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Abstract. In LWE-based KEMs, observed decryption errors leak information about
the secret key in the form of equations or inequalities. Several practical fault attacks
have already exploited such leakage by either directly applying a fault or enabling
a chosen-ciphertext attack using a fault. When the leaked information is in the
form of inequalities, the recovery of the secret key is not trivial. Recent methods
use either statistical or algebraic methods (but not both), with some being able to
handle incorrect information. Having in mind that integration of the side-channel
information is a crucial part of several classes of implementation attacks on LWE-
based schemes, it is an important question whether statistically processed information
can be successfully integrated in lattice reduction algorithms.
We answer this question positively by proposing an error-tolerant combination of
statistical and algebraic methods that make use of the advantages of both approaches.
The combination enables us to improve upon existing methods – we use both fewer
inequalities and are more resistant to errors. We further provide precise security
estimates based on the number of available inequalities.
Our recovery method applies to several types of implementation attacks in which
decryption errors are used in a chosen-ciphertext attack. We practically demonstrate
the improved performance of our approach in a key-recovery attack against Kyber
with fault-induced decryption errors.
Keywords: Kyber · LWE · Belief Propagation · Lattice Reduction · SVP ·
Implementation Attack

1 Introduction
The advent of quantum computing renders cryptography based on classical hard problems
potentially unsafe. In response to this newly arising threat, the National Institute of
Standards and Technology (NIST) began to standardize post-quantum cryptography in
2016 [Nata]. Several of the candidates and the algorithms selected for standardization are
based on hard lattice problems [Natb]. While classical cryptography has seen extensive
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cryptanalysis and research on side-channel attacks for decades, implementation security of
post-quantum schemes is a comparably new topic. The combination of Chosen Ciphertext
Attack (CCA) with side-channel and fault attacks is a particularly underdeveloped field.
The imminent standardization makes understanding such attacks a pressing matter.

A commonly used underlying problem for lattice-based cryptography is the Learning
with Errors (LWE) problem. Closely related and reducible to LWE are Ring Learning
with Errors (RLWE) and Module Learning with Errors (MLWE). Especially MLWE-
based schemes offer competitive key sizes and execution time, making these schemes
especially well-suited for embedded devices, and thus a target of implementation attacks.
Kyber, a CCA2-secure Key Encapsulation Mechanism (KEM) based on the MLWE
problem [BDK+18], has been selected for standardization [Natb]. Therefore, understanding
properties of LWE-based schemes in general – and MLWE-based schemes in particular –
with regards to side-channel analysis is particularly important.

Several side-channel attacks on LWE schemes, including multiple single trace attacks,
have been proposed [PH16, PPM17, PP19, ACLZ20] and methods to at least partially
protect against side-channel attacks, such as [RRVV15, RRdC+16, OSPG18, BDH+21,
HP21], are already known. A newly emerging topic is the combination of CCA with
side-channel analysis allowing for greatly improved key recovery even under the presence
of countermeasures as shown in [RRCB20] and [HHP+21] with improvements against
countermeasures in [HSST22]. Another common target is the comparison operations of
the Fujisaki-Okamoto transform (FO) [FO99], for which several protection mechanisms
have already been proposed [BDH+21, DHP+22].

KEMs based on an LWE-type problem are commonly constructed from a Public-Key
Encryption (PKE) scheme using an FO to obtain a CCA2-secure KEM [FO99, ABD+21a,
AAB+19, BCD+16]. Without such a transform, or when the re-encryption check is disabled
by an implementation attack, schemes are vulnerable to CCA. Additionally, if decryption
errors occur, an attacker can obtain information on the secret key. In the area of fault
attacks, a well-known strategy is to skip the check of the FO [VOGR18, OSPG18, BGRR19,
XIU+21]. Another recent approach is a failure boosting type attack using a rowhammer
fault injection as presented by Fahr et al. in [FKK+22]. In 2021, Pessl and Prokop [PP21]
presented a fault attack targeting the decoder, thereby causing decryption errors. This
allows them to obtain one inequality involving the secret key per applied fault. To recover
the secret key from that information, they developed a method using continued Bayesian
updating. Hermelink et al. [HPP21] then presented an attack using a fault in combination
with a chosen-ciphertext to obtain similar information. They also improved upon the
recovery method of [PP21] by using a belief propagation based approach to solve systems
of inequalities. In contrast to [PP21], the fault used by [HPP21] targets public data and
can be applied in several places over a long execution time. In addition, an unreliable fault
may be used, but in this case more faults are needed. A follow-up attack was presented by
Delvaux in [Del22]. Their attack allows for a more forgiving fault application and uses a
newly developed solver also allowing for incorrect inequalities using an approach previously
described in [PP21].

Another recovery also leveraging statistical information was presented in [FKK+22].
Their failure boosting attack produces inequalities from which they recover the secret key.
In contrast to the above-mentioned attacks [PP21, HPP21, Del22], these inequalities arise
from a different kind of attack, therefore carrying different amounts of information. In
addition their attack targets FrodoKEM instead of Kyber.

A more generally applicable framework to integrate side-channel information has been
presented by Dachman-Soled et al. in [DDGR20]. The framework of [DDGR20] has been
used in [BDH+21] to estimate the impact of their attack and in [FKK+22] for a comparison.
A very recently published refinement by Dachman-Soled et al.[DGHK22] also covers the
decryption errors arising in [FKK+22]. The inequalities arising in [FKK+22] are of the
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same form but carry more information than those obtained in other recent attacks such
as [PP21, HPP21, BDH+21, Del22, DHP+22].

Retrieving the secret key from information coming from decryption errors is a crucial
part of several side-channel and fault attacks. The attacks presented in [PP21, BDH+21,
BDH+21, HPP21, DHP+22, Del22] all rely on solving the same kind of inequalities.
In addition, any kind of implementation allowing observation of decryption errors1 is
vulnerable to an attack similar to [HPP21] using a chosen-ciphertext which then also
requires an attacker to solve such inequalities. Several recovery methods exist, but none
of the currently known approaches allows for practical, efficient, error-tolerant recovery
while giving security estimates for partial attacks – a comprehensive approach unifying all
advantages is missing.

Our contribution. We present a new recovery algorithm which uses an error-resistant
coding theoretic approach combined with lattice reduction techniques. We thereby leverage
statistical as well as algebraic information, improving upon previous methods, and are
able to give estimates on the remaining security level in cases where a full key recovery is
not practically feasible.

Firstly, we consider inaccurate information, i.e. incorrect inequalities, and integrate
them into the solver of [HPP21]. For this, we provide a new type of belief propagation
node, factoring in the possibility of inaccurate information. We show that if the fraction
of incorrect inequalities stays below a certain threshold, the secret may still be extracted
using belief propagation and greatly improve upon the method of [Del22]. Secondly, we
embed the information obtained by running belief propagation into a primal attack on the
LWE instance. To achieve this, we first integrate fully recovered coefficients, leveraging
additional information not available in the more general framework of [DDGR20, DGHK22].
We then use the remaining information to reduce the difficulty of solving the resulting
Closest Vector Problem (CVP) instance. This problem in turn is transformed into a
unique Shortest Vector Problem (uSVP) instance. Finally, we estimate the security level
of the uSVP instance, coming from the partial key recovery in the case of Kyber for
several settings. We evaluate our recovery method on the example of Kyber [BDK+18] as
Kyber has been selected for standardization in the NIST contest [Natb]. Additionally, by
targeting Kyber, our results are comparable to the work of Pessl and Prokop, Hermelink
et al., and Delvaux.

Our recovery method applies to several kinds of attacks. This includes previous attacks
such as [PP21, BDH+21, HPP21, DHP+22, Del22]. Further, whenever an implementation
attack allows to observe decryption errors and can be combined with a CCA, an attacker
can obtain information from which the secret key can be recovered using our method. This
attack strategy is, for example, used by [BDH+21, DHP+22] for attacks on Kyber and
in the work of Guo et al. [GJN20] which exploits timing leakage of the FO transform of
FrodoKEM. Our work is open-source2, practical, can be run on widely available hardware,
and also allows for an estimate on remaining security if the secret cannot be recovered.
We use fewer inequalities, are more resistant to errors, and give refined estimates on the
security remaining after belief propagation, compared to previous methods.

Outline. In Section 2, we summarize the preliminaries, especially the work of Hermelink et
al. and Delvaux. Section 3 then states our attack including the modified belief propagation,
the recovery from partially recovered keys and the methodology of estimating the remaining
security. The results section, Section 4, provides evaluations and compares our work to
previous approaches. Finally, Section 5 concludes with a summary and a recommendation.

