
1

Accountable Decryption made
Formal and Practical

Rujia Li, IEEE Member, Yuanzhao Li, IEEE Student Member, Qin Wang, IEEE Member,
Sisi Duan, IEEE Senior Member, Qi Wang, IEEE Member, and Mark Ryan

✦

Abstract—With the increasing scale and complexity of online activities,
accountability, as an after-the-fact mechanism, has become an effec-
tive complementary approach to ensure system security. Decades of
research have delved into the connotation of accountability. They fail,
however, to achieve practical accountability of decryption. This paper
seeks to address this gap. We consider the scenario where a client
(called encryptor, her) encrypts her data and then chooses a delegate
(a.k.a. decryptor, him) that stores data for her. If the decryptor initiates an
illegitimate decryption on the encrypted data, there is a non-negligible
probability that this behavior will be detected, thereby holding the de-
cryptor accountable for his decryption. We make three contributions.
First, we review key definitions of accountability known so far. Based on
extensive investigations, we formalize new definitions of accountability
specifically targeting the decryption process, denoted as accountable
decryption, and discuss the (in)possibilities when capturing this concept.
We also define the security goals in correspondence. Secondly, we
present a novel Trusted Execution Environment(TEE)-assisted solution
aligning with definitions. Instead of fully trusting TEE, we take a further
step, making TEE work in the “trust, but verify” model where we trust
TEE and use its service, but empower users (i.e., decryptors) to detect
the potentially compromised state of TEEs. Thirdly, we implement a
full-fledged system and conduct a series of evaluations. The results
demonstrate that our solution is efficient. Even in a scenario involving
300, 000 log entries, the decryption process concludes in approximately
5.5ms, and malicious decryptors can be identified within 69ms.

Index Terms—Accountability, Decryption, Trusted Hardware

1 INTRODUCTION

Modern cryptographic systems mainly depend on pre-
ventive strategies such as passwords, access control mecha-
nisms, and authentication protocols to ensure privacy and
security. Prior to gaining access to sensitive data or per-
forming any action that raises privacy or security concerns,
individuals must demonstrate their authorization to do so.
These preventive strategies can indeed offer a degree of
protection against unauthorized users attempting to infil-
trate the system. Nonetheless, as the scale and complexity
of computer systems increase dramatically, it has become

Rujia Li, and Sisi Duan are with the Tsinghua University, Beijing, China;
Email: {rujia, duansisi}@tsinghua.edu.cn.
Yuanzhao Li, and Qi Wang, are with the Southern Uni-
versity of Science and Technology, Shenzhen, China. Email:
{12232416,wangqi}@mail.sustech.edu.cn.
Qin Wang is with University of New South Wales, Sydney, Australia. Email:
qinwangtech@gmail.com.
Mark Ryan is with the University of Birmingham, Birmingham, UK. Email:
m.d.ryan@bham.ac.uk.

increasingly evident that relying solely on a preventive
approach is insufficient. In some break-glass scenarios [1],
users have to bypass the preventive strategies to access sen-
sitive information. Consequently, accountability becomes a
crucial mechanism to supplement preventive strategies, as
it can identify and punish malicious individuals who breach
pre-established rules after accessing sensitive data [2].

In this work, we formalize the concept of accountable
decryption [3][4], which is an innovative approach that al-
lows users to share the ability to access a specific piece of
information, simultaneously providing evidence of whether
the information has been accessed or not. We consider a sce-
nario with three roles, as illustrated in Figure 1.(a): encryptor,
decryptor, and judge. An encryptor is a person who provides
access for a decryptor to her encrypted data and defines
policies to restrain how the decryption can be conducted. A
decryptor decrypts the ciphertext and recovers the original
data. Each decryption operation performed by the decryptor
unavoidably produces evidence of the decryption which
undergoes scrutiny by a judge. The judge verifies whether
the conducted decryption complies with the predefined
policies. If any policy violation is detected, the judge im-
poses appropriate punishments on the decryptor. In this
way, the decryptor is accountable for his behavior.

Bringing accountability for decryption offers many ben-
efits. For example, in electronic surveillance [5], the law-
enforcement agency seeks access to users’ sensitive data
from tech companies. Yet, confidential court-ordered in-
quiries are processed privately to ensure investigation in-
tegrity. This curtails oversight of privacy-sensitive govern-
ment actions. Indeed, there are concerns about government
power and privacy, as there is a risk of eavesdropping
on legal citizens. Accountable decryption offers a potential
solution in this case: a user (encryptor), law-enforcement
agency (decryptor), and overseer (judge) work in tandem
to strike a balance between investigation requirements and
privacy requirements. On the one hand, accountable decryp-
tion allows law-enforcement agencies to access sensitive
data in adherence to investigative orders. On the other hand,
it facilitates the detection of potential abuses of the granted
warrant, as overseers can verify whether law-enforcement
agencies comply with the court order’s limits.

Beyond electronic surveillance, the practical accountabil-
ity of decryption offers a range of general benefits for many
applications (cf. Section 9.2). We summarize these benefits

as follows.
• Detection of unauthorized access. Accountable decryption

allows the encryptor to audit the decryption process [3].
• Deterrents of illegal behaviours [6]. The decryptor is re-

sponsible for its actions, as any violation of the access
control to the data can be caught and punished [7].

• Regulatory compliance. One can also implement regu-
latory compliance with the pre-defined policies. The
accountability of a decryptor’s behavior demonstrates
his compliance with regulations, as a verifiable record
of decryption events is provided.

• Key leakage awareness. If a decryptor discovers that her
ciphertexts have been decrypted without her permis-
sion, she will be alerted of a potential leakage of de-
cryption keys.

Reviewing accountability definitions in the literature.
The concept of accountability has been defined in differ-
ent contexts. We reviewed accountability definitions in the
literature, including those defined for identity authentica-
tion [8][9], non-tampering evidence [1][6], and policy viola-
tions [7][10]. Our observation is that while these definitions
share similarities and follow the general principle of after-
the-fact behavior checking and misconduct blaming [11][12],
we still need a new notion for accountable decryption.
In particular, prior definitions only provide a rather high-
level abstraction of accountability. For instance, they fail to
delineate what constitutes legitimate decryption activities.
Furthermore, prior definitions often assume the existence of
a trusted third party responsible for managing and tracking
evidence of actions without addressing scenarios where this
intermediary is compromised. Accordingly, we extend prior
definitions and propose a new definition for accountable
decryption.
Formalizing definitions and properties for accountable
decryption. We propose new definitions of accountability
that specifically target the decryption process. We empha-
size two fundamental pillars for achieving ideal account-
ability of decryption (cf. Definition 9). First, our definitions
ensure that dishonest decryptors can always be detected and
punished (non-repudiation). Second, we ensure that honest
decryptors are never wrongly accused and punished (non-
frameability). This definition is derived from the synthesis
of existing studies with various emphases. It encompasses
faithful compliance at every stage, including policy setting,
action performance, post-feedback, and punishments with
appropriate punishments.

judge

decryptor
policy

(o
ptio

nally
) p

en
alty

encryptor

ciphertext

 evidence

policy

(a) Ideal accountable decryption

judge

decryptor

policy

(o
ptio

nally
) p

en
alty

encryptor

ciphertext

policy

trustee

re
q

u
es

t

(partial)
key

evidence

(full) key

(b) Practical accountab. decryption

Figure 1: General review on our solution

The above definition, however, might seem sufficient for
defining the accountability of decryption. In practice, the

decryption is conducted in the decryptor’s local client. A
decryptor could decrypt the ciphertext silently and secretly
without providing decryption evidence to the judge, and
thus, the misbehavior cannot be captured [4]. To achieve
the requirement that the decryptor’s actions are visible to
the judge, we require another party called trustee (TS),
which holds the decryption key. It receives requests from the
decryptor and enforces the visibility of the requests to the
judge. We show the solution in Figure 1.(b). Unfortunately,
this reliance on specific roles may raise another concern
for our definition, as the TS may become corrupted or
untrustworthy. Thus, we propose two practical definitions
for accountable decryption, considering a trusted TS (cf.
Definition 11) and an untrusted TS (cf. Definition 14).
Building a practical accountable decryption scheme. We
construct an innovative scheme that achieves accountable
decryption, called PORTEX. Our solution leverages trusted
hardware as the trustee, specifically Trusted Execution En-
vironments (TEEs) [13][14][15]. In particular, by integrat-
ing TEEs into the trustees’ infrastructure, the decryptor’s
private key and the audit trail of data access are securely
protected by trusted hardware. Every time decryption is
required, the decryptor must initiate a request to the trusted
hardware. In response, the trusted hardware not only sup-
plies the necessary decryption key but also records evidence
of the transaction. This process ensures that decryption
activities are accountable, thereby fulfilling the criteria out-
lined in Definition 11.

We have noticed that TEEs are vulnerable to fault
attacks [16], software attacks [17], and side-channel at-
tacks [18], et al. While certain countermeasures (e.g., soft-
ware patches) can mitigate some of these vulnerabilities,
achieving a completely secure TEE remains uncertain. Re-
cent research [19][20] has highlighted that a compromised
TEE cannot maintain the foundational security properties
expected of TEE-based systems. In light of these challenges,
our approach deviates from the traditional reliance on the
inherent trustworthiness of TEEs. Instead, we introduce two
algorithms to cope with TEE failures. The first algorithm
inspired by the key management solutions used in [21],
[22], is designed such that TEE only stores a partial key
while the user securely holds another portion. Even if at-
tackers compromise the TEE, they cannot deduce a complete
decryption key. The second algorithm adopts a trust, but
verify model, where we trust TEE and use its service, but
empower users (i.e., decryptors) to detect the potentially
compromised state of TEEs. This minimizes losses upon
detecting a compromised state. By these algorithms, our
system is in accordance with Definition 14. To the best of
our knowledge, we proposed the first practical solution
that achieves accountability in TEE-based systems without
assuming absolute trust in TEEs.
Providing full-fledged implementation and evaluations.
We provide a fully functional implementation12 including
encryption module, decryption module, tracing module,
and conduct a series of evaluations for our implementation.
Experimental results further demonstrate that our system
is efficient. Even in an extreme scenario involving 300,000

1Released at https://github.com/portex-tee/portex
2Public service at http://ac-dec.com

2

https://github.com/portex-tee/portex
http://ac-dec.com

log entries, the decryption process concludes in approxi-
mately 5.5ms. Furthermore, a user can identify the mali-
cious decryptor within 69ms, while the compromised TEE
is detected in a mere 4.3ms. In addition, we benchmark our
proposed system against state-of-the-art studies. The results
indicate that our system offers a more practical solution,
as it obviates the need for a centralized storage center for
ciphertext backups, thereby reducing both the number of
participants and the frequency of interactions.

2 PRELIMINARIES

Trusted hardware. We use the trusted execution environ-
ment in this work. TEE is a secure area within the main pro-
cessor that operates as an isolated kernel. It ensures the con-
fidentiality and integrity of sensitive data and computations.
State-of-the-art TEE implementations include Intel Software
Guard Extensions (SGX) [13], ARM TrustZone [14], RISC-V
Keystone [15]. A TEE typically provides features including:
runtime isolation and local/remote attestation. Without loss of
generality, we use Intel SGX as the TEE instance to illustrate
TEE’s key features. Runtime isolation guarantees that the
code execution is isolated from untrusted memory regions.
Attestation proves that the application is running within
trusted hardware. By following several notions from [23],
we define TEE as general trusted hardware HW.

Definition 1 (Trusted hardware, HW). HW for executing
a probabilistic polynomial time (PPT) program Q consists of
algorithms {HW.Setup, HW.Load, HW.Run, HW.Run&Quote,
HW.VerifyQuote}.

• HW.Setup(λ): The algorithm inputs the security param-
eter λ, creates a secret key skquote for signing remote at-
testation quotes, and outputs public parameters pmshw.

• HW.Load(pmshw, Q): The algorithm creates an enclave
and loads the code Q into the created enclave. It outputs
the handle hdl of an enclave.

• HW.Run(hdl, in): The algorithm executes the program
in the enclave with an input in.

• HW.Run&Quote(hdl, in): It takes as input hdl, in, and
executes the program in enclaves. After obtaining the
result, the enclave signs the output with skquote, and
creates a quote q = (mdhdl, HQ, in, out, σ), where
mdhdl is the enclave metadata, HQ is a hash of Q, and
σ is the signature of previous data.

• HW.VerifyQuote(pmshw, q): The algorithm verifies the
quote. It verifies the signature σ and outputs true if the
verification succeeds. Otherwise, it outputs false.

