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Abstract. This work is motivated by the following question: can an un-
trusted quantum server convince a classical verifier of the answer to an
efficient quantum computation using only polylogarithmic communica-
tion? We show how to achieve this in the quantum random oracle model
(QROM), after a non-succinct instance-independent setup phase.
We introduce and formalize the notion of post-quantum interactive oracle
arguments for languages in QMA, a generalization of interactive oracle
proofs (Ben-Sasson–Chiesa–Spooner). We then show how to compile any
non-adaptive public-coin interactive oracle argument (with private setup)
into a succinct argument (with setup) in the QROM.
To conditionally answer our motivating question via this framework
under the post-quantum hardness assumption of LWE, we show that
the ZX local Hamiltonian problem with at least inverse-polylogarithmic
relative promise gap has an interactive oracle argument with instance-
independent setup, which we can then compile.
Assuming a variant of the quantum PCP conjecture that we introduce
called the weak ZX quantum PCP conjecture, we obtain a succinct ar-
gument for QMA (and consequently the verification of quantum com-
putation) in the QROM (with non-succinct instance-independent setup)
which makes only black-box use of the underlying cryptographic primi-
tives.

Keywords: succinct arguments · interactive oracle proofs · delegation of
quantum computation · quantum random oracle model · QROM · BQP
· QMA

1 Introduction

This work is motivated by the following use case which is desirable in a world
where quantum computers reach larger scales but are only available in controlled
facilities or laboratories.

Real World Application: Alice owns only classical devices (e.g. laptop
and/or tablet) and a classical internet connection. She wants to delegate

⋆ This paper has been accepted for publication in the proceedings of the Cryptogra-
phers’ Track at the RSA Conference 2024.
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some efficient quantum-computational tasks to a quantum server (Mer-
lin) in a remote location. How can she make sure that the quantum server
performed the intended tasks using only a succinct amount of classical
internet communication?

Under some assumptions, we show how this can be achieved after a non-succinct
initial setup phase that does not depend on the subsequent tasks to be delegated.
In particular, we show the following result.

Informal Theorem 1 (Informal Statement of Theorem 4). If a variant of the
quantum PCP conjecture (Conjecture 1) is true as well as the post-quantum
hardness of LWE, then there exists a classical-verifier succinct-communication
argument with non-succinct setup in the QROM for QMA (and consequently for
the verification of quantum computation).

The general topic of delegating quantum computation has been studied for
a while (for a non-exhaustive list of works, see for example [Chi05, FHM18,
GKK18, Mah18b, ACGH20, CCY20, Zha22, TMT22]). In early work, the veri-
fier was modeled as a (possibly weaker) quantum device (e.g. [Chi05]). Mahadev’s
breakthrough [Mah18a, Mah18b] enabled classical verification of quantum com-
putation under the post-quantum hardness assumption of Learning with Errors
(LWE). This opened the door to further subsequent developments in the topic of
classical verification of quantum computation (e.g. [VZ19, ACGH20]). In par-
ticular, the question of succinct verification of quantum computation has been
studied in these works [CCY20, BM22, BKL+22, CM21, GJMZ22, Zha21]. We
discuss how they differ from our work in Section 1.1.

We will now go from our motivating question to the more general problem
of deciding whether a local Hamiltonian has a low-energy groundstate. The de-
tails of the reduction from verification of quantum computation to the local
Hamiltonian problem can be found in [FHM18] where the standard Feynman-
Kitaev circuit-to-Hamiltonian reduction is used. As alluded to in some papers
such as [BL08, FHM18], one can obtain ZX 1 Hamiltonians from the Kitaev
construction by using a suitable universal gate set 2.

This circuit-to-Hamiltonian reduction is analogous to the circuit-to-SAT re-
duction, the hallmark of the Cook-Levin proof of NP-completeness of the SAT
problem. The original Feynman-Kitaev reduction goes from decision quantum
circuits to local Hamiltonians of the following form:

H = Hin +Hout +Hprop +Hclock. (1)

1 The Pauli X,Z matrices are X =

(
0 1
1 0

)
, Z =

(
1 0
0 −1

)
and they are used frequently

in physics and quantum computation.
2 Consider, for example, the universal gate set G = {H,X,CCNOT}. Note that
H = 1√

2
(X+Z) and CCNOT = I− 1

4
(I−Z1)(I−Z2)(I−X3). G is a universal gate

set with real matrices and can be used to obtain propagation Hamiltonians whose
Pauli decomposition has the real Pauli matrices X and Z.
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The purpose of this Hamiltonian is to “detect” any “violation” or deviation from
the prescribed circuit. The terms inside each component in this Hamiltonian act
as “validators” for the following conditions:

– Hin checks that the input is indeed the input that Alice intended to work
with,

– Hout checks that the output of the decision circuit is 0 (or 1),
– Hprop checks that the circuit was computed by honestly going gate-by-gate

from the input to the output as intended, and
– Hclock checks the encoding of the clock register. The clock register “affixes”

a timestamp to the system state at each step in the progression of the com-
putation from the input (start time) to the output (end time).

The Hamiltonians of the Feynman-Kitaev construction and inspired exten-
sions thereof are known as k-local Hamiltonians because each component of the
above (Hin, Hout, Hprop, Hclock) is the sum of terms such that each term needs
to measure at most k qubits to be able to perform the needed checks. This con-
cept of locality is analogous to the arity of constraints in constraint satisfaction
problems (CSPs).

For the quantum server to convince Alice that it indeed performed the re-
quested computation, it prepares 3 a quantum state known as the history state
that describes the execution history of such computation. An honest history
state should not be marked as a “violator” by the Hamiltonian H corresponding
to that computation (this property is known as completeness). Additionally, the
Hamiltonian H should mark any dishonest state as a violator (this property is
known as soundness). The measure of such violation is known as the energy of
a quantum state |ψ⟩ with respect to the Hamiltonian H (written as ⟨ψ|H |ψ⟩).
The quantum states that have low energy (i.e. low violation measure) are called
ground states of the Hamiltonian. The lowest energy level that such quantum
states attain is known as the ground energy of the Hamiltonian.

A classical-verifier protocol for the ZX local-Hamiltonian problem has been
given in [ACGH20] by iterating on a long sequence of works starting by Ki-
taev in 1999 and culminating in the recent works of [MNS16, FHM18, MF16,
Mah18b, VZ19, CVZ20]. We modify the protocol to eliminate redundant com-
munication. Then we identify the modified protocol as an instance of an interac-
tive oracle argument, a concept that we define by generalizing interactive oracle
proofs [BCS16].

Post-quantum interactive oracle arguments - which we define in this paper
- are interactive protocols for yes/no promise problems where yes instances are
defined by a quantum-witness relation. In this class of protocols, prover messages
are modeled as oracles that can be query-accessed by the verifier. Our main tech-
nical contribution (Informal Theorem 2) shows that interactive oracle arguments
with succinct query complexity can be compiled into succinct-communication ar-
guments.
3 The constructive proofs of Feynman-Kitaev reductions show how to efficiently pre-

pare such history state for an efficient quantum computation, but we do not include
the details here.
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Informal Theorem 2 (Informal Statement of Corollary 1). Any public-coin
non-adaptive interactive oracle argument (with setup) with succinct (i.e. at most
polylogarithmic) query complexity can be compiled into a succinct-communication
argument (with setup) in the quantum random oracle model (QROM).

Informal Theorem 2 is the bridge that will get us to Informal Theorem 1.
However, we need a starting protocol with succinct query complexity to com-
pile using the framework of Informal Theorem 2. We obtain this by modify-
ing [ACGH20]’s classical-verifier protocol for the ZX local Hamiltonian problem
by eliminating some redundant communication. The modified protocol will have
succinct query complexity when the promise gap of the local Hamiltonian is at
least inverse-polylogarithmic. The result of compilation using Informal Theo-
rem 2 can be summarized as follows.

Informal Theorem 3. For any constant k and any relative promise gap that
is at least inverse-polylogarithmic, the ZX k-local Hamiltonian problem has a
classical-verifier succinct-communication argument system with non-succinct setup
in the quantum random oracle model and under the post-quantum hardness as-
sumption of LWE.

In the quantum realm, Quantum Merlin Arthur (QMA) [Kit99] refers to
the quantum analogue of the complexity class MA. QMA is the class of lan-
guages where a prover, Merlin, can convince a quantum verifier, Arthur, of a true
proposition by sending a polynomially-sized quantum witness state (instead of
a polynomially-sized classical proof string). However, sending any polynomially-
sized quantum witness state trying to convince Arthur about false proposi-
tions is doomed to fail. Both cases are within some error probabilities. The
local Hamiltonian problem is QMA-complete when the promise gap is inverse-
polynomial [KKR06].

Hoping for a quantum analogue of the celebrated classical PCP Theorem [ALM+98,
AS98], the quantum PCP conjecture [AAV13] states that the local Hamiltonian
problem remains QMA-complete when the promise gap is constant. For Infor-
mal Theorem 3 to apply to QMA (and obtain Informal Theorem 1), it suffices
that the ZX local Hamiltonian problem be QMA-complete with at least inverse-
polylogarithmic gap. We call this condition the weak ZX quantum PCP conjec-
ture.

Conjecture 1. There exists a constant k such that the ZX k-local Hamilto-
nian problem with a promise gap that is at least inverse-polylogarithmic is QMA-
complete.

The qualifier “weak” here is to indicate that it is enough to amplify the gap
to be inverse-polylogarithmic. When it is amplified to a constant, we call the
conjecture the ZX quantum PCP conjecture.

Conjecture 2. There exists a constant k such that the ZX k-local Hamiltonian
problem with a constant relative promise gap is QMA-complete.
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One can see that Conjecture 2 implies Conjecture 1 because a constant
promise gap is one that is at least inverse-polylogarithmic. However, the ex-
act relationship between either of these modified conjectures and the standard
quantum PCP conjecture is unknown to us and we pose as an open problem.

Open Question 1. Does the standard quantum PCP conjecture imply the (weak)
ZX quantum PCP conjecture?

We strongly conjecture a positive answer to that question because as men-
tioned earlier a proper choice of a universal gate set can lead to real Hamiltonians
whose Pauli decomposition has the real Pauli matrices X and Z.

1.1 Recent Related Works

Below we discuss the most relevant recent works. While most of them address the
motivating problem of succinct verification of quantum computation, our work
addresses also the general problem of compiling classical-verifier interactive ora-
cle arguments into succinct arguments in the QROM. The succinct verification
of quantum computation is a motivation and application of that compilation
framework, but may not be the only application.

– Succinct classical verification of quantum computation [BKL+22]:
Their work achieves succinct arguments for QMA (both succinct communi-
cation and succinct verification) in the standard model assuming the post-
quantum security of indistinguishability obfuscation (iO) and Learning with
Errors (LWE). A key contribution of that work is showing how to replace
the non-succinct setup phase of the Mahadev protocol with succinct key
generation based on iO. As a result, in the interactive setting, they obtain
a 12-message succinct argument for QMA in the standard model, which can
be reduced to 8 messages assuming post-quantum FHE; the latter protocol
can be made non-interactive in the QROM.
Our work achieves a 5-message 4 (excluding 1 offline message setup) argu-
ment in the QROM with non-succinct instance-independent setup without
using FHE, but assuming a variant of the quantum PCP conjecture and
LWE.

4 We conjecture that it is possible to reduce the number of messages to 3 in our work.
In the current version, the prover commits to one Merkle tree, then receives a Ma-
hadev challenge (test/Hadamard), then commits to another tree, then receives the
challenged indices to be revealed. This description was chosen so that Section 3 can
be applied in a vanilla way. However, this choice does not utilize the fact that the
challenged indices in both trees are identical! We conjecture that the verifier could
send the challenged indices along with the Mahadev test/Hadamard challenge bits
without exposing soundness. The intuition is that Mahadev’s protocol is already a
form of commitment that would be capable of replacing the second Merkle tree com-
mitment. Furthermore, we conjecture that our protocol can be made non-interactive
using the Fiat-Shamir transformation in the QROM.
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Our protocol resembles practical succinct arguments for NP that compile
PCPs and are used in real-world applications today. This makes it easier to
implement in practice if a constructive proof of the (weak) ZX quantum PCP
conjecture is discovered. We expect that the succinct key generation tech-
nique in [BKL+22] can also be applied to our protocol, which would remove
the non-succinct setup at the cost of assuming and using post-quantum iO.
Furthermore, our work more importantly addresses the general problem of
compiling interactive oracle arguments into succinct arguments. The succinct
verification of quantum computation is a motivation and application of this
compilation framework, but may not be the only application.

– Quantum-computational soundness of the Kilian transformation:
The soundness of the Kilian transformation from classical probabilistically
checkable proofs (PCPs) against quantum polynomial-time cheating devices
had been recently formally established in a line of works [CMS19, CMSZ21].
[CMS19] proved its soundness when the hash function is modeled via the
QROM. Later, [CMSZ21] showed its soundness in the standard model when
the hash function family is any collapsing (see [Unr16b]) hash function fam-
ily. Families of such functions exist under the LWE assumption [Unr16a].
In our work, the input to the Kilian transformation is not a classical PCP,
but rather a quantum PCP that was transformed into a classical-verifier in-
teractive oracle protocol using Mahadev’s verifiable measurement protocol.
[CMS19] proves the soundness of SNARGs based on IOPs with round-by-
round soundness in the QROM. However, in our work we do not assume any
special soundness properties about the IOArgs except for standard compu-
tational soundness.

– Classical verification of quantum computation with efficient veri-
fier [CCY20]: This work builds a protocol for the succinct classical veri-
fication of quantum computation with a non-succinct setup from the LWE
assumption as well as post-quantum indistinguishability obfuscation (iO)
and post-quantum fully homomorphic encryption (FHE). There is a gap in
the soundness proof because an underlying protocol is proven sound in the
QROM, but an assumption about its soundness with a concrete hash func-
tion is made. Our soundness proof is fully in the quantum random oracle
model, without the need to use the code for the hash function and there-
fore avoiding the aforementioned gap in the soundness proof. Furthermore,
our work does not require post-quantum iO nor use post-quantum FHE but
rather a variant of the quantum PCP conjecture and the LWE assumption.
As mentioned earlier, we also address the more general problem of compiling
interactive oracle arguments.

