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Abstract. One approach for scaling blockchains is to create bilateral,
offchain channels, known as payment/state channels, that can protect
parties against cheating via onchain collateralization. While such chan-
nels have been studied extensively, not much attention has been given
to programmability, where the parties can agree to dynamically enforce
arbitrary conditions over their payments without going onchain.

We introduce the notion of a programmable payment channel (PPC) that
allows two parties to do exactly this. In particular, our notion of pro-
grammability enables the sender of a (unidirectional) payment to dynam-
ically set the terms and conditions for each individual payment using a
smart contract. Of course, the verification of the payment conditions
(and the payment itself) happens offchain as long as the parties behave
honestly. If either party violates any of the terms, then the other party
can deploy the smart contract onchain to receive a remedy as agreed
upon in the contract. In this paper, we make the following contributions:

– We formalize PPC as an ideal functionality FPPC in the universal
composable framework, and build lightweight implementations of
applications such as hash-time-locked contracts (HTLCs), “reverse
HTLCs”, and rock-paper-scissors in the FPPC-hybrid model;

– We show how FPPC can be easily modified to capture the state chan-
nels functionality FSC (described in prior works) where two parties
can execute dynamically chosen arbitrary two-party contracts (in-
cluding those that take deposits from both parties) offchain, i.e., we
show how to efficiently realize FSC in the FPPC-hybrid model;

– We implement FPPC on blockchains supporting smart contracts (such
as Ethereum), and provide several optimizations to enable concur-
rent programmable transactions—the gas overhead of an HTLC PPC
contract is < 100K, amortized over many offchain payments.

We note that our implementations of FPPC and FSC depend on the CRE-
ATE2 opcode which allows one to compute the deployment address of a
contract (without having to deploy it).
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1 Introduction

With the rise of decentralized services, financial products can be offered on
blockchains with higher security and lower operational costs. With its ability
to run arbitrary programs, called smart contracts, and direct access to assets,
a blockchain can execute complex financial contracts and settle disputes auto-
matically. Unfortunately, these benefits all come with a major scalability chal-
lenge due to the overhead of onchain transactions, preventing the adoption of
blockchain services as mainstream financial products.

Payment Channels. A well-known class of mechanisms for scaling blockchain
payments are payment channels [2, 15]. Payment channels “off-load” transac-
tions to an offchain communication channel between two parties. The channel is
“opened” via an onchain transaction to fund the channel, followed by any num-
ber of offchain transactions. Eventually, by a request from either or both parties,
the channel is “closed” via another onchain transaction. This design avoids the
costs and the latency associated with onchain operations, effectively amortiz-
ing the overhead of onchain transactions over many offchain ones. While several
proposals improve the scalability of payment channels [3,17,21–23,28–30], they
do not allow imposing arbitrary conditions on offchain payments, which prohibit
fruitful applications requiring programmability.

State Channels. From a feasibility standpoint, the conditions on offchain pay-
ments can be achieved by a stronger notion called state channels. State chan-
nels [4,12,14,16,18,26] allow two parties to perform general-purpose computation
offchain by mutually tracking the current state of the program. The existing state
channel proposals have two major drawbacks in practice.

First, with the exception of [14], state channel constructions require the par-
ties to fix the program, which they wish to run offchain, at the time of channel
setup. This means that no changes to the program are allowed after the parties go
offchain. This is especially problematic in offchain scalability approaches based
on the hub-and-spoke model [10,17,32], where each party establishes a general-
purpose channel with a highly available (but untrusted) hub during setup to be
able to later transact with many other parties without the need to establish an
individual channel with each party (see Figure 1 Left and Middle). In practice,
parties usually have no a priori knowledge about the specific set of conditions
required to transact with other (unknown) parties.

Second, the complexity of the existing state channel proposals could be
overkill for simple, programmable payments. The authorization of an offchain
transaction via a payment channel is significantly simpler as the flow of the pay-
ments is unidirectional while state channels need to track all state changes from
both parties irrespective of the payment direction. Namely, the state channel is
not a practical solution for achieving programmable payments.

Our Focus. In this paper, we introduce the notion of programmable payment
channels (PPC) that allows the parties to agree offchain on the set of conditions
(i.e., a smart contract) they wish to impose for each of their offchain payments
(see Figure 1 Right). That is, we achieve lightweight offchain programmable
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Fig. 1: Left: Hub-and-spoke model: Each party creates a single channel with the hub;
Middle: Every pair of parties reuse their channels with the hub to execute different
contracts; Right: PPC between two parties supporting any offchain application.

payments denoted as promises where the logic can be determined on-the-fly
after the channel has been opened.

A classic programmable payment covered by PPC is a hash-time-locked con-
tract (HTLC) [1], which is foundational to the design of (multihop) payment
channels [3, 28]. Indeed, most current payment channels already embed HTLCs
for routing. However, many useful applications remain difficult to build on top
of payment channels using HTLCs. Consider the following example. Alice wants
to reserve a room through an established payment channel with the hotel. Alice
would like to send a payment under the following conditions: (1) Alice is allowed
to cancel the reservation within 48 hours of booking to get back all of her funds,
and (2) Alice can get back half of her funds if she cancels the reservation within
24 hours of the stay date. Achieving this simple real-life example of payment
with PPC is simple and straightforward.

1.1 Our Contributions

– We propose the notion of a programmable payment channel (PPC) that is
a payment channel allowing two parties to transact offchain according to a
collateral that they deposit onchain and a smart contract that they agree on
offchain. PPC provides the following features:

• Scalability: Only opening and closing the channel require Layer-1 access.

• Offchain Programmability : The PPC protocol stays identical for new pay-
ment logic after the channel is opened.

– We formalize PPC and prove its correctness and security in the universal com-
posable (UC) framework using a global ledger. In particular, we provide an
ideal functionality FPPC. We then show how to build lightweight implemen-
tations of simple applications such as HTLCs, “reverse HTLCs,” on-chain
betting (and also rock-paper-scissors) in the FPPC-hybrid world.

– We show how PPC can be modified to capture the state channels functionality
where two parties can execute dynamically chosen arbitrary two-party con-
tracts (including those that take deposits from both parties) offchain, namely,
to realize FSC in the FPPC-hybrid world. In particular, to launch an offchain
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contract, parties only need to make three calls to FPPC to instantiate two
programmable payments.

– We evaluate PPC by instantiating it on Ethereum. We show how the PPC
contract deploys new contracts that embed the conditions of payments. Our
results show that deploying the PPC contract needs about 3M gas, and that
settling onchain in the optimistic case (honest parties) needs only 75K gas. In
the pessimistic case (malicious parties), 700K more gas is needed for a simple
logic such as HTLC.

We note that our implementations of FPPC and FSC depend on the CREATE2
opcode which allow one to compute the deployment address of a contract (with-
out having to deploy it). This opcode is available on any EVM (Ethereum Virtual
Machine) based chain (including Ethereum, Polygon, etc.).

Compared to prior formalizations of payment and state channels, our work
shows a practical way to implement a state channel that enables arbitrary of-
fchain smart contract applications. Additionally, our abstractions of FPPC and
FSC make it more natural to design protocols for applications whose states de-
pend on the states of other contracts on the blockchain.

We also note that our implementations of FPPC and FSC allow for flexible
reuse of established channels. Exploiting this fact, one can use the abstractions of
FPPC and FSC to efficiently build complex multiparty applications. For instance,
every pair of parties need not establish a PPC channel with each other, and can
instead reuse their existing PPC channels with, say, an untrusted hub.

Similar to payment and state channels, relay nodes (in particular, hub nodes)
in PPC also face scalability concerns, as the money has to be locked for several
rounds. There are known incentivization techniques to mitigate similar issues
that arise in DeFi lending protocols. The same techniques can be applied in our
case as well.

1.2 Related Work

Payment Channels. The key idea behind a payment channel is an onchain
contract: both parties instantiate this contract and transfer digital money to
it. Whenever one party wants to pay another, they simply sign on the other
party’s monotonically-increasing credit. When the two parties want to close the
channel, they submit their final signed credits to rebalance the money in the
channel. No execution happens on the blockchain before closing the channel;
the payment between two parties relies only on exchanging digital signatures.
Payment channels have been heavily studied [2, 11,15,18,24,26,27,30].

State Channels. A proposal for executing arbitrary contracts offchain is state
channels [4, 12, 14, 16, 18, 26]. The key idea is as follows: (1) the contract can be
executed offchain by exchanging signatures, and (2) the contract can be executed
onchain from the last agreed state to resolve any disagreements. For example,
consider a two-party contract between Alice and Bob, whenever Alice wants to
update the current state, she simply signs the newer state. Then, she forwards
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her signature and requests for Bob’s signature. While Bob may not reply with
his signature, Alice can submit the pre-agreed state to the blockchain with the
contract and execute it onchain. This idea can be naturally extended to multi-
party contracts (e.g., [13, 16,26]).

The works of [14] and [18] are closest to ours. Unlike us, [14] do not pro-
vide any formal proofs or guarantees. As mentioned in [18], their work lacks
features useful for practical implementation. Also, our protocols take advantage
of the CREATE2 opcode which was introduced subsequent to the work of [14].
We follow [5, 16–18] to formalize our channel using universal composable (UC)
framework with a global ledger. However, these works focus on channel virtual-
ization4, and are not directly related to this work.

Other Related Work. An excellent systematization of knowledge that explores
offchain solutions can be found in [20]. See Appendix B for the comparison with
rollups, another popular Layer-2 scaling solution [25,31,33]. See Appendix C for
other works that use the CREATE2 opcode.

2 Preliminaries

Network & Time. We assume a synchronous complete peer-to-peer authen-
ticated communication network. Thus, the execution of protocol can be viewed
as happening in rounds. The round is also used as global timestamp. We use

msg
t≤T
←↩ P to denote the message will be sent by party P before round T . Sim-

ilarly, we use msg
t≤T
↪→ P to denote that the message will be delivered to party

P before round T .

GUC Model. We model and formalize PPC under global universal composable
(GUC) framework [8, 9]. UC is a general purpose framework for modeling and
constructing secure protocols. The correctness and security of protocols rely on
simulation-based proofs. We defer the formal description to Appendix D.1. We
acknowledge that we restrict the distinguisher to a subclass of environments to
simplify the formalizations. This restriction is standard (e.g., [17, 18]) and can
be easily removed using straightforward checks.

Cryptocurrency/Contract Functionalities. We follow [16, 18] and model
cryptocurrency as a global ledger functionality L̂(∆) in the GUC framework
(cf. Fig. 10 in Appendix D.2). Parties can move funds from/to the ledger func-
tionality by invoking other ideal functionalities that can invoke the methods
Add/Remove. Any operation on the global ledger will happen within a delay of
∆ rounds, capturing that this is an onchain transaction.

Adversary. We consider an adversary who can corrupt one party in the two-
party channel. The corrupted party is byzantine and can deviate from the proto-
col arbitrarily. As is standard in the GUC model, the objective of an adversary
is to distinguish the real world from the ideal world. In applications such as ours,

4 Virtual channels focus on designing protocols between parties who do not have a
direct channel, but both have a channel with a (common) intermediary.
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such behaviors could involve stealing funds from a party or a channel, violating
channel restrictions, overriding application logic, state rollback, etc.

3 Programmable Payment Channels

3.1 Defining FPPC

To incorporate programmability into a payment channel, one might hard-code
the logic of an application inside the protocol as a template. However, this ap-
proach is not desirable as every new application requires a protocol update that
would also include changes to the existing onchain contract. Motivated by this,
our definition of FPPC allows for on-the-fly programmability as we explain below.

Recall that we call a programmable payment a promise. Concretely, our ideal
functionality FPPC allows the following operations: (1) opening a payment chan-
nel, (2) creating a promise, (3) executing a promise, and (4) closing a payment
channel. Our central observation is that a promise can be viewed as a smart
contract. Specifically, the storage of the promise is captured by the storage of
the contract, and the execution logic of the promise is captured by functions in
the smart contract. The logic in different promises can be different or related,
thereby capturing on-the-fly programmability. Also, importantly, the promise
smart contract itself can be deployed from an appropriately designed payment
channel contract.

Any number of promises can be created by an open channel and may be
concurrently executed. Either party can create a promise to the other party.
Since the payment is unidirectional, we refer to the creating party as the sender
of a promise, and the other party as the receiver of a promise.

Promises can be related to each other in the sense that the state and the
execution logic of a promise can depend on the state and execution logic of other
promises. We capture this by allowing the functions of the promise have access
to its own storage, read access to the storage and functions of other promises
in this channel, and more generally, read access to the storage and functions
of other onchain contracts.5 Note that the execution environment of promises
is quite rich, and we will show various examples of how to use this and certain
caveats associated with what is implementable.

This type of dependence is common in onchain smart contracts especially in
the Decentralized Finance applications. However, capturing this dependence (in
the implementation of FPPC) needs to be done carefully since promises executions
are normally executed offchain, and may sometimes need to be executed onchain
(and the dependence must be preserved even while the execution environment
is changing). Care must be taken to ensure that this change of the execution
environment (i.e., from offchain to onchain) does not affect function output.