Integrity of TEE execution. TEE creates a secure, isolated
area that can run the application and handle sensitive data.
This area is a self-contained execution environment com-
pletely isolated from the rest of the system. The application
code cannot be replaced or modified once it is successfully
loaded in this area [24]. Thus, the execution of identical
loaded code with congruent inputs shall yield consistent
outputs. We formalized this property as follows.

Definition 2 (TEE execution Integrity, ExeInty). Considering
that an adversary A and a challenger C playing the following
game.

GExeInty(λ)

1 : C Run pmshw ← HW.Setup(1λ)

2 : C and initialize O := ∅.
3 : A runs hdl← HW.Load(pmshw, Q)

4 : A runs q ← HW.Run(hdl, in) outputting opt.

5 : A adds opt into O
6 : repeat step 3-5

The advantage AdvGExeInty

A,HW (λ) of A winning the game is

Adv
GExeInty

A,HW (λ) = Pr[HW.Run(hdl, in) ⊀ O].

HW is ExeInty secure if for all PPT adversary A, there exists a
negligible function negl(λ) such that AdvGExeInty

A,HW (λ) < negl(λ).

Notes. In several TEE products (e.g., Intel SGX), to preserve
signers’ anonymity, a quote is created using an anonymous
group signature [13]. As anonymity is orthogonal to our
formalization, we omit it in this work.
Cryptographic primitives. Our construction relies on stan-
dard cryptographic primitives, i.e., public key encryption
scheme PKE, signature scheme S (see Appendix A).

3 DEFINITIONS OF ACCOUNTABILITY

In this section, we review the development of the defi-
nitions. Our objectives are twofold: (i) to assess the applica-
bility of the existing definitions to accountable decryption,
and (ii) if they are not suitable, to identify commonalities
in the current definitions that can serve as a foundation for
formulating our new definition.
✎ Nissenbaum (1996) [25] first proposed the notion of
accountability in computer sencece. It did not provide a
clear definition of accountability but strengthened that ac-
countability is crucial for building reliable computer science.
✎ Kailar (1996) [8] and Yumerefendi et al. (2005) [9] ex-
tended the definition of accountability by emphasizing its
objectivity and establishing its strong connection to real
entities. Their work emphasized the importance of binding
accountability with a unique identifier, enabling the tracking
and linking of actions to specific individuals or entities. This
crucial exploration allows the detection of misbehavior.

Definition 3 (On linkage, merged by [8][9]). An accountable
system associates states and actions with identities and provides
primitives for actors to validate the states and actions of their
peers, such that cheating or misbehavior becomes detectable, prov-
able, and undeniable by the perpetrator.

✎ Subsequent endeavors have further enriched the concept
of accountability by accentuating the significance of honest
behaviors exhibited by participants. To achieve this, Bella
et al. (2006) [1] and Haeberlen et al. (2007) [6] embrace
accountability as the process of furnishing evidence to a
principal, which can subsequently be presented to the judge.
Buldas et al. (2000) [26] and Yumerefendi et al. (2007) [27]
delved into its application and strengthened the importance
of real-time detection of misconduct.

Definition 4 (On detection, rephrased). Accountability has
the following features: (a) reliable evidence, merged by [1][6]:
It indicates the delivery to a principal of evidence that is later

3

presented to the judge. The evidence can be validated and achieves
fairness (i.e., that one protocol participant gets evidence if and
only if the other one does) and non-repudiation; (b) enhanced
misconduct detection, merged by [26][27]: A system should pro-
vide a means to directly detect and expose misbehavior by its
participants, or, enable a principal to prove to the judge any
detected fraud.

✎ A parallel line of studies, comprising Lampson
(2005) [12], and Feigenbaum et al. (2011) [11], further im-
proved the accountability definition by emphasizing that ac-
countability is actually a posteriori behavior. These studies
emphasized the significance of consequences and deterrent
measures in shaping responsible behavior in various do-
mains. Grant et al. (2005) [10] and Weitzner et al. (2008) [7]
underscored the imperative of validating adherence to pre-
defined policies.

Definition 5 (On punishment, rephrased). Accountability in a
computing system implies the following properties: (a) awareness
of policy violation, merged by [7][10]: Some actors have the right
to hold other actors to a set of standards, to judge whether they
have fulfilled their responsibilities in light of these standards. (b)
posterior penalty, merged by [10][11]: An entity is accountable
with respect to some policy (or accountable for obeying the policy).
Whenever the entity violates the policy, with some non-negligible
probability, the entity will be punished.

✎ Subsequent studies such as Haeberlen (2010) [28] have
made strides in identifying the key factors that define the
connotation of accountability. In addition to that, a few
studies, such as Ishai et al. (2014) [29], have delved into
establishing formal treatments of accountability.

Definition 6 (A summary by [28]). A system is accountable if
(a) faults can be reliably detected, (b) each fault can be undeniably
linked to at least one faulty node, and (c) the faulty entities will
be properly sanctioned.

The above review shows that decades of research have
thoroughly studied the concept of accountability with dif-
ferent focuses. However, they fail to fully capture the en-
tities, components, and algorithms involved in accountable
decryption. For example, none of the definitions explicitly
define the actions of encryption operations or what consti-
tutes legitimate decryption activities. This finding highlights
the need for an accountable decryption definition.
General principle of accountability. We summarize the
general principle of accountability in the above definitions.
It holds the following features: (1) linkage identities: each
action is linked to an entity that performed it; (2) reliable
evidence: the system maintains a record of past actions such
that entities cannot secretly omit, falsify, or tamper; (3) policy
compliance: the evidence can be inspected for signs of faults;
(4) detection: when a judge detects a fault, it can obtain an
alert of the fault that can be verified independently by a
third party; (5) punishment: a proper sanction can be applied
to misconduct entities.

4 ACCOUNTABLE DECRYPTION

In this section, we formally define the accountability
of decryption. Our definition fits in the scenario where

users choose a delegate to store their encrypted data and
are aware of any subsequent decryption actions of the en-
crypted data. The process involves multiple roles: encryptor
(E), decryptor (D), and judge (J). E and D are entities that
create ciphertexts and perform the decryption of cipher-
texts. J is responsible for detecting the misbehavior and
imposes penalties against D who conduct such misbehavior.
Accountable decryption requires five protocols.

• Setup. params ← Setup(1λ); The system takes secu-
rity parameters λ and outputs the parameters params.
Here, params is the default input for the rest of the
algorithms and is thus ignored for simplicity.

• Encryption. (ct,P) ← Enc(aux,m); An encryptor E
executes this algorithm to generate a ciphertext ct by
using a message m and decryptor’s auxiliary data aux,
and policies P . Here, P dictates what are legal actions.

• Decryption. (m,π)/bot
ẽ←− Dec(key, ct); A decryptor

D executes this algorithm within a designated envi-
ronment, denoted as ẽ. It takes as input a private key
key, a ciphertext ct, and the encapsulated environment
variables of ẽ. If the decryption is successful, it outputs
a plaintext m and a piece of evidence π, which serves
as substantiation for validating the decryption process.
Otherwise, it outputs ⊥, indicating an abort. Notably, ẽ
captures critical aspects of the event, including precise
timing, the unfolding sequence, and the identities of
participating entities. Ideally, π faithfully represents ẽ,
which we denote as π ⇔ ẽ.

• Check violation. tag ← CheckViolation(π, ct,P); A
judge J executes this algorithm to scrutinize the ac-
tions of the decryptor, ensuring compliance with the
predefined policies. It takes as input the evidence
of decryption π, the policy P and outputs a result
tag ∈ {true, false}. Here, false indicates the decryp-
tor’s action is aligned with policies, and we define it as
legitimate decryption.

• Punishment. true/false ← Punish(tag,P); J imposes
penalties against D in case of non-compliance. Here,
true indicates penalties are imposed successfully.

Our definition follows the general principle summarized
in Section 3. It has the ability to trace, identify, and punish
malicious decryptors. In particular, if D maliciously accesses
the plaintext, J provides feedback on D ’s actions by check-
ing evidence π, and then imposes penalties upon D for its
misbehaved decryption.

4.1 Ideal Accountable Decryption

We formalize the ideal notion of accountable decryption
in terms of two properties: non-repudiation which says that
decryptors who did illegal decryption can be identified and
penalized, and non-frameability, which says that decryptors
who performed legal decryption should not be blamed or
subjected to false accusations.

To formalize non-repudiation, we consider a game in
which the adversary takes on the role of the decryptor and
is allowed to interact with other honest roles. The adversary
wins if it illegally decrypts a ciphertext (policy deviation,
i.e., ẽ ⊀ P) without facing punishment (the punishment
protocol outputs false).

4

Definition 7 (Non-repudiation). Define adv
Gnrep

A (λ) =
Pr[Gnrep

A (λ)], where Gnrep
A (λ) is defined as follows:

Gnrep
A (λ)

params← Setup(1λ)

(ct,P)← Enc(aux,m)

(m,π)
ẽ←− ADec(key,ct)

tag ← CheckViolation(π, ct,P)
return (false = Punish(tag,P) ∧ (ẽ ⊀ P) ∧ (π ⇔ ẽ)

A protocol satisfies non-repudiation, if for all probabilistic
polynomial-time (PPT) adversaries A, there exists a negligible
function negl(λ) satisfying adv

Gnrep

A (λ) < negl(λ).

Next, to formalize non-frameability, we consider an ad-
versary aiming to frame an honest decryptor by generating
evidence of its “misbehavior”, to ensure the unjust punish-
ment of the honest decryptor. We set up a game where the
adversary can assume any role in the system, including that
of the encryptor and the judge, and interact with an honest
decryptor. The adversary wins by producing evidence of
its ”misbehavior” and inducing punishment upon the legal
decryptor who decrypted a ciphertext in accordance with
the policy i.e., ẽ ≺ P .

Definition 8 (Non-frameability). Define advGnfrm
A (λ) =

Pr[Gnfrm
A (λ)], where Gnfrm

A (λ) is defined as follows:

Gnfrm
A (λ)

params← Setup(1λ)

(ct,P)← Enc(aux,m)

(m,π)
ẽ←− ADec(key,ct)

tag ← CheckViolation(π, ct,P)
return (true = Punish(tag,P) ∧ (ẽ ≺ P) ∧ (π ⇔ ẽ)

A protocol satisfies non-frameability, if for all PPT adver-
saries A, there exists a negligible function negl(λ) satisfying
advGnfrm

A (λ) < negl(λ).

Definition 9 (Ideal Accountable Decryption, IAD). A system
achieves IAD if it satisfies non-repudiation and non-frameability.

Definition 9 seems sufficient for defining the accountabil-
ity of decryption. However, in practice, decryption occurs
locally. If a decryptor withholds π or provides false π (i.e.,
π cannot faithfully reflect ẽ, namely π ⇎ ẽ) during the
decryption process, misbehaviors will never be captured.

4.2 Practical Accountable Decryption
To address this challenge, we introduce a new role

to manage key and π, and we call this role trustee
(TS). Accordingly, we introduce one protocol (called,
EvidenceKeyManage) with two interactive sub-protocols.

• Management. (key′, π′)
ẽ1←− Manage(ct,P); A trustee

TS executes this protocol, producing a key called key′

and a piece of evidence π if ẽ1 ≺ P .
• Key generation. key ← KeyGen(key′); A decryptor D

derives its decryption key from key′.
In the scenario above, D must obtain the key from TS be-

fore executing decryption, preventing the issue of evidence
withholding. However, this brings a new problem: TS may
behave maliciously. Therefore, we propose two definitions

for accountable decryption, considering a trusted TS and an
untrusted TS.

A trusted TS must fulfill a new requirement: TS should
provide authentic keys and evidence. Formally, we define
this requirement by evd-key-soundness game. In this game,
we consider a game in which an adversary plays the role of
TS and is allowed to interact with other honest roles. The
adversary wins if it generates illegal evidence that cannot
represent its decryption behavior (π⋆ ⇎ ẽ⋆) or generates an
illegal key that cannot decrypt the ciphertext.

Definition 10 (Evd-key-soundness). Supposing
advGsound

A (λ) = Pr[Gsound
A (λ)], where Gsound

A (λ) is defined
as follows:

Gsound
A (λ)

params← Setup(1λ)

(ct,P)← Enc(aux,m)

(key⋆, π⋆)
ẽ⋆←− AManage(ct,P)

key ← KeyGen(key⋆)

return (π⋆ ⇎ ẽ⋆) ∨ (⊥ = Dec(key, ct))

A protocol satisfies evd-key-soundness, if for all PPT adver-
saries A, there exists a negligible function negl(λ) satisfying
advGsound

A (λ) < negl(λ).

