
A Note on Hybrid Signature Schemes

Nina Bindel† and Britta Hale‡ ⋆

†SandboxAQ, nina.bindel@sandboxaq.com
‡Naval Postgraduate School, britta.hale@nps.edu

Abstract This draft presents work-in-progress concerning hybrid/com-
posite signature schemes. More concretely, we give several tailored combi-
nations of Fiat-Shamir based signature schemes (such as Dilithium) or
Falcon with RSA or DSA. We observe that there are a number of signature
hybridization goals, few of which are not achieved through parallel signing
or concatenation approaches. These include proof composability (that
the post-quantum hybrid signature security can easily be linked to the
component algorithms), weak separability, strong separability, backwards
compatiblity, hybrid generality (i.e., hybrid compositions that can be
instantiated with different algorithms once proven to be secure), and
simultaneous verification. We do not consider backwards compatibility
in this work, but aim in our constructions to show the feasibility of
achieving all other properties. As a work-in-progress, the constructions
are presented without the accompanying formal security analysis, to be
included in an update.

1 Introduction

Post-quantum security is a focal point in current system design and modernization.
Due to the risk imposed by quantum computers on common cryptographic
algorithms, the National Institute of Standards and Technology (NIST) [8] has
undertaken to standardize various post-quantum algorithms. The transition to
post-quantum algorithms will be one of many challenges, ranging from algorithm
functionality within protocol constraints to full system optimization on the
trade-off between quantum resiliency and efficient operation.

Within these transition discussions has risen the topic of hybrid algorithms,
those that combine the respective security properties of standard and post-
quantum algorithms. Hybridization has been looked at for key encapsulation [4],
and in an initial sense for digital signatures [5]. Key encapsulation methods have
looked at XOR-ing a post-quantum derived key with a standard key, with security
ideally reducing to the randomness of either component. However, hybridization
of digital signatures, where the verification tag must attest to both standard and
post-quantum components is more subtle due to potential separability of the
dual signatures and the risk of downgrading attacks.
⋆ The views expressed in this document are those of the author and do not reflect the

official policy or position of the DoD or the U.S. Government.

1.1 Motivation

Before diving into the design goals for hybrid digital signatures, it is worth taking
a look on why hybrid digital signatures are desirable for some applications. This
can be broken down into three motivation components.

Post-Quantum Complexity. For a cryptographer who has been working with
post-quantum algorithms extensively, it may not immediately appear that these
algorithms are particularly complex. Figure 1 shows the NIST finalist CRYSTALS-
Dilithium algorithm – at least at a high level. It is supported by 38 pages of
specification, including specification of multiple supporting algorithms. Standard
algorithms such as RSA are often far more simple.

Figure 1. Dilithium template, without key compression. Source: [2].

In addition are the mathematical assumption at play. RSA was built on
the factoring hardness assumption that is well understood and reviewed. Many
post-quantum algorithms are built on more complex assumptions that have not
received such pervasive cryptanalysis approach investigation.

Even minor complexities may hide vulnerabilities. We can contrast this with RSA,
a legacy standard algorithm that is simple enough to teach without field specific
knowledge and whose core, “template” Sign and Verify algorithms can be written
down in a single line each. Yet, as simple as RSA may seem, implementing it
correctly has been non-trivial in wider practice over time (e.g., “Twenty Years of
Attacks on the RSA Cryptosystem” [6] and “Forty years of attacks on the RSA
cryptosystem: A brief survey” [15]). From adding padding to correct parameter

2

selection, it is clear that it can take time for understanding of finer grained
security properties to mature.

If RSA, a simple algorithm based on a simple assumption, can still face
a multitude of attacks and implementation aspects to fine-tune, it is logical
to assume that the more complex post-quantum algorithms contain subtleties
that have not yet been discovered. The case of SIKE [13,7], which made it to
the second round of the NIST competition before being broken, is a warning
that more cryptanalysis of many of the post-quantum algorithms may uncover
unexpected subtleties.

Time. The above arguments could be taken as a license to delay deployment of
cryptographic algorithms, giving time for yet further analysis and for the wheel
of research to do its work. However, that would be an egregious error for many
systems, were information security plays a vital role. Mosca’s equation [14] very
simply illustrates the risk of post-quantum transition delay:

l + d > q,

where l is the information life-span, d is the time for system transition to
post-quantum algorithms, and q is the time before a quantum computer is ready
to execute cryptanalysis.

In larger systems, including national systems, space systems, large healthcare
support systems, and critical infrastructure, where acquisition and procurement
time can be measured in years, this equation can have drastic implications.
Figure 2 shows an expanded case for such a scenario, where d covers not only
implementation, but system integration and testing, acquisition and procurement,
and system updates (e.g., replacement for situations of hardware encoding). In
short, many systems, including those that may handle data with long sensitivity
lifespans, not only do not have time to delay a post-quantum transition, but are
likely already behind. The need for quantum resistance now outranks a possible
desire for more algorithm observation time.

This conundrum – the need to transition to post-quantum resistant algorithms
now while simultaneously being aware of potential, hidden subtleties in their
resistance to standard attacks – drives transition designs towards hybridization.

1.2 Hybrid Goals

Once we conclude that combining standard and post-quantum digital signature
algorithms yields a potential advantage to security, the next step is how to design
such hybrid algorithms. More particularly, what security properties should hybrid
digital signatures provide?

Proof Composability. Proof composability is an inherent requirement in the very
term hybridization. If the component algorithms are combined in such a way that
it is not possible to prove reduction to the security properties of the respective
algorithms, then an entire new proof of security is required. An implication of

3

Figure 2. Expansion of Mosca’s equation for a hypothetical system use case with
vulnerability window shown in red. Source: [12].

this is that end users do not have the assurance that the combination builds
on the standardization processes and analysis performed to date on component
algorithms – the hybrid algorithm would be, in effect, an entirely new algorithm
of its own. Thus, the security of the hybrid digital signatures should be clearly
reducible to the standard and the post-quantum component, respectively.