1Note that decryption errors differ from decapsulation errors.
2The code is available under https://github.com/juliusjh/improved_decryption_error_recovery.

https://github.com/juliusjh/improved_decryption_error_recovery
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2 Preliminaries
We use lowercase letters to denote elements of a base ring R and lowercase bold letters,
u,v, s, e, . . . , to denote vectors over the ring, i.e. elements of Rk. Upper case bold letters,
e.g. A, denote matrices over the base ring. In the case of plain LWE, the base ring is
simply R = Zq while in MLWE schemes, most notably Kyber, R is Fq[x]/(xn + 1). Since
MLWE instances can be seen as LWE instances by ignoring the additional structure, in
most of the section, we will work over Zq.

2.1 LWE and the Primal Attack
We do not give a full summary of LWE-based KEMs, but only a short reminder on the
structure of the secret key and the primal attack. For a more detailed introduction to
lattice-based cryptography, we refer to [MR09]. LWE-based KEMs work with vectors
over a ring Zq = Z/qZ, where q is a prime in Kyber but not necessarily a prime in other
schemes. The secret key is a small vector s and the public key is commonly given by
sA> + e, where A is a public matrix and e is also small and secret, but usually discarded
after key generation. The secrets are sampled from a distribution D with small standard
deviation σ, such as a central binomial distribution. In RLWE instead of vectors over Zq,
polynomials over R = Zq[x]/(f), for some f , are used. MLWE uses vectors over such a
ring R, i.e. vectors of polynomials. The polynomial f is often chosen to be cyclotomic.
Note that a MLWE/RLWE sample can be seen as an LWE sample by simply ignoring
the additional structure; this results in more structured samples compare to a random
LWE instance. In the following, we will work over Zq, instead of over Zq[x]/(f).

LWE-based scheme rely on the hardness of lattice problems, such as the CVP and the
uSVP. The uSVP asks to find the shortest vector of a lattice while the closely related
closest vector problem asks for the closest vector to any given point (which is of course not
necessarily a lattice vector). For a full definition and more context, we once again refer
to [MR09].

Primal attack. An LWE instance, as typically arising from LWE-based schemes, given
by A ∈ Zm×nq ,b, e ∈ Zmq , s ∈ Znq with sA> + e = b can be embedded into a CVP. The
secret vector (e, s) can be found by looking for an element of the lattice generated by the
rows of

B =
(
qIm 0
A> In

)
(1)

close to the target vector (b,0). To solve the CVP instance, a common method is to
embed into a uSVP using Kannan’s embedding [Kan87], i.e. searching for the smallest
vector in the lattice generated by

Bsvp =

qIm 0 0
A> In 0
b 0 c

 (2)

where c is set to the standard deviation of the secret distribution or often simply to 1 as
an approximation. By now applying a lattice reduction algorithm, such as BKZ, to Bsvp,
the secret key can be recovered. In [DDGR20], Dachman-Soled et al. also proposed a
more sophisticated way of dealing with the choice of c by using an isotropization step. A
detailed introduction to the primal attack and generally attacks on and security of LWE
can be found in [APS15].
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2.2 Soft Analytical Side-Channel Attacks and Belief Propagation
In 2014, Veyrat-Charvillon et al. introduced a new approach to key recovery in side-
channel attacks [VGS14]. Inspired by Low-Density Parity Check (LDPC) codes [Gal62],
Soft Analytical Side-Channel Attack (SASCA) applies the theory of decoding linear codes
to retrieve a secret key from side-channel information. Typically, probability information
on key coefficients is obtained by recording power traces or introducing a fault. This is
then fed into belief propagation, a message-passing algorithm exchanging information
between nodes in a factor graph, e.g. modeling arithmetic relations. If the information
obtained from the side-channel was sufficient, BP converges to the correct key. SASCA
has been applied against several symmetric schemes such as AES, e.g. in [GS15], hash
functions such as Keccak, e.g. in [KPP20], and also against post-quantum schemes
[PPM17, PP19, HHP+21, HSST22]. The attacks of [PP21], [HPP21], and [Del22] can
be seen as SASCAs using information obtained by faults instead of from a side-channel
attack.

Belief propagation was first introduced in [Gal62] for the purpose of decoding LDPC
codes. It is also known as the sum-product (SP) or message-passing (MP) algorithm. It
works over a bipartite graph, known as a Tanner or factor graph, which gives a graphical
representation of given constrains over a set of unknown variables. The two sets of nodes
in the Tanner graph are the variable nodes representing the unknown random variables
x = {xi}i∈{1,...,N} on a set X and the factor nodes representing the constrains.

The Hammersley-Clifford theorem states that any positive joint mass function p(X)
can be represented as a product of factors fk as

p(x) =
K∏
k=1

fk(xIk
) (3)

for some K, with Ik ⊆ {1, . . . , N} and fk functions mapping xIk
= {xi}i∈Ik

to [0, 1]. In
the factor graph, there is an edge between the variable node xi and the factor node fk if
and only if the factor fk depends on the variable xi, i.e., if i ∈ Ik.

Belief propagation is an algorithm for calculating the marginal distributions of the
joint mass function p(X) that correspond to the variable nodes p(xi) and to the factor
nodes p(xIk

). The calculation is done by iterative message-passing on the factor graph
and iterative updating of a node’s locally stored belief. In the process, each node passes
messages to its neighbors: variable nodes send to factor nodes and factor nodes send to
variable nodes (see Figure 6). Let us denote messages from factor node i to variable node
j by mij and messages from variable node i to factor node j by m̂ij . Each iteration of the
algorithm consists of 2 phases: Passing messages from variable nodes to factor nodes and
vice-versa. The updating process is carried out according to the following rules:

• Variable-to-factor message: A variable node i computes a new message m̂′ij that is
sent to factor node j as

m̂′i,j(x) =
∏
k 6=j

mk,i(x). (4)

This message basically tells the factor j what the belief of the variable would be if
the node j did not exist (it is computed from all other factor nodes).

• Factor-to-variable message: A factor node j to variable node i sends a message
m′j,i(x) with

m′j,i(x) =
∑

x,xi=x
fj(x)

∏
k 6=i

mk,j(x). (5)

This message depends on messages received from all other adjacent variable nodes
and marginalizes over all the other nodes’ variables. It expresses the factor’s belief
over the receiving node’s variables.



6 Error-Tolerant Key Recovery from Decryption Errors

xi

fk

xj

mi,k

mj,k

(a) Variable to factor nodes.

xi

fk

xj

mk,i

mk,j

(b) Factor to variable nodes.

Figure 1: The two phases of a belief propagation iteration depicted in a subgraph consisting
of a factor node fk and two variable nodes xi and xj : Messages are first sent from variable
nodes to factor nodes. Updated messages are then sent back to the variable nodes.

• Belief Update: After the two passings, the variable node beliefs are updated by
taking a product of the incoming messages from all adjacent factors. This means
that

b′i(x) =
∏
k

mk,i(x). (6)

is computed. Note that computing the beliefs is only required to obtain results and
can be omitted in intermediate steps.

The expressions above are known as the BP update rules; Figure 1 shows the two update
phases – passing message from variable nodes to factor nodes and vice versa. Upon
convergence, the marginal distributions of an unknown variable i can be computed from
the beliefs. The marginal distributions are then given by

x 7→ bi(x)∑
y bi(y) (7)

where bi is the belief at the i-th variable node and is given by bi(x) =
∏
kmk,i(x).

Convergence is in general only guaranteed on acyclic belief propagation graphs. This does
not hold for loopy belief propagation, i.e. belief propagation on graph that contain loops and
therefore are not acyclic, often used to recover a secret key after an implementation attack.
In the context of key recovery, e.g. in [HPP21], belief propagation may therefore not
retrieve the key or even converge against incorrect solutions on partial keys. Nevertheless,
loopy belief propagation often gives useful approximations and allows for efficient key
recovery in implementation attacks. For example, the belief propagation of [HPP21]
finishes in well under an hour on widely available hardware.

2.3 Decryption Errors in LWE-based KEM
Common LWE-based KEMs such as Kyber [BDK+18], FrodoKEM [BCD+16, ABD+21a],
or NewHope [ADPS16, AAB+19] define a PKE from which the KEM is derived using a
(variant of a) FO. Given a PKE, a KEM can be described using the PKE functions.

From PKE to KEM. To establish a shared secret, one party first encrypts the hash of a
randomly sampled message using the public key of a previously established key pair. The
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c

decrypt m re-encrypt

compare

Figure 2: Decapsulation in Kyber as depicted in [HPP21]. An incoming ciphertext is
stored, decrypted, re-encrypted and finally the re-encrypted ciphertext is compared to the
incoming ciphertext. The areas vulnerable to the attack of [HPP21] are marked thick and
in red.
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Figure 3: Recovering message bits from noisy coefficients: A noisy coefficient (blue dot) is
mapped to a 0-bit if closer to 0 than to q/2. An introduced error (grey) moves the point
by a quarter rotation. In this example, the addition of dq/4c does not cause a decryption
error as the initial decryption error term (blue) is smaller than 06.

second party obtains the message using their secret key and re-encrypts it using the public
key. The re-encrypted ciphertext is then compared to the originally received ciphertext.
If this check passes, then a shared secret derived from the message and the public key is
established. Figure 2 shows a simplified version similar to the transform used in Kyber.

