of incorrectly verifying a solution.
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Next is a lemma that is used in upcoming proofs in order to translate an

BDD
(q)
L∗,d instance into samples from an LWE distribution. The lemma is taken

directly from a corollary in [31] that already includes the statistical distance
between the two distributions being compared. Because of this, there is no need
for further analysis of this lemma and it is included here without a proof.

Lemma A.8 (Corollary 3.10 from [31]). Let L be a lattice, let z,u ∈ Rn be
vectors, and let r, α > 0 be two reals. Assume that

1/
√

1/r2 + (‖z‖ /α)2 ≥ ηε(L)

for some ε < 1
2 . Then the distribution of 〈z,v〉+e where v is distributed accord-

ing to DL+u,r and e is a normal variable with mean 0 and standard deviation
α/
√

2π, is within statistical distance 4ε of a normal variable with mean 0 and
standard deviation

√
(r ‖z‖)2 + α2/

√
2π. In particular, since statistical distance

cannot increase by applying a function, the distribution of 〈z,v〉 + e mod 1 is
within statistical distance 4ε of Ψ√

(r‖z‖)2+α2 .

Using this lemma, we are able to transform an BDD
(q)

L∗,αq/(r
√

2)
instance to-

gether with samples from DL,r into samples from an LWE distribution, as de-
scribed in the following lemma. Our proof is the same as in [31] but keeps track
of some additional details.

Lemma A.9 (Lemma 3.11 from [31]). Let ε = ε(n) < 1/2 be a function, q =
q(n) ≥ 2 be an integer, and α = α(n) ∈ (0, 1) be a real number. Assume that we
have access to an oracle W that solves LWE(Ψβ ,M) for arbitrary β ∈ [α/

√
2, α]

with a failure probability of at most Mε. Then there exists an algorithm that,
given an n-dimensional lattice L, a number r >

√
2qηε(L), and M samples from

DL,r, solves BDD
(q)

L∗,αq/(r
√

2)
except for with probability at most 9Mε by using

W once.

Proof. Let B be a basis for the lattice L and B∗ = (B−1)T be the corresponding

basis for the dual lattice L∗. Let x be the input to the BDD
(q)

L∗,αq/(r
√

2)
instance,

and thus x is at most a distance αq/(r
√

2) from L∗. By using a sample from
DL,r this input x is transformed into a sample from As,Ψβ for some β ≤ α and
s = (B∗)−1κL∗(x) mod q. Repeating this procedure M times with M different
samples from DL,r creates M samples from As,Ψβ and thus allows W to be used

to recover s, which is the solution to the input BDD
(q)

L∗,αq/(
√

2r)
instance.

To produce one of these samples from As,Ψβ , a vector v ∈ L is sampled from
DL,r and we let a = B−1v mod q. From this, the output sample is given by

(a, 〈x,v〉/q + e mod 1) (11)
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where e ∈ R is sampled from a normal distribution with standard deviation
α/(2

√
π).

We now show that these samples are of statistical distance at most 8ε from
the distribution As,Ψβ for some β ≤ α. First, note that the probability of a
is proportional to ρr(qL + Ba) and, with ηε(qL) = qηε(L) < r, Claim 2.6
shows that the probability of a specific a lies within the range k(1± ε) for some
constant k. This shows that the distribution of a is a statistical distance at
most 4ε from the uniform distribution since

qnk(1− ε) ≤ 1 ≤ qnk(1 + ε)

and thus
1

1 + ε
≤ qnk ≤ 1

1− ε
giving the statistical distance∑

a∈Znq

∣∣∣∣ 1

qn
− p(a)

∣∣∣∣ ≤ |1− qnk|+ qnkε ≤
∣∣∣∣ 1

1− ε
− 1

∣∣∣∣+
ε

1− ε
≤ 2ε

1− ε
≤ 4ε .

Next, we consider the second part of (11) conditioned on a fixed value of a. We
define x′ = x− κL∗(x), note that ‖x′‖ ≤ αq/(

√
2r), and see that

〈x,v〉/q + e mod 1 = 〈κL∗(x),v〉/q + 〈x′,v〉/q + e mod 1 .

