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Abstract

We consider how to design an anonymous data collection protocol that enforces compliance
rules. Imagine that each client contributes multiple data items (e.g., votes, location crumbs,
or secret shares of its input) to an anonymous network, which mixes all clients’ data items so
that the receiver cannot determine which data items belong to the same user. Now, each user
must prove to an auditor that the set it contributed satisfies a compliance predicate, without
identifying which items it contributed. For example, the auditor may want to ensure that no
voter voted for the same candidate twice, or that a user’s location crumbs are not too far apart
in a given time interval.

Our main contribution is a novel anonymous, compliant data collection protocol that realizes
the above goal. In comparison with näıve approaches such as generic multi-party computation
or earlier constructions of collaborative zero-knowledge proofs, the most compelling advantage
of our approach is that each client’s communication and computation overhead do not grow
with respect to the number of clients n. In this sense, we save a factor of at least n over prior
work, which allows our technique to scale to applications with a large number of clients, such
as anonymous voting and privacy-preserving federated learning.

We first describe our protocol using generic cryptographic primitives that can be realized
from standard assumptions. We then suggest a concrete instantiation called Conan which we
implement and evaluate. In this concrete instantiation, we are willing to employ SNARKs and
the random oracle model for better practical efficiency. Notably, in this practical instantiation,
each client’s additional communication overhead (not counting the overhead of sending its data

items over the anonymous network) is only Õ(1). We evaluated our technique in various appli-
cation settings, including secure voting, and secure aggregation protocols for histogram, sum-
mation, and vector summation. Our evaluation results show that in all scenarios, each client’s
additional communication overhead is only 2.2KB or 2.6KB, depending on which SNARK im-
plementation we use. Further, each client’s computation only 0.2s - 0.5s for almost all cases,
except for the vector summation application where the data items are high-dimensional and
each client’s computation is 8.5-10.6s.

1 Introduction

Anonymous data collection [Cha88,Cha81,Abe99,DMS04,GRS99,FM02,MB09,RR98,DD08,EY09,
SSA+18,ZZZR05,SBS02,SW21] has been used in many privacy-enhancing applications. For exam-
ple, in anonymous voting [MV98] or anonymous surveys [HMPS14], users’ votes and opinions are
collected over an anonymous network. In privacy-preserving federated learning [BIK+17], the pop-
ular “shuffle model” [CJMP21,BEM+17,GDD+21,BBGN20,BBGN19,GGK+21,GMPV20,Che21,
BC19, LCC+21] anonymously collects noisy data from participating clients, such that the server
can perform statistical analysis and learning tasks without learning which client contributed what
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data. Previous works have shown that, anonymity significantly amplifies privacy in the context of
differential privacy: if we fix the amount of noise each client adds to their data, then the privacy
guarantee is proven to be much stronger if the data collection is performed anonymously rather than
in the plain model without anonymity [CJMP21,BEM+17,GDD+21,BBGN20,BBGN19,GGK+21,
GMPV20,Che21,BC19,LCC+21].

In this paper, we focus on how to check the compliance of the data contributed by anony-
mous participants. Specifically, imagine that each client i ∈ [n] submits a set of data items
{xi,1, . . . , xi,m}, and the anonymous network (also called the shuffler) randomly permutes all data
items {xi,j}i∈[n],j∈[m], and sends the unordered multiset Multiset({xi,j}i∈[n],j∈[m]) to the data collec-
tor (also called the server). The server wants to ensure that each client i’s contributions {xi,j}j∈[m]

satisfy some compliance predicate C. For example, in an anonymous voting scenario, the server
wants to check that the multiple votes cast by the same voter must vote for distinct candidates.
In a privacy-preserving federated learning scenario, we might want to check that the data items
contributed by each client satisfies some robustness condition. For example, in a multi-message
shuffle-model protocol for secure summation or frequency estimation [BBGN20,BBGN19,GGK+21,
GMPV20], each client adds noise to its input and submits secret shares of its noisy input to the
shuffler. In this case, we may want to verify that the summation of each client’s shares lies within
some appropriate range.

Enforcing compliance is challenging because the shuffler breaks linkability among the multiple
items contributed by the same client and mixes them together with all other clients’ contributions.
In particular, breaking up the linkability among the same client’s items is essential for numerous
privacy-preserving protocols [IKOS06,BBGN20,GGK+21,BBGN19]. Our goal is to check compli-
ance of each client’s contributions without breaking anonymity. This means that we cannot reveal
which data items belong to which user, or even whether two data items belong to the same user.
Henceforth, we refer to this task as an anonymous, compliant data collection protocol.

To get a better feel of this problem, it helps to consider a couple näıve solutions and see why
they do not work.

A flawed solution. A straightforward idea is the following. Suppose that the server receives
the unordered multiset Pool := Multiset( {xi,j}i∈[n],j∈[m]) from the shuffler, where {xi,j}j∈[m] are
contributions from the i-th client. Now, the server and the clients run an audit protocol: each
client i proves in zero knowledge that it knows a set of items x′i := (x′i,1, . . . , x

′
i,m) such that

1. for j ∈ [m], item x′i,j belongs to Pool, e.g., by showing that there exists a valid Merkle tree
proof for x′i,j w.r.t. the Merkle digest of Pool; and

2. the set x′i satisfy the compliance predicate C.

Unfortunately, this approach is flawed due to the following reason. Suppose that the adversary
A controls a subset of the clients. As long as one of the colluding clients i submitted compliant data
xi in the data collection phase, all the colluding clients can use client i’s contribution xi to pass
the audit protocol. In other words, the problem is that this protocol did not verify the x′1, . . . ,x

′
n

purported in the audit phase is indeed a disjoint partitioning of the Pool of data items collected
earlier — henceforth for convenience, we call this property set consistency.

Besides the security flaw, the above protocol may also be inefficient since each client needs to
find the Merkle proof for each data item it contributed. The straightforward approach is for each
client to also download the entire Pool and compute the Merkle proofs, but this incurs per-client
communication that is linear in n.
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Näıve MPC-based solution. Another generic but inefficient approach is to use a maliciously
secure multi-party computation (MPC) protocol for the audit, where each client i’s input is the
set xi = (xi,1, . . . , xi,m), and the server’s input is the unordered multiset Pool obtained from the
shuffler. Now, all parties engage in an MPC protocol to securely evaluate a circuit which outputs
a bit indicating whether the following conditions are both satisfied: 1) x1, . . . ,xn is a disjoint
partitioning of Pool, and 2) for each i ∈ [n], xi satisfies the desired compliance predicate C.

Unfortunately, generic MPC is expensive. Using known MPC implementations [EKR18,Ors22,
KSS13], the per-client communication would be linear in n. Although techniques exist for MPC
with sublinear communication (e.g. using Fully Homomorphic Encryption), it is not clear how to
make these techniques work when the server is potentially malicious, without incurring linear in n
communication per client — see Appendix E for further discussions.

Question. We ask the following question:

Assuming an underlying anonymous network (modelled as a shuffler ideal functionality), can
one design an efficient anonymous, compliant data collection protocol such that each client’s
communication and computation do not grow w.r.t. n?

1.1 Results and Contributions

We give an affirmative answer to the above question. We design a novel anonymous, compliant data
collection protocol assuming that the underlying network is anonymous. Our protocol proceeds in
two phases: 1) a data collection phase where each client simply submits its data items through the
anonymous network, and 2) an audit phase where the server and the clients engage in an interactive
protocol to check compliance. Notably, in comparison with other generic approaches such as those
based on MPC [EKR18,Ors22,KSS13] or collaborative ZKP [OB22,DPP+22], the most compelling
advantage of our approach is that per-client communication and computation do not grow w.r.t.
the number of clients n, but depend only on the number of data items each client contributes m
and the circuit for checking compliance. This is crucial for scaling to applications with large n,
e.g., anonymous voting or privacy-preserving federated learning.

We make novel contributions both on the theoretical and practical fronts.

Theoretical contribution: a succinct anonymous, compliant data collection protocol.
To state our theoretical contribution, we use generic cryptographic primitives which can be realized
from standard cryptographic assumptions. Specifically, we prove the following theorem where T (c),
S(c), and V (c) denote the prover time, proof size, and verification time of a non-interactive zero-
knowledge (NIZK) proof system when proving a circuit of size c.

Theorem 1.1 (Informal). Assume a NIZK scheme with the above costs, and a committing public-
key encryption scheme. Moreover, assume the existence of an anonymous network (modeled as a
shuffler ideal functionality). Then, there exists an anonymous, compliant data collection protocol
that is sound even when all of the clients are corrupted, and t-anonymous1 when all but one client
is corrupted with the following costs:

• Each client’s communication is upper bounded by O(m)+S(|C|+O(m))+ Õ(1) and its compu-
tation is upper bounded by O(m) +T (|C|+O(m)) + Õ(1), where m is the length of the client’s
input, and |C| denotes the size of the circuit that encodes the compliance predicate C.

1We define t-anonymity in Section 3.3 to mean that the adversary only learns the multiset of the (n − t) honest
clients’ data items even when it controls the server and t clients (0 ≤ t ≤ n− 1).
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• The server’s computation is upper bounded by n · V (|C| + O(m)) + O(n ·m) + Õ(n) and its
communication is bounded by n · S(|C|+O(m)) +O(n ·m) + Õ(n).

• The protocol has only 3 rounds of client-server interaction, and there is no client-client inter-
action.

Note that throughout, the Õ(1) term in the client’s communication and computation actually

spells out to ω
(

log λ
log(n−t)

)
where t is the number of corrupted clients. So in fact, each client’s

communication and computation decrease as the number of honest clients grows — see also our
evaluation results Figure 3. Intuitively, this is because with a larger n, the mixing effect of the
anonymous network allows us to achieve the same level of security with cheaper cost (and jumping
ahead, using a smaller number of decoy terms). Similarly, the Õ(n) additive term in the server’s

communication and computation spells out to n · ω
(

log λ
log(n−t)

)
.

Practical instantiation and concrete efficiency. For our practical implementation, we do
not restrict ourselves to using only standard assumptions for better efficiency. Specifically, we will
instantiate the NIZKs using Succinct Non-Interactive Zero-Knowledge Arguments of Knowledge
(SNARKs), and we allow the random oracle model. In this case, we can state even tighter bounds
on the cost, that is,

• Each client’s extra communication (besides sending the data items to the shuffler) is only Õ(1);

• Each client’s computation is Õ(|C|) where Õ(·) hides a logarithmic factor;

• The server’s communication and computation are upper bounded by O(nm) + Õ(n).

We created an implementation of our protocol which we call Conan (short for COmpliant N
ANonoymous2). Our code is open sourced at https://github.com/shufflezkp/shuffle-zkp-open.
We evaluated our technique in various application settings, including secure voting, and secure
aggregation protocols for histogram, summation, and vector summation — see Section 1.2 for
more details about these applications. Our evaluation results show that in all scenarios, each
client’s additional communication overhead is only 2.2 KB or 2.6 KB, depending on whether we use
Groth16 [Gro16] or Plonk [GWC19] to instantiate the SNARK. Further, each client’s computation
only 0.2s to 0.5s for almost all cases, except for the vector summation application where the data
items are high-dimensional and as a result, each client’s computation is 8.5-10.6s.

New techniques. Interestingly, our techniques are inspired by techniques from the distributed
differential privacy (DP) literature [BBGN20], which is also related to Ishai et al.’s result for
building cryptographic protocols for anonymous communication networks [IKOS06]. Importantly,
we stress that although we use DP-inspired techniques, we actually prove cryptographically strong
notions of security, not differential privacy. We give an informal overview of our ideas in Section 2.

Definitional contribution. We also make a new conceptual contribution by formulating the
anonymous, compliant data collection problem and the corresponding security definitions. We
believe that this abstraction can be useful in numerous application scenarios — see Section 1.2 for
more discussion.

2In our protocol, the server plays Detective Conan [Aoy] and will detect any cheating behavior.
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Extension: attributing blame. In our basic anonymous, compliant data collection protocol,
there is no recourse if the audit phase fails. In reality, it may be desirable for the server to identify
a subset of the cheating clients that caused the protocol to fail. In Appendix C, we propose an
extension of our basic protocol that supports identifiable abort, such that should the audit fail, the
auditor can run an additional “blame protocol” to catch a subset of the cheating clients. We also
implement this extension for one application (shuffle-DP sum) and evaluate it in our experiments.
The results show that the additional per-client communication and computation overheads are
within reasonable bounds, being 1.0 MB and 4.6s, respectively.

1.2 Potential Applications

We discuss some potential applications of our anonymous, compliant data collection protocol. These
are also the applications used in our experimental evaluation (Section 7):

• Privacy-preserving federated analytics in the shuffle model. In privacy-preserving federated an-
alytics, an untrusted server wants to learn some statistics over of n clients’ inputs, without com-
promising each client’s privacy. Earlier work [BBGN20,BBGN20,BBGN19,GGK+21,GMPV20]
showed that the multi-message shuffle-model is a promising approach for designing differentially
private aggregation protocols. In this model, each client uses multiple messages that jointly en-
codes its data, and send them to a trusted shuffler. The shuffler mixes all data items and send
them to the server who then performs statistical analytics on the received data. Our work can
be viewed as a cryptographic protocol that upgrades a traditional shuffler without compliance
checking to a robust shuffler with compliance checking. Therefore, an immediate application
of our work is to make multi-message shuffle-model protocols [BBGN20, BBGN20, BBGN19,
GGK+21,GMPV20] robust to data corruption attacks.