Decryption errors. All LWE-based schemes rely on recovering the messages from a noisy
version for decryption (as part of the PKE)3. To map message bits to coefficients of a
vector over Fq, a decoding routing is called. A bit b is mapped to m = 0 if b = 0 and to
m = dq/2c in case of b = 14. Then, in the decryption routine, b has to be recovered from
a noisy version of m given by m̃ = m + v with v being a small value5. To achieve this,
m̃ is mapped to 0 if m̃ is closer to 0 than to dq/2c, and to 1 otherwise. The process is
visualized in Figure 3.

The error term v arises out of the decryption routine and is given by an affine linear
function of the secret key which can be computed from public parameters of the decryption
call. For example, in the case of Kyber, the error term is given by

v = e>rj − s>(e1j + ∆uj) + e2j + ∆vj (8)

where e, s are the secrets, rj , e1j , e2j are known terms of the j-th decapsulation, and the
∆-terms arise from compression and are public as well. Note that an attacker gaining
information about the error term immediately obtains information about the secrets e and
s.

3Note the distinction between decryption (PKE) and decapsulation (KEM).
4With d·c denoting rounding to the nearest integer with ties being rounded up as in [ABD+21b].
5Interpreted in Fq , which means that the value is close to 0 or close to q.
6Smaller than 0 when reduced mod q symmetrically around 0.
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Figure 4: Compression in Kyber visualized with d = 2. They gray segment, including the
exemplary point near q/4, is mapped to 1. In Kyber, ciphertexts are compressed with
dv ∈ {4, 5} and du ∈ {10, 11}.

Compression. Kyber additionally applies compression to ciphertexts. To reduce the
ciphertext size and to increase the security, lower bits of the ciphertexts are discarded.
The compression routines with compression factor d are similar to decoding and encoding
of the message bits to coefficients: An uncompressed ciphertext coefficient ci is mapped to
k ∈ N, where k

⌈
q/2d

⌋
is the multiple of

⌈
q/2d

⌋
which is the closet to ci. A compressed

coefficient k is then mapped back to k
⌈
q/2d

⌋
during decompression. This means that

compression and decompression are given by

compress =
⌈
(2d/q)x

⌋
mod 2d (9)

decompress =
⌈
(q/2d)x

⌋
. (10)

Encoding of message bits is the same as compression with d = 1. Figure 4 visualizes
Kyber’s the compression routine with d = 2.

2.4 Fault Attacks on Kyber
Several fault attacks targeting information leakage through the error term have been
proposed. In [PP21], Pessl and Prokop presented a fault attack on the decoding in Kyber,
which was subsequently improved by Hermelink et al. in [HPP21] and extended by Delvaux
[Del22]. We refer to the respective papers for details on the attacks, but give a short
explanation on how information is retrieved from applying faults or chosen-ciphertexts
with faults.

All three attacks cause an addition of dq/4c to the error term by either faults or a
combination of faults and chosen-ciphertexts. In some cases this causes a decryption error
which can be observed as a decapsulation error either directly or through the use of a fault.
Thereby, the FO is used as an oracle for decryption errors. A noisy coefficient is mapped
to zero when closer to 0 than to dq/2c. Thus, an attacker may deduce that an error term
must have been less than or equal to 0 when adding dq/4c does not cause a decryption
error and larger than or equal to 0 when it does cause a decryption error.

For example, the attack of [HPP21] sends a manipulated ciphertext ct′ to the attacked
device. The manipulation of the ciphertext consists of adding dq/4c to a single coefficient
to an honestly created ciphertext ct. Due to compression this turns into a one or two
bit difference, depending on the originally created ciphertext, which is created offline
and under the attackers control. As depicted in Figure 2, the device now stores the
ciphertext, decrypts and re-encrypts it, and then compares against the stored ciphertext.
The stored ciphertext is faulted back to the original ciphertext ct. This means that the
device compares encrypt(decrypt(ct′)) = ct = encrypt(decrypt(ct)) which is false if and
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Unpack ciphertext Store ciphertext

Re-encrypt ciphertext

Compare

Manipulate ciphertext Fault ciphertext Observe comparison

Figure 5: Flowchart of the attack of [HPP21] before recovery. The attacker (top row)
sends in a manipulated ciphertext, faults the stored ciphertext, and observes decryption
errors by observing decapsulation errors. From the observed successes/failures, they can
derive an inequality.

only if a decryption error happened or the fault failed. Now, assuming a perfect fault,
there are two cases, as identified in [HPP21]:

1. A successful decapsulation is observed: This means that adding dq/4c does not cause
a decryption failure and the error term is less than 0 as visualized in Figure 3.

2. A decapsulation failure is observed: This means that a decryption failure has occured,
caused by the addition of dq/4c.7 Therefore, the error term is greater or equal to 0.

Thereby, an inequality on the error term can be observed. Recalling Section 2.3, the error
term in Kyber has the form v = e>rj − s>(e1j + ∆uj) + e2j + ∆vj with the notation
from (8). The error term can be rewritten as v = (e, s)>(rj ,−(e1j + ∆uj)) + e2j + ∆vj ,
and the two above cases correspond to obtaining one of the following two inequalities8

1. (e, s)>(rj ,−(e1j + ∆uj)) ≤ −e2j −∆vj

2. (e, s)>(rj ,−(e1j + ∆uj)) ≥ −e2j −∆vj .

Thus, as the error term entails the secret key, an inequality carrying information about
the secret key can be derived.

As in [HPP21] we denote the right side of the inequality as bj , this means bj =
−e2j −∆vj where the index is dropped whenever we only consider a single inequality. The
coefficients of the left side will be denoted by aij , i.e. (aij)i = −(rj , e1j + ∆uj)) where
again the index is dropped j is dropped whenever it is not required. The secret, unknown
vector is denoted as x = (e, s). With this notation (and by multiplying with negative one
in the second case) the inequalities defined above can be written as

∑
i aijxi ≤ bj where j

runs over all obtained inequalities.
In the attacks mentioned above, the values of ∆vj and e2j

, and therefore bj , are under
the control of the attacker and can be chosen to be small which improves recovery of the
secret key. This is achieved by discarding ciphertexts which would result in large values
for bj and is referred to as ciphertext filtering. In case of an unreliable fault9, [HPP21]
makes use of only successful decapsulations as a successful decapsulation is not possible
without a working fault10. Note that in schemes without compression, an attacker can
obtain equations instead of inequalities. In this case several queries on the same coefficient
with different values for the error term, instead of dq/4c, result in an equation. The attack
of [HPP21] is a special case of a class of attacks. Whenever an attacker can observe
decryption errors by using an implementation attack, they can derive information about

7With extremely low probability, a decryption error could also occur naturally.
8Note that depending on the message bit, one of the inequalities is strict.
9A fault not faulting [the correct value] in every case

10With very high probability.
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x0 x1 x2

Check 2Check 1Check 0 Check 3 Check 4

Figure 6: An example for a check graph as used in [HPP21] with 3 variables and 5
inequalities.

the secret key by using a chosen-ciphertext. In [HPP21], such a decryption error oracle
is obtained by using a fault, but various other methods are possible. For example, an
attacker could use side-channel analysis to differentiate whether a ciphertext was correctly
decrypted or lead to a decryption failure.

2.5 Recovering the Secret Key
After having recovered sufficient information about the secret key, either in the form of
equations or inequalities, an attacker is left with solving for the secrets e and s. In contrast
to a purely algebraic system of inequalities, in this case, additional statistical information
is available. As the attacker is aware of the coefficients of the key being samples from a
certain distribution, usually binomial, they may include this in the solving process. In
addition, an attacker may also use the equations or inequalities recorded to improve upon
or solve the LWE instance posed by the crypto-system.

2.5.1 Solving Systems of Inequalities using Statistics

Several approaches, starting with the work of Pessl and Prokop in [PP21], exist. An
attacker ignoring the information given by the LWE problem can retrieve the secret key
by solving the system of inequalities obtained from observing decryption errors, leveraging
statistical information.

Pessl and Prokop [PP21] developed an algorithm recovering the key by repeated
Bayesian updating. They initialize a vector containing an entry for each key coefficient
with the distribution the key was sampled from. Then, in each iteration, the key is updated
using the system of inequalities. With enough inequalities available, this converges to a
vector of distributions with the correct key coefficients being the most likely ones in each
position.

