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Abstract. The LWE problem is one of the prime candidates for building
the most efficient post-quantum secure public key cryptosystems. Many
of those schemes, like Kyber, Dilithium or those belonging to the NTRU-
family, such as NTRU-HPS, -HRSS, BLISS or GLP, make use of small
max norm keys to enhance efficiency. The presumably best attack on these
schemes is a hybrid attack, which combines combinatorial techniques
and lattice reduction. While lattice reduction is not known to be able to
exploit the small max norm choices, May recently showed (Crypto 2021)
that such choices allow for more efficient combinatorial attacks.
However, these combinatorial attacks suffer enormous memory require-
ments, which render them inefficient in realistic attack scenarios and,
hence, make their general consideration when assessing security question-
able. Therefore, more memory-efficient substitutes for these algorithms
are needed. In this work, we provide new combinatorial algorithms for
recovering small max norm LWE secrets using only a polynomial amount
of memory. We provide analyses of our algorithms for secret key distri-
butions of current NTRU, Kyber and Dilithium variants, showing that
our new approach outperforms previous memory-efficient algorithms. For
instance, considering uniformly random ternary secrets of length n we
improve the best known time complexity for polynomial memory algo-
rithms from 21.063n down-to 20.926n. We obtain even larger gains for LWE
secrets in {−m, . . . ,m}n with m = 2, 3 as found in Kyber and Dilithium.
For example, for uniformly random keys in {−2, . . . , 2}n as is the case
for Dilithium we improve the previously best time from 21.742n down-to
21.282n.
Our fastest algorithm incorporates various different algorithmic tech-
niques, but at its heart lies a nested collision search procedure inspired
by the Nested-Rho technique from Dinur, Dunkelman, Keller and Shamir
(Crypto 2016). Additionally, we heavily exploit the representation tech-
nique originally introduced in the subset sum context to make our nested
approach efficient.
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1 Introduction

The Learning with Errors (LWE) problem is one of the most promising candidates
for post-quantum cryptographic constructions. Given a matrix A ∈ Zn×n

q and
a vector b = As− e ∈ Zn

q , where e is a short error vector, the problem asks to
recover the secret vector s. The LWE problem is known to be as hard as some
worst case lattice problems, which made it an attractive choice as foundation for
several efficient cryptographic systems [6, 9, 21,29,34,36,37]. The most efficient
of these schemes rely on ring variants of LWE, which exploit the algebraic
structure of the underlying rings to represent the matrix A [9,30]. Further, some
schemes restrict the error term e, as well as the vector s, to vectors with small
max norm [6, 14, 23, 28]. Crystals-Kyber [9], which was recently announced to
be standardised by NIST, for example, samples key and error from a centered
binomial distribution, which in turn results in small max norm key and error of
norm 2 or 3. NTRU-type schemes go even further and choose ternary secrets with
coefficients in {0,±1}, i.e., with max norm 1. Usually, these are efficiency driven
decisions, whose security argument is based on the lack of faster algorithms to
solve these variants, since lattice reduction is not known to be able to exploit
small max norm. However, the best attack on ternary LWE keys is considered
to be a combination of combinatorial attacks and lattice reduction, known as
the hybrid attack introduced by Howgrave-Graham [26]. Internally, this attack
balances the complexity of an involved meet-in-the-middle and a lattice reduction
step. Therefore, progress on combinatorial attacks has a strong potential to affect
parameter selection for those schemes. Putting the focus on the NTRU-family
of schemes and its variants we concentrate in this work on LWE with ternary
secrets. However, our attacks also translate well to higher max norm variants as
we showcase by an application to LWE keys as found in Kyber and Dilithium
(see Section 6).

Intuitively, it is clear that small max norm keys with reduced search space of
size D allow for faster combinatorial attacks that rely on enumerating possible
keys. However, for a long time, the best combinatorial algorithm was a basic
meet-in-the-middle attack by Odlyzko from 1996, mentioned in the original
NTRU paper [25], achieving a running time of D0.5. Recently, May [31] showed
how to adapt advanced techniques from solving the subset sum problem to the
small max norm LWE setting. This results in significant improvements of the
running time to approximately D0.25 for ternary LWE keys.

However, the biggest obstacle of all combinatorial approaches, including the
results by May and its recent adaptation to the cases of Kyber and Dilithium [22],
is their huge memory complexity, which is as high as their time complexity. Even
if such large amounts of memory should be ever available, the slowdown emerging
from accessing such large-scale memories is likely to render those algorithms
inefficient.

In contrast, in this work we provide new (heuristic) algorithms for solving
the LWE problem with small max norm secrets using only polynomial memory.
Polynomial memory algorithms are of crucial importance to cryptanalysis for
multiple reasons. On the one hand, they allow for very efficient implementations on
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inherently memory constrained platforms such as FPGAs or even more commonly
used GPUs [5, 15, 32, 33]. Practical record computations, therefore, often start
from a low-memory algorithm, with only polynomial memory requirement, which
is then supported by the available memory if possible [10,18,38]. Further, aiming
at near- to mid-term quantum cryptanalytic implementations, the focus has to
be on low-memory algorithms.

Our algorithms almost achieve the same running time as Odlyzko’s meet-in-
the-middle, i.e., D0.5, while in contrast only using a negligible amount of memory.
Our fastest construction is based on a variety of different techniques, but at its
heart lies a nested collision search procedure inspired by the nested rho technique
from [13], which is also the foundation of the fastest (heuristic) polynomial
space algorithm for subset sum [17]. Our analyses, thereby, rely only on mild
heuristics, which are frequently applied and experimentally verified in the context
of collision search and the representation technique. Asymptotically our approach
outperforms pure lattice enumeration, which has also only polynomial space
requirements, but comes at a running time of 2cn logn, where c is a constant and
n the LWE dimension [3,20]. In contrast our algorithms’ running times are single
exponential in the LWE dimension, i.e., of the form 2c

′n for a constant c′. Further,
we significantly improve the constant c′ in comparison to previously suggested
memoryless algorithms based on conventional collision search techniques, such
as [31,39].

With respect to concrete, currently proposed parameters, pure combinatorial
attacks, such as Odlyzko’s, May’s and ours, are quite far from competing against
pure lattice strategies.3 Hence, our attacks, analogous to those of May [31], do
not invalidate security claims of currently suggested parameters as we improve
primarily on the memory complexity. However, advances on those attacks, on
one hand, strengthen our understanding of the hardness of those problems by
providing clean combinatorial upper bounds; especially they clarify the effect
of the sparsity of the secret, heavily exploited by those strategies, showing that
overly sparse choices might lead to unwanted drops in security. Furthermore
and probably most importantly, combinatorial attacks have a huge potential
to improve the Hybrid attack by replacing Odlyzko’s meet-in-the-middle with
faster routines, such as, May’s [31], or more memory-efficient strategies, such as
ours. However, replacing Odlyzko’s is not possible in a plug-and-play manner as
detailed and posed as an open question in [31]. Since then the problem has been
actively investigated by multiple recent works [7, 24], and once a clear consensus
is reached, we also expect practical implications of our attacks.

Our Contribution We first revisit basic collision search techniques for solving
the ternary LWE problem introduced by van Vredendaal [39] and recently refined
by May [31] to set the baseline for our new algorithmic improvements. In this
context, as a small initial contribution, we provide a single framework from which

3 Best runtime results from May [31] are slightly less than the square of current lattice
complexities.
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the algorithms of [39] as well as all variations given in [31] can be obtained as
different instantiations.

We then introduce our novel nested collision search algorithm that leads to
significant runtime improvements over previous approaches. In terms of the search
space size D our nested algorithm applied to ternary LWE achieves approximately
a running time of D0.55, which is just slightly higher than the running time of
Odlyzko’s meet-in-the-middle but reduces the memory from D0.5 to a negligible
amount. In comparison, the polynomial memory technique of van Vredendaal
obtains a running time of D0.75, while May obtains roughly D0.65.4 For keys
following distributions as in Kyber, we get even closer to meet-in-the-middle’s
running time by reaching D0.513 and D0.508 respectively. We illustrate the running
time exponent of our algorithm on ternary LWE in comparison to van Vredendaal
and May as a function of the Hamming weight w of the solution in Fig. 1. We
observe that our technique outperforms both previous methods for all choices of
the weight. Furthermore, in contrast to May’s method, our technique follows the
natural behavior of a reduced time complexity for high weights, i.e., when the
search space starts decreasing again.
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Fig. 1: Runtime exponents c as a function of the relative weight w/n for different
polynomial memory algorithms and Odlyzko’s MitM, with memory equal to time.
The running time is of the form T = 2cn+o(n).

On the technical side, we employ multiple techniques to make the nested
approach functional and efficient. Methods based on conventional collision search
rely on Odlyzko’s hash function to eliminate e from the LWE identity. This
gives an exact identity which can then be formulated as collision search problem.
However, while the solution forms a collision between the defined functions by

4 Since May’s algorithm performance is worse towards high weights, we considered for
this comparison only weights w/n ≤ 2

3
.
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construction, not necessarily every collision leads to the solution. Therefore, the
collision search needs to be re-applied an exponential number of times until a
collision is found that gives rise to the solution.

In a nutshell, we replace the iterative application of the collision search by
another layer of collision search. While this increases the time to perform a
single (two-layer) collision search, it is compensated by eliminating the need for
multiple iterations, as a single (two-layer) collision search suffices to identify the
solution. Unfortunately, Odlyzko’s hash function is not well compatible with
our nested approach. First, it is not additive, which is crucial to enable the
nesting and its output of only n bits is not sufficient for both collision searches.
However, we circumvent this problem by adapting a guessing strategy introduced
in [31] in the context of non-polynomial space algorithms. Here, we first guess
r := n

logn coordinates of e, which can be done in subexponential time O(3r).
We then use the resulting exact identity to identify in the first layer collision
search those elements (x,y) that fulfill the LWE identity A(x + y) = b + e
on the r known coordinates. In the second layer, we may then again rely on
Odlyzko’s hash function to extract the solution, similar to the conventional
methods. Further, to make the nesting efficient, we incorporate the representation
technique from subset sum [27], which allows to increase the number of collisions
that give rise to the solution. It has previously been observed that the digit
set, i.e., the alphabet to which the coordinates of the vectors x,y belong, plays
a crucial role for the number of representations [4, 8, 31]. In this context, we
also provide the quite technical analysis for an extended digit set of {0,±1,±2},
i.e., x,y ∈ {0,±1,±2}n, to obtain further improvements. Eventually, we use
several further tricks to speed up our procedure. Therefore we embed the concept
of partial representations introduced in [11, 17] and combine it with an initial
instance permutation, similar to the one in [17]. Further, we borrow techniques
from decoding random linear codes [35] (Information Set Decoding) to obtain
improvements, especially in the case of uniform random ternary secrets.

Eventually, we extend all our results to the cases of Kyber and Dilithium
involving digit sets of {−3, . . . , 3}. For a better comparison, we also extend the
results from May, which were originally only provided for ternary keys.

Further, we extend our results to a small (but exponential) memory setting
by introducing a Parallel Collision Search (PCS) based time-memory trade-off.
This reflects the practical scenario where even low memory devices provide a
certain (small) amount of memory.

Heuristic assumptions. When applied to random LWE instances our algorithms
rely only on standard assumptions in the context of collision search and represen-
tation based algorithms, which have been extensively verified in multiple prior
works [13, 17, 18, 27]. However, we also provide experimental data that verify
those assumptions in our precise setting in Appendix C.