In our evaluation (Section 7), we implement the multi-message shuffle-model protocols proposed
Balle et al. [BBGN20]. Specifically, each client adds noise to its input, splits the noisy input
into random shares, and sends the shares to the shuffler. We use our Conan protocol to verify
that each user’s noisy input (i.e., the summation of its shares) is within some appropriate range.

• Secure histogram protocol. Imagine that each user has watched a set of movies. A server wants
to compute the popularity of each movie (i.e., how many users have watched it). To achieve
this, each user sends all the movies it has watched to the shuffler, and the shuffler randomly
permutes all entries and sends them to the server. Note that in this protocol, the server learns
only the resulting histogram and nothing else. In the above secure histogram protocol, we can
use our Conan protocol to ensure that each client cannot submit duplicate entries.

• Anonymous Condorcet voting. We also consider an anonymous Condorcet voting [?] scenario
in our evaluation. Specifically, each user has a ranking among the candidates. Based on this
ranking, the user submits to the shuffler a set of votes that encodes its preference over every pair
of candidates. For example, if the ranking is A > B > C > D, the votes submitted are A > B,
A > C, A > D, B > C, B > D and C > D. After obtaining the shuffled votes, the server can
tally for each pair of candidates, how many votes rank each candidate over the other, and this
will be used to decide the outcome of the election. It is not hard to see that the server learns
only the result of the tally and nothing else. In such an application, we can use our Conan
protocol to ensure that each user submits only one vote for each pair of candidates; moreover,
the votes submitted by each user should be internally consistent, i.e., its rankings should not
form a cycle.
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1.3 Additional Related Work

Since our work can be viewed as an efficient distributed ZKP protocol over an anonymous net-
work where the witness is partitioned across multiple clients, we review other related notions of
distributed ZKPs and explain why they fail to solve our problem.

A line of work considered distributed zero-knowledge proofs (ZKP) where the witness is parti-
tioned or secretly-shared across n provers [OB22, DPP+22]. Although these works can be used in
our context for the clients to jointly generate a compliance proof, the communication overhead per
client would be at least linear in n.

Another line of work [WZC+18,XZC+22,LXZ+23] considered how to use a cluster of machines
to accelerate the prover of a ZKP system. However, these approaches are not applicable to our
setting because they do not address the privacy requirement.

Prio [CB17] and others [BBCG+19,AGJ+22,DPRS23] considered statistic aggregation protocols
where there are multiple servers and each client sends secret-shared versions of its input to the
servers. Their compliance checking protocols can be considered as distributed ZKP protocols
where the prover knows the statement and each verifier (the servers) only knows a secret share of
the statement. In their model, there is a single prover and multiple verifiers, whereas there are
multiple provers and one verifier in our model. So they can be considered as the dual of our model.

Bell et al. [BGL+23] proposed ACORN, a robust secure aggregation protocol with input val-
idation. One building block they used is a protocol for multiple clients to collectively prove that
their committed values are correlated in the correct manner. However, their protocol is restricted
to a specific relation (i.e., the sum of all provers’ secret witnesses is equal to a public value) and
does not fit our setting.

2 Technical Roadmap

We give a high-level overview of our novel techniques.

First attempt: representing sets as polynomials for set consistency check. Recall that
the flawed solution mentioned earlier is unsound because it fails to check the “set consistency”
property, i.e., it cannot guarantee that the purported sets x1, . . . ,xn in the audit phase are a
disjoint partitioning of the shuffled Pool the server received during the data collection phase.

As a first attempt to fix this problem, we can use the polynomial interpolation technique to prove
set consistency [GWC19]. Suppose each client i represents its set of items xi := (xi,1, . . . , xi,m) using
a polynomial fi(x) = (x−xi,1)·. . .·(x−xi,m). During the audit, each client commits to its purported
set xi. Next, the server sends a random challenge r, and each client responds with fi(r), and proves
in zero-knowledge that 1) the committed xi satisfies the predicate C, and 2) the purported outcome
fi(r) is correct w.r.t. the committed xi. The server now verifies all clients’ proofs. Moreover,
to verify set consistency, the server additionally checks that

∏
i fi(r) =

∏
a∈Pool(r − a). This

technique is a perfect fit for our distributed setting: every client can compute their polynomial
evaluations locally without communicating with other clients, making this technique efficient in
both communication and computation.

Unfortunately, even though this approach indeed enforces the set consistency check, it breaks
privacy. Specifically, the server can perform a “subset-style” attack: it can pick a subset X∗ ⊆ Pool,
and test if a some client i’s fi(r) agrees with

∏
a∈X∗(r− a). This allows the server to learn if client

i’s set xi = X∗.
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Novel idea: preventing leakage with decoy terms. Our main novel idea is to introduce
decoy terms to provably prevent the aforementioned leakage. Specifically, during the audit phase,
instead of sending fi(r) directly to the server, client i generates random decoy terms yi,1, . . . yi,d,
and sends pi := fi(r) ·

∏
j∈[d] yi,j to the server, where the term

∏
j∈[d] yi,j masks the true value of

fi(r). Further, each client sends its decoy terms yi,1, . . . yi,d to a trusted shuffler (denoted Fshuffle).
The shuffler Fshuffle randomly permutes all decoy terms, and sends an unordered set Y of all clients’
decoy terms to the server. Instead of checking that

∏
i pi =

∏
a∈Pool(r − a), the server now checks∏

i pi =
∏
a∈Pool(r− a) ·

∏
y′∈Y y

′. Intuitively, the “subset-style” attack is now much harder for the
server: the server needs to find both the subset X∗ and a correct subset of decoy terms Y ∗ to break
an individual client’s privacy. Formally, we show that for an appropriate choice of the field size, it
suffices to set the number of decoy terms d = poly log λ to achieve negligibly small security failure
probability.

New proof techniques. Henceforth, let H ⊆ [n] denote the set of honest clients, and we use the
notation Multiset({yi,j}i∈H,j∈[d]) to denote the shuffled decoy terms {yi,j}i∈H,j∈[d].

To prove that the protocol satisfies zero-knowledge, a key step is to argue that even when the
server has seen Multiset({yi,j}i∈H,j∈[d]) for each honest client i ∈ H, the randomizing term

∏
j∈[d] yi,j

still serves as a good mask for the partial product
∏
j∈[m](r − xi,j), i.e., the mask

∏
j∈[d] yi,j is

sufficient for hiding which subset of Pool belong to client i.
To show this, we rely on a technical lemma shown by Balle et al. [BBGN20] in the context of

a secure summation protocol over an anonymous network. Specifically, imagine that n clients each
have an input denoted x1, x2, . . . , xn from some appropriate domain. They want to jointly compute
the summation of their private values without leaking each individual’s input. Ishai et al. [IKOS06]
suggested a simple protocol: each client splits its private input into d additive shares, and sends
all shares to a shuffler which mixes all n · d shares, and presents them to a server. The server
simply sums up all the shares it receives. Ishai et al. [IKOS06] showed that if we set the number
of shares to d = O(log q + σ + log n), then for any input vectors (x1, . . . , xn) and (x′1, . . . , x

′
n) such

that
∑

i∈[n] xi =
∑

i∈[n] x
′
i, the views of the adversary have statistical distance bounded by 2−σ.

Balle et al. [BBGN20] observed that the bound by Ishai et al. [IKOS06] is not tight when n ≥ 19.
In particular, the number of shares d grows with n, which is counterintuitive since having more
parties should intuitively strengthen the privacy guarantees, allowing us to use a smaller number
of shares. Thus, Balle et al. showed a stronger version of the theorem where the number of shares
d only needs to be d > 2 + 2σ+log2 q

log2 n−log2 e
to get 2−σ statistical distance.

We now give an informal proof roadmap. Fix the Pool of data items, and consider two different
ways to partition Pool across the n clients. Specifically, imagine that in world 0, the partitioning is
{xi,j}i∈[n],j∈[m], and in world 1, the partitioning is {x′i,j}i∈[n],j∈[m]. Let zi =

∏
j∈m(r−xi,j)

∏
j∈[d] yi,j

and z′i =
∏
j∈m(r−x′i,j)

∏
j∈[d] y

′
i,j be the masked partial product from each client i, where the decoy

terms {yi,j}i∈[n],j∈[d] and {y′i,j}i∈[n],j∈[d] are all chosen independently at random. We want to show
that (

{zi}i∈[n],Multiset({yi,j}i∈[n],j∈[d])
)

≈
(
{z′i}i∈[n],Multiset({y′i,j}i∈[n],j∈[d])

)
where ≈ denotes statistical indistinguishability. To show this, observe that conditioned on zi = z′i
for all i ∈ [n] in the two worlds, it must be that

∏
i∈[n],j∈[d] yi,j =

∏
i∈[n],j∈[d] y

′
i,j . Using Balle et

al.’s theorem, we have that conditioned on zi = z′i for all i ∈ [n], the terms Multiset({yi,j}i∈[n],j∈[d])
and Multiset({y′i,j}i∈[n],j∈[d]) are statistically indistinguishable.
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Our technical sections later will formalize the above intuition. Specifically, to make the proof
formal, we need to 1) add computationally sound reasoning for the cryptographic primitives used;
2) change the above argument to work for the subset of honest parties rather than all parties; and
3) correctly set parameters of the scheme to get negligibly small security failure. We defer the
details to Appendix A.

Concretely efficient upgrade to the malicious-server setting. The protocol mentioned
so far only achieves anonymity only if the server is semi-honest. To get rid of this assumption,
one approach is to use standard theoretical techniques for converting an honest-verifier ZKP to
a malicious-verifier ZKP [Dam], or to rely on a random coin toss protocol to jointly generate
the server’s challenge. However, these generic techniques are not concretely efficient. Instead,
we propose a new upgrade that incurs minimal additional overhead in comparison with the semi-
honest-server setting. We defer the detailed description to Section 6.

3 Formal Problem Definition

3.1 Notations

Shuffler notation. We use the notation Fshuffle to denote a shuffler ideal functionality. As-
sume there are n clients and each client i submits to Fshuffle a multiset of m data items de-
noted xi := (xi,1, . . . , xi,m), then Fshuffle outputs an unordered multiset of all the data items, that
is, {xi,j}i∈[n],j∈[m]. Henceforth, we use the notation Multiset(x1, . . . ,xn) to denote th multiset
{xi,j}i∈[n],j∈[m].

Notation for NP relation. Henceforth, we use the notation Ri(xi, wi) to represent the NP
relation corresponding to the compliance predicate that the server wants to check for each client i,
where xi is the data items contributed by client i, and wi is the witness. Specifically, Ri(xi, wi) = 1
means that xi is in the NP language, i.e., it satisfies the compliance predicate. In the most general
form, this compliance predicate need not be the same for all clients.

Henceforth, given x := (x1, . . . ,xn), and w := (w1, . . . , wn), and NP relations R := (R1, . . . ,Rn),
we use the short-hand R(x,w) = 1 to mean that for every i ∈ [n], Ri(xi, wi) = 1.

3.2 Syntax

An anonymous, compliant data collection has the following syntax:

• pp← Setup(1λ, n,R):

• Pool or ⊥ ← Π(pp,x1, . . . ,xn, w1, . . . , wn): All parties have the input pp and moreover, each
client i has a multiset of data items xi := {xi,j}j∈[m], and witness wi. The client and the
server then engage in protocol, such that at the end of the protocol, the server either outputs
a multiset Pool of data items, or outputs ⊥ indicating failure.

Completeness. Completeness is a natural correctness requirement, it stipulates the following:
for any λ, n ∈ N, any R, for any x = (x1, . . . ,xn), any w = (w1, . . . , wn) such that R(x,w) = 1,

Pr
[
pp← Setup(1λ, n,R), Π(pp,x,w) = Multiset(x1, . . . ,xn)

]
= 1
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3.3 Security Definitions

Henceforth, let C ⊆ [n] denote the set of corrupt clients, and let H = [n]\C denote the set of honest
clients. Consider the following random experiment denoted Exptn,A,R(1λ):

• run pp← Setup(1λ, n,R), and A receives pp;

• A outputs {xi, wi}i∈H which is required to satisfy Ri(xi, wi) for any i ∈ H;

• run the protocol Π with A who controls the set C of clients and possibly the server, where the
honest clients use the inputs {xi, wi}i∈H.

