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Abstract— Critical and widely used cryptographic protocols
have repeatedly been found to contain flaws in their design and
their implementation. A prominent class of such vulnerabilities
is logical attacks, e.g. attacks that exploit flawed protocol logic.
Automated formal verification methods, based on the Dolev-
Yao (DY) attacker, formally define and excel at finding such
flaws, but operate only on abstract specification models. Fully
automated verification of existing protocol implementations
is today still out of reach. This leaves open whether such
implementations are secure. Unfortunately, this blind spot hides
numerous attacks, such as recent logical attacks on widely used
TLS implementations introduced by implementation bugs.

We answer by proposing a novel and effective technique
that we call DY model-guided fuzzing, which precludes logical
attacks against protocol implementations. The main idea is to
consider as possible test cases the set of abstract DY executions
of the DY attacker, and use a novel mutation-based fuzzer
to explore this set. The DY fuzzer concretizes each abstract
execution to test it on the program under test. This approach
enables reasoning at a more structural and security-related
level of messages represented as formal terms (e.g. decrypt
a message and re-encrypt it with a different key) as opposed
to random bit-level modifications that are much less likely to
produce relevant logical adversarial behaviors. We implement a
full-fledged and modular DY protocol fuzzer. We demonstrate
its effectiveness by fuzzing three popular TLS implementations,
resulting in the discovery of four novel vulnerabilities.

1. Introduction

Cryptographic protocols are extremely hard to get right.
Critical and widely used cryptographic protocols such as
Transport Layer Security (TLS) have been repeatedly found
to be flawed, both in their design and their implementation,
usually with dramatic consequences. For the last decades,
security researchers have identified different relevant classes
of attacks and methods to prevent them.

*. Part of this work was done when M. Ammann was at Inria Nancy
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†. A list of changes since the initial version can be found in Appendix A.

Logical attacks and formal verification. Since the
1980s [36], the formal methods community has identified and
mathematically defined the Dolev-Yao (DY) attacker and the
corresponding class of logical attacks [10]. The DY attacker
is an active network attacker who treats exchanged messages
as formal terms (in a term algebra): this representation
reveals the messages’ internal algebraic structure but not
their underlying concrete values as bitstrings. This attacker
can intercept, eavesdrop, modify and synthesize messages
(viewed as terms) in between honest agents, and also
actively participate in protocol sessions. In particular, they
can use cryptographic primitives (e.g. encrypt, sign, decrypt)
by applying function symbols (also called operators) that
encode the algebraic properties of those primitives (e.g.
decrypting a ciphertext senc(m, k) with the right key yields
the plaintext: sdec(senc(m, k), k) = m). Logical attacks
are the attacks captured by this DY attacker, and from
now on, we refer to them as DY attacks. Typical examples
are attacks that exploit flaws in the protocol logic such
as Machine-in-the-Middle (MITM), authentication bypass,
downgrade, replay, impersonation attacks.

Much work has focused on developing formal verification
methods and tools aimed at finding or proving the absence
of DY attacks at the design level –that is, in cryptographic
protocol specifications. It has persistently been motivated
by the prevalence of such design-level DY attacks and the
high complexity of manually finding them. For instance,
TLS 1.2 and early drafts of TLS 1.3 specifications suffered
from serious DY attacks such as complete authentication
bypasses [28, 16, 26, 27, 18, 58, 19, 7, 37]. Similar attacks
impacted many other protocols such as WPA2 [74, 75], credit
card payment systems [12, 11], etc. Practitioners are now
aware of the usefulness of formal methods during protocol
design and use them (for example, see IETF calls for help
to the formal methods community [62, 77]).

However, specifications are simply an abstraction of
the program that end-users deploy and run, programs that
are themselves plagued with frequent implementation bugs.
These may introduce additional vulnerabilities, notably
implementation-level DY attacks. Examples thereof are abun-
dant and well illustrated by the extensive history of such at-
tacks on TLS: [30, 14, 33, 40, 28, 58, 21, 65]. More generally,



even a formally proven specification can result in a flawed
and insecure implementation. Sadly, fundamental problems in
program verification are still unsolved and coping with (com-
binations of) features of real-world systems such as pointer
aliasing or complex control-flow is still out of scope, preclud-
ing verification of most existing, real-world code bases (such
as OpenSSL, wolfSSL, and LibreSSL we will test). For such
code bases, those techniques are thus limited to the design
level but not the implementations thereof (cf. Section 2.3).

Memory-related vulnerabilities and fuzzing. In this
paper, we are concerned with finding implementation-level
DY attacks in large cryptographic protocol code bases. For
this, we build on fuzz testing, which has been developed
since the 1990s [57] and is now the gold standard for testing
security software. It has become a key part of software
development practices; e.g. Google [8], Adobe, Cisco, and
Microsoft use it at scale on their and others’ codebases. Two
reasons for the success of fuzzing are its scalability and its
extreme efficiency at finding spatial and temporal memory
bugs, a class of vulnerabilities that is both notoriously diffi-
cult to manually find, and prevalent in today’s software. This
is generally achieved by using a fuzzing loop, in which test
cases from a Corpus are first randomly mutated (or generated)
and then executed against the Program Under Test (PUT).
If some feedback metric (e.g. code-coverage) deems the
mutated test case interesting, it is added to the Corpus. When
executing test cases, an objective oracle observes whether a
security policy violation occurs (e.g. memory corruption).

However, state-of-the-art fuzzers are unable to capture
the class of implementation-level DY attacks for two main
reasons. First, they fail to effectively capture the DY attacker,
in particular the ability of structural modifications on the term
representation of messages (e.g. re-signing a message with
some adversarial-controlled key) which are a prerequisite
to capture DY attacks. We emphasize that DY attacks may
trigger protocol or memory vulnerabilities. Second, they are
unable to detect a security violation at the protocol level; e.g.
for the attacks that trigger protocol vulnerabilities, which
are not memory-related, such as an authentication bypass.
(We discuss this gap further in Section 2.3.)

Contributions. We answer the lack of effective techniques
to preclude DY attacks from cryptographic protocol imple-
mentations with the following contributions.

DY Fuzzing: a new fuzzing technique. We propose
a novel approach to fuzzing cryptographic protocols dubbed
Dolev-Yao model-guided fuzzing (DY fuzzing for short). It
is based on the novel idea of using formal DY models as
domain-specific knowledge to guide the fuzzer and give it
the ability to detect DY attacks in protocol implementations.
This requires a re-design of most of the fuzzer components.

The test cases become formal and structured DY traces.
Those represent executions of protocols against a DY attacker
in the (formal) DY model: networking actions (inputs, out-
puts) and adversarial manipulations over exchanged messages
that are abstracted away by terms and idealized cryptogra-
phy [10]. The DY fuzzer is thus capable of intercepting,

eavesdropping, modifying, and synthesizing messages. We
design new domain-specific mutations over DY traces for
exploring the search space made of all the DY traces. Any
DY trace can be compiled into a proper test case against
the PUT through concretization: DY terms are evaluated
into bitstrings, and DY inputs and outputs are evaluated into
communications with agent instances of the PUT.

The messages as terms paradigm guides DY attackers
and thus our DY fuzzer in how they interact with messages
and cryptography. It is on purpose that our fuzzer inherits
this standard DY assumption: it narrows down the search
space to DY attacks and exclude some other attacks, e.g.
when bit-level transformations are required and cannot be
described at the term-level. The DY attacker and attacks
are motivated by and grounded on decades of research and
practical attack finding [10].