– zk-SNARGs for QMA from quantum null-iO [BM22]: This work mainly
studies a cryptographic concept known as indistinguishability obfuscation for
null quantum circuits (quantum null-iO). As an application, they show how
to obtain zk-SNARGS for QMA from (i) the quantum hardness of LWE, and
(ii) post-quantum indistinguishability obfuscation (iO) for classical circuits.
However, the construction makes non-black-box use of a hash function mod-
eled as a random oracle. Therefore, it suffers from the same issue as [CCY20]
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as mentioned earlier. They also show (in Appendix A) a construction assum-
ing (post-quantum) VBB obfuscation for classical circuits.
On the other hand, our work does not require post-quantum iO but rather
a variant of the quantum PCP conjecture and the LWE assumption and
we also address the more general problem of compiling interactive oracle
arguments.

– Online extractability in the quantum random oracle model [DFMS22b,
DFMS22a]: We make use of the online extractability framework of [DFMS22b]
to prove the online extraction of Merkle trees (see Theorem 1 and Ap-
pendix A) which is implicit in their follow-up work [DFMS22a] that appeared
while we were working on this paper. We kept the explicit theorem state-
ment needed for our work and Appendix A where we prove it because the
statement in our paper as well as the notation and exposition fit better with
the rest of the manuscript.

– Quantum Merkle Trees in the Quantum Haar Random Oracle
Model [CM21]: This work introduced the Quantum Haar Random Oracle
Model (QHROM) which is a generalization to the quantum random oracle
model. They show how to construct a quantum Merkle tree in this model
and how it can be used to commit to and later reveal quantum states. If the
quantum PCP conjecture is true, this could be used to obtain succinct argu-
ments for QMA in the QHROM with quantum communication. The security
is proven against what they define to be semi-honest 5 provers. In a follow-
up work [CM22], they discussed zero-knowledge properties. In our work, we
focus on classical verifiers (with classical communication) in the quantum
random oracle model (QROM) - which is a more established model than the
QHROM. We analyze security against cheating quantum provers that can
perform any malicious action but limited to run in polynomial time.

– Commitment to quantum states [GJMZ22]: After [CM21], [GJMZ22]
announced a construction of quantum Merkle trees from quantum-cryptographic
assumptions (implied by one-way functions) in the standard model, and
proved that the proposed succinct argument of [CM21] is secure with this in-
stantiation (against cheating provers). This protocol is public coin and relies
on very weak cryptographic assumptions, but requires quantum communi-
cation like [CM21] while our work focuses on classical verifiers with only
classical communication.

– Succinct blind quantum computation using a random oracle [Zha21]:
This work introduced a two-phase protocol for the blind delegation of quan-
tum computation. The first phase is a quantum phase with succinct complex-
ity while the second is entirely classical. Our work considers fully classical
verifiers.

5 This notion is different from the typical usage of the term semi-honest in cryp-
tographic secure computation where it means an “honest but curious” adversary. A
semi-honest prover in [CM21] is a prover that commits to a cheating state but follows
the steps of the protocol.
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2 Background and Prior Work

In this section, we explore the background needed to build our framework in
the paper. Additionally, Appendix 2.1 provides a glossary of the mathematical
symbols and notation frequently used in this paper.

2.1 Glossary

Table 1 provides a glossary of most of the symbols and notation used in this
paper. While we borrow a lot of [ACGH20]’s exposition style in introducing
the classical-verifier argument system for local Hamiltonians, we slightly diverge
from their symbolic notation as indicated in that table.

2.2 Mathematical preliminaries

We recall some of the definitions and facts frequently used later in the paper.
Let p and q be two classical probability distributions on a finite sample space
Ω. The total variation distance between p and q is

dTV(p, q) =
1

2

∑
x∈Ω
|p(x)− q(x)| = max

A⊆Ω
|p(A)− q(A)|.

A generalization of the total variation distance is the trace distance. To define
it, let’s first define the trace norm (Schatten 1-norm) of a matrix ρ as follows:∥∥∥ρ∥∥∥

1
= tr(

√
ρρ†).

Recall that for a density matrix ρ, it holds that ρ = ρ†. The trace distance
between two quantum states represented by their density matrices ρ and σ is

δ(ρ, σ) =
∥∥∥ρ−σ∥∥∥

tr
=

1

2

∥∥∥ρ−σ∥∥∥
1
=

1

2
tr(
√

(ρ− σ)2) = max
P

tr(P (ρ−σ)) where P ranges over projectors.

We now state some helpful propositions about the trace distance.

Proposition 1. The trace distance between two pure quantum states can be
bounded as follows:

δ(|ψ⟩ ⟨ψ| , |ϕ⟩ ⟨ϕ|) =
∥∥∥|ψ⟩ ⟨ψ| − |ϕ⟩ ⟨ϕ|∥∥∥

tr
≤
∥∥∥|ψ⟩ − |ϕ⟩∥∥∥.

Proposition 2 (Convexity Properties of the Trace Distance; Theorem
9.3 in [NC10] and consequences thereof). Let {pi} and {qi} be probability
distributions over the same index set, and {ρi} and {σi} be density operators
with indices from the same index set. Then the following properties hold:

1. Convexity: δ(
∑
i

piρi, σ) ≤
∑
i

piδ(ρi, σ),

2. Joint Convexity: δ(
∑
i

piρi,
∑
i

piσi) ≤
∑
i

piδ(ρi, σi), and
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Symbol/Notation Description Symbol in [ACGH20]
n Number of qubits in a single copy of a quantum state n

j Index over qubits in a single copy of a quantum state j

H
k-local Hamiltonian on n qubits
used once to denote the Hadamard gate H

k Locality of a Hamiltonian k

S Number of Hamiltonian terms

s
Index over Hamiltonian terms
also the soundness error of (interactive) proofs S

r
Number of copies (repetitions) in LH verification protocol
see another usage for r(n) below r

ℓ
Index over copies (repetitions) in LH verification protocol
0 ≤ ℓ ≤ d indexes levels in a Merkle tree
ℓ(n): Total length of all prover messages in an IOArg

i

m Number of repetitions in Mahadev’s protocol k

i Index over repetitions in Mahadev’s protocol i

S(i, ℓ) Set of indices of the k qubits affected by
Hamiltonian verification term sampled for copy i, ℓ

overloaded with
Hamiltonian index S

c Completeness; Completeness Error is 1− c c

s Soundness Error s

Γ = b− a Absolute promise gap for a local Hamiltonian b− a

γ Relative promise gap for a local Hamiltonian
IOP Interactive Oracle Proof
IOArg Interactive Oracle Argument
t(n) Round complexity of an IOArg
r(n) Randomness complexity of an IOArg
q(n) Query complexity of an IOArg
ℓ(n) Total length of all prover messages in an IOArg
d Depth of a Merkle tree
δ(ρ, σ) =

∥∥∥ρ− σ
∥∥∥
tr

Trace distance between density matrices ρ, σ

dTV(p, q) Total variation distance between distributions p and q

[A,B] Commutator of A,B i.e. AB −BA

x||y String concatenation of strings x and y

Table 1: Glossary of some of the mathematical notation used in this paper. When
applicable, the (slightly different) notation in [ACGH20] is indicated.

3. Strong Convexity: δ(
∑
i

piρi,
∑
i

qiσi) ≤
∑
i

piδ(ρi, σi) + dTV(p, q)

where dTV(p, q) is the total variation distance between the probability distribu-
tions {pi} and {qi}.

The commutator of two operators is given by: [A,B] := AB − BA. Notice
that [A,B] = −[B,A] and that [A,B]† = B†A† −A†B† = [B†, A†]. We say that
two operators A,B commute if their commutator is 0 i.e. [A,B] = [B,A] = 0

and we say that they ϵ-almost commute if
∥∥∥[A,B]

∥∥∥ =
∥∥∥[B,A]∥∥∥ ≤ ϵ.



10 I. Faisal

If A,B are two linear operators that ϵ-almost commute, the following proposition
tells us that ϵ also bounds the ∥·∥-distance between an output quantum state
resulting from applying A then B on an input state and the output state had
we applied B then A instead on the same input.

Proposition 3. If A,B are two linear operators that ϵ-almost commute, the
following statements hold:

1. for a pure quantum state |ψ⟩, it holds that (note that
∥∥∥|ψ⟩∥∥∥ = 1):∥∥∥AB |ψ⟩ −BA |ψ⟩∥∥∥ =

∥∥∥[A,B] |ψ⟩
∥∥∥ ≤ ∥∥∥[A,B]

∥∥∥ · ∥∥∥|ψ⟩∥∥∥ ≤ ϵ. (2)

2. for a (mixed) quantum state represented by the density matrix ρ =
∑
i

pi |ψi⟩ ⟨ψi|,

it holds that:
δ(ABρB†A†, BAρA†B†) ≤ ϵ. (3)

Proof of Inequality (3).

δ(ABρB†A†, BAρA†B†) = δ

(∑
i

piAB |ψi⟩ ⟨ψi|B†A†,
∑
i

piBA |ψi⟩ ⟨ψi|A†B†
)

≤
∑
i

piδ
(
AB |ψi⟩ ⟨ψi|B†A†, BA |ψi⟩ ⟨ψi|A†B†

)
by joint convexity (2)

≤
∑
i

pi

∥∥∥AB |ψi⟩ −BA |ψi⟩∥∥∥ by Proposition (1)

≤
∑
i

pi · ϵ by Inequality (2)

= ϵ since
∑
i

pi = 1

2.3 Merkle trees

A classical 6 Merkle tree of depth d is a binary tree used to commit to a sequence
of blocks of data (called leaves) π = (πj)j∈[2d] using a cryptographic hash func-
tion h : X → {0, 1}λ. The root of the Merkle tree represents a digest of the blocks
of the data at its leaves. For a leaf node at index j ∈ [2d], its authentication path
can be used to verify its authenticity with respect to a root rt.

Figure 1 illustrates a Merkle tree of depth d = 3 to commit to a sequence of
leaves π = (π1, . . . , π8).
6 In this paper we will only work with classical Merkle trees where the data are classical

strings and the algorithms are executed on classical devices. However, their security
is established against a cheating quantum device in the quantum random oracle
model.
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π1 π2 π3 x3,0 π5 π6 π7 π8

x3,1 z3,1

z3,2 x3,2

z3,3

Fig. 1: This figure illustrates a Merkle tree of depth d = 3 to commit to 23 = 8
leaves with the root rt = z3,3. The intermediate nodes for the authentication path
of π3 are marked with the notation used in this paper. Notice that z3,0 = π3 and
x3,0 = π4 and rt = z3,3 in a valid authentication path.

For notational convenience, let zj,0 = πj . We will use the notation h(x, x′)
to indicate applying the hash function to the proper concatenation of x and x′

(respecting which is left/right child). Define hj,ℓ := h(xj,ℓ, zj,ℓ−1) where hj,0 :=
πj . The authentication path consists of the hash values at levels 0 ≤ ℓ ≤ d as
follows: apj = (xj,ℓ, zj,ℓ)0≤ℓ≤d. An authentication path apj is valid if and only
if zj,d = rt and hj,ℓ = zj,ℓ for all 0 ≤ ℓ ≤ d. Figure 1 provides an example of a
Merkle tree with 8 leaves. Let Q be a set of indices for some leaves. At each level ℓ
(from 0 to d), we define the following sequence Zℓ which corresponds to the hash
values at this level needed to verify all authentication paths: ZQ,ℓ = (zj,ℓ)j∈Q. We

will use ẐQ,ℓ to denote the augmented sequence created from ZQ,ℓ by ordering
these intermediate Merkle tree nodes from left to right and replacing any missing
nodes with ⊥. When Q is clear in the context, we write ZQ,ℓ as Zℓ and ẐQ,ℓ as
Ẑℓ for brevity. Similarly, we define: XQ,ℓ = (xj,ℓ)j∈Q and X̂Q,ℓ as well as their

shorted notations Xℓ and X̂ℓ respectively when Q is clear in the context. The
suite of Merkle tree algorithms used in this paper are as follows:

– Commith(π1, . . . , π2d): returns the root of the Merkle tree rt and all inter-
mediate nodes,

– Validh(rt, j, apj): returns true if and only if the given authentication path
apj for the j-th leaf is valid against the root rt by using the hash function
h,

– Consistent(Q, {apj}j∈Q): returns true if and only if the authentication
paths for leaves at indices Q ⊆ [2d] are well-formed and consistent at the
common intermediate nodes 7, and

7 This is equivalent to sending each overlapping intermediate node once instead of
sending it multiple times inside possibly overlapping paths for each leaf. However,
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– Verifyh(rt,Q, apj∈Q): validates a batch of authentication paths and returns
true if and only if both Consistent(Q, apj∈Q) and ∀j ∈ Q : Validh

(
rt, j, apj

)
are true.

2.4 Merkle Trees in the Quantum Random Oracle Model (QROM)

The random oracle [BR93] models a concrete cryptographic hash function H :
X → Y as an external random oracle RO that answers queries randomly the first
time they are submitted and consistently whenever they are resubmitted. Pre-
cisely, the random oracle is a uniformly random function from X to Y. The quan-
tum random oracle [BDF+11] is a unitary oracle UH : |x⟩ |y⟩ 7→ |x⟩ |y ⊕H(x)⟩
defined with an underlying uniformly random function H. The query is submit-
ted in the x register and an answer H(x) is returned by XORing such answer
with the content of the y register.

Since the introduction of the QROM, different techniques and applications
were introduced, most notably the compressed oracle technique due to Zhandry [Zha19].
Building on the success of this line of work, [DFMS22b] introduced a framework
for online extractability in the quantum random oracle model. Online extraction
means that the extraction happens (i) on-the-fly during the algorithm’s execu-
tion, and (ii) in a straightline which means that no rewinding of the algorithm
calling the random oracle is needed. [DFMS22b] provides a framework that en-
capsulates many of the inner workings that needed to be handled extensively
before. Their framework offers an extractable random oracle simulator S which
has an internal database state and two query interfaces (which are operators)
(see Figure 3 in Appendix A):

1. S.RO-query: the quantum random oracle unitary, and
2. S.E-query: a classical extraction query that applies a measurement to the

simulator state.