An application of our results to structured LWE instances, as found in
Kyber, Dilithium or NTRU, further requires the assumption that the introduced
structure does not affect the behavior of our algorithms. Note that this assumption
is common in the analysis of combinatorial algorithms in the LWE context

5



[22, 31] and was recently made more explicit by Glaser-May [22]. Also, a similar
assumption is required in the related code-based setting when applying such
algorithms to structured candidates like BIKE or HQC, which has held true in
extensive practical experiments [18,19].

Source Code. The source code of all our implementations is available at https:
//github.com/arindamIITM/Small-LWE-Keys.

Outline. In Section 2 we give basic notations and definitions including the
formalization of the ternary LWE problem and we recall standard techniques
for collision search. Subsequently, in Section 3 we give a framework for methods
solving LWE via conventional collision search from which we derive the algorithms
of van Vredendaal and May. We give our main result, the nested-collision technique
together with several improvements in Section 4. In Section 5 we conclude the
ternary analysis with a detailed comparison of our new method and previous
approaches, while in Section 6 we provide runtime results of our attacks applied
to Kyber and Dilithium keys. Eventually, we present a time-memory trade-off
for small but exponential amounts of memory in Section 7.

2 Preliminaries

We denote vectors as bold lower case and matrices as bold upper case letters.
For a vector x and an integer ℓ we denote by πℓ(x) := (x1, . . . , xℓ) the canonical
projection to the first ℓ coordinates of x. For a vector s ∈ Zn

q its Hamming weight
or just weight is defined as the number of non-zero coordinates of s.

2.1 Complexity Statements

For complexity statements we use standard Landau notation, where Õ-notation
suppresses polylogarithmic factors. In this context, we frequently use the well
known approximation for multinomial coefficients that can be derived from
Stirling’s formula (

n

k1n, . . . , kpn

)
= Õ

(
2H(k1,...,kp)n

)
, (1)

where H denotes the Shannon entropy function H(k1, . . . , kp) = −
∑p

1 ki log2(ki)
with

∑p
1 ki = 1. Since kp is fully determined by the remaining ki’s we define the

following notation
(

n
k1n,...,kp−1n,·

)
:=
(

n
k1n,...,kpn

)
.

2.2 LWE and Ternary Vectors

In this work, we focus on LWE instances with max norm one, i.e., ternary secrets
and errors. However, in principle our techniques extend to any constant max
norm, as we show by application to LWE with secrets in {−m, . . . ,m}n for
m = 2, 3 in Section 6.

6

https://github.com/arindamIITM/Small-LWE-Keys
https://github.com/arindamIITM/Small-LWE-Keys


Definition 2.1 (Ternary LWE problem). Let n ∈ N and q = poly(n). Given
a matrix A ∈ Zn×n

q , a vector b ∈ Zn
q and an integer w the ternary LWE problem

asks to find a vector s ∈ {−1, 0, 1}n of weight w satisfying the LWE identity
As = b+ e mod q, where e ∈ {−1, 0, 1}n is an arbitrary ternary vector.

Motivated by cryptographic constructions our definition covers only square
matrices A, even though our results extend well to the non-square case. Further,
we restrict the modulus q = poly(n) which is proven to be a hard regime and
larger choices might allow for faster attacks [2].

In our analysis we assume all entries of the matrix A are drawn independently
and uniformly at random from Zq. Note that, apart from ring LWE instantiations
this is generally the case and we do not exploit the ring structure in our attacks.
Moreover, we only consider the case of balanced weight-w solutions, i.e., solutions
with the same amount of w/2 entries equal to 1 and w/2 entries equal to −1. Most
NTRU-type instantiations, such as NTRU, GLP, and BLISS, use balanced weight
secrets by default. But even if the proportion of ones and minus ones should be
unknown, our attacks can easily be generalized by iterating our procedures for
each possible proportion. For constant max norm secrets this results at most in
a polynomial overhead. In this context, we denote the set of ternary vectors of
length n and balanced weight w as τn(w/2), that is,

τn(w/2) = {s ∈ {0,±1}n : s has w/2 many 1-entries ∧ w/2 many (−1)-entries}.

Odlyzko’s Hash Function In the context of the LWE problem, Odlyzko made
use of a locality sensitive hash function that eliminates the unknown ternary
vector e from the LWE identity. For a vector x ∈ Zn

q the hash function maps
each coordinate xi ∈ {−⌊q/2⌋, . . . , 0, . . . , ⌊q/2⌋} to its sign. More precisely let
us define h : Zn

q → {0, 1}n in the following way. For x ∈ Zn
q we coordinate-wise

assign the binary hash label h(x)i where,

h(x)i =

{
0, if xi < 0
1, if xi ≥ 0

Note that, as long as e does not cause the signs of both sides of the LWE identity
to diverge we have h(As) = h(b). Such a divergence can only happen if there
are coordinates equal to −1 or ⌊q/2⌋ present in As or b, which are called edge
cases. Therefore, split the ternary e = e1 − e2 with ei ∈ {0, 1}n and rewrite the
LWE identity as As+ e2 = b+ e1. Now the addition of ei can only cause a sign
flip for the mentioned edge cases of −1 or ⌊q/2⌋ coordinates.

2.3 Collision Search

Let f : S → S be any random function on S. Then a collision in f defines a tuple
(y1, y2) ∈ S2 with f(y1) = f(y2). Such a collision can be found using O(

√
|S|)

evaluations of f and polynomial memory. The standard technique is to create a
chain of invocations of the function f from a random starting point x. That is
iterating f(x), f2(x), f3(x), . . ., until a repetition occurs, which is found via a
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cycle detection algorithm. Let fk(x) be the first repeated value in the chain and
let fk+l(x) be its second appearance (compare to Fig. 2). We denote the output
of a collision finding algorithm on f with starting point x as Rho(f, x) which
gives the colliding inputs. More precisely,

Rho(f, x) = (fk−1(x), fk+l−1(x)).

x

z1
z2 · · · zk−1

zk

zk+1

zk+2

zk+3

. . .

zk+l−1

Fig. 2: Application of Rho - function for f with starting point x. f i(x) is denoted
by zi.

The technique also extends to finding collisions between two different functions,
i.e., two random functions f1 : S → S and f2 : S → S. Therefore we define
another function F : S → S as

F (x) =

{
f1(x), if g(x) = 0
f2(x), if g(x) = 1

where g : S → {0, 1} is a random function. Now we search for collisions in F
using the previously discussed method. A collision (y1, y2) in F , i.e., F (y1) =
F (y2), yields a collision between f1 and f2 iff g(y1) ̸= g(y2), which happens with
probability 1

2 . In case of g(y1) = g(y2), one might (deterministically) change the
starting point and reapply the procedure. Since, in expectation, this results only
in a constant factor overhead, we conveniently write Rho(f1, f2, x) to denote the
collision (y1, y2) between f1 and f2 reachable from starting point x still using
O(
√

|S|) evaluations of the function F .
Note that several starting points x might lead to the same collision (y1, y2), for

instance any point z1, . . . , zk−1 in Fig. 2 produces the same collision (zk−1, zk+l−1).
To obtain (heuristic) independence between different calls to the Rho function
we introduce randomizations of the functions called flavors.

Definition 2.2 (Flavour of a function). Let f : S → S be a function and
Pt : S → S be a family of bijective functions indexed by t ∈ N. Then the tth

flavour of f is defined as
f [t](x) := Pt(f(x)).

A collision (y1, y2) in f [t] satisfies

f [t](y1) = f [t](y2) ⇔ Pt(f(y1)) = Pt(f(y1)) ⇔ f(y1) = f(y2).
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Hence, (y1, y2) is a collision in f itself. When searching for collisions in randomly
flavored functions, i.e., for random choices of t, we (heuristically) assume that
different invocations of the Rho-function produce independent and uniformly
at random drawn collisions form the set of all collisions. This is a standard
assumption in the context of collision search [4,13,17] which has been verified
experimentally multiple times [13,17] in different settings.

3 Solving LWE via Collision Search

For didactic reasons and to set the baseline for our improvements, let us start by
recalling the memory-less attacks given by van Vredendaal [39] and more recently
by May [31] which are based on conventional collision search.

Let us first give a general framework for this kind of attack, which later allows
to instantiate the different algorithms. Recall the LWE identity

As = b+ e mod q, (2)

where A,b are known. We split s = s1 + s2 in the sum of two addends, where
si ∈ Ti.5 Further, we define the two functions fi : Ti → {0, 1}ℓ, i = 1, 2 where

f1 : x 7→ πℓ

(
h(Ax)

)
and f2 : x 7→ πℓ

(
h(b−Ax)

)
.

Hence, the functions output the first ℓ bits of Odlyzko’s hash function applied to
the respective input. Note that, as long as we restrict to no edge cases regarding
the hash function h (see Section 2), any tuple (s1, s2) that sums to s forms a
collision between the functions f1 and f2. The algorithms now search for collisions
in f1, f2 until they find a collision (x,y) for which A(x+ y)− b and x+ y are
both ternary, and then outputs s = x+ y.

Remark 3.1 (Hashing back to the range). Technically, for a collision search pro-
cedure as outlined in Section 2 to work, the used functions need to have same
domain and range, as they are iteratively applied to their own output. However,
for simplicity of notation, we only ensure that domain and range have the same
size in all our algorithms. Prior to applying the functions to their own output,
one would apply a bijective mapping from the range to the domain, i.e., here
from {0, 1}ℓ to Ti.

Correctness of Algorithm 1. To ensure that our functions have domain and range
of same size we choose ℓ := log |T1| and guarantee |T1| = |T2| by our later choice
of T1, T2.

Note that for any s1, s2 that sums to s we have f1(s1) = f2(s2), as long as
there is no edge case among the lower ℓ coordinates of As1 and b−As2, i.e. an
Zq coordinate equal to ⌊q/2⌋ or −1. In [39] it was shown, that the probability
of no edge case occurring for such a pair is constant. Therefore as long as

5 The precise choice of Ti depends on the specific instantiation and is described later.
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Algorithm 1: Collision-Search

Input: (A,b) ∈ Zn×n
q × Zn

q , positive integer w ≤ n
Output: s ∈ τn(w/2) such that e = As− b mod q ∈ {−1, 0, 1}n

1 ℓ := log |T1|
2 repeat
3 choose random flavour for f1, f2

4 choose random starting point v ∈ {0, 1}ℓ
5 (z1, z2)← Rho(f1, f2,v)

6 until z1 + z2 ∈ τn(w/2) ∧A(z1 + z2)− b ∈ {−1, 0, 1}n
7 return s = z1 + z2

the function domains include at least a single representation of s, i.e., a pair
(s1, s2) ∈ T1 × T2 with s = s1 + s2, there is a collision that leads to the solution
with constant probability. Now, by the standard assumption that the collisions
sampled by the algorithm for different function flavors are independent and
uniform, the algorithm is able to find this collision and hence, succeeds with
constant probability.

Complexity of Algorithm 1. If f1, f2 behave like random functions, we expect
that there exists a total amount of

|T1| · |T2|
|{0, 1}ℓ|

=
|T1|2

|T1|
= |T1|

collisions, between them, since ℓ := log |T1| and |T1| = |T2|. Further, we know

that finding one of these collisions takes time Õ
(√

|T1|
)
. If now there exist R

representations of s, i.e., pairs (s1, s2) ∈ T1 × T2 that sum to s, we expect that

after finding |T1|
R collisions, we found one that is a representation of s. Finding

these |T1|
R collisions takes expected time

T = Õ
(
|T1|/R ·

√
|T1|
)
= Õ

(
|T1|3/2/R

)
.