Next, we define domain-specific fuzzing security
policies and objective oracles. Indeed, the usual policies
and objective oracle for spatial and temporal memory errors
(e.g. AddressSanitizer (ASAN) [68]) are unable to detect
DY attacks triggering protocol vulnerabilities. We still
enable them, as they are useful to find DY attacks triggering
memory vulnerabilities, e.g. memory bugs that can only
be triggered from specific states that are hardly reachable
using standard fuzzing. As we shall see, DY traces are very
good at exploring such deep states. To be able to detect
protocol vulnerabilities, we additionally consider formal DY
properties, e.g. strong agreement, that express the absence
of protocol vulnerabilities. Those properties are translated
into security policies and objective oracles. This way, any
violation thereof reached through fuzzing is detected and
flagged as an attack candidate. We stress that a DY fuzzer
does not require a complete protocol DY model, but only a
DY attacker model (by means of a term algebra and agents
the attacker can communicate with) and security policies.

tlspuffin: a full-fledged and modular DY fuzzer
implementation. In addition to a generic design specifica-
tion for DY fuzzers, we also contribute a complete Rust
implementation of a DY fuzzer for TLS that we applied on
three different PUTs: OpenSSL, LibreSSL, and wolfSSL.

Our implementation follows modular design principles
and revolves around three main modules that are of
independent interest. First, the protocol- and PUT-agnostic
DY fuzzer module puffin is built on top of the fuzzing library
LibAFL [39], where we re-implemented most of the fuzzing
components. On top of puffin, we built protocol-dependent
fuzzers: tlspuffin for TLS and the preliminary sshpuffin for
SSH. Third, we connected PUTs to the fuzzers: OpenSSL,
LibreSSL, and wolfSSL to tlspuffin and libssh to sshpuffin.
This FLOSS project [73] is ca. 16k Rust LoC. Extending
the fuzzer to new PUT requires little work (hundreds of
Rust LoC) but extension to new protocols is more costly
(thousands of Rust LoC) as it requires protocol-dependent
concretization, i.e. computing bitstrings out of terms.

Our fuzzer is fast (>700 executions/second/CPU core)
and allows parallel processing. We let tlspuffin run on the
aforementioned TLS PUTs, which found seven vulnerabil-
ities, including four new CVEs on wolfSSL (among which



one critical and two high). We also ran three state-of-the-art
stateful protocol fuzzers and one test-suite and confirm that
none was able to find any of the seven vulnerabilities. We
explain why they were out of their scope due to inherent
limitations of previous approaches. We perform benchmarks
comparing our fuzzers to other stateful protocol fuzzers.
tlspuffin achieves a similar amount of code coverage but the
covered code is often incomparable. However, our analysis
shows that code coverage is an unsatisfactory metric to
evaluate the DY fuzzer’s ability to find attacks (which was
already noted for standard, bit-level fuzzers [50]).

To summarize, our contributions are as follows.
1) We propose DY Fuzzing: a new approach to fuzzing

cryptographic protocols that notably captures for the
first time a DY attacker and the class of DY attacks.
We propose a new and complete system design.

2) We propose tlspuffin: a full-fledged, modular, and effi-
cient implementation in Rust of this fuzzer design.

3) We evaluate and compare tlspuffin on several TLS 1.2
and TLS 1.3 libraries and (re)found seven vulnerabilities
not found by others, including four new ones (one
critical, two high, and one medium).

Outline. We first recall some background about TLS and
fuzzing and discuss related work (Section 2). Then, we
provide a DY model that allows us to define the fuzzer’s
search space (Section 3). We made this model generic
enough in order to then directly link it to the executions of
an implementation. Building on this generic DY model, we
present the concept of DY fuzzing (Section 4) and discuss its
implementation in our tlspuffin fuzzer (Section 5). We then
present the results of fuzzing three TLS implementations and
qualitatively and quantitatively evaluate and compare our tool
with state-of-the-art protocol fuzzers (Section 6). Finally, we
conclude by discussing directions for future work (Section 7).

2. Background

2.1. Case Study: The TLS Protocol

TLS [66] is a protocol to establish a secure channel be-
tween two agents, a client and a server, communicating over
an untrusted network. It is notably widely used in the context
of HTTPS and enables browsers to securely communicate
with web servers. TLS aims at providing strong security guar-
antees. (i) Authentication: the server is always authenticated,
and the client can be optionally authenticated. Authentication
is realized by the means of asymmetric cryptography (e.g.
RSA) or a symmetric Pre-Shared Key (PSK). (ii) Integrity
and confidentiality: application data is always encrypted and
integrity-protected with a session key. For simplicity and
conciseness, we focus on the latest TLS 1.3 version.

The TLS protocol has two sub-protocols: first, the hand-
shake protocol negotiates cipher suites, authenticates the end-
points, and establishes a shared, session key; then, the record
layer protocol uses the established secure channel (based
on the session key) to exchange application data. With the

aim of being agile and adaptive to the use case, the protocol
offers different modes of operation that sometimes can be
combined. This yields a rather complex state machine for
clients and especially servers [66, Appendix A]. We give a
bit more details about the handshake protocol as we will use
it for illustration throughout the paper.

Key Exchange and Authentication. The handshake
protocol starts with two key exchange messages. The client
sends a ClientHello message containing proposed cipher
suites, and either an ephemeral (EC)DH key share or a PSK
(or both). The server replies with a ServerHello indicating
the negotiated connection parameters and, if needed, its
ephemeral (EC)DH key share. Alternatively, if the client’s
proposal does not suit the server (e.g. unsupported cipher
suites) the server may send a HelloRetryRequest. Any mes-
sages after a successful key exchange will be encrypted.

To avoid a MITM attack, if the key was not pre-shared,
the server must authenticate. For this it sends a Certificate,
e.g., a X.509 certificate, and a CertificateVerify, that is a signa-
ture of the entire handshake with the certified key. (Optionally
the server may request similar messages from the client.)

Finally, both the server and client send a Finished message.
This message is a MAC over the entire handshake that
provides key confirmation and also binds the participants’
identities to the session key.

Session resumption. At the end of the handshake the
server transmits a NewSessionTicket. This ticket may either
contain a key identifier, or an encrypted key for the server to
allow stateless resumption. This allows for the more efficient
PSK mode in a subsequent session as it avoids the certificate
based authentication.

TLS Implementations. The most widespread
implementation of TLS is OpenSSL with an almost 25-
year history. LibreSSL is a fork thereof and aims to be
more secure but has less features. wolfSSL is a lightweight
implementation widely used by IoT and embedded devices,
and is able to run on OSs and CPUs otherwise not supported.

2.2. Fuzzing

One of the gold standards of security-related software
testing is fuzzing [38, 80, 53, 55]. In its general form, fuzzing
is the action of repeatedly executing the PUT on inputs
outside the expected, honest input space to find violations
of certain security policies. Most of the time, this is done
by iterating fuzz runs where new test cases are generated
from the current Corpus, i.e. set of ”interesting” test cases,
whose execution by the PUT will provide Feedback to the
algorithm that will guide future test case generation. The
nature of the feedback can be diverse: coverage (e.g. code-
coverage), policy violation, etc.

Different approaches exist for input generation:
generation-based fuzzers utilize a specification of the
input space (e.g. a grammar) while mutation-based fuzzers
leverage (often random) mutations to generate new test
cases from the current Corpus and add those to this corpus
if deemed interesting according to the obtained feedbacks.
Finally, an Objective Oracle checks Security Policies when
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executing the test cases to detect security violations in the
PUT, such as a buffer overflow.

We are mostly using the terminology of LibAFL [39],
which is a state-of-the-art, modular, efficient fuzzing
framework we build on. In its default configuration, LibAFL
implements evolutionary fuzzing, which is mutation-based
and grey-box, i.e., it uses some limited PUT runtime informa-
tion to collect feedback (e.g. through code instrumentation).
The main LibAFL fuzzing loop is depicted in Figure 1.