5 In Solidity (a high level language for EVM) parlance, promises can also call pure or
view functions in onchain contracts or other promises.
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Promises are executed onchain only if requested by the parties (following
which, further executions related to that promise are carried out onchain).6

Following prior work (e.g., [18]), we differentiate between onchain and offchain
executions in FPPC by the amount of time it takes FPPC to respond to execution
requests. That is, onchain executions are slower and take O(∆) rounds where
∆ is a blockchain parameter representing the amount of time it takes for the
miners/validators to deliver a new block to the chain.

Each promise resolves to an unsigned integer value denoting the amount that
needs to be transferred from the sender to the receiver. This resolved value is
calculated at the time of payment channel closing, and then the resolved values
of all promises are aggregated to determine the final settlements.

3.2 PPC Preliminaries

Contracts. We define contracts as in [18]. A contract instance consists of two
attributes: contract storage (accessed by key storage) and contract code (accessed
by key code). Contract storage σ is an attribute tuple containing at least the
following attributes: (1) σ.userL and σ.userR denoting the two involved users;
(2) σ.locked ∈ R≥0 denoting the total number of coins locked in the contract;
(3) σ.cash : {σ.userL, σ.userR} → R denoting the coins available to each user. A
contract code is a tuple C := (Λ,Construct, f1, . . . , fs) where (1) Λ denotes the
admissible contract storage; (2) Construct denotes a constructor function that
takes (P, t, y) as inputs and provides as output an admissible contract storage or
⊥ representing failure to construct, where P is the caller, t is the current time
stamp and y denotes the auxiliary inputs; and (3) each f denotes an execution
function that takes (σ, P, t, z) as inputs and provides as output an admissible
contract storage (could be unchanged) and an output message m, where m = ⊥
represents failure.

PPC Parameters. A programmable payment channel is parameterized by an
attribute tuple γ := (γ.id, γ.Alice, γ.Bob, γ.cash, γ.pspace, γ.duration) where (1)
γ.id ∈ {0, 1}∗ is the identifier for the PPC instance (think of this as the address
of the PPC contract); (2) γ.Alice and γ.Bob denote the two involved parties;
(3) γ.cash : {γ.Alice, γ.Bob} → R≥0 denotes the amount of money deposited
by each participant; (4) γ.pspace stores all the promise instances opened in the
channel–it takes a promise identifier pid and maps it to a promise instance; and
(5) γ.duration ≥ 0 denotes the time delay to closing a channel.

Note that the attribute γ.duration was not part of prior channel formaliza-
tions (e.g., [16,18]); we will further clarify it in Section 3.3. We further define two
auxiliary functions: (1) γ.endusers := {γ.Alice, γ.Bob}; and (2) γ.otherparty(x) :=
γ.endusers \ {x} where x ∈ γ.endusers.

Promises. We name a programmable payment a promise. Informally, a promise
instance can be viewed as a special contract instance where only one party offers
money. Formally, a promise instance consists of two attributes: promise storage

6 In our implementation, we make the simplifying assumption that once a promise is
executed onchain, all the remaining promise executions happen onchain as well.
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(accessed by key storage) and promise code (accessed by key code). Promise stor-
age σ is an attribute tuple containing at least the following attributes: (1) σ.payer
denotes the party who sends money; (2) σ.payee denotes the party who receives
money; and (3) σ.resolve ∈ R≥0 denotes the amount of money transferred from
payer to payee. A promise code is a tuple C := (Λ,Construct, f1, . . . , fs) similar
to contract code with further restrictions: (1) the unique constructor function
Construct will always set the caller to be the payer in the storage created; and
(2) the constructor function’s output is independent of input argument t, which
is a time parameter capturing the current time of the blockchain. We add these
restrictions to ensure that, even when the promise is registered onchain by CRE-
ATE2, the initial state remains identical.

Diverging from [16, 18], we assume that each fi has access to the code and
storage of other promises in the same channel, as well as the code and storage
of all Layer-1 onchain contracts. Formally, we capture this by providing oracle
access to the ideal functionalities. This is why we use the notation fG,γ in the
definition of FPPC (see Figure 2), i.e., f has oracle access to the storage and the
functions of onchain smart contracts and to the promises in the channel.

3.3 Ideal Functionality FPPC

We propose our PPC protocol under the UC framework following [16–18]. We first

define the ideal functionality F L̂(∆)
PPC (with dummy parties) which summarizes all

the features that our PPC protocol will provide. We use FPPC as an abbreviation
in the absence of ambiguity. See Figure 2 for the definition of FPPC. The func-
tionality will maintain a key-value data structure Γ to track all programmable
payment channels between parties. FPPC contains the following 4 procedures.

(1) PPC Creation. Assume party P wants to construct a channel with party
Q. Within ∆ rounds, FPPC will take corresponding coins specified by the channel
instance from P ’s account from L̂. If Q agrees to the creation, within another
∆ rounds, FPPC will take Q’s coins. Thus, the successful creation of a initial
programmable payment channel takes at most 2∆ rounds. Note that if Q does
not want to create the channel, P can take her money back after 2∆ rounds.

(2) Promise Creation. This procedure is used to create a programmable pay-
ment aka promise (offchain) from payer P to the payee Q. The promise instance
is specified by payer’s choice of channel γ, contract code C and arguments for the
constructor function y, and a salt z that is used to identify this promise instance.
Among other things, the ideal functionality ensures that pid := (id, C, y, z) does
not exist in γ.pspace. Since payee always gains coins in any promise, we do not
need an acknowledgment from the payee to instantiate a promise. Thus, the
creation takes exactly 1 round.7

(3) Promise Execution. This procedure is used to update the promise in-
stance’s storage. Specifically, party P can execute the promise pid in channel id
as long as P is one of the participants of the channel. Note that the existence

7 Note that this does not hold for state channels as formalized in [18] where an instance
requires coins from both parties.
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Functionality FL̂(∆)
PPC

Programmable payment channel opening

Upon (open, γ)
t0←↩ P where γ is a valid initial programmable payment channel, i.e., P ∈

γ.endusers, γ.cash(·) ≥ 0, γ.pspace = ⊥, denote Q := γ.otherparty(P ):

1. Within ∆ rounds remove γ.cash(P ) from P ’s account on L̂.

2. If (open, γ)
t1≤t0+∆
←↩ Q, remove within another ∆ rounds γ.cash(Q) coins from Q’s account on

L̂, set Γ (γ.id) := γ, and send (opened, γ) ↪→ γ.endusers and stop.

3. Else, upon (refund, γ)
>t0+2∆
←↩ P , within ∆ rounds add γ.cash(P ) coins to P ’s account on L̂.

Promise initial instance creation

Upon (create, id, C||y, z)
t0←↩ P , let γ := Γ (id) and let pid := (id, C, P, y, z). If γ = ⊥ or

P /∈ γ.endusers or γ.pspace(pid) ̸= ⊥ then stop. Else proceed as follows:

– Let ν := ⊥ and σ := C.Construct(P, t0, y). Stop if σ = ⊥. Set ν.code := C
and ν.storage := σ. Set Γ (id).pspace(pid) := ν and Γ (id).pspace(pid).flag := 0. Send

(instance-created, id, pid, ν)
t0+1
↪→ γ.endusers.

Promise instance execution

Upon (execute, id, pid, f, z)
t0←↩ P , let γ := Γ (id). If P /∈ γ.endusers or γ.pspace(pid) = ⊥ or

f /∈ γ.pspace(pid).code then stop. Else proceed as follows:

– If γ.pspace(pid).flag = 0, and both parties are honest, then set T := t0 + 5 and t := t0.
– Else if γ.pspace(pid).flag = 0, and one party is malicious, the simulator is allowed to specify

a message msg:
• If msg = continue, set T := t0 + 5 and t := t0. This captures the situation where the

adversary wants to execute offchain.
• If msg = onchain, set T := t0 + 4∆ + 5 and γ.pspace(·).flag := 1. t is further specified

by the simulator. This captures the situation where the adversary wants to execute
onchain.

– Else if γ.pspace(pid).flag = 1, one party must be malicious, then set T := t0 +∆+5, t is set
by the simulator.

Let ν := γ.pspace(pid) and σ := ν.storage. Let (σ̃,m) := fG,γ(σ, P, t, z). Set

Γ (id).pspace(pid).storage := σ̃ and send (executed, id, pid, P, f, t, z, ν)
t1≤T
↪→ γ.endusers. Note that

the adversary can only postpone the execution but cannot block it.

Programmable payment channel closure

Upon (close, id)
t0←↩ P , let γ := Γ (id). If P /∈ γ.endusers then stop. Else block all future close

invocations on γ. Wait at most γ.duration + 7∆ rounds and proceed as follows:

1. Calculate the following values (Note that either Alice or Bob could be P ):
(a) Set total := γ.cash(γ.Alice) + γ.cash(γ.Bob).
(b) Set creditA :=

∑
γ.pspace(pid).storage.payer=γ.Bob(γ.pspace(pid).storage.resolve).

(c) Set creditB :=
∑

γ.pspace(pid).storage.payer=γ.Alice(γ.pspace(pid).storage.resolve).

2. Within ∆ rounds, add min{total,max{0, γ.cash(γ.Alice) + creditA − creditB}} coins to
γ.Alice’s and min{total,max{0, γ.cash(γ.Bob)+ creditB− creditA}} coins to γ.Bob’s account

on L̂.
3. Send (contract-close, id)

t1≤t0+8∆+γ.duration
↪→ γ.endusers.

Fig. 2: The ideal functionality F L̂(∆)
PPC achieved by the PPC protocol.
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of pid implies that this instance is properly constructed by the payer via the
promise instance creation procedure. If both parties are honest, the execution
completes in O(1) rounds, inferring no onchain operation (i.e., optimistic case).
Otherwise, if one of them is corrupt, it relies on onchain operations which takes
O(∆) rounds (i.e., pessimistic case). Note that, the adversary can postpone the
function execution time, but it cannot block the honest party from executing it.

In particular, FPPC uses an attribute flag for each promise to trace the on-
chain/offchain status. Note that when the promise goes onchain for the first
time, it takes at most 3∆ rounds to put the promise onchain. Once the promise
is onchain, the execution will be taken on Layer-1 in ∆ rounds. We follow [18] to
break ties when both parties want to simultaneously execute the same promise,
which includes at most 5 rounds delay.

(4) PPC Closure. When a party of the channel γ wants to close the channel,
FPPC will wait for γ.duration rounds to execute the remaining promises that
have not been finalized. The corresponding procedure in the state channel func-
tionality of [18] requires that all contract instances in the channel are finalized
in order to close the channel. We cannot imitate this approach because in our
case, the creation of a promise instance need only be authenticated by the payer,
and so requiring finality will allow a malicious party to block closing by simply
creating some non-finalizable promise instance. (Note that in this case it will be
the malicious sender who is locking up its money.) Waiting for γ.duration can
be avoided if both parties agree to cooperatively close the channel.

3.4 Concrete Implementation of FPPC.

We show a pseudocode implementation of programmable payment channels
contract in Figure 3. In this subsection, we will detail the methods in the pro-
grammable payment channels contract, and along the way we will discuss the
offchain protocol that is executed to implement FPPC.

The programmable payment channel contract is initialized with a channel id
id, the parties’ public keys vkA and vkB, and an expiry time claimDuration by
which the channel settles the amounts deposited. We track the deposit amount
and the credit amount (which will be monotonically increasing) for the two
parties. We also track a receipt id (i.e., rid) and an accumulator value acc. We will
describe what these are for below, but for now think of receipts as keeping track
of received promises that have been resolved, and the accumulator as keeping
track of received promises that have not yet resolved.

Remark. Since promise executions may take some time (e.g., HTLC, chess), it is
important to support concurrency. Promises issued by a sender are immediately
added to an accumulator associated with the sender (which is maintained by both
parties), and then are removed from the accumulator when they get resolved.