Now we note that

〈κL∗(x),v〉 = 〈(B∗)−1κL∗(x),B−1v〉

since B−1 = (B∗)T . Thus the inner product between κL∗(x) ∈ L∗ and v ∈ L is
the same as the inner product between their coefficient vectors in basis B and
B∗. This implies that

〈κL∗(x),v〉 mod q = 〈s,a〉 mod q

and it follows that

〈κL∗(x),v〉/q mod 1 = 〈s,a〉/q mod 1

which is the desired dependence on the secret for LWE samples.

Lemma A.8 shows that the statistical distance from Ψβ for the remaining

part, 〈x′,v〉/q+e mod 1, is at most 4ε with β =
√

(r ‖x′‖ /q)2 + α2/2. This β

is always in the range [α/
√

2, α] where we know that the provided LWE oracle
works. We also see that Lemma A.8 is applicable as, condition on a fixed value
for a, the distribution of v is DqL+Ba,r, the distribution of e is normal with
standard deviation (α/

√
2)/
√

2π and mean 0 and√√√√ 1

1
r2 +

(√
2‖x′‖
αq

)2 ≥
r√
2
> ηε(qL) .
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In total this gives that a single sample from this produced distribution is at
most a statistical distance of 8ε from the desired distribution, meaning that all
M samples provided to W are at most a distance 8Mε from the correct input
distribution to W . This implies that W gives the correct answer to the LWE
instance except for with probability at most 8Mε + Mε = 9Mε. If this single
call to W is successful, it recovers s = (B∗)−1κL∗(x) mod q which solves the

BDD
(q)

L∗,αq/(
√

2r)
instance. As such a single call to W is sufficient.

To actually prove Lemma A.5 we combine Lemmas A.9 and Lemma A.6 in
order to actually solve a BDDL∗,d instance.

Proof of Lemma A.5. We let d = αq/(
√

2r) and use Lemma A.9 with W in

order to solve BDD
(q)
L∗,d instances. Using W once, this results in a solutions to

BDD
(q)
L∗,d that is incorrect with probability at most 9Mε. The solution to the

input BDDL∗,d instance is then given by using Lemma A.6, resulting in an error
probability of at most

9Mnε

while requiring 9Mn calls to W . The algorithm must be successful for every

BDD
(q)
L∗,d instance produced by Lemma A.6 in order for it to correctly solve

the input BDDL∗,d instance. Therefore, the same M samples from DL,r can
be reused every time we use Lemma A.9. As such, M samples from DL,r is
sufficient to solve the input BDDL∗,d instance.

This concludes the first part of the iterative step, where an LWE oracle is used
to solve an instance of BDDL∗,d. In the second part of the iterative step, we
construct a quantum state that corresponds to the desired output distribution.
To construct this output distribution, we must solve a single BDDL∗,d instance,
which we accomplish by using the first part of the iterative step.

Before presenting the proof of this second part, we introduce the following
two lemmas. These are equivalent to Lemmas 3.12 and 3.13 from [31] where
the `2 distances between constructed and desired states were given as 2−Ω(n).
The following versions give a concrete bound on the trace distance between the
states instead of asymptotically bounding the `2 distance.

Lemma A.10 (Variant of Lemma 3.12 from [31]). There exists an efficient
quantum algorithm that, given an n-dimensional lattice L ⊆ Zn and a number
r > 22nλn(L), outputs a state that is within trace distance 2n · 2−n/2 of the
normalized state corresponding to∑

x∈L

√
ρr(x)|x〉 =

∑
x∈L

ρ√2r(x)|x〉 (12)
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Proof. A quantum state proportional to

r
√
n∑

x=−r
√
n

e−π(x/(
√

2r))2 |x〉 (13)

is created by a technique of Grover and Rudolph [16] which can be done with
good precision. This is repeated n times, creating the n-fold tensor product of
the state in (13). The resulting state is proportional to∑

x∈(−r
√
n,...,r

√
n)n

ρ√2r(x)|x〉 (14)

which Lemma 2.10 shows is at most a trace distance 2−n from the state∑
x∈Zn

ρ√2r(x)|x〉 . (15)

Next, using the LLL basis reduction algorithm [22], we efficiently find a basis
B for L where the length of its longest vector is at most 2nλn. We let P(B)
denote the fundamental parallelepiped of this basis. Given the state in (15) we
compute x mod P(B) in a new register and measure this new register to get
the result y ∈ P(B). This collapses the state to∑

x∈L+y

ρ√2r(x)|x〉

and subtracting y from the register gives∑
x∈L

ρ√2r(x + y)|x〉 . (16)

We now show that this state is only a small trace distance from the desired
state in equation (12). First, Lemma 2.10 allows us to consider only x with
‖x‖ ≤

√
n · r in (12) as these states differ by a trace distance of at most 2−n.

