
Two Party Fair Exchange

Abstract. Fair Exchange (FE) protocols are a class of cryptographic
protocol in which two parties, X and Y , exchange some secret data,
where the ability of each party to receive secret data is contingent on
having sent secret data of their own. When exchanging secret data with-
out the support of FE protocols, whoever sends their secret first makes
themselves vulnerable to the possibility that the other participant will
cheat and won’t send their secret in return. It is widely believed that
FE protocols satisfying the soundness notion of Strong Fairness require
a third party arbitrator trusted by both X and Y , however in this pa-
per we construct an FE scheme satisfying a notion of Strong Fairness
with no third party involvement. This is achieved by embracing non-
determinism and slightly relaxing the definitions of security from the
perfect to the computational domain. The protocol presented in this
paper allows two parties running interactive processes to exchange se-
crets, safe in the knowledge that either both secrets will change hands,
or neither will, without the involvement of a trusted third party. The
security of the protocol presented in this work reduces to the strength of
an underlying symmetric authenticated encryption scheme.

1 Introduction

It is not uncommon for two mutually distrusting parties to wish to exchange
some secret information. These types of transactions occur frequently in the
wild: economic trades where both parties might exchange a cryptographic signa-
ture approving the transfer of funds[17]; swapping gossip between peers; trading
the output of executed programs; or a providing payment for computational
work conducted in the cloud. Similarly, corporations or nation state allies may
wish to trade sensitive strategic information. Some cryptographic protocols even
end with the assumption that an untrusted party will dutifully pass a result to
the other. For example, in Multi Party Computation (MPC) constructions[19]
the circuit garbler is expected to dutifully reveal the decrypted results of joint
calculations to the circuit evaluator. In some untrusted settings this MPC con-
struction would be greatly improved by using an FE protocol to exchange the
garbled circuit output for the keys used to decrypt it.

Currently, this problem is solved by using a third party to mediate the trans-
action. This third party might be a bank, mutual friend, or some blockchain-
backed protocol[10,12,7]. In the naive case, the third party holds both secrets
until they have been validated, and then forwards the validated secrets to each
party. Trusted third parties are used ubiquitously in modern FE protocols, which
aim to improve over the naive case by reducing the involvement of a third party
as much as possible, allowing two parties to exchange secrets with minimal



interference[1]. Current state-of-the-art FE protocols require an offline trusted
authority that is only required to intervene in the case of a dispute[2,14], this
approach is known as an Optimistic FE protocol as the third party is only in-
volved if one participant acts dishonestly. Reducing the involvement of the third
party is one of the key objectives of FE protocol research. It’s widely believed
that a FE construction is not possible without a trusted third party performing
arbitration[18].

In this work we present a two party FE protocol with security that reduces to
the strength of an underlying IND-CPA secure authenticated encryption scheme.
To the best of our knowledge this is the first FE protocol that satisfies a notion of
Strong Fairness without the involvement of a trusted third party. The key insight
resulting in this breakthrough construction is that the impossibility result for
two party FE with Strong Fairness only holds for a deterministic protocol where
the Strong Fairness definition is interpreted as a definition of soundness in the
domain of perfect security[18]. This result can be circumvented by embracing a
constant configurable probability of failure, and by relaxing FE definitions from
the domain of perfect security to computational security.

1.1 Contributions

In this work we:

– Relax standard FE definitions to a more achievable notion of computational
security.

– Define a two party FE scheme with security reducing to the strength of an
IND-CPA secure symmetric authenticated encryption scheme.

– Prove the scheme has Computational Completeness and Computational Strong
Fairness properties, as per the newly-relaxed FE definitions.

1.2 Assumptions

In order to simplify the constructions, it is assumed that all parties send a secret
which satisfies some property expected by the receiving party. For example, the
property could be that the secret is a valid signature on a predetermined message.

Assumption 1 There exists a function Desc(d) that provides a description of
data d. Both participants in the scheme agree on the description of the data they
plan to send and receive in advance of the FE protocol. Both participants send
valid encryptions of their agreed upon data at the start of the protocol and do
not, for example, swap d for random noise.

This can be enforced with ZKP!s (ZKP!s) operating in parallel to the FE
protocols in this work. Furthermore, we assume all parties will follow the pro-
tocol honestly, up to the moment where one secret is revealed, at which point a
malicious party will do what they can to avoid revealing their secret in return.

2



Assumption 2 The protocol will be followed honestly, the only deviations al-
lowed by an adversary are deviations by omission, in which an adversary can
decide to send no data.

As before, this can be enforced with ZKP!s and commitment schemes op-
erating in parallel to the protocol. These assumptions were made as they make
the protocol definitions that follow simpler and are reasonable assumptions that
can be enforced with appropriate measures by any implementers.

The standard assumption that there exists an IND-CPA secure symmetric au-
thenticated encryption scheme is also used in this work. This encryption scheme
is used as a black box in the presented FE constructions, the interface to which
is described in the Background section of this chapter.

Assumption 3 There exists an IND-CPA secure symmetric authenticated en-
cryption scheme.

The third and final protocol presented in this chapter makes use of a conceiv-
able but non-standard assumption; that there is a “secure” λ and an “insecure”
λ′ such that the adversarial advantage against each is separated by a factor M ,
and M is independent of λ′.

Assumption 4 There exists security parameter λ, and λ′, and constant M such
that

MAdvind-cpa
A (λ) = Advind-cpa

A (λ′) (1)
where M is independent of λ′ and λ is considered secure, but λ′ is considered
bruteforceable.

There is an obvious and direct relationship between the adversarial advan-
tage and the time one would expect it to take to mount a bruteforce attack
on an instantiation of a cryptosystem, a fact which we use to demonstrate the
reasonableness of this assumption. Consider an instantiation of a cryptosystem
deemed “insecure” for a given domain, E(λ′), with a key space bruteforceable
within one month. There exists a corresponding instantiation E(λ) with a key
space bruteforceable in 1000 years. In this example M = 12, 000 and is fixed,
no matter if new algorithmic developments reduce the time taken to bruteforce
the key space. In such a situation, where λ and λ′ need to be updated because
of algorithmic advances or hardware improvements in order to maintain their
expected time-to-bruteforce of 1000 years and 1 month respectively, M is clearly
unaffected.

