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Abstract

The major objective of this paper is to present a theoretical model for an algorithm that has
not been previously described in the literature, capable of generating a secret key through the
transmission of data over a public channel. We explain how the method creates a shared secret
key by attaining commutativity through the multiplication of the modular exponentiation of
a minimum of two bases and an equal number of private exponents for each party involved
in the exchange. In addition, we explore the relationship between CMME and the traditional
Diffie-Hellman scheme. We just briefly discuss the algorithm’s security, opting to leave the
essential investigation to cryptanalysts, while we elucidate on the algorithm’s mechanism by
illustrating some cases.

Keywords— public key cryptography, multiplicative modular exponentiation, public key exchange
scheme, key distribution problem

1 Introduction
The Key Distribution Problem (KDP) is the challenge of effectively transmitting keys to users who require
them. Ralph C. Merkle is credited with publishing the first scientific paper on Public Key Cryptography
in the fall of 1974 [1]. Prior to the 1970s, anyone who wanted to use encryption had to deal with this issue
until Whitfield Diffie and Martin Hellman [2], and GCHQ independently discovered a way for distributing
keys without transferring the keys themselves. Some years ago GCHQ acknowledged that Clifford Cocks,
one of their employees, had developed basically the same idea four years earlier, motivated by James Ellis’s
publications on the feasibility of cryptography without a secret key [3] (the discovery however was kept
secret for over 45 years [4]). Since then, public key cryptography has evolved, seeking new paths, but the
fascination for the linearity and extraordinary effectiveness of that first algorithm remains unchanged and
continues to arouse the wonder of generations of cryptographers. A one-way function with a trapdoor and
some type of mathematical process that ensures commutativity [5] are required to construct a good public
key exchange algorithm. A one-way function is a function for which computation in one direction is simple,
but computation in the opposite direction is extremely challenging. A trapdoor, on the other hand, is a
one-way function with a further feature: it can be efficiently reversed if the secret information "trapdoor"
is known. As far as commutativity is concerned, in the Diffie-Hellman scheme for example we find it in
the exponentiation: (ga)b = (gb)a. The basic Diffie–Hellman scheme implements the multiplicative group
of integers modulo a prime number p. Since the discrete logarithm problem (DLP) on this group can be
solved in subexponential time in the standard model [6] by substituting a different cyclic group, alternative
versions of the original scheme were pursued. In this regard, see the remarkable research by Koblitz [7]
and Miller [8] on elliptic curves. Neverthless, using Shor’s algorithm, all discrete logarithm-based schemes
can be broken in polynomial time in the quantum computation model [10]. The supersingular isogeny
Diffie–Hellman key exchange (SIDH) scheme represents an attempt to go beyond the usual approach and
is currently being intensively investigated [9]. Our research shares with the latter the desire to transcend
the inevitability of the imminent computability of the discrete algorithm, mainly focusing on the definition
of a new theoretical model. The algorithm’s core component is the multiplicative modular exponentiation
with n bases and n exponents of which we discuss some cases.
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2 Circular Multiplicative Modular Exponentiation (CMME)

2.1 The algorithm
Description Given the following openly accessible information:

1. a communication channel C
2. a prime p

3. a set of n primitive roots of p, 2 ≤ n ≤ ϕ(p− 1), Sg = {g1, g2, . . . , gn}
4. a direction of rotation D, which can be clockwise or anticlockwise1 (See sub-section 2.4 for an

explanation and example)
two parties denoted by A and B, using respectively the private n − tuples Sa = {a1, a2, . . . , an}, Sb =
{b1, b2, . . . , bn} and implenenting the public-domain CMME algorithm, are able to generate the two iden-
tical and secret n− tuples KA = {KA1,KA2, . . . ,KAn}, KB = {KB1,KB2, . . . ,KBn}.

As stated in point 3, the lowest number of primitive roots employed is two. Starting with this instance,
we show how the algorithm actually works before going on to the scenario where n = 3, and finally,
generalizing to n bases.