We will use the following result about the online extraction of Merkle trees
which is implicit in a follow-up work by [DFMS22a], but we also provide a
detailed discussion and a proof of it in Appendix A which was written prior to
the publication of [DFMS22a]. The theorem bounds the probability of winning
a game G1(λ, d, r, q) illustrated in Figure 2 (as well as Figure 4 in Appendix A)
where a quantum adversary A interacts with only the RO interface while a
classical honest extraction algorithm E only (classically) interacts with the E
interface of the simulated random oracle. The adversary announces a classical
value rt which is supposedly the root of a Merkle tree of depth d and they
win if they can later “fake” at least one of r leaves. Faking a leaf here means
giving a leaf value that can be authenticated against the prior commitment,
but different from that output by extraction. A referee algorithm R determines
whether the adversary won by validating the authentication paths against the
root rt then comparing the adversary’s leaves against the leaves given by the
extraction algorithm.

for easier notation and exposition, we send the authentication paths for each leaf and
require this consistency condition when verifying a batch of authentication paths.
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A

E

π̂

rt
...

···

...

rt

S, (πj , apj)j∈S

S

R

won/lost

...

RO E

Fig. 2: This figure illustrates the game G1 referenced in Theorem 1. A wins if
S ⊆ [2d], |S| = r, and VerifyRO (rt, S, apj∈S), but ∃j ∈ S : πj ̸= π̂j . The
“snaked“ arrowed lines represent quantum queries and responses thereof, while
the straight arrowed lines represent classical queries and responses thereof. The
referee R consists of two main procedures: (1) verifying the authentication paths
which needs to interact with the S.RO interface, and (2) comparing the output
of the adversary and the extractor which does not interact with S.

Theorem 1. For the game G1 defined in Figure 4 by the universal referee and
extractor algorithms described earlier such that λ = ω(d), q ≤ poly(2d), and
any quantum adversary A = (A1,A2) where A1 makes q1 queries to the random
oracle, then A1 announces a value rt, followed by A2 making q2 queries to the
random oracle such that q1 + q2 ≤ q, then A2 outputs a classical string, it holds
that:

Pr[A wins G1(λ, d, r, q)] ≤ negl(λ).

2.5 The Local Hamiltonian Problem

Definition 1 (Local Hamiltonian Problem (n, k, γ)-LH). The k-local Hamil-
tonian problem notated as (n, k, γ)-LH is a promise problem where the input is
a classical binary string x = (H, a, b) such that:
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– H is a k-local Hamiltonian H =
S∑
s=1

Hs on a total of n qubits where S =

poly(n) and each Hs is a Hermitian matrix with a bounded operator norm
||Hs|| ≤ 1 and its entries are specified by poly(n) bits and Hs is non-identity
on at most k qubits,

– a and b are two numbers represented with poly(n) bits such that a < b; the
gap Γ = b − a is called the absolute promise gap and γ = Γ/S is called
the relative promise gap,

– for yes-instances, there exists an n-qubit quantum state |ψ⟩ such that ⟨ψ|H |ψ⟩ ≤
a (i.e. energy of the state w.r.t. H is at most a),

– for no-instances, for every n-qubit quantum state |ψ⟩, it holds that ⟨ψ|H |ψ⟩ ≥
b (i.e. energy of the state w.r.t. H is at least b), and

– it is promised that any instance will be either a yes or no instance.

That problem is called the ZX k-local Hamiltonian problem and we notate it as
(n, k, γ)-LH-ZX when each Hs is a constant-scaled tensor product of n matrices
from the set of 2 × 2 matrices {1, X, Z} such that at most k of the matrices in
each product are non-identity.

This problem is QMA-complete when the promise gap is at least inverse
polynomial i.e. γ ≥ 1/ poly(n). The k-LH problem remaining QMA-hard even
when this promise gap is constant i.e. γ ≥ α for some constant α is known as the
quantum PCP conjecture (qPCP for brevity), which is still unsettled to date.
[AALV09] showed that the qPCP statement is equivalent to obtaining PCPs for
QMA where quantum reductions 8 are used to prove that the proof verification
version implies the gap amplification version.

2.6 Classical-Verifier Argument for ZX Local Hamiltonians

We will now describe Protocol 1 due to [ACGH20] which is a quantum-prover
classical-verifier argument system with an instance-independent setup phase.
The protocol can be parallel-repeated to obtain negligible completeness and
soundness errors. In Appendix C, we give a detailed exposition and proofs of
completeness and soundness and explain the modular construction of this pro-
tocol while generalizing the locality to any constant k and the promise gap to
any function. We give below a very brief summary.

Protocol 1 [ACGH20] uses Mahadev’s verifiable measurement protocol de-
scribed in Section C.2 to make the verifier of a protocol for local Hamiltonian
verification (Protocol 5) classical instead of quantum. In the predecessor version
of Protocol 5 [MF16, FHM18, MNS16], the choice of measurements (X or Z)
depended on the choice of the Hamiltonian term. This is because a particular
8 It is an open question whether they are equivalent under classical reductions. In

fact, the proof checking formulation itself could end up being more specific than
that provided in [AALV09] which was the reason why it was not straightforward
to prove the equivalence under classical reductions. For the details of the quantum
reduction, we refer the reader to the proof of Theorem 5.5. in [Gri18].



Interactive Oracle Arguments in the QROM 15

Hamiltonian term may act by X on a qubit while another term could act by
Z on the same qubit. This poses a challenge when using Mahadev’s verifiable
measurement because the first step of Mahadev’s protocol samples keys that de-
pend on the basis choice. [ACGH20] got around this issue by randomly sampling
a basis for each qubit. When the time comes to select a Hamiltonian term, the
verifier first checks whether this selected term is consistent with the randomly
selected bases on the affected qubits.

In the first round of [ACGH20]’s protocol, the verifier generates a set of
private trapdoors and corresponding public keys (a trapdoor/key for each qubit
in the witness state) to initiate the Mahadev protocol. The prover then sends
a commitment for the witness state - they allegedly have - using the received
public keys. The verifier then sends a challenge bit (0/1) that dictates certain
measurements to be done by the prover. The prover measures accordingly and
sends the measurement outcomes. If the verifier sent 0 as the challenge bit, a
Mahadev “test round” (TestCheck) is executed whose purpose is making sure that
the prover “did not change their mind” after the commitment. If the verifier sent
1 as the challenge bit, a Mahadev “Hadamard round” (HadRound) is executed
to extract the measurements needed to execute the verification procedure on
the Hamiltonian term. The protocol is executed multiple times in parallel using
multiple copies of the witness state.

Protocol 1 (Protocol 4 in [ACGH20]; Quantum-Prover Classical-Verifier Ar-
gument System for ZX local Hamiltonians with Instance-Independent Setup).

Parties: Quantum polynomial-time prover P & classical probabilistic polynomial-time
verifier V.

Parameters: 1. n: number of qubits.
2. r,m: number of repetitions in the LH verification and Mahadev protocols

respectively.
3. λ: a security parameter ≥ n.

Setup: 1. V samples uniformly random bases h ∈ {0, 1}nrm.
2. V runs Mahadev’s key generation algorithm (pk, sk)← Gen(1λ, h).
3. V sends the public keys pk to P, but maintains sk secretly 9.

Inputs: Inputs to both parties: x = (H =
S∑
s=1

dsHs, a, b) i.e. instance of the

(n, k, γ)-LH-ZX.
Input to honest prover on yes instances: |Ψ⟩ = |ψ⟩⊗rm (i.e. rm copies
of |ψ⟩ the ground state of the Hamiltonian H). This state is in the register
W . For each i ∈ [m], ℓ ∈ [r], j ∈ [n], we use Wiℓj to denote the corresponding
qubit.

9 Later, we will use the term “public-coin protocols with private setup” to highlight
this again.
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Round P1: For each Wiℓj, the prover prepares the “commitment” state (see Section C.2;
we use here F to denote f or g depending on the uniformly chosen basis):

1√
|X |

∑
x∈X

∑
b∈{0,1}

ϕb |b⟩Wiℓj
|x⟩Xiℓj |Fpkiℓj (b, x)⟩Yiℓj .

P measures each register Yiℓj in the standard basis & sends the outcomes
y = (yiℓj) to V.

Round V2: V samples challenge bits c1, . . . , cm ← {0, 1} and sends c = (c1, . . . , cm) to
P. 0 or 1 means asking the prover to engage in test or Hadamard rounds
(respectively) of the Mahadev protocol (see Section C.2).

Round P2: For each i ∈ [m], ℓ ∈ [r], j ∈ [n],
1. If ci = 0, P performs a standard basis measurement and gets uiℓj =

(wiℓj , xiℓj).
2. If ci = 1, P performs a Hadamard basis measurement and gets uiℓj =

(wiℓj , xiℓj).
P sends u = (uiℓj) to V.

V’s Verdict For each i ∈ [m],
1. If ci = 0, V sets vi :=

∧
ℓ,j

TestCheck(skiℓj , uiℓj , yiℓj) (see Section C.2).

2. If ci = 1, V records the set Ai ⊆ [r] (the subset of copies consistent with
the random bases choice). For each ℓ ∈ Ai:
(a) Run the Hadamard round (see Section C.2) for each j ∈ [n]:

(ziℓj , eiℓj) := HadRound(skiℓj , uiℓj , yiℓj , hiℓj).

If it rejects (i.e. ziℓj = 0 for some j), set viℓ = 0; otherwise enter
the next step.

(b) Like in Protocol 5, sample a Hamiltonian term siℓ ← π where the
distribution π is given by:

π(s) =
|ds|∑
s
|ds|

.

Denote by S(i, ℓ) the set of indices of the qubits acted upon by non-
identity Pauli observables.

Set viℓ := 1
2

(
1− sgn(dsiℓ) ·

∏
j∈S(i,ℓ)

eiℓj

)
(i.e. set to 1 iff the mea-

surement has the opposite sign of the coefficient of the selected term).
Then, as in Step 3 of the verdict in Protocol 5: V sets vi = 1 iff:

∑
ℓ∈Ai

viℓ ≥
(c+ s)

2
· |Ai| =

(
2− (b− a)/

∑
s
|ds|
)

4
· |Ai|

where (see Protocol 5 and the proof in Appendix D for the details):

c :=
1

2
− a

2
∑
s
|ds|

and s :=
1

2
− b

2
∑
s
|ds|

.
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Finally, V accepts iff v :=
∧m
i=1 vi evaluates to 1 (i.e. vi is 1 for each parallel

repetition i ∈ [m]).

3 Succinct Communication from Interactive Oracle
Arguments

3.1 Defining Interactive Oracle Arguments

We now formalize the notion of quantum-computationally sound classical-verifier
interactive oracle proofs for quantum-witness relations (which for brevity we
also call IOArgs for interactive oracle arguments) by generalizing interactive
oracle proofs (IOPs) in [BCS16]. In particular, we introduce IOArgs with a pre-
processing (setup) phase where the verifier sends a message to the prover that
does not depend on the input instance but only on an upper bound on the in-
stance size n. Since this step does not need the input and can happen temporally
before the execution of the protocol on a particular input, we do not account for
its cost when analyzing succinctness of the protocol communication.

Definition 2 (Interactive Oracle Arguments with Setup; Generalizing
Interactive Oracle Proofs in [BCS16]). Let p(n) be a polynomial and R be

a relation: R ⊆
∞⋃
n=0
{0, 1}n×Hp(n) where Hp(n) is the Hilbert space of p(n)-qubit

pure quantum states. Consider a promise problem A = (Ayes, Ano) where Ayes ∩
Ano = ∅ and Ayes := {x | ∃ |ψ⟩ : (x, |ψ⟩) ∈ R}. We say that A has a quantum-
computationally sound classical-verifier interactive oracle proof system with setup
with the following parameters (notated as A ∈ IOArgc,s[t(n), ℓ(n), r(n), q(n)]):

– round complexity t(n): number of prover oracle messages in the protocol,
– total length of all prover messages: ℓ(n),
– randomness complexity r(n): total number of random bits used by the verifier,
– query complexity q(n): number of queries by the verifier to the prover’s oracle

messages,
– completeness c(n), and soundness s(n)

if there is an interactive protocol between:

Parties: 1. P |ψ⟩: a quantum poly(n)-time algorithm (when the input x is a yes in-
stance, an honest prover will receive a state |ψ⟩ such that (x, |ψ⟩) ∈ R),
and

2. V = (V0, . . . ,Vt(n)): a classical probabilistic poly(n)-time algorithm using
r(n) random bits. The verifier’s sub-algorithm V0 = Setup(1n) is an
optional setup phase that only depends on the input length 10 but not the
input itself while the the other sub-algorithms V1, . . . ,Vt(n) depend on the
input x.

10 In most useful interactive oracle arguments including the argument system for the
local Hamiltonian problem discussed in this paper, we do not have to know the input
length exactly, but it suffices to know an upper bound.
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Setup: The protocol starts with an optional setup phase run by the verifier (p0, v0)←
Setup(1n). The verifier sends p0 to the prover and keeps11 v0.

Interaction: For any round i ∈ [t(n)], the following interaction takes place:
1. The prover sends an oracle message pi = P(x, p0, p1, . . . , pi−1, v1, . . . , vi−1).
2. If i < t(n), the verifier samples randomness $i and outputs a message

vi = V(x, v0, v1, . . . vi−1; $i).
Verdict: At the end of the protocol, the verifier samples randomness $t(n)
and chooses q(n) locations Q = (Q1, . . . , Qt(n)) to access from previous
prover oracle messages p1, . . . , pk. Finally, the verifier runs a predicate

Verdict(x, p1|Q1
, . . . , pt(n)|Qt(n)

, v0, v1, . . . , vt(n)−1; $t(n))

to output a decision (accept/reject).
Completeness: If x is a yes-instance, with |x| = n, then for an honest prover P receiving a

quantum state |ψ⟩ such that (x, |ψ⟩) ∈ R: Pr[⟨P,V⟩ accepts x] ≥ c(n).
Soundness: If x is a no-instance, with |x| = n, then for any quantum polynomial-time

interactive algorithm P̃: Pr[⟨P̃,V⟩ accepts x] ≤ s(n).

We say that an IOArg is public-coin with private setup if the verifier sends
the randomness they generate to the prover 12 (except for the randomness used
in the setup step). In our definition, the queries of the IOArg are non-adaptive
in the sense that one query does not depend on the answer to another. In this
paper, we work with non-adaptive public-coin IOArgs with private setup.