We denote the weight of |x〉 by p1(x) = ρ√2r(x)/
√
ρr(L) in the desired state and

p2(x) = ρ√2r(x+y)/
√
ρr(L+ y) in the constructed state. Since the compared

states are pure states, the squared trace distance is given by

1−
∑

x∈L∩r
√
nBn

p2
1(x)p2

2(x)

and as such a lower bound on p1(x) and p2(x) is sufficient to upper bound the
trace distance.

A lower bound on p2(x) = ρ√2r(x+y)/
√
ρr(L+ y) is found by first bounding

the square of the denominator. By using Lemma A.1 we have

ρr(L+ y) = det(L∗) · rn
∑
z∈L∗

e2πi〈z,y〉ρ1/r(z)

≤ (1 + 2−2n) det(L∗) · rn
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where the inequality is given by Lemma 2.2 which is applicable as

λ1(L∗) ≥ 1/λn(L) >
√
n/r .

Next, we use Claim A.2 to show that the numerator ρ√2r(x + y) is at least

(1− 2−Ω(n)) det(L)ρ√2r(x). This is the case as ‖y‖ ≤ diam(P(L)) ≤ n2nλn(L)

which allows Claim A.2 to be used with s =
√

2r, t = ‖x‖ ≤
√
nr and

l = ‖y‖ ≤ n2nλn in order to give

ρ√2r(x + y) ≥ 1− π(2 · n2n ·
√
nr + n222n)

(
√

2r)2
ρ√2r(x)

≥ (1− πn22−n)ρ√2r(x) .

In total this gives that p2
2(x) is at least

(1− πn22−n)2(1 + 2−2n)−1 det(L)νr(x) ≥ (1− 2−2n − 2πn22−n) det(L)νr(x)

The same lower bound on the denominator of p1(x) can be can be applied
with y = 0 which gives p2

1(x) ≥ (1− 2−2n) det(L)νr(x). This gives that∑
x∈L

p2
1(x)p2

2(x) ≥ (det(L)ν√2r(L))2(1− 2 · 2−2n − πn22−n)

≥ (1− 2 · 2−2n − πn22−n)

where final inequality uses Claim A.3. This gives that the squared trace distance
between the desired and constructed distribution is at most

2 · 2−2n + 2 · 2−n + πn22−n ≤ 4n22−n

where 2 · 2−n comes from applications of Lemma 2.10. Finally the square root
of this gives the claimed bound on the trace distance of 2n · 2−n/2.

The next statement and its proof is similar to the one in [31] but with an
explicit bound on trace distance instead of showing an `2 distance of 2−Ω(n) 2.

Claim A.11 (Variant of Claim 3.13 from [31]). Let R ≥ 1 be an integer, L
be an n-dimensional lattice satisfying λ1(L) > 2

√
n and let P(L) be some basic

parallelepiped of L. Then, the trace distance between the normalized quantum
states corresponding to

|ϑ1〉 =
∑

x∈L/R
‖x‖<

√
n

ρ(x)|x mod P(L)〉

2The proof of [31] seems to incorrectly claim that the `2 norm of |ϑ1〉 is Z, while it actually
calculates the squared norm to equal Z. This means that the proof actually shows that
‖|ϑ1〉 − |ϑ2〉‖ ≤ 2−Ω(n) ‖|ϑ1〉‖2 which is not what it claims to show. However, the proof is
easily fixed which leads to some differences in the calculations, but without impacting the end
result.
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and,

|ϑ2〉 =
∑

x∈L/R

ρ(x)|x mod P(L)〉 =
∑

x∈L/R∩P(L)

∑
y∈L

ρ(x− y)|x〉

is no more than 2 · 2−n/2.

Proof. Let |ψ〉 = α|ϑ1〉 and |φ〉 = β|ϑ2〉 be the normalized states that we are
interested in where α and β are some normalisation constants. As both |ψ〉 and
|φ〉 are pure states, the trace distance between them is simply√

1− |〈ψ|φ〉|2 =

√
1− α2β2 |〈ϑ1|ϑ2〉|2 .