Hermelink et al. [HPP21] improved upon Pessl and Prokop’s method by using belief
propagation. A factor graph similar to those used in decoding of LDPC codes (introduced
in [Gal62]) is constructed where each key coefficient is represented by a variable node
and initialized by the distribution the coefficients were sampled from. Each inequality is
translated to a factor node which, in each iteration, performs a similar updating as in the
algorithm of Pessl and Prokop. Figure 6 shows an example graph with 3 variables and
5 inequalities, similar to an example from [HPP21]. A check node representing a given
inequality ∑

i

aixi ≤ b (11)

where xi denotes the unknown coefficients of the secret vector x = (e, s), ai ∈ Z are
the coefficients of the inequality, and the sum is smaller or equal than b ∈ Z, works as
follows: Incoming messages mi, coming from the variable nodes, represent the distributions
on xi, and we denote the corresponding random variable by Xi. First, all leave-one-out
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distributions, defined as

Sj =
∑
i 6=j

aiXi (12)

are computed. To compute the distributions of leave-one-out sums Sj , the convolutions
of the mi have to be computed. In [HPP21], this is achieved efficiently using Fourier
transforms and a tree structure to avoid recomputations. Then, the outgoing messages are
given by

m̃j = {c 7→ P(Sj + ajc ≤ b)} (13)

where c runs over all possible values of coefficients, i.e. the domain of the binomial
distributions e and s were samples from.

This means that a factor node representing an inequality of (11), first computes the
distributions Sj of all sums leaving out exactly one coefficient xj (12). Then, for each
random variable Xj , for each possible value c, the probability of the sum plus the remaining
term ajxj with the unknown coefficient set to c, i.e. xj = c, is computed (13). This then
represents the probability distribution used for updating in the variable nodes. Note that
in a cyclic belief propagation graph, convergence is not guaranteed. Instead of running
a pre-defined number of steps or waiting for convergence, the resulting distributions at
the variable nodes are obtained after every step. These distributions are sorted by several
metrics, e.g. min-entropy, and the most likeliest value is take from the first n distributions
(for every metric). If these values are correct, solving the public key equation for the
remaining n values will give the secret key. As solving linear systems of equations as well
as obtaining the results from the belief propagation is of low complexity, this carries little
additional computational cost. The belief propagation routine usually finishes in a few
minutes on widely available hardware and can be run on a normal laptop.

Using belief propagation, the recovery method in [HPP21] achieves improvements in
the recovery itself, i.e. fewer inequalities are needed for successful recovery, as well as
in RAM usage, allowing an attacker to use widely available and cheap hardware for the
recovery. This recovery method is also used by [DHP+22].

Delvaux [Del22] presents a third method which is similar to both the methods used by
Pessl and Prokop in [PP21] and Hermelink et al. in [HPP21], but allows for the inclusion
of probably incorrect inequalities. This is important for their attack and improves both
previous attacks. As a failing decapsulation in the attack of [HPP21] either means that a
decryption error happened or that the fault failed, they have to discard those inequalities
assuming that the fault is unreliable. Delvaux in [Del22] uses Bayesian updating which
includes the possibility of the inequality sign being switched with the probability of the
fault failing for failing decapsulations. Their improvement also brings the runtime from
minutes to seconds, but in turn, more inequalities are needed, as shown in Table 111.

Ciphertext filtering. All re-iterated attacks use ciphertext filtering. The chosen cipher-
texts are generated offline, i.e. without interaction with the device under attack. This
means the attacker can chose ciphertext which likely result in an inequality carrying
more information. An attacker wants to avoid ciphertexts where the constant terms of
the inequality are large, as this reduces information about the secret key contained in
the inequality. As the generated ciphertexts allow for direct computation of those terms
without any interaction with the device, the attacker may discard such ciphertexts. The
relevant term is ∆v which, for example, in [HPP21] is chosen to be smaller than 10. This

11Delvaux published their results as "success probability" which seems to mean the average number of
correctly guessed key coefficients, leading to a "success probability" of about 0.3 for zero inequalities, i.e.
for plain Kyber. Therefore, we only compare success rates of 1.
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Table 1: Approximate number of inequalities needed to recover the key with success rates
1. All attacks employ ciphertext filtering. Pessl and Prokop use an older version of Kyber
allowing for easier recovery in the case of Kyber512.
Method Kyber512 Kyber768 Kyber1024
Hermelink et al. [HPP21] 5750 7000 8500
Delvaux [Del22] 9000 9300 12100
Pessl and Prokop [PP21] 8000 10500 13000

technique differs from discarding the outcome of individual trials (result filtering). By
using either only successful or only failed decapsulations, [PP21] and [HPP21] drastically
lower the chance of setting up an incorrect inequality. This is required since their recovery
methods are very sensitive to incorrect inequalities. Result filtering can only be applied
after having interacted with the device.

2.5.2 Integration into LWE

In 2020, Dachman-Soled et al. presented a framework for the integration of hints into
LWE which can be seen as a generalization of the primal attack on LWE [DDGR20]. The
LWE instance is first embedded into the Distorted Bounded Distance Decoding Problem
(DBDD). Side-channel information is then integrated by subsequently modifying the
DBDD instance. After all side-channel information has been applied, the DBDD instance
is embedded into a uSVP which can be solved using lattice reduction techniques such
as the Blockwise Korkine-Zolotarev (BKZ) algorithm. The attack of [BDH+21] uses the
framework of Dachman-Soled et al. to estimate the remaining security. The framework
allows for integration of several types of hints. Equations can be directly integrated as
perfect hints using the framework while inequalities need to be converted to approximate
hints. Both variants have been used for estimates in [BDH+21] in a slightly different
setting.

In [DGHK22], Dachman-Soled et al. presented an extension of their framework focusing
on inequality type hints. They use a geometric approach to integrate inequality hints
in a way consistent with their previous framework. To evaluate their work, they use
inequalities as in [FKK+22] coming from a failure boosting attack, potentially carrying
more or different information than the inequalities used to evaluate the other methods.
Their work delivers estimates in long but reasonable computation time, but the integration
of hints to fully recover the key from inequalities carrying little information seems to be
impractical for an average attacker on large LWE instances. In addition, they do not
perform a full key recovery and do not use Kyber. Therefore, we do not compare their
work to the works of [PP21], [HPP21] and [Del22] here.

3 Improved Integration using Belief Propagation
Recall from Section 2.5.1 that Pessl and Prokop in [PP21] developed a practical algorithm
to recover the secret key from error-term inequalities. This was improved in terms of the
required number of inequalities and practicability in [HPP21]. However, both methods
are unable to handle incorrect inequalities which lead to the method of [Del22]. Their
recovery process allows recovering the secret key even with incorrect information present,
but in turn requires a greatly increased number of inequalities and therefore faults or
measurements. Neither of those methods allow for an estimate of the remaining security
– either the attack succeeds or fails. The more general framework of [DDGR20] can be
used to estimate remaining security, but only includes a small part of the information and
therefore overestimates the remaining security (c.f. estimates in [BDH+21]) in this case.
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Inequalities Belief Propagation

Section 3.1

Integrate Recovered

Section 3.2.2

Integrate Remaining

Section 3.2.3

CVP

Public Key Equation

Figure 7: The three phases of our recovery method: Inequalities obtained in an attack are
first fed to an error-tolerant belief propagation. Then, the coefficients which were fully
recovered using the belief propagation are integrated in the LWE instance. Finally, the
reamining information is used to obtain a more favourable closest vector problem instance.

In addition, it seems to be of limited practical use for recovery in the case of large LWE
instances (c.f. [DHP+22]).

We strive to achieve a general approach that applies to the class of attacks of [PP21,
BDH+21, HPP21, DHP+22, Del22]. We do this by using the combination of a statistical
and a lattice reduction approach. To achieve error-resistance, our belief propagation needs
to be able to deal with unreliable information; we describe how to do this in Section 3.1.
To employ a lattice reduction approach, we need to integrate statistical information coming
from belief propagation outputs into an algebraic lattice setting. This requires two steps,
namely integrating fully recovered coefficients in an optimal way and then using the
remaining information to reduce the complexity of the CVP instance, which is described
in Section 3.2. This means, in total, our method consists of the following three steps: Error
tolerant belief propagation, integration of fully recovered coefficients, and integration of
remaining information; a flowchart of our method is shown in Figure 7. Our experiments,
shown in Section 4, confirm that we improve upon the number of needed inequalities
compared to [HPP21], can give an estimate on the remaining security based on a practical
recovery method and are more error-resistant than [Del22].

3.1 Adapting to Incorrect Inequalities

The error-resistance in [Del22] is achieved by considering the unreliability of inequalities
into the Bayesian updating step. We also include this information, but use it in the
updating step in each check node of the belief propagation. Our graph is similar to the
graph of [HPP21] described in Section 2.5.1, but we use different check nodes using a
different updating function. As in Section 2.5.1, we describe how messages are updated in
a check node that represents a given inequality∑

i

aixi ≤ b, (14)

where xi denote the unknown coefficients of the secret vector x = (e, s), ai ∈ Z are the
coefficients of the inequality, and the sum is smaller or equal than b. In each iteration,
the check node receives messages mi coming from the variable nodes. The message mi

represents the distribution of the secret coefficient xi and we denote the random variable
by Xi. Leave-one-out distributions are the distributions of the sums of coefficients ai
multiplied with the secret (and unknown) vector where one secret coefficient is left out.
Again, denoting the random variable of the j-th leave-one-out random variable by Sj , we
have

Sj =
∑
i 6=j

aiXi. (15)
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As in [HPP21], we first compute the leave-one-out distributions for the random variables
Sj . We know that for each j

ajxj +
∑
i 6=j

aixi ≤ b (16)

and Sj is the random variable representing
∑
i 6=j aixi, i.e. representing the sum in

Equation (16). Therefore, we can update the distribution of Xj using Sj , taking into
account the probability of the inequality being correct.