3.2 Succinct Communication by Applying the Kilian Transformation

We now show how to apply the standard Kilian transformation [Kil92] to com-
pile any non-adaptive public-coin IOArg with private setup and succinct query
complexity into a succinct-communication argument. To prove the soundness of
the compiled protocol, we will use the online extraction of Merkle trees in the
quantum random oracle model discussed in Section A.

Protocol 2 (Succinct-communication argument from non-adaptive public-coin
IOArg with private setup and succinct query complexity).

Model: RO : X → {0, 1}λ is a quantum random oracle which could be called in
superposition.

Promise Problem: A ∈ IOArgc,s[t(n), ℓ(n), r(n), q(n)] with an underlying relation R where
q(n) = Õ(λ).

Parties: Quantum poly-time prover P & classical probabilistic poly-time verifier V.
Setup: The verifier runs (p0, v0) ← Setup(1n) from the underlying IOArg, keeps

v0, and sends p0 to the prover.

11 Keeping the randomness used in the setup enables the verifier to store information
such as secret keys and/or trapdoors without revealing them to the prover.

12 or its oracle messages
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Inputs: To both parties: x where |x| = n & x is a yes/no instance of the promise
problem A.
To the prover: The setup message p0 received during the setup. An honest
prover will also receive a state |ψ⟩ on yes-instances x such that (x, |ψ⟩) ∈ R.

Round Pi: The prover computes the message pi according to the underlying IOArg. The
prover then uses CommitRO to compute a Merkle tree root rti for the mes-
sage pi and sends rti to the verifier.

Round Vi: If i < t(n): according to the underlying IOArg the verifier samples random-
ness $i and sends the message vi.
If i = t(n): According to the underlying IOArg, the verifier samples random-
ness $t(n) and determines the q(n) locations Q = (Q1, . . . , Qt(n)) to access
from the previous prover oracle messages p1, . . . , pt(n) that were supposedly
committed with the roots rt1, . . . , rtt(n) respectively. The verifier sends these
indices Q to the prover.

Round Pt+1: The prover sends the q(n) bits at locations Q along with authentication paths
to the verifier i.e. they send the sequence

(
(πi,j , api,j)j∈Qi

)
1≤i≤t(n) where

api,j means the authentication path of the jth location with respect to the
root rti of the ith Merkle tree.

Verdict: For each i = 1 . . . t(n), the verifier verifies the authentication paths with ac-
cess to the random oracle RO and using the predicate Verify defined in
Section 2.3. Precisely, in the ith iteration, the verifier performs this verifi-
cation by calling VerifyRO (rti, Qi, (api,j)j∈Qi). It rejects if this predicate
rejects. Otherwise, the verifier outputs the output of:

Verdict(x, π1|Q1
, . . . , πt|Qt , v0, v1, . . . , vt−1; $t(n))

where Verdict is the verdict predicate of the underlying IOArg and πi|Qi
are the locations received from the prover during the round Pt(n)+1.

3.3 Analysis of the Compiled Protocol

The completeness of Protocol 2 is stated in Theorem 2 and proven in Ap-
pendix B.1 using the idempotence property of the RO interface (Property 4,
Theorem 5). The soundness of this protocol is summarized in Theorem 3 and
proven in Appendix B.2 which are key technical contributions in this paper. In
Appendix B.3, we analyze the total communication cost in this protocol which is
found to be O (λ · (t(n) + q(n) · log(n)) + r(n)) classical bits. The resulting pro-
tocol is succinct when q(n) = O(poly(log(n))) = Õ(1), r(n) = Õ(1), t(n) = Õ(1),
and ℓ(n) = poly(n). Finally, we summarize these three properties of the protocol
(completeness, soundness, and succinctness) in Corollary 1.

Theorem 2 (Completeness of Protocol 2). For a promise problem A ∈
IOArgc,s[t(n), ℓ(n), r(n), q(n)] such that c(n) is the completeness of the IOArg,
Protocol 2 built on that IOArg also has completeness c(n).
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Theorem 3 (Computational Soundness of Protocol 2). Consider a promise
problem A with an interactive oracle argument i.e. A ∈ IOArgc,s[t(n), ℓ(n), r(n), q(n)].
Let Protocol 2 be built on top of this IOArg in the quantum random oracle model
with λ = ω(log(ℓ(n))). Let x be an instance of A with n = |x|. If a (possibly cheat-
ing) quantum prover P running in polynomial time TP(n) = poly(n) and access
to RO can make an honest verifier V in such protocol accept x with probability
≥ δ(n), then there exists a polynomial-time (quantum) IOArg prover P̃IOArg(x)
that can make an honest IOArg verifier accept x with probability ≥ δ(n)−negl(λ).

Corollary 1 (Succinct-Communication Arguments from IOArgs). In
the quantum random oracle model with RO : X → {0, 1}λ and λ = ω(log(n)):
Protocol 2 built for a promise problem A ∈ IOArgc,s[Õ(1),poly(n), Õ(1), Õ(1)]
is a succinct-communication argument with (possibly non-succinct) setup with
completeness c and soundness s− negl(λ).

4 Classical-Verifier Succinct-Communication Argument
for ZX Local Hamiltonians

4.1 Eliminating redundancy in [ACGH20]’s classical-verifier
argument

Protocol 3 is a modified version of Protocol 1. When executing the Mahadev
verifiable measurement test/Hadamard rounds in the protocol, we only verify
the measurements for the qubits that would have been necessary to run the LH
verification. Precisely, the difference here is that - even in Mahadev’s test round
- the index j ranges over the set S(i, ℓ) which is the set of qubit indices affected
by non-identity observables in the Hamiltonian term siℓ instead of ranging over
[n] (i.e. all qubits).

Protocol 3 (Modified version of Protocol 1 after eliminating redundancy).
Parties, Inputs, Setup: Same as in Protocol 1.
Rounds P1,V2,P2: Same as in Protocol 1.
V’s Verdict For each i ∈ [m], ℓ ∈ [r] : V samples a Hamiltonian terms siℓ ← π
where the distribution π is given by:

π(s) =
|ds|∑
s
|ds|

.

Denote by S(i, ℓ) the set of indices of the qubits acted upon by non-identity Pauli
observables.

Also, let Ai ⊆ [r] be the subset of copies consistent with the random bases
choice.

For each i ∈ [m]:

1. If ci = 0 (test round), set vi :=
∧

ℓ∈Ai, j∈S(i,ℓ)
TestCheck(skiℓj , uiℓj , yiℓj).
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2. If ci = 1 (Hadamard round), for each ℓ ∈ Ai:
(a) Run the Hadamard round for each j ∈ S(i, ℓ):

(ziℓj , eiℓj) := HadRound(skiℓj , uiℓj , yiℓj , hiℓj).

If it rejects (i.e. ziℓj = 0 for some j), set viℓ = 0; otherwise enter the
next step.

(b) Set viℓ := 1
2

(
1− sgn(dsiℓ) ·

∏
j∈S(i,ℓ)

eiℓj

)
(i.e. set to 1 iff the measure-

ment has the opposite sign of the coefficient of the selected term).
Then, as in Protocols 5 and 1: V sets vi = 1 iff:

∑
ℓ∈Ai

viℓ ≥
(c+ s)

2
· |Ai| =

(
2− (b− a)/

∑
s
|ds|
)

4
· |Ai|

where (see Protocol 5 and the proof in Appendix D for the details):

c :=
1

2
− a

2
∑
s
|ds|

and s :=
1

2
− b

2
∑
s
|ds|

.

Finally, as in Protocol 1, V accepts iff v :=
∧m
i=1 vi evaluates to 1 (i.e. vi is 1

for each parallel repetition i ∈ [m]).

In Appendix D, we follow [ACGH20]’s proof of the soundness of Protocol 1
to show how the soundness of this modified protocol still holds even when we
only verify the Mahadev measurements for the qubits affected by the selected
local Hamiltonian term. We outline a corollary to that result below.

Corollary 2 (Mirror of Theorem 4.6. in [ACGH20]). Under the LWE as-
sumption, for every constant k, Protocol 3 with r = ω( log(n)γ2 ) and m = ω(log(n))
has negligible completeness and soundness errors.

4.2 Compiling towards Succinct Communication

Since only a number of selected locations are read from each prover message, we
can rewrite Protocol 3 as an IOArg by modeling the prover messages as message
oracles instead of message strings. As a result, we get Protocol 4 which is a
two-round public-coin non-adaptive interactive oracle argument with a private
setup. Specifically, the verifier’s choices with the exception of key-generation -
which happens in setup - are revealed to the prover (or its message oracles). Note
that the setup phase is non-succinct because the verifier needs to send a key for
each qubit. The verifier sends a total of m (the number of parallel repetitions
of the Mahadev protocol) classical bits in the first round. The verifier needs to
query k · r · m locations from each prover oracle. Theorem 9 and Corollary 2
still directly apply to this protocol because it is exactly the same as Protocol 3
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from the point of view of both the prover and verifier. When γ is at least inverse
polylogarithmic, one can take r = ω(log n/γ2) to obtain negligible completeness
and soundness errors in Protocol 4 as well as polylogarithmic query complexity.
We can then apply Corollary 1 to conclude with Corollary 3.

Protocol 4 (Interactive Oracle Argument with Preprocessing for ZX Local
Hamiltonians).

Parties, Inputs, Setup: Same as in Protocol 3.

Round P1: P follows the steps of Protocol 3 (as described in Protocol 1) and sends an
oracle Oy that represents the measurement outcomes on the commitment
qubits.

Round V1: V samples c1, . . . , cm ← {0, 1} and sends c = (c1, . . . , cm) to P.
Round P2: P follows the steps of Protocol 3 and sends an oracle Ou to V that represents

the measurement outcomes of measuring the pre-image and committed qubit
registers.

Round V2: V samples terms s1, . . . , srm ← π and queries their corresponding indices
from the oracles Oy and Ou.

V’s Verdict: V executes and returns the output of the verdict round of Protocol 3.

Corollary 3. Under the post-quantum hardness of LWE and for any natural
number n, there exists a classical-verifier succinct-communication argument sys-
tem with instance-independent setup and negligible completeness and soundness
errors for instances of size at most n of the (n, k, γ)-LH-ZX problem with at
least inverse-polylogarithmic relative promise gap in the quantum random oracle
model with RO : X → {0, 1}λ and any λ = ω(log(n)).

4.3 ZX Quantum PCP Conjecture and Consequences to QMA

We now formally state the weak ZX quantum PCP conjecture (Conjecture 3)
which was defined informally in Informal Conjecture 1.

Conjecture 3 (Weak ZX Quantum PCP Conjecture). There exist a con-
stant k and a function f(n) = Õ(1) such that the (n, k, γ)-LH-ZX problem with
relative promise gap γ(n) = 1/f(n) is QMA-hard.

The (weak) ZX quantum PCP conjecture (Conjecture 3) and Corollary 3
imply the existence of succinct-communication arguments with setup for QMA
under the LWE assumption in the QROM which can be stated as follows.

Theorem 4. If the Weak ZX Quantum PCP Conjecture (Conjecture 3) is true
as well as the post-quantum hardness of LWE, then for any promise problem A ∈
QMA and any natural number n, there exists a succinct-communication argument
system with setup for all instances of A of size at most n in the quantum random
oracle model with RO : X → {0, 1}λ and any λ = ω(log(n)).

While we could not prove that Conjecture 3 is implied by the standard
quantum PCP conjecture, we conjecture that this would be possible via a gap-
preserving reduction. The tools to prove an implication like that may come to
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light when more progress is made towards settling the standard quantum PCP
conjecture. Actually, it might be the case that a long-awaited proof of the quan-
tum PCP conjecture would be established via the QMA-hardness of ZX local
Hamiltonians.

5 Conclusion

We formalized the notion of post-quantum interactive oracle arguments (with
setup). Given that formalism, we showed a framework to compile any public-coin
non-adaptive interactive oracle argument (with private setup) into a succinct-
communication argument (with possibly non-succinct setup). Our soundness
proof utilized the online extraction of Merkle trees in the quantum random
oracle model. We stated the (weak) ZX quantum PCP conjectures as variants
of the standard quantum PCP conjectures. In the QROM, either of these con-
jectures is sufficient to imply the existence of succinct-communication classical-
verifier arguments with non-succinct setup for QMA under the LWE assumptions
(and consequently a protocol for succinct-communication classical verification of
quantum computation with non-succinct setup).
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Appendices

We provided in the appendices enough materials to make the paper self-contained.
Appendix B expands on Section 3.3 and is an original contribution in this paper.
Appendix A expands on Section 2.4 and proves a result implicit in [DFMS22a].
The concrete statement and proof we provide in Section A fit the exposition of
other sections in this paper and were written prior to the publication of [DFMS22a].

A Online Extraction of Merkle Trees in the QROM

We will now expand on Section 2.4 and show how Merkle trees can be extracted
online in the quantum random oracle model relying on [DFMS22b]’s framework
introduced in Section 2.4 and illustrated in Figure 3. This online extraction
result is implicit in a follow-up work by [DFMS22a], but we provide a proof
- with notation more relevant to our paper - which was written prior to the
publication of [DFMS22a].

RO

...

S
RO E

... ...

Fig. 3: Figure is from [DFMS22b] and illustrates the RO interface (left) vs the
extractable RO-simulator S, with its S.RO and S.E interfaces (right). The
“snaked“ arrowed lines represent quantum queries and responses thereof, while
the straight arrowed lines represent classical queries and responses thereof. Note
that classical queries are a special case of quantum queries.

In Theorem 4.3. in [DFMS22b], multiple guarantees are proven on this sim-
ulated oracle. We cite here certain special cases of their result that we will use
to prove the online extractability of Merkle trees. In [DFMS22b]’s framework,
two queries are called independent if the input of either query does not depend
on the output of the other.
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Theorem 5 (Special Cases of Theorem 4.3. in [DFMS22b]). For a RO :
X → {0, 1}λ, the extractable RO-simulator S with interfaces S.RO and S.E
satisfies the following properties:

1. If S.E is unused, S is perfectly indistinguishable from the random oracle
RO.

2. Any two consecutive independent queries to S.RO commute. The same holds
for S.E.

3. Any two consecutive independent queries to S.E and S.RO 8
√
21−λ-almost-

commute.
4. Classical queries to S.RO and S.E are idempotent (applying either twice in

a row is equivalent to applying it once.).
5. The total runtime of S is bounded as (where qRO and qE are the number of

queries to S.RO and S.E respectively):

TS = O
(
qRO · qE + q2RO

)
.