Each ket in |ψ〉 appear only once in the sum as λ1(L) > 2
√
n. This means that

the weight assigned to |x mod P(L)〉 in |ψ〉 is αρ(x). Because of this we see
that

1

α2
= ‖ϑ1‖2 = Z =

∑
x∈L/R,‖x‖<

√
n

ρ(x)2 = ρ1/
√

2(L/R ∩
√
nBn)

where we use Lemma 2.2 to see that

(1− 2−2n)ρ1/
√

2(L/R) ≤ Z ≤ ρ1/
√

2(L/R) .

Furthermore, we have that |〈ϑ1|ϑ2〉| = |〈ϑ1|ϑ1〉| = Z as

|〈ϑ1|ϑ2〉| =
∑

x∈L/R,‖x‖<
√
n

∑
y∈L/R

ρ(y)ρ(x)〈x mod P(L)|y mod P(L)〉

=
∑

x∈L/R,‖x‖<
√
n

ρ(x)2〈x mod P(L)|x mod P(L)〉 = 〈ϑ1|ϑ1〉

meaning that the trace distance of interest is at most√
1− α2β2〈ϑ1|ϑ2〉 =

√
1− α2β2Z2 =

√
1− β2Z

and we must therefore bound β.

To bound β, we first bound ‖|ϑ1〉 − |ϑ2〉‖2 by

‖|ϑ1〉 − |ϑ2〉‖2 =
∑

x∈L/R,‖x‖≥
√
n

ρ(x)2 =
∑

x∈L/R,‖x‖≥
√
n

ρ1/
√

2(x)

≤ 2−2nρ1/
√

2(L/R) (By Lemma 2.2) .

Combining this bound with ‖|ϑ1〉‖ =
√
Z ≤

√
ρ1/
√

2(L/R) gives

1

β2
= ‖|ϑ2〉‖2 = ‖|ϑ1〉+ |ϑ2〉 − |ϑ1〉‖2 ≤ (‖|ϑ1〉‖+ ‖|ϑ2〉 − |ϑ1〉‖)2

≤
(

(1 + 2−n)
√
ρ1/
√

2(L/R)
)2

≤ (1 + 2−n)2ρ1/
√

2(L/R)

≤ (1 + 3 · 2−n)ρ1/
√

2(L/R)
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and thus

β2Z ≥ 1− 2−2n

1 + 3 · 2−n
≥ 1− 3 · 2−n − 2−2n

which finally gives the trace distance as√
1− β2Z ≤

√
3 · 2−n + 2−2n ≤ 2 · 2−n/2 .

By using these lemmas, we now show the second part of the iterative step.
This consists of an algorithm that, by using an BDD oracle, creates samples
from a distribution statistically close to a discrete Gaussian distribution on the
lattice. This is detailed in the following lemma which is essentially the same as
the one from [31] except for the addition of statistical distances from the actual
desired distribution.

Lemma A.12 (Lemma 3.14 from [31]). Let L be a n-dimensional lattice and
let d < λ1(L∗)/2, ε > 0 be some numbers. Furthermore, let W be an oracle
that solves BDDL∗,d with failure probability at most ε. Then, there exists a
quantum algorithm that, by using W once, outputs a sample from a distribution
with statistical distance less than

√
2ε+ 3n · 2−n/2 from DL,

√
n/(
√

2d) .

Proof. We assume that d =
√
n which, with scaling, is without loss of generality.

Let R ≥ 23nλn(L∗) be some large enough integer. By using LLL to bound
λn(L∗) we can choose such an R while guaranteeing that logR is polynomial in
the input size. To begin with, we create a state that is close to∑

x∈L∗/R∩P(L∗)

∑
y∈L∗

ρ(x− y)|x〉 (17)

which is a state on n logR qubits and thus polynomial in the input size. To
create this state, we first use Lemma A.10 with r = 1/

√
2 to create a state of

trace distance no more than 2n · 2−n/2 from∑
x∈L∗/R

ρ(x)|x〉 .

This state is at most a trace distance 2−n from∑
x∈L∗/R
‖x‖<

√
n

ρ(x)|x〉

as shown by Lemma 2.10. Next we calculate x mod P(L) in a new register and
thus have a state that is a trace distance of at most 2n · 2−n/2 + 2−n from∑

x∈L∗/R
‖x‖<

√
n

ρ(x)|x〉|x mod P(L)〉
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Using the BDD oracle we can recover x from x mod P(L), allowing us to
reversibly erase the contents of the first register.