Definition 11 (Practical accountable decryption with trusted
trustee, PAD-tTS). A system achieves ADec-tTS if it satisfies
non-repudiation, non-frameability and evd-key-soundness.

We now consider the worst-case scenario where TS is
not fully trusted. We require two additional properties:
compromise-security, which says that even if TS is compro-
mised, our PAD system is still secure; the compromised TS
cannot learn D’s plaintext; compromise-awareness, which say
that it has a certain probability of detecting and learning the
TS status of being compromised.

In the compromise-security game, we consider a game in
which an adversary takes on the role of TS and is allowed
to interact with other honest roles. The adversary wins if it
can learn D’s plaintext.

Definition 12 (Compromise-security). Define advGcsec
A (λ) =

Pr[Gcsec
A (λ)], where Gcsec

A (λ) is defined as follows:

Gcsec
A (λ)

params← Setup(1λ)

(ct,P)← Enc(aux,m)

(key⋆,)
ẽ1←− AManage(ct,P)

key ← AKeyGen(key⋆)

return m = ADec(key,ct)

A protocol satisfies compromise-security, if for all PPT adver-
saries A, there exists a negligible function negl(λ) satisfying
advGcsec

A (λ) < negl(λ).

We further introduce an additional detection protocol
to capture compromise-awareness, namely, true/false ←
Trace(π, ẽ); The algorithm outputs true only when the
misbehavior that π cannot reflect ẽ (namely π ⇎ ẽ), can be
detected. We then consider a game in which an adversary
takes on the role of TS and is allowed to interact with
other honest roles. The adversary wins if it generates a π

5

which cannot reflect ẽ, namely π ⇎ ẽ, and such misbehavior
cannot be detected.

Definition 13 (Compromise-awareness). Supposing
advGaware

A (λ) = Pr[Gaware
A (λ)], where Gaware

A (λ) is defined
as follows:

Gaware
A (λ)

params← Setup(1λ)

(ct,P)← Enc(aux,m)

(key⋆, π⋆)
ẽ⋆←− AManage(ct,P)

return (π⋆ ⇎ ẽ⋆) ∧ (false = Trace(π⋆, ẽ⋆))

A protocol satisfies compromise-awareness, if for all PPT adver-
saries A, there exists a negligible function negl(λ) satisfying
advGaware

A (λ) < negl(λ).

Definition 14 (Practical accountable decryption with un-
trusted trustee, PAD-uTS). A system achieves ADec-uTS if
it satisfies compromise-security and compromise-awareness.

5 A SECURE CONSTRUCTION

Philosophy of our design. The main idea behind our
construction is to establish a dependable party TS using
TEEs [13][14][15]. Traditional methods of ensuring account-
ability in decryption rely heavily on a judge to verify the
legality of each decryption. However, even if the judge
is assumed to be fully honest, obtaining evidence is chal-
lenging if a decryptor refuses to comply with the protocol
or provides falsified information. To address this issue,
we introduce a new role called trustee operating within
TEEs. It receives decryption requests from decryptors and
ensures the visibility of these requests to the judge. By
integrating TEEs, our construction improves the reliability
of trustees, implementing tamper-evident measures during
key distribution to enhance key security and traceability in
the distribution process. We have observed that TEEs are
susceptible to numerous attacks such as [16], [17], [18].
Achieving a completely secure TEE remains a challenge. In
response, we propose a design that enables the detection of
compromised trustees.

Strawman protocol. Our naive solution involves four steps.
① E, defines the decryption policy, encrypts a message, and
sends the ciphertext to D. ② To decrypt the ciphertext, D
submits a decryption request to TEE-based TS with a sig-
nature to prove the identity. ③ TEE retrieves the decryption
key, generates a piece of evidence about the key request,
stores it in a log, and then sends the decryption key to D.
Then, D decrypts the ciphertext. ④ J checks the evidence
and imposes penalties against malicious decryption. The
above approach immediately achieves Definition 10 when
we assume that TEE is fully trusted. Under this assumption,
the codes are executed as loaded, ensuring the integrity of
the execution; when a key request is made by the decryptor,
both the evidence and the key are produced accurately.

Technical challenges. Definition 14 further assumes that
the trustee can be compromised. Indeed, this is aligned
with the fact that TEE products suffer from architectural
vulnerabilities [30], side-channel attacks [31], and fault at-
tacks [16]. Therefore, we need to provide a solution that

satisfies Definition 14. However, a few technical challenges
still exist in building a fully-fledged solution.
Challenge-1: How to protect decryption keys under compromised
TEEs. In the above approach, if a TEE is compromised, the
adversary can access private keys. This not only renders
the accountable mechanism ineffective but also jeopardizes
the confidentiality of ciphertexts. In fact, this issue is a ma-
jor drawback of existing TEE-based accountability systems,
such as those presented in [32], [4].

Inspired by the key management solutions used in [21],
[22], we introduce a key-splitting mechanism wherein TEE
only stores a partial key while the user holds another partial
one. Even if an attacker accesses the key inside TEEs, it
cannot obtain a full decryption key.
Challenge-2: How to detect the compromised TEE. Within the
present design paradigms, TEE functions as an encapsu-
lated entity (black box), precluding any interrogation of
its internal states by unauthorized peripheral components.
However, this attribute also engenders a notable challenge:
the dearth of visibility for overseers seeking potential com-
promise or deviations from established protocols.

We develop a detection algorithm to find potential com-
promises by inspecting TEE’s outputs. Our algorithm is
based on the concept of deception technology [33]: using
tactics to deceive malicious TEE into attacking the wrong
targets and thus producing potentially useful information.
To create wrong targets, we introduce two new roles: en-
cryption inspector Pe and encryption inspector Pd. They
emulate conventional encryptors and decryptors, respec-
tively. If TS outputs inconsistent results, Pe and Pd will
learn potential compromise of TEE. Beyond that, by lever-
aging the commitment scheme, our newly proposed key
generation algorithm guarantees that TS cannot generate a
decryption key identical to the key requested by users. Thus,
a pair of private keys, which are honestly generated under
D’s request and maliciously generated by TS, can serve as
evidence of a fraudulent TS.
Overview of our construction. In our design, TS com-
prises two essential elements: private key generator (PKG)
and log manager (LM). These elements can operate on the
same server but within distinct domains for specific func-
tionalities. PKG is executed within TEEs and handles the
generation of decryption keys. LM operates in untrusted en-
vironments and is responsible for maintaining and updating
the evidence π related to the key extraction process.
Threat model. We assume that the decryptor’s public key
can be linked to a unique identifier. This assumption is
common in the literature and reasonable in practice. In-
stead of fully trusting the TEE like previous TEE-based
solutions [3][4][34][32], we make TEE work in the “trust,
but verify” model where a compromised state is detectable.
Also, we require cryptographic primitives that we rely upon
to be provably secure.

At a high level, our system studies as follows. Initially,
E defines the condition (i.e., P) of key extraction; TS runs
PKG in TEE while providing public interfaces. Then, ① E
encrypts a message and sends the corresponding ciphertext
ct and P to D. ② for decrypting ct, D sends a key request
message with a commitment for his random number to TS.
③ TS generates decryption keys and updates the evidence

6

π of key extraction. Specifically, LM first stores D’s key
request in a log and transforms it as evidence π, while PKG
generates the partial decryption key based on the received
commitment. ④ J traces log to find the misbehavior of
decryption and imposes penalties against the decryptor. ⑤

the inspectors (i.e., E, D, J) identify and prove the guilty
of dishonest/compromised TEE who suppressed the evi-
dence/key and provided the forged evidence/key.

Final design. Our solution generally follows the strawman
approach mentioned in Section 5. The concrete decryption
scheme follows the design of identity-based encryption
(IBE) [35][36]. We run PKG inside TEE, and thus, the master
private key of IBE is securely protected. Every ciphertext
is encrypted using the decryptor’s identity and a serial
number. To perform decryptions, a decryptor D has to
request the key from PKG. An essential aspect of this
procedure is that the request is forced to be stored in a
log, and PKG issues a decryption key only if the request
is proven to be securely stored. The log is structured as an
append-only Merkle tree, as used, for example, in certificate
transparency [37] to improve security and efficiency. Below,
we describe the technical details.

(1) Key management. E encrypts a message using the re-
ceiver’s identity (e.g. email addresses) and E-generated
serial number. This brings two benefits. First, it elim-
inates the need for E to request a new key for every
encryption operation and thus improves practicality.
Second, due to the nature of IBE scheme, the dynamic
serial number makes a fresh key. D never knows the se-
rial number until he obtains the ciphertext, which forces
him to request a new key each time for decryption and
then leaves a piece of unique evidence. Meanwhile,
we require TS to only maintain a partial private key.
Through a local calculation process, D combines his
partial key with that of TS to obtain the final private
key. This design ensures that, even if an attacker fully
gains access to the TEE-based PKG, it cannot deduce the
complete decryption key (adhering to Definition 14.vi).

(2) Evidence management. We use an append-only Merkle
tree based log LOG to store the decryption evidence
π. Whenever a decryption occurs, trusted hardware
updates the Merkle tree by extending the leaf from
the rightmost branch. This unique structure enables the
generation of two distinct types of proofs to ensure the
integrity of the evidence: proof of presence ρ guarantees
that the specific evidence is stored within a tree; the
proof of extension ε proves that such a tree is an
append-only extension of LOG. We give an example to
explain how to verify the ρ and ε. As shown in Figure 2,
it depicts the Merkle tree before and after the insertion
of node N7. The ε is valid only if the root hash H is the
hash of {H(6, 6), H(4, 5), H(0, 3)}, and the ρ is valid
only if the current root hash H ′ is the hash of {H(7, 7),
H(6, 6), H(4, 5), H(0, 3)}.

(3) Decryption checking. Based on the decryption activities,
a judge J conducts log queries, thereby acquiring sup-
plementary details pertinent to the decryption event.
Subsequently, J compares these supplementary details
with predefined decryption policies to validate the le-
gitimacy of the decryption process.

4,5

4,4 5,5

N0

0,5

0.3

0,1 2,3

2,20,0 1!" 3!#

N1 N2 N3 N4 N5

0 $

$

5

0,5

4,7

4,5

4,4 6!%5,5

0,7

N6 N7

7,7

6,7

N4 N5

$

$

T0 T1 T2

In
sertion

H’

HH N
ew

 su
b
tree

Figure 2: Merkle tree update

Our design also considered the worst-case scenario that
a compromised TS may manipulate evidence and sup-
press evidence (adhering to Definition 14). We accordingly
propose a detection algorithm to detect such misbehaviors.
Central to this algorithm lies the deployment of inspectors.
In a bid to mimic a conventional encryptor and decryptor,
Pe and Pd dynamically engage in standard interactions with
TS (behaving like a challenger). Based on the observations
meticulously gathered by Pe and Pd throughout these inter-
actions, our algorithm possesses the capability to effectively
discern whether TS has been compromised.
(1) TS provides forged evidence or forged key. When Pd re-

quests a private key, it is required to submit a signature
on the identity and timestamp. Then, signatures are
organized into a secure Merkle tree structure by ex-
tending the tree to the right, following an append-only
policy. This empowers Pd to detect any forged evidence
originating from TS. Meanwhile, if the issued partial
key lacks the capability to yield a complete key, then Pd

knows TS has been compromised, e.g., TS provides an
invalid partial key.

(2) TS suppresses the evidence or key. An inspector Pd pre-
tends to be a regular D and asks for a private key
from TS. If the request is granted, but TS fails to show
the necessary evidence or the decryption key, Pd knows
that TS has hidden them.

We now delve into the most tricky scenario: TS effec-
tively conceals both the key and evidence. If TS refrains
from any communication with Pd, its malicious actions
may remain undetected. In our solution, the private key
is generated based on Pd’s commitment to an undisclosed
random number, unbeknownst to TS. In the event that a
decryptor, Pd, subsequently uncovers a new key not linked
to the commitment, and no traces are left behind, it becomes
evident that this key must have been clandestinely gener-
ated by TS. Therefore, for a given identity, the existence of
a pair of private keys stemming from different sources acts
as evidence against a deceitful TS. Admittedly, this relies
on probabilistic grounds since Pd cannot guarantee a 100%
probability of finding a malicious key. Nevertheless, it at
least exposes Pd to the risk of being detected.
(3) TS, privately generates key without leaving any evidence.

When Pd requests a private key, it is required to use
a commitment to conceal a random number. Under
normal circumstances, the private key should be
tailored to this specific commitment. If a new key
that is not associated with the commitment is later

7

discovered, Pd will learn TS must have conducted an
invalid decryption.