Remark 3.2 (Random behavior of the functions). All algorithms following this
framework are based on the heuristic assumption that the constructed functions
behave like random functions with respect to collision search and the total number
of existing collisions. This assumption has been verified experimentally various
times in different settings [1, 12,13,17,38]. We provide additional experimental
evidence for its validity in our precise setting in the full version of this work [16].

The different algorithms from [31,39] now differ in their choice of function
domains Ti.
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Van Vredendaal’s Instantiation Van Vredendaal [39] chooses a meet in the
middle split of s, i.e.,

T1 := {(x, 0n/2) | x ∈ τn/2(w/4)}
T2 := {(0n/2,x) | x ∈ τn/2(w/4)}.

The algorithm assumes that the −1 and 1 entries of s distribute evenly on
both sides. Note that if this is not the case one might re-randomize the initial
instance by permuting columns of A, as AP, with solution P−1s, where P is
a permutation matrix. The expected amount of random permutations until we
obtain the desired weight distribution is(

n
w/2,w/2,·

)
(

n/2
w/4,w/4,·

)2 = poly(n),

which vanishes in our asymptotic notation. For evenly distributed s and this
specific choice of domains Ti, we have clearly only one representation (s1, s2) ∈
T1 × T2 of s, i.e., R = 1. Since the domain size is determined as

|T1| = O
(

n/2

w/4, w/4, ·

)
the time complexity of Algorithm 1 for van Vredendaal’s choice of domains
becomes

Tv-V = Õ
(
|T1|3/2/R

)
= Õ

((
n/2

w/4, w/4, ·

)3/2
)

= Õ
(
23H(ω/2,ω/2,·)n/4

)
,

where ω := w/n.

May’s Instantiations May gives three different instantiations for Ti, called
Rep-0, Rep-1 and Rep-2. For all choices the weight of the vectors distributes
over the full n coordinates. The difference then lies in the precise choice of weight
and the digit set. Let us start with the most simple Rep-0 variant.

Rep-0 Instantiation. Here the domains are chosen as

T1 = T2 := τn(w/4),

which results in a domain size of

|Ti| = O
(

n

w/4, w/4, ·

)
.

Note that when representing s = s1 + s2 with si ∈ Ti, we can obtain a 1 (resp. a
−1) coordinate only as 1 + 0 or 0 + 1 (resp. −1 + 0 or 0− 1), while a 0 only as
0 + 0. Therefore the number of representations amounts to

R =

(
w/2

w/4

)2

.
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as we can freely choose w/4 out of w/2 of the ones to be represented as 1 + 0
while the rest is represented as 0 + 1 (and analogously for the −1’s).

The time complexity is then given as

TRep-0 = Õ
(
|Ti|3/2/R

)
= Õ

(
2

(
3H(ω/4,ω/4,·)/2−ω

)
n

)
,

where again ω := w/n.

Rep-1 Instantiation The Rep-1 instantiation increases the weight of the vectors
to w/2 + 2d for some small d, that has to be optimized, i.e.,

T1 = T2 := τn(w/4 + d).

Similar to before we have

|Ti| = O
(

n

w/4 + d,w/4 + d, ·

)
.

The benefit of the increased weight lies in an increased number of representa-
tions. As now it is possible to represent a zero coordinate in s = s1 + s2 not only
as 0 + 0 but also via −1 + 1 and 1 + (−1). In total, this leads to

R =

(
w/2

w/4

)2(
n− w

d, d, ·

)
,

as we represent d zeros via −1 + 1, d as 1 + (−1) and n − w − 2d as 0 + 0. In
total the time complexity of this approach then becomes

TRep-1 = Õ
(
|Ti|3/2/R

)
= Õ

(
2

(
3H(ω/4+δ,ω/4+δ,·)/2−ω−(1−ω)H

(
δ/(1−ω),δ/(1−ω),·

))
n
)
,

where d = δn.

Rep-2 Instantiation In the Rep-2 instantiation May defines the vectors no longer
over {−1, 0, 1}n but over {−2,−1, 0, 1, 2}n. Again the additional −2 and 2 entries
lead to more representations. However, the analysis becomes quite technical. We
give an extended analysis of this representation approach for our nested algorithm
in Section 4.3 and an analysis of an extension to Rep-3 in the appendix. For a
complexity analysis specific to May’s instantiation we refer to [31]. In Fig. 3 we
illustrate the runtime exponents of the algorithms by May and van Vredendaal.

4 Nested Collision Search for LWE

So far the collision search algorithm solves the LWE identity only on a projection
after applying Odlyzko’s hash function. To eventually identify the solution
among all candidates that satisfy this less restrictive identity, the collision search

12
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Fig. 3: Comparison between van Vredendaal’s instantiation and May’s instantia-
tions.

procedure is repeated an exponential amount of times. In other words, a brute
force technique is applied to isolate the solution.

Our nested collision search procedure now replaces the brute force step by a
second collision search. While one might hope that a single collision (x,y) would
then suffice to solve the problem, usually x,y do not sum to a ternary vector, i.e.,
x+ y /∈ {−1, 0, 1}n. Therefore the algorithm still needs to iterate over multiple
collisions. However, as soon as x+ y ∈ {−1, 0, 1}n, it implies that s = x+ y is
the solution.

Let us start again with a general framework before discussing our concrete in-
stantiations. For the two-layer approach, we split the solution into four summands
s = s1 + s2 + s3 + s4. This implies

A(s1 + s2 + s3 + s4) = b+ e mod q

⇔ A(s1 + s2) = b−A(s3 + s4) + e mod q.

Further, for now we assume that we know the first 2ℓ coordinates of e. Then we
obtain

π2ℓ

(
A(s1 + s2)

)
= b′ − π2ℓ

(
A(s3 + s4)

)
mod q, (3)

where b′ := π2ℓ(b+e) is known. This layer-2 identity will later be used to identify
(s1, s2) and (s3, s4) among a set of candidates. Further let r := πℓ

(
A(s1 + s2)

)
be the lower ℓ coordinates of the left side of this layer-2 identity. Then we obtain
our two layer-1 identities as

πℓ(As1) = r− πℓ(As2) mod q

πℓ(As3) = πℓ(b
′)− r− πℓ(As4) mod q.

(4)

Now let us define the functions f1, f2 and f3, f4 used for collision search on
layer one, where fi : Ti → Zℓ

q as

f1, f3 : x 7→ πℓ(Ax), f2 : x 7→ r− πℓ(Ax) and f4 : x 7→ πℓ(b
′)− r− πℓ(Ax). (5)

13



Note that the value of r is not known a priori; hence the algorithm iterates
over random choices of r until it succeeds. By definition any representation
(s1, s2, s3, s4) of s with πℓ

(
A(s1 + s2)

)
= r satisfies the layer-1 (and layer-2)

identities and furthermore yields collisions in our functions fi. Namely (s1, s2)
forms a collision between the functions f1, f2, while (s3, s4) forms a collision in
f3, f4. While not every collision is a representation, we can sample candidates
for s1, s2 (resp. s3, s4) by finding collisions between f1, f2 (resp. f3, f4).

Every collision, regardless of being a representation or not, already fulfills
one of the layer-1 identities (Eq. (4)) (depending if the collision is between f1, f2
or f3, f4). Furthermore, note that any tuple (y1,y2,y3,y4) where (y1,y2) is
a collision in f1, f2 and (y3,y4) a collision in f3, f4, already fulfills the layer-
2 identity (Eq. (3)) on the lower ℓ coordinates. Therefore just consider the
summation of both layer-1 identities from Eq. (4).

Collision Search

f1 f2

(y1,y2)
(satisfying 1st layer-1 identity, Eq. (4))

g1

Collision Search

f3 f4

(y3,y4)
(satisfying 2nd layer-1 identity, Eq. (4))

g2

Collision Search

(y1,y2,y3,y4)
(satisfying also layer-2 identity, Eq. (3))

Fig. 4: Schematic illustration of multiple-layer collision search.

We now apply a second collision search to identify those pairs of collisions
that jointly satisfy the layer-2 identity on all 2ℓ coordinates. This process is
illustrated in Fig. 4.

Let ϑℓ : Zk
q → Zℓ

q, k ≥ 2ℓ be the projection to the coordinates of the vector
indexed by ℓ+ 1 to 2ℓ, i.e., for x = (x1, . . . , xk) we let ϑℓ(x) := (xℓ+1, . . . , x2ℓ).
Now we are ready to define the second layer functions gi : Zℓ

q → Zℓ
q, i = 1, 2. These

functions take as input a starting point of a collision search procedure between the
layer-1 functions f2i−1, f2i and compute the colliding entries y2i−1,y2i reachable
from that starting point. Finally they output the upper ℓ coordinates of the
corresponding value of the layer-2 identity for (y2i−1,y2i). More formally, we
have

g1 : x 7→ ϑℓ(A(y1 + y2)) , where (y1,y2) = Rho(f
[x]
1 , f

[x]
2 ,x) and

g2 : x 7→ ϑℓ(b
′)− ϑℓ(A(y3 + y4)), where (y3,y4) = Rho(f

[x]
3 , f

[x]
4 ,x). (6)
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Note that here we flavour the inner functions fi deterministically via the
starting point used for collision search (see Definition 2.2), similar to [13, 17].
In this way g1, g2 stay deterministic, as required for the general collision search
procedure, while we obtain (heuristic) independence of returned collisions from
the inner functions.

The general algorithm is outlined in Algorithm 2 as pseudocode and visually
illustrated in Fig. 5. The smaller Rho-structures in the figure represent the layer-1
collision search, while the layer-2 search is formed as a big Rho using multiple
layer-1 collision searches.

Algorithm 2: Nested-Collision-Search

Input: (A,b) ∈ Zn×n
q × Zn

q , positive integer w ≤ n
Output: s ∈ τn(w/2) such that e = As− b mod q ∈ {−1, 0, 1}n

1 Let fi and gj be as defined in Eqs. (5) and (6)

2 ℓ :=
logq |τn(w/2)|

2

3 repeat
4 Choose random permutation P, A′ ← AP

5 Choose e′ ∈ {−1, 0, 1}2ℓ randomly
6 b′ ← π2ℓ(b) + e′

7 Choose r, z ∈ Zℓ
q randomly

8 Define functions as in Eqs. (5) and (6) based on A′,b′ and r
9 Choose random flavour for g1, g2

10 (z1, z2) ←− Rho(g1, g2, z)
11 Compute (y1,y2) = Rho(f1, f2, z1)
12 Compute (y3,y4) = Rho(f3, f4, z2)
13 Set s′ = y1 + y2 + y3 + y4

14 until s′ ∈ τn(w/2)
15 return Ps′

4.1 Analysis of Nested Collision Search

Correctness First note the permuted instance defined by A′ = AP has solution
s′ = P−1s. Hence, once this solution is found we have to return s = Ps′.

We have already shown, that any representation (s1, s2, s3, s4) of the solution
s for the correct choice of r = πℓ

(
A(s1+s2)

)
and the correct guess for e′ = π2ℓ(e)

satisfies the layer-1 and layer-2 identities (compare to Eq. (3) and Eq. (4)).
Further, we know that such a representation forms a collision in g1, g2. Therefore
by sampling independent and uniformly random collisions between g1 and g2 we
can find s, given there exist at least one representation (which will be ensured by
the choice of Ti later). Again we obtain heuristic independence of the sampled
collisions by the choice of random flavors in each iteration.