Just as a regular payment channel, we also provide methods for the parties
to deposit an amount (the pseudocode supports multiple deposits), and also for
initiating the closing of a channel via the Close method. A call to the Close

method will ensure that the channel status is set to “Closing” or “Closed”, and
further, sets the channel expiry time.
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PPC Contract

Init(id′, vk′A, vk
′
B, claimDuration′):

1. Set (id, claimDuration)← (id′, claimDuration′);

2. Set status← “Active”; chanExpiry← 0; unresolvedPromises← ⊥;

3. Set A← {addr : vk′A, deposit : 0, rid : 0, credit : 0, acc : ⊥, closed : F}

4. Set B← {addr : vk′B, deposit : 0, rid : 0, credit : 0, acc : ⊥, closed : F}

Deposit(amount):

1. Require status = “Active” and caller.vk ∈ {A.addr,B.addr};

2. If caller.vk = A.addr, then set A.deposit← A.deposit + amount;

3. If caller.vk = B.addr, then set B.deposit← B.deposit + amount.

RegisterReceipt(R):

1. Require status ∈ {“Active”, “Closing”};

2. If status = “Active” then set chanExpiry← now + claimDuration and status← “Closing”.

3. Require caller.vk ∈ {A.addr,B.addr};

4. If caller.vk = A.addr, then:
(a) Require SigVerify(R.σ, [id, R.idx, R.credit, R.acc],B.addr);

(b) Set A.rid← R.idx, A.credit← R.credit, and A.acc← R.acc;
Otherwise:
(a) Abort if SigVerify(R.σ, [id, R.idx, R.credit, R.acc],A.addr);

(b) Set B.rid← R.idx, B.credit← R.credit, and B.acc← R.acc;

RegisterPromise(P ):

1. Require status ∈ {“Active”, “Closing”};

2. If status = “Active”, then set chanExpiry← now + claimDuration, and status← “Closing”.

3. Require caller.vk ∈ {A.addr,B.addr};

4. Require [P.addr, P.receiver] ̸∈ unresolvedPromises;

5. If P.sender = A.addr, set sender← A and receiver← B;
Otherwise set sender← B and receiver← A;

6. Require SigVerify(P.σ, [ id, P.rid, P.sender, P.receiver, P.addr ], sender.addr);

7. If caller.vk = receiver.addr and P.rid < receiver.rid,
Require ACC.VerifyProof(acc, P.addr, P.proof);

8. Invoke Deploy (P.byteCode, P.salt);

9. Set unresolvedPromises.push([P.addr, receiver])

Close():

1. Require caller.vk ∈ {A.addr,B.addr};

2. If caller.vk = A.addr, set A.closed← T; Otherwise set B.closed← T;

3. If A.closed and B.closed, set status← “Closed”;

4. If status = “Active”, then set chanExpiry← now + claimDuration, and status← “Closing”.

Withdraw():

1. Require status ∈ {“Closing”, “Closed”};

2. If status = “Closing”, Require now > chanExpiry;

3. For each (addr, receiver) ∈ unresolvedPromises:
receiver.credit← receiver.credit + addr.resolve();

4. Invoke transfer(A.addr,min(total,max(0,A.deposit + A.credit − B.credit)) and
transfer(B.addr,min(total,max(0,B.deposit + B.credit − A.credit)), where total =
A.deposit + B.deposit.

Fig. 3: PPC Contract
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During the time that a channel is “Active” parties exchange any number
of payment promises offchain. Each promise P is essentially the smart contract
code describing the logic of the payment. Note that the promise contract logic
may involve multiple steps and parties may concurrently send and receive any
number of promises.

At a high level, the lifecycle of a promise is as follows: the sender sends the
promise offchain, then the sender and the receiver execute the promise contract
offchain. When both parties agree to the value of the final output of the resolve
method on the promise, the sender of the promise signs a receipt signaling the
fulfillment of the promise that reflects the updated credit balance of the receiver.

In more detail, a receipt from a sender consists of

– a monotonically increasing index, which keeps track of the number of fulfilled
promises from the sender,

– a monotonically increasing credit, which keeps track of the sum of all resolved
amounts in the fulfilled promises originating from the sender,

– an accumulator, which keeps track of all the pending promises issued by the
sender, and

– a signature from the sender on all the above values with the channel id.

If the receiver obtains a faulty receipt (or did not receive the receipt, or is
just malicious), then the receiver can deploy the promise onchain via the PPC
contract. Note that in some cases (e.g., promises which involve multiple steps),
it is possible that the sender (as opposed to the receiver) may need to deploy
the promise onchain via the PPC contract.

This brings us to another important detail concerning the offchain execu-
tion of the promises that involve multiple steps (e.g., chess). In honest cases,
parties will need to additionally exchange signatures with each other to commit
to the storage of the promise contract after the offchain execution of individual
steps. If some malicious behavior happens (e.g., some party aborts), to continue
the promise execution onchain (we assume that the party also wishes to sub-
sequently close the channel), the party calls RegisterReceipt with the latest
receipt (along with the signature from the counterparty) that it possesses, and
then calls RegisterPromise with the promise P .

Consistency Between Offchain and Onchain Executions. It is crucial to
ensure that the switching between offchain and onchain is consistent. This is
achieved by allowing parties to submit the latest state to the deployed promise
(as a smart contract). Namely, the smart contract created by the PPC contract
in Figure 3 using CREATE2 needs to have a function interface to “bypass” its
state to the latest one. This can be trivially realized by including a monotonically
increasing version number to the state, which is signed by both parties during
the offchain execution. (We remark that Item 8 in Figure 3 will only deploy a
smart contract (as a promise) on its initial state (e.g., an empty chess board).)

We now detail the components of a promise P :

– P.sender (resp. P.receiver) denotes the sender (resp. receiver) of a promise,
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– P.byteCode denotes the smart contract corresponding to the payment logic,
– P.salt denotes a one-time salt chosen by the sender,
– P.addr denotes the address at which the promise will be deployed by the

PPC contract; note that P.addr is derived deterministically from P.byteCode
and P.salt using a collision resistant hash function (e.g., CREATE2 opcode),

– P.rid denotes the latest receipt index at the time of generating this promise,
– P.proof denotes the proof that the promise is contained in the accumulator

(i.e., is unresolved at the time the latest receipt was generated), and
– P.σ denotes the signature of sender on (id, P.rid, P.sender, P.receiver, P.addr).

When RegisterPromise is called (when malicious behaviors happen) with
a valid promise, the PPC contract deploys P.byteCode (i.e., the smart contract
associated with the payment logic of promise P ) at a predetermined address.
The fact that the contract is deployed at a predetermined address is what makes
it possible to have promises depend on each other (cf. Section 4). Here, we
assume that the PPC contract uses CREATE2 opcode to deploy the contract.
In Ethereum, using the CREATE2 opcode (EIP-1014), contracts can deploy
contracts whose address is set by H(0xFF, sender, salt, bytecode) (where H is a
collision resistant hash function). This capability implies that one can foresee
the address of some yet-to-be-deployed contract.

Following deployment, parties can interact with the deployed promise inde-
pendent of the PPC contract. (Again, they “bypass” to the last agreed state.)
However, note that when a party calls the function RegisterPromise, the chan-
nel automatically goes into a closing state, and then after claimDuration time has
passed, either party can withdraw funds. Thus, it is critical that the promises
exchanged by the parties also meaningfully resolve within claimDuration time.

When a party calls the Withdraw method, the resolve method is called for
each unresolved promise that is registered with the PPC contract. That is, these
promises should be some onchain smart contracts. The value returned by the
resolve method is then added to the credit of the corresponding receiver. Finally,
each party gets transferred an amount that corresponds to its initial deposit and
the difference of the credit that it is owed and the credit that it owes.

We formally state our theorem below. The formal protocols are described
in Appendix E and its proof is in Appendix H.

Theorem 1 (Main). Suppose the underlying signature scheme is existentially
unforgeable against chosen message attacks. There exists a protocol working in

GL̂(∆)-hybrid model that emulates F L̂(∆)
PPC for every ∆ ∈ N such that (1) the

creation of the initial promise instance takes 1 round, and (2) if both parties are
honest, every call to instance execution procedure takes O(1) rounds.

3.5 Lightweight Applications of Programmable Payments

We use programmable payments on PPC to implement many lightweight appli-
cations and report the evaluations in Section 3.6. Here, we focus on discussing
how PPC helps us implement these applications as smart contracts.
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HTLC Contract

Init(amount′, hash′, expiry′):

1. Set (amount, hash, expiry)← (amount′, hash′, expiry′);

2. Set secretRevealed← F.

RevealSecret(secret):

1. Require now < expiry and Hash(secret) = hash;

2. Set secretRevealed← T;

Resolve():

1. If secretRevealed, then return amount, else return 0.

Fig. 4: HTLC Contract

HTLC. See Figure 4 for an implementation of HTLC promises. The constructor
specifies the amount this HTLC is for, and the hash image for which the preim-
age is requested, and the expiry time by which the preimage must be provided.
Observe that these values are specified by the sender of the promise. On send-
ing the preimage to the sender, the receiver will expect a receipt reflecting the
updated credit (i.e., an increase by amount). If such a receipt was not provided,
then the receiver will deploy the HTLC promise contract onchain8 and then exe-
cute the RevealSecret function to lock the final resolved amount to the HTLC
amount. On the other hand, if the secret was not revealed, then when the PPC
channel closes (which we assume happens after the HTLC expiry), the resolve
function will return zero.

Reverse HTLC. See Figure 5 for an implementation of the reverse HTLC
promise. In reverse HTLC, the sender commits to revealing a hash preimage
within a given expiry time or else stands to lose the promise amount to the
receiver. (Note that the roles are somewhat reversed in a regular HTLC promise.)
This is a useful promise in, e.g., committing a reservation.

To implement reverse HTLC promise, the sender initializes the promise with
the amount, the hash image, the expiry time, and the address of the receiver.
Then the sender would reveal the hash preimage to the receiver offchain, and
provide a receipt amount (reflecting a zero increase in credit). However, unlike
a HTLC promise, here the sender additionally expects an acknowledgment from
the receiver that they received the preimage (in the form of a signature on the
preimage). If the acknowledgment is received, then the sender is assured that the
promise will resolve to zero (since it can always call SubmitAck if the promise gets
deployed onchain after the expiry time), and concludes the promise execution.
Otherwise, the sender continues the promise execution onchain by deploying the
reverse HTLC promise via the PPC contract, and then calling the RevealSecret
method. This ensures that the promise will resolve to zero. Thus, reverse HTLC
is an example (different from HTLC) where the sender might have to deploy the
promise onchain.

8 Note that the deployment byteCode already contains the constructor arguments
hardcoded in it.
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Reverse HTLC Contract

Init(amount′, hash′, expiry′, receiver′):

1. Set(amount, hash, expiry, receiver)← (amount′, hash′, expiry′, receiver′);

2. Set (secretRevealed, ackSubmitted)← (F, F).

RevealSecret(secret):

1. Require now < expiry and Hash(secret) = hash;

2. Set secretRevealed← T;

SubmitAck(secret, sig):

1. Require Hash(secret) = hash and SigVerify(sig, secret, receiver);

2. Set ackSubmitted← T;

Resolve():

1. If secretRevealed or ackSubmitted, then return 0;

2. Return amount.

Fig. 5: Reverse HTLC Contract

On-chain Event Betting

Init(amt′, threshold′, tMin′, tMax′):

1. Set (amount, threshold, tMin, tMax)← (amt′, threshold, tMin′, tMax′);

2. Set roundID← 0

SetRoundID(roundID′):

1. Require tMax ≥ getTimestamp(roundID′) ≥ tMin;

2. Set roundID← roundID′

Resolve():

1. If roundID = 0, return 0

2. (price, timestamp)← eth-usd.data.eth.getRoundData(roundID)

3. If price > threshold and timestamp > 0

Fig. 6: Onchain event betting

On-chain Event Betting. See Figure 6 for an example promise where the
sender is betting that the price of Ethereum will not go above a certain thresh-
old (say, $2,000) within a certain time period. In such a scenario, the party
can send a promise that reads the price of Ethereum on-chain from an oracle
(e.g., eth-usd.data.eth). This is an example of a promise that depends on the
state of external onchain contracts. In such cases, it is important to design the
promise carefully as the external contract may change state and cause offchain
and onchain execution of promises to be different. Thus we use the function
getRoundData (say, instead of latestPrice). This way, suppose the receiver
does not send an acknowledgment that the price was indeed above the threshold
(i.e., a receipt reflecting the updated credit), then the sender can deploy the
promise onchain (without worrying about the exact block in which its promise
will appear). In the example, we assume that the roundID values are calculated
offchain and correspond to a time duration that both parties agree on.
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Table 1: Gas prices for invoking PPC contract’s functions.
Function Gas Units HTLC Specific Gas Units

Deploy 3,243,988 Promise 611,296 (w/o. proof)

Deposit 43,010 Promise 626,092 (Merkle-100K txs)

Receipt 75,336 Reveal 66,340
Close 44,324 Withdraw 71,572

Table 2: The gas usage of the different functions of various applications. *:For
Resolve functions we report the execution costs as these functions are view func-
tions. +: The Reveal functions in the RockPaperScissor contracts need to be
called twice to reveal the commitments for both parties.

HTLC ReverseHTLC OnchainBetting

Deploy 222,795 Deploy 423,265 Deploy 442,479
Reveal 28,391 Reveal 28,413 checkPrice 48,093
Resolve* 4,582 SubmitAck 30,247 Resolve* 4,632

Resolve* 2,499

RockPaperScissor RockPaperScissor-P1 RockPaperScissor-P2

Deploy 534,167 Deploy 598,088 Deploy 381,537
Reveal+ 34,887 Reveal+ 34,773 Resolve* 16,937
Resolve* 9,571 Resolve* 6,573

3.6 Implementation and Evaluation

PPC Gas Usage Costs. We implemented the PPC contract presented in Fig-
ure 3 in Solidity. We evaluate our implementation in terms of Ethereum gas us-
age. The PPC contract requires 3, 243, 988 gas to be deployed on the Ethereum
blockchain. While we did not aim to optimize gas costs. the PPC contract is al-
ready comparable to other simple payment channel deployments 2M+ and 3M+
gas for Perun [17] and Raiden [3]9 respectively. The gas usage for the remaining
functions of the contract are reported in Table 1.