Weak Non-Separability. Non-Separability was one of the earliest properties of
hybrid digital signatures to be discussed [5]. It was defined as the guarantee
that an adversary cannot simply “remove” either the standard or post-quantum
digital signatures without evidence left behind; i.e., that there are artifacts that a
carefully designed verifier may be able to identify, or that are identifiable in later
audits. We term this Weak Non-Separability (WNS), and note that it is a digital
signatures verification property in that it does not restrict an adversary from
potentially creating a valid standard-only or post-quantum-only digital signatures
from a hybrid one (a signature stripping attack), but rather implies that such a
digital signatures will contain artifacts of the separation. Thus authentication is
not simply provided by the sender to the receiver through correct verification
of the digital signatures, but rather potentially through further investigation on
the receiver side that may extend well beyond traditional signature verification
behavior. For instance, this can intuitively be seen in cases of a message containing
a context note on standard and post-quantum authentication, that is then signed
by e.g. a standard and then a post-quantum signature. If an adversary removes
the outer signature but cannot forge the inner, then artifacts in the message
itself point to the possible existence of a post-quantum signature such as a label
stating “this message must be hybrid signed”.1 There is a limit, however, to what
insight it can give on the missing signature.

1 It should be noted in this analogy that an attacker removing the post-quantum is
likely doing so due to that it can forge the standard signature, making it trivial to
manipulate the message and remove the artifacts. Such considerations are another
caveat to the weakness in WNS.

4

Strong Non-Separability. Non-Separability can be further strengthened from the
weak version to fully restrict an adversary from separating the hybrid digital
signatures. Under Strong Non-Separability (SNS), an adversary cannot take
as input a hybrid digital signatures and output either a solely standard or
a solely post-quantum digital signatures that will verify correctly. In other
words, separation implies not only artifacts of the hybrid, but specifically that
those artifacts are in the signature and that a separated signature will fail
verification entirely. Thus, SNS restricts creation of valid partial digital signatures;
authentication is provided by the sender to the receiver through correct verification
of the digital signatures, as in traditional signature security experiments.

As an illustrative example distinguishing WNS from SNS, consider the case
of component algorithms Σ1.Sign and Σ2.Sign where the hybrid signature is
computed as a concatenation (σ1, σ2), where σ1 = Σ1.Sign(hybridAlgID, M) and
σ2 = Σ2.Sign(hybridAlgID, M). In this case, separation and delivery of a new
message M∗ = (hybridAlgID, M) along with signature σ1 and Σ1.pk could allow
for correct verification and the hybrid artifact is embedded in the message instead
of the signature (identifiable through further investigation). Thus, this case shows
WNS.

Some work [16] has looked at reliance on the public key certificate chains to
explicitly define hybrid use of the public key. Namely, that Σ1.pk cannot be used
without Σ2.pk. This implies pushing the hybrid artifacts into the protocol and
system level and a dependency on the security of other verification algorithms
(namely those in the certificate chain). External dependencies such as this may
include artifacts and potentially even provide a degree of practical SNS based
on dependencies at the system level. However, since those artifacts are outside
the security definition scope for a digital signature, namely definitions such
Existential Unforgeability under a Chosen Message Attack (EUF-CMA), we do
not include them in the SNS category.

Backwards/Forwards Compatibility. Backwards compatibility refers to the prop-
erty where a hybrid algorithm may also be used for a standard-only verification
process i.e., a legacy receiver may take hybrid post-quantum digital signatures
and verify them using only the standard verification algorithm. This necessarily
implies that no post-quantum verification takes place. However, it does provide
an option to transition various sender system attributes to post-quantum algo-
rithms while still supporting select legacy receivers. Notably, this is a verification
property; the sender has provided hybrid digital signatures, but the verifier, due
to internal restrictions, only has the capacity to verify one signature.

Backwards compatibility may be further decomposed to subcategories where
signature keys are either separate or hybrid (i.e., Σ1.pk and Σ2.pk or Σh.pk =
(Σ1.pk, Σ2.pk)) such as to support implementations that cannot recognize hybrid
schemes, or that a hybrid signature can be decomposed by a system that recognizes
the hybrid signature but can only verify a component algorithm.

There is an inherent mutual exclusion between backwards compatibility and
SNS. While WNS allows for a valid separation under leftover artifacts, SNS will
ensure failed verification if a receiver attempts separation.

5

Forwards compatibility has also been a consideration in hybrid proposals [3].
Forward compatibility assumes that hybrid signatures will be used for some
time, but that eventually all systems will transition to the post-quantum only
components of such signatures. This is very similar to the backwards compatibility
case and may imply separability of a hybrid algorithm; however it could also
simply imply capability to support two separate signatures, one for hybrid and
one for post-quantum. Thus the key distinction between backwards and forwards
compatibility is that backwards compatibility may be needed for legacy systems
that cannot use or potentially even recognize a hybrid algorithm (or potentially
even a post-quantum algorithm at all), whereas in forwards compatibility the
system has those capabilities and can choose what to support.

Simultaneous Verification. Simultaneous Verification is a further extension of SNS,
requiring that not only both post-quantum and standard signature components
be present to achieve a successful digital signatures verification, but that the
verifier cannot “quit” the verification process before both components are verified.

Simultaneous Verification mimics traditional digital signatures guarantees.
Authentication is a property that the sender provides to the receiver. Meanwhile
the sender has no knowledge of whether or not the receiver correctly verified
the digital signatures. What the sender is assured of is that one of two cases
occurred: either 1) the receiver ignored the digital signatures or 2) the receiver
initiated verification of the digital signatures (resulting in either successful or
failed verification).