Soundness. Soundness requires that for any n that is polynomially bounded in λ, any C ⊆ [n],
any R (where the circuits for checking the NP relations are polynomially bounded in λ), for any
non-uniform PPT adversary A that controls the set C of corrupt clients (but not the server), there
exists a negligible function negl(·), such that in the above randomized experiment Exptn,A,R(1λ),
except with 1 − negl(λ) probability, if the server did not reject outputting ⊥, the multiset Pool it
outputs must satisfy the following:

1. Multiset(xH) ⊆ Pool;

2. there exists a disjoint partitioning {xj}j∈C of Pool\Multiset({xi}i∈H), such that for any j ∈ C,
there exists some wj such that Rj(xj , wj) = 1.

The first condition says that honest clients’ contributions must show up in Pool, and the second
condition says that for the corrupt clients’ contributions, there must be a way to partition these
data items among the corrupt clients C, such that every corrupt client j ∈ C submitted a compliant
multiset of data items.

t-anonymity. t-anonymity requires that for any non-uniform PPT adversary A controls at most
t clients and possibly the server, there exists a PPT simulator (SimSetup,SimProt) such that for any
n that is polynomially bounded in λ, any R (where the circuits for checking the NP relations are
polynomially bounded in λ), the adversary’s view in the above real-world experiment Exptn,A,R(1λ)
is computationally indistinguishable from the output of the following ideal experiment.

• run (pp, st)← SimSetup(1λ, n,R), and A receives pp;

• A outputs {xi, wi}i∈H which is required to satisfy Ri(xi, wi) for any i ∈ H;

• output the simulated view SimProt(st ,Multiset({xi}i∈H)).

Notice that the simulator only sees Multiset({xi}i∈H of honest clients’ contributions. This implies
that a computationally bounded adversary does not learn who contributed which data items.

Remark 3.1 (t-anonymity in the presence of a semi-honest server). Later, as a stepping stone,
we will first construct a scheme that satisfies t-anonymity in the presence of a semi-honest server.
In this model, we assume that the adversary controls a subset of the clients, and possibly the
server. The server is guaranteed to behave honestly, but the adversary can observe the server’s
view including its internal coins and all the messages it sends and receives. On the other hand, the
corrupted clients can behave arbitrarily including in a manner dependent on the server’s internal
coins.
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4 Preliminaries

4.1 Technical Lemma for Secure Summation

As mentioned, the most interesting technique in our construction and proof is the introduction
of decoy terms to allow a privacy-preserving set consistency check. To prove the security of this
approach, we rely on a technical lemma from Balle et al. [BBGN20], which is derived from a simple
secure summation protocol first proposed by Ishai et al. [IKOS06].

Imagine that there are n parties each with an input xi ∈ Zq. Each party i splits its input xi into
d random, additive shares and sends them to a shuffler. The server receives all the shares from the
shuffler and sums them up. The lemma shows that as long as the server only sees the unordered,
shuffled shares, it learns only the sum of the inputs and nothing else, ignoring a small statistical
security loss. Balle et al. [BBGN20] observed that the lemma also works when the inputs are from
a finite abelian group. We will formally state the lemma in the context of the case when the inputs
are from a multiplicative abelian group.

Lemma 4.1 ( [BBGN20]). Suppose that n ≥ 19, d ≥ 3, and σ ≥ 1. Let G be a multiplicative abelian
group of order q. Suppose we are given two arbitrary vectors (µ1, . . . , µn) ∈ Gn and (µ′1, . . . , µ

′
n) ∈

Gn, such that
∏
i∈[n] µi =

∏
i∈[n] µ

′
n. Now, for i ∈ [n], randomly sample (yi,1, . . . , yi,d) such that

µi =
∏
j∈[d] yi,j. Similarly, randomly sample (y′i,1, . . . , y

′
i,d) such that µ′i =

∏
j∈[d] y

′
i,j. Then, the

two multisets Multiset({yi,j}i∈[n],j∈[d]) and Multiset({y′i,j}i∈[n],j∈[d]) have statistical distance at most
2−σ where

σ =
(d− 1)(log2 n− log2 e)− log2 |q|

2

4.2 Cryptographic Building Blocks

We use the following primitives in our construction.

Non-interactive commitment. A non-interactive commitment algorithm commit(1λ, x; r) takes
in a security parameter 1λ, a message x ∈ {0, 1}`(λ), and a random string r ∈ {0, 1}λ, and outputs
a committed value C. Henceforth let the message length `(λ) be a polynomial function in λ. We
require that a non-interactive commitment scheme satisfy the following properties:

• Computationally hiding. For any x, y ∈ {0, 1}`(λ), it must be that commit(1λ, x) and commit(1λ, y)
are computationally indistinguishable. We write commit(1λ, x) to denote the randomized algo-

rithm that first samples r
$←{0, 1}λ and then calls commit(1λ, x; r).

• Perfectly binding. There does not exist λ, (x, r) and (x′, r′) where x 6= x′, such that commit(1λ, x; r) =
commit(1λ, x′; r′).

Non-interactive zero-knowledge. A non-interactive argument system for a family of NP rela-
tions {Rλ}λ indexed by λ consists of the following (possibly randomized) algorithms:

• crs← Gen(1λ): samples and outputs a common reference string denoted crs.

• π ← P(crs, x, w): takes in the common reference string crs, a statement x and a witness w such
that Rλ(x,w) = 1, outputs a proof π.

• 0 or 1 ← V(crs, x, π): takes in the common reference string crs, a statement x, and a purported
proof π, outputs either 0 or 1 indicating “reject” or “accept”.
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We require the following properties:

1. Completeness. For any λ, for any (x,w) such that Rλ(x,w) = 1, it holds that

Pr
[
crs← Gen(1λ), π ← P(crs, x, w) : V (crs, x, π) = 1

]
= 1

2. Soundness. For any non-uniform probabilistic polynomial-time (PPT) prover P ∗, there exists a
negligible function negl(·), such that

Pr
[
crs← Gen(1λ), (x, π)← P ∗(crs) : V (crs, x, π) = 1 but x /∈ Rλ

]
≤ negl(λ)

In the above, we use x /∈ Rλ to mean that there does not exist a w such that Rλ(x,w) = 1.

3. Knowledge soundness. For any non-uniform deterministic algorithmA, there exist a non-uniform
polynomial-time extractor XA and a negligible function negl(·) such that for any auxiliary string
z,

Pr
[
crs← Gen(1λ), ((x, π);w)← (A||XA)(crs, z) : V(crs, x, π) = 1 ∧Rλ(x,w) = 0

]
≤ negl(λ)

4. Zero-knowledge. Intuitively, a non-interactive argument system is computationally zero-knowledge
if one can simulate the proof of a true statement without knowing the witness. Formally, a non-
interactive argument system satisfies adaptive multi-theorem computational zero-knowledge, iff
there exists a PPT simulator (S1, S2), such that for any non-uniform PPT adversary A, there
exists a negligible function negl(·) such that

Pr
[
crs← Gen(1λ) : AP (crs,·,·)(1λ, crs) = 1

] negl(λ)
≈ Pr

[
(crs, τ)← S1(1λ) : AS(τ,·,·)(1λ, crs) = 1

]
where τ is a trapdoor, and S(τ, x, w) is the following oracle: upon receiving (τ, x, w), it checks
whether Rλ(x,w) = 1. If so, output S2(τ, x), which simulates a proof without knowing the

witness; otherwise, output ⊥. Moreover, the notation
negl(λ)
≈ means that the left-hand side and

the right-hand side differ by at most negl(λ).

5 Warmup: Protocol for a Semi-Honest Server

We first present a protocol assuming a semi-honest server; however, a subset of the clients may
be under the control of the adversary and behave arbitrarily mailiciously. Later in Section 6, we
will discuss how to upgrade the protocol to the malicious-server setting with minimal additional
overhead.

5.1 Construction

We assume a prime-order field F whose size is superpolynomial in the security parameter λ. Suppose
that each data item is encoded in the field F, i.e., each xi = (xi,1, . . . , xi,m) ∈ Fm. Our protocol
relies on an underlying anonymous network modelled as a shuffler ideal functionality denoted Fshuffle

— see Section 3.1.
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Setup(1λ, n,R): For i ∈ [n], run crsi ← NIZKi.Gen(1λ). Output pp := {crsi}i∈[n].

Π(pp,x1, . . . ,xn, w1, . . . , wn)

1. Data collection phase: Every client i ∈ [n] sends xi to Fshuffle, and Fshuffle sends
Multiset(x1, . . . ,xn) to the server.

2. Audit phase:

• Each client i:

– Sample yi = (yi,1, . . . , yi,d)
$← {F/{0}}d and let ρi :=

∏
j∈[d] yi,j .

– Send (yi,1, . . . , yi,d) to Fshuffle, which sends Multiset({yi,j}i∈[n],j∈[d]) to the server.

– Send comi = commit((xi, ρi); γi) directly to the server where γi denotes sampled ran-
dom coins.

• Server:

– Sample a random challenge r
$← F and broadcast r to all clients.

• Each client i:

– Parse xi := (xi,1, . . . , xi,m), and compute zi := ρi ·
∏
j∈[m](xi,j − r).

– Parse pp := (crs1, . . . , crsn), and call πi ← NIZKi.P(crsi, (zi, comi, r), (xi, γi, wi, ρi)).

– Send (zi, πi) to the server.

• Server: Output Multiset(x1, . . . ,xn) if the following checks pass, else output 0:

– NIZK verification: For i ∈ [n], NIZKi.V(crsi, (zi, comi, r), πi) = 1.

– Set consistency check:
∏
i∈[n] zi =

∏
i∈[n],j∈[m](xi,j−r) ·

∏
i∈[n],j∈[d] yi,j . The server can

compute both sides of the equation knowing z1, . . . , zn, Multiset({xi,j}i∈[n],j∈[m]), and
Multiset({yi,j}i∈[n],j∈[d]). Also, check all yi,j ’s are not 0.

Figure 1: Our anonymous, compliant data collection protocol for a semi-honest server.

Protocol. During the setup, we call the NIZKs’ setup and outputs the resulting common reference
strings as the public parameter. Our protocol then proceeds with a data collection phase and an
audit phase as follows:

1. Data collection phase. All clients send their data items over an anonymous network to the
server. More formally, every client i ∈ [n] sends its data items xi := (xi,1, . . . , xi,m) to Fshuffle,
and Fshuffle sends Multiset(x1, . . . ,xn) to the server.

2. Audit phase.3 Each client proves compliance to the server without identifying which data
items it has contributed using the following protocol.

• First, each client samples d random decoy terms yi,1, . . . , yi,d from F\{0}, and sends {yi,1, . . . , yi,d}
to Fshuffle, which in turn sends Multiset({yi,j}i∈[n],j∈[d]) to the server.

• Additionally, client i sends a commitment comi of (xi, ρi) to the server where ρi :=
∏
j∈[d] yi,j .

• Next, the server sends a random challenge r ∈ F to all clients.

3Here, we focus on the case when the audit phase is run only once. Our protocol can be extended to run multiple
audit phases on the same collected data with different predicates naturally.
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• Now, each client i sends zi := ρi ·
∏
j∈[m](xi,j − r) to the server, along with a NIZK proof

attesting to the following facts: 1) zi is computed correctly using the tuple (xi, ρi) under the
commitment comi, and the data items xi under the commitment comi satisfy the compliance
predicate.

• Finally, the server outputs Multiset(x1, . . . ,xn) if all n NIZK proofs verify, and moreover,∏
i∈[n] zi =

∏
i∈[n],j∈[m](xi,j−r)·

∏
i∈[n],j∈[d] yi,j ; otherwise, it outputs ⊥. Notice that the server

can efficiently compute
∏
i∈[n],j∈[m](xi,j−r) and

∏
i∈[n],j∈[d] yi,j , since it knows Multiset(x1, . . . ,xn)

and Multiset({yi,j}i∈[n],j∈[d]).

We give a formal protocol description in Figure 1 where the NP relation for the NIZK proofs
are defined below.

NP relation for the NIZK proofs. In Figure 1, we use NIZKi to denote a NIZK scheme for
the NP relation R̃i:

• Public statement (zi, comi, r): the client’s masked evaluation zi, the commitment comi, and
the evaluation point r;

• Private witness (xi, γi, wi, ρi): the client’s data items xi, witness wi, the randomness γi used
in the commitment, as well as the product of client i’s decoy terms ρi.

• R̃i((zi, comi, r), (xi, γi, wi, ρi)) = 1 iff

– Ri(xi, wi) = 1;

– commit((xi, ρi); γi) = comi; and

–
∏
j∈[m](xi,j − r) · ρi = zi.

Parameter choices. Throughout, we use λ to denote the security parameter, and we assume
that n is upper bounded by a fixed polynomial in λ. We set the field size of F to be superpolynomial
in λ. Let σ = ω(log λ) be a super-logarithmic function in the security parameter. Assume n clients
and at most t corrupted clients, by setting the number of decoy terms per client as

d ≥ 2σ + log2 |F|
log2(n− t)− log2 e

+ 2, (1)

the statistical security loss is upper bounded by 2−σ which is negligibly small in λ since σ = ω(log λ).
Additionally, the cryptographic primitives we employ introduce a separate computational security
loss that is also negligibly small in λ. Note that Equation (1) also shows that the number of decoy
terms per client d decreases as n grows. Further, if we set the field size to be exp(logc n) for some
constant c > 1, then d is upper bounded by O(logc λ).