Note: For the sake of clarity, we always omit "mod p"

2.2 Case n=2
Given a prime p, a couple of its primitive roots (g1, g2), A and B choose and keep secret two integers less
than p, (a1, a2), (b1, b2), then:

1. A computes

A1 = ga1
1 ga2

2

A2 = ga2
1 ga1

2

2. B computes

B1 = gb11 gb22
B2 = gb21 gb12

3. A, B swap (A1, A2), (B1, B2), over the chosen public channel, then perform the same operation in
1, 2 using the two swapped sets as bases

KA1 = Ba1
1 Ba2

2

KA2 = Ba2
1 Ba1

2

KB1 = Ab1
1 Ab2

2

KB2 = Ab2
1 Ab1

2

It’s easy to verify that

KA1 = KB1

KA2 = KB2

Proof

KA1 = Ba1
1 Ba2

2 = gb1a1
1 gb2a1

2 gb2a2
1 gb1a2

2 = g
(b1a1+b2a2)
1 g

(b2a1+b1a2)
2

KB1 = Ab1
1 Ab2

2 = ga1b1
1 ga2b1

2 ga2b2
1 ga1b2

2 = g
(a1b1+a2b2)
1 g

(a2b1+a1b2)
2

g
(b1a1+b2a2)
1 g

(b2a1+b1a2)
2 = g

(a1b1+a2b2)
1 g

(a2b1+a1b2)
2

KA2 = Ba2
1 Ba1

2 = gb1a2
1 gb2a2

2 gb2a1
1 gb1a1

2 = g
(b1a2+b2a1)
1 g

(b2a2+b1a1)
2

KB2 = Ab2
1 Ab1

2 = ga1b2
1 ga2b2

2 ga2b1
1 ha1b1

2 = g
(a1b2+a2b1)
1 g

(a2b2+a1b1)
2

g
(b1a2+b2a1)
1 g

(b2a2+b1a1)
2 = g

(a1b2+a2b1)
1 g

(a2b2+a1b1)
2

Note: Obviously, only for this particular case, does it not make sense to choose a "direction
of rotation", but it is more correct to speak of a simple "switch" between the two positions.

1We only discuss the clockwise scenario in this essay.
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2.3 Case n=3
Given a prime p, three of its primitive roots (g1, g2, g3), A and B choose and keep secret three integers
less than p, (a1, a2, a3), (b1, b2, b3), and agree on a ”clockwise” direction of rotation (see next sub-section),
then:

1. A computes

A1 = ga1
1 ga2

2 ga3
3

A2 = ga3
1 ga1

2 ga2
3

A3 = ga2
1 ga3

2 ga1
3

2. B computes

B1 = gb11 gb22 gb33
B2 = gb31 gb12 gb23
B3 = gb21 gb32 gb13

3. A, B swap (A1, A2, A3), (B1, B2, B3), then perform the same operation in 1, 2 using the two swapped
sets as bases

KA1 = Ba1
1 Ba2

2 Ba3
3

KA2 = Ba3
1 Ba1

2 Ba2
3

KA3 = Ba2
1 Ba3

2 Ba1
3

KB1 = Ab1
1 Ab2

2 Ab3
3

KB2 = Ab3
1 Ab1

2 Ab2
3

KB3 = Ab2
1 Ab3

2 Ab1
3

Now let’s check that

KA1 = KB1

KA2 = KB2

KA3 = KB3

Proof

KA1 = Ba1
1 Ba2

2 Ba3
3 = (gb1a1

1 gb2a1
2 gb3a1

3 )(gb3a2
1 gb1a2

2 gb2a2
3 )(gb2a3

1 gb3a3
2 gb1a3

3 ) =

= g
(b1a1+b3a2+b2a3)
1 g

(b2a1+b1a2+b3a3)
2 g

(b3a1+b2a2+b1a3)
3

KB1 = Ab1
1 Ab2

2 Ab3
3 = (ga1b1

1 ga2b1
2 ga3b1

3 )(ga3b2
1 ga1b2

2 ga2b2
3 )(ga2b3

1 ga3b3
2 ga1b3

3 ) =

= g
(a1b1+a3b2+a2b3)
1 g

(a2b1+a1b2+a3b3)
2 g

(a3b1+a2b2+a1b3)
3

g
(b1a1+b3a2+b2a3)
1 g

(b2a1+b1a2+b3a3)
2 g

(b3a1+b2a2+b1a3)
3

=

g
(a1b1+a3b2+a2b3)
1 g

(a2b1+a1b2+a3b3)
2 g

(a3b1+a2b2+a1b3)
3

KA2 = Ba3
1 Ba1

2 Ba2
3 = (gb1a3

1 gb2a3
2 gb3a3

3 )(gb3a1
1 gb1a1

2 gb2a1
3 )(gb2a2

1 gb3a2
2 gb1a2

3 ) =

= g
(b1a3+b3a1+b2a2)
1 g

(b2a3+b1a1+b3a2)
2 g

(b3a3+b2a1+b1a2)
3

KB2 = Ab3
1 Ab1

2 Ab2
3 = (ga1b3

1 ga2b3
2 ga3b3

3 )(ga3b1
1 ga1b1

2 ga2b1
3 )(ga2b2

1 ga3b2
2 ga1b2

3 ) =

= g
(a1b3+a3b1+a2b2)
1 g

(a2b3+a1b1+a3b2)
2 g

(a3b3+a2b1+a1b2)
3

g
(b1a3+b3a1+b2a2)
1 g

(b2a3+b1a1+b3a2)
2 g

(b3a3+b2a1+b1a2)
3

=

g
(a1b3+a3b1+a2b2)
1 g

(a2b3+a1b1+a3b2)
2 g

(a3b3+a2b1+a1b2)
3

KA3 = Ba2
1 Ba3

2 Ba1
3 = (gb1a2

1 gb2a2
2 gb3a2

3 )(gb3a3
1 gb1a3

2 gb2a3
3 )(gb2a1

1 gb3a1
2 gb1a1

3 ) =

= g
(b1a2+b3a3+b2a1)
1 g

(b2a2+b1a3+b3a1)
2 g

(b3a2+b2a3+b1a1)
3

KB3 = Ab2
1 Ab3

2 Ab1
3 = (ga1b2

1 ga2b2
2 ga3b2

3 )(ga3b3
1 ga1b3

2 ga2b3
3 )(ga2b1

1 ga3b1
2 ga1b1

3 ) =

= g
(a1b2+a3b3+a2b1)
1 g

(a2b2+a1b3+a3b1)
2 g

(a3b2+a2b3+a1b1)
3

g
(b1a2+b3a3+b2a1)
1 g

(b2a2+b1a3+b3a1)
2 g

(b3a2+b2a3+b1a1)
3

=

g
(a1b2+a3b3+a2b1)
1 g

(a2b2+a1b3+a3b1)
2 g

(a3b2+a2b3+a1b1)
3
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2.4 A graphical illustration of CMME’s circularity
In order to illustrate the notion of circularity evoked by the algorithm’s name, consider an example with
twelve bases and relative exponents, in other words n = 12. Now let’s examine the operations that A
performs. Two concentric circles are drawn. The bases are placed on the inner circle, and the exponents
on the outer one. The algorithm is currently in its first of 12 internal states. After performing the necessary
calculations, the first element of the 12− tuple, that A will exchange with B, is generated.

g1
g2

g3

g4

g5

g6
g7

g8

g9

g10

g11

g12

a1

a2

a3

a4

a5

a6

a7

a8

a9

a10

a11

a12

In the next step, while the bases remain fixed, the exponents slide one position to the right, clockwise, A
and B having agreed on this direction of rotation. At this point, similarly to what we just saw, the second
element of the A′s public 12− tuple is computed.