During initialization, we pass the information on the correctness of each inequality to
each check node representing it. This information is a property of the concrete attack, e.g.
coming from the reliability of a fault. Note that the probability differs with each inequality
and is not a global constant, but a property of each individual check node. Let p be the
probability of the inequality (14) being correct. For a value c in the domain of the initial
distribution, the probability of xi being c is given by

P(xj = c) (17)

= P(xj = c |
∑
i

aixi ≤ b) + P(xj = c |
∑
i

aixi > b) (18)

=pP(xj = c | Sj ≤ b− c) + (1− p) P(xj = c | Sj > b− c). (19)

Thus, our updated outgoing messages are given by

m̃j = {c 7→ pP(Sj ≤ b− c) + (1− p) P(Sj > b− c)} (20)

and the variables nodes update the distributions accordingly in the next step.
As the update as described in (17) computes more terms than a node representing a

certainly correct inequality, our computational effort is higher than in [HPP21]. However,
since the belief propagation is done within a couple of minutes to a few hours, practically
this penalty is not relevant and negligible compared to the other part of the key recovery,
namely the lattice reduction.

Note that, as in [HPP21], the belief propagation graphs contain cycles, similar to
LDPC-decoding graphs, and therefore, convergence is not guaranteed. Therefore, as in
previous work, we obtain distributions at each variable node after every step. These
resulting distributions are sorted by min-entropy, i.e. for every coefficient xi we obtain the
logarithm of the largest probability value

pmax = ln(max({P (xi = x) | x}) (21)

and sort in ascending order12. In previous work, the first n coefficients are now assumed
to be the correct key and used to solve for the remaining n coefficients; if this yields the
correct key, the attack succeeded. We instead integrate the remaining information into a
lattice problem. Obtaining results from the belief propagation and integrating into a lattice
problem (but not performing lattice reduction) after every step is inexpensive. Therefore,
in our method, this way of dealing with the possibly non-convergent belief propagation is
similar to [HPP21] – we apply (parts of) the attack to every belief propagation step.

3.2 Integrating Partially Recovered Keys to LWE
In case sufficiently many inequalities are available, the belief propagation converges, and
the attacker does not need any additional tools. In practical scenarios, however, this
is often not the case: An attack may have to be aborted early, a device under attack
might shut down, or side-channel information may be very expensive to obtain. Therefore,

12The logarithm can be ignored and instead one can sort in descending order.
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Figure 8: Simplified integration with one recovered coefficient in 3 dimensions. The closest
vector problem is first (solid arrows) projected onto the hyperplane (indicated by the
dashed rectangle) generated by a recovered coefficient. Then, integrating the remaining
information (dashed arrows) leads to a CVP instance with a closer point in the same
dimension.

realistically, an attacker may be left with insufficiently many inequalities for a pure belief
propagation based recovery.

In this section, we present an approach to efficiently integrate the output of partial
belief propagation runs into the LWE instance. By using both statistical and algebraic
information, we maximize the likelihood of success. Additionally, we estimate the remaining
security that remains after partial belief propagation has been performed.

Our attack works in two stages. Firstly, we reduce the dimensionality of the LWE
instance by integrating recovered coefficients. Secondly, we reduce the complexity of the
resulting CVP instance by finding a closer target vector. The whole integration process is
depicted geometrically in Figure 8.

3.2.1 Belief Propagation Output

Partially converged belief propagation gives probability distributions at the variable nodes,
i.e. for each coefficient of the secret vector (e, s). This means that we have 2n probability
distributions in addition to the LWE equation system sA> + e = b. Unfortunately, these
distributions cannot be assumed to be independent and the covariance matrix is unknown,
at least with our methods. Therefore, we see the distributions as rankings rather than
proper independent probability distributions. We additionally have a metric on how likely
a coefficient is correct by looking at the min-entropy13.

In [HPP21], Hermelink et al. sort the coefficients by several metrics while we use
min-entropy only. Throughout these sections, we assume coefficients to be sorted by min-
entropy, i.e. the coefficient where the likeliest value has the highest probability compared
to other coefficients is the first item of our list of coefficients. We call coefficients correct if
the highest ranked value is the actual value of that coefficient. That means, if Di is the
distribution of the i-th coefficient, and

x̃i = argmaxv PDi(Xi = v), (22)

13The logarithm of the highest probability value.
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then the i-th coefficient is correct if and only if xi = x̃i. In this metric and with this
definition of correctness, let r denote the number of consecutive correct coefficients (when
sorted as described above) before the first incorrect coefficient arises. This means that the
first r coefficients are all correct, but the coefficient at position (r + 1) is incorrect; note
that r per se is unknown to an attacker.

We assume that an attacker has enough computational power to perform the attack
r + 1 times. As one of those attacks being successful suffices, we can then, under this
hypothesis, assume that the attacker knows that the first r coefficients are correct and call
them the recovered coefficients. Note that the computational complexity of our algorithm is
very low, except for the lattice reduction. The belief propagation needs to run a single time
only and the subsequent lattice reduction can be run only when the estimated β matches
the available computational resources. In practice, we propose the following procedure for
an attacker who can run at most BKZ-β

• runs belief propagation,

• for increasing r′: Estimate β′ for r′ until β′ ≤ β

• runs the lattice reduction.

If the attack fails with r′, it was chosen too large; but a larger BKZ-β′ cannot be handled
and the recovery would fail with every smaller r′ as well. Thereby, finding the correct r in
a practical attack has almost no additional cost and assuming that the attacker does know
r is a valid assumption.

3.2.2 Integrating Recovered Coefficients

A generally applicable way to integrate recovered coefficients is decribed in [DDGR20]. But
our situation is not entirely covered as we have additional information on the reliability
of our remaining coefficients. In addition, if we employed [DDGR20], we would not be
able to perform the integration of probability information described in Section 3.2.3. This
is because [DDGR20] directly embeds the DBDD into uSVP while we first work with
the LWE instance to later embed into a CVP instance (which can then be embeded
into uSVP). Our embedding into CVP utilizes probability information arising from the
belief propagation (not available in [DDGR20]). Note that, due to working in the LWE
instance, e and s are treated differently and separately. We therefore apply our recovered
coefficients not only in the right order, but also in a way eliminating the most unreliable
remaining coefficients. We assume that the attacker has carried out r + 1 tries on recovery
and therefore r to be the number of recovered coefficients. We denote r = rs + re, where rs
is the number of recovered coefficients of s and re is the number of recovered coefficients of
e. Recovered coefficients are denoted by êi and ŝj . Let {i1, . . . , in} denote the ordering on
e, i.e. coefficients xik for k ∈ {1, . . . , re} are recovered. Similarly, let {j1, . . . , jn} denote
the ordering on s, i.e. coefficients xjk+n for k ∈ {1, . . . , rs} are recovered.14 In contrast to
[DDGR20], we do not apply the homogenization and isotropization steps and embed the
LWE instance directly into a uSVP after integration. An attacker may choose to apply
various tweaks or improvements to the primal attack after fully integrating all information
obtained from belief propagation; we here merely focus on how to embed into a lattice
problem and intentionally leave such details open.

Integrating recovered coefficients of s. This is straightforward by intersecting with the
subspace given by the recovered coefficients ŝjk

with k ∈ {1, . . . , rs}. In other words, the
corresponding columns of the LWE matrix A are deleted and subtracted from b. For each

14Note that coefficients of s correspond to columns in the LWE matrix while those of e correspond to
rows.
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ŝjk
with k ∈ {1, . . . , rs} we delete the jk-th column and subtract Ai,jk

· ŝjk
from bi for all

i ∈ {1, . . . , n}. This can also be written as

A′ = ATs and b′ = b− ts (23)

where Ts is the m×n− rs matrix obtained from the unit matrix by removing each column
jk for k ∈ {1, . . . , rs − 1} and

ts =
(

rs∑
k=1

ŝjk
·Ai,jk

)
i∈{1,...,m}

. (24)

Geometrically the whole process can be seen as intersection with rs hyperplanes. To keep
the notation simple, we also denote the resulting LWE instance after integrating the
recovered coefficients of s to be given by A and b with the same dimensions as before.
An implementer also needs to keep updating indices whenever a recovered coefficient is
integrated; to keep our description concise, we do not describe this process.