Notably, existing TEE-based studies assume that the
hardware is fully trusted. However, in practice, real-world
scenarios diverge from this ideal, as even reliable hardware
like TEEs exhibit vulnerabilities, as evidenced by studies
such as [30][31]. Our work takes a step forward and consid-
ers accountable decryption under the bad cases of trusted
hardware being compromised. Our construction is critical
for building practical decryption with accountability.

6 DETAILED PROTOCOL

In this section, we present our detailed protocol (see
Figure 3). We instantiate TEE using Intel SGX [13].
Setup the system. ✎ Portex.Setup(λ): This is a preparation
phase aiming to set up the system. The algorithm takes as
input a security parameter λ, and outputs public parameters
pms. In particular, it first calls HW.Setup to initiate the HW
and generates pmshw (L.1). Then, it runs HW.Load to load
PKG code (e.g., Portex.EvidenceKeyManage as defined in
Figure 3) into a generation enclave GE (L.2). Next, it runs
(“init”, λ) to set up the enclave and then publish the public
keys (mpk, vkGE) (L.3). Meanwhile, the log manager LM
calls MT.Init(λ) to initialize the log and runs S.KGen(λ)
to generate a signature key pair (vkLM , skLM) (L.4). For
D, it generate a key pair (pkenccli , sk

enc
cli) and signing key

pair (vksigncli , sksigncli) for secure data transfer (L.5-L.6). Here,
parameters (pmshw,mpk, vkLM/GE , pk

enc
cli , vk

sign
cli) are pub-

licly accessible, and default inputs of the rest of algorithms.
① The encryption phase. ✎ Portex.Enc(ID,m): In this
phase, E encrypts a secret/message m and generates a
ciphertext ct and corresponding policy P . In particular, it
first generates a random serial number SN . Then, it runs
IBE.Enc(mpk, ID|SN,m) to encrypt a message m using
mpk and a combination of user identity ID and SN (L.2).
② The decryption phase. A decryptor D recovers the plain-
text, before which he needs to request the corresponding
private key. This is an interactive protocol between TS
(including KM, LM), and D with two algorithms as follows.
✎ Portex.EvidenceKeyManage(ID, SN, σcli): The algorithm
takes as input ID, SN , and D’s signature σcli, and out-
puts a decryption key pkey, and the evidence π of key
extraction. Inspired by [36], we separate the key genera-
tion into three sub-algorithms {IBE.KGenD1, IBE.KGenPKG,
IBE.KGenD2}. The detailed algorithms are as follows.

• (L.1-L.3): D first locally runs IBE.KGenD1 to select
(t0, θ) and to generate a commitment C . Then, it gener-
ates a signature σcli on ID and SN . After that, it sends
(ID, SN , C), and σcli to LM.

• (L.5-L.7): LM runs MT.Insert. If the verification of σcli

fails, the algorithm aborts. Otherwise, it runs MT.Insert
adds a tuple N(ID, SN, τ, σcli) to an append-only log
LOG. To be specific, LM first records the timestamp τ
of the D’s request. Then, it calls MT.Insert and outputs
evidence π, which contains the newly inserted tuple
N , current tree root hash Hnew, old tree root hash Hold,
proof of presence ρ, proof of extension ε. Next, LM signs
a tuple ir(π, C) by calling S.Sign(skLM , ir) and obtains
a signature σir . Finally, LM sends (ir, σir) to PKG.

• (L.8.1-L.8.6): Once PKG receives (ir, σir), it calls the
Portex.EvidenceKeyManage inside GE. Specifically, it
first verifies σir using vkLM . If the above steps fail,
the algorithm aborts. Next, GE runs MT.Verify to check
the validity of the proof of presence ρ and the proof of
extension ε. (L.8.7-L.8.11): If the evidence π is valid,
GE selects (r′, t1) from Z⋆

p and starts to calculate a
partial decryption key pkey by calling IBE.KGenPKG,
where pkey consists of (d′1, d

′
2, d

′
3), and C is used to

calculate d′1. Then, GE encrypts pkey to ctpkey with D’s
public key pkenccli . PKG sends quote of ctpkey to D.

• (L.9-L.15): D finally runs HW.VerifyQuote to verify
quote. If the verification fails, the algorithm aborts.
Otherwise, it calculates the final decryption key by call-
ing IBE.KGenD2. The final decryption key is calculated
from pkey, and consists of (d1, d2, d3).

✎ Portex.Dec(key, ct): Now, D can access the secret m by
runing IBE.Dec with mpk and key (L.1). The algorithm
outputs m if it is encrypted with ID|SN . Otherwise, it
outputs ⊥.

③ The checking phase. Portex.CheckViolation(π, ct,P): In
this phase, J examines the actions of the decryptor based
on the evidence π stored in LOG. Precisely, it finds π in
LOG, and then checks whether π satisfies P (L.1-L.4). If
misbehavior is found, the protocol outputs true. Otherwise,
it outputs false.

④ The punishment phase. Punish(tag,P): The judge J im-
poses penalties against D who has conducted malicious de-
cryption. These penalties include measures such as deposit
forfeiture and credit downgrade, which are not detailed here
for brevity.

△! The detection for the compromised trustee. For iden-
tifying potential compromises of TS, we introduce two
sub-algorithms: deterministic detection algorithm and proba-
bilistic detection algorithm. The deterministic detection al-
gorithm infers a compromised state through a challenge-
response mechanism, while the probabilistic detection al-
gorithm identifies potential compromises by comparing the
final keys issued by D with those issued by TS.

Deterministic detection algorithm. We make the inspector Pd

pretend to be a regular decryptor D (as a challenger) and
ask for the private key and evidence from the trustee TS.
If any inconsistency is detected, it suggests that TS has
been compromised. In particular, if P generates a partial
key without evidence in LOG, TS must have forged the
evidence (L.4 in Algorithm 1); if P’s evidence is aligned
with LOG, but the partial key lacks the capability to yield
P’s complete key, TS has attempted to manipulate P’s key
(L.7 in Algorithm 1); if P’s partial key arises but no evidence
is shown, decryption evidence suppression has happened
(L.11 in Algorithm 1); if evidence appears without P’s
partial key issuance, it implies decryption key concealment
by TS (L.14 in Algorithm 1).

Probabilistic detection algorithm. We now consider the trickiest
scenario, where TS hides the newly generated key as well
as evidence. We argue if TS leaks any information on its
misbehavior, it runs the risk of being caught and prosecuted.
In the decryption phase, as (t0, θ) are chosen randomly
by P that are unknown to PKG, PKG cannot generate a

8

Portex.Setup(λ)

1 : PKG runs pmshw ← HW.Setup(λ)

2 : hdlGE ← HW.Load(pmshw, QGE)

3 : mpk, vkGE ← HW.Run&Quote(hdlGE , (“init”, λ))

1 : H ← 0

2 : mpk,msk ← IBE.Setup(λ)

3 : vkGE , skGE ← S.KGen(λ)

4 : return mpk, vkGE

4 : LM runs vkLM , skLM ← MT.Init(λ)

5 : CLIENT runs pkenc
cli , skenc

cli ← PKE.KGen(λ)

6 : vksig
cli , sk

sig
cli ← S.KGen(λ)

Portex.CheckViolation(π, ct,P)
1 : (ID⋆, SN⋆, τ⋆)← LOG
2 : (N,H ′, H, ρ, ε)

parse←− π

3 : (ID, SN, τ, σcli)
parse←− N

4 : πInLog = ((ID, SN, τ) = (ID⋆, SN⋆, τ⋆))

∧ (true = MT.Verify(π))

∧ (true = S.Verify(vksig
cli , σcli, ID|SN))

5 : return ((ID, τ) ⊀ P) ∧ (true = πInLog))

Portex.Trace(key,D)

1 : (d1, d2, d3)
parse←− key

2 : (D1, D2, D3)
parse←− D

3 : return d3 ̸= D3

Portex.Enc(ID,m)

1 : SN
$←− Z⋆

m

2 : ct← IBE.Enc(mpk, ID|SN,m)

3 : return ct, SN

Portex.Punish(tag,P)
1 : if(tag) impose punishment
2 : return tag

Portex.EvidenceKeyManage(ID, SN)

1 : CLIENT runs C ← IBE.KGenD1(mpk)

2 : σcli ← S.Sign(sksig
cli , ID|SN)

3 : CLIENT sends (ID, SN,C, σcli) to LM.

4 : if(true ̸= S.Verify(vksig
cli , σcli, ID|SN)), abort

5 : LM runs π ← MT.Insert(ID, SN, τ, σcli)

6 : ir = (π,C), σir ← S.Sign(skLM , ir)

7 : LM sends (ir, σir) to PKG

8 : quote← HW.Run&Quote(hdlGE , (“Manage”, ir, σir))

1 : if(true ̸= S.Verify(vkLM , σir, ir)), abort

2 : if (H ̸= Hold), abort

3 : (π,C)
parse←− ir

4 : (N,Hnew, Hold, ρ, ε)
parse←− π

5 : (ID, SN, τ, σcli)
parse←− N

6 : if(false = MT.Verify(π)), abort

7 : H ← Hnew

8 : pkey ← IBE.KGenPKG(msk, ID|SN,C)

9 : ctpkey ← PKE.Enc(pkenc
cli , pkey)

10 : σpkey ← S.Sign(skGE , ctpkey)

11 : return ctpkey , σpkey

9 : CLIENT receives quote

10 : (mdhdl, HQ, in, out(ctpkey, σpkey), σ)
parse←− quote

11 : if (HQ ̸= HGE), abort
12 : if (false = HW.VerifyQuote(pmshw, quote)), abort
13 : if (false← S.Verify(vkGE , σpkey, ctpkey)), abort
14 : pkey ← PKE.Dec(skenc

cli , ctpkey)

15 : key ← IBE.KGenD2(mpk, ID|SN, pkey)

Portex.Dec(key, ct)

1 : m← IBE.Dec (mpk, key, ct)

2 : return m

Figure 3: PORTEX protocol and generation enclave

Algorithm 1 The detection algorithm
wrongdoing ∈ {true, false}

1: −−−−−−−−−deterministic detection−−−−−−−−−
2: upon receiving π and pkey from TS
3: key = IBE.KGenD2(mpk, ID, pkey)
4: if π /∈ LOG ∧ Dec(key, ct) ̸= ⊥ then
5: wrongdoing = true ▷ TS must have forged π
6: upon receiving π and pkey from TS
7: if π ∈ LOG ∧ IBE.KGenD2(mpk, ID, pkey) = ⊥ then
8: wrongdoing = true ▷ TS must have forged pkey
9: upon receiving pkey from TS

10: key = IBE.KGenD2(mpk, ID, pkey)
11: if find evidence(LOG) = ∅ ∧ Dec(key, ct) ̸= ⊥ then
12: wrongdoing = true ▷ TS must have suppressed π
13: upon receiving π from TS
14: if find key(π) = ∅ then
15: wrongdoing = true ▷ TS must have suppressed pkey
16: −−−−−−−−−probabilistic detection−−−−−−−−−
17: upon finding key′

18: if key ̸= key′ ∧ Dec(key′, ct) ̸= ⊥ then
19: wrongdoing = true

decryption key that is same as key. This laid the foundation
for detecting the PKG’s misbehaviors. For a valid decryption
key, d3 contains the parameter t0 that only knows to P. If
any P finds another valid key but does not equal key, then
it demonstrates that D is maliciously generated by TS, and
thus shows TS’s misbehavior.

7 SECURITY ANALYSIS

This section provides a security analysis, considering
two scenarios where TEE is secure or compromised.

Security analyses under secure TEEs. Assuming that TEE
and the used cryptographic primitives are secure, our con-
struction achieves PAD-tTS defined in Definition 11. We
prove the theorem by contradiction. If an adversaryAmade
our construction fail to achieve properties in PAD-tTS, we
could use such abilities to break our assumptions.

Theorem 1. If HW is ExeInty secure and S is Existential Un-
forgeability under Chosen Message Attack (EUF-CMA) secure,
our construction achieves PAD-tTS in Definition 11.