In conventional security practice the security parameter is chosen to satisfy
some impractical time required to mount a successful attack on the system. As
attack methods are developed, λ is adaptively increased. It is easy to see that
M is therefore not directly related to λ or λ′ and is instead dependent on the
relationship between the two. No matter how M is chosen, it is constant as λ
and λ′ adaptively grow.

As a concrete example, consider two corresponding instantiation of AES, one
“secure” and one “bruteforceable”, in the face of an adversary with access to

3



common commodity computer hardware. Suppose a “secure” instantiation of
AES is selected, one with an expected time-to-attack of 1000 years. It is worth
noting here that security practitioners tend to aim for a more existential time-
to-attack, in the order of the heat death of the universe. The definitions relating
to what is secure enough vary from setting to setting depending on the relative
strengths of expected adversaries. However, in FE the goal is for targets to even-
tually exchange secrets, so a key space attackable in 1000 years on commodity
hardware could very well be considered adequately secure. With some back of
the envelope calculations an AES instantiation with an expected time-to-attack
of 1000 years would result in a key length of λ ≈ 84 bits. The complimentary
“bruteforcible” instantiation, with key space attackable in a month, would have
a key length of λ′ ≈ 70 bits. In this case we have M ≈ 214. Note that as we
adaptively change λ and λ′ to stay ahead of algorithmic improvements M will
stay fixed.

This final protocol presented in this chapter also requires that the computa-
tional capabilities of one of the two participants is publicly and reliably known
to within an order of magnitude.

Assumption 5 The computational capabilities of party X are publicly and re-
liably known to within an order of magnitude.

1.3 Notation

In pseudocode ← indicates assignment. We make use of standard cryptographic
notation: k is a cryptographic key, encryption schemes are defined as a set of
functions E = (KGen,Enc,Dec) and λ is a security parameter. Functions that
grow negligibly in the security parameter λ are denoted with negl(λ). At times
we make use of vectors to indicate an ordered set of data, these are denoted by
a variable in bold v. The ith element of the vector v is denoted by v[i]. [x;n]
is used as shorthand for an n length vector with the value x at every position.
E(λ) is used as shorthand to indicate the encryption scheme E used with security
parameter λ during KGen.

We make black-box use of 1-in-n oblivious transfer[5]. Oblivious transfer
allows a Sender to offer up a vector of data, y, and a Receiver is able to access
a single element indexed at i without the Sender learning which element the
Receiver accessed, and without the Receiver learning any of the unaccessed data
in the vector y. The use of oblivious transfer is noted with x

OT←−− y[i], where
x is the local variable obtained by the Receiver, y is an ordered vector of data
stored on the Sender, and i is the index in y accessed as part of the oblivious
transfer.

The two participants in our FE scheme are referenced as party X and party
Y . Variables associated with either party are usually subscripted with the ap-
propriate letter. In the protocol description “X :” is a prefix used to indicate the
operation is executed by party X. Party X learning secret dY is denoted with
the shorthand X(dY ).

4



2 Background

Many references to underlying cryptographic building blocks are kept intention-
ally abstract. In this section we define the properties made use of later in this
work.

2.1 Fair Exchange

These definitions are adapted from [14]. In a FE protocol party X holds one piece
of data, dX , while party Y holds a different piece of data, dY . The protocol is
Complete if, with honest parties, when the protocol terminates X has learned
dY and Y has learned dX .

Definition 1 (Complete). With honest parties X and Y , and respective data
dX and dY , when the protocol terminates

X(dY ) ∧ Y (dX) (2)

The difficulty arises in attempting to construct a protocol in which a dishon-
est participant is not able to discover the secret of the other participant without
giving up their own secret. There should be no way of X learning anything about
dY without offering up dX to Y . The same is true for Y in relation to X’s secret,
dX . This property is Strong Fairness.

Definition 2 (Strong Fairness). When the protocol terminates, either X(dY )
or Y has gained no information about dX . Similarly, when the protocol has com-
pleted either Y (dX) or X has gained no information about dY .

The Strong Fairness property contrasts with the type of fairness provided
by early FE schemes. Earlier schemes usually operated by gradually disclosing
a secret over many iterative rounds[16]. Obviously, with this approach a cheat-
ing participant can terminate at any point and have learned some information
about the honest participant’s secret. Fair exchange schemes featuring gradual
disclosure, along with other related works, are discussed further in Section 5.

A naive solution which satisfies Strong Fairness is to allow all messages to
pass through a trusted third party, A. This approach is shown in Figure 1. The
current state-of-the-art only requires the trusted third party to intervene in the
case of a dispute[14].

It’s widely believed that strong fairness is impossible without the use of a
trusted third party[18]. This belief stems from a result in which two party FE pro-
tocols can be used to construct a deterministic asynchronous consensus scheme,
and as there are no deterministic asynchronous algorithms for consensus[9], there
can be no deterministic two-party FE protocols with Strong Fairness.

5



Trivial Fair Exchange Protocol

X(dx) A Y (dY )

dx dy

Check(dx)
Check(dy)

dy dx

Fig. 1: Trivial FE protocol with a trusted third party arbitrator, A.

2.2 Symmetric IND-CPA Secure Authenticated Encryption
Schemes

A symmetric encryption scheme E = (KGen,Enc,Dec) is an authenticated en-
cryption scheme if, along with confidentiality of data, it guarantees data integrity
and authenticity. An authenticated encryption scheme is defined by the following
functions:

– Key Generation: k← KGen(λ); generate key k.
– Encryption: c← Enck(m); encrypt message m to produce ciphertext c.
– Authenticated Decryption: m or ⊥ ← Deck(c); decrypt ciphertext c to

produce message m, with an invalid combination of c and k decrypting to
⊥.

In the case a ciphertext has been tampered with, or does not originate from the
expected sender Dec outputs ⊥. Authenticated encryption schemes are usually
composed from encryption schemes and message authentication codes.

A scheme is IND-CPA secure if it is indistinguishable under a chosen plaintext
attack[3]. Consider the security game detailed in Figure 2 and the following
definition.