2.3. Related Work

2.3.1. Fuzzing protocols at the bit-level. Narrowing down
the discussion to cryptographic protocols, the main approach
is mutation-based fuzzing on the network packets or the
inputs of cryptographic primitives [63, 76, 22, 42]. Such test-
ing methodologies are adequate to find safety vulnerabilities
with potential security implications (e.g. HeartBleed [30]
and CloudBleed [29]), but are unable to capture DY attacks
for two fundamental and intrinsic reasons given next, which
we will revisit and exemplify in Section 6.1.5. (We provide
a more thorough qualitative and quantitative comparison
with state-of-the-art protocol fuzzers in Section 6.)

(1) Reachability Problem: DY attack states (triggering
memory or protocol vulnerabilities) are not reached for two
main reasons. (1a) Existing harnesses of many state-of-the-
art bit-level fuzzers [38, 80, 53, 23, 79, 6] only send one
flight of messages to the PUT and do not address the PUT
statefulness.1 This excludes vulnerabilities that require at
least one round trip where the fuzzer needs to produce test-
cases made of multiple messages successively fed to the PUT
that may depend on outputs the PUT produces as response of
previous messages. (1b) Mutation. Even for bit-level fuzzers
made amenable to protocols, it is overwhelmingly unlikely

1. See for example this OpenSSL example: https://github.com/openssl/
openssl/blob/master/fuzz/client.c

that bit-level transformations (e.g. random bit flips and basic
arithmetic operations) on the network packets express valid
and logical transformations over messages such as uses
of cryptography to perform e.g. impersonation, downgrade
attacks, relay attacks, etc. Indeed, the latter often require
numerous, structured, and synchronized modifications in the
packets. E.g. almost all TLS 1.3 messages are encrypted and
integrity-protected2, which drastically reduce the probability
of finding meaningful bit-level mutations (upper-bounded by
the negligible probability to break the cryptographic suites).
On the contrary, the message as formal term paradigm allows
DY fuzzers to produce meaningful message mutations. This
Mutation limitation affects all fuzzers based on bit-level
mutations such as [38, 80, 53, 63, 76, 22, 44, 42, 51, 46, 54,
70, 49, 63, 60, 71] or/and based on mutations that can only
modify a hard-coded selection of message fields [51, 54,
70, 49, 71]. We stress that this Reachability Problem also
concerns memory-related bugs that are solely reachable from
deep states, that we can often reach with a DY attacker.

(2) Detection Problem. Protocol vulnerabilities are not
detected: the classical spatial and temporal memory errors-
related security policies and objective oracle are unable to
detect when a protocol vulnerability such as an authentication
bypass occurs. That is, even if classical fuzzers reached such
an attack state, they would just drop the corresponding test
case and deem it uninteresting on the basis that no memory-
related error occurred. For the first time, DY fuzzers can
detect DY attacks triggering protocol vulnerabilities.

2.3.2. Model-based protocols fuzzing. Some prior work
extended the stateful fuzzing approach [9] and use input-
output protocol Finite State Machines (FSM) as a behavioral
abstraction of the PUT and use differential fuzzing to detect
potential bugs [49, 48] or manually inspect the inferred
FSM [65, 33, 14, 40, 64]. They are tailored to capture bypass
authentication attacks or other violations of the intended
state machine flows. However they are unable to capture
the entire class of DY attacks since they cannot tamper with
the message contents (except for potentially a finite number
of selected/hard-coded values [71, 49]) and thus suffer from
the limitation (1b); the same applies to many other testing
methodologies and fuzzers [47, 67, 32, 48, 59].

Moreover, since the FSM is not specifically designed
for security, the security policy violations detected by FSM-
based techniques are not necessarily security attacks and
require manual inspection, those techniques thus also inherit
the Detection Problem (2).

2.3.3. Program verification and secure compilation. We
argue in Appendix B.1 that verification methods targeting
implementations of cryptographic protocols (e.g. [72, 35, 34,
18, 4, 81, 15, 13, 10, 52, 5]), such as F∗, DY∗, Jasmin, etc.
have currently two drawbacks that make them unsuitable
to preclude implementation-level DY attacks in existing
real-world protocol implementations: scalability to whole

2. Disabling cryptography is not satisfactory as it would only impact the
record layer and would hide the attacks related to the use of cryptography.

https://github.com/openssl/openssl/blob/master/fuzz/client.c
https://github.com/openssl/openssl/blob/master/fuzz/client.c


large protocols and, more importantly, ability to operate on
existing, deployed implementations.

3. The Dolev-Yao Model

Our fuzzing framework builds on the so-called Dolev-
Yao (DY) model, going back to the seminal work of Dolev
and Yao [36] that is today the basis for numerous verification
techniques [10] and real-world security analysis [16, 26, 27,
12, 43, 17] of protocol designs (but not of implementations).
We now recall some preliminary basic definitions in this
model and refer the curious reader to [25, 20].

3.1. Term Algebra

In DY models, messages are described using a term
algebra. For example, the term senc(m, k) represents the
message m encrypted using the key k. The algebraic prop-
erties of cryptographic functions are specified by equations
over terms. For example, sdec(senc(m, k), k) = m specifies
the expected semantics for symmetric encryption: decryption
using the encryption key yields the plaintext. As is common
in the DY model, cryptographic messages only satisfy those
properties explicitly specified algebraically. This yields the
now standard black-box cryptography assumption: attackers
do not exploit potential weaknesses in cryptographic primi-
tives beyond those explicitly specified. However, as we shall
see, attackers will have complete control over the network.

Definition 1 (Terms). A signature Σ is a set of operators with
their arities. The subset of operators of arity 0, is the set of
atoms. We also assume a countably infinite sets of variables V .
The set of terms T is defined inductively as the set containing
V and terms resulting from applying operators to other terms.

Intuitively, operators model computations over messages
(e.g. symmetric encryption: senc ∈ Σ of arity 2). Atoms
model atomic data such as nonces, keys, and constants.

Example 1. A basic model of digital signatures can be
specified by a signature Σ that contains operators sign(·, ·),
checksign(·, ·), pk(·), and an atom true ∈ Σ.

Example 2. As another TLS related example, consider the
ClientHello message. Slightly simplifying (omitting legacy
fields and compression methods), we model this message us-
ing an operator of arity 3: the term ch = CHello(sid, cs, ext)
represents a ClientHello message where sid is a session iden-
tifier, cs and ext are terms that encode the list of proposed
cipher suites, respectively extensions. Note that CHello()
models the formatting but does not provide any cryptographic
protections. We therefore suppose that we also have three
operators π1, π2, π3 that project each of the arguments to
allow the DY attacker to extract them.

Remark 1. Algebraic properties over operators, such as
“verifying a signature with a matching key returns true”,
are usually expressed through an equational theory [2].
Continuing Example 1, one would specify the equation
checksign(sign(x, y), pk(y)) = true with x, y ∈ V . This does

indeed model signature verification as the public key used
for verification pk(y) must match the signature key y, which
may be instantiated with any term. To illustrate the black-
box cryptography assumption, we emphasize that this would
be the only algebraic property satisfied by checksign, and
hence the only way to correctly verify a signature in this
model is to use a matching key. This models a strong form
of the unforgeability cryptographic assumption.

In DY protocol verification, an equational theory is
required to reason about protocols [25, 20]. In this work,
it is not required as operators and terms will be given a
bitstring semantics defined by the concrete implementation
of the operators in a cryptographic library (see Section 4.1).

3.2. DY Traces

Despite the black-box cryptography assumption, attackers
have complete control over the network and the exchanged
messages: they can eavesdrop on, inject, and tamper with
messages. In particular, such attackers can perform MITM,
replay, relay, downgrade attacks, etc. Those are examples of
DY attacks, which are formally defined as the class of attacks
that can be triggered by executing a DY trace (defined
below). The DY attacker is an attacker who can perform DY
attacks: its behavior is defined as the set of all DY traces.