HTLC Application. In the optimistic case after a promise is sent from the
sender, the receiver releases the secret for the HTLC and consequently, the sender
sends a corresponding receipt to the receiver. In such a scenario, the receiving
party will submit the receipt to the contract and close accordingly. However,
in the pessimistic case, where the receiving party releases the secret but does
not receive a receipt, it goes onchain and first submit its latest receipt. Next, it
submits the promise for the HTLC which will be deployed by PPC where the
party can reveal the secret of HTLC. Comparing the two scenarios (cf. Table 1),
we see that the pessimistic case costs about 700K more gas to resolve the promise.
We were able to achieve 110 TPS for the HTLC application end-to-end on a
laptop running 2.6 GHz 6-Core Intel Core i7. The end-to-end process included

9 https://tinyurl.com/etherscanRaiden

https://tinyurl.com/etherscanRaiden
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random secret creation, hashing of secret, promise creation/verification, secret
reveal/verification, and receipt creation/verification.

Other Applications. For the sake of completeness, we include gas usage costs
for other applications presented in Section 3.5, i.e., reverse HTLC, onchain event
betting, and rock-paper-scissors (cf. Appendix K) in Table 2. For the rock-paper-
scissors, we provide two implementations: one using the compiler (cf. Section 4),
and one without (i.e., the ad-hoc implementation in Appendix K). This is to
emphasize that our SC from PPC compiler that we present next is highly effi-
cient. Note that all this (i.e., gas cost) is relevant only when one of the parties
is malicious. When both parties are honest, the executions are always offchain,
and the application-specific onchain deployment costs are zero.

Comparing with Prior State Channels. Prior works on state channels
(e.g., [4, 18, 26]) do not provide concrete implementations, performance num-
bers, or benchmarks. However, we note that, at the very least, state channel
implementations typically require explicit signature verification on the applica-
tion contract—something we avoid in most of our applications above. Further-
more, in multiparty applications where each party has a PPC channel with an
untrusted hub, the onchain complexity in the worst case is only proportional to
the number of malicious parties as opposed to the total number of parties as in
the case with state channels.

4 State Channels from FPPC

On the one hand, our programmable payment channel protocol subsumes reg-
ular payment channel protocols. A simple payment can be captured by payer
P creating an initial promise instance directly constructed as finalized with the
proper amount. On the other hand, it seems that our programmable payment
channel protocol may not subsume protocols for state channels, i.e., execute a
contract where two parties can both deposit coins in. In this section, we first
formalize a variant of state channels that we call FSC that is very similar to
PPC. Then we provide a construction that compiles a contract instance input
to FSC into two promises that can be input to FPPC. That is, we show how to
efficiently realize FSC in the FPPC-hybrid model.

4.1 Modifying FPPC to Capture State Channels

Our formalization of programmable payment channels is heavily inspired by the
formalization of state channels in [18]. In fact, FPPC can be easily modified to
yield a variant of state channel functionality FSC, which can be used to execute
any two-party contract offchain. We call these contracts covenants. Note that
the ideal functionality for state channels FSC allows the following operations:
(1) opening a (state) channel, (2) creating a covenant instance, (3) executing
a covenant instance, and (4) closing the channel. Covenant instances, unlike
promise instances, do not have a designated sender or receiver. Like FPPC, any
number of covenant instances can be created and executed using FSC. Unlike
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FPPC though, the ideal functionality FSC accepts a covenant creation operation
from a party only if the other party consents to it. The covenant instances
allowed by FSC resolve to two integer values (that corresponds to the payout
of each party). Again, this resolved value is calculated at the time of channel
closing, and then the resolved values of all contract instances are aggregated to
determine the final settlements.

4.2 Defining FSC

Just as how FPPC creates and executes promise instances, we will have FSC create
and execute covenant instances.

Covenant Instance. A covenant instance can be viewed as a special contract
instance consisting of two attributes: covenant storage (accessed by key storage)
and covenant code (accessed by key code). Covenant storage σ is an attribute
tuple containing at least the following attributes: (1) σ.resolveA ∈ R≥0 denotes
the amount of money transferred from party B to party A; and (2) σ.resolveB ∈
R≥0 denotes the amount of money transferred from party A to party B. Covenant
code is a tuple C := (Λ,Construct, f1, . . . , fs) similar to contract code. W.l.o.g.,
we assume Construct does not take caller as inputs but it can be incorporated
into y. We note that we do not restrict the independence of the constructor.

See Figure 7 for the definition of the ideal functionality that captures state
channels. Like FPPC, the functionality FSC contains the following 4 procedures.

(1) State channel creation. Similar to FPPC, a party can instantiate a channel
with another party by sending the channel creation information to FSC. The
operation of this procedure is identical to that of FPPC.

(2) Covenant Creation. The covenant instance is specified by choice of channel
γ, contract code C and arguments for the constructor function y, and a salt
z that is used to identify this promise instance. Among other things, the ideal
functionality ensures that cid := (id, C, y, z) does not exist in γ.cspace. Note that
unlike FPPC, we need an acknowledgment from the counterparty before creating
a covenant instance. Thus, the creation takes more rounds but optimistically
remains O(1).

(3) Covenant Execution. This procedure is used to update the covenant in-
stance’s storage. The operation of this procedure is identical to that of FPPC.

(4) State Channel Closure. When a party of the channel instance γ wants to
close the channel, FSC will wait for γ.duration rounds to execute the remaining
covenants that have not been finalized. The crucial difference from FPPC is in
the way in which the credits are calculated (simply because of the difference in
the final values of covenant instances vs. promise instances). We note that the
closure requires extra O(∆) rounds. Looking ahead, this is because we “compile”
a covenant into two promises on FPPC, and require an extra function call to settle
down the resolved values of them.

Remarks. Our state channel ideal functionality differs from prior formalizations
in many ways. Crucially, it makes explicit the dependence of covenant instances
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Functionality F L̂(∆)
SC

State channel opening

Identical to programmable payment channel opening in F L̂(∆)
PPC but with a state

channel of covenants (saved in cspace) as inputs.

Covenant creation

Upon (create, id, C||y, z)
t0←↩ P , let γ := Γ (id) and let cid := (id, C, y, z). If γ = ⊥

or P /∈ γ.endusers or γ.cspace(pid) ̸= ⊥ then stop. Else let Q := γ.otherparty(P ).

– If (create, id, C||y, z)
t0←↩ Q and P,Q are honest or the the simulator behaves

honestly, then let ν := ⊥ and σ := C.Construct(t0, y). Stop if σ = ⊥. Within 7

rounds, set ν.code := C and ν.storage := σ. Set Γ (id).cspace(cid).flag = 0. Set

Γ (id).cspace(cid) := ν. Send (instance-created, id, cid, ν)
t≤t0+7
↪→ γ.endusers.

– If (create, id, C||y, z)
t0←↩ Q and one party is malicious, then let ν := ⊥

and σ := C.Construct(t0, y). Stop if σ = ⊥. Within 4∆ + 7 rounds, set

ν.code := C and ν.storage := σ. Set Γ (id).cspace(cid).flag by the simulator. Set

Γ (id).cspace(cid) := ν. Send (instance-created, id, cid, ν)
t≤t0+4∆+7

↪→ γ.endusers.

Covenant execution

Identical to promise instance execution in F L̂(∆)
PPC but with a state channel identity

and a covenant identity as inputs.

State channel closure

Upon (close, id)
t0←↩ P , let γ := Γ (id). If P /∈ γ.endusers then stop. Else block

all future close invocations on γ. Wait at most 2γ.duration + 11∆ + 5 rounds and

proceed as follows: (Note that either Alice or Bob could be P )

1. Calculate

total := γ.cash(γ.Alice) + γ.cash(γ.Bob)

creditA :=
∑

(γ.pspace(pid).storage.resolveA)

creditB :=
∑

(γ.pspace(pid).storage.resolveB)

2. Within ∆ rounds, add min{total,max{0, γ.cash(γ.Alice) + creditA − creditB}}
coins to γ.Alice’s andmin{total,max{0, γ.cash(γ.Bob)+creditB−creditA}} coins
to γ.Bob’s account.

3. Send (contract-close, id)
t1≤t0+12∆+2γ.duration+5

↪→ γ.endusers.

Fig. 7: The ideal functionality F L̂(∆)
SC .
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on other onchain contracts. Also, a covenant instance can depend on other
covenant instances (this is something not considered in prior works).

4.3 Implementing FSC in the FPPC-hybrid World

Perhaps surprisingly, FPPC can be used to implement FSC. In particular, a
covenant can be compiled into two promises on FPPC that can be used to execute
the covenant offchain.

To implement a covenant creation of a contract c in FSC, we use two promises
p0, p1, one from each endpoint of FPPC. The promise p0 contains all the logic of
the covenant instance c. Note that c will resolve to either (k, 0) or (0, k) (or any
other intermediate value), where k is non-negative. In particular, (k, 0) denotes
that the first party needs to pay k to the second party and (0, k) denotes that
the second party needs to pay k to the first party. Note that the resolved state
of c will be saved in p0 as well. Accordingly, p0 will resolve to 0 in the case of
(0, k), otherwise as k. The resolve method of promise p1 will instead read the
state of p0, and resolves in the opposite direction. That is, p1 resolves to 0 in the
case of (k, 0), otherwise as k. That both parties consent to the contract instance
is captured by requiring each party to provide its promise.

We illustrate this with an example of two-party contract for chess. We assume
that each party puts in $50, and the winner gets $100. Assume that there exists
a smart contract c that contains the entire logic of chess (i.e., checking validity
of a move, checking whether the game has ended, who has won the game, and
the payout to each party, etc.).

To play a game of chess offchain, parties each first create a promise. The
promise from Bob contains all the logic in c and additionally has a resolve method
which will depend on the payout logic in c in the following way: if the winner
is Alice, then the resolve method returns $50, else it returns zero. The promise
from Alice is such that the resolve method invokes the resolve method of Bob’s
promise to get value v and returns $50− v as the resolved amount.

There exists a protocol that can implement FSC in the FPPC-hybrid model.
The essential step is to compile a covenant into two associated promises (cf. Fig-
ure 8) and then execute them on FPPC. We present this formally as follows.

Theorem 2. There exists protocol ΠSC working in FPPC-hybrid model that em-

ulates the ideal functionality F L̂(∆)
SC for every ∆ ∈ N. Note furthermore that the

the protocol ΠSC requires only three invocations of FPPC to create a covenant.

Similar to Theorem 1, Theorem 2 can be formally proved by construct-
ing straightforward simulators to translate between covenant and associated
promises. Note that the crucial point is to argue the rounds taken by the two
worlds are identical. We provide the formal description of the protocol and its
analysis in Appendix I and the protocol analysis in Appendix J.
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Promise Code CB→A

Construct(P, t, z):

1. if P /∈ {σ′.userL, σ′.userR}, return ⊥.
2. σ ← σ′.
3. σ.payer := P, σ.expiry := t′ + 2∆ +

5, σ.payee := {σ′.userL, σ′.userR} \ P,
σ.resolve := 0, σ.valid := 0.

4. return σ.

Enable(σ, P, t, x):

1. if P ̸= σ.payer, return (σ,⊥).
2. if t > σ.expiry, return return (σ,⊥).
3. if σ.valid = 1, return (σ,⊥).
4. σ.valid := 1.
5. return (σ, 1).

Finalize(σ, P, t, x):

1. if P ̸= σ.payer and P ̸= σ.payee, return
(σ,⊥).

2. if σ.valid = 0, return (σ,⊥).
3. σ.resolve := σ.resolveA.
4. return (σ, 1).

f1, · · · , fs.

(a) Promise CB→A from Bob.

Promise Code CA→B

Construct(P, t, pid, z):

1. σ ← ⊥.
2. σ.payer := A, σ.payee := B, σ.end :=

0, σ.resolve := 0, σ.pid := pid.
3. return σ.

Finalize(σ, P, t, x):

1. if σ.pid does not exist, return (σ,⊥),
else let σB→A be the storage of contract
σ.pid.

2. if σB→A.valid = 0, return (σ,⊥).
3. if P ̸= σ.payer and P ̸= σ.payee, return

(σ,⊥).
4. σ.resolve := σB→A.resolveB .
5. return (σ, 1).

(b) Promise CA→B from Alice.

Fig. 8: The compiled promises from a covenant code C at time t′ and constructor
inputs y, where σ′ := C.Construct(t′, y). CB→A will hard-code σ′.

5 Conclusions

In this paper we present programmable payment channels (PPC), a new abstrac-
tion that enables payment channels to support lightweight applications encoded
in the form of smart contracts. We show the usefulness of PPC by constructing
several example applications. Our gas cost estimates show us that the applica-
tion implementations are indeed practical on Ethereum (or other EVM chains).
Finally, we also present a modified version of state channels and show how PPC
can also implement state channel applications efficiently.
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SUPPLEMENTARY MATERIAL

A More Details on the Compiler

See Figure 9 for how to compile a chess application into two interlocked promises.