It remains to show that after finding a collision (x1,x2) in g1, g2 for which the
value s′ = y1 + y2 + y3 + y4 ∈ τn(w/2), i.e., s′ is a ternary vector of weight w, it

15



collision in (g1, g2)

application of gi

collision in (f2i−1, f2i)

Fig. 5: Illustration of the nested collision search. Different colors identify different
function flavors. Dashed arrows indicate mapping from collisions to starting
points.

suffices to conclude that s′ is a solution. Therefore note that the expected number
of elements from τn(w/2) that fulfill the layer-2 identity is by the randomness of
A

|τn(w/2)|
q2ℓ

= 1,

since we choose ℓ =
logq |τn(w/2)|

2 . Hence, once such an element is found, we
conclude that it is s. This proves correctness under the same heuristic used by
the algorithms based on conventional collision search (see Remark 3.2).

Note that the specific choice of ℓ implies that the range of all functions is of
size qℓ =

√
|τn(w/2)|. Hence, to allow for collision search, we have to ensure

|Ti|
!
= qℓ =

√
|τn(w/2)| (7)

by our choice of function domains Ti.

Complexity For a representation (s1, s2, s3, s4) of s with si ∈ Ti let

s = s1 + s2︸ ︷︷ ︸
a1

+ s3 + s4︸ ︷︷ ︸
a2

. (8)

In our analysis we consider only those representations where ai ∈ Di for some set
Di, which we refer to as mid-level domains.6 Let us assume that there exist R2

different representations (a1, a2) ∈ D1×D2 of the solution s. Further assume that
any such a1 (analogously any such a2) has R1 representations (s1, s2) ∈ T1 × T2
(analogously (s3, s4) ∈ T3 × T4).

Consider one iteration of Algorithm 2. We denote by Er the event that there
exist a representation (a1,a2) of s for the choice of r made in line 7, i.e., a
representation with πℓ(Aa1) = r. The event of guessing π2ℓ(e) correctly we

6 The concrete choice of Di, similar to the function domains Ti, depends on the
instantiation and is specified later.
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denote by Ee. Eventually, we denote the event that the tuple (y1,y2,y3,y4)
obtained in line 11 and 12 is a representation of s by Es. Then we expect

Pr [Ee ∩ Er ∩ Es]
−1

=
(
Pr [Ee] · Pr [Er | Ee] · Pr [Es | Ee ∩ Er]

)−1

iterations of the loop until success.
The probability of guessing the correct e′ in line 5 of Algorithm 2 is qe =

3−2ℓ = 3− logq |τn(w/2)|. Since q = poly(n) and |τn(w/2)| = 2cn for some constant
c, it follows that

q3 := Pr [Ee] = 3−2ℓ = 2−Θ( n
log n ).

Further, by the randomness of A, we have

q2 := Pr [Er | Ee] =
R2

qℓ
.

Now given Ee ∩Er there exists a representation (a1, a2). As both, a1 and a2,
have R1 different representations (s1, s2) and (s3, s4), we find a total of (R1)

2

pairs of representations that together lead to a1,a2. Recall that each such pair
fulfills the layer-1 and layer-2 identities and, hence, forms a collision between the
functions g1, g2. Therefore, a random collision in the functions g1, g2 leads to s
with probability

q1 := Pr [Es | Ee ∩ Er] =
(R1)

2

qℓ
,

as by Remark 3.2 there exist a total of qℓ collisions between g1 and g2.
Eventually, the time per iteration of the loop is dominated by the collision

search between g1 and g2. This collision search requires O(q
ℓ
2 ) evaluations of

those functions. Now for each evaluation a collision search between f1, f2 (resp.

f3, f4) with time complexity Õ
(
q

ℓ
2

)
is performed. Hence the time per iteration

is Õ
(
q

ℓ
2 · q ℓ

2

)
= Õ

(
qℓ
)
.

Overall this leads to time complexity

T = (q1q2q3)
−1 · qℓ =

(
|τn(w/2)| 32
(R1)2 ·R2

)1+o(1)

=

( n
w/2,w/2,·

) 3
2

(R1)2 ·R2

1+o(1)

. (9)

Remark 4.1. Note that the heuristic specified in Remark 3.2 must fail if there
are significantly more collisions between the constructed functions than there
would be between random functions. Precisely, this is the case if (R1)

2 > qℓ, since
there are (R1)

2 collisions caused by representations in the second layer functions,
while for random functions we would expect qℓ collisions. However, we actively
prevent this due to an appropriate choice of function domains ensuring R1 < q

ℓ
2 .

A different analysis approach. Another way to derive the time complexity of
Algorithm 2 is via directly computing the probability that the sampled tuple
(y1,y2,y3,y4) sums to a ternary vector. We provide this alternative analysis in
Appendix A.
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Use of Odlyzko’s hash function. Our construction does not rely on Odlyzko’s hash
function but instead guesses 2ℓ coordinates of e to obtain an exact identity on
these coordinates. For the first layer this is necessary to ensure that any pair of
collisions between f1, f2 and f3, f4 jointly satisfy the layer-2 identity on the lower
ℓ coordinates. This is because the exact identities in contrast to Odlyzko’s hash
function are additive, i.e., adding both identities from Eq. (4) results in a valid
identity. Note that, for the second layer, we could apply Odlyzko’s hash function
rather than relying on the exact identity on the subsequent ℓ coordinates. Then
guessing ℓ rather than 2ℓ bits of e would suffice. However, as this only improves
second order terms we decided for ease of exposition to not rely on Odlyzko’s
hash function at all.

4.2 Concrete Instantiations

Next we give a first concrete instantiation for Algorithm 2, i.e., we specify the
choice of function domains Ti and the mid level domains Di. We start with a choice
of domains representing ternary vectors analogously to the Rep-1 instantiation
given in Section 3.

Nested-1 Instantiation Recall that for the nested collision search besides the
function domains Ti we have to specify the sums we aim to obtain on the middle
level, i.e., the mid-level domains Di of the ai from Eq. (8). We consider for the
Di ternary vectors of length n with balanced weight p2 := w/4 + d2, where d2 is
an optimization parameter.

The function domains Ti are then chosen as all ternary vectors of length n
and balanced weight p1 := p2/2 + d1 = w/8 + d2/2 + d1, where d1 has again to
be optimized. In summary, we have

Di := τn(p2) and Ti := τn(p1)

This gives function domains of size

|Ti| =
(

n

p1, p1, ·

)
.

Let us now determine the number of representations R1, R2. Recall that R2

is the amount of different (a1, a2) ∈ D1 ×D2 that sums to the solution s. Hence,
we have

R2 =

(
w/2

w/4

)2(
n− w

d2, d2, ·

)
,

as s ∈ τn(w/2). Furthermore, each element of a1 respectively a2 has

R1 =

(
p2

p2/2

)2(
n− 2p2
d1, d1, ·

)
representations as the sum of elements from Ti.
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Now plugging R1 and R2 into Eq. (9) gives the running time TNested-1 of this
instantiation.

To obtain the runtime exponent c in TNested-1 = 2cn, we again approximate
the involved binomial and multinomial coefficients via Eq. (1). Further we model
d1 = δ1n and d2 = δ2n for δi ∈ [0, 1]. Eventually we obtain c by minimizing over
the choice of δ1, δ2 under the constraint on the function domain’s size given in
Eq. (7). For this minimization we use a numerical optimizer provided by the scipy
python library, inspired by the code used for numerical optimization in [8]. The
code used to run the numerical optimization for all our algorithms is available at
https://github.com/arindamIITM/Small-LWE-Keys.

Remark 4.2 (Optimization Accuracy). In general these kind of numerical opti-
mizers do not guarantee to find a global minimum, but instead might return
only a local minimum or miss optimal parameters slightly. However, to increase
the confidence in the optimality of the returned value, we minimized over thou-
sands of runs of the optimizer on random starting points and multiple different
formulations of the problem, until no further improvement could be obtained.

Note that for w ≥ 0.64 even for d1 = d2 = 0, which minimizes the function
domains we have |Ti| >

√
|τn(w/2)|. Therefore we do not obtain further instanti-

ations as we can not satisfy Eq. (7). In the following, we make use of the concept
of partial representations to allow for an adaptive scaling of the function domain
size.

Nested-1+ Instantiation We now split the vectors of the domains into two
parts, a disjoint part of length (1− γ)n and a joint part of length γn (compare
to Fig. 6).
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Fig. 6: Weight distribution of function domains using partial representations.
Gray areas indicate regions of fixed balanced-ternary weight, where γ̄ := 1− γ
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Precisely, for γ ∈ [0, 1] we define the function domains Ti as

T1 = τ γ̄n/4(γ̄w/8)× 0 × 0 × 0 × τγn(p1),

T2 = 0 × τ γ̄n/4(γ̄w/8)× 0 × 0 × τγn(p1),

T3 = 0 × 0 × τ γ̄n/4(γ̄w/8)× 0 × τγn(p1),

T4 = 0 × 0 × 0 × τ γ̄n/4(γ̄w/8)× τγn(p1),

where γ̄ = 1− γ and p1 := γw/8 + d2/2 + d1. This gives function domain sizes of

|Ti| =
(

γ̄n/4

γ̄w/8, γ̄w/8, ·

)(
γn

p1, p1, ·

)
.

Analogously, to the previous instantiation we define the domains Di on the
middle level as

D1 = τ γ̄n/4(γ̄w/8)× τ γ̄n/4(γ̄w/8)× 0 × 0 × τγn(p2),

D2 = 0 × 0 × τ γ̄n/4(γ̄w/8)× τ γ̄n/4(γ̄w/8)× τγn(p2),

where p2 = γw/4 + d2.
To be able to construct the solution, we assume that on all five parts the

weight of the solution is distributed proportionally. This can be achieved by
the permutation in line 4 of Algorithm 2. Again, as for the van Vredendaal
instantiation from Section 3, this causes only a small polynomial overhead.

Observe that as before we hope that on the jointly enumerated part (now of
size γn) the vectors of weight p1 add up to weight p2. Further recall, that on the
disjoint weight part of length γ̄n = (1−γ)n we have only a single representation of
any element from (τ γ̄n(γ̄w/8))4. Hence, the number of representations is similar
as before, but takes into account the reduced length of γn, where representations
exist. For representations from the middle level we get

R2 =

(
γw/2

γw/4

)2(
γ(n− w)

d2, d2, ·

)
,

while every element on the middle level has R1 =
(

p2

p2/2

)2(γn−2p2

d1,d1,·
)
many repre-

sentations.
Similar as before we obtain the running time TNested-1+ of this instantiation

using Eq. (9). Again, we obtain the runtime exponent c by approximating the
multinomial coefficients, letting d1 = δ1n, d2 = δ2n and finally minimizing
over the choice of δ1, δ2 and γ. The obtained runtime exponents of both our
instantiations Nested-1 and Nested-1+ are given in Fig. 7 in comparison to the
exponents of van Vredendaal’s as well as May’s Rep-2 instantiation of the basic
collision search. We observe that Nested-1+ significantly outperforms all other
instantiations for almost all choices of the weight w. Only for a weight w close
to n, i.e. w/n close to one, van Vredendaal’s algorithm offers a slightly better
running time. In comparison to May’s representation based instantiations our

20



0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

1.2

w
n

lo
g
(T

)
n

Van Vredendaal [39]

May’s Rep-2 [31]

Nested-1

Nested-1+

Fig. 7: Runtime exponents of Nested-1 and Nested-1+ instantiations compared
to previous work.

nested approach has the natural property that for large weights, with decreased
search space size, the running time also decreases again.