Definition 3 (Symmetric IND-CPA Secure Authenticated Encryption
Scheme). Consider symmetric authenticated encryption scheme
E = (KGen,Enc,Dec). The advantage of an adversary A in the IND-CCA se-
curity game, detailed in Figure 2, is defined as:

Advind-cpa
A (λ) = 2 Pr[INDCPAGame(λ) = 1]− 1 (3)

A cryptosystem E is IND-CPA secure if for any probabilistic polynomial time
adversary A

Advind-cpa
A (λ) ≤ negl(λ) (4)

6



INDCPAGame1(λ)

1 : k← KGen(λ), b←$ {0, 1}
2 : m0,m1 ← AOEnck ()
3 : c← Enck(mb)
4 : b′ ← AOEnck (c)
5 : if b = b′ then return 1
6 : else return 0

Fig. 2: IND-CPA security game. The adversary wins if they can differentiate an
encryption of one of two messages of their choice. They are given access to an
encryption oracle OEnck which is able to provide valid encryptions interactively
to the adversary. There is an implicit adversary state maintained between the
two calls to the adversary A.

3 Extended Definitions for Fair Exchange

In this section we define new slightly relaxed variations of standard FE defini-
tions, which are more suitable to the work presented in this paper. The new
definitions adapt existing FE definitions from the domain of perfect security to
computational security. Although the new definitions presented in this section
provide a weaker notion of security than those provided in some existing work,
they are much stronger than the historical definitions of security used by older
FE protocols built on the principle of gradual disclosure.

As an extensions the FE notion of Completeness we provide a definition for
Computational Completeness.

Definition 4 (Computational Completeness). Given party X with data dX
and party Y with data dY . If both X and Y act honestly, X learns dY and Y
learns dX with probability

Pr[X(dY ) ∧ Y (dX)] ≈ 1 (5)

Similarly, we provide a definition for Computational Strong Fairness. This
definition uses the security game detailed in Figure 3 to simulate the ability
of one of the two parties in the protocol to act maliciously. Importantly, the
security game is defined in terms of parties P and Q in order to separate them
from the concrete roles of X and Y in our FE protocol definition.

Definition 5 (Computational Strong Fairness). For arbitrary party P de-
fine the advantage in the PFairnessGame defined in Figure 3 as

Advfairness
AP

(δ, λ) = Pr[PFairnessGame(δ, λ) = 1] (6)

where PFairnessGame is defined in Figure 3.

7



For a fixed randomly sampled protocol transcript δ←$∆ and any probabilistic
polynomial time adversaries AX and AY

Advfairness
AX

(λ) ≤ negl(λ) ⇐⇒ Advfairness
AY

(λ) ≤ negl(λ) (7)

PFairnessGame1(δ, λ)

1 : d′
Q ← AP (δ)

2 : if dQ = d′
Q then return 1

3 : else return 0

Fig. 3: For an FE protocol between arbitrarily labelled parties P and Q, with a
set of possible complete or partial protocol transcripts ∆, transcript δ ∈ ∆, and
adversary acting as party P given by AP . If the adversary is able to extract the
data dQ from δ, they win.

Computational Strong Fairness requires that for a fixed transcript δ←$∆, it
is computationally intractable for X to extract dY if and only if it is computa-
tionally intractable for Y to extract dX .

4 Two Party Fair Exchange

The key insight resulting in the protocol presented in this paper is that the
impossibility of two party FE presupposes perfect security of Strong Fairness and
a deterministic FE algorithm. By mirroring work in consensus[15], where robust
protocols can be constructed by slightly relaxing the computational model, we
have been able to construct a two party FE protocol with a strong notion of
soundness.

The intuition behind the two party FE scheme presented in this paper is that
we can produce a protocol in which there is a single synchronised success state,
in which both parties learn about each other’s secrets, and many failure states,
where neither party learns anything. Participants run the protocol in sequential
repeated rounds until they both arrive in a success state. If a malicious party
disconnects from the protocol early, the cheated party can assume both partic-
ipants have arrived in the synchronised success state and therefore infer some
information to help derive the cheater’s secret. After a short bruteforce attempt
this guess can be validated, and so it is not vulnerable to genuine accidental
disconnections.

4.1 Description

Party X, with secret dX , and party Y , with secret dY , wish to exchange secrets.
Both parties negotiate a pair of security parameters λ and λ′ in advance, such

8



that λ is believed to be attackable in any reasonable time-frame for any reason-
ably equipped adversary and λ′ should be attack-able in a long but reasonable
time frame for party X. This relies on Assumption 5, which states the computa-
tional capabilities of party X are reliably and publicly known to within an order
of magnitude. For example, λ could have an expected time-to-bruteforce of 1000
years, but λ′ is considered bruteforceable for X in one month. The expected time
to attack E(λ) is denoted as T , and the expected time to attack E(λ′) is denoted
as T ′. It should be the case that:

T ′ � T (8)

As further setup, given λ and λ′ both parties then derive value M , such that

MAdvind-cpa
A (λ) = Advind-cpa

A (λ′) (9)

Another way of expressing M is as the ratio between the time expected to attack
the two instantiations of E .

M = T

T ′
(10)

With these parameters established, they can be reused as much as is required
for as many domains as is relevant.

X and Y each generate a key each for a symmetric IND-CPA authenticated
encryption scheme E(λ).

X : kX0 ← E .KGen(λ) Y : kY ← E .KGen(λ) (11)

X then generates a second key, and Y samples a random ciphertext from C ′,
the range of function E(λ′).Enc.

X : kX1 ← E .KGen(λ) Y : cr ←$C ′ (12)

Both parties then encrypt their respective secrets, X uses the first key they
generated.

X : cX ← E .EnckX0(dX) Y : cY ← E .EnckY 0(dY ) (13)

Both parties freely exchange the generated ciphertexts. Party Y then gener-
ates a key for encryption scheme E(λ′), b. They use this value to encrypt their
key, kY .

Y : b← E .KGen(λ′) (14)
Y : ckY

← E .Encb(kY ) (15)

Both parties randomly sample m such that 0 ≤ m < M and construct large
M -sized vector v. X inserts kX1 at every position in v except at position mX ,
where they insert kX0. Y inserts cr is at every position in v except at position
mY , where they insert ckY

X : mX ←$ {0, . . . ,M − 1} Y : mY ←$ {0, . . . ,M − 1} (16)
X : vX ← [kX1;M ] Y : vY ← [cr;M ] (17)
X : vX [mX ]← kX0 Y : vY [mY ]← ckY

(18)

9



X then uses oblivious transfer to learn the element at position mX in Y ’s
vector vY .