Intuitively, DY traces are series of networking actions
(input and output) a DY attacker can perform. We use the
standard notion of channels to specify whom the attacker
is communicating with. Each channel uniquely identifies an
agent. For example, whenever an honest TLS 1.3 client starts
a new session it will use a specific channel that the attacker
can use to communicate.

Definition 2 (DY trace). Let C be a countable set of channels.
A DY trace is a sequence of actions a1 · · · an such that each
action ai is

• either an output out(c, x) (c ∈ C, x ∈ V)
• or an input in(c, t) (c ∈ C, t ∈ T ).

Moreover, if ai = in(c, t) and x is a variable in t then there
exists a previous output aj = out(c′, x) (j < i). The set of
traces is denoted by A.

Intuitively, the output action out(c, x) indicates that a
message, referred to by the variable x, is output by c and
received by the attacker. We emphasize that x is not the
expected output but a variable that points to the actual mes-
sage that has been output. The input action in(c, t) indicates
that the attacker computes a message and sends it to c, who
inputs it. This message is obtained by replacing the variables
in t by the messages received in the corresponding output
actions. Terms in inputs, such as t, are called attacker terms3.

Example 3. We assume two channels c and s of
respectively a TLS 1.3 client and server. Consider the trace
A := out(c, x).in(s, t) ∈ A which corresponds to: (1) the
client sends a first message (e.g. a ClientHello) we refer to by
x, (2) the term t is then sent by the adversary to the server.

3. Attacker terms are often called ”recipes” in the literature.



If t = x, the attacker simply forwards the server’s
response to the client. But the attacker can adopt many attack
strategies. We give a few examples. E.g., if t = someError,
the attacker pretends that the client sent some error message.
The attacker could also modify the message referred to
by x. Suppose that x points to the ClientHello ch defined
in Example 2. Then t = CHello(0, π2(x), π3(x)) would
correspond to the same message but replacing the session
identifier sid by the atom 0.

Semantics: Definition. We now present generic,
formal semantics of DY traces that define how they can be
executed. These generic semantics can be instantiated into
DY semantics (as informally discussed in Remark 2 and
formally defined e.g. in [25, 20]) or into concrete semantics,
as done in our DY fuzzing approach and detailed in Section 4.

Recall that each channel c ∈ C corresponds to an honest
agent with whom the attacker can communicate. We associate
to each channel c the corresponding agent’s local state sc
and denote by S the set of all local states. The global state
is defined by a partial function:

s : C ⇀ S
which returns this association. We also distinguish the set
S0 ⊆ S of initial states: when a new agent is created we
suppose that it starts in an initial state. We say that a global
state s is initial when s(c) ∈ S0 for all c ∈ dom(s). The
attacker’s state is a partial function ϕ that associates the
variables x of previous output actions out(c, x) to an abstract
notion of messages M, i.e.

ϕ : V ⇀ M.
The domain of ϕ contains variables referring to previous
outputs from this attacker state. The set of such partial
functions ϕ is denoted by Φ.

We suppose a generic specification of honest agents by
the means of two abstract partial functions:

output : S ⇀ S ×M
input : S ×M ⇀ S.

Intuitively, when an agent c is in state sc, output(sc) returns
an updated local state s′c and a message m. Similarly, when
a message m is provided to an agent whose local state is sc,
the state is updated to s′c := input(sc,m). Note that those
functions are partial as honest agents might block.

In order to transform terms in T (and notably attacker
terms) into messages in M we associate to each operator
f ∈ Σ an interpretation JfK : Mi ⇀ M when f has arity i.
Given ϕ ∈ Φ, we inductively lift J·K to terms as follows:

Jf(t1, . . . , ti)Kϕ = JfK(Jt1Kϕ, . . . , JtiKϕ)
JxKϕ = ϕ(x) if x ∈ V ∩ dom(ϕ)

We are now ready to formally define how a DY trace can be
executed, by the means of a transition system for actions,
between pairs of a global state s and an attacker state ϕ:

(s, ϕ)
out(c,x)−−−−−→ (s[c 7→ s′], ϕ ∪ {x 7→ m})

when output(s(c)) = (s′,m) and

(s, ϕ)
in(c,t)−−−−→ (s[c 7→ s′c], ϕ)

when input(s(c), JtKϕ) = s′c. Intuitively, an action out(c, x)
updates the state of the agent c and records the message

m output by c in the attacker’s state ϕ. An input action
on the other hand provides a message m := JtKϕ as input
to agent c and updates the local state of c. The attacker’s
computation of message m is specified by the attacker term
t. In particular, the attacker term t may refer to previously
output messages using variables in the attacker’s state ϕ.

A DY trace a1 · · · an and an initial global state s0 define
an execution (starting with an empty initial attacker’s state):

(s0, ∅)
a1−→ (s1, ϕ1)

a2−→ · · · an−−→ (sn, ϕn).

Remark 2. As is standard in DY protocol verification, honest
agents are usually specified in a formal language such as the
applied π-calculus [20] (or multiset rewriting rules [56]).
In that case, states in S correspond to π-calculus processes.
More importantly, the messages M are the closed (i.e. without
variables) terms –up to the equational theory– with addi-
tional private atoms (that model e.g. secret keys of honest
participants) and J·K is simply the identity function, i.e., the
operators are uninterpreted. The formal model yields output
that defines which (closed) term can be output by a given
process and input that defines the continuation of the process
after inputting a (closed) term.

In contrast, as we shall see in Section 4, for fuzzing we
will define a concrete semantics. In particular M will be the
actual packets sent over the network and J·K will interpret
operators by their actual implementations e.g. in the PUT. We
shall also instantiate agents’ local states into PUT-specific
session handlers (e.g. SSL* pointers in OpenSSL).

Remark 3. We note that while the interpretation J·K trans-
forms terms (T ) into messages (M), we do not need to
assume the converse can be done, i.e. parsing messages as
terms. When messages are bitstrings, it may actually not
be possible to parse message protected by cryptographic
primitives. E.g. when h is a hash function one cannot parse
Jh(t)Kϕ if JtKϕ is not already known. This is why we use a
variable x to refer to an output message, on which function
symbols can nonetheless and w.l.o.g. then be applied by the
attacker (through an attacker term t).

3.3. DY Security Properties

We use the notion of claims to express security properties.
Throughout a trace execution, one can record, in local states,
claims that log in which states the honest agents are and
what they believe to be their environment (e.g. their peer’s
identity). Claims are expressions c(m1, . . .mi) where c is
a symbol with an arity i and m1, . . .mi ∈ M are messages.
We illustrate this notion on two particular kinds of claims
that we will use throughout the paper. Let pk, pkpeer,m ∈ M.

• Agreement claims Agr(pk, pkpeer,m) express that an
agent has public key pk and believes to have agreed
with a partner having public key pkpeer on data m.

• Running claims Run(pk, pkpeer,m) express that an agent
has a public key pk and believes to be running a session
with a partner having public key pkpeer and data m.

For example for TLS 1.3, agreement claims will typically be
created for clients and servers finishing handshake sessions



while running claims are created as soon as m (e.g. session
identifier) is available to them. The set of claims is denoted by
C. We assume a function claims : S → P (C) that extracts the
set of claims created so far for an agent in a given local state.

Applying the function claims on all local states through-
out an execution, we obtain a sequence of sets of claims,
called a trace of claims. Formally, given an execution

(s0, ∅)
a1−→ · · · an−−→ (sn, ϕn)

we define the corresponding trace of claims C as C :=
C0, . . . , Cn where Ci =

⋃
c∈dom(si)

claims(si(c)) corre-
sponds to all claims extracted from the ith state. Claims
are therefore positioned, and we say Agr(pk, pk′,m)@ j is
true in C if Agr(pk, pk′,m) ∈ Cj . Our logic for expressing
properties is reminiscent to the one used in the Tamarin
prover [56].