We will also need the following proposition.

Lemma 1 (Proposition 4.5. in [DFMS22b]). Consider a query algorithm A
that makes q queries to S.RO but no query to S.E, outputting some t ∈ {0, 1}λ
and x ∈ X . Let h then be obtained by making an additional query to S.RO on
input x. Let x̂ be obtained by making an additional query to S.E on input t.
Then 13:

Pr
t, x ← AS.RO
h ← S.RO(x)
x̂ ← S.E(t)

[x̂ ̸= x ∧ h = t] ≤ 400(q + 2)3/2λ .

The main theorem in this section is stated in terms of a game G1(λ, d, r, q)
illustrated in Figure 4 where a quantum adversary A interacts with only the RO
interface of the (simulated) random oracle while a classical honest extraction
algorithm E only (classically) interacts with the E interface of the simulated
random oracle. The adversary announces a classical value rt which is supposedly
the root of a Merkle tree and they win if they can later “fake” at least one of r
leaves. Faking a leaf here means giving a leaf value that can be authenticated
against the prior commitment, but different from that output by extraction. A
referee algorithm R runs to determine whether the adversary won by validating
the authentication paths against the root rt then comparing the adversary’s
leaves against the leaves given by the extraction algorithm.

The adversary - without loss of generality - can be decomposed into two
quantum algorithms A = (A1,A2) where A1 makes q1 queries to the random
oracle, then announces a value rt, followed by A2 making q2 queries to the
random oracle, then outputs a classical string that represents their attempt to
win the game where q1 + q2 ≤ q. Right after A1 announces rt, the extraction
algorithm E takes place and outputs ℓ = 2d leaves of a Merkle tree whose root is
13 The constant 400 is an upper bound on the constant 40e2 in [DFMS22b] where e is

Euler’s number.
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A

E

π̂

rt
...

···

...

rt

S, (πj , apj)j∈S

S

R

won/lost

...

RO E

(a) G1(λ, d, r, q)

A

E

π̂

rt
...

···

···

rt

S, (πj , apj)j∈S

S
RO E

R

won/lost

...

(b) G2(λ, d, r, q)

A

E ′

π

···

···

rt

S, (πj , apj)j∈S

S
RO E

R

won/lost

...

(c) G3(λ, d, r, q)

Fig. 4: This figure illustrates the three main games used in our hybrid argument.
In all of the games, A wins if S ⊆ [2d], |S| = r, and VerifyRO (rt, S, apj∈S),
but ∃j ∈ S : πj ̸= π̂j . The “snaked“ arrowed lines represent quantum queries and
responses thereof, while the straight arrowed lines represent classical queries and
responses thereof. The referee R consists of two main procedures: (1) verifying
the authentication paths which needs to interact with the S.RO interface, and
(2) comparing the output of the adversary and the extractor which does not
interact with S. The shaded rectangle indicates that the referee “pauses” its
execution between these sub-procedures for the extractor execution to take place.

rt. When the extraction “fails”, it can default to a pre-defined leaf value (call it
⊥) for the subtrees it failed on. The classical honest referee R algorithm declares
that A won if and only if the following conditions are met:

1. A1 outputs rt, a value in the range of the random oracle, and
2. A2 outputs S, (πj , apj)j∈S such that S ⊆ [2d], |S| = r (i.e. A gives r indices

of the locations A wishes to challenge and a leaf value for each location as
well as its authentication path), and VerifyRO (rt, S, apj∈S) but ∃j ∈ S :
πj ̸= π̂j (i.e. all authentication paths are valid and consistent - see Section 2.3
- yet there is at least one location with a value different from the output of
the extraction procedure).
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The main theorem states that when the game G1 is defined with the universal
honest extractor and referee algorithms described earlier, any quantum adversary
cannot win G1(λ, d, r, q) with more than a negligible probability in the security
parameter λ (the number of bits in the output of the random oracle) as long as
λ = ω(d) and the adversary makes at most q ≤ poly(2d) queries to the random
oracle.

Theorem 1. For the game G1 defined in Figure 4 by the universal referee and
extractor algorithms described earlier such that λ = ω(d), q ≤ poly(2d), and
any quantum adversary A = (A1,A2) where A1 makes q1 queries to the random
oracle, then A1 announces a value rt, followed by A2 making q2 queries to the
random oracle such that q1 + q2 ≤ q, then A2 outputs a classical string, it holds
that:

Pr[A wins G1(λ, d, r, q)] ≤ negl(λ).

To prove this theorem, we give a hybrid argument outlined in Figure 4. The
hybrid argument first transitions from game G1 to game G2 (Claim A). The
difference between games G1 and G2 is that the extraction procedure in G2

happens after A2’s execution and the referee’s oracle queries for verifying the
authentication paths. Then, the argument transitions from game G2 to game
G3 (Claim A). The difference between games G2 and G3 is that in G3 a new
extractor E ′ is used which simply outputs a copy of the adversary’s attempt
(augmented with ⊥ values for unchallenged leaves). Notice that no adversary
can win game G3 because of how E ′ is defined i.e. Pr[A wins G3(λ, d, r, q)] = 0
for any adversary! Notice that in the game G3, it does not make a difference
whether the extractor “relays” the adversary’s output before or after the referee’s
validation of the authentication paths. Both games are equivalent in terms of
the adversary’s winning probability (which is 0 in either case).

We describe below how the extractor for games G1 and G2 works. This
extraction procedure is called recursively starting with E(rt, d). The symbol ||
denotes string concatenation.

E(y, d)
1 : x := S.E(y)

2 : If d ?
= 0, return x

3 : Else, set x0||x1 := x

4 : return E(x0, d− 1)||E(x1, d− 1)

On the other hand, the extractor E ′ used in game G3 works as follows.

E ′(rt, d, S, (πj , apj)j∈S)
1 : return (π̂j)1≤j≤2d where π̂j = πj if j ∈ S and ⊥ otherwise

As mentioned earlier, the first step in this hybrid argument is going from
game G1 to game G2 which we now prove in Claim A.
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Claim. Let G1 and G2 be the final joint (adversary and random oracle) states of
games G1 and G2 respectively. Then, the following hold:

1. δ (G1,G2) ≤ (q + r · d) · 2d+(7−λ)/2, and consequently
2.
∣∣∣Pr[A wins G1]− Pr[A wins G2]

∣∣∣ ≤ (q + r · d) · 2d+(7−λ)/2.

Proof. In both games, the effect of the extractor on the state of S (the simulated
oracle) can be described by a sequence of 2d − 1 calls to S.E. The adversary’s
behavior on its joined state with S can be described by a sequence of at most
q quantum channels and oracle unitaries (Advi and S.RO respectively) where
q1 + q2 ≤ q is the total number of times the adversary calls the random oracle,
split into q1 and q2 calls before and after announcing rt respectively. The referee’s
effect on the joint state of the adversary and simulated oracle is r · d classical
queries to S.RO. We can characterize the collective actions that the extractor,
the adversary, and the referee perform on the joint state of the adversary A
and the simulated oracle S in games G1 and G2 respectively by the following
algorithms:

Net effect on the joint state of G1

1 : for i = 1, . . . , q1 apply Advi followed by S.RO.

2 : π̂ := E(rt, d) making 2d − 1 classical queries to S.E.

3 : for i = q1 + 1, . . . , q apply Advi followed by S.RO.

4 : The referee applies r · d classical S.RO queries .

Net effect on the joint state of G2

1 : For i = 1, . . . , q1 apply Advi followed by S.RO.

2 : For i = q1 + 1, . . . , q apply Advi followed by S.RO.

3 : The referee applies r · d classical S.RO queries .

4 : π̂ := E(rt, d) making 2d − 1 classical queries to S.E.

Let G1 and G2 be the final joint states of the simulated oracle and adversary
at the end of games G1 and G2 respectively. Now, we bound the distance between
them using this lemma from [DFMS22b].

Lemma 2 (Special Case of Theorem 4.3. in [DFMS22b]). Any two sub-
sequent independent queries to S.E and S.RO 8

√
21−λ-almost-commute.

We are commuting 2d − 1 classical queries to S.E (while preserving their
order) past the execution of A2 involving q2 RO-queries and the referee’s r · d
classical queries to RO. Each S.E query made by the extractor is independent
of the behavior of A2 and independent of the result of the referee’s queries. We
can use the lemma to bound the distance between G1 and G2 by successively
applying the triangle inequality (q2 + r · d) · (2d − 1) times to obtain:

δ(G1,G2) ≤ (q2+r·d)(2d−1)·8
√
21−λ ≤ 8(q+r·d)·2d

√
21−λ = (q+r·d)·2d+(7−λ)/2.

(4)
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We now show how to go from game G2 to game G3 in Claim A.

Claim.

Pr[A wins G2] ≤ Pr[A wins G3] + 400 · d · r(q + 2d + 2)3/2λ.

Proof. To prove this, we will go through a sequence of hybrid games G′i where
each uses the extractor E ′i such that d ≥ i ≥ 0. The game G2 will be equivalent
to G′d while the game G3 will be equivalent to G′0. Notice how the games are
indexed in descending order to make the notation easier later!

To describe the extractor E ′i used in these hybrid games G′i, we will use the
notation set in Section 2.3 about Merkle trees. To see the difference between
G′i+1 and G′i, we notice what happens in the extractor E from G2. It works its
way down from the root rt to all the leaves of the tree. However, the extractor
of game G3 only outputs “actual” leaves for the locations challenged by the
adversary while the rest is set to ⊥. To undergo this transition from G2 to G3,
we work level by level from the root (top level) of the tree. For any two games
G′i+1 and G′i where d > i ≥ 0:

1. The extractor E ′i+1 of game G′i+1 will start with the values Zi+1 and call the
extractor E(zj,i+1, i+ 1) for every zj,i+1, while

2. the extractor E ′i of game G′i will do the same but starting at one level
downwards. Precisely, it will start with the values Zi and call the extrac-
tor E(zj,i, i) for every zj,i.

We now give the formal description of E ′i .

E ′i(rt, d, S, (πj , apj)j∈S)
1 : Initialize output to empty string

2 : For each zk ∈ Ẑi :

3 : Tk = E(zk, i)
4 : output := output||Tk

5 : return output

When E is called on zk = ⊥, it returns 2i leaf values of ⊥. Notice that in the
previous codebox the merge cannot fail because each of the unique zk is the
root of its own subtree which is disjoint from the other subtrees. Furthermore,
notice that while the extractor outputs the leaves at the end, it computes the
intermediate nodes explicitly. This fact is going to be used in the proof of Claim A
where we will bound the probability of winning game G′i+1 by that of winning
G′i as follows:

Pr[A wins G′i+1] ≤ Pr[A wins G′i] + 400r(q + 2d + 2)3/2λ.
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Using this bound, we finalize our proof of Claim A by applying the triangle
inequality d times from game G2 ≡ G′d to game G′0 ≡ G3:

Pr[A wins G2] ≤ Pr[A wins G3] + 400 · d · r(q + 2d + 2)3/2λ.

It now remains to show Claim A.

Claim.

Pr[A wins G′i+1] ≤ Pr[A wins G′i] + 400r(q + 2d + 2)3/2λ

Proof. In the extractor E ′i+1, let X ′i, Z ′i be the pre-images at level i that the
extractor extracts by invoking S.E on the (i+ 1)th level and that coincide with
the locations of Xi, Zi provided by the adversary. X ′i and Z ′i will be the output
of k ≤ r calls to S.E on the (i+1)th level. The probability of winning the game
G′i+1 can be bounded as follows:

Pr[A wins G′i+1]

= Pr[A wins G′i+1 and (Xi, Zi) = (X ′i, Z
′
i)] + Pr[A wins G′i+1 and (Xi, Zi) ̸= (X ′i, Z

′
i)]

≤ Pr[A wins G′i] + Pr[A wins G′i+1 and (Xi, Zi) ̸= (X ′i, Z
′
i)]

≤ Pr[A wins G′i] +
k∑
j=1

Pr[A wins G′i+1 and (xj,i, zj,i) ̸= (x′j,i, z
′
j,i)].

In the last line, we applied the union bound on the events Ej where event Ej
is the event that A wins G′i+1 and index j is a “mismatch”. We now bound the
probability Pr[Ej ]. Let’s assume that A wins G′i+1 and (xj,i, zj,i) ̸= (x′j,i, z

′
j,i)

where index j is a mismatch. Since winning implies the validity and consis-
tency of the authentication paths, we know that 14 h(xj,i, zj,i) = zj,i+1 which
is checked by the referee via calling S.RO(xj,i, zj,i). This gives rise to this
event: S.RO(xj,i, zj,i) = zj,i+1 while S.E(zj,i+1) = (x′j,i, z

′
j,i) where (xj,i, zj,i) ̸=

(x′j,i, z
′
j,i). The probability of this event can be bounded by Lemma 1 below.

When we invoke the Lemma 1, the query algorithm Y consists of the adversary
and the first part of the referee i.e. Y = (A,R1). Y makes at most (q+2d) queries
to RO but no queries to E. By the idempotence property of classical RO queries,
we can “artificially” insert right after the execution of Y another application of
the RO query where the mismatch happened. We can also “move” the E query
where the mismatch happened to the start of the extractor E ′i+1 algorithm. This
is possible at no cost because the calls of the extractor E ′i+1 on the (i + 1)th
level are pairwise independent and subsequent independent E queries commute
(Property 2 of Theorem 5). Finally, notice that the idempotence property of

14 As set in Section 2.3, we use the comma to denote a concatenation that respects
left/right child order.
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classical queries to S.RO ensures that verifying repeated intermediate nodes is
equivalent to verifying the repeated node once.
By Lemma 1, we can conclude that:

Pr[Ej ] = Pr[A wins G′i+1 and (xj,i, zj,i) ̸= (x′j,i, z
′
j,i) is a mismatch ] ≤ 400(q+2d+2)3/2λ.