Contract

Promise 1 Promise 2

First Promise 
interlocked with a 
promise to be sent 

by the counter-party

Read

Fig. 9: Execute arbitrary two-party contract on PPC. Compiler compiles the
contract into two interlocked promises.

B Comparsion with Rollups

Rollups are the most popular Layer-2 scaling solutions right now (on Ethereum).
The high-level idea is that there is a special entity (or entities) called sequencers
that aggregate transactions from multiple users on a separate Layer-2 system
and then submits batched transactions every once in a while to Layer-1. Rollups
come in two flavors: optimistic rollups or zk rollups. Both variants share many
similarities with (programmable) payment channels (or state channels) such as:

– there is a smart contract on Layer-1 on which parties deposit money, and
this smart contract controls the balances available on Layer-2 ;

– there are forced transactions that happen on Layer-1 if there is misbehavior
or unavailability of parties (e.g., sequencers on rollups) on Layer-2.

On the other hand, there are significant differences too, such as:

– the sequencer in an optimistic rollup needs to keep submitting all the trans-
actions (albeit in some compressed form) that it obtained (in order to prove
correctness and also for data availability), whereas in a payment channel or
state channel only the final states need to be submitted;



C. OTHER WORKS USING CREATE2 25

– the sequencer in a zk rollup needs to provide time-consuming zk proofs about
validity of state changes that it submits (and in some cases the proof itself
spans multiple Layer-1 blocks), whereas no such overheads exist for payment
channels (barring signature verification).

We highlight that PPC allows for Layer-2 contracts to interact/depend di-
rectly with Layer-1 contracts but such a thing is not possible for rollups since
they usually function as an independent blockchain systems. That said, rollups
can have Layer-2 contracts which interact with each other, but there are some
additional restrictions on the size of the contracts due to the use of some special
opcodes which need to be translated into contract calls on Layer-1.

C Other Works Using CREATE2

Coinbase Commerce uses CREATE2 on the state channel to reuse a fixed con-
tract called Forwarder to process instant offchain transactions10. This is different
from our work, where we utilize CREATE2 to achieve and commit general pro-
grammable payments, while Coinbase uses it to save gas fees by deploying the
contract when the fees are less. Breidenbach et al. also introduced the use of
CREATE2 opcode to ensure fairness in the Hydra system [7], a new model for
auto-payout bug bounty system for finding vulnerabilities in smart contracts. In
their work, CREATE2 functions as a commit then reveal mechanism (i.e., lib-
submarine [6]) that prevents front-running adversaries from stealing the bounty
opportunities from honest users.

D Supplementary Material for Notations and Models

D.1 Global Universal Composable Framework

UC models the execution of protocols as interactions of probabilistic polynomial-
time (PPT) Interactive Turing Machines (ITMs) and attempts to argue that
interactions between ITMs in the “real” world (by virtue of our defined real
world protocols) are indistinguishable from the interactions between the ITMs in
an “ideal” world (where whatever desired security property would be satisfied).

Formally, let π be a protocol working in the G-hybrid model with access to the
global ledger L̂(∆) (specified later). The output of an environment E interacting
with the protocol π in the presence of an adversary A on input 1λ and auxiliary

input z is denoted as EXEC
L̂(∆),G
π,A,E (1λ, z). We define another trivial protocol with

ideal functionality F , dummy parties and a simulator S. We denote the output

of the environment (similar to the above) in this scenario as IDEAL
L̂(∆)
F,S,E(1

λ, z).

Definition 1. We say that a protocol π working in a G-hybrid model UC-emulates
an ideal functionality F with respect to a global ledger L̂(∆) i.f.f. for any PPT
adversary A there exists a simulator S such that for any environment E we have

10 https://legacy.ethgasstation.info/blog/what-is-create2/

https://legacy.ethgasstation.info/blog/what-is-create2/
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{EXEC
L̂(∆),G
π,A,E (1λ, z)} λ∈N,

z∈{0,1}∗

c
≈ 11{IDEAL

L̂(∆)
F,S,E(1

λ, z)} λ∈N,
z∈{0,1}∗

D.2 The Global Ledger Functionality

The global ledger functionality is shown in Figure 10.

Functionality L̂(∆)
Functionality L̂, running with parties P1, ..., Pn and several ideal functionalities
G1, ...,Gm, maintains a vector (x1, ..., xn) ∈ Rn

≥0 representing the balances (in coins)

of parties. L̂ is also parameterized by a positive integer ∆, representing the delay
(controlled by the adversary) in updating its state.

Adding money

Upon receiving a message (add, Pi, y) from Fj (j ∈ [m], y ∈ R≥0), set xi := xi + y
within ∆ rounds. We say that y coins are added to Pi’s account in L̂.

Removing money

Upon receiving a message (remove, Pi, y) from Fj (j ∈ [m], y ∈ R≥0):

– Stop if xi < y,
– Otherwise, set xi := xi − y within ∆ rounds. We say that y coins are removed

from Pi’s account in L̂.

Fig. 10: The global ledger functionality L̂(∆).

E Implementing FPPC

We detail the programmable payment channel protocol in this subsection. In
particular, we focus on describing the protocol intuitions and defer the formal
description to Appendix G. The protocol Π is defined assuming access to an
ideal programmable payment channel smart contract functionality GPPC. Note
GPPC is the PPC smart contract. All specifications in Π should be viewed as
the procedure executed on the party’s local machine while all specifications in
GPPC should be viewed as onchain smart contracts. Since GPPC emulates smart
contracts, coins in L̂(∆) can be transferred to/from it.

Each party P will maintain a local key-value data structure ΓP to monitor
all channels belongings. P also locally monitors all promise instances executed

11 “
c
≈” denotes computational indistinguishability of distribution ensembles, see [19].



E. IMPLEMENTING FPPC 27

on each channel. Besides the latest promise storage σ, P also maintains another
key-value object ΓP

aux to save auxiliary data including signatures, version, etc.
We briefly explain the use of signatures and version.

Signature. The signatures are used to authenticate the creation as well as the
latest state of promise instances. Users need to provide a valid signature from
the payer on the creation arguments in order for the PPC contract to deploy the
authenticated promise contract. To execute the contract offchain, two parties
exchange their signatures on the latest state. For simplification, we directly allow
the PPC contract to “deploy” the promise instance if either party provides a state
(including pid) with both parties’ signatures. Since one party is honest, pid is in
line with creation process. Formally, the PPC contract deploys an initial promise
contract. Then a party can submit the latest state to the promise contract.

Version. Integer number version is used to obtain a total ordering for the states
of promise instance. We define that the initial promise storage is of version 0.

Register. A special sub-procedure (not interacting with environment) called
Register is used to deploy a promise instance onchain. The PPC protocol Π
will heavily use this sub-procedure to register a promise instance. The protocol
requests both parties to submit a valid storage and will deploy the one with larger
version. The entire procedure will be finished within 3∆ rounds with one corrupt
party and within 2∆ rounds with two honest parties. We defer the specification
and discussion of this sub-procedure to Appendix G.

We are now ready to describe the protocol that achieves the 4 procedures in
FPPC. All UC-style protocol boxes can be found in Appendix G.

Create a Programmable Payment Channel. Party P sends the valid initial
channel object to the PPC contract. If the other party agrees and they both have
enough funds, coins will be transferred to GPPC from L̂.

Create an Initial Promise Instance. Party P signs the constructor argu-
ments (without time) and forward it to party Q. Both parties then can use the
Register sub-procedure to deploy it as a contract on Layer-1 if needed.

Execute a Promise Instance. Assume party P wants to execute a promise
function to update promise storage. If this promise instance is already onchain,
he directly calls the function on Layer-1. Otherwise, P will first try to peacefully
(offchain) execute the promise function. P will fetch the latest storage σ including
version from his local memory, execute it locally and sign the newer storage σ̃
with (version+ 1). P forwards the signature to Q and requests her signature. If
Q accepts the execution, she sends back her signature, and the execution will
be finished offchain in O(1) rounds. If not, P needs to execute the function
onchain. He can register the latest promise instance on the Layer-1 blockchain.
Note that since Q already has both parties’ signatures on the newer version, she
could register it directly onchain to invalidate the version P wants to register.
If after the registration sub-procedure, the promise instance onchain is still P ’s
version, P can then update it by onchain function execution. We follow [18] to
sequentialize the execution.



28 Kumaresan et al.

Closing a PPC. For a party P to close a PPC channel γ with Q, he first
(in parallel) registers all the promise instances he has offchain in γP .pspace
within 3∆ rounds. Then P will notify the PPC contract GPPC that he wants
to close the channel. The contract will further notify Q about the closing and
set up a 3∆ time window for Q to register her local instances. Note that if
both parties are honest, all promise instances in γQ.pspace should already be
registered by P . After the time window passes, GPPC will check the status of all
registered instances in γ. If all of them are finalized, the channel will be closed
and corresponding final balances will be transferred back to the party’s account
on L̂ within ∆ rounds. If there still exists a not finalized instance, it will wait
for γ.duration rounds and split the coins.

F Simplifications

In this section, we provide and justify the full simplifications we made in Section 3
for better presentation:

– We omit session and sub-session identifiers sid, ssid.
– We assume the existence of a PKI. Note that this also implies the existence

of a complete peer-to-peer authenticated communication network.
– We combine pairwise channel contracts into one single large hybrid functional-

ity, i.e., in the implementation, this single hybrid can be separated into several
pairwise contracts. This is permissible since the entire Layer-1 network can be
modeled as a large publicly available trusted virtual machine. This combined
hybrid will maintain a large set Γ to save all available PPC channels. Formally,
the identifier id of each channel γ reflects the contract address.

– We use collision-resistant hash functions to capture the CREATE2 opcode
in Ethereum. Basically, every promise instance will be associated with an
identifier pid determined by a collision-resistant hash function applied to the
the following inputs: (1) creator channel identifier id; (2) payer P ; (3) promise
code C; (4) arguments for the constructor function y; and (5) a salt value z.
Note that the arguments specified above are in line with the specification of
CREATE2. The salt captures the fact that there might be several promise
instances created by the same constructor (with different salts). Similar to
the channel identifier, pid formally reflects the contract address of the promise
contract created by the channel contract. Also note that collision resistance
ensures that it is computationally infeasible to create a second contract whose
address is also pid. This is also why we can avoid making any references to such
hash functions and use just their corresponding input tuples in the descriptions
of our ideal functionalities and the UC protocols realizing them.

– Whenever we say we put a promise instance inside some channel contract’s
γ.pspace, it means that this promise is deployed as a contract on Layer-1. We
further combine processes to (1) create a promise using the sender’s signature
on the channel contract; and (2) bypass it to the latest state using both parties’
signatures on the promise contract, into one process that saves the latest state
into γ.pspace.
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– We allow parties to “register” promises in parallel. We instantiate this paral-
lelism using an accumulator.
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Procedure Register(P, id, pid)

Denote GPPC := GL̂(∆)
PPC .

Party P

1. Let γP := ΓP (id), νP := γP .pspace(pid), (sP , sQ, version) := ΓP
aux(id, pid), and

let t0 be the current round. Consider the following two scenarios:

– If version = 0 (i.e., this is an initial promise instance), fetch the con-

structing tuple (id, pid, C, y, z, A, sA) from P ’s local memory, then send

(instance-construct, id, C, y, z, A, sA)
t0
↪→ GPPC.

– If version ̸= 0 (i.e., this is a non-initial promise instance), send

(instance-register, id, pid, νP , version, sP , sQ)
t0
↪→ GPPC.

Party Q upon (instance-registering, id, pid)
t1←↩ GPPC

2. Let γQ := ΓQ(id), νQ := γQ.pspace(pid), (sQ, sP , version) := ΓQ
aux(id, pid).

Consider the following two scenarios:

– If νQ = ⊥ (i.e., P wants to initialize a promise onchain), send

(instance-register, id, pid,⊥,−1,⊥,⊥)
t1
↪→ GPPC.

– If version = 0 (i.e., this is an initial promise instance), fetch the

constructing tuple (id, pid, C, y, z, A, sA) from Q’s local memory, then send

(instance-construct, id, C, y, z, A, sA)
t1
↪→ GPPC.

– If version ̸= 0 (i.e., this is a non-initial promise instance), send

(instance-register, id, pid, νQ, version, sQ, sP )
t1
↪→ GPPC.

3. Goto step 5.

Back to party P

4. If not (instance-registered, id, pid, ν)
t2≤t0+2∆
←↩ GPPC, then send

(finalize-register, id, pid)
t3=t0+2∆+1

↪→ GPPC.

For both parties T

5. Upon (instance-registered, id, pid, ν) ←↩ GPPC, mark (id, pid) as registered in

ΓT
aux. Set Γ

T (id).pspace(pid) := ν. Stop.