The provided oracle has a failure probability of ε, resulting in an additional
trace distance from the desired state. This trace distance is bounded by using
Lemma 2.11 and an additional register that is in an uniform superposition over
all possible randomness states for the BDD oracle. Applying f corresponds
to an always correct oracle while g(x; r) corresponds to the provided oracle
with failure probability ε. The additional randomness register can be discarded
by measuring it, which do not increase the trace distance. As such, the trace
distance between a state where we use our BDD oracle and one where an always
correct BDD oracle is used is at most

√
2ε. We have thus constructed a state

with trace distance at most 2n · 2−n/2 + 2−n +
√

2ε from∑
x∈L∗/R,‖x‖<

√
n

ρ(x)|x mod P(L)〉 . (18)

By using Claim A.11 we see that the state in (18) is of trace distance at most
2−n/2 from∑

x∈L∗/R

ρ(x)|x mod P(L)〉 =
∑

x∈L∗/R∩P(L∗)

∑
y∈L∗

ρ(x− y)|x〉

which is the desired state in (17). Thus we have constructed a state that is a
trace distance at most (2n+ 1)2−n/2 + 2−n +

√
2ε from this desired state.

Next, we let B be a basis for L∗ and rewrite the state in (17) as∑
s∈ZnR

∑
r∈Zn

ρ(Bs/R−Br)|s〉

by using the mapping between L∗/R ∩ P(L∗) and ZnR. In this state we apply
the quantum Fourier transform on ZnR, giving a state proportional to∑

t∈ZnR

∑
s∈ZnR

∑
r∈Zn

ρ(Bs/R−Br) exp(2πi〈s, t〉/R)|t〉

=
∑
t∈ZnR

∑
s∈Zn

ρ(Bs/R) exp(2πi〈s, t〉/R)|t〉

=
∑
t∈ZnR

∑
x∈L∗/R

ρ(x) exp(2πi〈B−1x, t〉)|t〉

=
∑
t∈ZnR

∑
x∈L∗/R

ρ(x) exp(2πi〈x, (B−1)T t〉)|t〉

= det(RL)
∑
t∈ZnR

∑
y∈RL

ρ(y − (B−1)T t)|t〉 .
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The final equality is given by Lemma A.1 and using that if h(x) = e2πi〈x,v〉g(x)

then its Fourier transform ĥ(w) equals ĝ(w − v). By using that B is a basis
for L∗, we identify (B−1)TZnR with L ∩ P(RL), giving that the state can be
written as ∑

x∈L∩P(RL)

∑
y∈RL

ρ(y − x)|x〉 .

As λ1(RL) = Rλ1(L) ≥ R/λn(L∗) ≥ 23n we can apply Claim A.11 showing
that this state is of trace distance at most 2−n/2 from∑

x∈L,‖x‖<
√
n

ρ(x)|x mod P(RL)〉 . (19)

Measuring this state results in x mod P(RL) for some x with ‖x‖ <
√
n. From

this measurement x is recovered efficiently by using Babai’s nearest plane [5]
as λ1(RL) ≥ 23n and x mod P(RL) is at most

√
n from the lattice RL. We

claim that x recovered in this way from the state in (19) results in x that are
distributed essentially as DL,1/

√
2. To see this, note that the probability of any

x with ‖x‖ <
√
n is proportional to ρ(x)2 = ρ1/

√
2(x) as desired. This means

that the distance we want to limit is the one between the distributions

p1(x) = ρ1/
√

2(x)/ρ1/
√

2(L)

and

p2(x) =

{
‖x‖ <

√
n ρ1/

√
2(x)/ρ1/

√
2(L ∩

√
nBn)

‖x‖ ≥
√
n 0

.