X : c′kY

OT←−− vY [mX ] (19)
Because of the computational indistinguishably of ciphertexts produced by E(λ′)
X is unable to mount an attack with a better-than-negligible-in-λ probability
of success against c′kY

without more information. In order to learn dY X must
continue the protocol. This is a slightly counter-intuitive notion and a more
rigorous security argument is provided later in this paper.

Next, Y uses oblivious transfer to learn the element at position mY in X’s
vector, vX .

Y : kX
OT←−− vX [mY ] (20)

Y can use kX to attempt to decrypt cX .

Y : dX or ⊥ ← E .Dec(cX) (21)

If Y succeeds they can release b to X in good faith. X then uses b to decrypt
the key kY , which they use to decrypt the secret dY .

X : kY ← E .Decb(c′kY
) (22)

X : dY ← E .DeckY
(cY ) (23)

If Y attempts to cheat they confirm for X that they have a bruteforceable
ciphertext, c′kY

= ckY
, containing the key to decrypt Y ’s secret. With this in-

formation X can justify mounting a bruteforce attack in reasonable time-frame
T ′.

If mX 6= mY neither party has learned any information relevant to decrypting
the secret of the other party, and so the round failed and both parties need to try
again, restarting from key generation. Before restarting Y must prove the failure
to X by revealing their value kX = kX1, which they could have only obtained if
mX 6= mY .

A single round from the protocol is shown diagrammatically in Figure 4.

4.2 Proofs

Theorem 1 (Computational Completeness). For honest X and Y the prob-
ability of successfully swapping their secrets is

Pr[X(dY ) ∧ Y (dX)] ≈ 1 (24)

Proof. On a single run of the FE protocol, X and Y successfully exchange data
if and only if mX = mY . These values are the index in the vector v at which X
and Y store information relevant to their secret, and it is also the element they
access via oblivious transfer from the other party’s vector v.

As m is an integer in the range 0 ≤ m < M , the probability of exchanging
data is on a single run of the protocol is:

Pr[X(dY ) ∧ Y (dX)] = 1
M

(25)

10



One round from the Two Party Fair Exchange Protocol

X(E , λ, λ′, dX ,M) Y (E , λ, λ′, dY ,M)

kX0 ← E .KGen(λ) kY ← E .KGen(λ)
kX1 ← E .KGen(λ) cr ←$C′

cX ← E .EnckX0 (dX) cY ← E .EnckY
(dY )

cY

cX

b← E .KGen(λ′)
ckY
← E .Encb(kY )

mX ←$ {0, . . . ,M − 1} mY ←$ {0, . . . ,M − 1}
vX ← [kX1;M ] vY ← [cr;M ]
vX [mX ]← kX0 vY [mY ]← ckY

c′
kY

OT←−− vY [mX ]

kX

OT←−− vX [mY ]

o← E .DeckX
(cX)

if o = ⊥ then r ← kX

else r ← b

r

if r = kX1 then return ⊥ if o = ⊥ then return ⊥
else kY ← E .Decr(c′

kY
) else return o

return E .DeckY
(cY )

Fig. 4: Overview of a single round of the two party fair exchange protocol.

11



By Assumption 4, M is a constant. It follows that the protocol can be re-
peated across as many rounds as is required for the probability of a successful
data exchange to be arbitrarily close to 1.

∴ Pr[X(dY ) ∧ Y (dX)] ≈ 1 (26)

The following Lemmas prove qualities about the soundness of the system
after each message is sent. In each subsequent Lemma the protocol transcript δ
is extended with the next message as specified in the protocol description, and
the adversary A takes on the role of either participant X or Y , whichever is the
recipient of the latest message. The first two lemmas are trivial, and reduce to an
attack on the underlying encryption scheme used to construct the FE protocol.

Advfairness
AX

(λ) ≤ Advind−cpa
A (λ) (27)

Proof. Consider adversary AX capable of extracting dY from δ. This could easily
be used to construct B, in Figure 5, which forwards ciphertexts to AX to provide
a decryption.

∴ Advfairness
AX

(λ) ≤ Advind−cpa
A (λ) (28)

m0 ←$ {0, 1}n,m1 ←$ {0, 1}n

δ ← {c}
m′ ← AX(δ)
if m′ = m1 then b′ ← 0
else b′ ← 1

B
m0,m1

c

b′

Fig. 5: Adversary B; capable of winning the IND-CPA security game given the
existence of adversary AX .

Lemma 1. When δ = {cY , cX}

Advfairness
AY

(λ) ≤ Advind−cpa
A (λ) (29)

This trivial proof is omitted for brevity. It follows the same outline as the
proof for Lemma ?? but with party Y and X swapped, and B randomly samples
a placeholder cY in the construction of the transcript δ.

Lemma 2. When δ = {cY , cX , cz}

Advfairness
AX

(λ) = Advind−cpa
A (λ) (30)

12



Proof. There are two possible situations; the first one is that cz = ckY
, an

encrypted version of the key used to produce ciphertext cY , the other is that
they are completely unrelated and cz is randomly sampled from C ′. In the latter
case this proof is trivial as the adversary has no more information than they did
in Lemma ??. The former case occurs with probability 1

M .
The definition of the constant M in the protocol is given by Equation 1:

MAdvind-cpa
B (λ) = Advind-cpa

B (λ′)

Advfairness
AX

(λ) = 1
M

Advind-cpa
B (λ′) (31)

plus some omitted negligible probability of attacking E(λ) as given in Lemma ??.
The definition of the constant M in the protocol is given by

MAdvind-cpa
B (λ) = Advind-cpa

B (λ′) (32)

It follows that the advantage of AX in the FairnessGame is

∴ Advfairness
AX

(λ) = 1
M

Advind-cpa
B (λ′) (33)

= Advind-cpa
B (λ) (34)

Lemma 2 assumes that the adversary only has access to a single partial
transcript of the FE exchange and so it does not cover the possibility that the
adversary gathers many samples and then attempts to identify and attack the
weaker encryption of E with a security parameter λ′. This attack has a negligible
probability of success if E is IND-CPA secure. This argument is given in more
detail in Subsection 4.3.