Fig. 11: The sub-procedure Register to register a promise instance onchain.
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Functionality/Contract GL̂(∆)
PPC : Promise instance registration

Upon (instance-construct, id, C, y, z, A, sA)
t0←↩ P , let γ := Γ (id) and do:

1. Let pid := (id, C,A, y, z). Stop if one of the following conditions holds: γ = ⊥;
P /∈ γ.endusers; A /∈ γ.endusers; γ.pspace(pid) ̸= ⊥; VfypkA

(id, C, y, z, A; sA) =

0.

2. Let ν := ⊥. Set ν.code := C. Let σ := C.construct(A, t0, y), stop if σ = ⊥ or

σ.payer ̸= A. Else set ν.storage := σ.

3. Let Q := γ.otherparty(P ) and consider the following three cases:

– If the functionality’s memory contains a tuple (P, id, pid, ν̂, t̂0, ˆversion), then

stop.

– If the functionality’s memory contains a tuple

(Q, id, pid, ν̂, t̂0, ˆversion), then set ν̃ := ν̂. Within ∆ rounds,

send (instance-registered, id, pid, ν̃)
t1≤t0+∆

↪→ γ.endusers, set

Γ (id).pspace(pid) := ν̃ and erase (Q, id, pid, ν̂, t̂0, ˆversion) from the

memory.

– Else save (P, id, pid, ν, t0, 0) to the memory and send

(instance-registering, id, pid)
t1≤t0+∆

↪→ Q.

Upon (instance-register, id, pid, ν, version, sP , sQ)
t0←↩ P , let γ := Γ (id) and do:

1. Stop if one of the following conditions holds: γ = ⊥; P /∈ γ.endusers;

γ.pspace(pid) ̸= ⊥.
2. Let Q := γ.otherparty(P ). If version = −1 and ν = ⊥ and the functionality’s

memory contains a tuple (Q, id, pid, · · · ), goto step 4.

3. Stop if one of the following conditions holds: VfypkP
(id, pid, ν, version; sP ) = 0;

VfypkQ
(id, pid, ν, version; sQ) = 0.

4. Consider the following three cases:

– If the functionality’s memory contains a tuple (P, id, pid, ν̂, t̂0, ˆversion), then

stop.

– If the functionality’s memory contains a tuple (Q, id, pid, ν̂, t̂0, ˆversion), then

compare the version number, i.e., ν̃ := version > ˆversion ? ν : ν̂. Within

∆ rounds, send (instance-registered, id, pid, ν̃)
t1≤t0+∆

↪→ γ.endusers, set

Γ (id).pspace(pid) := ν̃ and erase (Q, id, pid, ν̂, t̂0, ˆversion) from the memory.

– Else save (P, id, pid, ν, t0, version) to the memory and send

(instance-registering, id, pid)
t1≤t0+∆

↪→ Q.

Upon (finalize-register, id, pid)
t2←↩ P , let γ := Γ (id) and do:

1. Stop if γ = ⊥ or P /∈ γ.endusers.

2. If the functionality’s memory contains a tuple (P, id, pid, ν̂, t̂0, ˆversion)

such that t2 − t̂0 ≥ 2∆, then set Γ (id).pspace(pid) := ν̂, send

(instance-registered, id, pid, ν̂)
t3≤t2+∆

↪→ γ.endusers, and erase the tuple.

Fig. 12: The contract associated with the sub-procedure Register.
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G Formal PPC Protocols

In this section, we fully specify the PPC protocols described in Appendix E.
The protocols are formalized in the UC framework [8], which UC-emulate FPPC

(see Figure 2).
The special sub-procedure Register, which is used to deploy a promise in-

stance onchain, is specified in Figures 11 and 12. The online contracts function-
ality GPPC will have 3 interfaces to handle this sub-procedure:

– instance-construct: This interface is used to initiate a promise instance. It
requires an explicit initiator with the corresponding signature. Note that this
will be viewed as a party submitting a promise instance of version = 0 .

– instance-register: This interface is used to submit an agreed upon promise
storage. It requires a promise instance specification with both parties’ signa-
tures. Intuitively, the honest party will always submit the largest version. Note
that we have a special case for version = −1. This is used to capture the case
where a corrupted sender could initiate an instance directly onchain and the
honest receiver will trivially accept it. Note that it is infeasible to create two
different instances that have the same pid.

– finalize-register: This interface is used to enable the honest party to de-
ploy a promise even when another party does not send any valid storage to the
PPC contract. Informally, this means that the party can convince the contract
that the other party aborted after a 2∆ dispute period.

Protocol Π: Open a programmable payment channel

Denote GPPC := GL̂(∆)
PPC .

Party P upon (open, γ)
t0←↩ E

1. Send (construct, γ)
t0
↪→ GPPC and wait.

Party Q upon (open, γ)
t0←↩ E

2. If (initializing, γ)
t1≤t0+∆
←↩ GPPC, send (confirm, γ)

t1
↪→ GPPC and wait. Else

stop.

3. If (initialized, γ)
t2≤t0+2∆
←↩ GPPC, then set ΓQ(γ.id) := γ, output (opened,

γ)
t2
↪→ E .

Back to party P

4. If (initialized, γ)
t2≤t0+2∆
←↩ GPPC, then set ΓP (γ.id) := γ, output (opened, γ)

t2
↪→ E and stop. Otherwise, execute next step.

5. If (refund, γ)
t3>t0+2∆
←↩ E , send (refund, γ)

t3
↪→ GPPC and stop.
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Functionality/Contract GL̂(∆)
PPC

Upon (construct, γ)
t0←↩ P :

1. Let Q := γ.Bob, stop if one of the following conditions holds: there already exists
a channel γ′ such that γ.id = γ′.id; γ.Alice ̸= P ; γ.cash(P ) < 0 or γ.cash(Q) < 0;
γ.pspace ̸= {}; γ.duration < 0.

2. Within ∆ rounds remove γ.cash(P ) coins from P ’s account on the ledger L̂. If it
is impossible due to insufficient funds, then stop. Else (initializing, γ) ↪→ Q
and store the pair tamp := (t0, γ).

Upon (confirm, γ)
t1←↩ Q:

1. Stop if one of the following conditions holds: there is no pair tamp := (t0, γ) in
the storage; (t1 − t0) > ∆; γ.Bob ̸= Q.

2. Within ∆ rounds remove γ.cash(Q) coins from Q’s account on the ledger L̂. If
it is impossible due to insufficient funds, then stop. Else set Γ (γ.id) := γ and
delete tamp from the memory. Thereafter send (initialized, γ) ↪→ γ.endusers.

Upon (refund)
t2←↩ P :

1. Stop if one of the following conditions holds: there is no pair tamp := (t0, γ) in
the storage; (t2 − t0) ≤ 2∆; P ̸= γ.Alice.

2. Within ∆ rounds add γ.cash(γ.Alice) coins to γ.Alice’s account in ledger L̂ and
delete tamp from the storage.

Protocol Π: Create an initial promise instance

Denote GPPC := GL̂(∆)
PPC .

Party P upon (create, id, C||y, z)
t0←↩ E

1. Set pid := (id, C, P, y, z).
2. Stop if one of the following conditions holds: ΓP (id) = ⊥; P /∈ ΓP (id).endusers;

ΓP (id).pspace(pid) ̸= ⊥. Else let γ := ΓP (id).
3. Let ν := ⊥ and σ := C.Construct(P, t0, y). Stop if σ = ⊥. Else set ν.code := C and

ν.storage := σ. Set ΓP (id).pspace(pid) := ν and set ΓP
aux(id, pid) := (⊥,⊥, 0).

4. Compute sP := SignskP
(id, C, y, z, P ), save (id, pid, C, y, z, P, sP ) and send

(create-instance, id, C, y, z, sP ) ↪→ Q.

5. Output (instance-created, id, pid, ν)
t0+1
↪→ E .

Party Q upon (create-instance, id, C, y, z, sP )
t1←↩ P

6. Set pid := (id, C, P, y, z)
7. Stop if one of the following conditions holds: ΓQ(id) = ⊥; P /∈ ΓQ(id).endusers;

ΓQ(id).pspace(pid) ̸= ⊥. Else let γ := ΓQ(id).
8. Let σ := C.Construct(P, t1 − 1, y). Stop if σ = ⊥. Let ν := ⊥. Set ν.code := C

and ν.storage := σ. Stop if VfypkP
(id, C, y, z, P ; sP ) ̸= 1.
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9. Set ΓQ(id).pspace(pid) := ν and set ΓQ
aux(id, pid) := (⊥,⊥, 0). Save

(id, pid, C, y, z, P, sP ). Output (instance-created, id, pid, ν)
t1
↪→ E .

Protocol Π: Promise instance execution

Denote GPPC := GL̂(∆)
PPC .

Party P upon (execute, id, pid, f, z)
t0←↩ E

1. Stop if ΓP (id) = ⊥, else let γP := ΓP (id). Stop if P /∈ γP .endusers or γP (pid) =
⊥, else let νP := γP .pspace(pid). Stop if f /∈ νP .code, else let CP := νP .code and
σP := νP .storage. Let Q := γP .otherparty(P ). Let (·, ·, versionP ) := ΓP

aux(id, pid).
2. Set t1 := t0 + x, where x is the smallest offset such that t1 ≡ 1(mod 4) if

P = γP .Alice and t1 ≡ 3(mod 4) if P = γP .Bob.
3. If (id, pid) is marked as registered in ΓP

aux, goto step 12 at round t1.

4. Compute (σ̃,m) := fG,γP

(σP , P, t0, z). Stop if m = ⊥. Otherwise, set ˜version :=
versionP + 1. Let ν̃ := ⊥. Set ν̃.code := CP and ν̃.storage := σ̃. Compute

sP := SignskP
(id, pid, ν̃, ˜version). Send (peaceful-request, id, pid, f, z, sP , t0)

t1
↪→

Q. Goto step 11.

Party Q upon (peaceful-request, id, pid, f, z, sP , t0)
tQ
←↩ P

5. Stop if ΓQ(id) = ⊥, else let γQ := ΓQ(id). Stop if Q /∈ γQ. endusers or
P /∈ γQ.endusers or γQ(pid) = ⊥ or (id, pid) is marked as registered, else let
νQ := γQ.pspace(pid). Stop if f /∈ νQ.code, else let CQ := νQ.code and
σQ := νQ.storage. Let (·, ·, versionQ) := ΓQ

aux(id, pid).
6. Stop if “P = γQ.Alice and tQ ̸≡ 2(mod 4)” or “P = γQ.Bob and

tQ ̸≡ 0(mod 4)”.
7. Stop if t0 /∈ [tQ − 4, tQ − 1].
8. If (id, pid) is not marked as registered in ΓQ

aux, do:

(a) Compute (σ̃,m) := fG,γQ

(σQ, P, t0, z). Stop if m = ⊥.
(b) Set ˜version := versionQ + 1. Let ν̃ := ⊥. Set ν̃.code := CQ and

ν̃.storage := σ̃.
(c) If VfypkP

(id, pid, ν̃, ˜version; sP ) ̸= 1, then stop.

(d) Compute sQ := SignskQ
(id, pid, ν̃, ˜version). Set ΓQ(id). pspace(pid) := ν̃

and ΓQ
aux(id, pid) := (sQ, sP , ˜version). Send

(peaceful-confirm, id, pid, sQ)
tQ
↪→ P .

(e) Send (executed, id, pid, P, f, t0, z, ν̃)
tQ+1

↪→ E .

Back to party P

11. Distinguish the following two cases:

– If (peaceful-confirm, id, pid, sQ)
t2=t1+2
←↩ Q such that VfypkQ

(id, pid, ν̃, ˜version

; sQ) = 1, set ΓP (id). pspace(pid) := ν̃ and ΓP
aux(id, pid) := (sP , sQ, ˜version).
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– Otherwise (i.e., Q aborts or replies with invalid signature). For all γP .
pspace(pid′) where pid′ is not registered, execute Register(P, id, pid′) (in par-
allel) to mark (id, pid′) as registered in ΓP

aux. Once the register procedure is
executed (in round t3 ≤ t0 + 3∆ + 5), check if ΓP (id).pspace(pid) = ν̃. If
so (i.e., Q agrees the execution by registering the newest version onchain),

output (executed, id, pid, P, f, t0, z, ν̃)
t3
↪→ E and stop.

12. Send (instance-execute, id, pid, f, z) ↪→ GPPC.

For both parties T

13. If (executed-onchain, id, pid,Caller, f, t, z, ν̂)
t4≤t0+4∆+5
←↩ GPPC, set ΓT (id).pspace

(pid) := ν̂ and output (executed, id, pid,Caller, f, t, z, ν̂)
t4
↪→ E .

Functionality/Contract GL̂(∆)
PPC

Upon (instance-execute, id, pid, f, z)
t←↩ P , proceed as follows:

1. Let γ := Γ (id). Stop if γ = ⊥.
2. Set ν := γ.pspace(pid) and σ := ν.storage. Stop if one of the following conditions

holds: P /∈ γ.endusers; ν = ⊥; f /∈ ν.code.
3. Within ∆ rounds, i.e., t1 ≤ t +∆. Compute (σ̂,m) := fG,γ(σ, P, t1, z). Stop if

m = ⊥.
4. Set Γ (id).pspace(pid).storage := σ̂ and send (executed- onchain, id, pid, P, f, t1,

z, ν̂)
t1
↪→ γ.endusers.