WNS complicates this situation, resulting in six cases instead of two: 1) the
receiver ignored the digital signatures, 2) the receiver verified the full hybrid
combination (with success or failure); 3) the receiver initiated verification of the
hybrid digital signatures, but terminated once the standard component succeeded
or failed; 4) the receiver initiated verification of the hybrid digital signatures, but
terminated once the post-quantum component succeeded or failed; 5) the receiver
initiated verification of the standard signature only (with success or failure), and
6) the receiver initiated verification of the post-quantum signature only (with
success or failure). It may initially appear that (3) and (5) (resp. (4) and (6))
are similar, however (3) and (4) are precisely the cases eliminated by SNS, i.e.
that the verifier does not take as in put the hybrid digital signatures, instead
only attempting verification on one component.

SNS thus improves the situation to only four options. Still, the verifier can
still terminate upon correctly checking only one component signature without
actually verifying both parts. One could argue that a receiver who has checked
the accuracy of their implementation should be assured that both components
are verifying. This misconstrues the original intent though, which is to correctly
mirror traditional digital signatures properties in hybrid digital signatures; ideally,
the sender should be assured that there are only two options: 1) ignore the digital
signatures or 2) verify the digital signatures (resulting in either failure or full
verification).

Simultaneous Verification addresses this property. It ensures that both com-
ponent algorithms verify simultaneously; alternatively phrased, it is not possible

6

to terminate hybrid verification with a success verification of one component
algorithm without also knowing if the other component succeeded or failed.

Hybrid Generality. Hybrid digital signatures can be designed as a one-off instance
– a combination of two digital signatures – in a process that must again be
repeated for any other two signature combinations. Such processes are highly
specific. Consequently, hybrid generality can be achieved through focusing design
around inherent and common structures of component digital signatures. For
instance, since multiple signature schemes use a Fiat-Shamir Transform, a hybrid
scheme based on the transform can be made that is then generalizable to all
such signatures. Such generality can also result in simplified constructions where
as more tailored hybrid variants might be more efficient in terms of sizes and
performance. It is key to find a balance of efficiency and generality, as more
general constructions avoid design-specific attack vectors.

1.3 Contribution

In this work, we target the following properties: Proof Composablity, SNS, and
Simultaneous Verification (a combination we term true hybrid). Simultaneous
Verification is interesting in that it is a very strong property. While some de-
velopers may choose to forego it and achieve only SNS for a given use case,
we note that user understanding of security properties is challenging enough
without adding the subtle caveats present in e.g., WNS or SNS. Aligning hybrid
properties to those traditionally expected from digital signatures ensures a more
consistent understanding of the properties achieved by a digital signatures, which
is particularly desirable in the unreliable world brought into effect by a potential
quantum adversary. Furthermore, Simultaneous Verification has never before
been achieved for hybrid digital signatures, which begs the question of whether
that is possible. In this work, we show that Simultaneous Verification is achievable
and provide it for a number of algorithm combinations. In addition, our hybrid
combiners achieve shorter signatures than concatenation of the standard and
post-quantum signatures in some cases, although the saving are little compared
to the often large post-quantum signatures.

We aim for a generality of construction where possible, i.e., through use a Fiat-
Shamir (FS) transform [10], such that any signature based on a FS transform may
be “plugged” into the hybrid algorithm, with a plug-and-play design not only on
hybrid operation but also with a provided proof. Thus, we present combinations
such as RSA-FS and DSA-FS, that are applicable to the wide variety of FS-based
digital signatures available. Moreover, we present combinations of RSA and DSA
with Falcon (although DSA-Falcon does not satisfy all our goals).

1.4 Outline

Section 2 provides a high-level scale comparison of hybrid approaches, specifically
focusing on a non-separability ‘scale’ of approaches and blackbox scale of how
modular component algorithms can be combined. Section 3 describes preliminary

7

notation and basic definitions. Section 4 introduces true hybrid constructions,
including FS-FS, FS-RSA, FS-DSA, Falcon-RSA, and FS-DSA.

2 Comparisons of Hybrids

In this section, we sketch out a scale comparison for hybrid signature schemes
as there are various notions and meanings in the literature (as also differently
discussed in [9]). These scales provide a comparative categorization of schemes –
both the ones presented in this paper as well as basic approaches such as nested
and concatenated signatures. We separate out two different categorisations (degree
of hybridization and degree of blackbox modularity). These are related but do not
correspond exactly to each other and are often two important points of discussion
when security goals of hybrid signatures are discussed.

2.1 Non-separability

Non-separability is not a singular definition but rather is a scale, representing
‘degrees’ of separability hardness. Figure 4 shows the separability spectrum (in
blue) with example constructions is given (in green).

On the very left of the spectrum are schemes in which one of the ingredient sig-
natures can be stripped away with the verifier not being able to detect the change
during verification. An example of this (depending on the exact implementation
details) could be a simple concatenation of signatures. Nested signatures (where
a message is signed by one component algorithm and then the message-signature
combination is signed by the second component algorithm) may also fall into
this category, dependent on whether the inner or outer signature is ‘stripped’
off. Under a weak hybrid failure, such that the outer signature is stripped off,
no artifact of the hybrid might remain (dependent on various implementation
details).

Next on the spectrum are weakly non-separable signatures. Under weak
non-separability, if one of the composite signatures of a hybrid is removed,
artifacts of the hybrid will remain. This may enable the verifier to detect if
an ingredient signature is stripped away from a hybrid signature, but that
detectability depends highly on the type of artifact. For example, under a
concatenated ECDSA-Dilithium hybrid where a certified ECDSA-Dilithium
hybrid public key combination is required, the ECDSA component public key may
be used to verify the ECDSA-only component signature. In this case, detection
depends on the ‘artifact’ of the implementation requirement of a certified hybrid
public key. This example illustrates that whether a hybrid signature is separable or
(weakly) non-separable might also depend on the implementation on the protocol
beyond the algorithmic level – i.e., on security aspects outside of standard
definitions such as EUF-CMA. Nested signatures offer another example of this
under a strong hybrid failure, where the verifier could be tricked into interpreting
a new message as the message/inner signature combination and verify only the
outer signature. In this case, the inner signature-tag is an artifact.