Remark 5.1 (Parameter choices depend on the number of honest clients). Our choice of d in
Equation (1) assumes that there are at least 19 honest clients — this is inherited from the technical
lemma (Lemma 4.1) proven by Balle et al. [BBGN20]. Note that the total number of clients n
can be much larger than 19, i.e., security holds even when a large majority of the clients can be
maliciously corrupted. However, if there are fewer than 19 honest clients, we can set the number of
decoys d to be d = d1.5 log2(|F|) + log2 n+ σe due to the lemma of Ishai et al. [IKOS06] to achieve
the same level of security loss.

In Appendix A, we prove the following theorem.
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Theorem 5.2 (Protocol for a semi-honest server). Suppose that |F| is superpolynomial in λ,

n − t ≥ 19 and d = ω
(

log |F|+log λ
log(n−t)

)
. Further, suppose that the underlying NIZK satisfies com-

pleteness, soundness, and zero-knowledge, and the commitment scheme comm is perfectly binding
and computationally hiding. Then, the protocol described in this section satisfies completeness,
soundness, and t-anonymity in the presence of a semi-honest server.

In our implementation, we will use a prime field Fp where p is a 254-bit prime. Suppose we
want to achieve a statistical security failure probability of 2−80. Then, with 100, 1000, and 10000
honest clients, we can choose d = 82, d = 51, and d = 37, respectively.

Cost analysis. Based on the above parameter choices, we can now give the asymptotic perfor-
mance bounds. Suppose we use a SNARK scheme to realize the underlying NIZK, and suppose
that the SNARK scheme has Õ(c) prover time for proving a size-c circuit, O(1) proof size and
verification time. Further, suppose the commitment scheme comm has O(m) computation time
and commitment size for a message of size O(m). Then, the above protocol satisfies the following
performance bounds:

• Each client i incurs Õ(|Ri|) computation and O(m)+Õ(1) communication (see also Remark 5.3),
where the notation |Ri| denotes the size of the circuit that checks the NP relation Ri. Specif-
ically, the O(m) part comes from sending the m data items to the shuffler and committing to
them again during the audit, and the Õ(1) accounts for sending the decoy terms to the shuffler
and all other communication.

• The server’s computation and communication are upper bounded by O(nm) + Õ(n).

Remark 5.3 (Regarding client communication). The client communication includes sending the
m data items to the shuffler during data collection, and sending one commitment and one ZKP in
the audit phase. If we use a perfectly binding commitment, the commitment size is linear in m for
committing to a length-m message. In our actual implementation, we use a random-oracle-based
commitment scheme that the commitment size is O(1) even for committing to a length-m message;
and we use a SNARK whose proof size is also O(1). In this case, the client’s extra communication
overhead (besides sending the m data items to the shuffler) is actually bounded by Õ(1). Later in
Section 6 and Appendix B, we will argue that our security proofs still hold when we replace the
commitment scheme with a random-oracle-based one (see also Remark B.1).

5.2 Anonymity for a Semi-Honest Adversary

We now prove a key lemma that is needed for proving anonymity in the presence of a semi-honest
server. This key lemma represents the most interesting step in our security proof, since it captures
the statistical steps of reasoning why the decoy terms give us strong privacy. We defer the full
proof of anonymity for a semi-honest server to Appendix A.

Key lemma for anonymity. Intuitively, the above lemma says that suppose the zero-knowledge
proofs and commitments leak nothing, then the server cannot distinguish whether the honest clients’
inputs are {xi,j}i∈H,j∈[m] ∈ F|H|·m or {x′i,j}i∈H,j∈[m] ∈ F|H|·m, as long as Multiset({xi,j}i∈H,j∈[m]) =
Multiset({x′i,j}i∈H,j∈[m]). In other words, the server cannot learn how the permuted data items are
partitioned across the honest clients. This intuition can be captured by the following lemma.
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Lemma 5.4 (Key lemma for proving anonymity). Given a security parameter σ = ω(log λ), and

assume |F| is superpolynomial in λ, n − t ≥ 19, and d ≥
⌈

2σ+log2 |F|
log2(n−t)−log2 e

+ 2
⌉

. Let H denote the

set of honest clients. Fix arbitrary {xi,j}i∈H,j∈[m] ∈ F|H|·m and {x′i,j}i∈H,j∈[m] ∈ F|H|·m such that
Multiset({xi,j}i∈H,j∈[m]) = Multiset({x′i,j}i∈H,j∈[m]), and fix some r /∈ {xi,j}i∈H,j∈[m] also from F.
Then, the following distributions have negligibly small in λ statistical distance:

• Distribution 0: Sample {yi,j}i∈H,j∈[d] at random from F, output the following terms:

Multiset({xi,j}i∈H,j∈[m]), r, Multiset({yi,j}i∈H,j∈[d]),

for each i ∈ H : zi :=
∏
j∈[m](xi,j − r) ·

∏
j∈[d] yi,j

• Distribution 1: Same as Distribution 0 except that each xi,j is replaced with x′i,j.

Proof. To prove the key lemma, we shall rely on Lemma 4.1, the technical lemma from Balle et
al. [BBGN20].

First, consider the following hybrid experiment which is equivalent to Distribution 1 except that
the order in which the random variables are sampled is changed.

Experiment Hyb0:

• First, sample {zi}i∈H at random from F/{0}.

• Next, for each i ∈ H, compute µi := zi/
∏
j∈[m](xi,j−r), basically µi corresponds to the product

of the terms {yi,j}j∈[d].

• Next, for each i ∈ H, sample {yi,j}j∈[d] at random subject to the constraint that their product
is µi.

• Finally, compute and output the following terms:

Multiset({xi,j}i∈H,j∈[m]), r,

Multiset({yi,j}i∈H,j∈[d]), {zi}i∈H

Experiment Hyb1: same as Hyb0 except that each xi,j is replaced with x′i,j . Hyb1 is equivalent
to Distribution 1 except that the order in which the random variables are sampled is changed.

The key lemma follows directly from the following claim.

Claim 5.5. Hyb0 and Hyb1 have statistical distance negligibly small in λ.

It suffices to show that conditioned on any fixed {zi}i∈H, Hyb0 and Hyb1 are statistically close.
Since Multiset({xi,j}i∈H,j∈[m]) = Multiset({x′i,j}i∈H,j∈[m]), we have∏

i∈H

zi∏
j∈[m](xi,j − r)

=
∏
i∈H

zi∏
j∈[m](x

′
i,j − r)

.

Then, we can directly apply Lemma 4.1 and get that the statistical distance of the distribution of
Multiset({yi,j}i∈H,j∈[d]) in Hyb3 and Hyb4 is bounded by 2−σ where

σ =
1

2
(d− 2)(log2(n− t)− log2 e)−

1

2
log2(|F| − 1).

Therefore, fixing σ = ω(log λ), when d ≥
⌈

2σ+log2 |F|
log2(n−t)−log2 e

+ 2
⌉
, the statistical distance of A’s view

between Hyb3 and Hyb4 is bounded by 2−σ which is negligibly small in λ.
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Completing the proof of anonymity against a semi-honest server. As mentioned, the key
lemma essentially shows that the server does not learn how the data items are partitioned across
the honest clients, assuming that the zero-knowledge proofs and commitments are perfectly secret.
In reality, however, the cryptographic primitives satisfy only computational notions of security.
Therefore, to formally prove anonymity in the presence of a computationally bounded adversary,
we need to go through a sequence of hybrid experiments, such that we first replace the zero-
knowledge proofs and commitments with simulated ones using the security of the cryptographic
primitives, and then apply Lemma 5.4 to switch the honest clients’ inputs from {xi,j}i∈H,j∈[m] to
{x′i,j}i∈H,j∈[m] where the latter is an arbitrary partition of Multiset({xi,j}i∈[n],j∈[m]). Afterwards,
the view of the adversary in the hybrid experiment can be fully simulated by a simulator that only
knows the multiset of the honest clients’ inputs. We present the full proof in Appendix A.

5.3 Proof of Soundness

We now prove a key lemma that captures the essence of the soundness proof. This key lemma cap-
tures the essential statistical reasoning in the soundness proof, when we imagine that all the crypto-
graphic primitives were ideal. The full soundness proof requires a computationally sound treatment
of the cryptographic primitives used, and we defer the full soundness proof to Appendix A.

Key lemma for soundness. We now state the key lemma (Lemma 5.6) needed for proving
soundness. To better understand the lemma below, it helps to imagine that {xi,j}i∈[n],j∈[m] (repre-
sented by {x1, . . . , xk} in Lemma 5.6) represent the data items the server has obtained during the
data collection phase, and {x′1, . . . , x′k} (represented by {x1, . . . , xk} in Lemma 5.6) represent the
data items the clients commit to during the audit. Moreover, imagine that α =

∏
i∈[n],j∈[d] yi,j , and

α′ =
∏
i∈[n] ρi. Recall that during the audit (Figure 1), the clients submit the decoy terms {yi,j}

and commit to {x′i,j}i∈[n],j∈[m] and {ρi}i∈[n]. This is why in Lemma 5.6 below, we imagine that
{xi,j}i∈[n],j∈[m], {x′i,j}i∈[n],j∈[m], α, α′ are fixed; however, the challenge r is randomly chosen.

Lemma 5.6 (Key lemma for proving soundness). Let F be a finite field. Let x1, . . . , xk ∈ F,
α ∈ F\{0}, and let x′1, . . . , x

′
k, α

′ ∈ F. Suppose that Multiset(x1, . . . , xk) 6= Multiset(x′1, . . . , x
′
k).

Then,

Pr
r

$←F

α · ∏
i∈[k]

(r − xi) = α′ ·
∏
i∈[k]

(r − x′i)

 ≤ k

|F|
.

Proof. Since Multiset(x1, . . . , xn) 6= Multiset(x′1, . . . , x
′
n), the polynomials F (R) =

∏
i∈[n](R − xi)

and F ′(R) =
∏
i∈[n](R − xi) are not the same. In the case of α 6= α′, since F (R) and F ′(R) are

both monic polynomials, αF (R) and α′F ′(R) are two different polynomials. In the case of α = α′,
αF (R) and α′F ′(R) are different because F (R) 6= F ′(R). Therefore, the lemma follows from a
direct application of the Schwartz-Zippel lemma.

Intuitively, the above key lemma for soundness says that as long as the corrupted clients use in-
consistent data items in the audit phase, the audit will fail with overwhelming probability regardless
of how the corrupted clients generate their decoys.

Completing the soundness proof. The full proof of soundness makes use of the perfect binding
property of the commitment scheme and the soundness of the zero-knowledge proof, and then
reaches a step where applying the key lemma, i.e., Lemma 5.6 would be sufficient. We defer the
full proof to Appendix A.
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6 A Simple Upgrade to the Malicious-Server Setting

In this section, we propose a simple upgrade with minimal overhead that lifts our warmup protocol
to the malicious-server setting. Specifically, for soundness, we always assume an honest server;
however, we want our anonymity guarantees to hold even when the server can be malicious. In
this setting, the challenge for proving anonymity is that the server may not choose the challenge
r at random4. To upgrade our protocol to the malicious-server setting, one näıve way is the use a
generalization of the transformation described by Damg̊ard [Dam] that converts an honest-verifier
zero-knowledge proof to a malicious-verifier zero-knowledge proof. Another näıve way is to use a
random coin toss protocol to jointly generate the server’s challenge. However, these standard
approaches result in relatively high concrete overhead. Instead, we propose a simple upgrade with
minimal overhead.

Intuition. The construction in Section 5.1 provides anonymity only in the presence of a semi-
honest server, relies on the facts that 1) the challenge r is chosen independently of the decoy terms
{yi,j}i∈H,j∈[d] — however, r need not be chosen uniformly at random; and 2) the challenge r is not
equal to any of the data items {xi,j}i∈H,j∈[m]. However, a malicious server may choose r based
on its guess of the data items {xi,j}i∈H,j∈[m] or the decoy terms {yi,j}i∈H,j∈[d] that have already
been revealed. For example, a malicious server can intentionally pick a challenge r that equals one
of the messages. Then, the server learns the source of that particular message, because the client
who submitted it will have a polynomial evaluation of 0. Therefore, the intuition of our upgrade is
to ensure that even a malicious server cannot choose the challenge r that collides with any honest
client’s data item, or depends on the decoy terms. For the former, we can split the field F into
two halves and enforce the data items and the challenge r to be sampled from different halves. For
the latter, we require the server to commit to r upfront, so r cannot be chosen based on the decoy
terms.

Upgrade to the malicious-server setting. In the upgraded protocol, the server commits to
the challenge r upfront. Next, the clients commits to their data items and submits the decoy terms
using an extractable commitment scheme, and the server then opens r. The clients check if the
opening r is valid, and that r must be sampled from a different half of the field than the messages.