Protocol Π: Close a programmable payment channel

Denote GPPC := GL̂(∆)
PPC .

Party P upon (close, id)
t0←↩ E

1. Stop if ΓP (id) = ⊥, else let γP := ΓP (id). Stop if P /∈ γP .endusers. For each
γP .pspace(pid) ̸= ⊥ and (id, pid) is not marked as registered, execute (in parallel)

Register(P, id, pid) immediately. Then send (contract-close, id)
t1≤t0+3∆

↪→ GPPC.

Party Q upon (contract-closing, id)
t2≤t0+4∆
←↩ GPPC

2. Let γQ := ΓQ(id). For each γQ.pspace(pid) ̸= ⊥ and (id, pid) is not marked as
registered, execute (in parallel) Register(Q, id, pid) immediately.

For both parties T

3. If (contract-close, id)
t3≤t0+8∆+γT .duration

←↩ GPPC, output (closed, id)
t3
↪→ E .

Functionality/Contract GL̂(∆)
PPC
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Upon (contract-close, id)
t0←↩ P , let γ := Γ (id) and proceed as follows:

1. Stop if γ = ⊥ or P /∈ γ.endusers.
2. Block all the messages in the future related to close channel id.

3. Within ∆ rounds send (contract-closing, id)
t1≤t0+∆

↪→ γ.otherparty(P ).
4. Within another 3∆ rounds. Wait for next γ.duration rounds.
5. At round t2 ≤ t0 + 4∆+ γ.duration:

(a) Set total := γ.cash(γ.Alice) + γ.cash(γ.Bob).
(b) Set creditA :=

∑
γ.pspace(pid).storage.payer=γ.Bob(γ.pspace (pid).storage.resolve).

(c) Set creditB :=
∑

γ.pspace(pid).storage.payer=γ.Alice(γ.pspace (pid).storage.resolve).

(d) Within∆ rounds, addmin{total,max{0, γ.cash(γ.Alice)+creditA−creditB}}
coins to γ.Alice’s account and min{total,max{0, γ.cash(γ.Bob)+ creditB−
creditA}} coins to γ.Bob’s account.

(e) Send (contract-close, id) ↪→ γ.endusers.

H Security Proofs

In this section, we formally prove our theorems.

Theorem 1 (Main). Suppose the underlying signature scheme is existentially
unforgeable against chosen message attacks. There exists a protocol working in

GL̂(∆)
PPC -hybrid model that emulates F L̂(∆)

PPC for every ∆ ∈ N such that (1) the
creation of the initial promise instance takes 1 round, and (2) if both parties are
honest, every call to instance execution procedure takes O(1) rounds.

Proof. We follow the framework of [18]. We will show that Π UC-emulates the

ideal functionality F L̂(∆)
PPC in the GL̂(∆)

PPC -hybrid model. In other words, for any

PPT adversary A, we construct a simulator Sim that operates in the GL̂(∆)
PPC -

hybrid model and simulates the F L̂(∆)
PPC -hybrid world to any environment E .

As in [18], since registration of a contract instance is defined as a separate
procedure that can be called by parties of the protocol Π, we define a “subsimu-
lator” SimRegister(P, id, pid) which can be called as a procedure by the simulator
Sim.

The technical details and approach to designing the simulator follow standard
techniques (e.g., [18]), and hence we omit further description here due to lack of
space.

Simulator Sim: Open a programmable payment channel

Denote FPPC := F L̂(∆)
PPC .

P is honest and Q is corrupt

Upon (open, P, γ)
t0←↩ FPPC:
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1. Wait until round t1 ≤ t0 +∆, send (initializing, γ)
t1
↪→ Q.

2. If (confirm, γ)
t1≤t′1≤t0+∆
←↩ Q, then send (open, γ)

t′1
↪→ FPPC on behalf of Q.

3. If (opened, γ)
t2≤t′1+∆
←↩ FPPC, send (initialized, γ)

t2
↪→ Q and set ΓP (id) := γ,

Γ (id) := γ.

P is corrupt and Q is honest

Upon (construct, γ)
t0←↩ P :

1. Stop if one of the following conditions holds: there already exists a programmable
payment channel γ′ such that γ.id = γ′.id; γ.Alice ̸= P or γ.Bob ̸= Q; γ.cash(P ) <
0 or γ.cash(Q) < 0; γ.pspace ̸= {}; γ.duration < 0.

2. Send (open, γ)
t0
↪→ FPPC on behalf of P .

3. Distinguish the following two situations:

– If (opened, γ)
t1≤t0+2∆
←↩ FPPC, send (initialized, γ)

t1
↪→ P . Set ΓQ(id) := γ,

Γ (id) := γ and stop.

– Else if (refund, γ)
t2>t0+2∆
←↩ P , send (refund, γ)

t2
↪→ FPPC.

Sub-simulator SimRegister(P, id, pid)

Denote FPPC := F L̂(∆)
PPC (PS).

P is honest and Q is corrupt

1. Let γP := ΓP (id), νP := γP .pspace(pid), (sP , sQ, version) := ΓP
aux(id, pid).

2. Set t0 be the current round. Send (instance-registering, id, pid)
t1≤t0+∆

↪→ Q.
3. Q can have two following reactions:

– If (instance-construct, id, C, y, z, A, sA)
t1←↩ Q, ignore if (id, C,A, y, z) ̸=

pid or the signature is invalid. Let σ := C.Construct(A, t1, y). Ignore if

σ = ⊥ or σ.payer ̸= A. Send (instance-registered, id, pid, νP )
≤t1+∆
↪→ Q,

goto step 5.

– If (instance-register, id, pid, νQ, ˆversion, ŝQ, ŝP )
t1←↩ Q, ignore if some sig-

nature is not valid except ˆversion = −1. Else set ν̃ := version > ˆversion ? νP :
νQ. Set ΓP (id).pspace(pid) := ν̃. Send (instance-registered, id, pid, ν̃)
≤t1+∆
↪→ Q and goto step 5.

4. Send (instance-registered, id, pid, νP )
≤t0+3∆
↪→ Q and goto step 5. (This cap-

tures the situation when honest P completes the registration alone).
5. Mark (id, pid) as register in ΓP

aux.

P is corrupt and Q is honest

Upon (instance-construct, id, C, y, z, A, sA)
t0←↩ P , ignore if Γ (id) = ⊥ or P /∈

Γ (id).endusers. Let pid := (id, C,A, y, z). Ignore if (id, pid) is marked as registered
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in ΓQ
aux. Let σ := C.Construct(A, t0, y). Ignore if σ = ⊥ or σ.payer ̸= A. Then

distinguish the following two situations:

– If ΓQ(id).pspace(pid) ̸= ⊥: let ν := ΓQ(id).pspace(pid). Send

(instance-registered, id, pid, ν)
≤t0+2∆
↪→ P . Mark (id, pid) as registered in ΓQ

aux.
– If ΓQ(id).pspace(pid) = ⊥: let ν := ⊥ and set ν.code := C, ν.storage := σ. Set

ΓQ(id).pspace(pid) := ν, Γ (id).pspace(pid) := ν, mark (id, pid) as registered in

ΓQ
aux. Send (instance-registered, id, pid, ν)

≤t0+2∆
↪→ P .

Upon (instance-register, id, pid, ν, version, sP , sQ)
t0←↩ P , ignore if Γ (id) = ⊥ or

P /∈ Γ (id).endusers or version = −1 or at least one signature is not valid or (id, pid)
is marked as registered in ΓQ

aux. Let ν
Q := ΓQ(id).pspace(pid) and fetch versionQ of

(id, pid) from ΓQ
aux. Set ν̃ := version > versionQ ? ν : νQ. Mark (id, pid) as registered

in ΓQ
aux. Set Γ

Q(id).pspace(pid) := ν̃. Send (instance-registered, id, pid, ν̃)
≤t0+2∆
↪→

P .

Simulator Sim: Create an initial promise instance

Denote FPPC := F L̂(∆)
PPC .

P is honest and Q is corrupt

Upon (create, id, C||y, z)
t0←↩ FPPC:

1. Compute pid := (id, C, P, y, z). Let ν := ⊥, compute σ := C.Construct(P, t0, y).
Set ν.code := C and ν.storage := σ.

2. Compute sP := SignskP
(id, C, y, z, P ).

3. Set ΓP (id).pspace(pid) := ν and set ΓP
aux(id, pid) := (⊥,⊥, 0).

4. Send (create-instance, id, C, y, z, sP ) ↪→ Q on behalf of P .

P is corrupt and Q is honest

Upon (create-instance, id, C, y, z, sP )
t0←↩ P :

1. Stop if one of the following conditions holds: ΓQ(id) = ⊥; P /∈ ΓQ(id).endusers;
ΓQ(id).pspace(pid) ̸= ⊥. Else let γ := ΓQ(id).

2. Let pid := (id, C, P, y, z). Let σ := C.Construct(P, t0, y). Stop if σ = ⊥. Let
ν := ⊥. Set ν.code := C and ν.storage := σ. Stop if VfypkP

(id, C, y, z, P ; sP ) ̸= 1.

3. Set ΓQ(id).pspace(pid) := ν and set ΓQ
aux(id, pid) := (⊥,⊥, 0). Send (create, id,

C||y, z)
t0
↪→ FPPC on behalf of P .

Simulator Sim: Promise instance execution

Denote FPPC := F L̂(∆)
PPC (PS).

P is honest and Q is corrupt
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Upon (execute, id, pid, f, z)
t0←↩ FPPC, let γP := ΓP (id), νP := γP .pspace(pid), σP

:= νP .storage, fetch (·, ·, versionP ) := ΓP
aux(id, pid):

1. Stop if γP = ⊥ or νP = ⊥ or P /∈ γP .endusers or f /∈ γP .code.
2. Set t1 := t0 + x, where x is the smallest offset such that t1 ≡ 1(mod 4) if

P = γP .Alice and t1 ≡ 3(mod 4) if P = γP .Bob.
3. If (id, pid) is not marked as registered in ΓP

aux:

(a) Compute (σ̃,m) := fG,γP

(σP , P, t0, z). Stop if m = ⊥. Otherwise, set
˜version := versionP + 1. Let ν̃ := ⊥. Set ν̃.code := CP and ν̃.storage := σ̃.

Compute sP := SignskP
(id, pid, ν̃, ˜version). Send (peaceful-request, id, pid,

f, z, sP , t0)
t1+1
↪→ Q.

(b) If (peaceful-confirm, id, pid, sQ)
t1+1
←↩ Q such that VfypkQ

(id, pid, ν̃, ˜version)

= 1, then set ΓP
aux(id, pid) := (sP , sQ, ˜version) and instruct the FPPC to

(keep the promise offchain) execute at time t0 and output at time t1 + 2
and stop.

(c) Execute sub-simulator SimRegister(P, id, pid′) for all pid′ (in parallel, end
at round t2 ≤ t0 + 5 + 3∆). If ΓP

aux(id).pspace(pid) = ν̃ (Q registered the
latest state), instruct the FPPC to (make the promise onchain) execute at
time t0 and output at time t2 and stop.

(d) Let t3 be the current round. Instruct the FPPC to (make the promise on-
chain) execute at time t3 and output according to the delay. Get (executed,

id, pid, P, f, t, z, ν)
t4≤t3+∆
←↩ FPPC. Send (executed-onchain, id, pid, P, f, t, z,

ν)
t4
↪→ Q. Stop.

4. If (id, pid) is marked as registered in ΓP
aux:

(a) (The promise is already onchain.) Instruct the FPPC to execute at time t1
and output according to the onchain delay. Get (executed, id, pid, P, f, t, z, ν)
t5≤t1+∆
←↩ FPPC. Send (executed-onchain, id, pid, P, f, t, z, ν)

t5
↪→ Q.

P is corrupt and Q is honest

Upon (peaceful-request, id, pid, f, z, sP , t0)
t1←↩ P :

1. Stop if ΓQ(id) = ⊥, else let γQ := ΓQ(id). Stop if Q /∈ γQ.endusers or
P /∈ γQ.endusers or γQ(pid) = ⊥ or (id, pid) is marked as registered, else
let νQ := γQ.pspace(pid). Stop if f /∈ νQ.code, else let CQ := νQ.code and
σQ := νQ.storage. Let (·, ·, versionQ) := ΓQ

aux(id, pid).
2. Stop if “P = γQ.Alice and t1 ̸≡ 1(mod 4)” or “P = γQ.Bob and t1 ̸≡ 3(mod 4)”.
3. Stop if t0 /∈ [t1 − 3, t1].
4. Stop if (id, pid) is marked as registered, else do:

(a) Compute (σ̃,m) := fG,γQ

(σQ, P, t0, z). Stop if m = ⊥.
(b) Set ˜version := versionQ+1. Let ν̃ := ⊥. Set ν̃.code := CQ and ν̃.storage := σ̃.
(c) If VfypkP

(id, pid, ν̃, ˜version; sP ) ̸= 1, then stop.