Lemma 3. When δ = {cY , cX , cz, kX} and it is computationally intractable for
party X to extract dY

Advfairness
AY

(λ) ≤ Advind−cpa
A (λ) (35)

Proof. As given cz it is computationally intractable for X to extract dY , it must
be the case that cz 6= ckY

and therefore mX 6= mY . Because of this, kX is
completely unrelated to cX and so is no help for decrypting it. Because of this,
the adversary has no more information than they did in Lemma 1 and their
advantage in the fairness game must be the same.

∴ Advfairness
AY

(λ) ≤ Advind−cpa
A (λ) (36)

Theorem 2 (Computational Strong Fairness). Given E, an IND-CPA se-
cure authenticated encryption scheme, where Advind-cpa

A (λ) ≤ negl(λ), in the two
party FE protocol, if the ability of Y to extract dX from transcript δ is compu-
tationally intractable, then for any probabilistic polynomial time adversary A

Advfairness
AY

(λ) ≤ negl(λ) (37)

13



Similarly, if the ability of X to extract dY from transcript δ is computationally
intractable, then for any probabilistic polynomial time adversary A:

Advfairness
AX

(λ) ≤ negl(λ) (38)

Proof. In the first case, when party Y is acting maliciously, the transcript must
be either δ = {cY , cX} or δ = {cY , cX , cz, kX}. The former case is proved in
Lemma 1 and the latter is proved in Lemma 3. It follows that for all possible
situations, if the ability of X to extract dY from δ is intractable then

Advfairness
AY

(λ) ≤ Advind-cpa
A (λ) (39)

=⇒ Advfairness
AY

(λ) ≤ negl(λ) (40)

With a similar argument, when party X is acting maliciously Lemmas ??
and 2 prove the advantage of AX must be

Advfairness
AX

(λ) ≤ Advind-cpa
A (λ) (41)

=⇒ Advfairness
AX

(λ) ≤ negl(λ) (42)

4.3 Sybil Attack Resistance

This second half of Theorem 2 seems counter-intuitive and warrants some further
discussion. The theorem presupposes that an adversary only has access to a
single transcript. It is not immediately obvious why X cannot mount a Sybil-
style attack to gain many transcripts, then identify the ciphertext containing Y ’s
encryption key and mount a relatively simple bruteforce attack to extract the
key. This attack would see X engaging in the protocol and disconnecting after
the transcript is δ = {cY , cX , cz}, and by repeating this process an expected M
times, one of these samples should include cz = ckY

.
Unfortunately forX they must compete with the fact that as E is an IND-CPA

secure encryption scheme the ciphertext produced by encrypting kY is compu-
tationally indistinguishable from a randomly sampled ciphertext from C ′. As X
cannot distinguish between ckY

and cr randomly sampled from C ′ they must
attempt the bruteforce attack against each sample in turn. Given that E(λ′) is
M times easier to attack than E(λ), but X is expected to perform M bruteforce
attacks to extract dY a Sybil-style attack is clearly not feasible as it would take
as much effort as a direct attack against E(λ).

It is therefore of vital importance that both parties regenerate cryptographic
keys at the start of each repeat execution, and do not reuse them. Otherwise
this attack vector would be trivial, as X would be able to correlate the most-
significant bits of the key and identify the correct one as an outlier and attempt
the easier bruteforce attack. This concept is made more concrete in Appendix A,
where a theorem is provided proving the Computational Strong Fairness of the
FE scheme under a Sybil-style attack given that ciphertexts produced by E(λ′)
are indistinguishable.

14



4.4 Evaluation

We have proved that the two party FE scheme has both the Computational
Completeness and Computational Strong Fairness properties without the need
for a trusted third party arbitrator.

A glaring deficiency in our scheme is that for a fixed λ′, as λ is made ar-
bitrarily large, M must grow exponentially to reflect the difference between λ
and λ′. With this, the probability of a successful secret exchange per round of
the protocol becomes vanishingly small. λ, λ′, and M must be carefully chosen
to balance the security of λ, the ease of the recovering from a cheater given by
λ′, and the failure rate M−1

M , for a given setting. The massive failure rate of our
scheme is mitigated by the fact that for a given setting M is a constant, and so
the protocol is expected to be run a constant M times before a success.

5 Related Work

Early FE protocols relied on the technique of gradual disclosure, in which indi-
vidual bits of a secret are released over many rounds[4]. In other works mutual
disclosure has been extended to include the single-bit case, by simulating a bi-
ased coin which slowly reveals information about a secret over many rounds.
This approach has the unfortunate side affect that early termination may leave
one party, by sheer bad luck, with a misrepresentative sample of coin flips. This
was later refined to simulate the production of a shared biased coin which when
flipped would land on “same” or “different”, thereby ensuring both participants
had an identical sample of flips[16]. By definition, no gradual disclosure schemes
are able to satisfy any version of the Strong Fairness property.

Another early solution to the FE problem was constructed based on the as-
sumption that Y is able to witness the behaviour of X after seeing dY , and is
therefore able to discern dX based on the course of action X took[11]. Interest-
ingly, this assumption is a less realistic ability than one required in this work,
wherein party X is able to witness a party Y disconnecting after successfully
extracting dY . Importantly, in this work an accidental disconnection can be eas-
ily validated through the short bruteforce attack or with a proof presented at a
later date, after the concerned parties reconnect.

There is a body of work solving the FE problem with financial incentives to
encourage honesty[13]. In such work a misbehaving party must forfeit previously
posted financial assets. The advent of blockchain has allowed a decentralised
ledger to stand in for a trusted third party[10,12,7,8]. Etherium smart contracts
can encode the behaviour of a trusted third party, and release Etherium tokens
should certain conditions be met[6]. This is unfortunately very expensive to
implement, relies on the security of a blockchain and the honesty of it’s nodes,
and is restricted to the exchange of cryptocurrency tokens.

All previous FE protocols with any notion of Strong Fairness use a trusted
third party in some way. The previous state-of-the-art was Optimistic as it only
required a third party to mediate in the case of a dispute[14].