8

Figure 3. Spectrum (non-) separability of hybrid signature schemes

Third on the scale is a stronger non-separability notion, in which separability
detection is dependent on artifacts in the signature itself. Unlike in weak non-
separability, where artifacts may be in the actual message, the certificate, or
in other non-signature components, this notion more closely ties to traditional
algorithm security notions (such as EUF-CMA) where security is dependent on
the internal construct of the signature algorithm and its verification. In this type,
the verifier is enable to detect artifacts on an algorithmic level during verification.
For example, the signature itself encodes the information that a hybrid signature
scheme is used. Examples of this type may be found in our Alg. 16/17 and Alg.
18/19 examples in Section 4 if a ‘loose’ verification is applied if the verifier chooses
to skip the b = 1 check.

For schemes of the strongest non-separability notion, verification fails not
only when one of the ingredient signatures is missing but also if the verifier fails
to verify both signatures. This non-separability construct most closely mirrors
traditional digital signatures where, assuming that the verifier does verify a
signature at all, the result is either a positive verification of a the full signature
or a failure if the signature is not valid. For hybrid signatures, a ‘full signature’
implies both component algorithms, and therefore the strongest non-separability
notion enforces an all-or-nothing approach to verification. We focus this work
on the viability of achieving such ultimate non-separability goals. Per NIST
definition [1], this strongest non-separability notion also guarantees a hybrid
verification, i.e. “verification of the [hybrid] signature requires all of the component
signatures to be successfully verified.” Thus, hybrid verification for other forms
of non-separability notionally depend on that, when a signature if verified, no
separation has taken place. More separable signatures that have been subject to
a separation attack of any variety thus do not achieve hybrid verification.

2.2 Black Box Scale

On a practical notes, it is interesting to consider how entanglement of two
component schemes for the goal of creating a hybrid digital signature affects
approved use. This includes NIST guidance and FIPS approval considerations.
NIST provides the following guidance (emphasis added),

9

Assume that in a [hybrid] signature, one signature is generated with a
NIST-approved signature scheme as specified in FIPS 186, while another
signature(s) can be generated using different schemes, e.g., ones that
are not currently specified in NIST standards...[hybrid] signatures can
be accommodated by current standards in “FIPS mode,” as defined in
FIPS 140, provided at least one of the component methods is a properly
implemented, NIST-approved signature algorithm. For the purposes of
FIPS 140 validation, any signature that is generated by a non-approved
component scheme would not be considered a security function, since
the NIST-approved component is regarded as assuring the validity of the
[hybrid] signature. [1]

The emphasized text point to two things: 1) the signature scheme for one
of the component hybrids must be approved and 2) that said algorithm must
be properly implemented. This leaves some ambiguity as to whether only the
algorithm must be approved and well implemented, or if that implementation
must go through an approvals process as well. As such, there is a “black box
scale” that developers may consider as to whether they are using at least one
approved component algorithm (“black box algorithm”), or whether the imple-
mentation of that component algorithm has gone through an approvals review
(thus making a “black box implementation”). The former ‘black box algorithm’
would suggest a straightforward path for FIPS-140 approvals based on the NIST
guidelines; however, it is not inconceivable that using a ‘black box implementation’
could automate much of the certification review and therefore be attractive to
developers.

We provide a scale for the different nuances of black box properties in Fig-
ure 4, together with respective example constructions. In addition the ‘black box
algorithm’ options (represented as the 1 or 2 approved FIPS Algorithm box in
blue) and the ‘black box implementation’ options (represented as the 1-approved
and 2-approved fIPS implementation alternatives in blue), we also include a
0-approved hybrid approach for completeness of scale. This aligns to brand new
signature algorithms that are reducible to hybrid hardness assumptions but
require e.g., fresh NIST approval.

We align Alg. 10/11, 18/19, and 20/21 from this paper to the ‘black box
algorithm’ interpretation. However, it is worth noting that the algorithmic modi-
fications to either the standard or post-quantum component algorithms in these
cases are minor (such as the inclusion if extra information in a hash). Since an
addition, however minor, to an implementation implies that the implementa-
tion is not black box, we show these alignments conservatively. The remaining
algorithms we provide in this paper align to either a full component black box
implementation or event a both-component algorithm black box implementation
approach.

10

Figure 4. Spectrum of hybrids regarding whether ingredient signature schemes are use
in a black-box way

3 Preliminaries

3.1 Digital signature schemes and unforgeability security definitions

We start be defining a signature scheme.

Definition 1 (Signature scheme). A digital signature scheme Σ is a tu-
ple Σ = (KeyGen, Sign, Verify) of algorithms, with message space m ∈ M and
signature space σ ∈ S:

– KeyGen()← (sk, pk): A probabilistic key generation algorithm that returns a
secret signing key sk and public verification key pk.

– Sign(sk, m) ← σ: A probabilistic signature generation algorithm that takes
as input a signing key sk and a message m ∈ M, and outputs a signature
σ ∈ S.

– Verify(pk, m, σ) ← 0 or 1: A verification algorithm that takes as input a
signature verification key pk, a message m ∈ M, and a signature σ ∈ S,
and returns a bit b ∈ {0, 1} indicating whether or not the signature verifies
correctly under the public key. If b = 1, we say that the algorithm accepts,
otherwise we say that the algorithm rejects the signature σ on the message
m.

We require that
Verify(pk, m, Sign(sk, m)) = 1

for any honestly generated pair KeyGen()→ (sk, pk).
If a proof for Σ is being given in the random oracle model, we use HΣ to

denote the space of functions from which the random hash function is randomly
sampled.

11

ExptEUF-CMA
Σ (A):

0: qS ← 0
1: (sk, pk)←$ KeyGen()
2: ((m∗

1, sig∗
1), . . . , (m∗

qS+1, sig∗
qS+1)) ←$AOS(·)(pk)

3: If (Verify(pk, m∗
i , sig∗

i) = 1 ∀ i ∈ [1, qS + 1]) ∧
(
m∗

i ̸= m∗
j ∀ i ̸= j

)
:

4: Return 1
5: Else return 0

Signing oracle OS(m):

8: qS ← qS + 1
9: sig←$ Sign(sk, m)

10: Return sig to A

Verification oracle OV (m, sig):

11: b← Verify(pk, m, sig)
12: Return b to A

Figure 5. EUF-CMA experiment in the random oracle models.