g1
g2

g3

g4

g5

g6
g7

g8

g9

g10

g11

g12

a12

a1

a2

a3

a4

a5

a6

a7

a8

a9

a10

a11

The procedure is repeated until the first exponent reaches the 12th position and, after the last round of
calculations, the 12− tuple of A is complete and ready to be sent to B.
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g1
g2

g3

g4

g5

g6
g7

g8

g9

g10

g11

g12

a2

a3

a4

a5

a6

a7

a8

a9

a10

a11

a12

a1

2.5 Generalization to n bases
Given a prime p, a n − tuple of its primitive roots (g1, g2, . . . , gn), A and B choose and keep secret n
integers less than p, (a1, a2, . . . , an), (b1, b2, . . . , bn), and agree on a ”clockwise” direction of rotation, then:

1. A computes

A1 = ga1
1 . . . gan

n

A2 = gan
1 . . . g

an−1
n

. . .

An = ga2
1 . . . ga1

n

2. B computes

B1 = gb11 . . . gbnn
B2 = gbn1 . . . g

bn−1
n

. . .

Bn = gb21 . . . gb1n

3. A, B swap (A1, A2, . . . , An), (B1, B2, . . . , Bn), then perform the same operation in 1, 2 using the two
swapped sets as bases

KA1 = Ba1
1 . . . Ban

n

KA2 = Ban
1 . . . B

an−1
n

. . .

KAn = Ba2
1 . . . Ba1

3

KB1 = Ab1
1 . . . Abn

n

KB2 = Abn
1 . . . A

bn−1
n

. . .

KBn = Ab2
1 . . . Ab1

3

By extending the results from the previous cases, we can expect

KA1 = KB1

KA2 = KB2

. . .

KAn = KBn
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3 Security considerations
As already mentioned, the purpose of this paper is essentially to describe, at a theoretical level, an algorithm
that is still in its infancy, which is what we did in the previous section. We consider CMME a useful addition
to the research into new algorithm models for generating shared secret keys via insecure communication
channels. Here, we only make a few observations while distinguishing between the present and the near
future, leaving a more thorough examination of its security to cryptanalysis.

3.1 Pre-quantum
The current era might be regarded as a "pre-quantum" one, in the sense that the development of quantum
computing, while determined in its fundamental principles, lacks the necessary hardware to fully realize
its immense potential. As illustrated so far, CMME can also be seen as a projection of the Diffie-Hellman
exchange from a one-dimensional space to a multidimensional one. In fact, while DHKE provides for a
single generator, in CMME the minimum number of generators is two. Consequently, while in the former
the key is an integer, in the latter it is an n− dimensional vector. After establishing the link between the
two schemes, we can state that CMME can offer at least the same level of security as the DH exchange due
to the fact that the modular exponentiation also serves as the foundation for CMME’s design. Likewise,
the same recommendations made for the Diffie-Hellman model regarding the selection of the prime number
p apply to CMME as well. [11] [12]

3.2 Post-quantum
We are now referring to a near future when, thanks to Shor’s algorithm, quantum computers equipped
with a sufficient number of Qubits will be able to easily calculate discrete logarithms. Firstly, it should
be noted that by multiplying the public keys of one of the two parties, say A, and being able to compute
discrete logarithms, it is simple to obtain the sum of A’s secret exponents using the product of the public
primitive roots as base. On the other hand, getting the single addends is not so easy. Let us take for
example the case n = 2

A1 = ga1
1 ga2

2

A2 = ga2
1 ga1

2

A1A2 = ga1
1 ga2

2 ga2
1 ga1

2 = g
(a1+a2)
1 g

(a2+a1)
2 = (g1g2)

(a1+a2)

Given the structure of CMME, in a post-quantum era, we believe that the search for the secret keys of A
and B requires an additional effort compared to models based on the classic Diffie-Hellman exchange.

4 Conclusions
We have described a theoretical model of an algorithm capable of generating a shared secret key between A
and B with only public channels of communication available. In addition, we have shown how CMME and
the Diffie-Hellman model relate one another and highlighted how, given a prime number, at least two of its
public primitive roots, an equal number of private exponents and a direction of rotation, CMME can achieve
commutativity through the multiplication of the modular exponentiation, graphically demonstrating the
circularity implied by the algorithm’s name.
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