We also observe that Nested-1+ not only extends Nested-1 to weights
w/n > 0.64, it also offers runtime improvements in the regime w/n ≥ 0.44.
This value of w/n = 0.44 marks the point from where the γ-parameter of the
Nested-1+ instantiation is chosen smaller than one to fulfill the correctness
constraint from Eq. (7). The ability to control the domain sizes by γ instead
of having to decrease the representation parameters d1 and d2 results in the
superiority of Nested-1+ over Nested-1 in this regime.

4.3 Exploiting the Permutation

Next, we show how to improve the algorithm by aiming at a non-proportional
weight distribution induced by the permutation. Then we give two further
instantiations for the function domains one based on Rep-1-like representations
and one exploiting the Rep-2 concept.

Recall that by our choice of function domains (see Eq. (7)), as soon as we find
a collision between the second-layer functions gi, that leads to an s′ ∈ τn(w/2)
it implies that s′ is a solution. In our previous instantiation Nested-1+, we
introduced a disjoint weight part, which automatically leads to elements of the
desired form on a (1− γ) fraction of the coordinates. In other words a collision
between g1 and g2 leading to an s′ /∈ τn(w/2) is always caused by the coordinates
in the jointly enumerated part not adding up as desired.

The idea is now to exploit the permutation to distribute a higher fraction of
the weight on the disjoint part in the solution P−1s of the permuted instance.
Since, in turn the decreased weight on the joint part increases the probability
that elements add up to ternary vectors, as desired.
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More precisely, instead of obtaining the proportional ternary weight of γw on
the γn-part and (1− γ)w/4 in each of the four disjoint parts we aim at weight
βγw on the joint part and (1− βγ)w/4 on the disjoint parts for some positive

β ∈ [w−(1−γ)n
γw , 1]. The lower bound on β just ensures that the length of the

disjoint parts is larger or equal to the weight, i.e., (1 − βγ)w/4 ≤ (1 − γ)n/4.
Note that once we assume the solution s′ = P−1s to the permuted instance in
this form, the search space changes from τn(w/2) to

D :=
(
τ γ̄n/4

(
(1− βγ)w/8

))4
× τγn(βγw/2),

where γ̄ := 1− γ. This means the size of the search space reduces to

|D| =
(

γ̄n/4

(1− γβ)w/8, (1− γβ)w/8, ·

)4(
γn

βγw/2, βγw/2, ·

)
.

In turn the expected amount of elements from D that satisfy the second-layer

identity Eq. (3) is |D|
q2ℓ

. Hence, to guarantee that there exists only one such element

in expectation we have to choose ℓ =
logq |D|

2 . In other words, the constraint from
Eq. (7) now changes to

|Ti|
!
=
√
|D|. (10)

While the analysis from Section 4.1 in principle still holds, we need to account
for the probability of the weight being distributed as desired. Note that this
probability can be expressed as

q4 := Pr[P−1s ∈ D] =
|D|

|τn(w/2)|
.

Hence, in total the algorithm needs to be iterated q−1
4 times more often. Together

with the changed value of ℓ we obtain (compare to Eq. (9))

T = (q1q2q3q4)
−1qℓ =

(
|D| 12 · |τn(w/2)|

(R1)2R2

)1+o(1)

. (11)

Nested-1∗ Instantiation Let us first consider an instantiation using again the
Rep-1 concept for representations. We now choose according to the changed
weight distribution adapted function domains as shown in Fig. 8.

More formally, we let

T1 = τ γ̄n/4(αw/8)× 0 × 0 × 0 × τγn(p1),

T2 = 0 × τ γ̄n/4(αw/8)× 0 × 0 × τγn(p1),

T3 = 0 × 0 × τ γ̄n/4(αw/8)× 0 × τγn(p1),

T4 = 0 × 0 × 0 × τ γ̄n/4(αw/8)× τγn(p1),
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Fig. 8: Weight distribution of function domains for Nested-1∗ instantiation.
Gray regions are of fixed balanced-ternary weight, with α := 1− βγ

where γ̄ := 1−γ, α := (1−βγ) and p1 := βγw/8+d2/2+d1. This gives function
domain sizes of

|Ti| =
(

γ̄n/4

αw/8, αw/8, ·

)(
γn

p1, p1, ·

)
.

Accordingly, we adjust the mid-level domains to

D1 = τ γ̄n/4(αw/8)× τ γ̄n/4(αw/8)× 0 × 0 × τγn(p2),

D2 = 0 × 0 × τ γ̄n/4(αw/8)× τ γ̄n/4(αw/8)× τγn(p2),

with p2 := βγw/4 + d2 In turn this leads to an amount of

R2 =

(
βγw/2

βγw/4

)2(
γ(n− βw)

d2, d2, ·

)
,

representations of the solution as sum of elements from D1, D2. Furthermore,
every element from D1 (resp. D2) as sum of elements from T1, T2 (resp. T3, T4)
has

R1 =

(
p2
p2/2

)2(
γn− 2p2
d1, d1, ·

)
representations.

We now obtain the running time T ∗
Nested-1 via Eq. (11). As before we ap-

proximate the multinomial coefficients via Eq. (1) and perform a numerical
optimization to obtain the runtime exponent c in T ∗

Nested-1 = 2cn. Here, we
minimize c over the choice of β, γ, δ1 and δ2, where d1 = δ1n and d2 = δ2n, while
ensuring the constraint given in Eq. (10).

Nested-2∗ Instantiation Eventually, we provide an instantiation using Rep-2
like representations, i.e., function and mid level domains whose vectors have
coordinates in {−2,−1, 0, 1, 2} (see Fig. 9). This increases the number of rep-
resentations at the cost of quite technical analysis. While in principle it is
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possible to extend the digit set further, previous results on subset sum [8]
and LWE [31] indicate that the runtime quickly converges. For the formal def-
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Fig. 9: Weight distribution of function domains for Nested-2∗ instantiation.
Gray regions with single numbers indicate parts with fixed balanced-ternary
weight, where α := 1− βγ. Gray parts with two numbers n1, n2 contain n1 1s,
n1 −1s, n2 2s, n2 −2s and rest zeros.

inition of our function domains, let us first extend the definition of τn(·) to
τn2 (a, b) := {x ∈ {±2,±1, 0}n : |x|1 = |x|−1 = a ∧ |x|2 = |x|−2 = b}, where
|x|i := |{j | xj = i}|.

The function domains are then defined as

T1 = τ γ̄n/4(αw/8)× 0 × 0 × 0 × τγn2 (n1, n2),

T2 = 0 × τ γ̄n/4(αw/8)× 0 × 0 × τγn2 (n1, n2),

T3 = 0 × 0 × τ γ̄n/4(αw/8)× 0 × τγn2 (n1, n2),

T4 = 0 × 0 × 0 × τ γ̄n/4(αw/8)× τγn2 (n1, n2),

where γ̄ := 1− γ and α := (1− βγ), while we derive the precise form of n1 and
n2 later. This gives function domain sizes of

|Ti| =
(

γ̄n/4

αw/8, αw/8, ·

)(
γn

n1, n1, n2, n2, ·

)
.

Accordingly, we adjust the mid-level domains to

D1 = τ γ̄n/4(αw/8)× τ γ̄n/4(αw/8)× 0 × 0 × τγn
2 (nmid

1 , nmid
2 ),

D2 = 0 × 0 × τ γ̄n/4(αw/8)× τ γ̄n/4(αw/8)× τγn
2 (nmid

1 , nmid
2 ),

while again we postpone determining nmid
1 , nmid

2 to the analysis of the number
of representations.

Let us start by determining the number of representations of the ternary
weight-ω solution s as sum of elements from D1,D2. Recall that we only have
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representations on the last γn coordinates, where we assume s to have weight
ŵ := γβw. To represent a −1, 0 or 1 of the solution we have the following
possibilities

0 : 0 + 0︸ ︷︷ ︸
mmid

, 1− 1︸ ︷︷ ︸
zmid
1

, −1 + 1︸ ︷︷ ︸
zmid
1

, 2− 2︸ ︷︷ ︸
zmid
2

, −2 + 2︸ ︷︷ ︸
zmid
2

,

1 : 1 + 0︸ ︷︷ ︸
ŵ
4 −omid

, 0 + 1︸ ︷︷ ︸
ŵ
4 −omid

, 2− 1︸ ︷︷ ︸
omid

, −1 + 2︸ ︷︷ ︸
omid

,

−1 : −1 + 0︸ ︷︷ ︸
ŵ
4 −omid

, 0− 1︸ ︷︷ ︸
ŵ
4 −omid

, −2 + 1︸ ︷︷ ︸
omid

, 1− 2︸ ︷︷ ︸
omid

,

(12)

where we letmmid := γn−ŵ−2zmid
1 −2zmid

2 . The number below the corresponding
representation denotes how often we expect this representation to appear among
all representations of −1, 0 and 1 coordinates. Therefore note that as required
the total number of 1 and −1 entries, i.e., the sum over the number of the
corresponding row, adds up to ŵ/2 and the number of 0 entries to γn− ŵ. After
we have specified how often the respective events occur, we can directly derive
the number of representations as

R2 =

(
γn− ŵ

mmid, zmid
1 , zmid

1 , zmid
2 , zmid

2

)(
ŵ/2

ŵ/4− omid, ŵ/4− omid, omid, omid

)2

,

where the first factor counts the possibilities to represent 0s and the second those
to represent ±1s. Now a simple counting argument yields the previously omitted
number of coordinates equal to ±1s and ±2s in the mid level domains as7

nmid
1 = zmid

1 + ŵ/4− omid + omid = ŵ/4 + zmid
1 and nmid

2 = zmid
2 + omid,

where zmid
1 , zmid

2 and omid are subject to optimization. Note that for γ = β = 1
we obtain as a special case the necessary representation formula for the Rep-2
instantiation of May, which we omitted previously (see Section 3).

Next let us determine the number of representations of any element from the
mid-level domains Di as sum of elements from the function domains Ti. Therefore
let us again specify the number of representations, which is similar to before, but

7 We have to count the appearances of 1 (resp. 2) entries on the left (or right) of the
possible representations given in Eq. (12)
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we additionally get multiple possibilities to represent 2 and −2 entries

0 : 0 + 0︸ ︷︷ ︸
m

, 1− 1︸ ︷︷ ︸
z1

, −1 + 1︸ ︷︷ ︸
z1

, 2− 2︸ ︷︷ ︸
z2

, −2 + 2︸ ︷︷ ︸
z2

,

1 : 1 + 0︸ ︷︷ ︸
nmid
1
2 −o

, 0 + 1︸ ︷︷ ︸
nmid
1
2 −o

, 2− 1︸ ︷︷ ︸
o

, −1 + 2︸ ︷︷ ︸
o

,

−1 : −1 + 0︸ ︷︷ ︸
nmid
1
2 −o

, 0− 1︸ ︷︷ ︸
nmid
1
2 −o

, −2 + 1︸ ︷︷ ︸
o

, 1− 2︸ ︷︷ ︸
o

,

2 : 2 + 0︸ ︷︷ ︸
nmid
2 −t

2

, 0 + 2︸ ︷︷ ︸
nmid
2 −t

2

, 1 + 1︸ ︷︷ ︸
t

,

−2 : −2 + 0︸ ︷︷ ︸
nmid
2 −t

2

, 0− 2︸ ︷︷ ︸
nmid
2 −t

2

, −1− 1︸ ︷︷ ︸
t

,

where m := γn − 2(nmid
1 + nmid

2 + z1 + z2), and again z1, z2, o and t denote
optimization parameters for the number of zeros, ones and twos represented via
the respective combinations. Observe that again the number of total represented
1s (resp. −1s) add to nmid

1 , the number of 2s (resp. −2s) to nmid
2 and the number

of 0s to γn− 2(nmid
1 + nmid

2 ) as required for mid-level elements. From here we
can derive the number of representations as

R1 =

(
γn− 2(nmid

1 + nmid
2 )

m, z1, z1, z2, z2

)(
nmid
1

nmid
1

2 − o,
nmid
1

2 − o, o, o

)2(
nmid
2

nmid
2 −t
2 ,

nmid
2 −t
2 , t

)2

,

where the first term counts the representations of 0, the second those of ±1
and the last those of ±2 coordinates. As before, a counting argument yields the
necessary number of ±1 and ±2 coordinates in the function domains as

n1 = z1 +
nmid
1

2
− o+ o+ t = z1 + t+

nmid
1

2
and n2 = z2 + o+

nmid
2 − t

2
.