We say a signature scheme is secure if it is existentially unforgable against
chosen-message attacks (EUF-CMA). More concretely, we say it is secure if the
advantage

AdvEUF-CMA
Σ (A) = Pr

[
ExptEUF-CMA

Σ (A) = 1
]

against the unforgability game defined in Fig. 5 is negligible in the security
parameter.

3.2 Relevant signature schemes from the literature

As we are presenting hybrid signature constructions tailored to different important
schemes from the literature, we introduce these schemes with a common notation
next. We do not present these schemes in detail e.g., inclusive of signing key
generation, but rather the high-level sign and verify steps expected. We assume
that these schemes are well known and details can be found in appropriate
descriptions.

Signatures based on the Fiat-Shamir transform. The Fiat-Shamir trans-
form can be used to construct a signature scheme from a Σ protocol between a
prover and a verifier. Let H and D be hash functions, where D computes the
digest of the message-to-be-signed. Moreover, we define P to be the function
computing the prover’s commitment (w) that the challenge (c) is computed over,
and let f to be function computing the prover’s response (z) in the Σ protocol.
Furthermore, we define v to be the verifier’s verification function and Rec the
reconciliation functions that is used to compute the prover’s commitment during

12

signature verification. For correctness of the signature scheme, it needs to hold
that P (sk, rand) = Rec(c, z, pk) for honestly generated sk, pk, rand, c and z.

Algorithm 1 and Algorithm 2 show the basic sign and verify functions for a
Fiat-Shamir based signature scheme.

Since Dilithium is a very prominent FS-based signature scheme, we do not
give its description here. It is important to note that Dilithium is a ‘FS with
aborts signature scheme’, which is irrelevant for our theoretic discussion of the
hybrid signature scheme but of relevance for implementations.

Algorithm 1 Sign of FS[H, D]
Require: m, sk
Ensure: sig = (c, z)

1: rand←$ Rand
2: w ← P (sk, rand)
3: c← H(w, D(m))
4: z ← f(c, rand, sk)
5: return (c, z)

Algorithm 2 Verify of FS[H, D]
Require: m, (c, z), pk
Ensure: {1, 0}▷ accept, reject signature

1: w ← Rec(c, z, pk)
2: b← v(pk; c, z, D(m))
3: if b ∧

(
c = H(w, D(m))

)
then

4: return 1
5: end if
6: return 0

RSA signature scheme. Our high-level description for the RSA signature
generation and verification can be found in Algorithm 3 and Algorithm 4, respec-
tively. We assume H to be a hash function, and pad to be appropriate padding
for RSA.

Algorithm 3 Sign of RSA[H]
Require: m, sk
Ensure: sig = s

1: c← H(m)
2: s← (c∥pad)sk mod n
3: return s

Algorithm 4 Verify of RSA[H]
Require: m, s, pk
Ensure: {1, 0}▷ accept, reject signature

1: (c∥pad)← (s)pk mod n
2: ctest ← H(m)
3: if c = ctest then
4: return 1
5: end if
6: return 0

13

DSA signature schemes. We recall a high-level description of DSA’s signature
generation and verification in Algorithm 5 and Algorithm 6, respectively. Let
H : {0, 1}∗ → Zq be a hash function with Zq = Z/q and Z∗

q the set of inverse
elements in Zq. Moreover, let f be a function mapping from a group G to Zq. A
DSA public key is defined as (G, q, g, y) for a group G with generator g, modulus
q, and y = gx for secret key (G, q, g, x).

Algorithm 5 Sign of DSA[H]
Require: m, sk
Ensure: sig = (r, s)

1: r ← 0, s← 0
2: while r = 0 or s = 0 do
3: k←$ Z∗

q

4: r ← (f(gk) mod p) mod q
5: s← k−1 · (H(m) + xr) mod q
6: end while
7: return (r, s)

Algorithm 6 Verify of DSA[H]
Require: m, sig = (r, s), pk
Ensure: {1, 0}▷ accept, reject signature

1: if r =
(
f(gH(m)·s−1

·
yr·s−1

) mod p
)

mod q then
2: return 1
3: end if
4: return 0

Falcon signature scheme. Falcon is based on the hash-and-sign paradigm for
lattice-based cryptography that has been used int he (GPV) signature scheme by
Gentry, Peikert, and Vaikuntanathan[11]. To achieve its higher performance and
rather small size, Falcon uses a rather complicated trapdoor sampling algorithm.
The details of this sampler are not of importance for the theoretical discussion
of our constructions (although the details are important for implementations of
such), and as such are omitted in our high-level explanation of the key generation,
signature generation, and signature verification given in Algorithm 7, Algorithm 8,
and Algorithm 9, respectively.

Let F be a hash function and f1 be the trapdoor function that outputs
elements of small Euclidean norm. In particular, the Euclidean norm should be
smaller than an integer β as checked in the signature verification.

Algorithm 7 KeyGen of Falcon
Require: -
Ensure: sk, pk
1: sk = g,−f, G, F polynomials with small coefficients
2: pk = h = gf−1 mod q
3: return sk, pk

14

Algorithm 8 Sign of Falcon
Require: sk, m
Ensure: (r, z2)
1: r ←$ Rand
2: c← F (r||m)
3: (z1, z2)← f1(c, sk) such that z1 + z2h = c mod q
4: return (r, z2)

Algorithm 9 Verify of Falcon
Require: pk, m, (r, z2)
Ensure: accept, reject
1: c← F (r||m)
2: z1 ← c− z2h mod q
3: if ||(z1, z2)|| ≤ β then
4: return accept
5: end if
6: return reject

4 True Hybrid / Parallel Schemes

Now we introduce a selection of true hybrid signature schemes, Σh. For the
post-quantum sub-algorithm selection, we use 1) a generalized Fiat-Shamir based
approach, for which Σh will hold for any Fiat-Shamir based post-quantum scheme,
and 2) Falcon for contrast with a particular post-quantum scheme. For standard
sub-algorithm selection, we provide for Fiat-Shamir based schemes, RSA and
DSA. In particular, we provide a hybrid combination for DSA due to the ease in
demonstrating the standard sub-components.