Integrating recovered coefficients of e. Integrating a recovered coefficient of e also
allows us to eliminate a coefficient of s from the equality system. Given a recovered êi,
the i-th LWE equation yields

sj = A−1
i,j (bi − êi −

∑
k 6=j

Ai,ksk), (25)

assuming that Ai,j is invertible. We may therefore save (25) and remove the j-th row as
well as the i-th column from A while adjusting all other entries of A and b accordingly.
Naturally, we aim at eliminating the least reliable coefficients. Therefore, we first choose
j = jm−1, continue with the index jm−2, and so on up until and including jm−re possibly
changing the order to assure invertible entries of A. We may again interpret this geometri-
cally as intersection with hyperplanes given by equations of the kind in (25). In contrast
to when integrating recovered coefficients of s, we also remove a row of the matrix, namely
the row of the recovered êi. In matrix-vector notation, integrating ê can be written as

A′ = Te(A−T′e) and b′ = b− te (26)

where Te removes the corresponding columns,

T′e =
(

re∑
l=1

A−1
i,jl
Ai,j

)
i,j

and te =
(

re∑
l=1

A−1
i,jl

(êi − bi)
)
i

(27)

with i running over {1, . . . ,m} and j ∈ {1, . . . , n}. When having recovered (half of) the
remaining coefficients of e and s later, in most cases after having run lattice reduction, we
may use (25) to recover sj as well.

3.2.3 Integrating Remaining Coefficients

Let A′ and b′ denote the transformed versions of A and b after having integrated both
types of recovered coefficients. The dimensionality of the problem is now reduced. We
have n− re remaining equations, n− r unknown values in s and n− re unknown values
in e. Additionally, we still have estimated probability distributions for all the remaining
coefficients of e and s. Let us use e′ and s′ to denote the remaining positions in e and s.

A naïve approach to solve this transformed problem would be to use a key enumeration
algorithm as described in e.g. [BLvV15, MOOS15, GGP+15, PSG16]. Thereby, one might
be able to improve slightly on edge cases. In the majority of cases, the belief propagation
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either recovers all coefficients or only very few to none at all [HPP21, Fig. 4], as an
attacker may not determine which coefficients converged against the correct value15. Thus,
applying key enumeration will only be successful in very few cases and obtaining a few
more inequalities will often be the attacker’s preferred option.

Instead, we perform a variant of the well-known primal attack as also used in the
framework of [DDGR20]. Embedding our LWE instance into a CVP yields the lattice
given by the rows of

BCVP =
(
qIn−r 0
A′> In−re

)
. (28)

By searching for vectors close to the target vector t = (b,0) we will find the lattice vector
(b,0) + (−e′, s′) and thereby recover the secret key. Leveraging the additional information
coming from the belief propagation, we can refine the CVP instance. Denote the best
guesses, i.e. taking the most likely coefficient of e and s in each position, by x̂′ = (ê′, ŝ′).
Then, x′ is closer to x̂′ than it is to 0. Thus, c = (− b,0) + x̂′ is much closer to a lattice
point and the CVP can therefore be solved more efficiently for c. Embedding into a uSVP,
we are left with finding the shortest vector of

BSVP =

qIn−r 0 0
A′> In−re

0
b− ê′ ŝ′ 1

 , (29)

which can be achieved using lattice reduction algorithms such as BKZ. Figure 8 shows a
simplified visualization of both parts of the integration process. From the uSVP instance
the remaining security may be estimated in terms of the BKZ-β needed to find the secret
as shown in [ADPS16, AGVW17] and reiterated in [DDGR20]. Note that the coefficient we
chose to be 1 in the lower right corner of BSVP is optimally set to the standard deviation of
the error distribution as already remarked by [DDGR20]. The choice of c is made irrelevant
by applying isotropization, but we apply neither an optimally chosen c nor isotropization
to keep our recovery method as simple as possible. Using the tweaks with regards to
the primal attack, an attacker may improve upon our method. We do not employ those
optimizations as we primarily focus on our method which explains how to integrate belief
propagation method into a lattice problem and do not focus on the techniques used in the
subsequent lattice reduction step. Therefore, we use a plain version of the primal attack.

3.2.4 Additional techniques

Several techniques we did not employ could allow room for improvement.

Additional Key Enumeration. We may apply key enumeration at several stages of our
recovery process. Firstly, we may increase the number of recovered and then integrated
key coefficients, i.e. before the integration described in Section 3.2.2), resulting in higher
re and rs. Secondly, we may enumerate after the integration of recovered coefficients.
While key enumeration in this case only will allow for a direct key recovery in edge cases
with almost fully recovered secrets, it allows for improved recovery if used together with
lattice reduction. After integrating known coefficients, as described in Section 3.2.2, the
dimension of x′, i.e. the dimension of BCVP is reduced compared to the original secret. As
the attacker is looking for a close vector, guessing a partially incorrect key increases the
computational effort required to solve the uSVP instance, but does not stop the attack.
Note that compared to the former case, enumeration at the latter stage does not require
the attacker to correctly guess the key. A mere improvement in some positions resulting in
a closer vector already gives an advantage.

15Note that a coefficient is counted as recovered if it converges against the correct value and the attacker
knows it converged against the correct value.
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To improve upon the latter case, an attacker may first enumerate a large number
of candidates and then group those by their distances. Selecting only the most likely
candidate from each group ensures that no unnecessary duplicate calls to a lattice reduction
algorithm are made. Using this strategy a particularly determined attacker may slightly
improve upon the success rate in practice.

Dual and Hybrid Attacks. We only described our recovery method using the primal
attack. Recent developments on the dual attack [GJ21, MAT22, AS22, CST22] imply
that the dual attack might outperform the primal attack when solving the underlying
LWE problem of Kyber, while one recent work questions these estimates [DP23]. The
dual attack performs lattice reduction on parts of the secret and systematic guessing on
the other parts. The cost of these steps are additive (see for example [MAT22, Theorem
5.1]). So the dual attack benefits a lot from a sparse secret, allowing for guessing of more
positions. For particularly sparse secrets, hybrids between a meet-in-the-middle attack
and a dual attack can also be considered [CHHS19].

For our particular setting, the most reliable secret values are very sparse, after belief
propagation and transformation of the problem are performed. Figuring out the more
precise design and performance of such attacks requires knowing more precisely how sparse
the positions are. Here it would for example be useful to know how many of the most
reliable coefficients can be considered as binary or trinary.

4 Implementation and Results
In this section, we first describe our implementation and then list the results obtained
from estimating the remaining security after running belief propagation and integration,
as well as success rates. We evaluate our recovery method using the attack of [HPP21]
against Kyber512. Thereby, we not only compare our method to [HPP21] but also to
[PP21], and [Del22], as their attacks all target Kyber. A comparison to the methods of
Dachman-Soled et al. [DDGR20, DGHK22] and Fahr et al. [FKK+22] proves to be more
difficult due to their nature of inequalities and targeted scheme. Their recovery method
was motivated by an attack leading to a different kind of inequalities compared to those
arising from the attacks we focus on. We note that an estimate of applying [DDGR20] to
inequalities similar to the ones used here can be obtained from [BDH+21], but note that
no key recovery was performed. The inequalities in the form used here arise not only in
fault attacks, such as [PP21, HSST22, Del22], but also from side-channel analysis such as
[BDH+21] and [DHP+22] as well as in the class of attacks using a chosen-ciphertext to
exploit a vulnerability in an implementation, which allows observing decryption errors.

4.1 Implementation
The starting point for our implementation is the open source implementation of [HPP21]16

which is written in Python, Rust, and uses calls to PQClean [PQC] to simulate the fault
attack. From the output obtained from PQClean, inequalities are derived in Python
and fed into a parallelized belief propagation written in Rust. We modified their belief
propagation to include the improvements of Section 3.1 and to improve performance in
terms of memory usage.

Additionally, instead of aborting after a belief propagation run if not enough coefficients
were found, we instead apply the strategy of Section 3.2. To do this, we compute the
matrix Bsvp, estimate the required BKZ-β and then either call FPLLL [dt22] or only
output the estimate. Figure 9 depicts a flow chart giving an overview of the evaluation.

16Their implementation can be found at https://github.com/juliusjh/fault_enabled_cca.

https://github.com/juliusjh/fault_enabled_cca
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Figure 9: Flow chart of the evaluation using our recovery method on the attack of [HPP21].
The upper row is only used in an actual attack and not needed for estimates. Note
that the attack of [HPP21] is merely exemplary for evaluation purposes but our recovery
method applies more generally. A flow chart of the attack of [HPP21] (green) is depicted
in Figure 5, our belief propagation (blue) is described in Section 3.1, and our integration
(orange) is described in Section 3.2. The dashed box shows our recovery method.