Now that we determined the number of representations R1 and R2 we ob-
tain the running time TNested-2∗ of this instantiation using Eq. (11). In our
numerical optimization of the running time we optimize over the choice of
z̃1, z̃2, õ, t̃, z̃

mid
1 , z̃mid

2 , õmid, t̃mid, γ and β, where for integer optimization parame-
ters χ we let χ = χ̃n with χ ∈ [0, 1].

We illustrate the optimized runtime exponents of our Nested-1∗ and
Nested-2∗ instantiations in comparison to our previous Nested-1+ instan-
tiation in Fig. 10 on the left. We observe improvements especially for high
weights. However, we also obtain improvements for smaller weights. In the same
figure on the right, we illustrate the exponent difference between Nested-1∗ and
Nested-1+ as well as between Nested-1∗ and Nested-2∗. For Nested-1∗ we
observe improvements starting from w/n ≥ 0.44, which marks the point where
we have γ < 1. Since the improvement of Nested-1∗ stems entirely from using

26



0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

w
n

lo
g
(T

)
n

Nested-1+

Nested-1∗

Nested-2∗

0 0.2 0.4 0.6 0.8 1

0

0.02

0.04

0.06

w
n

ru
n
ti
m
e
ex
p
o
n
en

t
d
iff
er
en

ce

imp. of Nested-1∗ over Nested-1+

imp. of Nested-2∗ over Nested-1∗

Fig. 10: On the left: Runtime exponents of Nested-1+, Nested-1∗ and
Nested-2∗. On the right: Improvement in the runtime exponent (log TA −
log TB)/n of B = Nested-1∗ over A = Nested-1+ (dash dotted line) and the
improvement of B = Nested-2∗ over A = Nested-1∗ (solid line).

the permutation to shift more weight to the disjoint part of size (1 − γ)n, we
expect no improvement as long as γ = 1. We also observe that for w/n = 1 both
instantiations Nested-1+ and Nested-1∗ converge to the same running time,
resulting in a difference of zero. On the other hand, Nested-2∗ obtains further
improvements over Nested-1∗ for all choices of the weight w, with higher gains
towards larger values of w. The gain in this case stems entirely from adding the
±2 to the representations and is therefore not bound to parameterizations with
γ < 1.

4.4 An Improvement for Uniform Secrets

We conclude this section by outlining a (small) improvement for a weight close
to w/n = 2/3, i.e. around the weight of uniform ternary secrets. The idea is
to apply an initial permutation to redistribute the weight on (e, s), similar to
Information Set Decoding (ISD) techniques [35]. Therefore we rewrite the LWE
identity As = b+ e as

(I | A)(−e, s) = b,

where I is the n×n identity matrix. Now applying a permutation to the columns
of (I | A) yields

(I | A)P
(
P−1(−e, s)

)
= H(−e′, s′) = b,

where (−e′, s′) := P−1(−e, s). Further multiplying both sides of the equation
with an invertible matrix Q, such that QH = (I | A′) and defining b′ := Qb
yields

A′s′ = b′ + e′.

Now, assume that the permutation distributes a balanced weight of w−p on s′ and
accordingly a balanced weight of 2n/3+p on e′, since e is usually a uniform ternary
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vector. Then we expect Algorithm 2 to perform faster on the reduced weight
instance (A′,b′) than on the initial instance (A,b) as its running time (compare
to Eq. (11)) depends only on the weight of s but not on the weight of e. On the

downside we need to reapply the algorithm P =
( 2n

n
3

+w
2

, n
3

+w
2

,·)

( n
w−p

2
,
w−p

2
,·)(

n
n
3

+
p
2
, n
3

+
p
2
,·)

times

on random permutations of the instance to expect the weight to be distributed
as desired for one of the instances. The running time is then given as P · Tw−p,
where Tw−p is the same as T in Eq. (11) but for w − p instead of w. In the
uniform secret case of w/n = 2/3 this yields a (slight) improvement from 20.93n

down-to 20.926n for our Nested-2∗ instantiation. Note that if w is small the
secret s′ after the permutation is expected to have weight w′ > w, which is why
we do not obtain improvements in this regime.

5 Complexity of Solving Ternary LWE Without Memory

Eventually, let us give a concluding comparison between the best instantiations of
the basic collision search by van Vredendaal (v-V) and May (Rep-2) and our best
Nested-2∗ instantiation of the nested collision search approach. We illustrate

w/n v-V Rep-2 Nested-2∗

0.300 0.8860 0.7716 0.6482
0.375 0.9971 0.8573 0.7272
0.441 1.0732 0.9172 0.7928
0.500 1.1250 0.9620 0.8425
0.621 1.1837 1.0376 0.9140
0.668 1.1887 1.0632 0.9262

Table 1: Runtime exponents for nested collision search (including improvement
from Section 4.4) in comparison to conventional collision search approaches.

the runtime exponents of all these algorithms on the left of Fig. 11. Observe
that our Nested-2∗ algorithm yields the best running time for all choices of the
weight w. Moreover the improvement in the exponent compared to the minimum
of v-V and Rep-2 reaches as high as 0.2 for a weight of w = 0.81n. While the
most interesting weights are usually smaller than that, note that we also obtain
significant improvements for all cryptographically relevant weights. For instance
for a weight of w = 0.667n, which models the uniform secret case we obtain a
significant improvement by a factor larger than 20.13n. Table 1 shows the runtime
exponent of all three methods for various weights used in schemes belonging to
the NTRU-family. The exponent improvement of our Nested-2∗ for all weights
w/n compared to the best previous approach is illustrated on the right of Fig. 11.
As comparison the graphic shows the runtime improvement of May over van
Vredendaal. Note that for w ≥ 0.82 May does not obtain any improvement over
van Vredendaal.

28



0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

1.2

w
n

lo
g
(T

)
n

Van Vredendaal

May’s Rep-2

Nested-2∗

0 0.2 0.4 0.6 0.8 1

0

0.05

0.1

0.15

0.2

w
n

ru
n
ti
m
e
ex
p
o
n
en

t
d
iff
er
en

ce

imp. of Rep-2 over v-V

imp. of Nested-2∗ over Rep-2 / v-V

Fig. 11: On the left: Runtime exponents of van Vredendaal’s, May’s and our
nested approach. Improvement close to uniform case (Section 4.4) illustrated as
orange dotted line. On the right: Improvement in the runtime exponent of May’s
Rep-2 over van Vredendaal (dashed line) and of Nested-2∗ over the minimum
of van Vredendaal’s and May’s algorithms (solid line).

6 Extending Results to Kyber and Dilithium

In the following, we extend our results as well as the results from May and van
Vredendaal to the cases of Kyber and Dilithium, which also rely on the hardness
of LWE with small max norm keys. We recall that this extension requires the
heuristic assumption that the introduced structure does not affect our analysis.

More precisely, Kyber uses keys sampled from a centered binomial distribution
B(η) with parameter η ∈ {2, 3}, resulting in keys s ∈ {−η, . . . , η}. Dilithium
keys have coordinates uniformly distributed over {±2,±1, 0}, which we denote
by U(2), implying keys s ∈ {−2, . . . , 2}.

Key-Dist. v-V Rep-3 Nested-3∗

U(1) 1.1888 1.0625 0.9297
U(2) 1.7415 1.4601 1.2815
U(3) 1.9698 1.7323 1.5049

B(1) 1.1250 0.9620 0.8427
B(2) 1.5230 1.2118 1.0404
B(3) 1.7501 1.3585 1.1838

Table 2: Runtime exponents for nested collision instantiations and conventional
collision search approaches with different key distributions.

We give in Table 2 the runtime exponents on Kyber and Dilithium key
distributions of Algorithm 1 using the van-Vredendaal instantiations (v-V) as
well as using Rep-3 representations, i.e., we represent the solution s = s1 + s2
with si ∈ {±3,±2,±1, 0}. Additionally, we state the runtime exponent of our
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nested collision search, Algorithm 2, using a Nested-3∗ instantiation, which is
the same as Nested-2∗, but extending function domains by ±3. We also provide
data for the U(1),U(3) and B(1) distributions to indicate the scaling.

Additionally we provide in Table 3 the running time exponent c in dependence
on the search space, i.e., the running time is of the form T = Dc with D the size
of the search space. We observe that for both distributions the attacks become
more efficient for increasing η, indicated by the decreasing value of c. This is
related to the representation method, which overcompensates the increase in
domain size by the increasing number of representations. Note that this indicates
that with respect to combinatorial approaches increasing η will not result in
significantly increased security.

Our attacks are especially efficient on the centered binomial distributions
used in Kyber, where they reach almost the meet-in-the-middle exponent c =
0.5. However, for Dilithium like distributions (U(2)) we also obtain a notable
improvement down to a constant of c = 0.552. We provide all details on the

Key-Dist. v-V Rep-3 Nested-3∗

U(1) 0.75 0.6704 0.5866
U(2) 0.75 0.6289 0.5519
U(3) 0.75 0.6171 0.5361

B(1) 0.75 0.6414 0.5619
B(2) 0.75 0.5968 0.5124
B(3) 0.75 0.5832 0.5074

Table 3: Runtime exponents c = logD T for nested collision instantiations and
conventional collision search approaches with different key distributions in de-
pendence on the search space size D.

analysis in Appendix B.

7 Time-Memory Trade-Off using PCS

So far, all our attacks can be instantiated with a polynomial amount of memory.
However, in a realistic attack scenario even low memory devices such as FPGAs
or GPUs still have a small amount of memory available. In the following we show
how to apply the time-memory trade-off technique known as Parallel Collision
Search (PCS) [38] to our construction to further speed up our algorithms by the
use of small but exponential amounts of memory.

Theorem 7.1 (Parallel Collision Search, [38]). Let f1, f2 : S → S be two
independent random functions. Then Parallel Collision Search finds M collisions
between f1 and f2 using on expectation Õ

(
(M · |S|)1/2

)
function evaluations and

Õ (M) units of memory.
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Recall that, to succeed Algorithm 2 has to find multiple collisions between g1
and g2, namely on expectation C := (q1q2q3)

−1 many (compare to Eq. (9)). So far,
those collisions are found by iterative applications of the collision search technique.
We now use the PCS technique to find M collisions at once by increasing the
memory usage of the algorithm to Õ (M).