9

IBE.Setup(λ, n)

1 : select bilinear groups (G,GT , e, p), where the p > 2λ

2 : x
$←− Z⋆

p

3 : msk ← x

4 : X ← gx

5 : g, h, Y
$←− G

6 : Z← (Z0, Z1, ..., Zn)
$←− Gn+1

7 : mpk ← (X,Y, h,Z)

8 : return mpk,msk

IBE.KGenD1(mpk)

1 : t0, θ
$←− Z⋆

p

2 : return ht0 ·Xθ

IBE.KGenPKG(msk, ID,C)

1 : r′, t1
$← Z⋆

p;

2 : d′1 ← (Y · C · ht1)1/x ·HZ(ID)r
′

3 : d′2 ← Xr′

4 : d′3 ← t1

5 : pkey ← (d′1, d
′
2, d

′
3)

6 : return pkey

IBE.KGenD2(mpk, ID, pkey)

1 : r′′
$← Z⋆

p

2 : r ← r′ + r′′

3 : d1 ←
d′1
gθ
·HZ(ID)r

′′

4 : d2 ← d′2 ·Xr′′

5 : d3 ← d′3 + t1

6 : key ← (d1, d2, d3)

7 : checks e(d1, X) = e(Y, g) · e(h, g)d3 · e(HZ(ID), d2)

8 : return key

H(a, b)

1 : c← a|b
2 : return Π.Hashs(c)

IBE.Enc(mpk, ID,m)

1 : s
$←− Z⋆

p

2 : C1 ← Xs

3 : C2 ← HZ(ID)s

4 : C3 ← e(g, h)s

5 : C4 ← m · e(g, Y)s

6 : ct← (C1, C2, C3, C4)

7 : return ct

IBE.Dec(mpk, key, ct)

1 : (d1, d2, d3)
parse←− key

2 : m← C4 · (
e(C1, d1)

e(C2, d2) · Cd3
3

)−1

3 : return m

MT.Init(λ)

1 : LOG ← {}
2 : vkLM , skLM ← S.KGen(λ)

3 : return vkLM , skLM

MT.Insert(T)

1 : n← number of leaf nodes
2 : insert T to LOG
3 : Hold ← H(0, n− 1), Hnew ← H(0, n)

4 : ρ← {hash nodes covering [0, n)}
5 : ε← ρ ∪H(n, n)

6 : π ← (N,Hnew, Hold, ρ, ε)

7 : return π

MT.Verify(π)

1 : (N,Hnew, Hold, ρ, ε)
parse←− π 2 : Hpoe, Hpop ← ϕ

3 : foreach Hi ∈ ε

4 : Hpoe ← Π.Hash(Hi, Hpoe)

5 : endforeach

6 : foreach Hj ∈ ρ

7 : Hpop ← Π.Hash(Hj , Hpop)

8 : endforeach

9 : return (Π.Hash(N) ∈ ε and Hpoe = Hold

and Hpop = Hnew)

Figure 4: IBE algorithm and evidence management algorithm

Proof. We prove this theorem by demonstrating that the prob-
abilities of the adversary winning the non-repudiation, non-
frameability, and evd-key-soundness games are negligible. We
discuss each of these in turn.
Non-repudiation: To win Gnrep

A (λ) game, an adversary A must
produce illegal evidence such that false = MT.Verify(π) after
it successfully conducted decryption such that m = IBE.Dec
(mpk, key, ct). As shown in Figure 3, when LM cannot provide
valid decryption evidence in the form of (ir, σir). the algorithms
L.8.1 and L.8.6 are programmed to abort. This further leads to the
failure of algorithm L.8.8. Suppose A has successfully conducted
a decryption. In that case, it implies thatA has either manipulated
the TEE code (e.g., Portex.EvidenceKeyManage as defined in
Figure 3) or provided a forged signature of LOG manager.,i.e
σir. However, the manipulation of the TEE code contradicts our

assumption regarding the execution integrity of the TEE (ExeInty
secure), while the forged signature breaks the security of EUF-
CMA of S.
Non-frameability: To win Gnfrm

A (λ) game, an adversary must
produce illegal evidence for an honest decryptor’s “misbehavior”
to ensure its punishment. According to the algorithm L.5, we
have known that Portex.CheckViolation returns true only when
all three conditions defined in L.4 returns true. However, the
first and third conditions return true only A generates a valid
signature σ⋆

cli without sksigcli , which can be used to break the
security of EUF-CMA of S. The second condition returns true
only if the TEE codes are manipulated, which contradicts our
assumption regarding the execution integrity of the TEE (ExeInty
secure);
Evd-key-soundness: To win Gsound

A (λ) game, an adversary

10

must produce a tuple (key⋆, π⋆), that makes (π⋆ ⇎ ẽ1) or
(⊥ = Dec(key, ct)). However, both parameters imply that an
adversary has provided a valid signature σcli (as shown in
EvidenceKeyManage algorithm L.4, without providing valid
σcli, the protocol will abort), which breaks the security of EUF-
CMA of S.

Analysis under compromised TEE. We now consider cases
of TS being compromised. We prove that even in this
extreme case, our construction is still secure, and users can
be aware of such compromises.

Theorem 2. If discrete logarithm problem (DLP) assumption
holds, HW is ExeInty secure and S is EUF-CMA secure, our
construction achieves PAD-uTS defined in Definition 14.

Proof. We prove this theorem by demonstrating that the prob-
abilities of the adversary winning the compromise-security and
compromise-awareness game are negligible. We discuss each of
these in turn.
Compromise-security: From the algorithm (L.2), we have known
that m = C4 · (e(C1,d1)

e(C2,d2)·C
d3
3

)−1. where, d1 = (Y · ht0+t1)1/x ·
HZ(ID)r, d2 = Xr, d3 = t0 + t1. As r, t0, t1 is randomly
selected from Z⋆

p, even if the adversary fully controls x, it has
a negligible probability of decrypting the ciphertext. Let the
plaintext decrypted from ciphertext C as m⋆ and the original
message as m, then we have the following equation.

m⋆ = C4 · (
e(C1, d1)

e(C2, d2) · Cd3
3

)−1 =
C4 · e(C2, X

r) · Ct1+t′

3

e(C1,
d′
1

gθ′ ·HZ(ID)r′′)

= m · e(g, Y)s · e(HZ(ID)s, Xr) · e(g, h)s·(t1+t′)

e(Xs, (Y Rht1)1/x

gθ′ ·HZ(ID)r)

= m · e(g, Y)s · e(g, h)s·(t1+t′) · e(Xr, HZ(ID)s)

e(gxs, (Y Rht1

gxθ)
1
x) · e(Xs, HZ(ID)r)

= m · e(g, Y)s · e(g, ht′ht1)s

e(gs, Y ht1ht0 ·Xθ

Xθ′)

= m · e(gs, h(t′−t0) ·X(θ′−θ))

When t′ = t0 and θ′ = θ the output value is m∗ = m.
The adversary’s sole source of information regarding t0 and θ is
represented by R = ht0 · Xθ = ht0 · gθx, where the public
parameters g and h are prime numbers. This can be equivalently
reframed as a challenge in solving discrete logarithm problems.
Compromise-awareness: We consider two cases: (Case-1) TS
provides inconsistent or forged results, and (Case-2) TS does not
provide any result at all, i.e., TS simultaneously suppresses the
evidence and associated keys.
Case-1: The proof is straightforward. If TS fails to provide the
private key or the corresponding evidence, an inspector P imme-
diately learns that TS is compromised.
Case-2: Given a decryption key d = (d1, d2, d3) generated by
Portex.EvidenceKeyManage, where d1 = (Y · ht0+t1)1/x ·
HZ(ID)r, d2 = Xr, and d3 = t0+t1 for distinct t0, t1

$←− Z⋆
p.

The PKG lacks information about t0, which implies that the
probability of the leaked decryption key D containing the same

d3 as key is 1
p , where p > 2λ (as defined in IBE.Setup).

Consequently, the probability PrA(λ) of the A’s success is:

PrA(λ) = Pr[key.d3 = D.d3] ≤
1

p
≤ 1

2λ

8 IMPLEMENTATION AND EVALUATION

We implement PORTEX in C++ and use Intel SGX SDK
[24] as the TEE. The implementations of IBE algorithms,
including key generation, encryption, decryption, and trace,
are based on the Pairing-Based Cryptography (PBC) li-
brary [38]. Our Merkle Tree implementation is based on
the merklecpp library [39]. The public key encryption and
signature algorithms are based on the OpenSSL library [40].
The SGX Enclave does not support the original OpenSSL.
Therefore, in the PKG program, we utilize SGXSSL as an
alternative [41].
Performance&scalability. It involves two aspects: (a) eval-
uating decryption performance, misbehavior-checking per-
formance, and detection performance for finding the com-
promised TEE; (b) examining how scalability is affected
when the number of decryptors increases. We evaluate
the performance of PORTEX on a machine with 3.5GHz
Intel Xeon CPU (Ice Lake). The symmetric bilinear pairing
e : G×G→ GT is constructed on the curve y2 = x3+x, and
the security parameter λ is selected as 512. We report the av-
erage time of each algorithm by repeating the experiments
1,000 times.
Performance evaluation with static parameters. We first evalu-
ate performance with static parameters. As an exam-
ple, we consider the following scenario. We assume that
there are 1000 decryptors, and each decryptor can launch
one decryption. Our evaluation shows that the full de-
cryption process, including two sub-algorithms: evidence-
key management and decryption, concludes within 10ms. In
particular, evidence-key management takes approximately
1.31ms, 3.15ms, 2.56ms to finish IBE.KGenD1, IBE.KGenD2,
and IBE.KGenPKG, respectively; It takes about 1.69ms
and 6.05ms to generate and verify the decryption evi-
dence. Simultaneously, the decryption of the ciphertext ex-
hibits remarkable efficiency, demanding less than 1ms: the
Dec.Setup operation concludes within an incredibly short
span of 0.1ms, while IBE.Dec finalizes in a mere 0.6ms.

Meanwhile, tracing malicious decryption is significantly
efficient, as it only takes at most 0.002ms to trace the
evidence of malicious decryption. The process of identifying
potential forgery within the TEE unfolds in two stages.
Specifically, detecting forged evidence and forged keys takes
approximately 0.02 milliseconds and 0.01 milliseconds, re-
spectively. Should the evidence or the key be suppressed,
their compromise is swiftly ascertained. The probabilistic
detection hinges on the methodology employed to distin-
guish these two elements. Remarkably, the comparison itself
concludes in a mere 0.001 milliseconds upon the discovery
by the decryptor D.

We then assess the execution time of each basic cryp-
tographic primitive used in IBE, and report them in Ta-
ble 1.right. In this table, we use the following symbols
to represent the running time of each function. Tbp: The

11

Table 1: Theoretical complexity (L) and experimental time on IBE (R): (a) Line 2 of Portex.EvidenceKeyManage in Figure 3; (b)
Line 9-14; (c) Line 4-7; (d) Line 1-8 of GE on input Manage; (e) It costs 3.0121 ms for running KGenPKG in CPU.

Algorithm Estimated Time (ms) Experiment Time (ms) Size Environment

Setup

HW.Load - 342.9301 1.5MB inside TEE Symbol Size (B)

MT.Init - <0.001 <1KB outside TEE pkpke 148

PKE.KGen - 1.0413 <1KB outside TEE skpke 180

S.KGen - 1.8399 <1KB outside TEE vksign 148

Enc
Enc.Setup - 0.3119 - outside TEE sksign 180

IBE.Enc 2Tbp + 2Tep.g1 + 2Tep.gt + Tbm ≈ 1.8535 2.0010 3.4KB outside TEE

E
vi
d
en
ce
K
ey
M
an
ag
e

D

IBE.KGenD1 2Tep.g1 + Tep.gt + Tbm ≈ 1.2544 1.3170 1.2KB outside TEE

Manage.SendReqa Tsign ≈ 1.6972 7.1164 - outside TEE

Manage.Verifyb Tverify + Tdec ≈ 7.5307 17.9325 - outside TEE Symbol Time (ms)

IBE.KGenD2 4Tbp + 3Tep.g1 + Tep.gt + 5Tbm ≈ 2.9666 3.1452 3.1KB outside TEE Tep.g1 0.6028

LM Manage.LogGenc Tsign ≈ 1.6972 6.9579 - outside TEE Tep.gt 0.0473

P
K
G

Manage.LogVerifyd Tverify ≈ 6.0527 10.6760 - outside TEE Tbm 0.0015

IBE.KGenPKG 4Tep.g1 + 3Tbm + Thw ≈ 2.4252 2.5676e 3.0KB inside TEE Thw 0.0096

Manage.SendPkey Tsign + Tenc ≈ 3.4893 16.6631 - outside TEE

Dec
Dec.Setup - 0.1128 - outside TEE

IBE.Dec 2Tbp + Tep.gt + 3Tbm ≈ 0.6035 0.7079 3.9KB outside TEE

CheckViolation CheckViolation - 0.1599 - outside TEE Symbol Time (ms)

Detection

Forged evidence - 1.0677 <1KB outside TEE Tenc 1.7921

Forged key - 3.5497 <1KB outside TEE Tdec 1.4780

Suppress evidence - <0.001 <1KB outside TEE Tsign 1.6972

Suppress key - <0.001 <1KB outside TEE Tverify 6.0527

LogInspect 2 · (4Tbp + Tep.gt + 2Tbm) ≈ 2.3076 2.3586 3.7KB outside TEE

execution time of one bilinear pairing operation e(P,Q),
where {P,Q} ∈ G; Tep.g1: The execution time of one
exponentiation operation P x, where P ∈ G, x ∈ Zp; Tep.gt:
Except for P ∈ GT , similar to Tep.g1; Tbm: The execution
time of one scale multiplication operation P · Q, where
{P,Q} ∈ G; Thw: The time of context switch to TEEs.
These results closely align with our estimated times for
each primitive, which offers robust evidence supporting the
accuracy of our experimental findings.