Definition 3 (DY Properties). A property is a first-order for-
mula over positioned claims (c@ i), equality over messages
(m1 = m2), and comparisons between positions (i < j,
i = j). An execution satisfies a property if it is true on the cor-
responding trace of claims. A property is true if it is satisfied
by all executions defined by all initial states and DY traces.

Example 4. Non-injective agreement on some data m is the
property:

∀pk, pk′,m, i. Agr(pk, pk′,m)@ i
⇒ ∃j. Run(pk′, pk,m)@ j ∧ j < i

Intuitively, whenever an agent (identified by) pk believes
they successfully agreed with agent pk′ on m then agent pk′

indeed previously started a session with pk on data m.

4. DY Fuzzing

At a high level, we propose with DY fuzzing to use the
DY attacker and DY traces as domain-specific knowledge
to produce test cases and detect DY attacks.

The search space, i.e. the set of all test cases, is the
set of all DY traces A. Starting from a Seed Corpus, DY
traces are mutated and then executed on a PUT. To execute
a DY trace, we rely on two components. (i) The Mapper
concretizes terms in T , and notably attacker terms, into
bitstrings, i.e. it computes J·K. (ii) The Harness sends
those adversarial bitstrings to the PUT’s agent sessions
associated to channels in C. The PUT sends back bitstrings
that get added to the attacker’s state ϕ. Therefore, the set
of messages M is the set of bitstrings, and the output and
input functions are implemented through the interaction of
the Harness with the PUT. The Harness also observes the
execution, extracts claims (i.e. function claims), which are
then analyzed by the Objective Oracle that detects security
policy violations, in particular DY property violations.

As is standard, the Harness is PUT-dependent. However,
we emphasize that the Mapper and Objective Oracle are
only protocol-dependent and PUT-independent.

Benefiting from our generic presentation of the DY
model in Section 3, we specify those different components
in the next subsections. We remain as generic as possible:
the idea of DY fuzzing is applicable independently of the
protocol and the PUT, provided that it does implement a

cryptographic protocol. We exemplify some aspects with our
main implementation, tlspuffin, that implements a DY fuzzer
for TLS against various TLS libraries (see Section 5).

4.1. Mapper

The Mapper is used to implement J·K, that is to
transform terms into protocol messages as bitstrings that can
be sent to the PUT. One way to implement the mapper is to
use the PUT’s implementation of a primitive f to compute
the concretization JfK. However, a different implementation
(e.g. a reference or a custom implementation) could also be
used, we shall call it SignatureLib. For instance in tlspuffin,
we reused part of the Rust library rustls that implements
TLS to compute J·K for the 189 symbols of the signature
we used. This signature is not exhaustive but contains the
symbols necessary to produce terms corresponding to all
types of messages of TLS 1.2 and 1.3, making it possible to
run full TLS sessions. However we currently only support a
rather small number of cipher suites. When multiple PUTs
implementing the same protocol are tested, the same Mapper
can be reused. Hence, the Mapper is PUT-independent and
can be written once per protocol; as we did for tlspuffin.

As mentioned, we let M be the set of bitstrings. We make
sure to use an unequivocal representation of data as bitstrings;
e.g. we use the DER format for certificates. For f ∈ Σ, the
Mapper uses the corresponding function in SignatureLib
implementing this function for computing JfK. JfK is a partial
function since its computation might fail or return an error.
For an atom f0, we define Jf0K as the corresponding, statically
generated, data item. For instance in tlspuffin, we statically
generate the RSA public keys for a bounded number of
agents and then bind each to an atom in the term algebra.
Some of those agents are assumed to be compromised (in
control of the adversary). For those, we also include the
corresponding RSA private key in the term algebra so that
the attacker can use them in attacker terms (in inputs).

4.2. Harness

As is standard, a PUT-specific Harness is required.
While it could be possible to create a Harness that just
passes a single protocol message to an agent, it would fail to
reach parts of the code only accessible after several flights
of messages and potential local state updates. DY fuzzing
neatly addresses this with a Harness that executes DY traces
on the PUT as explained next. Given a test case, that is a
DY trace A = a1 · · · an ∈ A, it will do the following.

Agents creation. The Harness creates a new PUT
session sc for each channel c ∈ C that appears in A. The
session handler of each of these sessions then corresponds
to the local state of the agent identified by c in our generic
DY model. Those sessions have a notion of input buffer
and output buffer, where bitstrings can be read, respectively
written, as well as a notion of progress: we assume a function
Progress can be called on a session to instruct the corre-
sponding agent to read and process a message on the input
buffer and possibly write a message on the output buffer.



Configurations of those sessions, and thus their initial states
sc ∈ S0, are those of the channels (e.g. client vs. server).
The initial global state s0 is composed of all those sc.

For example for the OpenSSL implementation of TLS 1.3,
the Harness creates new SSL objects (pointers of type SSL*
storing a server or client session state) for each channel in A.
The Progress function is int SSL do handshake(SSL *ssl).

Communication. The actions of the trace A are
executed according to the transition relation a−→ (see Sec-
tion 3) instantiated as follows. First, J·K is computed by the
Mapper (see Section 4.1) on attacker terms. Second, we
shall instantiate the input and output functions as follows.
The state s′c := input(sc,m) is obtained by first writing m
into the input buffer of the current state sc and then calling
the Progress function that modifies the state to s′c. Next,
(s′c,m) := output(sc) is computed by reading m from the
output buffer of the current state sc; the resulting state s′c is
identical to sc up to the output buffer.

Claim extraction. The Harness is also responsible for
extracting claims from agents, that is it implements a function
claims : S → P (C) (see Section 3.3). In general, doing so
may depend on the PUT and the possibility to introspect the
agents’ internals but is often straightforward to do because
required data are usually exposed. We detail two different
approaches to do so in Section E.2 we used for tlspuffin.

If the PUT offers no or no easy introspection (e.g. the
PUT is closed-source), it is still possible to extract some
claims solely based on the DY trace being executed and the
attacker’s state. For instance, when a PUT server returns a
Server Finished, it is possible to infer that the server
believes it has finished the handshake.

4.3. Seed Corpus

We consider a bounded number of agents (and thus of
channels), enough to be able to express all possible happy
flows4 for all possible expected protocol configurations.
When evaluating our fuzzer we solely use happy flows and
no attack traces as seeds.5

For instance for TLS 1.3, we consider two different
honest agents, Alice and Bob. We consider seeds for each of
the following happy flows: (i) full handshake between Alice
and Bob without decrypting messages (DY attacker acting as
a passive MITM), (ii) full handshake between the DY attacker,
acting as an honest server, and Alice acting as client, (iii) full
handshake between the DY attacker, acting as an honest
client, and Bob acting as server, and (iv) the happy flow of
item (iii), followed by a resumption handshake with the same
agents. This yields 11 seeds in total for TLS (1.2 and 1.3).

4. We call happy flow an honest and expected message flow. If the
adversary is a MITM, then it forwards messages without modifying them.
If it acts as a server or client, it behaves as an honest one.

5. Otherwise, attacks would always be found immediately and bias the
evaluation. For real fuzzing campaigns, including attack traces on previous
versions of the PUT, or stemming from a different implementation, is
however desirable as it allows for regression testing and may also ease
finding variants of an attack that was not properly fixed.

Mutation Description

Skip Removes an action from a trace
Repeat Repeats an action from the trace to the trace

Swap Swaps two (sub-)terms in the trace
Generate Replaces a term by a random one

Replace-Match Swaps two operators in the trace
Replace-Reuse Replace a (sub-)term by another (sub-)term in the trace

Remove-and-Lift Replaces a (sub-)term by one of its sub-terms

TABLE 1: Mutations

4.4. Mutations

Since the Seed Corpus captures all relevant execution
scenarios for a given fuzzing campaign, we only consider mu-
tations that do not create new channels. However, mutations
can modify the structure of the trace at the action-level (e.g.
swapping two actions, dropping a message, etc.). They can
also modify the content of the attacker terms at the term-level
(e.g. replace a sub-term by another one to express a credential
swapping, add a sub-term to add a TLS 1.3 extension that
was inexistent, etc.). We describe all mutations we consider
for tlspuffin in Table 1 (split into action- and term-level muta-
tions). We consider these to be a good basis for any DY fuzzer
as they fully capture the DY attacker and are completely
protocol (and obviously PUT) independent. See an ablation
study and why each single mutation is useful in Section C.1.5.