• Assume we use a prime-order field Fp. We will encode the clients’ messages xi,j using the first
half of the field {0, . . . , bp/2c}.

• At the beginning of the audit phase, the server picks a random challenge r from {bp/2c +
1, . . . , p− 1}, and it computes r̃ := commit(r; coins) where coins denotes the random coins used
in the commitment scheme5. The server sends r̃ to all clients over a broadcast channel (see
Remark 6.1).

• Now, run the earlier protocol in Figure 1 except with the following modifications. First, the
clients now use an extractable commitment scheme when committing to (xi, ρi)

6 Second, instead
of directly sending the challenge r to all clients, the server now sends opening r, coin to all clients.
All clients check that commit(r; coins) = r̃ and that r ≥ bp/2c + 1. They continue with the
protocol if the check passes, and else they abort.

4Notice that the Fiat-Shamir heuristic [?] does not work in our setting, because the provers are distributed.
5This commitment need not be extractable.
6The common reference string (CRS) of the extractable commitment scheme is included in the CRS of our protocol.
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Setup(1λ, n,R): Same as before.

Π(pp,x1, . . . ,xn, w1, . . . , wn)

1. Data collection phase: Same as before, except that now we require that each data item
xi,j ∈ {0, . . . , bp/2c}.

2. Audit phase:

• Server:

– Sample a random challenge r
$←{bp/2c+ 1, . . . , p− 1};

– Let r̃ := commit(r; coins) for some randomly sampled coins;

– Send r̃ to all clients over a broadcast channel.

• Each client i:

– Sample yi = (yi,1, . . . , yi,d)
$← {F/{0}}d and let ρi :=

∏
j∈[d] yi,j .

– Send (yi,1, . . . , yi,d) to Fshuffle, which sends Multiset({yi,j}i∈[n],j∈[d]) to the server.

– Send comi = commit((xi, ρi); γi) to the server where γi denotes sampled random coins
and commit is an extractable commitment scheme.

• Server:

– Send the opening (r, coins) to all clients.

• Each client i:

– Check that (r, coin) is a correct opening of r̃, and further, check that r ∈ {bp/2c +
1, . . . , p− 1}. Abort if the check fails.

– Parse xi := (xi,1, . . . , xi,m), and compute zi := ρi ·
∏
j∈[m](xi,j − r).

– Parse pp := (crs1, . . . , crsn), and call πi ← NIZKi.P(crsi, (zi, comi, r), (xi, γi, wi, ρi)).

– Send (zi, πi) to the server.

• Server: Output Multiset(x1, . . . ,xn) if the following checks pass, else output 0:

– For i ∈ [n], NIZKi.V(crsi, (zi, comi, r), πi) = 1.

–
∏
i∈[n] zi =

∏
i∈[n],j∈[m](xi,j − r) ·

∏
i∈[n],j∈[d] yi,j . The server can easily compute both

sides of the equation knowing Multiset(x1, . . . ,xn) and Multiset(y1, . . . ,yn). Also
check that all yi,j are non-zero.

Figure 2: Our anonymous, compliant data collection protocol for a malicious server. The modifi-
cations are highlighted in blue.
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For completeness, we describe the full protocol formally in Figure 2. We prove that this upgraded
protocol satisfies soundness and t-anonymity in the presence of a malicious server in Appendix B.

Remark 6.1 (Necessity of the broadcast channel). Note that the broadcast channel is needed to
ensure that the server sends the same challenge r to all clients. Otherwise, there is an explicit
attack where the server can distinguish between the following two cases: 1) client 1 has x and
client 2 has x′; and 2) the two clients data items are swapped. The server can send r1 to client 1
and r2 to client 2, and from its view, it can recover the product (x − r1) · (x′ − r2) in the former
case; or the product (x′ − r1) · (x− r2) in the latter case. The server can then learn the source of
the data items, violating the anonymity property. One way to instantiate the broadcast channel is
to have the server send r̃ to all clients; all clients then sign r̃ using a threshold signature scheme.
The server aggregates all clients’ signatures and sends the aggregated signature to all clients. The
clients accept the challenge r̃ if the aggregated signature verifies.

Remark 6.2 (Necessity of using extractable commitment scheme for clients’ data items). When
we make this change, the soundness proof becomes more challenging. Our earlier soundness proof
(Lemma 5.6) relies on the fact that the malicious clients cannot choose the committed {xi,j}i∈H,j∈[m]

values and the decoy terms {yi,j}i∈H,j∈[d] that depend on the challenge r. However, now the server
has committed some challenge r upfront, we effectively need to argue that it is not possible for
malicious clients to commit to values that are related to the committed challenge r. To deal with this
issue, we require that the clients commit to their data items {xi,j} using an extractable commitment
scheme which is easy to construct assuming a common reference string (see Appendix B.1).

Cost analysis. In comparison with the semi-honest-server protocol in Section 5, this new upgrade
introduces minimal overhead, and all the asymptotic bounds for the semi-honest-server protocol
still hold for the upgraded protocol. More specifically, in comparison with the semi-honest-server
protocol, each client incurs only Oλ(1) additive overhead in terms of client computation and band-
width. Further, the server needs to incur only Oλ(1) additional computation relative to the scheme
in Section 5, broadcast an additional message of size Oλ(1) to all clients, and send Oλ(1) extra
information to each client over a point-to-point channel.

In Appendix B, we prove the following theorem.

Theorem 6.3 (Protocol for a malicious server). Suppose that |F| is superpolynomial in λ, n− t ≥
19 and d = ω

(
log |F|+log λ

log(n−t)

)
. Further, suppose that the underlying NIZK satisfies completeness,

soundness, and zero-knowledge, the commitment scheme used by the server is perfectly binding and
computationally hiding, and the commitment scheme used by the client is computationally hiding
and extractable. Then, the protocol described in this section satisfies completeness, soundness, and
t-anonymity in the presence of a malicious server.

7 Implementation and Evaluation

Implementation. We use gnark [BPH+22], an open-sourced NIZK library to create an imple-
mentation of our protocol. We separate the implementation into two phases, which include the audit
phase and the blame phase that can catch the non-compliant clients (See Appendix C). We assume
a semi-honest server throughout the experiments. We use a prime modulo field Fr with r being a
254-bit prime associated with the BN254 elliptic curve. We use a security parameter of λ = 80. We
instantiate our protocol with two proof schemes, Groth16 [Gro16] and Plonk [GWC19]. Groth16
requires a per-circuit setup and Plonk has a universal setup. We use the MiMC hash [AGR+16]
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for the commitment scheme with a 254-bit random salt. The experiments are run on single server
with a 2.4GHz Intel Xeon E5-2680 CPU and a 256 GB RAM.

7.1 Application Settings and Parameters Used in our Evaluation

We evaluate the application scenarios mentioned earlier in Section 1.2. Here, we provide more
details about the parameters we choose for all applications. Unless otherwise noted, we assume
there are 1000 clients with 500 corrupted clients. This matches the common settings in shuffle-
model data analytics and federated learning scenarios, such as in [BBGN20, LCC+21, GD24]. We
list the concrete settings for each application here.

Secure histogram protocol. We implement a simple anonymous histogram protocol.

• Each client has 60 data items from a domain of {0, 1, . . . , 9999}.

• The clients send their data items to the shuffler, who shuffles the data items and sends them to
the server. The server then computes the histogram of the data items.

• Constraint: The contribution from each client cannot include repeated data items.

Shuffle-DP summation protocol. We implement the shuffle-DP summation protocol from
Balle et al. [BBGN20].

• Each client has an integer secret value vi in [0, 1000]. The client adds a noise yi to vi, where yi is
a Polya noise as specified in [BBGN20], which ensures the final sum value satisfies ε-shuffle-DP
with ε = 1.0. Each client will split its noisy value vi+yi into 60 additive shares (ensuring 80-bit
statistical security) and the server sums up all the shares.

• Constraint: The contribution of each client to the final sum, i.e., vi + yi, is less than 1500.7

Secure vector summation protocol with L2 norm constraint. We extend the secure sum-
mation protocol from Balle et al. [BBGN20] to sum vectors with an L2 norm constraint, which
applies to update aggregation in federated learning.

• Each client has a 50-dimension vector ~xi. The client splits the corresponding value in each
dimension of its vector to 60 additive shares and the server sums all the shuffled shares. A
client’s shares across different dimensions are unlinkable.

• Constraint: The L2 norm of each client’s vector, i.e., ‖~xi‖2, is no more than 1000.

Secure Condorcet voting protocol. In Condorcet voting [?], each client’s preference is ranking
list of candidates and a candidate is chosen if it beats every other candidate in a pairwise compar-
ison. For example, if there are three candidates Alice, Bob, and Charlie, a client’s preference can
be Bob > Alice > Charlie. Then, if there are five voters, where Bob is preferred over Alice from
three voters and is preferred over Charlie from four voters, Bob will be the winner.

• We implement a secure Condorcet voting protocol with 10 candidates and 1000 voters.

• Each voter has a secret ranking among the 10 candidates, represented as a permutation of 1 to
10.

7We choose 1500 because the probability that an honest client’s noise being more than 500 is small enough. This
is only for demonstration and can be adjusted according to other scenarios.
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• Given a ranking (c1, . . . , c10), a voter will submit 45 comparison pairs to the shuffler, i.e.,
{(ci, cj)}1≤i≤10,i<j≤10, indicating that it prefers ci over cj .

• Constraint: Each voter’s submitted pairs form a valid ranking.

7.2 Audit Phase Costs

Use Case # Constraints Public Param Client Time Amortized Server Time Communication Per Client

Based on Groth16

Histogram 2.4× 104 4.0MB 0.2s 3.2ms 2.2KB
Voting 1.6× 104 2.4MB 0.2s 3.1ms 2.2KB

Shuffle-DP Sum 2.4× 104 4.2MB 0.2s 2.5ms 2.2KB
Vector Sum 9.9× 105 163.3MB 8.5s 3.7ms 2.2KB

Based on Plonk

Histogram 3.2× 104 22.5MB 0.5s 2.7ms 2.6KB
Voting 2.1× 104 10.8MB 0.3s 3.0ms 2.6KB

Shuffle-DP Sum 3.6× 104 22.5MB 0.4s 2.7ms 2.6KB
Vector Sum 1.3× 106 721.4MB 10.6s 6.0ms 2.6KB

Table 1: The computation and memory costs of Shuffle-ZKP protocol. “# Constraints” stands for number
of constraints in the corresponding constraint system after compiling the program with gnark [BPH+22].
“Client Time” denotes the average of the clients’ computation time. “Amortized Server Time” denotes the
amortized computation time that the server spends on each individual client.

We measure the computation and the communication cost for the use cases and show the results
in Table 1. For each task, we repeat the experiment five times and report the average results. The
amortized server time shows the server’s total computation time amortized by the number of clients.
Since the clients also need to store the public parameters of the NIZK to generate the proof, the
public parameter size captures each client’s storage costs. The per-client communication cost counts
only the additional overhead incurred by the audit, and does not include the overhead of sending
the original data items to the shuffler. Moreover, we also measure the number of constraints needed
for each task after we compile the circuit to the R1CS constraint system. The constraint number
can be viewed as a proxy for the complexity of each task.

Communication cost. We observe that the per-client communication cost is dominated by
the decoys used to mask the polynomial evaluations, which is independent of the concrete use
cases. Therefore, the use cases have nearly the same communication cost when the underlying

proof systems are the same. Recall that each client needs to send d = ω
(

log λ
log(n−t)

)
decoys to

the shuffler, so given more honest clients, the decoys sent to the shuffler per client are less. To
better demonstrate the communication cost, we plot the communication overhead for our protocol
in Fig 3 given different honest client numbers and two different proof systems. With our parameter
setting, each client will not send more than 60 decoys to the server. The client will also send one
commitment, one field element denoting the masked local polynomial evaluation and one NIZK
proof to the server. Therefore, given a wide range of client numbers, the communication cost is no
more than 6KB.

Client time. As shown in Table 1, the client time depends on the concrete use cases, and the
Groth16-based instantiation is faster than the Plonk-based instantiation in general. We observe
that the proof generation time is the dominant factor of the clients’ computation time, and the
more constraints it takes to describe the compliance rule, the more time it takes for the client to
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Figure 3: Per-client communication overhead. The number of corrupted clients is fixed to
500. The per-client communication decreases with a larger n since with more honest clients, the
client needs to send fewer decoy terms.

Use Cases Compliance Commitment Consistency Total

Histogram 3540 2.0× 104 61 2.4× 104

Voting 109 1.6× 104 46 1.6× 104

DP Sum 4.0× 103 2.0× 104 61 2.4× 104

Vector Sum 2.0× 104 9.9× 105 3001 9.9× 105

Table 2: Breakdown of the constraints required by each component during the proof generation process for
each task. The results are based on the implementation with Groth16 proof system.

generate the proof. The constraint numbers for the histogram, voting and Shuffle-DP sum use cases
are around 1.6× 104 to 3.6× 104, depending on the proof systems. The per client time ranges from
0.2s to 0.5s. The vector sum use cases have more constraints, around 106, and the per client time
is around 8.5s and 10.6s for the Groth16 and Plonk instantiations, respectively.