In what follows, let Σ1 = (KeyGen1, Sign1, Verify1) and Σ2 = (KeyGen2, Sign2,
Verify2). Moreover, let Σh = (KeyGenh, Signh, Verifyh), where KeyGenh always
returns pk = (pk1, pk2) and sk = (sk1, sk2) with (pk1, sk1) ← KeyGen1() and
(pk2, sk2)← KeyGen2().

4.1 FS-FS

A hybrid digital signature that combines two Fiat-Shamir based sub-algorithms
can be realized elegantly, namely by selectively combining the commitment hash
step in both schemes, see Algorithm 10 and Algorithm 11. This results in a
signature size savings as only one commitment component must be transmitted
in order to verify the signature, i.e, compared to the concatenation of two FS
signatures, the signatures resulting from our FS-FS hybrid construction are
smaller by the size of one hash output. Let Σ1 = FS1[H, D] and Σ2 = FS2[H, D]
are both Fiat-Shamir signature schemes.

Correctness of our FS-FS construction follows directly from the correctness
of the ingredient FS signature schemes.

15

Algorithm 10 Signh of Σh =
FS-FS[Σ1, Σ2, H, D]
Require: m, sk
Ensure: sigh = (c, z1, z2)

1: rand1←$ Rand
2: rand2←$ Rand
3: w1 ← P1(sk1, rand1)
4: w2 ← P2(sk2, rand2)
5: c← H((w1, w2), D(m))
6: z1 ← f1(c, rand1, sk1)
7: z2 ← f2(c, rand2, sk2)
8: return (c, z1, z2)

Algorithm 11 Verifyh of Σh =
FS-FS[Σ1, Σ2, H, D]
Require: m, sigh = (c, z1, z2), pk
Ensure: {1, 0}▷ accept, reject signature

1: w1 ← Rec1(c, z1, pk1)
2: w2 ← Rec2(c, z2, pk2)
3: b1 ← v1(pk1; c, z1, D(m))
4: b2 ← v2(pk2; c, z2, D(m))
5: if b1∧b2∧

(
c = H(w1, w2, D(m))

)
then

6: return 1
7: end if
8: return 0

Theorem 1 (EUF-CMA security of FS-FS in the ROM). Let either
Σ1 = FS[H, D] or Σ2 = FS[H, D] be EUF-CMA secure in the random oracle
model, D be a collision resistant hash function, and H be a second pre-image
resistant hash function. Then Σh = FS-FS[Σ1, Σ2, H, D] is EUF-CMA secure in
the random oracle model.

4.2 FS-RSA

Let Σ1 = FS[F, D] be a Fiat-Shamir signature scheme and Σ2 = RSA[F] be
RSA. Here it is required that the hash algorithm used in RSA be the same
as one of those used in the FS scheme. Compared to the concatenation of a
FS signature and an RSA signature, the signatures resulting from our FS-RSA
hybrid construction are smaller by the size of one hash output.

16

Algorithm 12 Signh of Σh =
FS-RSA[Σ1, Σ2, F, D]
Require: m, sk
Ensure: sigh = (z, s)

1: rand←$ Rand
2: w ← P (sk1, rand)
3: c← F (w, D(m))
4: z ← f(c, rand1, sk1)
5: s = (c||pad)sk2 mod n
6: return (z, s)

Algorithm 13 Verifyh of Σh =
FS-RSA[Σ1, Σ2, F, D]
Require: m, sigh = (z, s), pk
Ensure: {1, 0}▷ accept, reject signature

1: (c||pad)← (s)pk2 mod n
2: w ← Rec(c, z, pk1)
3: Check v1(pk1; c, z, D(m))
4: if c = F (w, D(m)) then
5: return 1
6: end if
7: return 0

4.3 Falcon-RSA

Very similarly, we can construct Falcon-RSA: Σ1 is instantiated with Falcon (i.e.,
Σ1 = Falcon[F]) and Σ2 = RSA[F] is RSA. Note that this requires that the
same hash algorithm, F , be used in both schemes. For clarity, we sample random
values as r ←$ Rand in Falcon, vs. rand←$ Rand in FS.

Compared to the concatenation of an RSA signature and a Falcon signature,
the signatures resulting from our Falcon-RSA hybrid construction are larger since
we need to communicate two ring elements z2 and z3 (using an encoding of the
randomness r) instead of one ring element and one random seed as in the original
Falcon signature scheme, in addition to the RSA signature s.

Correctness follows directly by construction of z3 and by the definition of the
trapdoor sampling function f1 that returns elements with small Euclidean norm.

Theorem 2 (EUF-CMA security of Falcon-RSA in the ROM). Let either
Σ1 = Falcon[F] or Σ2 = RSA[F] be EUF-CMA secure in the random oracle
model, F be a collision resistant hash function. Then Σh = Falcon-RSA[Σ1, Σ2, F]
is EUF-CMA secure in the random oracle model.

17

Algorithm 14 Signh of Σh =
Falcon-RSA[Σ1, Σ2, F]
Require: m, sk1, sk2, pk1 = h
Ensure: sigh = (z2, z3, s)

1: r ←$ Rand
2: c← F (r||m)
3: (z1, z2) ← f1(c, sk1) such that z1 +

z2h = c mod q
4: s = (c||pad)sk2 mod n
5: z3 ← z1 ⊕ r
6: return (z2, z3, s)

Algorithm 15 Verifyh of Σh =
Falcon-RSA[Σ1, Σ2, F]
Require: m, sigh = (z2, z3, s), pk2, pk1
Ensure: {1, 0}▷ accept, reject signature

1: (c||pad)← (s)pk2 mod n
2: z1 ← c− z2pk1 mod q
3: r ← z1 ⊕ z3
4: if ||(z1, z2)|| ≤ β ∧ c = F (r||m) then
5: return 1
6: end if
7: return 0

4.4 FS-DSA

Next we turn our attention to the FS-DSA combination, where Σ1 = FS[F, D],
i.e., instantiated with a Fiat-Shamir scheme, and Σ2 = DSA[F] is DSA. Similarly
to the Falcon-RSA combination in Section 4.3, the hash function F is used in
both schemes.