Consequently (noting that k ≤ r),

Pr[A wins G′i+1] ≤ Pr[A wins G′i] +
k∑
j=1

Pr[Ej ]

≤ Pr[A wins G′i] + r · 400(q + 2d + 2)3/2λ.

By combining the bounds of Claim A and Claim A and using the facts that
Pr[A wins G3] = 0 and r ≤ 2d, we obtain:

Pr[A wins G1] ≤ Pr[A wins G3] + (q + r · d) · 2d+(7−λ)/2 + 400 · d · r(q + 2d + 2)3/2λ

≤ q · 2d+(7−λ)/2 + d · 22d+(7−λ)/2 + 400d(q + 2d + 2)3 · 2d−λ.

This concludes the proof of Theorem 1 by noting that this upper bound is
negl(λ) since λ = ω(d) and q ≤ poly(2d).

B Analysis of Protocol 2

B.1 Completeness of Protocol 2

Theorem 2 (Completeness of Protocol 2). For a promise problem A ∈
IOArgc,s[t(n), ℓ(n), r(n), q(n)] such that c(n) is the completeness of the IOArg,
Protocol 2 built on that IOArg also has completeness c(n).

Proof. This follows by the idempotence property of the RO interface (Prop-
erty 4, Theorem 5). When the verifier V of Protocol 2 makes the queries to the
random oracle to verify the authentication paths, they will be consistent with
the classical queries that the honest prover made while generating the Merkle
tree commitments. Let x be a yes instance, and |ψ⟩ be the quantum state given
to the honest prover P. For brevity, let π|Q =

(
π1|Q1

, . . . , πt|Qt
)

be the locations
sent by P and V

π|Q
IOArg(x) denote the output of the IOArg verifier for the same

randomness choices of V. Then, we can compute the acceptance probability as
follows:

Pr[⟨P,V⟩ accepts x] = Pr
π|Q←P|ψ⟩

[V
π|Q
IOArg(x) accepts and ∀i ≤ tVerifyRO (rti, Qi, (api,j)j∈Qi)]

= Pr
π|Q←P|ψ⟩

[V
π|Q
IOArg(x) accepts ] by idempotence

= Pr[⟨P |ψ⟩IOArg,VIOArg⟩ accepts x].
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B.2 Soundness of Protocol 2

Theorem 3 (Computational Soundness of Protocol 2). Consider a promise
problem A with an interactive oracle argument i.e. A ∈ IOArgc,s[t(n), ℓ(n), r(n), q(n)].
Let Protocol 2 be built on top of this IOArg in the quantum random oracle model
with λ = ω(log(ℓ(n))). Let x be an instance of A with n = |x|. If a (possibly cheat-
ing) quantum prover P running in polynomial time TP(n) = poly(n) and access
to RO can make an honest verifier V in such protocol accept x with probability
≥ δ(n), then there exists a polynomial-time (quantum) IOArg prover P̃IOArg(x)
that can make an honest IOArg verifier accept x with probability ≥ δ(n)−negl(λ).

Proof of Theorem 3. Consider a quantum polynomial-time prover P in Proto-
col 2 running in TP(n) time that makes the honest verifier V accept on an
instance x with probability ≥ δ(n) where n = |x|. According to the proto-
col description, this prover P can be decomposed into the quantum channels
(P1, . . . ,Pk,Pk+1) where Pi makes hi queries to RO such that

∑
1≤i≤t(n)+1

hi ≤

TP(n). Furthermore, notice that the honest verifier can be decomposed into the
classical algorithms (V1, . . . ,Vt(n),VR,VIOArg) such that:

– Vi is basically a relay interface connected to the incoming messages from the
IOArg verifier Ṽ (in particular Vt(n) is where the verifier sends the challenged
locations),

– VR is the predicate that verifies the authentication paths of the claimed
nodes, and

– VIOArg is the verdict algorithm of the underlying IOArg.

As illustrated in Figure 5, we construct a (quantum) polynomial-time IOArg
prover P̃ (in the quantum random oracle). This prover is a quantum polynomial-
time interactive algorithm described by the following sequence of sub-algorithms:
P̃ =

(
P̃1, . . . , P̃t(n)

)
. Each P̃i performs the following in order:

1. it executes Pi which is the corresponding action of the prover P in the ith
round, then

2. it calls the extractor E with access to the S.E interface of the simulated
oracle. It will then send the extracted string π̃i to the verifier Ṽ in the form
of an oracle message.

Given the description of the constructed prover P̃, we bound η := Pr
rti←Pi(x)
π̃i←E(rti)
$

$←{0,1}r(n)

[⟨P,V⟩ accepts x]

η = Pr[⟨P,V⟩ accepts x and ∀i πi|Qi = π̃i|Qi ]

+ Pr[⟨P,V⟩ accepts x and ∃i πi|Qi ̸= π̃|Qi ] (law of total probability)

= Pr[Vπ|QIOArg(x) accepts, VR accepts, and ∀i πi|Qi = π̃i|Qi ]

+ Pr[Vπ|QIOArg(x) accepts, VR accepts, and ∃i πi|Qi ̸= π̃i|Qi ]

≤ Pr[V π̃|QIOArg(x) accepts ] + Pr[VR accepts and ∃i πi|Qi ̸= π̃i|Qi ].
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P V

rt1

(Q1, . . . , Qk)

((πi, j , apj)j∈Qi)i≤k

RO.
.
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(Q1, . . . , Qk)

unilateral
communication
channel

Fig. 5: This figure illustrates the reduction from the succinct argument interac-
tion ⟨P,V⟩ to a polynomial-time IOArg prover P̃ interacting with the honest
IOArg verifier Ṽ. The prover is split into two parts: one that interacts with the
E interface and one that interacts with the RO interface. Communication goes
unilaterally from the former to the latter. The unilateral communication is in-
dicated by a line with two circles at its ends. This IOArg prover can make the
IOArg verifier accept the instance x with probability ≥ δ(n)− negl(λ).

If Pr[VR accepts and ∃i πi|Qi ̸= π̃i|Qi ] ≤ negl(λ), we can conclude that:

Pr[V π̃|QIOArg(x) accepts ] ≥ Pr[⟨P,V⟩ accepts x]− negl(λ) ≥ δ(n)− negl(λ). (5)
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Now, it remains to show that Pr[VR accepts and ∃i π|Qi ̸= π̃|Qi ] ≤ negl(λ)
which we will prove by applying Theorem 1. To do that, we notice that for
each round i, we can build an adversary A(i) = (A(i)

1 ,A(i)
2 ) where A(i)

1 =

(P1,V1, . . . ,Pi−1,Vi−1,Pi) and A(i)
2 =

(
Vi,Pi+1,Vi+1, . . . ,Pt(n)

)
that already

matches the syntax of an adversary for game G1 (λ(n), log(ℓi(n)), qi(n), h(n))
introduced in Section A with the game parameters properly set via the parame-
ters of the underlying IOArg (Definition 2). Indeed, we have h(n) ≤ poly(ℓi(n))
since h(n) = poly(n) and ℓi(n) ≤ poly(n). We also have qi(n) ≤ ℓi(n). Therefore,
for any adversary A making at most h(n) queries, we have:

Pr[A wins G1] ≤ negl(λ). (6)

Let I be the final state at the end of the interaction in Figure 5. Let I ′ be
obtained by moving the extractors E(rt1), . . . , E(rti−1) past the extractor E(rti)
while preserving their order. Notice that all the queries made to RO are inde-
pendent of these E calls. Also, each of these extractors’ chain of E-queries is
independent of the queries of E(rti). Also, notice that because we are working
with non-adaptive IOArgs in this paper, the behavior of Ṽ does not depend on
these calls. There are i − 1 ≤ t(n) extractors that we will move past at most
h(n) queries. Each jth extractor makes ℓj(n) − 1 ≤ ℓ(n) queries. Therefore, we
conclude by Property 4 of Theorem 5 that:

δ(I, I ′) ≤ h(n) · t(n) · ℓ(n) · 8 ·
√
21−λ. (7)

Therefore, we have:

Pr[VR accepts, and ∃i πiQi ̸= π̃iQi in interaction I]
≤ Pr[VR accepts, and ∃i πiQi ̸= π̃iQi in interaction I ′] + δ(I, I ′)

≤ Pr[A wins G1 (λ(n), log(ℓi(n)), qi(n), h(n))] + 8 · t(n) · h(n) · ℓ(n)
√
21−λ Inequality (7)

≤ negl(λ) + poly(ℓ(n))
√
21−λ Theorem 1

≤ negl(λ) since λ = ω(log(ℓ(n))).

Finally, we need to verify that P̃ runs in poly(n) time as long as the underlying
argument prover P runs in polynomial time. This is true because each of Pi,
E(rti), Vi run in polynomial time. Furthermore, by Property 6 of Theorem 5
the simulator S runs in time TS = O

(
qRO · qE + q2RO

)
where qE and qRO are

the number of queries to S.RO and S.E respectively. The number of queries
for either type is at most poly(n) because they are made by the underlying
polynomial time algorithms.

B.3 Communication Complexity of Protocol 2

We analyze Protocol 2’s communication complexity (excluding the setup mes-
sage) provided that the underlying IOArg is parameterized as IOArgc,s[t(n), ℓ(n), r(n), q(n)].
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In the ith round, the prover sends a Merkle tree root which is in the range of the
random oracle and therefore has length λ. The verifier sends then the message
vi which has ri(n) bits. For t(n) rounds, a total of λ · t(n) + r(n) is sent so
far by both the prover and verifier excluding the setup. The verifier at the end
sends the q(n) locations needed where each location is expressed by log(ℓ(n))
where log(ℓ(n)) = O(log(n)) because ℓ(n) ≤ poly(n). This means that a total of
O(q(n) · log(n)) bits are sent by the verifier for this purpose. Finally, the prover
sends the requested leaves and their authentication paths. Each authentication
path is represented by O(log(ℓ(n)) ·λ) = O(log(n) ·λ) bits. Therefore, the prover
sends a total of O(q(n) · log(n) · λ) bits in this round. Therefore, the total com-
munication cost in this protocol is O (λ · (t(n) + q(n) · log(n)) + r(n)) classical
bits. The resulting protocol is succinct when q(n) = O(poly(log(n))) = Õ(1),
r(n) = Õ(1), t(n) = Õ(1), and ℓ(n) = poly(n).

C Modular Construction of Protocol 1

In this Appendix, we give an exposition of how to build Protocol 1 modularly.
We generalize the proofs of [ACGH20] to work with any constant locality k and
any promise gap function γ.

C.1 Quantum-verifier protocol for ZX local Hamiltonians

We will now give an exposition of a quantum-verifier protocol for the (n, k, γ)-
LH-ZX problem which appeared in [ACGH20] and builds on earlier works
of [MNS16, MF16, FHM18, VZ19]. [MF16, FHM18]’s earlier version described a
proof system for QMA where the verifier is a quantum machine capable of per-
forming X and Z measurements on a single qubit (i.e. a probabilistic classical
device and a single-qubit quantum device capable of performing Pauli measure-
ments as instructed by the classical device). The protocol starts by the verifier
sampling a Hamiltonian term to be verified. The prover sends the qubits of
the witness state one at a time. The verifier measures the qubits affected by
the Hamiltonian term and discards the rest thus achieving this economic ar-
chitecture of a single qubit. [VZ19] and [ACGH20] described parallel-repeated
versions of this protocol and used them to obtain zero-knowledge argument sys-
tems for QMA. [ACGH20]’s version made another modification so that the pro-
tocol can be compiled using Mahadev’s verifiable measurement protocol into a
non-interactive classical-verifier version. Mahadev’s protocol involves generating
a pair of private/public keys that depends on the measurement basis. However,
the measurement basis could depend on the Hamiltonian term since a Hamilto-
nian term could affect by X on a qubit while another Hamiltonian term could
affect by Z on the same qubit. Therefore, they modified the protocol so that the
measurement bases (X or Z) for each qubit are sampled uniformly (and there-
fore independent of the Hamiltonian). This way, the key generation does not
depend on the Hamiltonian (but rather only on an upper bound on the number
of qubits involved).
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We state here [ACGH20]’s modified version but with a slight difference where
we follow [MF16]’s track to only measure the qubits needed to verify the Hamil-
tonian while [ACGH20] measured all qubits and ignored the ones not used. Fur-
thermore, we will parameterize the protocol for any constant k and any arbitrary
relative promise gap γ.

Protocol 5 (Variant of Protocol 3 in [ACGH20]; Single-qubit verifier protocol
for the local Hamiltonian problem (n, k, γ)-LH-ZX with instance-independent
setup).

Parties: 1. Prover P: A quantum polynomial-time machine that wants to convince
the verifier that an input to the (n, k, γ)-LH-ZX problem has a ground-
state of low energy i.e. ≤ a.

2. Verifier V: A quantum polynomial-time machine that interacts with the
prover to verify that an input ZX Hamiltonian has a groundstate of low
energy.

Parameters: 1. n: number of qubits.
2. r: number of parallel repetitions of the protocol.

Setup: V samples the bases h1, . . . , hr ← {0, 1}n i.i.d. uniformly. Each string hℓ is
an n-bit string where 0 or 1 mean measure the corresponding qubit in the Z
or X basis respectively.

Inputs: Input to both parties: x = (H =
S∑
s=1

dsHs, a, b) an instance of the (n, k, γ)-

LH-ZX promise problem.
Input to honest prover on yes instances: |Ψ⟩ = |ψ⟩⊗r (r copies of |ψ⟩
the ground state of the Hamiltonian H).

Round P: P sends the witness state |Ψ⟩ = |ψ⟩⊗r.
V’s verdict: 1. V samples r i.i.d. Hamiltonian terms (one term for each copy) s1, . . . , sr ←

π where the distribution π is given by:

π(s) =
|ds|∑
s
|ds|

.

For each chosen Hamiltonian term sℓ, a choice of measurement bases
will be imposed on at most k qubits which are acted upon by non-identity
Pauli observables. Denote the set of indices of such qubits by S(ℓ).

2. V records A ⊆ [r], the subset of copies where the measurements imposed
by the chosen term are consistent with the random bases choices given
by h. For each ℓ ∈ A,
(a) Set mℓ,j = 1 if j /∈ S(ℓ) i.e. the j-th qubit was acted upon by the

identity in the term sℓ; otherwise (i.e. j ∈ S(ℓ)) set mℓ,j to the
outcome of measuring it in the hℓ,j basis. This gives the outcomes
(mℓ,1, . . . ,mℓ,k).