Server time. The server computation is highly efficient – the amortized computation time (the
total server time divided by the number of clients) is no more than 11ms for all use cases. This
is because verifying a proof in Groth16 or Plonk only takes Õλ(1) time, and the server only needs
to evaluate the polynomial evaluation besides the proof verification, which takes Oλ(nm) time in
total.

Storage cost. The public parameter size reflects the storage cost of each client and also scale
with the constraint number. The Groth16 system has smaller public parameters that are no more
than 5MB for the histogram, voting and shuffle-DP summation use cases, and no more than 200MB
for the vector summation. The Plonk system has larger public parameters that are 10.8 - 22.5MB
for the three simpler cases and around 700MB for the vector sum use case.
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7.3 Blame Phase Costs

We also evaluate the extension of our protocol with identifiable abort (described in Appendix C)
for the Shuffle-DP Sum use case. Specifically, we use Fshuffle plus Private Information Retrieval
(PIR) for instantiating the enhanced F∗shuffle functionality described in Appendix C.2, which works
assuming a semi-honest server.

In summary, the per client time is 4.6s, the amortized server time is 27.2ms, and the commu-
nication cost is 1.0MB. The costs remain reasonable for the use case. We list the implementation
and evaluation details in Appendix D.
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A Proofs for the Semi-Honest-Server Setting

In this section, we provide the detailed proofs for our warmup protocol in Section 5, assuming a semi-
honest server. The completeness proof is straightforward, so we will focus on proving soundness
and anonymity.

A.1 Soundness Proof

Recall that earlier, we proved a key lemma (Lemma 5.6) which captures the core statistical reasoning
for proving soundness. The full soundness proof needs to additionally make use of the security of
the cryptographic primitives, and we present the full proof below.
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Theorem A.1 (Soundness). Suppose the field size |F| is superpolynomial w.r.t. the security pa-
rameter λ, the commitment scheme is perfectly binding and the NIZK scheme satisfies soundness.
Then, our protocol satisfies soundness.

Proof. Before the random challenge is sampled, the server’s view contains pp, Multiset(x1, . . . ,xn),
Multiset(y1, . . . ,yn), and {comi}i∈[n]. Except with the negligible probability that some underlying
NIZK instance’s soundness is broken, if the server passes the verification, then for every i ∈ [n],
it must be that there exists (x′i, γi, wi, ρ

′
i) such that Ri(x′i, wi) = 1, commit(1λ, (x′i, ρ

′
i); γi) = comi;

and
∏
j∈[m](x

′
i,j − r) · ρ′i = zi.

Henceforth, we ignore the negligibly small probability that the NIZK’s soundness is broken, and
assume that the above equations hold. Since the commitment scheme is perfectly binding, the x′i
and ρ′i satisfying the above equations are already uniquely determined given comi, which must be
sent before seeing the random challenge r — we need this because later, to apply Lemma 5.6, the
challenge r must be sampled independently of the x′is and ρ′is.

Now, if the server passes verification, it must be that∏
i∈[n],j∈[m]

(x′i,j − r) · α′ =
∏

i∈[n],j∈[m]

(xi,j − r) · α

where
α′ :=

∏
i∈[n]

ρ′i, α :=
∏

i∈[n],j∈[d]

yi,j

Given that the field size is superpolynomial in λ, and the server’s check ensures that α 6= 0, due
to Lemma 5.6, we conclude that except with the negligibly small probability that a bad challenge
r is sampled, it must be that Multiset(x1, . . . ,xn) = Multiset(x′1, . . . ,x

′
n) where (x′1, . . . ,x

′
n) are

uniquely determined by com1, . . . , comn. Because for any honest client i ∈ H, x′i = xi, it means
that Multiset({xi}i∈C) = Multiset({x′i}i∈C), i.e., the corrupt clients’ purported data items in the
audit phase must be equal to their contributions in the data collection phase.

Summarizing the above, except with negligible probability, if the server did not reject outputting
⊥, then there exists a partitioning {x′i}i∈C (which is uniquely determined by {comi}i∈C) of the
corrupt clients’ contributions Multiset({xi}i∈C), such that for every corrupt client i ∈ C,Ri(x′i, wi) =
1.

A.2 Anonymity Proof

Recall that there are three data-dependent components in the protocol that we need to handle:
the NIZK proofs, the commitments, and the masked partial products. From a high level view, our
proof goes first by replacing the honest clients’ NIZK proofs and commitments with simulated ones.
Then, the most challenging part is to show that the joint distribution of the honest clients’ masked
partial polynomial evaluations and the shuffled decoy terms can be simulated just by knowing the
multiset of the honest clients’ data items. We proved a key lemma (Lemma 5.4) that captures this
core statistical reasoning step in the proof. We provide the full proof below.

Theorem A.2 (t-anonymity). Given a security parameter λ, assume |F| is superpolynomial in λ,

n− t ≥ 19, d ≥ ω
(

log |F|+log λ
log(n−t)

)
. Moreover, suppose that the NIZK scheme satisfies zero-knowledge,

and the commitment scheme is computationally hiding. Then, our shuffle-model ZKP protocol
satisfies t-anonymity in the presence of a semi-honest server.

Proof. Let H be the set of at least n− t honest users, and let C be the set of corrupt clients.
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Real-world experiment. The real-world experiment is the same as the experiment Exptn,A(1λ)
as defined in Section 3.3. Recall that we assume that if the server is corrupted, it will still act
honestly except that the adversary can see the server’s view (including its internal coins and mes-
sages sent and received). However, the corrupted clients can act arbitrarily and in a way possibly
dependent on the server’s internal coins.

We can imagine that in the real-world experiment, there is a challenger acting on behalf of
the trusted setup and all honest parties and interacting with adversary who controls the corrupted
parties. The challenger also implements the oracle Fshuffle for the adversary.

Experiment Hyb1. Experiment Hyb1 is otherwise identical to the real-world experiment, except
that

• Inside the Setup algorithm, for any honest user i ∈ H, instead of calling the real NIZKi.Gen
algorithm for honest users, now call the simulator of NIZKi to generate simulated common
reference strings and the trapdoors (crsi, τi).

• Whenever the experiment needs to compute a NIZK proof on behalf of an honest user i ∈ H, it
calls the simulator of NIZKi to generate a proof without using any witness.

Claim A.3. Suppose that the NIZK scheme satisfies zero-knowledge, then the real-world experiment
and Hyb1 are computationally indistinguishable.

Proof. We can prove this through sequence of hybrids, such that one honest user at a time, we can
replace its crsi and NIZK proof with simulated ones. Any pair of adjacent hybrids are computation-
ally indistinguishable through a straightforward reduction to the zero-knowledge of the underlying
NIZK.

Experiment Hyb2. Hyb2 is almost the same as Hyb1 except that when the experiment needs to
compute comi on behalf of an the honest client i ∈ H, it now computes a commitment of 0 instead.

Claim A.4. Suppose that the commitment scheme is computationally hiding, then Hyb1 and Hyb2

are computationally indistinguishable.

Proof. We can prove this through sequence of hybrids, such that one honest user at a time, we can
replace its commitment with a commitment of 0. Any pair of adjacent hybrids are computationally
indistinguishable through a straightforward reduction to the computational hiding property of the
underlying commitment scheme.

Experiment Hyb3. Hyb3 is almost identical to Hyb2 except that if the challenge r sampled
happens to be one of {xi,j}i∈H,j∈[m], we simply abort the current execution, and retry till we
encounter a run in which the random challenge r does not collide with {xi,j}i∈H,j∈[m].

Claim A.5. Hyb3 and Hyb2 have statistical distance at most (n− t) ·m/|F|.

Proof. The random challenge r is always sampled honestly when the server is semi-honest. There-
fore, the probability of retrying is at most (n− t) ·m/|F|. Thus, the claim follows by the definition
of statistical distance.
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Experiment Hyb4. Hyb4 is almost identical as Hyb3 except with the following modifications.

• After the adversary chooses {xi,j}i∈H,j∈[m], the experiment reorders the terms {xi,j}i∈H,j∈[m]

in any arbitrary canonical order (e.g., from small to large). The reordered set is now denoted
{x′i,j}i∈H,j∈[m].

• Whenever the challenger needs to use xi,j to compute a response to A, use x′i,j instead.

Claim A.6. Suppose n− t ≥ 19, d ≥ ω
(

log |F|+log λ
log(n−t)

)
. Then, Hyb4 and Hyb3 have negligibly small

in λ statistical distance.

Proof. Recall that the NIZK proofs and commitments for honest clients have been replaced with
simulated proofs and commitments of 0. Also, since the challenger simulates Fshuffle for the ad-
versary, from what Fshuffle outputs to the adversary, effectively the adversary can see the honest
clients’ multisets Multiset({x′i,j}i∈H,j∈[m]) and Multiset({yi,j}i∈H,j∈[d]). By Lemma 5.4, Hyb3 and

Hyb4 have statistical distance at most 2−σ as long as d ≥
⌈

2σ+log2(|F|−1)
log2(n−t)−log2 e

+ 2
⌉
. This means that

the statistical distance is negligibly small in λ as long as d ≥ ω
(

log |F|+log λ
log(n−t)

)
.

Last but not the least, observe that in Hyb4, to compute the adversary’s view, the experiment
only needs to know Multiset({xi,j}i∈H,j∈[m]) and pp but not the honest clients’ witnesses. Therefore,
the description of Hyb4 uniquely defines a simulator Sim, such that Hyb4 can be equivalently viewed
as the ideal experiment.

B Proofs for the Malicious-Server Setting

In this section, we prove the security of our upgraded protocol in the presence of a potentially
malicious server. Specifically, in the soundness proof, we still assume that the server is honest;
however, in the anonymity proof, we need to take into account the possibility of a malicious server.

B.1 Additional Preliminaries: Extractable Commitment

Recall that earlier in Section 4.2, we defined a non-interactive commitment scheme. We now
define a non-interactive extractable commitment scheme under a CRS model. In particular, there
is a simulated CRS generation algorithm that generates a trapdoor trap along with a simulated
CRS, such that using trap, one can extract the witness from the commitment. Such an extractable
commitment scheme can be implemented using any committing public-key encryption scheme where
the CRS is the public key, the commitment is an encryption of the message, and the trapdoor is
the decryption key.

A non-interactive extractable commitment scheme consists of the following possibly randomized
algorithms:

• crs← Gen(1λ): takes in the security parameter 1λ and samples a common reference string crs.

• c← commit(crs, x): given crs and some message x from an appropriate message space, outputs
a commitment c. Whenever needed, we use the notation c← commit(crs, x; coins) to explicitly
denote the random coins denoted coins consumed by the commitment algorithm.

We now define the desired security properties.
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Perfectly binding. A non-interactive commitment scheme (Gen, commit) is said to be perfectly
binding, iff for any crs in the support of Gen, there does not exist (x, coins) and (x′, coins′) where
x 6= x′, such that commit(crs, x; coins) = commit(crs, x′; coins′).

Computationally hiding. A non-interactive commitment scheme (Gen, commit) is said to be
computationally hiding, iff for any x and x′, the following probability ensembles are computationally
indistinguishable:

• crs← Gen(1λ), c← commit(crs, x), output crs, c.

• crs← Gen(1λ), c′ ← commit(crs, x′), output crs, c′.

Extractability under a simulated CRS. There exists a simulated CRS generation algorithm
denoted (crs, trap) ← Gen′(1λ), and an extractor algorithm Ex(trap, c) such that the first outcome
of Gen′(1λ) is identically distributed as the outcome of Gen(1λ), and moreover, the following holds
for any x:

Pr
[
(crs, trap)← Gen′(1λ), c← commit(crs, x) : Ex(trap, c) = x

]
= 1

It is not hard to see that extractability implies perfectly binding.

Remark B.1 (Using an RO-based commitment scheme in our implementation). In our actual
implementation, we use a random-oracle-based commitment scheme. Let H denote a random
oracle. To commit to x, simply compute H(x, coins) for some randomly chosen coins. To open the
commitment, simply reveal the pair (x, coins). Using this random-oracle-based construction has
the advantage that we can have a succinct commitment even when the message is long. Further,
with a random oracle, extraction is easily accomplished using standard techniques by having the
reduction implement the random oracle for the adversary (rather than using a trapdoor).

B.2 Soundness Proof

Soundness. We first prove the soundness property of the protocol.

Theorem B.2 (Soundness of the upgraded protocol). Suppose the field size |F| is superpolynomial
w.r.t. the security parameter λ, the commitment scheme used by the clients satisfies computation-
ally hiding and extractability, the commitment scheme used by the server is perfectly binding, and
the NIZK scheme satisfies soundness. Then, the above upgraded protocol satisfies soundness.