However, such a straightforward application of the PCS technique is not
sufficient to achieve meaningful trade-offs for reasonable amounts of memory.
This is because the amount of needed collisions C is an upper bound for the
maximum memory that can be spend and usually C is quite small for optimal
instantiations. In order to obtain instantiations leveraging more memory, we adapt
the time complexity to incorporate the PCS speedup and perform a numerical
re-optimization of the running time. This allows for a choice of instantiations with
larger C that in turn enables to fully leverage the available memory. However,
once C becomes maximal no further speedups by increasing the memory are
possible. Table 4 provides a comparison of the running time using polynomial
memory and the running time using the maximal amount of memory that can
be leveraged.

w/n time at poly. memory best time required memory

0.300 0.6482 0.6204 0.06
0.375 0.7272 0.6974 0.07
0.441 0.7928 0.7569 0.09
0.500 0.8425 0.8017 0.11
0.621 0.9140 0.8669 0.15
0.668 0.9262 0.8824 0.17

Table 4: Runtime and memory exponents for time-memory trade-offs in compari-
son to polynomial memory algorithm Nested-2∗.

Note that there also exist instantiations for any memory smaller than the
maximal memory given in the table. We provide the full trade-off curves in
Appendix D.
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Appendix

A Different Analysis of Algorithm 2

Another way to derive the time complexity of Algorithm 2 is via directly com-
puting the probability that the sampled tuple (y1,y2,y3,y4) sums to a ternary
vector. That is

c := Pr [y1 + y2 + y3 + y4 ∈ τn(w/2)]

≥ Pr [a1 ∈ D1 ∩ a2 ∈ D2 ∩ a1 + a2 ∈ τn(w/2)]

= Pr [a1 ∈ D1]︸ ︷︷ ︸
c1

·Pr [a2 ∈ D2]︸ ︷︷ ︸
c2

·Pr [a1 + a2 ∈ τn(w/2) | ai ∈ Di]︸ ︷︷ ︸
c3

,

where the last equality follows from the fact that a1 and a2 are independent. Now
since every element from D1 has R1 representations from T1 × T2 the probability
that a random element from T1 × T2 sums to an a1 ∈ D1 is

c1 =
R1 · |D1|
|T1 × T2|

=
R1 · |D1|
|T1|2

.

By the same argument we have

c3 =
R2 · |τn(w/2)|
|D1 ×D2|

=
R2 · |τn(w/2)|

|D1|2
,

as there are R2 representations of every element from τn(w/2) as sum of elements
from D1,D2. Further since we choose function domains (and resp. mid level
domains) of same size we have c2 = c1. To be able to find the solution we still
need to guess the correct e′ = π2ℓ(e) and in every iteration we need to perform a
collision search between g1, g2, which amounts to

T =
(
(c1)

2c3 · q3
)−1 · qℓ =

( n
w/2,w/2,·

) 3
2

(R1)2 ·R2

1+o(1)

,

using the fact that |Ti| = qℓ =
√
|τn(w/2)| (compare to Eq. (7)).

B Extension to Kyber and Dilithium

For a vector s ∈ {−m, . . . ,m}n let wi = |s|i, where |s|i := |{j | sj = i}|, be the
amount of its coordinates equal to i. For a solution s ∈ {−m, . . . ,m}n the analysis
of Algorithm 1 and Algorithm 2 requires knowledge about wi for i = −m, . . . ,m.
Kyber and Dilithium sample s from some distribution D, which does not provide
direct information on wi. However, May and Glaser have recently shown how to



re-randomize keys from probabilistic distributions [22].8 Their technique allows
with subexponential overhead to fix the wi to their expectation, i.e., wi = n · pi
where pi := PrX∼D [X = i].

In our following analysis we make use of this re-randomization approach and
therefore assume that the w′

is are known. Furthermore, for all settings we have
wi = w−i.

We extend the definition of τn2 (a, b) naturally to τn3 (a, b, c), where c denotes
the amount of ±3 entries in each element v ∈ τn3 (a, b, c). To apply Algorithms 1
and 2 we now adapt the final check of the repeat loops to look for a solution
s ∈ τn3 (w1, w2, w3) rather than τn(w/2).

B.1 Analysis of Algorithm 1 using van Vredendaal instantiation

As shown in Section 3 the running time of Algorithm 1 using the van Vredendaal
instantiation is always T = D

3
4 , where D is the search space. The search space

in our case with solution s ∈ {−3, . . . , 3}n is

D = |τn3 (w1, w2, w3)| =
(

n

w1, w1, w2, w2, w3, w3, ·

)
.

B.2 Analysis of Algorithm 1 using Rep-3 representations

As before, let the number of ±1,±2,±3 entries in the final solution be w1, w2, w3

respectively. We define the function domains as τn3 (n1, n2, n3), where we determine
ni later.

Therefore the solution is constructed as a sum s = s1 + s2 with si ∈
τn3 (n1, n2, n3). Analogous to the analysis of our Nested-2∗ instantiation, we
define how often we expect each possible representation to appear in the sum

8 Their technique works whenever the secret and the error of the LWE instance
follow the same distribution and exploits a similar strategy as our uniform secret
improvement from Section 4.4.
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s = s1 + s2 as

0 : 0 + 0︸ ︷︷ ︸
m

, 1− 1︸ ︷︷ ︸
z1

, −1 + 1︸ ︷︷ ︸
z1

, 2− 2︸ ︷︷ ︸
z2

, −2 + 2︸ ︷︷ ︸
z2

, 3− 3︸ ︷︷ ︸
z3

, −3 + 3︸ ︷︷ ︸
z3

,

1 : 1 + 0︸ ︷︷ ︸
w1
2 −o1−o2

, 0 + 1︸ ︷︷ ︸
w1
2 −o1−o2

, 2− 1︸ ︷︷ ︸
o1

, −1 + 2︸ ︷︷ ︸
o1

, 3− 2︸ ︷︷ ︸
o2

, −2 + 3︸ ︷︷ ︸
o2

,

−1 : −1 + 0︸ ︷︷ ︸
w1
2 −o1−o2

, 0− 1︸ ︷︷ ︸
w1
2 −o1−o2

, −2 + 1︸ ︷︷ ︸
o1

, 1− 2︸ ︷︷ ︸
o1

, −3 + 2︸ ︷︷ ︸
o2

, 2− 3︸ ︷︷ ︸
o2

,

2 : 2 + 0︸ ︷︷ ︸
w2−t

2 −t1

, 0 + 2︸ ︷︷ ︸
w2−t

2 −t1

, 1 + 1︸ ︷︷ ︸
t

, 3− 1︸ ︷︷ ︸
t1

, −1 + 3︸ ︷︷ ︸
t1

,

−2 : −2 + 0︸ ︷︷ ︸
w2−t

2 −t1

, 0− 2︸ ︷︷ ︸
w2−t

2 −t1

, −1− 1︸ ︷︷ ︸
t

, −3 + 1︸ ︷︷ ︸
t1

, 1− 3︸ ︷︷ ︸
t1

,

3 : 3 + 0︸ ︷︷ ︸
w3
2 −r

, 0 + 3︸ ︷︷ ︸
w3
2 −r

, 2 + 1︸ ︷︷ ︸
r

, 1 + 2︸ ︷︷ ︸
r

,

−3 : −3 + 0︸ ︷︷ ︸
w3
2 −r

, 0− 3︸ ︷︷ ︸
w3
2 −r

, −2− 1︸ ︷︷ ︸
r

, −1− 2︸ ︷︷ ︸
r

,

where m := n−2(w1+w2+w3+ z1+ z2+ z3), and the z1, z2, z3, o1, o2, t, t1, r are
optimization parameters. From here we can derive the number of representations
as

R =

(
n− 2(w1 + w2 + w3)

m, z1, z1, z2, z2, z3, z3

)(
w1

w1

2 − o1 − o2,
w1

2 − o1 − o2, o1, o1, o2, o2

)2

(
w2

w2−t
2 − t1,

w2−t
2 − t1, t, t1, t1

)2(
w3

w3

2 − r, w3

2 − r, r, r

)2

,

where the first term counts the representations of 0, the second those of ±1,
the third those of ±2 and the last those of ±3 coordinates. A counting argument
yields the necessary number of 0,±1,±2 and ±3 coordinates in the function
domains as

n1 = z1 +
w1

2
− o1 − o2 + o1 + t+ t1 + r = z1 + t+ t1 + r − o2 +

w1

2

n2 = z2 + o1 + o2 +
w2 − t

2
− t1 + r

n3 = z3 + o2 + t1 +
w3

2
− r.

The function domain size constitutes as

|T | =
(

n

n1, n1, n2, n2, n3, n3, ·

)
,

while the time complexity is still given as T = Õ
(
T 3/2/R

)
(compare to Section 3).
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B.3 Analysis of Algorithm 2 using Nested-3∗ instantiation

We define the function domains analogous to the Nested-2∗ instantiation from
Section 4.3 (compare to Fig. 9). In contrast to that definition of function domains
we use vectors from τγn3 (n1, n2, n3) for the joint part, while we adapt the disjoint
part according to the respective distribution (detailed later). Again we use a
permutation to shift weight into the disjoint part of length (1 − γ)n. Let the
permutation distribute β1-fraction of the expected number of ±1s, a β2-fraction
of ±2s, and a β3-fraction of ±3s to the γn part and shift the rest into the disjoint
(1−γ)n part. Then the respective number of ±1,±2 and ±3 after the permutation
on the joint parts are ŵ1 = γβ1w1, ŵ2 = γβ2w2 and ŵ3 = γβ3w3.

Each of the four disjoint parts of length (1−γ)n/4 will then have (w1− ŵ1)/4
many 1s (resp. -1s), (w2 − ŵ2)/4 many 2s (resp. -2s), (w3 − ŵ3)/4 many 3s (resp.
-3s). Hence, the total weight in each of the four disjoint parts of length (1−γ)n/4
is

Wdisjoint =
1

4

(
2(w1 − ŵ1) + 2(w2 − ŵ2) + 2(w3 − ŵ3)

)
,

which implies Wdisjoint ≤ (1− γ)n/4.

Now we define the mid-level domains as τn3 (n
mid
1 , nmid

2 , nmid
3 ). The number

of representations of the final solution as sum of elements from the mid-level
domains can then be described in the following way.