4.2 Security Estimates
In contrast to [PP21], [HPP21], and [Del22] our recovery method allows for an estimate
of the remaining security, similar to the framework of [DDGR20, DGHK22], by applying
well-known estimates on the hardness of lattice reduction. In this section, we report our
findings with regard to remaining security and compare against previous work in terms of
success rates.

After we obtained the uSVP instance as described in Section 3.2.3, we can estimate
the remaining security in terms of BKZ-β using an estimate given in [ADPS16, AGVW17]
and reiterated in [DDGR20]. Denoting the lattice generated by the rows of Bsvp by Λ and
the root Hermite factor by δβ , the BKZ-β needed to solve the uSVP instance satisfies

||s||
√
β/dim(Λ) ≤ δ2β−dim(Λ)−1

β Vol(Λ)1/ dim(Λ). (30)

The root Hermite factor can be estimated and the volume of Λ is clearly given by qn−r.
This allows us to easily estimate the remaining security in terms of the required BKZ-β.

4.3 Results
This section show the results of our recovery runs on the example of Kyber512. We ran 20
samples per number of inequalities for less than 25000 inequalities and 5 runs for higher
numbers. We ran up to 50 full belief propagation iterations, where by a full iteration
we mean an iteration from variable nodes to factor nodes and then vice-versa. Out of
the 50 possible steps, we continue with the data obtained from the step with the most
correct coefficients. We note that this leads to an attacker needing to be able to run several
instances of lattice reduction. The cost introduced by choosing the best step and guessing
the right number of recovered coefficients scales the total cost by at most a linear factor.
This can be decreased further by using our statistics on the average number of recovered
coefficients and starting with the last step as this is usually among the best steps.

We state our security estimates in terms of BKZ-β as well as in bit-security per number
of obtained inequalities. In attacks such as [PP21], [HPP21], or [Del22], this is precisely
the number of required faults. In addition, we factor in the average reliability of a fault
in attacks similar to these. For different attacks, such as [BDH+21] and [DHP+22], the
number of inequalities could correspond to the number of measurements, for example, power
traces. In these attacks, the error probability, which previously expressed fault reliability,
corresponds to the Signal-to-noise ratio (SNR) which is achieved in measurements; but
the precise translation of SNR to error probability p depends on the concrete attack and
type of measurements.
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Relevance of lowering the number of inequalities. In fault attacks, the amount of
required faults, i.e. the amount of required inequalities, is often of little relevance as the
difficulty lies in the initial setup. In side-channel attacks on the other hand, in which our
method applies just as well – to previously published as well as potential future attacks –
the relevance of lowering the number of inequalities is more obvious: In attacks such as
[BDH+21, DHP+22] every measurement of the FO transform results in one inequality. If
less inequalities from the decapsulation are required to solve for the secret key, then fewer
measurements (using the same secret key) need to be taken.

In addition, the simplest countermeasures to counter attacks targeting the FO and
utilizing decryption errors in general, is to shut down a device after a certain number f of
failed decapsulations. If f is chosen too low, then even accidental decryption errors due
to, e.g., transmission errors, might cause problems. If f is chosen too high, the device
is potentially vulnerable to an attack targeting decryption errors. Thus, to design such
a countermeasure, estimates of the remaining security as a function of the number of
decryption failures are required. Furthermore, these estimates can also be useful in a
security-evaluation context, such as device certification.

4.3.1 Only Correct Inequalities

The situation when we have only inequalities known to be correct is depicted in Figure 10.
Such perfect correctness can be achieved by either having highly reliable injection capabil-
ities or by being perfectly able to differentiate if a decryption error occurred using side
channels. In both the fault and side-channel scenario, the number of inequalities is then
equal to the number of trials. Maybe more realistically, perfect correctness can also be
achieved by using faults in conjunction with result filtering, if applicable. In [HPP21],
only trials resulting in a successful decapsulation are kept. Since about half of the chosen
ciphertexts lead to correct message recovery, and only a successful injection can properly
correct the ciphertext manipulation, the number of needed fault injections is derived by
dividing the number of inequalities by 0.5 times the fault success probability.

We evaluate attack performance both with and without ciphertext filtering. With
ciphertext filtering, the scenario is identical to that of [HPP21]. We then perform our
integration of belief propagation data and give the results in terms of BKZ-β in Figure 10.
Note the sharp drop at around 4000 inequalities in Figure 10 coming from the belief
propagation recovering more coefficients.

Information theoretic analysis. To better explain the effects of ciphertext filtering, we
now analyze it from the perspective of information theory. Recall that the generated
inequalities are of the form

(e, s)>(rj ,−(e1j + ∆uj)) R −e2j −∆vj . (31)

When now picking any inequality, one can compute (or estimate) the distribution of values
received by multiplying the known values (rj ,−(e1j + ∆uj)) by any randomly chosen valid
key (e, s)>. This distribution is approximately Gaussian, the area under the resulting
probability mass function corresponds to the number of keys yielding the results in the
chosen interval.

When setting up an inequality, one essentially cuts this distribution into two parts,
the sign of the inequality determines in which of the two parts the true key is located.
When cutting the distribution at exactly 0, the two parts are of equal size. This means
that one can exclude exactly half of all possible keys (at least information theoretically),
i.e., one gains exactly 1 bit of information. When cutting in the tail of the distribution,
i.e., −e2j −∆vj is large in absolute value, then with a very high chance, the true key is in
the larger of the two parts. Since even random guessing would pick the correct part in
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Figure 10: The average remaining security in terms of BKZ-β when all inequalities are
correct. The evaluation is performed with and without ciphertext filtering.

most cases, the information learned is a lot lower than one bit. The exact information
content can be computed by evaluating the binary entropy function Hb on the relative size
of either part.

We determined the average information content of inequalities through simulation.
We did not compute the above-described distribution for each individual inequality, but
instead approximated it with its average. Concretely, the values on the left-hand side of
Equation (31) approximately follows a Gaussian distribution with zero mean and, in the
case of Kyber512, a standard deviation of about 51. We found that without ciphertext
filtering, the average information content of an inequality is about 0.6 bits. With filtering
enabled, i.e., only using ciphertext with | − e2j −∆vj | ≤ 10, the average information per
inequality is very close to 1 bit. This very closely reflects the results shown in Figure 10,
as the relation of required ciphertexts is 5500/9000 ≈ 0.6

Note that although each inequality gives about one bit of information on the secret key,
the number of required inequalities is a lot larger than the log of total number of valid
secret keys (for Kyber512, roughly 22900 valid keys exist). We give a possible explanation
of this discrepancy by invoking coding theory, which appears justified as solving for the
key given inequalities is, in essence, similar to decoding a random linear code. While
the generated random linear code is, with very high probability, a good code [CG90]
(the correct key is information theoretically uniquely determined with a little over 2900
inequalities), decoding a random linear code is a very hard (NP-hard) problem. Thus, our
decoder (implementation of BP) cannot be ideal and a significant amount of redundancy is
required. Moreover, our decoding problem differs from a standard linear decoding problem
– instead of working with equations, we work with inequalities. This could be another
cause for the discrepancy between the contained information and the required number of
inequalities.

Finally, we want to mention that Guo et al. [GGSB20] performed an information-
theoretic analysis of the belief propagation in context of soft-analytical side-channel attacks.
In contrast, we only compute the information contained in the system of inequalities and
do not model the belief propagation as such. Still, modeling the BP could further improve
the accuracy of the estimates.

4.3.2 Considering Incorrect Inequalities

In a realistic attack, some of the obtained inequalities might be incorrect. This can, e.g.,
happen if a fault injection does not have the desired effect, either due to an unreliable
setup or countermeasures being in place and no result filtering is applied (or even possible)
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or due to a high signal-to-noise ratio in a side-channel attack which leads to an incorrect
observation about whether a decryption error occurred. Our method allows dealing with
such potentially incorrect inequalities as described in Section 3.1. The adversary has to
assign a correctness probability to each inequality; this probability can be set for each
inequality independently. Our recovery method allows assigning a probability to each
inequality individually.

For evaluation purposes, we chose three different scenarios which we again evaluate on
the example of Kyber512. In the first scenario, the adversary can only derive an average
correctness probability p and assigns this probability to all inequalities. An example where
this situation could occur is a side-channel in which an attacker can differentiate between
a decryption error/successful decryption and is, on average, correct in with probability p.
This first scenario is depicted in Figure 11 for p ∈ {0.8, 0.9}.