(d) Compute sQ := SignskQ
(id, pid, ν̃, ˜version). Send (peaceful-confirm, id, pid,

sQ)
t1+1
↪→ P . Set ΓQ(id). pspace(pid) := ν̃, ΓQ

aux(id, pid) := (sQ, sP , ˜version).
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(e) Send (execute, id, pid, f, z)
t1
↪→ FPPC and instruct FPPC to execute at time

t0 and output at time t1 + 1.

Upon (instance-execute, id, pid, f, z)
t2←↩ P :

1. Stop if ΓQ(id) = ⊥, else let γQ := ΓQ(id). Stop if Q /∈ γQ.endusers or P /∈
γQ.endusers or γQ.pspace(pid) = ⊥, else let νQ := γQ.pspace(pid). Stop if f /∈
νQ.code, else let CQ := νQ.code and σQ := νQ.storage. Let (·, ·, versionQ) :=
ΓQ
aux(id, pid). Stop if (id, pid) is not marked as registered.

2. Send (execute, id, pid, f, z)
t2
↪→ FPPC and instruct FPPC to execute at time t2

and output according to the onchain delay. Get (executed, id, pid, P, f, t2, z, ν)
t3≤t2+∆
←↩ FPPC. Send (executed-onchain, id, pid, P, f, t2, z, ν)

t3
↪→ P .

Simulator Sim: Close a programmable payment channel

Denote FPPC := F L̂(∆)
PPC .

P is honest and Q is corrupt

Upon (close, P, id)
t0←↩ FPPC:

1. Stop if id is marked as closed. Otherwise, mark id as closed.
2. Stop if ΓP (id) = ⊥, else let γP := ΓP (id). For each γP .pspace(pid) ̸= ⊥

and (id, pid) is not marked as registered in ΓP
aux, execute (in parallel) sub-

simulator SimRegister(P, id, pid) immediately. This execution will be finished in
3∆ rounds. Within another ∆ rounds (set as real), send (contract-closing, id)
t1≤t0+4∆

↪→ Q.
3. Execute sub-simulator SimRegister(Q, id, pid) if there exists some pid registered

by Q. This will be finished in 3∆ rounds.
4. At round t2 ≤ t0 + 7∆, instruct FPPC to set the first waiting time till t2.
5. Wait for γP .duration rounds. Within ∆ rounds, send (contract-close, id)

t3≤t0+8∆+γP .duration
↪→ Q and instruct FPPC to send messages at round t3.

P is corrupt and Q is honest

1. Execute sub-simulator SimRegister(P, id, pid) if there exists some pid registered
by P at round t0.

2. If (contract-close, id)
t1≤t0+2∆
←↩ P after the registration, send (close, id)

t1
↪→

FPPC on behalf of P .
3. Stop if id is marked as closed. Otherwise, mark id as closed.
4. Within ∆ rounds, for each γQ.pspace(pid) ̸= ⊥ and (id, pid) is not marked

as registered in ΓQ
aux, execute (in parallel) sub-simulator SimRegister(Q, id, pid)

immediately. This execution will be finished in 3∆ rounds (or at t2 ≤ t1 + 3∆
round).
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5. Wait for γQ.duration rounds. Within ∆ rounds, send (contract-close, id)
t3≤t0+8∆+γQ.duration

↪→ P and instruct FPPC to send messages at round t3.

I Protocol ΠSC

Protocol ΠSC: Implement state channel in the F L̂(∆)
PPC -hybrid

Denote FPPC := F L̂(∆)
PPC .

State channel opening

Open a programmable payment channel between two parties.

Covenant creation

Party A upon (create, id, C||y, z)
t0←↩ E

1. Let σ′ := C.Construct(t0, y). Using σ′ to construct associated promise code

CB→A, then calculate pid := (id, CB→A,⊥, z). Send (create, id, CA→B ||pid, ·)
t0
↪→

FPPC.

Party B upon (create, id, C||y, z)
t0←↩ E

2. Let σ′ := C.Construct(t0, y). Using σ′ to construct associated promise code
CB→A, then calculate pid := (id, CB→A,⊥, z). Upon receiving

(instance-created, id, pid′, ν)
t0+1
←↩ FPPC where pid′ = (id, CA→B , A, pid, ·) and

ν is the valid CA→B , send (create, id, CB→A, z)
t0+1
↪→ FPPC.

3. Upon receiving (instance-created, id, pid′′, ν)
t0+2
←↩ FPPC where

pid′′ = (id, CB→A, B,⊥, z) and ν is the valid CB→A, send

(execute, id, pid′′,Enable, ·)
t0+2
↪→ FPPC.

4. Upon receiving (executed, · · · )
t0+2<t1≤t0+4∆+7

←↩ FPPC which indicates that the
promise related to CB→A is enabled. Let cid := (id, C, y, z) and save

ΨB(cid) := (pid′′, pid′). Output (instance-created, id, cid, ν)
t1
↪→ B where

ν.code := C and ν.storage := σ′.

Back to party A

5. Upon receiving (executed, · · · )
t0+2<t1≤t0+4∆+7

←↩ FPPC which indicates that the
promise related to CB→A is enabled. Let CA→B is saved in pid′ and CB→A is
saved in pid′′. Let cid := (id, C, y, z) and save ΨA(cid) := (pid′′, pid′). Output

(instance-created, id, cid, ν)
t1
↪→ A where ν.code := C and ν.storage := σ′.

Covenant execution
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Party T upon (execute, id, cid, f, z)
t0←↩ E

1. Fetch (pid′′, pid′) := ΨT (cid). Send (execute, id, pid′′, f, z)
t0
↪→ FPPC. Within 4∆+

5 rounds, output accordingly.

State channel closure

Party T upon (close, id)
t0←↩ E

1. Wait for γ.duration rounds.

2. Fetch (in parallel) each (pid′′, pid′) := ΨT (·). Send (execute, id, pid′′,Finalize, z)
t0
↪→

FPPC and (execute, id, pid′,Finalize, z)
t0
↪→ FPPC. This will be finished within

4∆+ 5.

Close the programmable payment channel between two parties.

J Protocol Analysis

Recall that our compiler takes advantage of the following two features provided
by promises.

– Promises in the same channel can read each other.
– A promise instance (even one that has not been deployed) is uniquely identi-

fiable (recall this is because promises are deployed to a deterministic address
thanks to the CREATE2 opcode), and hence one promise can refer to func-
tions defined in other future promises.

Consider a covenant code as C := (Λ,Construct, f1, · · · , fs) where Alice
(denoted by A) wants to start a covenant instance (with Bob, denoted by B)
created via call to Construct with auxiliary inputs y at time t0. As mentioned
in the overview, our compiler (see Figure 8) will compile this contract code into
two promise codes, one from A to B, and one from B to A. All the logic will be
wrapped into the promise from B to A. The construction of the promise code
from Bob to Alice, defined as CB→A := (·,Construct, f1, · · · , fs,Enable,Finalize),
is shown in Figure 8a. The construction of the promise code from Alice to Bob,
defined as CA→B := (·,Construct1,Finalize), is shown in Figure 8b. We discuss
some crucial points:

– The constructor function of CB→A uses σ′ as a white-box, where σ′ can be
computed by both parties using y and t0. More importantly, the address of
CB→A can be fixed by two parties using the same z (identical inputs from E).
To create a covenant, the protocol starts by constructing these two promises
in FPPC (2 rounds in total).

– Informally, CB→A is not valid when constructed, but can become valid before
some expiry time by invoking the function Enable. This is crucial because we
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want to the bound the rounds needed to create a covenant. Recall in FSC, even
a malicious Bob can only create a covenant instance within 4∆+7 rounds (and
he cannot create it after this). Without this, once Alice sends her promise, a
malicious Bob can create this covenant at any time later. Thus, the final step
to create a covenant is to call Enable by Bob via FPPC. Note that a malicious
player can only delay this execution by at most 4∆ + 5 rounds. The overall
creation uses at most 4∆+ 7 rounds, so it is well-simulated.

– The two-party contract can be executed in the same way one would execute
CB→A (created in FPPC) since we directly clone f1, · · · , fs. Thus, the round
delay stays identical.

– CA→B trivially programs a payment from Alice to Bob while reading the state
of corresponding CB→A. However, we need to move resolveA and resolveB
into resolve of two promises. We achieve this by another execution of function
Finalize at the beginning of the closure. This incurs another γ.duration+4∆+5
rounds delay. The overall closure uses at most 2γ.duration+12∆+5 rounds.

K Rock-Paper-Scissors Application

Rock-Paper-Scissors Promise

Init(amt′, C′
1, C

′
2, receiver

′, expiry′):

1. Set (amt, C1, C2, receiver, expiry)← (amt′, C′
1, C

′
2, receiver

′, expiry′);

2. Set (revealed1, revealed2)← (F, F), and (ch1, ch2)← (⊥,⊥).
Reveal(i,m, r):

1. Require i ∈ {1, 2}, now < expiry and Hash(m, r) = Ci;

2. Revert if i = 1 and revealed2 = F;

3. If revealedi = F, set revealedi ← T, chi ← m, and expiry← expiry + ∆;

Resolve():

1. Return amt if
– revealed1 ∧ revealed2 ∧ didReceiverWin(ch1, ch2), or:

– revealedreceiver = T and revealed3−receiver = F.

2. Return 0.

Fig. 13: Rock-Paper-Scissors Promise

Rock-Paper-Scissors. Next, we show that two promises can be used to im-
plement two-party contracts where both parties provide money. See Figure 13
for an implementation of a promise that can be used by two parties to deposit
amt coins to play a game of rock-paper-scissors such that the winner of the con-
test will get the counterparty’s deposit. In the offchain protocol, first party A
sends commitment C1 to party B. Next, party B sends the promise in Figure 13
with receiver′ = 1 (denoting A as the receiver) along with the commitment C1

from A and its own commitment C2 hardcoded in the constructor with an extra
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requirement : C1 can only be revealed after C2 is revealed. This extra require-
ment ensures A will send the promise as follows. Upon receiving the promise
offchain from B with the correct C1 value hardcoded in it, party A sends a
promise in Figure 13 with receiver′ = 2 (denoting B as the receiver) along with
the commitments C1 and C2. As before, parties will abort the offchain protocol
if the commitment hardcoded in the promises are inconsistent with what they
expect. If the commitments are consistent, then the parties go ahead and reveal
the openings of the commitments offchain (B first, and then A) and expect to
receive updated receipts reflecting the outcome of the game. Now if the winner
does not get the correct receipt (before expiry), then it can deploy the promise
from the loser, onchain, and then open its commitment on the onchain promise.
This process will ultimately ensure that the onchain promise will get the winning
amount. On the other hand, a malicious loser may deploy the winner promise
onchain and submit its opening. Here, note that the expiry time is increased
by an additional ∆ rounds, so that the winner has sufficient time to submit its
opening, and ensures that its promise resolves to zero.12

Indeed, the above rock-paper-scissors protocol is ad-hoc and application-
specific. To see why it is secure, we discuss some critical points:

1. After B sends the promise to A, we require B to open his commitment first.
This is because if A can open her commitment, a malicious A can directly
open it on the promise from B without making a promise to B. In this case,
A will not pay B even if she loses since there is no promise from A to B.

2. A and B will abort if they do not see their commitments in the incoming
promises. E.g., if B receives a promise where a malicious A changes C1 or
C2, he can abort. Similarly, if a malicious B sets C2 = C1

13, A can abort.
3. Anyone can open the commitment as long as it is opened correctly. For

example, as long as B opens his commitment in one promise, even if he does
not open it on another promise, A can open it as she learns the answer from
B, or in the public blockchain.

We emphasize that our generic compiler (see Section 4) can directly compile out
a Rock-Paper-Scissors without performing the above tedious design and analy-
sis. More importantly, our experiment shows that the compiled version is more
efficient, in particular, requires less gas fee (see Section 3.6).

12 Increasing the expiry time is just a simple technique that works in this setting. More
generally, one would use the acknowledgments of the most recent offchain state like
we used in the reverse HTLC example.

13 Indeed, this is harmless as this will result in a draw.
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Disclaimer

Case studies, comparisons, statistics, research and recommendations are provided
“AS IS” and intended for informational purposes only and should not be relied
upon for operational, marketing, legal, technical, tax, financial or other advice.
Visa Inc. neither makes any warranty or representation as to the completeness
or accuracy of the information within this document, nor assumes any liability or
responsibility that may result from reliance on such information. The information
contained herein is not intended as investment or legal advice, and readers are
encouraged to seek the advice of a competent professional where such advice is
required. All trademarks are the property of their respective owners, are used for
identification purposes only, and do not necessarily imply product endorsement
or affiliation with Visa.

These materials and best practice recommendations are provided for informa-
tional purposes only and should not be relied upon for marketing, legal, regula-
tory or other advice. Recommended marketing materials should be independently
evaluated in light of your specific business needs and any applicable laws and
regulations. Visa is not responsible for your use of the marketing materials, best
practice recommendations, or other information, including errors of any kind,
contained in this document.
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