Proof. We consider a hybrid experimented henceforth denoted Hyb1, in which a challenger interacts
with an adversary who acts on behalf of the clients and attempt to break soundness. The challenge
follows the honest protocol except that during the CRS setup, it calls (crs, trap) ← Gen′(1λ) to
choose a simulated CRS crs and a trapdoor trap for the extractable commitment scheme. Since the
crs output by Gen′ is identically distributed as the crs output by Gen, the adversary’s probability
in breaking soundness in Hyb1 is identically distributed as in the real-world experiment.

Therefore, it suffices to prove soundness for the Hyb1 experiment. Let Multiset(x1, . . . ,xn) be
the data items the server obtained during the data collection phase. Let Multiset(y1, . . . ,yn) and
{comi}i∈[n] be the decoy terms and commitments the server has received from the clients before the
random challenge r is opened. Except with the negligibly small probability that some underlying
NIZK instance’s soundness is broken, if the server accepts, then for every i ∈ [n], it must be that
there exists (x′i, γi, wi, ρ

′
i) such that

• Ri(x′i, wi) = 1;
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• comm(1λ, (x′i, ρ
′
i); γi) = comi; and

•
∏
j∈[m](x

′
i,j − r) · ρ′i = zi.

Henceforth, we ignore the negligibly small probability that the underlying NIZK’s soundness is
broken. Since the commitment scheme is perfectly binding, x′i and ρ′i are uniquely determined
given comi. If the server passes verification and the underlying NIZK’s soundness is not broken, it
must be that ∏

i∈[n],j∈[m]

(x′i,j − r) · α′ =
∏

i∈[n],j∈[m]

(xi,j − r) · α (2)

where
α′ :=

∏
i∈[n]

ρ′i, α :=
∏

i∈[n],j∈[d]

yi,j

IfA can break soundness, it means that for a non-negligible fraction of the challenges (henceforth
denoted the set B), there is a non-negligible probability that the above Equation (2) holds after
the adversary has submitted the commitment and the decoy terms, and Multiset(x′1, . . . ,x

′
n) 6=

Multiset(x1, . . . ,xn).
Now consider the following efficient reduction R that tries to break the commitment scheme

by leveraging a soundness adversary A. Imagine that in world 0, the reduction R receives c which
is a commitment of an arbitrary fixed r0 ∈ B, and in world 1, the reduction also receives c, but
it is now a commitment of a randomly chosen challenge r1. The reduction R wants to distinguish
which world it is in. To achieve this, the reduction R runs Hyb1 with the adversary A plugging in
committed challenge c it has received, and it waits for the adversary to output the commitments
{comi}i∈[n] and the decoy terms {yi,j}i∈[n],j∈[d]. It then uses the trapdoor to extract the x′i,j and
ρ′i values under the commitment. Now, R outputs 0 if Multiset(x′1, . . . ,x

′
n) 6= Multiset(x1, . . . ,xn)

and Equation (2) holds for the challenge r0; else it outputs 1.
Since A can break soundness, in world 0, the probability that the reduction R outputs 0 is

non-negligible. By the computational hiding property of the commitment scheme, the probability
that R outputs 0 in world 1 is also non-negligible. In world 1, the distribution of {xi,j}, {x′i,j}
and {yi,j} is independent of r0 in Hyb1 since the challenge r1 is sampled completely at random and
does not encode any information of r0. Since the size of B is a non-negligible fraction, if we run
the experiment of world 1 for a randomly chosen r0, the probability that R outputs 0 should also
be non-negligible; however, this contradicts Lemma 5.6.

B.3 Anonymity Proof

We now prove that the upgraded protocol satisfies anonymity in the presence of a malicious server.

Theorem B.3 (t-anonymity in the presence of a malicious server). Given a security parameter λ,

assume |F| is superpolynomial in λ, n − t ≥ 19, d ≥ ω
(

log |F|+log λ
log(n−t)

)
. Moreover, suppose that the

NIZK scheme satisfies zero-knowledge, the commitment scheme used by the client is computationally
hiding, and the commitment scheme used by the server is perfectly binding. Then, the upgraded
protocol satisfies t-anonymity (even in the presence of a malicious server).

Proof. The proof follows in the same fashion as that of Theorem A.2, except that to show the
statistical indistinguishability of Hyb2 and Hyb3, we need to rely on a couple more observations.
Specifically, observe that Lemma 5.4 holds as long as the challenge r is chosen independently of the
decoy terms {yi,j}i∈H,j∈[d] and the challenge r is not equal to any of the data items {xi,j}i∈H,j∈[m].
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In our upgraded protocol, the latter fact is guaranteed by construction by requiring r to come from
a different half of the field than the data items. Because the adversary has to commit to r upfront
without having observed the decoy terms {yi,j}i∈H,j∈[d], and the commitment scheme is perfectly
binding, the choice of r is independent of {yi,j}i∈H,j∈[d].

C Extension: Protocol with Identifiable Abort

In our protocol so far, if the verification fails, the server simply outputs ⊥. Ideally, if the protocol
fails, we want to catch some of the cheating clients. In this section, we introduce an extension of
the basic protocol that supports identification of cheating clients, a property also called identifiable
abort.

Syntax. We modify the syntax defined in Section 3.2 to support identifiable abort, where the
changes are highlighted in blue. An anonymous, compliant data collection with identifiable abort
has the following syntax:

• pp← Setup(1λ, n,R):

• Pool or I ← Π(pp,x1, . . . ,xn, w1, . . . , wn): All parties have the input pp and moreover, each
client i has a multiset of data items xi := {xi,j}j∈[m], and witness wi. The client and the
server then engage in protocol, such that at the end of the protocol, the server either outputs
a multiset Pool of data items, or outputs I which is a subset of the cheating clients.

Completeness and t-anonymity are defined as before. We strengthen the previous soundness
definition to the following version:

Soundness with identifiable abort. Soundness with identifiable abort requires that for any n
that is polynomially bounded in λ, any C ⊆ [n], any R (where the circuits for checking the NP
relations are polynomially bounded in λ), for any non-uniform PPT adversary A that controls the
set C of corrupt clients (but not the server), there exists a negligible function negl(·), such that
in the above randomized experiment Exptn,A,R(1λ), except with 1− negl(λ) probability, either the
server outputs a non-empty I ⊆ C, or it outputs a multiset Pool which must satisfy the following:

1. Multiset(xH) ⊆ Pool;

2. there exists a disjoint partitioning {xj}j∈C of Pool\Multiset({xi}i∈H), such that for any j ∈ C,
there exists some wj such that Rj(xj , wj) = 1.

C.1 High Level View

In our original protocol, if the server detects an invalid proof, it can identify the cheating clients.
However, a smart adversary can still cheat by using inconsistent data items during the audit phase,
and just fails the consistency check. Our polynomial based consistency check, although being highly
efficient, is not feasible to identify the cheating clients.

The main purpose of our extension is to identify the clients who are using inconsistent data
items. Say the set of data items collected during the collection phase is Sx and the (multi)set
of data items used during the audit phase is S′x. For now, we assume Sx does not contain any
duplicates. We know the size of these two sets are the same, but they are not consistent with each
other. Therefore, there could be two reasons for this inconsistency:

32



• There exists alien data items in S′x. For example, Sx = {1, 2, 3, 4} but S′x = {1, 2, 3, 5}.

• There exists duplicate data items in S′x. For example, Sx = {1, 2, 3, 4} but S′x = {1, 2, 3, 3}.

To handle the first case, we can require an extra zero-knowledge proof from each client attesting
that the data items they used in the audit phase are from Sx. This can be done with any efficient
membership proof scheme, such as Merkle tree. The second case is more challenging. Our solution
is to require each client to attach a commitment of a random serial number to each data item
they send to the shuffler. Then, during the blame attributing phase, we require the clients to
directly send these random serial numbers to the server, while proving the commitment of these
serial numbers are indeed attached to a data item in Sx, again using the same membership proof
approach. Then, if the server sees one serial number being used multiple times, it can identify the
cheating clients. Notice that an adversary that does not control the server cannot cause an honest
client to be blamed except with negligible probability, because it can only guess the honest clients’
serial numbers. This also preserves anonymity by the hiding property of the commitment scheme.

C.2 Additional Preliminaries

Our protocol with identifiable abort will make use of an anonymous network functionality that
additionally supports private retrieval, as represented by the ideal functionality F∗shuffle. F∗shuffle can
be viewed as a stronger version of Fshuffle enhanced with some additional capabilities. Below we
first define this functionality, and then we describe how to instantiate it.

Syntax of F∗shuffle. The functionality F∗shuffle receives m data items xi = (xi,1, . . . , xi,m) from each
client i ∈ [n]. If some clients abort without sending m data items to F∗shuffle, then F∗shuffle outputs I
which is a non-empty subset of the aborting clients. Otherwise, F∗shuffle sends Multiset(x1, . . . ,xn)
to the server. Meanwhile, it computes a Merkle hash tree on top of the unordered multiset8

Multiset(x1, . . . ,xn), and offers the following query interface to everyone:

• On receiving a query digest from anyone, it returns the Merkle digest dt.

• On receiving a query of the form (mproof, xi,j) from anyone, it returns a Merkle proof for xi,j
w.r.t. the digest dt. If Multiset(x1, . . . ,xn) contains multiple copies of xi,j , Fretrieval may return
the Merkle proof for an arbitrary copy.

Intuitively, besides being an anonymous shuffler, F∗shuffle additionally offers the following capa-
bilities: 1) consensus on the Merkle digest of the multiset of data items collected from all users;
and 2) a private retrieval functionality where anyone can retrieve the Merkle proof of any data item
that belong to the multiset. Importantly, when an honest client retrieves a Merkle proof for one of
its own data items, the adversary cannot observe which data item it is querying.

Instantiating F∗shuffle. We give two different instantiations depending on whether the server is
semi-honest or malicious.

If the server is assumed to be semi-honest, we can instantiate F∗shuffle as follows — for our
evaluation results in Appendix D, we use this instantiation. Below we assume that Fshuffle supports
identifiable abort too, that is, if some client did not contribute data items, Fshuffle will report a
non-empty subset I of cheating clients.

8To achieve this, we can order Multiset(x1, . . . ,xn) using some canonical ordering, and build a Merkle tree on top
of the resulting vector of items.
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• Every client i ∈ [n] sends xi to Fshuffle, and Fshuffle sends Multiset(x1, . . . ,xn) to the server. If
some clients aborted, then everyone outputs the set I reported by Fshuffle.

• The server computes a Merkle digest dt of Multiset(x1, . . . ,xn) and send dt to every client.

• Using a Private Information Retrieval (PIR) protocol that supports key-value search, every one
can privately retrieve the Merkle digest for some data item xi,j that belongs to the resulting
multiset.

If the server is malicious, then we can realize F∗shuffle assuming an anonymous public bulletin
board, which can be instantiated by having players send messages over an anonymous network and
post them on a blockchain. Similarly, players can also query any content posted to the blockchain
through an anonymous network.

C.3 Protocol with Identifiable Abort

Intuition. To identify cheating clients, each client will additionally attach a committed serial
number to every data item xi,j and every decoy term yi,j it posts to F∗shuffle. Henceforth, we will
use sxi,j to denote the serial number associated with xi,j , and use syi,j to denote the serial number
associated with yi,j . We use s̃xi,j and s̃yi,j to denote the commitment of sxi,j and syi,j , respectively.
Using this notation, each client i ∈ [n] will post to F∗shuffle {(xi,j , s̃xi,j)}j∈[m] and {(yi,j , s̃yi,j)}j∈[d].

During the audit phase, if any client’s zero-knowledge proof fails to verify, the server will report
these clients. However, if all clients’ proofs verify but the set consistency check fails, then the server
and the clients engage in an additional blame phase to identify the cheating clients. During the
blame phase, each client i will privately retrieve from F∗shuffle a Merkle proof for each (xi,j , s̃xi,j)
pair and each (yi,j , s̃yi,j) pair it posted to F∗shuffle earlier. It will then open the corresponding
serial numbers {sxi,j}j∈[m] and {syi,j}j∈[d] to the server, and prove in zero knowledge that it knows
{(xi,j , s̃xi,j)}j∈[m] and {(yi,j , s̃yi,j)}j∈[d], such that

1. every (xi,j , s̃xi,j) and every (yi,j , s̃yi,j) has a valid Merkle proof;

2. {sxi,j}j∈[m] and {syi,j}j∈[d] are correct openings of {s̃xi,j}j∈[m] and {s̃yi,j}j∈[d], respectively; and

3. the commitment comi it sent earlier correctly encodes xi = (xi,1, . . . , xi,m) and ρi =
∏
j∈[d] yi,j .

Intuitively, by revealing the underlying serial numbers committed to earlier and with the zero-
knowledge proof, each client is privately declaring ownership of the pairs (xi,j , s̃xi,j) and (yi,j , s̃yi,j)
it contributed earlier, without actually identifying which pairs. Since each client talks to the server
through a private channel and the commitment scheme reveals nothing about the committed serial
numbers, a malicious client is unable to falsely guess and claim any serial number belonging to
an honest client (except with negligible probability). This means that if the set consistency check
fails, it must be that either some data item xi,j or decoy term yi,j contributed by a malicious client
i ∈ C is claimed in two commitments comj and comj′ in the audit phase where j, j′ ∈ C. Due to
the soundness of the zero-knowledge proofs, if both j, j′ sent valid proofs in the blame phase, they
must reuse some serial number sxi,j or syi,j . In this case, the server can catch j and j′ by noticing
that their purported serial numbers collided.