Evaluation with dynamic parameters. To determine if deploy-
ment might be feasible in practice, we further evaluate how
scalability is affected by dynamic parameters. We consider
two scenarios: the performance overhead of decryption,
evidence tracing, and compromise detection under (a) es-
calating sizes of security parameters and (b) an increasing
number of decryption instances.

Intuitively, a larger security parameter enhances re-
silience against attacks. This enhancement comes at the cost
of increased execution time for cryptographic operations.
Empirical findings align with our expectations: The time costs
of encryption, evidence-key management, and decryption con-
sistently increase with higher security parameter settings. This
phenomenon stems primarily from the augmented compu-
tational load of the underlying sub-algorithms. For example,
the execution time of IBE.KGenD2

within the key-request
algorithm expands from 4.2ms at a security parameter of
512 to 11.2ms at a heightened security parameter of 1024
(cf. Figure 5(c)). Nonetheless, the evidence tracing and com-
promise detection exhibit relatively steady performance, as
they involve fewer time-intensive primitives.

We now consider the performance overhead arising

from an escalating number of decryption operations (cf.
Figure 5(a), 5(e) and 5(f)). To illustrate, we consider a specific
scenario where the number of decryption operations grows
from an initial 1, 000 to a substantial 300, 000. Our evalu-
ation reveals that encryption time remains invariant with
increased decryption operations as it is independent with
TS, relying solely on the decryptor’s ID and the encryptor’s
sequence number provided. In contrast, the time required
for decryption directly correlates with the historical count
of decryption operations. In particular, the execution time
of operations such as evidence generation and evidence
verification (L.8.7-L.8.11 in Figure 3), both integral to TS,
experiences an increment. Consequently, this rise in process-
ing time within TS contributes to an overall elongation of
the decryption process. Meanwhile, the execution time of
the trace algorithm is directly correlated with the size of the
log. As the log size increases, the time required to query a
malicious decryption operation from the log also increases.
For example, when the log contains 21,000 entries, the trac-
ing algorithm takes 38.5ms to finish the query. Upon aug-
menting the log size of 300,000 entries, the execution time
of the trace algorithm increases to 69.2ms. Notably, the time
cost of compromise detection is stable. Also, to maintain
the integrity of evidence during decryption, it is required
to choose a new sequence number for each encryption. As
depicted in Figure 5, when the sequence number length is
increased, the running time for evidence-key management
displays a clear increasing trend. Fortunately, the impact on
the running time for encryption and decryption is relatively
minimal.

Performance comparison with other solutions. Table 2 compares

12

0.3 0.6 0.9 1.2 1.5 1.8 2.1 2.4 2.7 3

·105

10

20

30

40

50

60

Number of Log Entries

Ti
m

e
(m

s)
(a) Evidence verification (purple),
generation (blue), and tracing (teal)

msg ctkey mpk

0 10
0

20
0

30
0

40
0

50
0

60
0

70
0

80
0

90
0
1,
00
0

0
50
100
150
200
250
300
350
400
450
500
550
600
650
700
750
800

Number of Log Entries

Si
ze

(B
yt

e)

(b) The size of evidence (teal) and
key, ct, msg, mpk (blue)

3 4 5 6 7 8 9 10 11 12 13
0

5

10

15

20

25

30

Length of SN (2x)

Ti
m

e
co

st
(m

s)

(c) KGenD1 (red), KGenPKG

(green), and KGenD2 (yellow) in
algorithm IBE

4 5 6 7 8 9 10 11 12 13 14 15 16
0

5

10

15

20

25

30

35

40

Security parameter (x · 26)

Ti
m

e
co

st
(m

s)

(d) KGenD1 (red), KGenPKG

(green), and KGenD2 (yellow) in
algorithm IBE

0.3 0.6 0.9 1.2 1.5 1.8 2.1 2.4 2.7 3

·105

10

20

30

40

50

60

70

80

90

100

110

Number of Log Entries

Ti
m

e
(m

s)

(e) Encryption (purple), Decryp-
tion (blue), Evidence-key manage-
ment by D (teal), by LM (yellow),
and by PKG (green)

0.3 0.6 0.9 1.2 1.5 1.8 2.1 2.4 2.7 3

·105

1

2

3

4

Number of Log Entries
Ti

m
e

(m
s)

(f) Deterministic detection
of Forged evidence (purple),
of Forged key (teal), and
probabilistic detection (blue)

3 4 5 6 7 8 9 10 11 12 13
0

5

10

15

20

25

30

Length of SN (2x)

Ti
m

e
co

st
(m

s)

(g) Encryption (blue), Evidence-
key management (teal), Decryption
(purple)

4 5 6 7 8 9 10 11 12 13 14 15 16
0

5

10

15

20

25

30

35

40

Security parameter (x · 26)

Ti
m

e
co

st
(m

s)

(h) Encryption (blue), Evidence-
key management (teal), Decryption
(purple)

Figure 5: Experimental performance results

Table 2: Comparison between ours and related studies by analyzing the computational complexity of functional operations, the
operations including Inter-party Interactions (Tinter), Encryption (Tenc), Decryption (Tdec), Signing (Tsign), Verification (Tverify).

Solutions Encryption Decryption Tracing

Ours Po Tinter + Tenc + Tsign 4Tinter + Tenc + 2Tdec + 3Tsign + 4Tverify 2Tinter + Tsign + 2Tverify

Severinsen’s [32] 2Tinter + Tenc + Tsign 6Tinter + Tdec + Tsign + 2Tverify 4Tinter + Tsign + Tverify

Luo’s [42] 2Tinter + Tenc + Tsign 7Tinter + Tenc + Tdec + Tsign + 2Tverify 5Tinter + Tdec + 2Tsign + 2Tverify

Fialka [4] 2Tinter + 2Tenc + 2Tsign + Tverify N ∗ Tinter + Tdec + Tverify 6Tinter + 2Tdec + Tsign + 2Tverify

Log

Decryptor Log Manager

PKG

Enclave

D1

D2
D3

D4

E1

Encryptor /

Tracer

T1

T2

(a) Ours

Log

Encryptor /

Tracer

Application

Provider

Decryption

Device

Enclave

D1

D2D3

D6

E1

T3 T4

Decryptor

Log Service

D5 D4

T2 T1

E2

(b) Severinsen’s [32]

Log

Encryptor /

Tracer

Application

Provider

Decryption

Device

Enclave

D1

D2D3

D7

E1

T3 T5

Decryptor

Log Service

D6 D4

T2 T1

E2

Blockchain
D5
T4

(c) Luo’s [42]

Log

Encryptor PPSC

Auditor

Enclave

T1

T2T3

T6
E2

E1

Tracer

Key Manager

T5 T4

Decryptor

Enclave

(d) Fialka [4]

Figure 6: Comparing operational mechanism of Encryption-Decryption protocol (
E/D−−−→) and Tracing protocol (

T
99K)

the performance of our proposed solution with that of
existing works. As different works use different decryption
algorithms, conducting a direct comparison based on actual
runtime performance is unfair. Therefore, we examine the
workflows of these protocols and quantify the frequency
of critical operations within each protocol to analyze their
computational costs. These critical operations contain inter-
party interactions Tinter , encryption Tenc, decryption Tdec,

signing Tsign, and signature verification Tverify . The inter-
party interaction Tinter refers to the communication or
exchange of information between different parties involved
in a protocol, such as between the encryptor and potentially
a third-party entity like a storage center or log manager.

Our solution has less interaction complexity compared
to prior related works. For example, Severinsen’s protocol
(Psever), Luo’s protocol (Pluo), and Fialka (Pfialka) mandate

13

that the encryptor sends a copy of the ciphertext or auxiliary
information to a storage center (termed as the Application
Provider in Psever and Pluo, and Privacy-Preserving Smart
Contracts(PPSC) in Pfialka, cf. Figure 6) in addition to the
intended recipient. In contrast, our protocol (Po) eliminates
the need for encryptors to send an additional ciphertext
backup, thereby obviating the requirement for a storage
center and reducing interaction complexity. In Po, the en-
cryption, decryption, and tracing operations require Tinter ,
4Tinter , and 2Tinter, respectively.

Furthermore, we present the computational complexi-
ties associated with encryption and decryption in different
protocols (see Table 2). The protocol Psever requires one
encryption and one decryption (Tenc + Tdec), while the
protocols Pluo, Pfialka, and Po each necessitate an additional
encryption and decryption (2Tenc+2Tdec). Although Psever

involves fewer encryption and decryption operations, it
does not consider the message transmission after encryp-
tion, rendering the protocol incomplete.

Space evaluation. We also consider the feasibility of storage
requirements. First, we evaluated the storage usage across
four types of data (namely, key, ct, msg, and mpk). Our
evaluations were conducted using SHA256 hashing, which
generates a 32-byte length digest. Results indicate that the
storage load for mpk with 1,000 entries requires approxi-
mately 780 bytes of storage, which is the most significant
usage we observed. Secondly, we evaluated the trend of
evidence size as the number of log entries increased. We
found that the trend remains relatively stable, indicating the
evidence size will occupy a constant amount of storage.

9 DISCUSSION

We clarify the difference between the concepts of access
control, traceability, and accountability, and provide poten-
tial applications to emphasize the necessity of our scheme.

9.1 Access Control, Traceability, and Accountability

The access control describes who and when can access
data and resources. It prevents unauthorized access before
it occurs. Traceability records the activities of how the data
has been created, modified, accessed, or transferred. It starts
to work after accessing the resources. Accountability holds
individuals responsible for their actions (based on traceabil-
ity), emphasizing the punishment of inappropriate access
(see Table 3).

Table 3: Description and example

Concept Description Example

Access control Governing who can access
specific resources, defining
user permissions, privileges,
and restrictions.

A nurse may access patient records
in his/her department but not in
other departments.

Traceability Providing a documented
trail of how the data has
been created, modified,
accessed, or transferred.

A nurse accesses a patient’s record
in his/her department. The system
records the nurse’s name, time of ac-
cess, and the reason for access (e.g.,
treatment, diagnosis).

Accountability Checking the documented
trail to make users account-
able for any misuse.

A nurse has improperly accessed a
patient’s records he/she is not al-
lowed to access. The improper ac-
cess to the data cannot be denied.

In the context of accountable decryption, the access
control can be more fine-grained, e.g., one can even specify
the legitimate decryption timeframe. For example, one can
ask the decryptor to decrypt only between 3:00 PM and 5:00
PM on some day. Traceability underscores the recording
of the specific decryption time to ensure a traceable trail.
Meanwhile, accountability focuses on verifying whether
decryption occurred within the specified time frame. If
decryption takes place outside the permitted timeframe, the
decryptor is accountable for its behavior and the owner of
the data is aware of such behavior.

9.2 Potential Applications

Accountable ePHI. Electronic protected health information
(ePHI) [43] refers to any health information that can identify
a patient. Balancing ePHI privacy and accessibility is chal-
lenging. Sharing ePHI to all doctors increases the potential
risk of information leakage. Conversely, sharing the needed
health information with only authorized doctors and mean-
while making any improper access undeniable is crucial.
While one can use conventional access control mechanisms
to achieve the same goal, this can slow down treatment as
additional access control procedures are required, which is
not desirable during emergencies. Our system provides a
solution to address the challenges. It allows for information
sharing while auditing unauthorized access and potential
breaches. We consider patients as encryptors (i.e., E) who
possess sensitive data, such as congenital genetic disorders.
E encrypts their data and stores it in the hospital’s cloud
server, making it inaccessible to general practitioners (e.g.,
dental consultants). For instance, when a patient requires
emergency treatment, dentists (i.e., D) can bypass rules and
access the ePHI. After that, a designated auditor J (e.g.,
regulatory authorities) accesses the audit trail to monitor
whether patient data are being accessed for the right pur-
pose.