Here we present two FS-DSA variants, illustrating that there may sometimes
be a variety of approaches to hybridization that still achieve the intended hy-
bridization goals. While it may not be readily apparent, these two constructions
actually work in similar ways, i.e. by XOR-ing hash outputs so as to mask the
digest of the message. What differs is whether the masking takes place internally
to the DSA computation or internally to the FS computation. We find that such
a masking approach helps to ensure simultaneous verification (one of our original
hybridization goals). Note also, that this issue arises for DSA variants and was
not present in FS-FS; this is due to the fact that the DSA signature verification
algorithm conclusion step is not a comparison of digests, but rather a comparison
of exponentiation values (r). Hybridization of digital signatures that conclude
with a digest comparison allow for more straight forward means of mixing the
two components to ensure simultaneous verification.

In contrast to our hybrid FS-FS and FS-RSA variants where the construction
yields a signature smaller than the concatenation of two component signatures,
or Falcon-RSA which results in a larger signature, our FS-DSA variants match
directly to the total signature size of two component signatures, i.e., the signature
size and format is the same as if two concatenated signatures were used. On one
hand, this means that signature space is not conserved in the hybridization process.
However, on the other hand, we note that there may be security benefits to
sending a total hybrid signature that matches the format of component algorithm
outputs: it is difficult for an adversary to know whether the signature sent is a
true hybrid or simply a pair of concatenated signatures.

18

The correctness of our first FS-DSA construction in Algorithm 16 /Algo-
rithm 17 follows from the correctness of the FS scheme (which gives b = 1 in line
2 and that P (sk1, rand1) = Rec(c, z, pk1)) and the correctness of DSA to ensure
r = f(gF (w,D(m))s−1(pk2)rs−1)) mod p mod q. Similarly, the correctness follows
for our second FS-DSA construction in Algorithm 18/Algorithm 19.

Algorithm 16 Signh of Σh =
FS-DSA[Σ1, Σ2, F, D]
Require: m, sk
Ensure: sigh = (z, c, r, s)

1: r ← 0, s← 0
2: rand1←$ Rand
3: w ← P (sk1, rand1)
4: while r = 0 or s = 0 do
5: k←$ Z∗

q

6: r ← (f2(gk) mod p) mod q
7: s ← k−1(F (w, D(m)) +

(sk2)r) mod q
8: c← F (w, D(r, s)⊕D(m))
9: z ← f1(c, rand1, sk1)

10: end while
11: return (z, c, r, s)

Algorithm 17 Verifyh of Σh =
FS-DSA[Σ1, Σ2, F, D]
Require: m, sigh = (z, c, r, s), pk
Ensure: {1, 0}▷ accept, reject signature

1: w ← Rec(c, z, pk1)
2: b← v1(pk1; c, z, D(r, s)⊕D(m))
3: if (b = 1) ∧ (r =

f(gF (w,D(m))s−1
(pk2)rs−1

)) mod p mod q
then

4: return 1
5: end if
6: return 0

Theorem 3 (EUF-CMA security of FS-DSA in the ROM). Let either
Σ1 = FS[F, D] or Σ2 = DSA[D] be EUF-CMA secure in the random oracle model,
D be a collision resistant hash function, and F be a second-preimage resistant
hash function. Then Σh = FS-DSA[Σ1, Σ2, D, F] as given in Algorithm 16 and
Algorithm 17 (resp., as given in Algorithm 18 and Algorithm 19) is EUF-CMA
secure in the random oracle model.

Note that it should be possible might to transform our FS-DSA constructions
Algorithm 16/Algorithm 17 and Algorithm 18/Algorithm 17 to FS-ECDSA
constructions.

19

Algorithm 18 Signh of Σh =
FS-DSA[Σ1, Σ2, F, D]
Require: m, sk1, sk2
Ensure: sigh = (c, z, r, s),

1: r ← 0, s← 0
2: rand←$ Rand
3: w ← P (sk1, rand)
4: c← F (w, D(m))
5: while r = 0 or s = 0 do
6: k←$ Z∗

q

7: r ← (f2(gk) mod p) mod q
8: u← F ((w, r), D(m))
9: z ← f1(u, rand, sk1)

10: s← k−1(u⊕ c + (sk2)r) mod q
11: end while
12: return (u, z, r, s)

Algorithm 19 Verifyh of Σh =
FS-DSA[Σ1, Σ2, F, D]
Require: m, sigh = (u, z, r, s), pk2, h
Ensure: {1, 0}▷ accept, reject signature

1: w ← Rec(u, z, pk1)
2: c← F (w, D(m))
3: b← v(pk1; c, z, D(m))
4: if (b = 1) ∧ (r = f(g(F ((w,r),D(m))⊕c)·s−1

·
pkr·s−1

2)) mod p mod q then
5: return 1
6: end if
7: return 0

4.5 Falcon-DSA

Finally, we construct Falcon-DSA, where Σ1 is instantiated with the Falcon
signature scheme and Σ2 with DSA. As in Falcon-RSA, the schemes share the
same hash algorithm, F .

The hybrid scheme signature size for Falcon-DSA are larger than in a con-
catenated approach.

It is important to note that our Falcon-DSA construction does not satisfy the
goal of simultaneous verification. Such a construction is left for future work.

Theorem 4 (EUF-CMA security of Falcon-DSA in the ROM). Let either
Σ1 = Falcon[F] or Σ2 = DSA[F] be EUF-CMA secure in the random oracle
model, F be a collision resistant hash function. Then Σh = Falcon-DSA[Σ1, Σ2, F]
is EUF-CMA secure in the random oracle model.