0 : 0 + 0︸ ︷︷ ︸
mmid

, 1− 1︸ ︷︷ ︸
zmid
1

, −1 + 1︸ ︷︷ ︸
zmid
1

, 2− 2︸ ︷︷ ︸
zmid
2

, −2 + 2︸ ︷︷ ︸
zmid
2

, 3− 3︸ ︷︷ ︸
zmid
3

, −3 + 3︸ ︷︷ ︸
zmid
3

,

1 : 1 + 0︸ ︷︷ ︸
ŵ1
2 −omid

1 −omid
2

, 0 + 1︸ ︷︷ ︸
ŵ1
2 −omid

1 −omid
2

, 2− 1︸ ︷︷ ︸
omid
1

, −1 + 2︸ ︷︷ ︸
omid
1

, 3− 2︸ ︷︷ ︸
omid
2

, −2 + 3︸ ︷︷ ︸
omid
2

,

−1 : −1 + 0︸ ︷︷ ︸
ŵ1
2 −omid

1 −omid
2

, 0− 1︸ ︷︷ ︸
ŵ1
2 −omid

1 −omid
2

, −2 + 1︸ ︷︷ ︸
omid
1

, 1− 2︸ ︷︷ ︸
omid
1

, −3 + 2︸ ︷︷ ︸
omid
2

, 2− 3︸ ︷︷ ︸
omid
2

,

2 : 2 + 0︸ ︷︷ ︸
ŵ2−tmid

2 −tmid
1

, 0 + 2︸ ︷︷ ︸
ŵ2−tmid

2 −tmid
1

, 1 + 1︸ ︷︷ ︸
tmid

, 3− 1︸ ︷︷ ︸
tmid
1

, −1 + 3︸ ︷︷ ︸
tmid
1

,

−2 : −2 + 0︸ ︷︷ ︸
ŵ2−tmid

2 −tmid
1

, 0− 2︸ ︷︷ ︸
ŵ2−tmid

2 −tmid
1

, −1− 1︸ ︷︷ ︸
tmid

, −3 + 1︸ ︷︷ ︸
tmid
1

, 1− 3︸ ︷︷ ︸
tmid
1

,

3 : 3 + 0︸ ︷︷ ︸
ŵ3
2 −rmid

, 0 + 3︸ ︷︷ ︸
ŵ3
2 −rmid

, 2 + 1︸ ︷︷ ︸
rmid

, 1 + 2︸ ︷︷ ︸
rmid

,

−3 : −3 + 0︸ ︷︷ ︸
ŵ3
2 −rmid

, 0− 3︸ ︷︷ ︸
ŵ3
2 −rmid

, −2− 1︸ ︷︷ ︸
rmid

, −1− 2︸ ︷︷ ︸
rmid

,

where mmid := γn − 2(ŵ1 + ŵ2 + ŵ3 + zmid
1 + zmid

2 + zmid
3 ), and the optimiza-

tion parameters are zmid
1 , zmid

2 , zmid
3 , omid

1 , omid
2 , tmid, tmid

1 , rmid. From here we can
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derive the number of representations as

R2 =

(
γn− 2(ŵ1 + ŵ2 + ŵ3)

mmid, zmid
1 , zmid

1 , zmid
2 , zmid

2 , zmid
3 , zmid

3

)
·
(

ŵ1
ŵ1

2 − omid
1 − omid

2 , ŵ1

2 − omid
1 − omid

2 , omid
1 , omid

1 , omid
2 , omid

2

)2

·
(

ŵ2
ŵ2−tmid

2 − tmid
1 , ŵ2−tmid

2 − tmid
1 , tmid, tmid

1 , tmid
1

)2

·
(

ŵ3
ŵ3

2 − rmid, ŵ3

2 − rmid, rmid, rmid

)2

,

where the first term counts the representations of 0, the second those of ±1,
the third those of ±2 and the last those of ±3 coordinates. A counting argument
yields the necessary number of ±1, ±2 and ±3 coordinates in the γn part of the
mid level summands as

nmid
1 = zmid

1 +
ŵ1

2
− omid

1 − omid
2 + omid

1 + tmid + tmid
1 + rmid

= zmid
1 + tmid + tmid

1 + rmid − omid
2 +

ŵ1

2
,

nmid
2 = zmid

2 + omid
1 + omid

2 +
ŵ2 − tmid

2
− tmid

1 + rmid and

nmid
3 = zmid

3 + omid
2 + tmid

1 +
ŵ3

2
− rmid.

The number of representations of elements from the mid-level domains as sums
of base-level elements is described as follows.

0 : 0 + 0︸ ︷︷ ︸
m

, 1− 1︸ ︷︷ ︸
z1

, −1 + 1︸ ︷︷ ︸
z1

, 2− 2︸ ︷︷ ︸
z2

, −2 + 2︸ ︷︷ ︸
z2

, 3− 3︸ ︷︷ ︸
z3

, −3 + 3︸ ︷︷ ︸
z3

,

1 : 1 + 0︸ ︷︷ ︸
nmid
1
2 −o1−o2

, 0 + 1︸ ︷︷ ︸
nmid
1
2 −o1−o2

, 2− 1︸ ︷︷ ︸
o1

, −1 + 2︸ ︷︷ ︸
o1

, 3− 2︸ ︷︷ ︸
o2

, −2 + 3︸ ︷︷ ︸
o2

,

−1 : −1 + 0︸ ︷︷ ︸
nmid
1
2 −o1−o2

, 0− 1︸ ︷︷ ︸
nmid
1
2 −o1−o2

, −2 + 1︸ ︷︷ ︸
o1

, 1− 2︸ ︷︷ ︸
o1

, −3 + 2︸ ︷︷ ︸
o2

, 2− 3︸ ︷︷ ︸
o2

,

2 : 2 + 0︸ ︷︷ ︸
nmid
2 −t

2 −t1

, 0 + 2︸ ︷︷ ︸
nmid
2 −t

2 −t1

, 1 + 1︸ ︷︷ ︸
t

, 3− 1︸ ︷︷ ︸
t1

, −1 + 3︸ ︷︷ ︸
t1

,

−2 : −2 + 0︸ ︷︷ ︸
nmid
2 −t

2 −t1

, 0− 2︸ ︷︷ ︸
nmid
2 −t

2 −t1

, −1− 1︸ ︷︷ ︸
t

, −3 + 1︸ ︷︷ ︸
t1

, 1− 3︸ ︷︷ ︸
t1

,

3 : 3 + 0︸ ︷︷ ︸
nmid
3
2 −r

, 0 + 3︸ ︷︷ ︸
nmid
3
2 −r

, 2 + 1︸ ︷︷ ︸
r

, 1 + 2︸ ︷︷ ︸
r

,

−3 : −3 + 0︸ ︷︷ ︸
nmid
3
2 −r

, 0− 3︸ ︷︷ ︸
nmid
3
2 −r

, −2− 1︸ ︷︷ ︸
r

, −1− 2︸ ︷︷ ︸
r

,
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where m := n− 2(nmid
1 + nmid

2 + nmid
3 + z1 + z2 + z3), and the optimization

parameters are z1, z2, z3, o1, o2, t, t1, r. From here we can derive the number of
representations as

R1 =

(
γn− 2(nmid

1 + nmid
2 + nmid

3 )

m, z1, z1, z2, z2, z3, z3

)(
nmid
1

nmid
1

2 − o1 − o2,
nmid
1

2 − o1 − o2, o1, o1, o2, o2

)2

(
nmid
2

nmid
2 −t
2 − t1,

nmid
2 −t
2 − t1, t, t1, t1

)2(
nmid
3

nmid
3

2 − r,
nmid
3

2 − r, r, r

)2

,

where the first term again counts the representations of 0, the second those of
±1, the third those of ±2 and the last those of ±3 coordinates. Counting yields
the necessary number of ±1,±2 and ±3 on the base level as

n1 = z1 +
nmid
1

2
− o1 − o2 + o1 + t+ t1 + r = z1 + t+ t1 + r − o2 +

nmid
1

2
,

n2 = z2 + o1 + o2 +
nmid
2 − t

2
− t1 + r and

n3 = z3 + o2 + t1 +
nmid
3

2
− r.

The function domain size is given as

|Ti| =
(

γn

n1, n1, n2, n2, n3, n3, ·

)(
(1− γ)n/4

α1w1, α1w1, α2w2, α2w2, α3w3, α3w3, ·

)
,

where αi := (1− γβi)/4, for i = 1, 2, 3, while the search space after permutation
is of size

|D| =
(

γn

ŵ1, ŵ1, ŵ2, ŵ2, ŵ3, ŵ3, ·

)(
(1− γ)n/4

α1w1, α1w1, α2w2, α2w2, α3w3, α3w3, ·

)4

,

Hence, the probability of achieving the desired weight permutation is

q4 =
|D|

τn3 (w1, w2, w3)
.

In our numerical optimization we again ensure that |Ti| =
√
|D|, implying that

any collision that lies in D is a solution to the LWE problem. Eventually, the
time complexity is given as (compare to Eq. (11))

T = (q1q2q3q4)
−1qℓ =

(
|D| 12 · |τn3 (w1, w2, w3)|

(R1)2R2

)1+o(1)

.

C Experimental Verification of the Randomness
Assumption

In this section, we verify the heuristic assumptions on the random behavior
of the functions on which our analysis is based by small scale experiments. A
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python and a C++ implementation of the following experiments are available at
https://github.com/arindamIITM/Small-LWE-Keys.

Note that the core assumption of our analysis is that the constructed functions
behave like random functions with respect to collision search. This random
behavior is necessary as it implies multiple essential properties. First, the number
of function calls to find a collision via standard procedures is roughly

√
|D|,

where D is the function domain. Further, there exist a total of about |D| collisions
and to find one out of R distinguished collisions on average D/R collisions have
to be sampled. Clearly, those properties are not independent, as for example
the amount of total collisions clearly impacts the amount of collisions needed
to find a distinguished one. We therefore verify those properties jointly in our
experiments.

Our experiments focus on verifying the random behavior of the first layer
functions. That is the functions fi from Section 4. Recall that the second layer
functions, i.e., the functions gj , are defined on top of the first layer functions by
mapping starting points to collisions. Hence, those functions are independent of
the concrete definition of the first layer functions and their randomness translates
from the random distribution of collisions in the functions fi, which we test in
the experiments. Further, an experiment that verifies the functionality of the
nested collision search, given that the first layer functions satisfy the randomness
assumptions, is given in [17].
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Fig. 12: Number of function evaluations needed to find collisions in the first layer
functions vs. in random functions.
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For our experiments we take as function domains τn(w), i.e., length-n vectors
with w entries equal to one and w entries equal to minus one. The secret is chosen
from τn(ws). For our experiments we fix q = 16.

Finding a collision. We verify that a collision search on the functions fi does
not take more time than a collision search on random functions. Therefore, we
first fix the LWE instance and therefore the precise definition of the fi. Then, we
repeatedly search for collisions in the functions fi and keep track of the number
of function evaluations needed to find the collisions. In a next step, we repeat this
experiment but exchange the functions against a random function. Fig. 12 shows
both obtained distributions for different parameters. Despite from the obvious
visual match in distributions, we find that expectation and standard deviation
are also very close.

0 500 1,000 1,500 2,000 2,500

0

0.02

0.04

0.06

0.08

number of sampled collisions until solution found

re
la
ti
v
e
fr
eq
u
en

cy

obtained frequencies

geometric distribution

(a) n = 21, w = 4, ws = 6, sample size
3,375, σ = 258, σGeo = 259

0 1,000 2,000 3,000 4,000 5,000 6,000

0

0.02

0.04

0.06

number of sampled collisions until solution found

re
la
ti
v
e
fr
eq
u
en

cy

obtained frequencies

geometric distribution

(b) n = 32, w = 3, ws = 4, sample size
3,100, σ = 689, σGeo = 687

Fig. 13: Distribution of the amount of collision sampled before finding the solution.

Finding a distinguished collision. In a second experiment we measure the amount
of collisions we need to sample from (randomly flavoured versions of) the function
to find one of the R representations of the solution. In case the functions behave
like random functions where R out of all |D| collisions are marked as distinguished,
the amount of needed collisions to sample from the distinguished set should be
geometrically distributed with parameter p = R

|D| . We find that the amount of

collisions needed for success is indeed geometrically distributed. In Fig. 13 we
show the obtained distribution and for comparison a geometric distribution with
parameter p′, where 1/p′ is the empirical average observed in the experiment.

We further repeated this experiment multiple times for different LWE in-
stances, and for each repetition we recorded the experimentally observed param-
eter pi of the geometric distribution averaged over 30 successes. Let ℓi =

p
pi

be
the quotient of empirical and expected parameter. We would expect ℓi to be
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close to one. In Fig. 14 we plot the distribution of the ℓi observing that they are
indeed concentrated around the expected value with low variance. Moreover, the
ℓi seem to follow a log-normal distribution, which we plot for comparison.
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Fig. 14: Distribution of the ℓi for different parameter sets.

D Time-Memory Trade-Off Curves
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Fig. 15: Time-Memory Trade-Off curves for different weights. Here the memory
consumption is 2Mn+o(n).
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