Transparent KYC. Know Your Client (KYC) standards are
employed in the investment industry to verify customer
identities and assess their risk and financial profiles [44].
Customers are required to provide KYC information to their
banks, enabling the latter to conduct anti-money laundering
procedures. However, this practice raises concerns regard-
ing the potential misuse of customer data. Our solution ad-
dresses these concerns by allowing the customers to upload
encrypted data and become aware of who have accessed
the data. This approach permits banks to access private
information only when necessary.

Accountable warrant. In an ideal scenario, law enforcement
agencies could access citizens’ data stored in the cloud cen-
ter based on electronic warrants [45]. However, in practice,
warrants are processed confidentially to maintain the in-
tegrity of investigations and abuse by malicious law enforce-
ment agencies are not in place [46]. Our solution addresses
these concerns by requiring the law enforcement (D) to
maintain a documented trail when accessing an individual
(E)’s encrypted data. This trail enables public verification of
law agencies’ decryption activities and ensures the safe and
legal use of warrants, thereby mitigating the risks of abuse.

14

10 RELATED WORK

Trusted hardware has been proposed as an effective tool
for achieving accountability protocols. Pasture et al. [47] de-
vised a secure messaging and logging library incorporating
offline data access safeguarded by trusted hardware. Their
approach ensures that access actions are irrefutable and
revocations are verifiable. Ryan [3] proposed an accountable
decryption protocol assisted by trusted hardware. Under
the security of trusted hardware devices, the private key is
stored inside TEEs, and the information of each decryption
will be recorded in a transparent log. Severinsen [32] imple-
mented Ryan’s protocol using Intel SGX [13], guaranteeing
that encryptors can detect every decryption. In this scheme,
decryptors can only decrypt the ciphertext after updating
the Merkle tree in logs. Liang et al. [48] proposed a decen-
tralized accountable system for healthcare data using Intel
SGX and blockchain. Luo et al. [42] applied the blockchain
and SGX to an accountable decryption scheme. The decryp-
tor is assisted by SGX, similar to Severinsen’s solution, but
the log information is recorded on the blockchain. Fialka [4]
employed a TEE-based confidential smart contract to make
decryption accountable, where the transaction is used as
evidence to trace a user’s decryption.

Different from prior studies that merely provide pro-
totypes, our work formally defines the security properties
of accountable decryption and proves the correctness of
our concrete construction. Besides, this line of work often
assumes that TEEs are fully trusted. If the hardware is
compromised, it is not hard to see that the solutions no
longer work. Worse still, overseers cannot learn whether the
hardware has been compromised. To our knowledge, our
scheme is the first work that considers compromised TEEs.
This is achieved by introducing a detection algorithm as part
of our solution.

11 CONCLUSION

In this paper, we focus on achieving the practical ac-
countability of decryption operations. We introduce a novel
set of definitions tailored for accountable decryption. Our
definition aims to capture all possibilities and impossibilities
in the formulation. We further construct a scheme aligning
with the definitions by using trusted hardware. Our proto-
type and evaluations prove the practicability and efficiency.

REFERENCES

[1] Giampaolo Bella and Lawrence C Paulson. Accountability proto-
cols: Formalized and verified. TISSEC, 9(2):138–161, 2006.

[2] Joan Feigenbaum, James A Hendler, Aaron D Jaggard, Daniel J
Weitzner, and Rebecca N Wright. Accountability and deterrence
in online life. In WEBSCI, pages 1–7, 2011.

[3] Mark D Ryan. Making decryption accountable. In Cambridge
International Workshop on Security Protocols, pages 93–98. Springer,
2017.

[4] Rujia Li, Qin Wang, Feng Liu, Qi Wang, and David Galindo. An
accountable decryption system based on privacy-preserving smart
contracts. In ISC, pages 372–390. Springer, 2020.

[5] Jonathan Frankle, Sunoo Park, Daniel Shaar, Shafi Goldwasser,
and Daniel Weitzner. Practical accountability of secret processes.
In USENIX Security, pages 657–674, 2018.

[6] Andreas Haeberlen, Petr Kouznetsov, and Peter Druschel. Peer-
review: Practical accountability for distributed systems. OSR,
41(6):175–188, 2007.

[7] Daniel J Weitzner, Harold Abelson, Tim Berners-Lee, Joan Feigen-
baum, James Hendler, and Gerald Jay Sussman. Information
accountability. CACM, 51(6):82–87, 2008.

[8] Rajashekar Kailar. Accountability in electronic commerce proto-
cols. TSE, 22(5):313–328, 1996.

[9] Aydan R Yumerefendi and Jeffrey S Chase. The role of account-
ability in dependable distributed systems. In Proceedings of HotDep,
volume 5, pages 3–3. Unseix Association, 2005.

[10] Ruth W Grant and Robert O Keohane. Accountability and abuses
of power in world politics. APSR, 99(1):29–43, 2005.

[11] Joan Feigenbaum, Aaron D Jaggard, and Rebecca N Wright. To-
wards a formal model of accountability. In NSPW, pages 45–56,
2011.

[12] B Lampson. Notes for a presentation entitled “accountability and
freedom,. http://research.microsoft.com/en-us/um/people/blampson/sli
des/AccountabilityAndFreedom.ppt, 2005.

[13] Victor Costan and Srinivas Devadas. Intel SGX explained. IACR
Cryptology ePrint Archive, 2016(86):1–118, 2016.

[14] Sandro Pinto and Nuno Santos. Demystifying ARM Trustzone: A
comprehensive survey. CSUR, 51(6):1–36, 2019.

[15] Dayeol Lee, David Kohlbrenner, Shweta Shinde, Krste Asanović,
and Dawn Song. Keystone: An open framework for architecting
trusted execution environments. In EuroSys, pages 1–16, 2020.

[16] Zitai Chen, Georgios Vasilakis, Kit Murdock, Edward Dean, David
Oswald, and Flavio D Garcia. VoltPillager: Hardware-based fault
injection attacks against Intel SGX enclaves using the SVID voltage
scaling interface. In USENIX Security, pages 699–716, 2021.

[17] Jo Van Bulck, David Oswald, Eduard Marin, Abdulla Aldoseri,
Flavio D Garcia, and Frank Piessens. A tale of two worlds:
Assessing the vulnerability of enclave shielding runtimes. In CCS,
pages 1741–1758, 2019.

[18] Jo Van Bulck, Marina Minkin, Ofir Weisse, Daniel Genkin, Baris
Kasikci, Frank Piessens, Mark Silberstein, Thomas F Wenisch,
Yuval Yarom, and Raoul Strackx. Foreshadow: Extracting the keys
to the intel sgx kingdom with transient out-of-order execution. In
USENIX Security, pages 991–1008, 2018.

[19] Weili Wang, Sen Deng, Jianyu Niu, Michael K Reiter, and Yinqian
Zhang. Engraft: enclave-guarded raft on byzantine faulty nodes.
In CCS, pages 2841–2855, 2022.

[20] Fabian Fleischer, Marcel Busch, and Phillip Kuhrt. Memory cor-
ruption attacks within android tees: a case study based on op-tee.
In ARES, pages 1–9, 2020.

[21] Craig Gentry. Certificate-based encryption and the certificate
revocation problem. In EUROCRYPT, pages 272–293. Springer,
2003.

[22] Sattam S Al-Riyami and Kenneth G Paterson. Certificateless public
key cryptography. In ASIACRYPT, pages 452–473. Springer, 2003.

[23] Ben Fisch, Dhinakaran Vinayagamurthy, Dan Boneh, and Sergey
Gorbunov. Iron: Functional encryption using Intel SGX. In CCS,
pages 765–782, 2017.

[24] Intel SGX SDK. https://software.intel.com/en-us/sgx-sdk.
[25] Helen Nissenbaum. Accountability in a computerized society.

Science and Engineering Ethics, 2:25–42, 1996.
[26] Ahto Buldas, Helger Lipmaa, and Berry Schoenmakers. Optimally

efficient accountable time-stamping. In PKCW, pages 293–305.
Springer, 2000.

[27] Aydan R Yumerefendi and Jeffrey S Chase. Strong accountability
for network storage. TOS, 3(3):11–es, 2007.

[28] Andreas Haeberlen. A case for the accountable cloud. OSR,
44(2):52–57, 2010.

[29] Yuval Ishai, Rafail Ostrovsky, and Vassilis Zikas. Secure multi-
party computation with identifiable abort. In CRYPTO, pages 369–
386. Springer, 2014.

[30] Ferdinand Brasser, Urs Müller, Alexandra Dmitrienko, Kari Kosti-
ainen, Srdjan Capkun, and Ahmad-Reza Sadeghi. Software grand
exposure: SGX cache attacks are practical. In WOOT, 2017.

[31] Andreas Kogler, Daniel Gruss, and Michael Schwarz. Minefield: A
software-only protection for SGX enclaves against DVFS attacks.
In USENIX Security, 2022.

[32] Kristoffer Myrseth Severinsen. Secure programming with intel
SGX and novel applications. Master’s thesis, 2017.

[33] Fred Cohen. The use of deception techniques: Honeypots and
decoys. Handbook of Information Security, 3(1):646–655, 2006.

[34] Riccardo Paccagnella, Pubali Datta, Wajih Ul Hassan, Adam Bates,
Christopher Fletcher, Andrew Miller, and Dave Tian. Custos: Prac-
tical tamper-evident auditing of operating systems using trusted
execution. In NDSS, 2020.

15

http://research.microsoft.com/en- us/um/people/blampson/slides/AccountabilityAndFreedom.ppt
http://research.microsoft.com/en- us/um/people/blampson/slides/AccountabilityAndFreedom.ppt
https://software.intel.com/en-us/sgx-sdk

[35] Dan Boneh and Matt Franklin. Identity-based encryption from the
weil pairing. In CRYPTO, pages 213–229. Springer, 2001.

[36] Benoı̂t Libert and Damien Vergnaud. Towards black-box account-
able authority IBE with short ciphertexts and private keys. In
PKCW, pages 235–255. Springer, 2009.

[37] Ben Laurie. Certificate transparency. Communications of the ACM,
57(10):40–46, 2014.

[38] The pairing-based cryptography library. https://crypto.stanf ord.ed
u/pbc/ .

[39] MerkleCpp library. https://github.com/merklecpp/merklecpp.
[40] Openssl: Cryptography and ssl/tls toolkit. https://www.openssl.or

g/ .
[41] Intel SGX SSL. https://github.com/intel/intel-sgx-ssl.
[42] Yili Luo, Jia Fan, Chunhua Deng, Yixin Li, Yue Zheng, and Jianwei

Ding. Accountable data sharing scheme based on blockchain and
SGX. In CyberC, pages 9–16. IEEE, 2019.

[43] Health insurance portability and accountability act.
https://hipaa.yale.edu/security/break-glass-procedure-granting-eme
rgency-access-critical-ephi-systems, 2004.

[44] José Parra Moyano and Omri Ross. KYC optimization using
distributed ledger technology. Business & Information Systems
Engineering, 59:411–423, 2017.

[45] Joshua A Kroll, Edward W Felten, and Dan Boneh. Secure
protocols for accountable warrant execution. https://www.cs.pri
nceton.edu/∼f elten/warrant-paper.pdf , 2014.

[46] Matthew Green, Gabriel Kaptchuk, and Gijs Van Laer. Abuse
resistant law enforcement access systems. In EUROCRYPT, pages
553–583. Springer, 2021.

[47] Ramakrishna Kotla, Thomas L. Rodeheffer, Indrajit Roy, Patrick
Stuedi, and Benjamin Wester. Pasture: Secure offline data access
using commodity trusted hardware. In OSDI, 2012.

[48] Xueping Liang, Sachin Shetty, Juan Zhao, Daniel Bowden, Danyi
Li, and Jihong Liu. Towards decentralized accountability and
self-sovereignty in healthcare systems. In ICICS, pages 387–398.
Springer, 2017.

[49] Michael Szydlo. Merkle tree traversal in log space and time. In
EUROCRYPT, pages 541–554. Springer, 2004.

[50] Scott A Crosby and Dan S Wallach. Efficient data structures for
tamper-evident logging. In USENIX Security, pages 317–334, 2009.

[51] Mark D Ryan. Enhanced certificate transparency and end-to-end
encrypted mail. Cryptology ePrint Archive, 2013.

[52] Vipul Goyal. Reducing trust in the PKG in identity based cryp-
tosystems. In CRYPTO, pages 430–447. Springer, 2007.

[53] Vipul Goyal, Steve Lu, Amit Sahai, and Brent Waters. Black-box
accountable authority identity-based encryption. In CCS, pages
427–436, 2008.