15



6 Conclusion

To the best of our knowledge this is the first FE protocol satisfying a notion
Strong Fairness without requiring any third party involvement. This result was
previously widely assumed to be impossible, but can in fact be made possi-
ble by slightly relaxing the model of computation. The widely cited impossi-
bility result showed that no asynchronous deterministic two party FE protocol
with the Strong Fairness property exists[18]. We demonstrate here that a non-
deterministic two party FE protocol with Computational Strong Fairness can
exist.

Our protocol requires a constant, but very large, repeated number of rounds
to achieve the successful exchange of secrets. Therefore, it may never be consid-
ered practical to implement.

7 Further Work

The value of two-party FE with Strong Fairness is clear, which for the first
time our construction shows is possible. However, as highlighted in the Eval-
uation, the protocol presented in this work is not without flaws. The massive
per-round failure rate of M−1

M requires the protocol to be run an expected M
times. Depending on how cautiously M is selected and the security parameter
of the “secure” encryption scheme λ, this can be very large. The security of the
scheme is relegated to the realm of “good enough” in order to keep M relatively
small. There is potential for further work in hardening the scheme in this regard.

The ability to resist a Sybil-style attack is contingent on an adversary being
unable to differentiate ciphertexts produced under security parameter λ′. How-
ever, there is no reason this bound can not be further secured by sampling cr
from the range of E(λ).Enc and projecting ckY

into this larger space. This would
also require that projections onto the range of E(λ).Enc are computationally
indistinguishable from randomly sampled elements.

A Proof of Sybil Attack Resistance

This second half of Theorem 2 seems counter-intuitive and warrants some fur-
ther discussion, it is not immediately obvious why X cannot mount a bruteforce
Sybil-style attack[?]. This attack would see X engaging in the protocol and dis-
connecting after the transcript has three entries, δ =

{
cY , cX , k′Y

}
. By repeating

this process M times possibly with M false personas, as shown in Figure 6, it
would be expected that one of these samples includes a k′Y related to the key
used by Y to encrypt cY .

Unfortunately for X if they cannot distinguish between keys used by Y those
not used by Y they must attempt the bruteforce attack against each sample.
Given that E(λ′) is M times easier to attack than E(λ), but X is expected to
perform M bruteforce attacks to extract dY , a Sybil-style attack is clearly not
feasible as it would take as much effort as a direct attack against E(λ).

16



Sample 1:
{
cY 1, cX1, c

′
Y 1

}
Sample 2:

{
cY 2, cX2, c

′
Y 2

}
...

Sample 41:
{
cY 41, cX41, c

′
Y 41

}
Sample 42: {cY 42, cX42, cY0}

Sample 43:
{
cY 43, cX43, c

′
Y 43

}
...

Sample M :
{
cY M , cXM , c′

Y M

}
Fig. 6: M samples gathered as part of a Sybil-style attack against this fair ex-
change scheme. In this case Sample 42 contains a weakly encrypted ciphertext
containing the key Y used to encrypt their secret.

It is therefore of vital importance that both parties regenerate cryptographic
keys at the start of each repeat execution, and do not reuse them. Otherwise X
could correlate the most-significant bits of the key and identify the correct one
as an outlier and attempt an easier bruteforce attack.

Definition 6 (Repeat Fairness). For party X define the advantage in the
RepeatXFairnessGame defined in Figure 7 as

Advrepeatfairness
AX

(λ, λ′) = 2 Pr[RepeatXFairnessGame(λ, λ′) = 1]− 1 (43)

The following lemma proves that the ability to mount a Sybil-style attack
against our FE scheme reduces to the ability to distinguish between ciphertexts
produced under security parameter λ′.

Theorem 3 (Sybil Attack Resistance Upper Bound). For any probabilis-
tic polynomial adversaries AX and B

Advrepeatfairness
AX

(λ, λ′) ≤ Advind-cpa
B (λ′) (44)

This proof is given by a reduction from the difficulty of the RepeatXFairnessGame
in Figure 7 to the ability to win the INDCPAGame in Figure 2.

Proof. Consider RepeatXFairnessGame, and the hypothetical adversaryAX , given
in Figure 8 capable of winning the game. AX can be used as a subroutine to
construct B, given in Figure 9, an efficient adversary in the INDCPAGame.
B operates by guessing b = 1, meaning that c is an encryption of the key

m0 under E(λ′). B, operating under this guess, then simulates FE transcripts

17



RepeatXFairnessGame1(λ, λ′)

1 : dY ←$D

2 : d′
Y ← AX()OTranscript(dY )

3 : if dY = d′
Y then return 1

4 : else return 0

Fig. 7: The PFairnessGame from Figure 3 adapted to allow the adversary acting as
X access to an oracle, OTranscript(dY ), which provides FE protocol transcripts
of length 3 (i.e. δ = {cY , cX , cz}). dY is initially sampled from the set of all
possible input data D, and is then used to instantiate the oracle. Note that the
abstract parties P and Q in the original game have been replaced with their
concrete counterparts, X and Y , as this game directly related to the FE scheme
presented in this chapter.

AX OTranscript(dY )
δ

d′
Y

Fig. 8: Hypothetical adversary AX for the RepeatXFairnessGame, capable of win-
ning with an expected M queries to OTranscript.

18



m0 ← E .KGen(λ),m1 ← E .KGen(λ)
dX ←$D, dY ←$D

AX kY ← E .KGen(λ)
kX ← E .KGen(λ)
cY 0 ← E .Encm0 (dY )
cY 1 ← E .EnckY

(dY )
cX ← E .EnckX

(dX)
cr ←$C′

δ ←
{
{cY 0, cX , c} once with Pr

[
1

M

]
{cY 1, cX , cr} otherwise

δd′
Y

if d′
Y = dY then b′ ← 0

elseif AX doesn’t terminate successfully then b′ ← 1

B
m0,m1

c

b′

OEnc
m

c

Fig. 9: Adversary B; capable of winning the IND-CPA security game given the
existence of adversary AX . B starts with the guess that b = 0, that the cipher-
text c is an encryption of key m0. B runs adversary AX as a sub-process, and
simulates it’s oracle, OTranscript. The case in our FE protocol where mX = mY

is simulated by providing δ = {cY 0, cX , c} where cY 0 in encrypted under m0 and
if B’s guess is correct, c is an encryption of m0, this is provided to AX with
probability 1

M . Otherwise a transcript simulating mX 6= mY is provided with a
randomly sampled cr. If after O(M) calls to OTranscript AX has not terminated
with a correct guess of dY there is a good change B’s guess that c is an encryp-
tion of m0 is wrong. As M is constant, B can run as many sub-processes of AX
as they wish to improve their advantage to be arbitrarily close to 1.