(b) V sets vℓ = 1
2

(
1− sgn(dsℓ) ·

∏
j∈S(ℓ)

mℓj

)
(i.e. set to 1 iff the mea-

surement has the opposite sign of the coefficient of the selected term).
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3. V accepts iff 15 ∑
ℓ∈A vℓ ≥

(c+s)
2 · |A| =

(
2−(b−a)/

∑
s
|ds|

)
4 · |A| where:

c :=
1

2
− a

2
∑
s
|ds|

and s :=
1

2
− b

2
∑
s
|ds|

.

The following theorem establishes bounds on the completeness and soundness
errors of this protocol.

Theorem 6 (Appendix B of [ACGH20]). Let r be the number of copies used
in Protocol 5 for an instance of the (n, k, γ)-LH-ZX problem, then the protocol
has:

1. completeness error ≤ e−rγ2/2k+4

, and
2. soundness error ≤ e−rγ2/2k+4

where γ = b−a
S is the relative promise gap as defined in Definition 1.

In Appendix C.1, we write down the proof of Theorem 6 which is basically a
mirror of the proof of Lemma 3.1 in [ACGH20]’s Appendix B by setting the
locality to k instead of 2. It suffices to take r to be any function that is ω( log(n)γ2 )
to make the completeness and soundness negligible.

Corollary 4 (Lemma 3.1. in [ACGH20]). If r = ω( log(n)γ2 ), then Protocol 5
has negligible completeness and soundness errors.

Completeness and soundness of the quantum-verifier protocol We will
now prove Theorem 6 which establishes the completeness and soundness of Pro-
tocol 5 in Section C.1. The proof is a mirror of the proof of Lemma 3.1 in
Appendix B of [ACGH20] by setting the locality to k instead of 2. It also uses
the proof ideas in [VZ19, MNS16].

Proof of Theorem 6. The protocol is repeated r times. For each copy, the sam-
pled k-local Hamiltonian term will dictate that (at most) k qubits be measured
in certain bases (X or Z). The randomly chosen bases for the k qubits in the
protocol setup are consistent with the desired measurements with probability
≥ 1

2k
. Since we have r copies, there are t consistent copies with probability

≥
(
r
t

)
( 1
2k
)t(1− 1

2k
)r−t.

Let Xℓ be the binary random variable corresponding to the verdict at copy
ℓ (i.e. vℓ). By following the computation from [MNS16], we can compute the
expected value of this random variable.

15 Notice that c > s and c+s
2

is the midpoint of c and s. Therefore, another way to

read this as explained in [VZ19]: V accepts iff
(

1
|A|

∑
ℓ∈A vℓ

)
is closer to c than to

s. See the appendix for the details of this computation. We suspect that there was
a typo in this expression in [ACGH20].



Interactive Oracle Arguments in the QROM 41

E [Xℓ] =
∑

1≤s≤S

1

2
(1− sgn(ds) · ⟨ψ|Hs |ψ⟩) · π(s)

=
1

2

∑
1≤s≤S

π(s)− 1

2

∑
1≤s≤S

π(s) · sgn(ds) · ⟨ψ|Hs |ψ⟩

=
1

2
− 1

2

∑
1≤s≤S

|ds|sgn(ds)∑
s
|ds|

· ⟨ψ|Hs |ψ⟩

=
1

2
− 1

2

∑
1≤s≤S

ds∑
s
|ds|
· ⟨ψ|Hs |ψ⟩

=
1

2
− 1

2
∑
s
|ds|

∑
1≤s≤S

⟨ψ| dsHs |ψ⟩ =
1

2
− ⟨ψ|H |ψ⟩

2
∑
s
|ds|

(8)

In the “yes case” when |ψ⟩ is the groundstate, we have E [Xℓ] ≥ 1
2 −

a
2
∑
s
|ds|

because ⟨ψ|H |ψ⟩ ≤ a when |ψ⟩ is the groundstate. Call this lower bound c :=
1
2 −

a
2
∑
s
|ds| .

In the “no case” for any state |ψ⟩, we have E [Xℓ] ≤ 1
2 −

b
2
∑
s
|ds| because

⟨ψ|H |ψ⟩ ≥ b for any state |ψ⟩. Call this upper bound s := 1
2 −

b
2
∑
s
|ds| .

To bound the soundness error, let’s consider the probability of acceptance in
the case of a no instance. The probability that the protocol accepts conditioned
on the event that the set of consistent copies was A with |A| = t is given by the
following:

Pr[accept | |A| = t] = Pr[
1

t

∑
ℓ∈A

Xℓ ≥
c+ s

2
]

= Pr[
1

t

∑
ℓ∈A

Xℓ − s ≥
c− s
2

] ≤ e−tg
2/2 By Hoeffding’s inequality

where g = c − s is the absolute promise gap Γ divided by 2
∑
s
|ds|. Now, using

the fact that this event occurs with probability
(
r
t

)
( 1
2k
)t(1− 1

2k
)r−t, we put that

together to compute the acceptance probability as follows:
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Pr[accept] =
r∑
t=0

Pr[|A| = t] · Pr[accept | |A| = t]

≤
r∑
t=0

(
r

t

)
(
1

2k
)t(1− 1

2k
)r−t · e−tg

2/2

=

r∑
t=0

(
r

t

)
(
1

2k
· e−g

2/2)t(1− 1

2k
)r−t

= (
e−g

2/2

2k
+ 1− 1

2k
)r Binomial Theorem

= (
e−g

2/2 + 2k − 1

2k
)r

≤ (
(1− g2/4) + 2k − 1

2k
)r since e−x ≤ 1− x/2 for x ∈ [0, 1]

= (
−g2/4 + 2k

2k
)r = (1− g2

2k+2
)r

≤ e−rg
2/2k+2

since 1− x ≤ e−x for x ≥ 0

To bound the completeness error, we perform the same manipulations above
to bound the probability of rejection in the case of a yes instance.

Pr[reject | |A| = t] = Pr[
1

t

∑
ℓ∈A

Xℓ <
c+ s

2
]

≤ Pr[c− 1

t

∑
ℓ∈A

Xℓ >
c− s
2

] ≤ e−tg
2/2

By performing the same manipulations, we obtain Pr[reject] ≤ e−rg2/2k+2

.
By noticing that

∑
s
|ds| ≤ S, we can see that g = c− s = b−a

2
∑
s
|ds| ≥

γ
2 where

γ is the relative promise gap. We can conclude with the symmetric upper bound
on the completeness and soundness errors: e−rγ

2/2k+4

.

C.2 Mahadev’s verifiable measurement protocol

In 2018, Mahadev published two works [Mah18a, Mah18b] achieving the follow-
ing under the computational assumption of the quantum hardness of Learning
With Errors (LWE):

1. classical verification of quantum computation, and
2. classical homomorphic encryption of quantum circuits.
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Part of her works’ contribution was also introducing a protocol for verifi-
able measurement that uses a quantum-computationally binding scheme for the
classical “commitment” 16 of quantum states. For a detailed description of the
protocol, please refer to the original [Mah18b] paper or Section 2.2 of [VZ19] for
a concise summary. Borrowing the exposition style of [VZ19, ACGH20], we are
going to shed light on the verifiable measurement protocol in this subsection.
A key component of the protocol is the concept of claw-free function families.
These are function families for which it is computationally infeasible to find a
claw except via a trapdoor. A claw as demonstrated in Figure 6 for two func-
tions f0, f1 : X → Y is a pair (x0, x1) such that f0(x0) = f1(x1). Furthermore,
it is computationally infeasible to find a string d and the bit d · (x0 ⊕ x1) where
(x0, x1) are part of a claw [BCM+18].

X

x0

x1

Y

y

f0

f1

Fig. 6: Claw in the functions f0, f1 mapping from X to Y

The Case of One Qubit We summarize how to verifiably measure (i.e. com-
mit and measure later) a qubit17 |ψ⟩ = α |0⟩ + β |1⟩ using the pair of functions
fκ,0, fκ,1 where κ is a key sent by the verifier. Actually, the selection of the func-
tions depends on the basis we want to perform the verifiable measurement in.
This is outlined in Protocol 6 and the notation f or g will be used depending on
whether we are doing Hadamard or standard basis measurement (respectively).
However, in this walkthrough, we will use the letter f assuming we are inter-
ested in a Hadamard basis measurement. The prover (i.e. the measuring quantum
device) performs the commitment phase by preparing the following uniform su-
perposition on all elements of the domain X and applying the function fκ in
superposition:

1√
|X |

(∑
x∈X

α |0⟩ |x⟩ |fκ,0(x)⟩+
∑
x∈X

β |1⟩ |x⟩ |fκ,1(x)⟩

)
. (9)

16 Note that this notion of binding commitment is different from the one commonly
used in cryptography where the commitment needs to be hiding as well.

17 We demonstrate how to commit to a qubit state, but the scheme can be generalized
to states with more qubits.
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Expression 9 contains three quantum registers as follows:

– |b⟩: the committed qubit register,
– |x⟩: the pre-image register, and
– |fκ,b(x)⟩: the commitment or output register.

The prover now measures the commitment register obtaining a value y ∈ Y
which is the commitment value to be sent to the verifier. This will also make
the state collapse to a post-measurement state consistent with the performed
measurement as follows:

1√
#(y)

∑
fκ,0(x0)=fκ,1(x1)=y

α |0⟩ |x0⟩ |y⟩+ β |1⟩ |x1⟩ |y⟩ (10)

where #(y) is the number of claws with y as their image. Notice how the original
qubit state |ψ⟩ (i.e. the committed qubit) is now “entangled with a superposition”
of the pre-images (x0, x1). After the commitment phase, the verifier challenges
the prover by uniformly sampling a challenge bit c and accordingly performing
one of the following rounds (each w.p. 1/2):

1. test round (c = 0): the verifier asks the prover to measure the pre-image
register and the committed qubit register in the standard basis and send
back the results, or

2. Hadamard round (c = 1): the verifier asks the prover to measure the pre-
image register and the committed qubit register in the Hadamard basis and
send back the results.

After getting back the measurement results, the verifier executes the correspond-
ing procedure as described in Protocol 6. While the test round is helpful in es-
tablishing soundness of the verifiable measurement, no measurement is learned
if we undergo a test round. On the other hand, the Hadamard round helps us in
learning the measurement outcome as described in Protocol 6.

Protocol 6 (Mahadev’s Verifiable Measurement Suite of Algorithms). Depend-
ing on which basis (call it h) we are interested in performing the measurement
in, a function is sampled from one of the following two families of functions:

1. Noisy Trapdoor Claw-free Functions (NTCFs) F
(for X (Hadamard) basis measurement; h = 1):

F = {fpk | fpk : {0, 1} × X → DY}pk∈KF .

This family of functions satisfy this injective pair property: there exists a
perfect matchingMpk ⊆ X ×X (i.e. matching where every x ∈ X is incident
to exactly one edge) such that:

(x0, x1) ∈Mpk ⇐⇒ fpk(0, x0) = fpk(1, x1).
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2. Noisy Trapdoor Injective Functions (NTIFs) G
(for Z (standard) basis measurement; h = 0):

G = {gpk | gpk : {0, 1} × X → DY}pk∈KG .

This family of functions satisfy this injectivity property:

(x, b) ̸= (x′, b′)⇒ supp gpk(b, x) ∩ supp gpk(b′, x′) = ∅.

The following algorithms are used in Mahadev’s protocol:

– Trapdoor Inversion: (z, e) = InvF (fpk, sk, b, y) [similarly defined for (z, e) =
InvG(gpk, sk, b, y)]. This is a deterministic algorithm that can assign to e a
pre-image such that y ∈ supp (fpk(b, e)) if this pre-image exists. In that case,
z is set to 1; otherwise, it assigns 0 to z.

– TestRound: z = TestCheck(pk, b, x, y) outputs 1 iff (b, x) is a pre-image of
y under the mapping fpk (or gpk).

– HadRound: (e, z) = HadRound(sk, b, x, y, h) takes as input a secret key sk
and the measured registers b, x, y as well as a basis choice h. Depending on
the basis choice, the verifier executes one of these to output the measurement:
1. if h = 0 (i.e. Z basis measurement is requested), output (e, z)← InvG(gpk, sk, b, y).
2. if h = 1 (i.e. X basis measurement is requested), compute both pre-images

x0,y, x1,y:
• (z0, x0,y) = InvF (fpk, sk, 0, y)
• (z1, x1,y) = InvF (fpk, sk, 1, y)

and set e = x · (x0,y ⊕x1,y)⊕ b. z is set to 0 if any of the two runs reject
or if x is trivial (e.g. = 0); otherwise z is set to 1.

The following theorem summarizes the soundness property of the Mahadev pro-
tocol.

Theorem 7 (Soundness of Mahadev’s verifiable measurement proto-
col; Claim 7.1. in [Mah18b] following the exposition of Claim 2.12.
in [VZ19]). Under the LWE assumption, let P̃ be any (possibly cheating) quan-
tum polynomial-time prover interacting with an honest verifier of Protocol 6 with
the basis choice h adopting the following notation for brevity:

– 1−ph,H : the probability that the verifier accepts the prover P̃ in a Hadamard
round of the protocol with basis h,

– 1−ph,T : the probability that the verifier accepts the prover P̃ in a test round
of the protocol with basis h, and

– DP̃,h: the distribution over measurement outcomes obtained by the honest
verifier on executing a Hadamard round with the prover P̃ for basis h.

Then, there exists a negligible function µ, a quantum state ξ, and a prover P̂
with the following distributions:

1. DP̂,h: the distribution over measurement outcomes obtained by an honest
verifier on executing a Hadamard round with the prover P̂, and
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2. Dξ,h: the distribution over measurement outcomes obtained by directly per-
forming a quantum h-basis measurement on the state ξ.

such that:

dTV

(
DP̃,h, DP̂,h

)
≤ √ph,T + ph,H + µ and DP̂,h ≈c Dξ,h

where ≈c denotes quantum-computational indistinguishability.

C.3 Classical-verifier argument for ZX local Hamiltonians

This was provided as Protocol 1 in Section 2.6.