[54] Zhen Zhao, Jianchang Lai, Willy Susilo, Baocang Wang, Yupu
Hu, and Fuchun Guo. Efficient construction for full black-box
accountable authority identity-based encryption. IEEE Access,
7:25936–25947, 2019.

[55] Taher ElGamal. A public key cryptosystem and a signature scheme
based on discrete logarithms. TOIT, 31(4):469–472, 1985.

[56] Niels Ferguson and Bruce Schneier. Practical Cryptography, volume
141. Wiley New York, 2003.

APPENDIX A. CRYPTOGRAPHIC PRIMITIVES

Definition 15 (Discrete Logarithm Problem). Let N = p · q
and g be a primitive root for both Z⋆

p and Z⋆
q , where p and

q are randomly safe primes. Given y = gx mod N , it is
computationally intractable to derive x.

Merkle tree. Merkle Tree [49] MT is an optimized form of a
hash list, which includes three algorithms.

• MT.Init(λ): This algorithm initializes a specific instance
of the Merkle tree with a system-level input λ. As-
suming the current tree contains a series of leaf nodes
denoted as (x1, ..., xn−1).

• MT.Insert(xn): This algorithm inserts a new element
into the log (also known as a leaf attached to the tree).
It takes as input a new element as the leaf node that con-
tains the metadata xn. The algorithm generates and out-
puts the updated root hash h where h = MT(x1, ..., xn)

and evidence π. The operation represents the process of
node merging and updating. The evidence π contains
an array of sub-tree hashes that are used for verification.

• MT.Verify(π, xn): This algorithm verifies whether the
specified element, e.g., xn exists in the tree and whether
Merkle tree MT is append-only. It takes the evidence
π and the queried element xn, and outputs true if the
verification succeeds. Otherwise, it outputs false.

In an append-only Merkle tree [50][51], data items are
stored at the leaves, and new trees or items are added in
a left-to-right chronological order. This structure allows for
the verification of two crucial properties: (a) certain data
is contained within the tree, and (b) a tree is an extension of
another tree. Notably, both proof generation and verification
have logarithmic complexity, along with the number of data
entries increasing.
Identity-based encryption. The identity-based encryption
(IBE) scheme [35] consists of the algorithms as follows.

• IBE.Setup(λ): The algorithm takes as input the security
parameter λ, and outputs a master public key mpk and
a master secret key msk.

• IBE.KGen(mpk, ID): The algorithm takes as input a
user identifier ID, the master public key mpk and
outputs a user’s private key key.

• IBE.Enc(mpk, ID,m): This algorithm takes as input the
master public key mpk, ID, a message m, and outputs
a ciphertext ct.

• IBE.Dec(mpk, sk, ct): This algorithm takes as input
mpk, sk, ct and outputs a message m.

Definition 16 (Correctness of IBE). An IBE scheme IBE
achieves the correctness if for all m ∈ M and all pairs
(ID, key)← IBE.KGen(·), it holds that

IBE.Dec(mpk, key, (IBE.Enc(mpk, ID,m))) = m.

Definition 17 (IND-CCA Security of IBE). Consider an adver-
sary A and a challenger C playing the following game.

GIND-CCA(λ)

1 : C runs IBE.Setup(λ) and key ← IBE.KGen with ID

2 : C sends ID to A;
3 : A adaptively chooses ct and get back IBE.Dec(mpk, key, ct);
4 : A chooses two message (m0,m1) and sends them to C;
5 : C runs ct⋆ ← IBE.Enc(mpk, ID,mb), where b←$ {0, 1}
6 : C sends ct⋆ to A;
7 : A outputs its guess b′;

The advantage AdvGIND-CCA
A,IBE (λ) of A winning the game is

AdvGIND-CCA
A,IBE (λ) = Pr[b′ = b]− 1

2

IBE achieves the IND-CCA security, if for all p.p.t. adver-
saries A, there exists a negligible function negl(λ) such that
AdvGIND-CCA

A,IBE (λ) < negl(λ). The details refer to [35].

Extension on accountable authority IBE. Accountable au-
thority identity-based encryption (A-IBE) is another tech-
nology route to achieve accountability. A-IBE was initially
proposed by Goyal [52] as a means of reducing reliance on
the trustworthiness of the private key generator (PKG) and
making their behavior more accountable. Goyal’s first full

16

https://crypto.stanford.edu/pbc/
https://crypto.stanford.edu/pbc/
https://github.com/merklecpp/merklecpp
https://www.openssl.org/
https://www.openssl.org/
https://github.com/intel/intel-sgx-ssl
https://hipaa.yale.edu/security/break-glass-procedure-granting-emergency-access-critical-ephi-systems
https://hipaa.yale.edu/security/break-glass-procedure-granting-emergency-access-critical-ephi-systems
https://hipaa.yale.edu/security/break-glass-procedure-granting-emergency-access-critical-ephi-systems
https://www.cs.princeton.edu/~felten/warrant-paper.pdf
https://www.cs.princeton.edu/~felten/warrant-paper.pdf

black-box A-IBE was proposed the following year [53], and
subsequent research focused on improving its performance.
For example, Libert et al. proposed an A-IBE scheme with
shorter ciphertext and private key [36], and Zhao et al.
reduced the computation cost of A-IBE [54]. These schemes
provide solutions to trace whether a decoder box comes
from the PKG or the user. Our solution was inspired by
these ideas and employed a similar tracing mechanism to
find the potential key leakage of the compromised Trusted
Execution Environment (TEE).
Signature scheme. The signature scheme S [55] consists
of three algorithms, defined as follows. We require the
conventional unforgeability property for signatures.

• S.KGen(λ): This algorithm takes as input the security
parameter λ, and outputs a pair of keys (vk, sk).

• S.Sign(sk,m): This algorithm takes as input a signing
key sk and a message m, and outputs a signature σ.

• S.Verify(vk, σ,m): This algorithm takes as input the
verification key vk, the signature σ, and the message
m, and outputs true or false.

Definition 18 (EUF-CMA Security of S). Consider an adver-
sary A and a challenger C playing the following game.

GEUF-CMA(λ)

1 : C runs S.KGen(λ) to generate keys (vk, sk), and sends
vk to A;

2 : Initializes a query set Q← {};
3 : A chooses m and get back S.Sign(sk,m) from C,

then Q← Q ∪m;
4 : A forges and outputs a pair of message and signature
(m⋆, σ⋆);

The advantage AdvGEUF-CMA
A,S (λ) of A winning the game is

AdvGEUF-CMA
A,S (λ) = Pr[S.Verify(vk, σ⋆,m⋆) = 1|m⋆ ⊀ Q]

S achieves the property of EUF-CMA, if for all p.p.t. adver-
saries A, there exists a negligible function negl(λ) such that
AdvGEUF-CMA

A,S (λ) < negl(λ).

Public key encryption. The PKE scheme [56] consists of
three algorithms, defined as follows.

• PKE.KGen(λ): This algorithm takes as input the secu-
rity parameter λ, and outputs a pair of keys (pk, sk). pk
is the public key and sk is a secret key.

• PKE.Enc(pk,m): This algorithm takes as input a public
key pk and a message m, and outputs a ciphertext ct.

• PKE.Dec(sk, ct): This algorithm takes as input a secret
key sk and ciphertext ct, and outputs the message m.

Definition 19 (IND-CCA2 security of PKE). Consider an
adversary A and a challenger C playing the following game.

GIND-CCA2(λ)

1 : C runs (pk, sk)← PKE.KGen(λ), sends pk to A;
2 : A adaptively chooses ct and get back PKE.Dec(sk, ct);
3 : A chooses two message (m0,m1) and sends them to C;
4 : C runs ct⋆ ← PKE.Enc(pk,mb), where b←$ {0, 1}
5 : C sends ct⋆ to A;
6 : A provides adaptively chosen ct ̸= ct⋆,

get back PKE.Dec(sk, ct);

7 : A outputs its guess b′;

The advantage AdvGIND-CCA2
A,PKE (λ) of A winning the game is

AdvGIND-CCA2
A,PKE (λ) = Pr[b′ = b]− 1

2

PKE achieves the property of IND-CCA2, if for all p.p.t. ad-
versaries A, there exists a negligible function negl(λ) such that
AdvGIND-CCA2

A,PKE (λ) < negl(λ).

Definition 20 (Collision resistance of hash function). Con-
sider a hash function Π = (Gen,Hash) and an adversary A
playing the following game.

GHash-coll(λ)

1 : Generate a key with s← Gen(1λ);
2 : A is given s and outputs {x, x′};
3 : Outputs 1 if and only if (x ̸= x′) ∪ (Hashs(x) = Hashs(x′));

Otherwise, it outputs 0.

The advantage of A winning the game is AdvGHash-coll
A,Π (λ) =

Pr[GHash-coll(λ) = 1]. Π achieves the property of collision re-
sistance, if for all p.p.t. adversaries A, there exists a negligible
function negl(λ) such that AdvGHash-coll

A,Π (λ) < negl(λ).

APPENDIX B. DETAILED IMPLEMENTATION

Generation enclave (GE). Secrets in GE are the mas-
ter secret key, the signing key, and the user’s decryp-
tion keys (as in Listing 1). These secrets are initiated in
the interface enclave init. Specifically, this interface calls
IbeAlgo.init() to set msk by giving a hardware-based ran-
dom number. Then, it calls sgx calculate ecdsa priv key and
sgx ecc256 calculate pub from priv to generate key pair
vk sign, sk sign. Next, it creates an empty root hash pointer
rth. The interface enclave kreq is used to generate an in-
complete Key cert for a user. It verifies the correctness of
insertion request ir, POP and POE. If any of them is not
SGX Success, the enclave terminates the process. Otherwise,
it returns pkey. The key generation is encapsulated into a
class IbeAlgo.

1 element_t msk; / / ma s t e r s e c r e t key
2 sgx_ec256_private_t sk_sign; / / s i g n i n g key
3 uint8_t *rth; / / r o o t hash

Listing 1: The Secret of Generation Enclave.

Running IBE in TEEs. We implement IBE protocol as
IbeAlgo. It mainly consists of three types of structures: mas-
ter public key mpk t, decryption key dk t, and ciphertext
ct t. The master public key mpk is stored in the structure
mpk t, which contains (X,Y,Z[N+ 1], h). We assume that
CLIENT and TRACER have already obtained the mpk when
setup. The dk t contains (d1, d2, d3), which are the compo-
nents of a decryption key. Since the structure of incomplete
key pkey is the same as the decryption key, dk t can also be
used to store the incomplete key.

The members of the class IbeAlgo include the bilin-
ear pairing information pairing, the sizes of elements and
structures size comp G1, size Zr, ..., elements in algorithms
Hz, theta, ..., and the algorithm functions of protocol IBE.
Each element has a group type information, and there are
four groups in a bilinear pairing: the input groups G1,

17

G2, the output group GT, and the integer group Zr. The
elements are initiated in the function IbeAlgo.init.
Log manager. We implement the log manager using a mod-
ified Merklecpp library, which contains the basic operations
of the Merkle tree and supports generating Merkle proofs
and verification. The log tree is in the type TreeT, where
the hash size is 32 and the hash function is sha256 openssl.
For each request from CLIENT with ID and SN , LM gets
the system time ts. The structure Node is to store the log
node information. After calculating the hash value hash of a
Node type variable node, the hash will be inserted into the
tree by logTree.insert(). In our implementation, the log tree
appends one leaf and generates one ir for each request, and
the POE can be simplified as the POP before the insertion.
TEE Inspect. We further present the TEE inspect algorithm.

1 typedef struct mpk_t {
2 element_t X, Y, h, Z[N + 1];} mpk_t;
3 typedef struct dk_t {
4 element_t d1, d2, d3;} dk_t;
5 typedef struct ct_t {
6 element_t c1, c2, c3, c4;} ct_t;
7 class IbeAlgo {
8 public:
9 pairing_t pairing

10 int size_comp_G1, size_comp_G2, size_Zr,
size_GT, ...;

11 / / a p a r t o f v a r i a b l e s
12 element_t Hz, t0, theta, ...;
13 / / a p a r t o f f u n c t i o n s
14 void init();
15 void kgen1(int id);
16 ...
17 }

Listing 2: Code of ibe.h Library.

18

	Introduction
	Preliminaries
	Definitions of Accountability
	Accountable Decryption
	Ideal Accountable Decryption
	Practical Accountable Decryption

	A Secure Construction
	Detailed Protocol
	Security Analysis
	Implementation and Evaluation
	Discussion
	Access Control, Traceability, and Accountability
	Potential Applications

	Related work
	Conclusion
	References