19



for AX , which runs as a sub-process. This simulation operates by providing a
transcript δ = {cY 0, cX , c} where cY 0 is encrypted under m0 with probability 1

M ,
and δ = {cY 1, cX , cr} for randomly generated cY 1 and cr with probability M−1

M .
Note that the transcript containing c should only ever be sent once. If after
O(M) calls to OTranscript AX has not successfully extracted secret dY = d′Y
then there is a good chance that B’s guess b = 0 is incorrect. As M is constant
B can repeatedly run AX a large number of times to gain an arbitrary degree of
confidence in the correctness of their answer, b′.

∴ Advrepeatfairness
AX

(λ, λ′) ≤ Advind-cpa
B (λ′) (45)

The upper bound on adversarial advantage provided by Lemma 3 is relatively
unsatisfying. It would imply that the security of the two party FE scheme is
no better than the weakest of the cryptosystems used, E(λ′). The following
arguments restrict this bound to prove stronger security notions are satisfied.

Consider a security game in which an adversary is provided with a set of n
FE transcript samples of length three, i.e. transcripts of form δ = {cY , cX , cz},
and must select which of the samples contains a cz where cz is the encryption of
the key used to encrypt cY . This game can be further simplified by modifying
it such that the adversary outputs two plaintext messages m0 and m1 and is
then supplied with an ordered set S of size n containing n−1 encryptions of m0
and a single randomly placed encryption of m1. The adversary must identify the
index of the encryption of m1. This security game is called NINDCPAGame and
is defined more formally in Figure 10.

NINDCPAGame1(λ, n)

1 : S ← ∅
2 : b←$ {0, . . . , n− 1}
3 : k← E .KGen(λ)
4 : m0,m1 ← A()
5 : for i in{0, . . . , n− 1}
6 : S[i]← E .Enck(m0)
7 : endfor
8 : S[b]← E .Enck(m1)
9 : b′ ← A(m0,m1, S)

10 : if b = b′ then return 1
11 : else return 0

Fig. 10: The N-IND-CPA security game, in which an adversary must correctly
identify the element in S which corresponds to an encrypted m1, where all the
other elements are an encrypted m0.

20



Definition 7 (N-IND-CPA). The advantage of a probabilistic polynomial time
adversary in the
NINDCPAGame security game, as defined in Figure 10, is defined as:

Advnind−cpa
B (λ, n) = nPr[NINDCPAGame(λ,n) = 1]− 1 (46)

Intuitively, when n ≤ M it is expected that NINDCPAGame(λ′, n) an easier
game for the adversary than RepeatXFairnessGame(λ, λ′)n as defined in Figure 7
with the additional caveat of n-bounded calls to OTranscript. This intuition is
rooted in the idea that identifying a lightly encrypted version of the key, ckY

, is
surely easier than extracting the strongly encrypted data encrypted from cY .
The RepeatXFairnessGame with calls to the transcript oracle bound by n is
denoted RepeatXFairnessGamen, and the adversarial advantage is denoted by
Advrepeat−fairness−n

A (λ). The formal proof of the reduction from NINDCPAGame
to RepeatXFairnessGamen follows.

Lemma 4. Assuming that E(λ) is too strong to be directly attacked, for any n in
the range 2 ≤ n ≤ M the advantage of a probability polynomial time adversary
in the RepeatXFairnessGamen is less than advantage of a probabilistic polynomial
time adversary in the NINDCPAGame with security parameter λ.

Advrepeat−fairness−n
A (λ, λ′) ≤ Advnind−cpa

B (λ′, n) (47)

Proof. This can be easily shown by a reduction from the n-bounded RepeatXFairnessGame
to the
NINDCPAGame. Consider an adversary A capable of winning the n-bounded
RepeatXFairnessGame with non-negligible probability. This interface for this ad-
versary has already been described previously in Figure 8 as part of an earlier
proof, with the difference that it will make no more than n queries to OTranscript.

AdversaryA can be used to construct adversary B as given in Figure 11 which
is able to win the NINDCPAGame. As attacking E(λ) is considered infeasible,
A is unable to extract a value for dY until it sees a transcript of the form
δ = {cY , cX , cz} where cY = E(λ).Encm1(i) and cz = E(λ′).Enc(m1) at which
point it is able to extract the plaintext from cY . The equivalence between these
two problems requires that n is upper bounded by M , otherwise the distribution
of transcripts being sent to AX deviates from the expected distribution for the
RepeatXFairnessGamen. The other transcript samples provided to A feature valid
transcripts which have uncorrelated values for cY and cz. Therefore

∴ 2 ≤ n ≤M, Advrepeat−fairness−n
A (λ, λ′) ≤ Advnind−cpa

B (λ′, n) (48)

The next step in achieving a much tighter bound on the security for the
two party fair exchange scheme involves making the reasonable assumption that
there is no better adversarial algorithm to the NINDCPAGame then applying
an adversary A against the IND-CPA security game to each element in S in
turn until an encryption of m1 is found. This assumption seems reasonable as
checking set ownership of an element for random set S is O(|S|).

21



m0 ← E .KGen(λ),m1 ← E .KGen(λ)
dY ←$D

i← 0
AX kX ← E .KGen(λ)

cY ← E .Encm1 (i)
cX ← E .EnckX

(dX)
cz ← S[i]
i← i+ 1
δ ← {cY , cX , cz}

δ
b′

B
m0,m1

S

b′

OEnc
m

c

Fig. 11: An adversary B capable of winning the NINDCPAGame given an adver-
sary A capable of winning the n-bounded RepeatXFairnessGame. Whenever A
requests a sample transcript the cY component is set to an encryption of the in-
dex i. When A is able to correlate the key used to encrypt the data they extract
and return the index.

Assumption 6 (Attacking NINDCPAGame) There is no better algorithm to
attack the NINDCPAGame than applying an adversary subroutine against the
IND-CPA security game to each successive element of set S in turn until an
encryption of m1 is found.