In the second scenario, we assume that the adversary is certain about the correctness of
some of the inequalities, whereas all others can be assigned a fixed correctness probability
smaller than 1. This case occurs in [HPP21] or [Del22]. We denote f as the probability
that the required fault injection succeeds; this can, e.g., be a measure of the reliability of
the setup. Then, in both mentioned attacks, one can be certain about the correctness if
decapsulation succeeds, since this can only occur if fault injection has the desired effect.
As about half of the submitted chosen ciphertexts do not cause a decryption error, which
is a requirement for observing decapsulation success, the chance of observing decapsulation
success and thus being able to assign a correctness probability of 1 is f/2. In this case that
not all fault injections cause the desired effect, one cannot be certain about the correctness
of inequalities stemming from decapsulation failures. Instead of completely discarding
such inequalities, we can assign them a correctness probability and still incorporate them
into the solving process. In the concrete scenario, this probability is derived as follows.
When observing a decapsulation failure, then the derived inequality is correct if either fault
injection has the desired effect and a decryption error occurs (chance of f/2) or if fault
injection did not succeed, but a decryption error would have occurred anyway (chance
of (1− f)/2). The inequality is incorrect if failt injection failed but no decryption error
occurred (chance of (1 − f)/2). After normalizing the correctness probability with the
probability of observing a decapsulation failure, we get p = 1/(2− f) as the probability of
inequality correctness in case a decapsulation failure is observed. The evaluations for this
third scenario are depicted in Figure 12 for f ∈ {0.6, 0.7, 0.8, 0.9}.

In addition, we evaluate an artificial scenario in which the attacker may obtain half of
the inequalities with correctness probability phalf and the other half with probability 1, i.e.
the first half is as in the previous scenario and the second half is certainly correct. This
shows how a system of inequalities allows for improved key recovery if certainly correct
inequalities are mixed with potentially incorrect inequalities. This scenario is depicted in
Figure 13 for phalf ∈ {0.6, 0.7, 0.8, 0.9}.

Information theoretic analysis. We now extend the information theoretic analysis from
the previous section to the case of potentially incorrect inequalities. Since each inequality
carries about one bit of information and making an inequality incorrect boils down to
flipping a single (sign) bit, we use the binary symmetric channel model to estimate the
information loss due to errors. This means that from an inequality with correctness
probability p, we get 1−Hb(p) bits of information on the key.

This metric now allows deriving a (lower) estimate on the number of required inequal-
ities in arbitrary settings. Since we require about 5500 inequalities in the ideal setting
(cf. Figure 10), the lower estimate is the number of inequalities required to gather 5500
bits of information on the key (for Kyber512). We say that this is a lower estimate,
as the number of required inequalities in, e.g., Figure 11 with p fixed to either 0.8 or
0.9, is slightly higher than the estimate. Concretely, for p = 0.8, the estimation gives



24 Error-Tolerant Key Recovery from Decryption Errors

0 5000 10000 15000 20000 25000 30000 35000 40000 45000 50000
Inequalities

0

100

200

300

400
β

p = 0.9, filtered
p = 0.9, unfiltered
p = 0.8, filtered
p = 0.8, unfiltered

1
.

Figure 11: The average remaining security of a Kyber512 instance in terms of BKZ-β.
Inequalities are correct with probability p; such a scenario would occur, for example, in a
side-channel attack. The filtering is performed as in [HPP21]
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Figure 12: The average remaining security of a Kyber512 instance in terms of BKZ-β for a
fault attack with fault success rate f . All inequalities are filtered with the method used in
[HPP21]. This figure depicts the remaining BKZ-β in attacks such as [HPP21] or [Del22]
for a fault which works f of the times it is applied.

5500/(1−Hb(0.8)) ≈ 20000 inequalities (or side-channel measurements), whereas we actu-
ally require 24000. In the fault-attack setting (Figure 12), we receive 1 bit of information
with probability f/2 and 1−Hb(1/(2− f)) bits otherwise. For f = 0.6, the estimation
gives roughly 14000 inequalities (or fault injections), which is also very slightly below the
empirically measured quantity. The slight discrepancy between estimate and simulation
in both settings is likely due to our BP implementation not ideally scaling with p or f
respectively.

4.3.3 Success Rates

Assuming an attacker can run BKZ-70, Table 2 lists the number of inequalities needed for
a successful attack on Kyber512 in different settings with filtered ciphertexts. Previous
statistical methods did not employ a lattice reduction step, therefore no usage of BKZ is
assumed; our method explains how to combine lattice reduction with statistical methods.
Note that the filtering in the work of Delvaux differs slightly, but comparing unfiltered
results, we assume the impact to be small (c.f [Del22, Figure 4]). In addition, the Kyber
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Figure 13: The average remaining security of a Kyber512 instance in terms of BKZ-β with
incorrect inequalities when half of the inequalities are known to be correct and half of the
inequalities are correct with probability phalf. All inequalities are filtered with the method
used in [HPP21].

Table 2: Approximate number of inequalities needed to recover a Kyber512 key with
success rates 1 with filtered ciphertexts for only correct inequalities, inequalities being
correct with probability p, and fault success rates f . Note that Kyber version and filtering
method vary slightly and we had to adapt the method of [Del22].
Method Correct p = 0.9 p = 0.8 f = 0.9 f = 0.6
Pessl and Prokop [PP21] 8000 n.a. n.a. n.a. n.a.
Hermelink et al. [HPP21] 5750 n.a. n.a. n.a. n.a.
Delvaux [Del22] 9000 34000 not solved 12000 21000
This work 5500 12000 24000 8000 15000

version is older and features different parameters making recovery slightly easier in the
case of [PP21]. In [PP21], Pessl and Prokop can only work with a very small number
of incorrect inequalities and [HPP21] does not consider incorrect inequalities at all. The
numbers for only potentially incorrect inequalities are not stated by [Del22]. Therefore
we slightly modified their implementation to also cover the case where no inequalities are
certainly correct. Using the modified method of [Del22], we were not able to solve the 0.8
incorrect inequalities setting using more than 300000 inequalities.

4.3.4 Performance

While our method is less efficient than the one of Delvaux, we note that for less than 10000
inequalities we stay below an hour of runtime for the belief propagation on a commonly
available CPU. As the belief propagation scales well, an attacker can improve by using a
large number of cores. In practice, obtaining traces or applying fault is usually much more
expensive than obtaining more CPU cores. Therefore, we believe the drastically reduced
number of inequalities justify the increased recovery times. In case the belief propagation
is not successful on its own, the lattice reduction will take up the largest portion of the
runtime.

4.4 Adapting to Frodo.
We added a variant recovering the key for an attack on FrodoKEM-640 (as specified
in [ABD+21a]). While there are no fundamental issues, the large error distribution in
Frodo poses a few implementational challenges and requires more resources. In addition
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to implementing our recovery method proposed in Section 3, we also optimized the
already existing parts of the belief propagation. Running with 28 threads working on
4000 inequalities required about 60 GB of RAM and took several hours for a single run.
Nevertheless, the computational resources needed to run the belief propagation part of
our recovery method for FrodoKEM can easily be obtained; the limiting factor for an
attacker is either the lattice reduction or the ability to perform the fault application or
the side-channel measurements on an actual device.

Different kinds of inequalities. Using our implementation for Frodo, we applied our
recovery method to the inqualities of [FKK+22] which are also used to test the framework
of [DGHK22]. This was not successful with the 4000 inequalities used for evaluation
in [DGHK22], as the belief propagation quickly tends to a wrong solution with large
coefficients. To solve this, we further added message dampening and a random schedule
mode to the belief propagation. This also did not lead to any improvements. Nevertheless,
our belief propagation implementation now allows for using these features with Frodo and
Kyber using a simple flag. In its current form our recovery method is unsuitable for this
kind of inequalities and we recommend using the framework of [DGHK22]. Note that we
mainly focused on the kind of inequalities arising in the majority of implementation attacks
and a combination of both methods may be possible. We leave this for future work.

5 Conclusion
We present a new algorithm to recover the secret key when given access to a decryption
failure oracle. In contrast to previous work, we make use of both the information represented
by the LWE instance as well as the retrieved inequalities. Using statistical as well as
algebraic methods, we combine the advantages of previous approaches. Our method is
both practical and also allows for a theoretic estimate of the remaining security if the
secret cannot be fully retrieved. We thereby improve upon previous attacks and provide
a tool for refining estimates of implementation security. Our method applies to several
previously published attacks as well as to the class of attacks combining an implementation
attack that allows constructing a decryption failure oracle with a chosen-ciphertext.

Future work. While our methods are practical and efficient, it is yet open if there is
a more sophisticated method replacing the proposed key enumeration of Section 3.2.2.
By using the information on remaining coefficients more efficiently than by brute-force,
further improvements might be achieved. Relying on the dual instead of the primal attack
including recent developments, as described in Section 3.2.4, may also allow for a more
efficient attack. Another open question is whether the integration of Dachman-Soled et
al. in [DGHK22] can be combined with belief propagation. This, to us, seems to be a
non-trivial question whose answer holds potential of huge improvements. Further, we do not
answer the question if our method can be adapted to inequalities as arising from Fahr et al.
[FKK+22]. We only apply the recovery method to Kyber, for which a strong compression
makes obtaining equality hints infeasible. This is due to the imminent standardization and
to compare against previous works, which all targeted Kyber. Nevertheless, the optimal
attack strategy for different schemes is an open question.
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