Action-level mutations. The Skip mutation removes
a random action from a trace. The Repeat mutation repeats
an action: a random action in the trace is copied and inserted
at a random new position (and in case of an output actions,
the output variable is renamed). These two action-level
mutations are already enough to capture some authentication
bypasses such as the ones from [14] and SKIP from Table 2.

Term-level Mutations. A major advantage of DY
fuzzers is their ability to also mutate attacker terms and
thus deeply change the structure of exchanged messages (e.g.
replace, remove or add TLS extensions) and/or modify very
specific fields possibly using cryptographic primitives (i.e.
for expressing a certificate swapping). These mutators require
a description of test cases that specifies the structure of
messages and the available cryptographic primitives, which
is one of the main novelty of our DY fuzzing approach.
Implicitly, they all start by randomly picking an input action
in(c, t) and then mutate the attacker term t. For example, the
Replace-Match mutation replaces an operator f ∈ Σ in t with
a different one f ′ ∈ Σ of the same arity as f . This can be
seen as changing the implementation of some computations
(e.g. replacing SHA2 with SHA3) or changing the values of
some atoms (e.g. swapping Alice’s public key with Bob’s
public key). Another example is the Remove-and-Lift which
chooses at random a subterm t′ of t and replaces it with a
random sub-term t′′ of t′. In particular, this mutation allows
to remove random elements in a list.

Example 5. Suppose we have an initial trace A =
in(s, ch).out(s, x) where ch = CHello(sid, cs, ext) as in
Example 2. This models the case where a server receives a
ClientHello from an attacking client before responding with



a term t. Suppose that cs and ext are nil terminated lists
and contain, respectively a single cipher suite c and a list
of n extensions e1, . . . , en. Then, the attacker can

• remove extension en by ch1 := Remove-and-Lift(ch)
= CHello(sid, [c,nil], [e1, · · · , en−1,nil]),

• add a cipher suite c by ch2 := Replace-Reuse(ch1)
= CHello(sid, [c,c,nil], [e1, · · · , en−1,nil]),

• iterate Replace-Reuse k times and obtain chk :=
CHello(sid, [c, · · · ,c,nil], [e1, · · · , en−1,nil])
where c is repeated k times.

Sending chk to the server triggers a HelloRetryRe-
quest message due to the missing extension en, i.e.
when removing the supported groups extension. Then ap-
plying the Repeat mutation, we obtain the trace A′ =
in(s, chk).in(s, chk).out(s, x). We shall see in Section 6 that
additional mutations, notably involving cryptographic opera-
tors, lead to a buffer overflow on wolfSSL when 13 ≤ k ≤
150.

Mutation Constraints. Mutations can be applied
only when specific constraints are fulfilled. In particular,
we shall exclude mutations that yield traces that cannot be
gracefully executed (through J·K) for example because of
an ill-formed attacker term. We thus restrict to well-typed
attacker terms according to the type system of SignatureLib.
We also impose sane limits on the number of actions and
attacker term sizes. We provide more details in Section D.2.1.

4.5. Security Policies and Objective Oracle

The Objective Oracle observes executions made by the
Harness and looks for security policy violations. When such
a violation is detected, the corresponding test case is flagged
as an objective and is stored to disk.

Memory-related Objective Oracle. Fuzzing has
mostly been used to discover memory related bugs. Those
bugs are easy to detect by relying on operating system signals
or code instrumentation techniques such as ASAN [68]. DY
fuzzers also use those but we strive to go beyond since, as
is, the fuzzer would silently miss protocol vulnerabilities.

DY properties as policies. To remedy this problem,
we consider DY properties (Definition 3) as additional
security policies. For example, for TLS 1.3 and tlspuffin,
we consider the DY properties corresponding to mutual
agreement on handshake data as policies in addition to using
ASAN. We next explain how one can translate DY properties
into an operational Objective Oracle detecting them.

Objective Oracle for DY properties. As explained
in Section 4.2, the Harness provides a function claims :
S → P (C). Therefore, a trace of claims can be extracted
throughout the execution by the Harness and the Objective
Oracle can evaluate the validity of all the considered DY
properties at any execution step, according to the properties
semantics defined in Definition 3. As soon as one DY prop-
erty is falsified, the Objective Oracle flags the corresponding
test case as an attack candidate.

4.6. Big Picture: The DY Fuzzing Loop

Each fuzzing campaign starts with a Corpus initialized
to the Seed Corpus. The main fuzzing loop proceeds as
follows: a DY trace A ∈ A is picked from the current
Corpus, multiple mutations are applied yielding A′ ∈ A. The
Harness executes A′ on the PUT and, when necessary, calls
the Mapper to concretize all attacker terms in input actions.
It also collects feedback (e.g. code-coverage in the PUT
through code instrumentation) and observations (claims and
potential ASAN errors). If the Objective Oracle identifies
a security policy violation on those observations, notably
a DY property violation, it flags A′ as an attack trace and
stores it. Otherwise, based on the achieved code coverage,
the fuzzer decides whether A′ is worth being stored in the
Corpus. The fuzzer then proceeds to the next loop iteration.

5. Implementation: The tlspuffin Fuzzer

We present puffin and its derivatives, which altogether is
a public FLOSS framework [73] written in Rust. We notably
contribute a generic Rust library for building DY fuzzers
(puffin) for arbitrary protocols and a full-fledged DY fuzzer
for TLS (tlspuffin) using puffin. We used tlspuffin to fuzz
OpenSSL, LibreSSL, and wolfSSL. To show the modularity
and generality of puffin, we also briefly mention sshpuffin,
which is a preliminary DY fuzzer for SSH also using puffin.

We wrote for this project ca. 16k Rust LoC (computed
with cloc, excluding dependencies): 6k for puffin, 8k for
tlspuffin, and 2k for sshpuffin.

5.1. Modular Architecture

Our project features a modular design that facilitates
reuses. We present its three main modules (aka Rust crates).

puffin is a generic Rust library to build DY fuzzers. It is
protocol- and PUT-agnostic: it defines a minimal interface
(aka traits) for a protocol and its security properties as well
as for the PUT-harness. Given a crate implementing this
interface (e.g. tlspuffin for TLS and the 3 aforementioned
PUTs), puffin implements a DY fuzzer for them.

puffin builds on the state-of-the-art LibAFL [39] fuzzer
library in order to implement an evolutionary fuzzing loop.
We implement custom Harness, Mutator, and Objective
Oracle, as well as an additional Mapper component. For
this, we implement a generic term algebra amenable to the
fuzzing setting: terms must be serializable, executable (i.e.
Mapper), introspectable for the mutations (see Section 5.2),
etc. Similarly, we implement generic DY traces that can be
executed on any given PUT (Harness). Since the traces of the
Seed Corpus must be written by hand, we made puffin offer a
Domain Specific Language (DSL) for declaratively defining
DY traces (see Appendix D.1). We use the standard AFL-like
code edge coverage map [39] (i.e. hit counts) as feedback met-
ric. We implemented all mutations from Table 1 resulting in a
generic Mutator. Finally, all given DY properties are checked
throughout the execution by our custom Objective Oracle.