Formal description. A formal description of the protocol is shown in Figure 4, where we assume
that each client talks to the server through a private channel (which can easily be realized through
key exchange and encrypting the messages).

34



• Data Collection Phase:

– Each client i samples serial numbers (sxi,1, . . . , sxi,m)
$←{0, 1}λ·m, (syi,1, . . . ,

syi,d)
$←{0, 1}λ·d, and computes s̃xi,j = commit(sxi,j ;βi,j), s̃yi,j = commit(syi,j ;β

′
i,j) where

βi,j , β
′
i,j are sampled randomly;

– Each client i sends {(xi,j , s̃xi,j)}j∈[m] to F∗shuffle. Then, F∗shuffle sends
Multiset({(xi,j , s̃xi,j)}i∈[n],j∈[m] to the server or reports aborting clients I.

– Each client i samples the decoy {yi,j}j∈[d] at random from {bp/2c+ 1, . . . , p−1}. It then
sends {(yi,j , s̃yi,j)}j∈[d] to F∗shuffle. Then, F∗shuffle sends Multiset({(yi,j , s̃yi,j)}i∈[n],j∈[d] to
the server or reports aborting clients I.

• Audit Phase:

– Execute the audit phase of Figure 2, except that we can skip the step of collecting the
decoy terms {yi,j}i∈[n],j∈[d] since we have front-loaded this in the data collection phase.

– If the server detects an invalid proof or fails to hear from any client i, report the clients.

– If the set consistency check fails, proceed to the blame phase.

• Blame Phase: // S̃x := Multiset
(
(xi,j , s̃xi,j)i∈[n],j∈[m]

)
, S̃y := Multiset

(
(yi,j , s̃yi,j)i∈[n],j∈[d]

)
Each client i:

– Fetch the digests digest(S̃x) and digest(S̃y) of the sets S̃x and S̃y from F∗shuffle.

– For j ∈ [m], privately retrieve a membership proof mkxi,j for (xi,j , s̃xi,j) from F∗shuffle;

– For j ∈ [d], privately retrieve a membership proof mkyi,j for (yi,j , s̃yi,j) from F∗shuffle;

– Call the NIZK prover to generate a proof π′i:

∗ Public statement: comi, digest(S̃x), digest(S̃y), sxi,1, . . . , sxi,m, syi,1, . . . , syi,d;

∗ Private witness: γi, ρi, (xi,j , s̃xi,j , βi,j)j∈[m], (yi,j , s̃yi,j , β
′
i,j)j∈[d];

∗ Relation:

1. comi = commit((xi, ρi); γi);

2. ρi =
∏
j∈[d] yi,j ;

3. For j ∈ [m], mkxi,j is a valid membership proof for (xi,j , s̃xi,j) w.r.t. digest(S̃x);

4. For j ∈ [m], s̃xi,j = commit(sxi,j ;βi,j);

5. For j ∈ [d], mkyi,j is a valid membership proof for (yi,j , s̃yi,j) w.r.t. digest(S̃y);

6. For j ∈ [d], s̃yi,j = commit(syi,j ;β
′
i,j);

– Send sxi,1, . . . , sxi,m, syi,1, . . . , syi,d, and the proof π′i to the server.

Server:

– For i ∈ [n], verify the proof π′i. If the proof is invalid, report client i.

– If a serial-number collision of the form sxi,j = sxi′,j′ or syi,j = syi′,j′ is found where
(i, j) 6= (i′, j′), then report clients i and i′ (including the case when i′ = i).

Figure 4: Extension: protocol with identifiable abort. The variables comi, γi, and ρi are
inherited from the main stage of the protocol described earlier.
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Cost analysis. Suppose we use the same parameter choices as Section 5, and use a SNARK
scheme with the same performance bounds as stated in Section 5. Below we use Õ(·) to hide
logarithmic factors. In the F∗shuffle-hybrid model, each client i incurs Õ(|Ri|) computation Õ(m)
communication, where the notation |Ri| denotes the size of the circuit that checks the NP relation
Ri. Further, the server’s computation and communication are upper bounded by O(nm) + Õ(n).

The above costs are stated for the F∗shuffle-hybrid model. When F∗shuffle is actually instantiated,
we also need to charge for the overhead of instantiating F∗shuffle itself. In our evaluation in Section 7,
we use an instantiation with a semi-honest server where the retrieval is accomplished through a
PIR scheme (see Appendix C.2). Specifically, we use SimplePIR [HHCG+23] to instantiate the
PIR in our evaluation. In this case, the server’s computation will increase to Õ(n2m2) due to the
cost of the PIR. If we employ known batch PIR techniques [ACLS18], the server’s computation
cost can be reduced to Õ(n2m), since the m queries from a client can be served with Õ(n) server
computation.

In Appendix C.4 and Appendix C.5, we prove the following theorem.

Theorem C.1 (Protocol for a malicious server). Suppose that |F| is superpolynomial in λ, n− t ≥
19 and d = ω

(
log |F|+log λ

log(n−t)

)
. Further, suppose that the underlying NIZK satisfies completeness,

soundness, and zero-knowledge, the commitment scheme used by the server is perfectly binding and
computationally hiding, and the commitment scheme used by the client is computationally hiding
and extractable. Then, the protocol described in this section satisfies completeness, soundness with
identifiable abort, and t-anonymity in the presence of a malicious server.

C.4 Proof of Anonymity

The anonymity proof is the same as the proof in Appendix B.3, except that with the following
modifications: 1) in Hyb1 where we switch the NIZK’s CRS and NIZK proofs to simulated ones,
we additionally switch the proofs in the blame phase to simulated ones as well; and 2) in Hyb2

where we switch the honest clients’ commitments to commitments of 0, we additionally switch the
honest clients’ committed serial numbers to commitments of 0.

C.5 Proof of Soundness with Identifiable Abort

If the protocol aborted identifying some subset I before the blame phase, due to the completeness
of the NIZK and the definition of F∗shuffle, it is straightforward to see that the set I identified must
be non-empty and contain only malicious clients. The soundness proof in Appendix B.2 directly
implies that if the server accepts without invoking the blame phase, then the multiset output by
the server must satisfy the conditions required by the soundness definition. Therefore, it suffices to
show that except with negligible probability, if the protocol enters the blame phase, then the set I
reported must be non-empty and contain only malicious clients. We prove this below.

Hybrid experiment with simulated commitments and proofs. First, we switch to Hyb3

in the anonymity proof (see Appendix C.4), where the honest clients’ commitments and zero-
knowledge proofs are all replaced with commitments of 0 and simulated proofs. Since the adversary
cannot distinguish whether it is in the real world or Hyb3, it suffices to prove that in Hyb3, except
with negligible probability, if the protocol enters the blame phase, then the set I reported must be
non-empty and contain only malicious clients.
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Proving soundness in the hybrid experiment. In Hyb3, the corrupt clients have no knowledge
of the honest clients’ serial numbers in an information theoretic sense (recall that we assume that
the clients communicate with the server over a private channel). Therefore, except with negligible
probability, the serial numbers {sxi,j}i∈C,j∈[m] and {syi,j}i∈C,j∈[d] revealed by the corrupt clients in
the blame phase do not collide with honest clients’ revealed serial numbers. This guarantees that
except with negligible probability, if anyone is reported, it cannot be an honest client.

It remains to show that except with negligible probability, if the protocol enters the blame
phase, indeed it will report a non-empty set I. Ignore the negligibly small probability that the
adversary breaks the soundness of the NIZK scheme or the collision resistance property of the
Merkle tree, then the following must be true. Let xi = (xi,1, . . . , xi,m) and ρi be the values under
the commitment comi submitted by a corrupt client i ∈ C during the audit phase. Suppose during
the blame phase, each corrupt client i ∈ C reveals the serial numbers {sxi,j}j∈[m] and {syi,j}j∈[d].
It must be that

1. for each j ∈ [m], (xi,j , s̃xi,j) belongs to the multiset of data items received by the server from
F∗shuffle during the data collection phase, where s̃xi,j is a correct commitment of sxi,j ;

2. for each j ∈ [d], (yi,j , s̃yi,j) belongs to the multiset of decoy terms received by the server from
F∗shuffle during the data collection phase, where s̃yi,j is a correct commitment of syi,j ; and

3. ρi =
∏
j∈[d] yi,j .

Ignore the negligible probability that the corrupt clients reveal some serial number that collides
with an honest client’s serial number. The above also implies that each (xi,j , s̃xi,j) or (yi,j , s̃yi,j)
belongs to the corrupt clients’ contributions during the data collection phase.

We claim that if all the above hold and yet the set consistency check during the audit phase
failed, it must be that there exist two corrupt clients j, j′ ∈ C, such that j and j′ opened the same
serial number during the blame phase — this is sufficient for concluding the proof. To see why this
above claim is true, one can easily verify that if all corrupt clients opened distinct serial numbers
during the blame phase, and assuming the above conditions, then the corrupt clients’ committed
data items during the audit phase {xi,j}i∈C,j∈[m] must form a disjoint partitioning of the corrupt
clients’ contributions in the data collection phase, and the same also holds for the decoy terms
{yi,j}i∈C,j∈[d]. Now, ignore the probability that the adversary breaks the NIZK of the audit phase,
it must be that the set consistency check will pass during the audit phase.

D Implementation and Evaluation for the Blame Phase

We implement the blame phase for the Shuffle-DP Sum use case, based on Groth16 proof system.
We use an open-sourced PIR implementation of SimplePIR [HHCG+23] to obtain benchmarks
about the PIR-related costs. We report the detailed breakdown numbers in Table 3. We divide
the costs into three parts, the NIZK-related costs, the PIR-related costs and other costs. The
NIZK-related costs denote the proving costs for the clients, and denote the verifying time for the
server. The other costs include the costs of building the Merkle tree and checking repeated serial
numbers for the server, and include the costs of preparing the assignment (used by the prover
algorithm) for the client. The other cost generating the constraint assignments, and the other costs
for the server include The NIZK-related client time corresponds to the proof generation time, and
the NIZK-related server time corresponds to the verification time; the communication cost includes
the cost to transmit the proof. The PIR-related client time includes the PIR query generation time
and the time to recover the PIR response, while the server time includes the query response time;
the communication cost includes both the upload and download costs.
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Client time. The proof generation process still dominates the cost, and it takes 4.6 seconds to
generate the proof. The PIR and the other costs only take a few milliseconds.

Server time. The server generates the PIR responses upon receiving clients’ queries, and this
time dominates the cost. In our setup, we need a batched PIR query (including 118 sub-queries)
to a database with 1.2 × 105 entries, where each entry is a 528-byte Merkle proof. By running a
state-of-the-art open-sourced PIR implementation [HHCG+23], we estimate the server time cost to
be 22.5ms per client. The server also needs to verify the proofs and finds repeated serial numbers.
These operations only take a few milliseconds.

Communication. The communication cost is dominated by the PIR queries and the PIR query
size is estimated to be 1.0MB. The NIZK proof size only takes 0.2KB, and the other parts take
11KB.

Components Client Time Amt. Server Time Comm.

Based on Groth16

NIZK-related 4.6s 1.7ms 0.2KB
PIR-related 2.0ms 22.5ms 1.0MB

Others 3.9ms 3.0ms 11KB
Total 4.6s 27.2ms 1.0MB

Table 3: The breakdown costs of the blame phase for the Shuffle-DP Sum use case. The bottleneck
components are highlighted by underlining. “Amt. Server Time” denotes the server time cost spent
on each client. “Comm.” denotes the communication cost per client.

E Discussions: Other Failed Attempts

To illustrate why our solution is technically non-trivial, we discuss some other näıve approaches to
achieve shuffle-model ZKP using generic primitives.

One possible approach is to rely on Fully Homomorphic Encryption (FHE) and a succinct zero-
knowledge proof protocol. Suppose that the server is semi-honest. During the audit, each client
uses a threshold FHE to encrypt its set, and sends the encrypted set to the server. The server
homomorphically evaluates a circuit that outputs 1 iff all clients’ sets are a disjoint partitioning the
pool of data items it has collected, and moreover, each client’s set satisfies the compliance predicate
C. It sends the encrypted output to all clients. Now, each client computes a decryption share, and
proves in zero-knowledge that the decryption share is computed correctly. The server recovers the
output from the decrypted shares.

This approach achieves Õ(m) communication and computation per client; however, it has two
drawbacks 1) it is not concretely efficient; and 2) it only works for a semi-honest server. If the
server is malicious, it can substitute the input pool to break clients’ privacy. We are not aware of
any way (without assuming a powerful functionality like the blockchain) where the clients need not
download the entire pool or incur communication linear in the n, and yet can verify that the server
used the correct set.
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