This assumption implies an equivalence in the adversarial advantage against
the NINDCPAGame in λ′ and the IND-CPA security game in λ. In order to
prove this equivalence first an intermediate proof is required, which relates
NINDCPAGame in λ′ to the probability of a sequence of successes in successive
the IND-CPA security games in λ′.

Lemma 5. Given Assumption 6, the advantage of an adversary in the NINDCPAGame
is given by the probability of an adversary winning n

2 successive IND-CPA secu-
rity games.

Advnind−cpa
A (λ′, n) = (Advind−cpa

B (λ′)) n
2 (49)

Proof. Assumption 6 states there is no better algorithm for attacking the NINDCPAGame
than applying an IND-CPA adversary, B, to each element of the challenge set
S in turn until an encryption of m1 is found. This requires not only that the
adversary is able to correctly identify the single correct encryption of m1 but
also that they get no false positives on the path to the correct answer. Given
this, the B sub-processes must run successfully an average of |S|2 times before

22



a valid encryption of m1 is found. As n = |S| the expected advantage of an
adversary A in the NINDCPAGame is

∴ Advnind−cpa
A (λ′, n) = (Advind−cpa

B (λ′)) n
2 (50)

With the intermediate lemma, Lemma 5, it becomes easier to relate NINDCPAGame
in λ′ and the IND-CPA security game in λ. This reduction requires constrain-
ing M in order to prove valid values for n exist while satisfying the bounds
introduced in Lemma 4.

Lemma 6. Given that 1 ≤ M
2 + logAdvind−cpa

A (λ′)(M), there exists some n0 ≤M
such that for all n > n0

(Advind−cpa
A (λ′)) n

2 ≤ Advind−cpa
B (λ) (51)

Proof. By Assumption 4

1
M

Advind−cpa
B (λ′) = Advind−cpa

B (λ) (52)

Considering the values for n for which

(Advind−cpa
A (λ′)) n

2 ≤ Advind−cpa
B (λ) (53)

≤ 1
M

Advind−cpa
A (λ′) (54)

involves solving the following equation for n in terms of M , thus finding a value
for n0. As a probability raised to an arbitrarily large power is always smaller
than the same probability divided by a fixed fraction for a power larger than
some minimum value, a numerical value for n0 must exist. The value of n0 can
be calculated given Advind−cpa

A (λ′) and M .

(Advind−cpa
A (λ′))

n0
2 = 1

M
Advind−cpa

A (λ′) (55)
n0

2 = logAdvind−cpa
A (λ′)(

1
M

Advind−cpa
A (λ′)) (56)

n0 = 2 logAdvind−cpa
A (λ′)(

1
M

Advind−cpa
A (λ′)) (57)

= 2(logAdvind−cpa
A (λ′)(

1
M

) + logAdvind−cpa
A (λ′)(Advind−cpa

A (λ′)))
(58)

= 2(logAdvind−cpa
A (λ′)(

1
M

) + 1) (59)

= 2(logAdvind−cpa
A (λ′)(1)− logAdvind−cpa

A (λ′)(M) + 1) (60)

= 2(1− logAdvind−cpa
A (λ′)(M)) (61)

23



Therefore, for all n > n0, where n0 = 2(1− logAdvind−cpa
A (λ′)(M))

∴ ∃n0∀n ≥ n0(Advind−cpa
A (λ′)) n

2 ≤ Advind−cpa
B (λ) (62)

A bound for M can be generated such that n0 ≤ M given the following
sequence of equations.

n0 ≤M (63)
2(1− logAdvind−cpa

A (λ′)(M)) ≤M (64)

1 ≤ M

2 + logAdvind−cpa
A (λ′)(M) (65)

Therefore given 1 ≤ M
2 + logAdvind−cpa

A (λ′)(M) for every M there exists an
n0 ≤M such that for all n ≥ n0

∴ ∀M such that 1 ≤ M

2 + logAdvind−cpa
A (λ′)(M), ∃n0 ≤M, ∀n > n0, (66)

(Advind−cpa
A (λ′)) n

2 ≤ Advind−cpa
B (λ) (67)

Finally, we can use this sequence of lemmas to provide a tighter bound on
the security of the two party fair exchange scheme.

Theorem 4 (Repeat Fairness Tighter Bound). While 1 ≤ M
2 +logAdvind−cpa

A (λ′)(M)
the advantage of a probabilistic polynomial time adversary in the RepeatXFairnessGamen
is no more than the advantage of a probabilistic polynomial time adversary in
the IND-CPA security game with security parameter λ.

Advrepeat−fairness−n
A (λ, λ′) ≤ Advind−cpa

B (λ) (68)

Proof. By Lemma 4

2 ≤ n ≤M, Advrepeat−fairness−n
A (λ, λ′) ≤ Advnind−cpa

B (λ′, n) (69)

By Lemma 5

Advnind−cpa
A (λ′, n) = (Advind−cpa

B (λ′)) n
2 (70)

and so

2 ≤ n ≤M, Advrepeat−fairness−n
A (λ, λ′) ≤ (Advind−cpa

B (λ′)) n
2 (71)

By Lemma 6

∀M such that 1 ≤ M

2 + logAdvind−cpa
A (λ′)(M), ∃n0 ≤M, ∀n > n0, (72)

(Advind−cpa
A (λ′)) n

2 ≤ Advind−cpa
B (λ) (73)

Therefore given that 1 ≤ M
2 + logAdvind−cpa

A (λ′)(M) applying the transitive prop-
erty to Equation 71 and Equation 73 it must be the case that

∴ Advrepeat−fairness−n
A (λ, λ′) ≤ Advind−cpa

B (λ) (74)

24



By bounding the number of calls the adversary can make to the transcript
oracle by some value n ≤ M , we can guarantee the security is no worse than
that of the stronger cryptosystem used during the construction of the two party
fair exchange scheme, E(λ).

An interesting byproduct of Theorem 4 is that the predicate from Lemma 4
“assuming that E(λ) is too strong to be directly attacked” can be discarded.
Before, this predicate was required to ensure the adversary is required to attack
E(λ′) over E(λ) but due to the fact that for all n larger than n0 Advrepeat−fairness−n

A (λ, λ′)
is bounded by Advind−cpa

B (λ)(λ) regardless, the predicate “assuming that E(λ) is
too strong to be directly attacked” becomes meaningless.

25