Using puffin, one can launch a fuzzing campaign on a
given PUT, which is the main use case, but also execute
a given trace (e.g. an objective, or a custom trace written
with our DSL) on a given PUT, produce a graphical
representation of a trace, or compute the packets agents send
in a trace (using J·K and the Mapper). We implemented all
those features, which ease bug triaging (see Section 5.2).

tlspuffin is a crate that implements for puffin the
protocol and properties description of TLS. It re-uses parts
of the rustls crate, that implements TLS in Rust, to build a
Mapper for TLS and 189 of its operators (see Section 4.1).
tlspuffin is shipped with Harnesses for OpenSSL, LibreSSL,
and wolfSSL, which can be fuzzed out-of-the-box. The Rust
Cargo build system offers support for compiling and linking
with arbitrary projects, which eases the integration of new
PUT code bases. The Harness for OpenSSL/LibreSSL and for
wolfSSL respectively required ca. 500 and 577 Rust LoC.

sshpuffin is preliminary work demonstrating that one can
easily use puffin for other protocols, here the SSH protocol
and libssh as PUT. Except when said otherwise, we focus
on tlspuffin and puffin in the rest of the paper.

5.2. Implementation Challenges and Features

We review some challenges we tackled in building puffin
and tlspuffin, which are detailed further in Appendix E.

Performance. Performance was key for our imple-
mentation choices. We chose to implement the communica-
tion between the agents through in-memory buffers, rather
than relying on e.g. TCP (which we offer as an additional
feature though). We chose LibAFL for its high performance
and parallel processing. Different fuzzer clients can be run-
ning on different CPU cores and share the same Corpus. For
this, we had to make many components serializable: the term
algebra and its link with J·K (how to concretize), DY traces,
claims, etc. See Section C.1.4 for a performance evaluation.

Gathering Knowledge from Protocol Outputs.
Let us recall that when executing an action out(c, x), the
message m ∈ M from (s′c,m) = output(sc) gets added to
the attacker’s state ϕ by assigning m to the variable x (see
Section 3.2). Moreover, the message m ∈ M is a bitstring,
not a term t ∈ T . This is not a problem in theory, as the
attacker can construct attacker terms using functions to e.g.
access fields in m (see projections from Example 2, as well as
Remark 3). This way, he can treat m as a term. However, this
yields a lot of redundant sub-terms to access the same fields.
To simplify attacker terms, we decided that puffin would par-
tially interpret m by extracting all sub-messages that can be
accessed in plaintext and assigning them variables xi, which
are added to the attacker’s state ϕ. Similarly, we observed that
the fuzzer often had to build some complex but public terms
in traces, which correspond to hashes of the current transcript.
Those dramatically increase the size and complexity of
traces. We implemented a feature that, w.l.o.g. allow the
attacker to invoke a routine to compute such sub-messages
without having to provide a full attacker term for it. We
stress that those two modifications do not change the
executions and the attacker’s behaviors that can be explored.

Queries. We noticed that the way the attacker refers
to its state ϕ was often not robust enough through successive
mutations. E.g. consider a variable x and an attacker term
t = sdec(x, k) in a trace T = T1.out(c, x).in(c

′, t). When
executing this trace T , x is assigned a message that can
indeed be decrypted with k. Now, after some mutations
affecting T1, the agent c might not send an encrypted
message anymore but e.g. an error message. Yet, the attacker
term t remains the same and its computation will now fail.
We alleviate this issue with queries. When adding some
(sub-)message m to ϕ, puffin and tlspuffin also stores from
which agent c ∈ C it originates, the kind of message it is
and its internal Rust type. A query is simply a conjunction
of conditions over metadata (c, message kind, message type)
to access the first matching message in the attacker’s state
ϕ. It also eases the writing of the seed traces.

Additional Features. It is possible to display (as
trees) and execute traces which are stored on-disk against any
PUT, even against arbitrary TCP clients or servers (including
remote and closed-source). We are already using our tools
to test for regressions in the supported PUTs, treating
existing attack traces as regression tests. tlspuffin also offer
features, notably its DSL, to allow developers to analyze
TLS libraries with a similar goal of TLS-Attacker [41].

6. Results and Comparison with State-of-the-
art Protocol Fuzzers

We now present our evaluation methodology and the
obtained results qualitatively and quantitatively showing the
peculiarities of DY fuzzing and where it shines, notably its
superiority at finding DY attacks. All our experiments are
reproducible with scripts available at [73].

6.1. Finding DY Attacks

Our first goal is to answer the following Research Ques-
tion: How does tlspuffin perform and compare with others
at finding DY attacks?

6.1.1. Methodology.
Vulnerabilities benchmark suite. To evaluate our

work, we first establish a benchmark suite. The Magma
project [45] proposes a consolidated benchmark suite of
20 memory-safety related bugs in OpenSSL, but none of
these is a DY attack on which we could meaningfully
evaluate DY fuzzing. A concrete example of such an out-of-
scope vulnerability is the memory corruption in the ASN.1
encoder [31] which relies on a representation of zero as a
negative integer. Such representation issues are out of scope
of term-level modifications. Therefore, we selected 3 recent,
known DY attacks (the 3 first vulnerabilities in Table 2) on
OpenSSL and wolfSSL. To this initial ground-truth seed of
known bugs, we add 4 newly discovered DY attacks. The
result is a first relevant benchmark suite of DY attacks, that
we plan to augment in the future.



Comparison with state-of-the-art fuzzers. Accord-
ing to the following criteria we selected state-of-the-art
fuzzers to be compared with tlspuffin: support for stateful
PUT, tested on at least one cryptographic protocol, active
project in the last 5 years. These criteria resulted in the
selection of AFLNet [63], StateAFL [60], and AFLnwe [3],
which were already plugged into the ProFuzzBench [61]
benchmark tool.6 All our experiments were conducted on
a server with 500 GB of RAM and 2 AMD EPYC 7F521
processors with 16 physical cores each (but there are no
strict minimum requirements for running tlspuffin).

6.1.2. tlspuffin performance. tlspuffin is fast and can reach
> 770 execs/s on a single core with LibreSSL as PUT.
Fuzzing OpenSSL or wolfSSL is about half as fast. Enabling
ASAN reduces performance by about 50%, which is to be
expected [68]. About 84% of CPU time is spent in the PUT,
and ca. 15% in trace mutations. tlspuffin scales and paral-
lelizes well, as we observed that execs/s scales linearly with
the number of available cores. The compared fuzzers reach
<10 execs/s due to the overhead of creating a subprocess
for each execution and sending messages through TCP.

6.1.3. Fuzzing Result Comparison. We ran each of the
aforementioned fuzzers (with ASAN) three times for 24h
fuzzing campaigns on WolfSSL 5.3.0, which was affected by
6 vulnerabilities tlspuffin found; none of those 9 campaigns
found any of them7.

Moreover, OpenSSL and wolfSSL are well-tested soft-
ware and fuzzers are already continuously testing them. In
particular, Google’s large-scale oss-fuzz project [69] contin-
uously runs AFL++, honggfuzz, and libfuzzer [38, 53, 44]
on OpenSSL as well as honggfuzz and libfuzzer on wolfSSL.
The wolfSSL project itself runs 7 fuzzers internally every
night (including a network fuzzer, libfuzzer, tlsfuzzer, and
AFL) [78]. Those intensive fuzzing efforts were unable to
find any of the 7 vulnerabilities from our benchmark suite.

In contrast, tlspuffin was able to find all 7 vulnerabilities.
We ran 5 tlspuffin fuzzing campaigns on 12 cores that each
found 5 of the 7 vulnerabilities within seconds or minutes.
The detection of previously known CVEs SDOS1 and SIG
takes more effort and is less reliable. We ran 90 fuzzing
campaigns for 24h on 1 core each. For each of SIG and
SDOS1, 5 of the 90 runs found the vulnerability with a mean
time of 564min and 915min, respectively (we explain this
higher variance in Section 6.2.2). The full methodology and
results can be found in Section C.1.