Between these states the statistical distance is∑
x∈L,‖x‖<

√
n

ρ1/
√

2(x)·

(
1

ρ1/
√

2(L)
− 1

ρ1/
√

2(L ∩
√
nBn)

)

+
∑

x∈L,‖x‖≥
√
n

ρ1/
√

2(x)/ρ1/
√

2(L) =

ρ1/
√

2(L ∩
√
nBn)

(
1

ρ1/
√

2(L)
− 1

ρ1/
√

2(L ∩
√
nBn)

)

+
ρ1/
√

2(L)− ρ1/
√

2(L ∩
√
nBn)

ρ1/
√

2(L)

where both terms are limited via Lemma 2.2 to be no more than 2−2n, meaning
that the statistical distance is at most 2 · 2−2n. Finally, combining all trace
and statistical distances via triangle inequality gives that the total statistical
distance from the desired distribution is no more than

√
2ε+ 2 · 2−2n + 2−n + (2n+ 2) · 2−n/2 < 3n · 2−n/2 +

√
2ε

with inequality holding given that n ≥ 3.
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Now, the iterative step which is repeatedly used in the proof of Theorem 4.3
is stated and proven. Besides the additional tightness information, the lemma
is the same as the one presented in [31] and essentially consists of combining
Lemmas A.5 and A.12.

Lemma A.13 (Iterative step, Lemma 3.3 from [31]). Let ε = ε(n) be a function
α = α(n) ∈ (0, 1) be a real number, τ an integer, and q = q(n) ≥ 2 be an integer.
Assume that we have access to an oracle W that solves LWE(Ψβ ,M) except for
with probability at most ε for arbitrary β ∈ [α/

√
2, α]. Then there exists an

efficient quantum algorithm that, given any n-dimensional lattice L, a number
r >

√
2qηε(L), and M samples from DL,r, produces a sample of statistical

distance at most √
18Mnε+ 3n · 2−n/2

from DL,r
√
n/(αq) while requiring n calls to W .

Proof. By using Lemma A.5 with W and the M samples that are provided from
DL,r, we are able to solve BDDL∗,αq/(

√
2r). This allows using Lemma A.12 to

produce a sample from a distribution that is statistically close to DL,r
√
n/(αq).

As Lemma A.5 is used as an BDD oracle for Lemma A.12 the output distri-
bution is of statistical distance at most

√
18Mnε+ 3n · 2−n/2

from DL,r
√
n/(αq). This is given by the error probability from Lemma A.5 in-

serted into statistical distance for Lemma A.12. Producing this sample requires
only the n calls to W that are required by Lemma A.5 as Lemma A.12 only re-
quires a single call to the BDD oracle. Similarly the number of required samples
from DL,r is M as Lemma A.5 is only used a single time.

In order to use the reduction to solve GIVP, we require that our samples from
DL,r contain n linearly independent vectors with high probability. A corollary
in [31] shows exactly this, but only specifies that the probability is exponentially
close to 1. We require a more precise bound on the probability and therefore
redo the proof here. The corollary follows from the following lemma that already
contain concrete probabilities in [31] and is therefore directly included here
without a proof.

Lemma A.14 (Lemma 3.15 from [31]). Let L be an n-dimensional lattice and
let r be such that r ≥ 2

√
nηε(L) where ε ≤ 1

10 . Then for any subspace H of
dimension at most n−1 the probability that x 6∈ H where x is chosen from DL,r

is at least 1
10

The corollary of interest easily follows from this lemma.
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Corollary A.15 (Corollary 3.16 from [31]). Let L be an n-dimensional lattice
and let r be such that r ≥

√
2ηε(L) where ε ≤ 1

10 . Then, the probability that
a set of N > n vectors chosen independently at random from DL,r contains no
subset of n linearly independent vectors is at most n(9/10)N/n.

Proof. Let x1, . . . ,xN be N vectors chosen independently at random from DL,r.
For i = 1, . . . , n, let Bi be the event that

dim span(x1, . . . ,x(i−1)N/n) = dim span(x1, . . . ,xiN/n) < n

Clearly, if none of the Bi’s happen, then dim span(x1, . . .xN ) = n. Hence we
are interested in the probability of Bi. For fixed i, we condition on fixed choices
of x1, . . .x(i−1)N/n such that dim span(x1, . . .x(i−1)N/n) < n. By Lemma A.14
the probability that

x1+(i−1)N/n, . . .xiN/n ∈ dim span(x1, . . .x(i−1)N/n)

is at most (9/10)N/n. As such, the probability that a specific Bi happens is at
most (9/10)N/n and the probability that none of the Bi happens is therefore at
least 1− n(9/10)N/n. As such, except for with probability at most n(9/10)N/n,
there is a subset of n linearly independent vectors among the N sampled vectors.
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