Theorem 8 (Section 4 of [ACGH20]). Under the LWE assumption and for
a given set of parameters λ ≥ n, r,m, and a constant k, Protocol 1 for the
(n, k, γ)-LH-ZX problem has:

1. completeness error ≤ µ+ negl(λ), and
2. soundness error ≤ 2−m + (µ)1/4 + negl(λ)

where µ = e−rγ
2/2k+4

is the symmetric bound on the completeness and soundness
errors of Protocol 5 in Theorem 6.

Corollary 5 (Theorem 4.6. in [ACGH20]). Under the LWE assumption,
for every constant k, Protocol 1 with λ ≥ n, r = ω( log(n)γ2 ) and m = ω(log(n))
has negligible completeness and soundness errors.

D Soundness of ACGH’s protocol after eliminating
redundancy

We now analyze the soundness of Protocol 3 given in Section 2. Most of the
contents that follow in this Appendix except Lemma 7 and its proof are verba-
tim or almost verbatim from [ACGH20] while changing whatever is needed and
proving Lemma 7 that we give.

Theorem 9 (Mirror of Section 4 of [ACGH20]). Under the LWE assump-
tion, for a given set of parameters λ ≥ n, r,m, and a constant k, Protocol 3 for
the (n, k, γ)-LH-ZX problem has:

1. completeness error ≤ µ+ negl(λ), and
2. soundness error ≤ 2−m + (µ)1/4 + negl(λ)

where µ ≤ e−rγ2/2k+4

is the symmetric bound on the completeness and soundness
errors of Protocol 5 in Theorem 6.
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Lemma 3 (Mirror of Lemma 4.4. in [ACGH20]). In Protocol 3 parame-
terized by positive integers r and m , let {Uc}c∈{0,1}m be any set of unitaries that
may be implemented by P after the challenge coins are sent. Let |Ψpk⟩ be any
state that P holds in the commitment round, and suppose P applies Uc followed
by honest measurements when the coins are c. Then there exists a negligible func-
tion δ such that V1, . . . ,Vm accept P with probability at most 2−m + µ1/4 + δ1/2

where µ = e−rγ
2/2k+4

is the soundness error of Protocol 5 with r copies.

Proof. The success probability of any prover in the k-fold protocol is

Pr[success] = 2−m E
(pk,sk)←Gen(1λ,h),h,s

[⟨Ψpk|
∑
c

πUcs,sk,c |Ψpk⟩]

where h, s are drawn from uniform distributions. The uniform string s is used
in [ACGH20] to sample the Hamiltonian terms from the distribution induced by
the coefficients of the terms.

Lemma 4. (Lemma 4.3. verbatim from [ACGH20]). Let A1, . . . , Am be projec-
tors and |ψ⟩ be a quantum state. Suppose there are real numbers δij ∈ [0, 2] such
that ⟨ψ|AiAj + AjAi |ψ⟩ ≤ δij for all i ̸= j. Then ⟨ψ|A1 + · · · + Am |ψ⟩ ≤
1 +

(∑
i<j δij

)1/2.
Exactly as in [ACGH20], define a total ordering on {0, 1}m such that a < b

if ai < bi for the smallest index i such that ai ̸= bi. Then by Lemma 4, we have

Pr[success] ≤ 2−m + 2−m E
h,s

[∑
a<b

E
(pk,sk)←Gen(1λ,h)

[⟨Ψpk|πUas,sk,aπ
Ub
s,sk,b + πUbs,sk,bπ

Ua
s,sk,a |Ψpk⟩]

]1/2
.

Lemma 5 (Modified Lemma 4.2. in [ACGH20]). Let P be a prover in
Protocol 3 that prepares |Ψpk⟩ in Round P1 and performs Uc in Round P2. Let
a, b ∈ {0, 1}m such that a ̸= b and choose i such that ai ̸= bi. Then there is an
(mr)-qubit quantum state ρ such that for every basis choice h and randomness
s,

E
(pk,sk)←Gen(1λ,h)

[
⟨Ψpk|πUbs,sk,bπ

Ua
s,sk,a + πUas,sk,aπ

Ub
s,sk,b |Ψpk⟩

]
≤ 2α

1/2
hi,si,ρ

+ negl(n) ,

where αhi,si,ρ is the success probability with ρ conditioned on the event that hi
is sampled.

By Lemma 5, there exists a negligible function δ such that

E
(pk,sk)←Gen(1λ,h)

[⟨Ψpk|πUas,sk,aπ
Ub
s,sk,b + πUbs,sk,bπ

Ua
s,sk,a |Ψpk⟩] ≤ 2α

1/2
hi(a,b),ρab

+ δ(n)

for every pair (a, b). Here i(a, b) is the smallest index i such that ai ̸= bi and ρab
is the reduced quantum state associated with a, b, as guaranteed by Lemma 5.
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Let µ be the soundness error of the Protocol 5 with r copies. We have

Pr[success] ≤ 2−m + 2−m E
h,s

[∑
a<b

(
2α

1/2
hi(a,b),si(a,b),ρab

+ δ(n)
)]1/2

≤ 2−m + µ1/4 +
√
δ(n) see [ACGH20] for the computations.

To prove Lemma 5, we will again follow [ACGH20]’s proof and replace the
projectorsΠ with the new projectors π and using this modified version of Lemma
4.1. in [ACGH20].

Lemma 6 (Modified Version of Lemma 4.1. in [ACGH20]). Let P =
(|Ψpk⟩ , Ut, Uh) be a prover in Protocol 3 such that, for every h ∈ {0, 1}nr and
s ∈ {0, 1}p (p is a polynomial bound on the bits needed to sample the Hamiltonian
terms),

E
(pk,sk)←Gen(1λ,h)

[⟨Ψpk|πUt

s,sk,t |Ψpk⟩] ≥ 1− negl(n) . (11)

Then there exists an (nr)-qubit quantum state ρ such that, for every h, s,

E
(pk,sk)←Gen(1λ,h)

[⟨Ψpk|π
Uh

s,sk,h |Ψpk⟩] ≤ αh,s,ρ + negl(n) ,

where αh,s,ρ is the success probability in Protocol 5 with basis choice h and
r-copies of the quantum state ρ.

Proof of lemma 6. We use the following helpful technical lemma that we show
later:

Lemma 7. Let π1, . . . , πn be single qubit projectors on the same domain. Let
P1 and P2 be of the form

⊗n
i=1 π̂i where π̂i is either I or πi. If for some |ϕ⟩, it

holds that:
⟨ϕ|P1 |ϕ⟩ ≥ 1− δ1 and ⟨ϕ|P2 |ϕ⟩ ≥ 1− δ2

then, it follows that:
⟨ϕ|P2P1 |ϕ⟩ ≥ 1− (δ1 + δ2).

Noting that ΠUt

s,sk,t in Lemma 4.1. in [ACGH20] is the same as
∏
s
πUt

s,sk,t, and

since each πUt

s,sk,t is of the form in the hypothesis of Lemma 7, we can apply
Lemma 7 for as many as there are Hamiltonian terms and obtain:

E
(pk,sk)←Gen(1λ,h)

[⟨Ψpk|ΠUt

s,sk,t |Ψpk⟩] ≥ 1−O(n) · negl(n)

Now this is basically the hypothesis of Lemma 4.1 in [ACGH20]. Therefore, the
first paragraph of the proof of this Lemma holds but the second paragraph is the
one that is slightly different. In this alteration, we consider the new measurement
{πUh

s,sk,h,1 − π
Uh

s,sk,h}. Verbatim from [ACGH20], the proof completes by noting
that these two cases are computationally indistinguishable:
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1. An output is sampled from the distribution DP,h and the verifier applies
the final checks in Protocol 5. In this case, the final outcome is obtained
by performing the measurement {πUh

s,sk,h,1− π
Uh

s,sk,h} on the state |Ψpk⟩, and
accepting if the first outcome is observed.

2. An output is sampled from the distribution Dρ,h and the verifier applies the
final checks in Protocol 5. In this case, the acceptance probability is αh,s,ρ
by the protocol definition.

We can conclude that:

E
(pk,sk)←Gen(1λ,h)

[⟨Ψpk|π
Uh

s,sk,h |Ψpk⟩] ≤ αh,s,ρ + negl(n) ,

We now move to prove lemma 7.

Proof of lemma 7. Let {|u0⟩ , |u1⟩} be an orthonormal basis for the domain of
each projector πi. |ϕ⟩ can be written as:

|ϕ⟩ =
∑

b∈{0,1}n
αb |ub1 . . . ubn⟩ where

∑
b∈{0,1}n

|αb|2 = 1

We write Pj =
⊗n

i=1 π̂j,i. We use vi,b to denote ⟨ub|πi |ub⟩ and v̂j,i,b to denote
⟨ub| π̂j,i |ub⟩. It can be seen that:

v̂j,b := ⟨ub|
n⊗
i=1

π̂j,i |ub⟩ = v̂j,1,b . . . v̂j,n,b.

By the hypothesis of the lemma, we have:

⟨ϕ|Pj |ϕ⟩ =
∑

b∈{0,1}n
|αb|2 ⟨ub|

n⊗
i=1

π̂j,i |ub⟩

=
∑

b∈{0,1}n
|αb|2 ⟨ub1 | π̂j,1 |ub1⟩ . . . ⟨ubn | π̂j,n |ubn⟩

=
∑

b∈{0,1}n
|αb|2 v̂j,1,b . . . v̂j,n,b

=
∑

b∈{0,1}n
|αb|2 v̂j,b ≥ 1− δj

Let’s write Π̂i = π̂2,iπ̂1,i. Since πi is a projector, so is π2
i = πi. Therefore, Π̂i is

either πi or I. Let v̂i,b := ⟨ub| Π̂i |ub⟩ and for brevity let v̂b := ⟨ub|
⊗n

i=1 Π̂ |ub⟩.
By the fact that ⟨ub|πi |ub⟩ ≤ ⟨ub| I |ub⟩ = 1, one can conclude, by exhausting all
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cases, that v̂i,b ≥ v̂2,i,bv̂1,i,b and consequently v̂b ≥ v̂2,bv̂1,b. Putting this together,
it follows that:

⟨ϕ|P2P1 |ϕ⟩ =
∑

b∈{0,1}n
|αb|2 ⟨ub|

n⊗
i=1

Π̂i |ub⟩

=
∑

b∈{0,1}n
|αb|2 ⟨ub1 | Π̂1 |ub1⟩ . . . ⟨ubn | Π̂n |ubn⟩

=
∑

b∈{0,1}n
|αb|2 v̂b

Now, let’s show that ⟨ϕ|P2P1 |ϕ⟩ ≥ 1 − (δ1 + δ2) which is equivalent to 1 −
⟨ϕ|P2P1 |ϕ⟩ ≤ δ1 + δ2.

1− ⟨ϕ|P2P1 |ϕ⟩ = 1−
∑

b∈{0,1}n
|αb|2 v̂b

≤ 1−
∑

b∈{0,1}n
|αb|2 v̂2,bv̂1,b (v̂b ≥ v̂2,bv̂1,b)

≤

δ1 + ∑
b∈{0,1}n

|αb|2 v̂1,b

− ∑
b∈{0,1}n

|αb|2 v̂2,bv̂1,b (⟨ϕ|P1 |ϕ⟩ ≥ 1− δ1)

= δ1 +
∑

b∈{0,1}n
|αb|2 v̂1,b (1− v̂2,b)

≤ δ1 +
∑

b∈{0,1}n
|αb|2 (1− v̂2,b) (v̂1,b ≤ 1)

= δ1 +
∑

b∈{0,1}n
|αb|2 −

∑
b∈{0,1}n

|αb|2 v̂2,b

= δ1 +

1−
∑

b∈{0,1}n
|αb|2 v̂2,b


≤ δ1 + δ2 (⟨ϕ|P2 |ϕ⟩ ≥ 1− δ2)
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E A Tale of Alice on a Quantum Island

Alice is a passionate explorer who studied Egyptology and cryptology. She has
just embarked on an expedition to the island of Elephantine. Legend has it that
the ancient Egyptians built a large-scale quantum computer on this very island
4,000 years ago. While she was excavating for this elusive quantum computer, she
found a hieroglyphic LATEXpapyrus entitled “proof of the quantum PCP theorem
and reductions to ZX Hamiltonians”! “What a fruitful trip already!”, Alice said
to herself as she continued her excavation. After a few days, she found herself in
front of a wondrous building and a sign carved in Hieroglyphics that says “The
Classical Interface". "Is this a bottle of liquid luck 18 or water?", Alice exclaimed
looking at her water bottle after realizing that she just unveiled an ancient
instantiation of a quantum random oracle! Alice goes around the giant building
to find another hieroglyphic sign on the other side that says “The Quantum
Interface”. Suddenly, someone appears in a blue cloak while facing towards the
entrance and waving aggressively with his hand in front of the building as if
he were casting a sequence of spells. As Alice calls on him, he turns and she
immediately recognizes him as Merlin! After a short conversation, Merlin claims
to have access to the ancient Egyptian quantum computer! While it seems like
good news, he also claims that he magically hid it with no intention of unveiling
it to anyone. However, not all hope is lost because he claims to be able to
communicate with it using his magical powers. Alice has a lot of important
questions about life, the universe, and everything that she hopes to settle with
the help of this long-awaited quantum computer. She even designed an efficient
quantum circuit to answer these quests in anticipation of this very moment.
Although Merlin promises to help her, she is concerned that he might mislead
her. As a well-trained cryptographer, Alice asks Merlin to prove to her that
indeed these answers were obtained by executing her quantum circuit. She asks
him to engage with her in an interactive conversation where she will ask him
follow-up questions. Merlin agrees to Alice’s proposal on one condition; “If you
do not trust me, that is your problem. I am very thirsty at the moment. I will
only respond to these follow-up questions if and only if my answers to these
additional questions are very short." Merlin said to Alice unhappily. Alice knew
that she could reasonably suggest to him to drink as much as he desires from
the Nile flowing right in front of them. However, she did not feel that she had
the luxury to further upset him. Since Alice is a very smart cryptographer who
read this paper, she knows how to verify Merlin’s answers to her questions under
some assumptions despite his short temper!

18 Also called Felix Felicis for the interested reader; c.f. J.K. Rowling (2005).