20

Algorithm 20 Signh of Σh =
Falcon-DSA[Σ1, Σ2, F]
Require: m, sk1, sk2, pk1 = h
Ensure: sigh = (r1, z2, r2, s)

1: r2 ← 0, s← 0
2: k←$ Z∗

q

3: r1 ←$ Rand
4: while r2 = 0 or s = 0 do
5: r2 ← (f2(gk) mod p) mod q
6: c← F ((r2, r1)∥m)
7: (z1, z2)← f1(c, sk1) such that z1 +

z2h = c mod q
8: s← k−1(c + (sk2)r2) mod q
9: end while

10: return (r1, z2, r2, s)

Algorithm 21 Verifyh of Σh =
Falcon-DSA[Σ1, Σ2, F]
Require: m, (r1, z2, r2, s), pk1 = h, pk2
Ensure: {1, 0}▷ accept, reject signature

1: c← F ((r2, r1)∥m)
2: z1 ← c− z2h mod q
3: b← ||(z1, z2)||
4: if

c =
F

((
f2(gF ((r2,r1),m)·s−1

(pk2)r2·s−1
)

mod p
)

mod q, r1), m
)
∧ (b < β) then

5: return 1
6: end if
7: return 0

Acknowledgments

We thank Felix Günther, John Gray, Mike Ounsworth and Scott Fluhrer, for
fruitful discussion in particular around the spectrum of hybrid constructions.

References

1. Post-quantum cryptography: Faqs. Tech. rep., National Institute of Stan-
dards (NIST), https://csrc.nist.gov/Projects/post-quantum-cryptography/
faqs, created January 03, 2017, Updated July 17, 2023.

2. Bai, S., Ducas, L., Kiltz, E., Lepoint, T., Lyubashevsky, V., Schwabe, P., Seiler, G.,
Stehlé, D.: Crystals-dilithium: Algorithm specifications and supporting documenta-
tion (version 3.1). Tech. rep. (2021), https://pq-crystals.org/dilithium/data/
dilithium-specification-round3-20210208.pdf

3. Becker, A., Guthrie, R., Jenkins, M.: Non-Composite Hybrid Authen-
tication in PKIX and Applications to Internet Protocols. Internet-
Draft draft-becker-guthrie-noncomposite-hybrid-auth-00, Internet Engi-
neering Task Force (Mar 2022), https://datatracker.ietf.org/doc/
draft-ietf-pquip-pqt-hybrid-terminology/00/, work in Progress

4. Bindel, N., Brendel, J., Fischlin, M., Goncalves, B., Stebila, D.: Hybrid key encap-
sulation mechanisms and authenticated key exchange. In: IACR Cryptology ePrint
Archive (2019)

5. Bindel, N., Herath, U., McKague, M., Stebila, D.: Transitioning to a quantum-
resistant public key infrastructure. Cryptology ePrint Archive, Paper 2017/460
(2017), https://eprint.iacr.org/2017/460, https://eprint.iacr.org/2017/
460

6. Boneh, D.: Twenty years of attacks on the rsa cryptosystem. Notices of the American
Mathematical Society 46, 203–212 (1999)

21

7. Castryck, W., Decru, T.: An efficient key recovery attack on sidh. Cryptology ePrint
Archive, Paper 2022/975 (2022), https://eprint.iacr.org/2022/975, https://
eprint.iacr.org/2022/975

8. Chen, L., Moody, D., Liu, Y.K.: Post-quantum cryptography. Tech. rep., Na-
tional Institute of Standards (NIST) (2016), https://csrc.nist.gov/Projects/
post-quantum-cryptography

9. D, F.: Terminology for Post-Quantum Traditional Hybrid Schemes.
Internet-Draft draft-ietf-pquip-pqt-hybrid-terminology-00, Internet En-
gineering Task Force (May 2023), https://datatracker.ietf.org/doc/
draft-ietf-pquip-pqt-hybrid-terminology/00/, work in Progress

10. Fiat, A., Shamir, A.: How to prove yourself: Practical solutions to identification and
signature problems. In: Odlyzko, A.M. (ed.) Advances in Cryptology — CRYPTO’
86. pp. 186–194. Springer Berlin Heidelberg (1987)

11. Gentry, C., Peikert, C., Vaikuntanathan, V.: Trapdoors for hard lattices and new
cryptographic constructions. In: Ladner, R.E., Dwork, C. (eds.) 40th ACM STOC.
pp. 197–206. ACM Press (May 2008). doi: 10.1145/1374376.1374407

12. Hale, B., Bindel, N., Van Bossuyt, D.L.: Handbook for management of threats,
security and defense, resilience and optimal strategies: Quantum Computers – The
Need for a New Cryptographic Strategy. To appear, Springer (2023)

13. Jao, D., Azarderakhsh, R., Campagna, M., Costello, C., De Feo, L., Hess, B.,
Hutchinson, A., Jalali, A., Karabina, K., Koziel, B., LaMacchia, B., Longa, P.,
Naehrig, M., Pereira, G., Renes, J., Soukharev, V., Urbanik, D.: Sike – supersingular
isogeny key encapsulation. Tech. rep., https://sike.org/

14. Kaye, P., Laflamme, R., Mosca, M.: An Introduction to Quantum Computing.
Oxford University Press, Inc., USA (2007)

15. Mumtaz, M., Ping, L.: Forty years of attacks on the rsa cryptosystem: A brief
survey. Journal of Discrete Mathematical Sciences and Cryptography 22, 29 – 9
(2019)

16. Ounsworth, M., Gray, J., Pala, M.: Composite Signatures For Use In
Internet PKI. Internet-Draft draft-ounsworth-pq-composite-sigs-09, Internet
Engineering Task Force (May 2023), https://datatracker.ietf.org/doc/
draft-ietf-pquip-pqt-hybrid-terminology/00/, work in Progress

22