Result: tlspuffin found 7 CVEs on OpenSSL and wolfSSL
corresponding to DY attacks, including 4 new ones which
are reliably found in matters of minutes. Our selection of
state-of-the-art bit-level fuzzers and others’ fuzzing efforts
found none of those 7 vulnerabilities.

6. One could argue AFLnwe was not designed for stateful PUT. We still
consider it for completeness. It turned out it performed similarly to the others.

7. For being able to run those fuzzers and evaluate the achieved coverage
(see Section 6.2), we had to resolve several issues and bugs in those projects
(added support for wolfSSL, and, more surprisingly, we found and reported
7 bugs in AFLnwe, StateAFL, and TLS-Anvil, including quite critical bugs).

CVE ID AKA CVSS Type New Version TLS

2021-3449 SDOS1 5.9 Server DoS, M ✗ 1.1.1j 1.2
2022-25638 SIG 6.5 Auth. Bypass, P ✗ 5.1.0 1.3
2022-25640 SKIP 7.5 Auth. Bypass, P ✗ 5.1.0 1.3
2022-38152 SDOS2 7.5 Server DoS, M ✓ 5.4.0 1.3
2022-38153 CDOS 5.9 Client DoS, M ✓ 5.3.0 1.2
2022-39173 BUF 7.5 Server DoS, M ✓ 5.5.0 1.3
2022-42905 HEAP 9.1 Info. Leak, M ✓ 5.5.0 1.3

TABLE 2: (Re)discovered vulnerabilities with tlspuffin. The
CVSS scores are the severity scores attributed by NIST. In
the Type column, ”P” indicates a protocol vulnerability and
”M” a memory vulnerability (found by the DY attack). The
”New” column indicates whether the vulnerability was first
discovered using the tlspuffin tool (✓) or rediscovered (✗).
SDOS1 affects OpenSSL. The others affect wolfSSL.

In Section 6.1.5, we explain why the DY fuzzing
approach is key and often necessary to find these
vulnerabilities. We first review in Section 6.1.4 some of the
(re)discovered bugs8.

6.1.4. Summary of Vulnerability Descriptions (more in
Section B.2). The SDOS1 vulnerability allows malicious
clients to crash OpenSSL servers during TLS 1.2 renegotia-
tion by omitting the signature algorithms extension but includ-
ing a signature algorithms cert extension. SIG and SKIP are
two bugs allowing client authentication bypass in wolfSSL
servers [65] either by introducing a mismatch between the
signature algorithm in the Certificate and CertificateVerify
messages or by skipping the CertificateVerify message (both
are encrypted and require to decrypt the server’s response).

CDOS allows servers or MITM to crash wolfSSL clients.
It is triggered by sending 9 messages, ending with a large
NewSessionTicket message (> 256 bytes) to a client with
a non-empty session cache, who will then free a pointer
to non-allocated memory and crash.

BUF is a stack buffer overflow bug in wolfSSL servers.
Malicious clients can cause a buffer overflow by sending
specific Client Hello messages to servers: the list of cipher
suites they offer must contain duplicate ciphers (at least 13);
they should pretend to resume a previous session with
the appropriate extensions and PSK; and they should omit
the supported groups extension. The trace from Example 5
can be mutated further to produce such an attacking trace.
We explain in Appendix C.3 why such a trace triggers
the bug, its root causes, and how we proceeded to obtain
such data. The triggerable stack buffer overflow has an
attacker-controlled length with a maximum of 44700 bytes.
Therefore, large portions of the stack can get overwritten,
including return addresses. This vulnerability has the
(unconfirmed) potential for Remote Code Execution (RCE).

HEAP is a heap buffer over-read bug on wolfSSL
servers. It is triggered by sending to a server a malicious

8. We provide the traces found by the tool that trigger those vulnerabilities
and comprehensive vulnerability reports (for ours) in [73].

https://www.cve.org/CVERecord?id=CVE-2021-3449
https://www.cve.org/CVERecord?id=CVE-2022-25638
https://www.cve.org/CVERecord?id=CVE-2022-25640
https://www.cve.org/CVERecord?id=CVE-2022-38152
https://www.cve.org/CVERecord?id=CVE-2022-38153
https://www.cve.org/CVERecord?id=CVE-2022-39173
https://www.cve.org/CVERecord?id=CVE-2022-42905
https://nvd.nist.gov/vuln/search


Client Hello message with 25 extensions, notably a dozen
key share extensions.

6.1.5. Advantages of DY Fuzzing. In Section 2.3, we
explained why prior fuzzers are unsuitable for finding DY
attacks; we now revisit these reasons in light of our results.
Why were all 7 vulnerabilities missed by the aforementioned
campaigns despite intensive fuzzing efforts with state-of-
the-art fuzzers? We also explain why, on the contrary, DY
Fuzzing is in a sweet spot for finding them.

(1) Reachability. (1.a) Harnesses of most state-of-
the-art bit-level fuzzers are often a limitation. We already
mentioned the problem of many fuzzers [38, 80, 53] that
only send one flight of messages to the PUT, thus excluding
all vulnerabilities we found, except HEAP. Some other
fuzzers, including those we compared with as part of the
ProFuzzBench suite, can send multiple flights but only act
as clients to fuzz servers and are thus unable to find bugs in
clients such as CDOS. In contrast, tlspuffin can by design act
as an attacking client, server, or as a MITM between PUT
client and server. (1.b) Mutations. Some other vulnerabilities
cannot be reached due to the limitations of the used mutations.
Standard fuzzers, including those we compared with, rely on
bit-level mutations that make it overwhelmingly unlikely that
logical transformations of messages will be discovered. As an
illustration, consider the attacker term senc(sdec(x, k), k′),
which expresses that the attacker, instead of forwarding
x, decrypts and re-encrypts x with a different key. The
probability for this transformation to happen using random
bit-level mutations is upper-bounded by the probability of
breaking the encryption scheme. With DY Fuzzing, this
adversarial behavior is obtained with a few mutations. All
vulnerabilities except HEAP, CDOS, and SKIP require the
attacker to apply such cryptographic computations. More
generally, all of the 7 vulnerabilities rely on rather complex
attacker terms obtained by a simple series of mutations (say
t is mutated into t′) such that the obtained bitstring Jt′Kϕ is
very unlikely to be reached by bit-level mutations from JtKϕ.
In practice, we empirically established that the fuzzers we
compare with did not find HEAP, BUF, SDOS1, or SDOS2
while tlspuffin did, in the same testing environment: same
seeds, harness, and detection capabilities (only ASAN).9

Therefore, more-structured test-cases and mutations
are needed, and the DY setting — which captures logical,
adversarial behaviors — precisely provides a suitable model.

(2) Detection. Classical fuzzers primarily aim at find-
ing memory-related bugs, e.g. with ASAN, but their Objective
Oracle is unable to detect protocol vulnerabilities. In practice,
even if a protocol vulnerability, such as the authentication
bypass SIG and SKIP, was reached, the aforementioned
bit-level fuzzers actually would simply drop this test-case
as they would not realize that a policy violation occurred.
(The 5 other vulnerabilities can be detected with ASAN.)

Again, a more structured approach is required, where
a notion of session, agent (here channel), and claims are
available to the oracle, as done in our DY Fuzzing approach.

9. Doing the same for the others is impossible or challenging due to dis-
cussed limitations of the compared fuzzers (harness, detection capabilities).

On State-Machine-Guided Fuzzers. We now
compare with related structured fuzzers or testing engines
from Section 2.3. SIG and SKIP were triggered by a state-
machine learner [65]; such learners are not fuzzers but
a different approach capable of finding some DY attacks.
They capture adversarial behaviors that drop or repeat
whole Handshake messages without the ability to modify
their content, except for a limited hard-coded pre-defined
messages that can be used. In particular, [65] is unable to
reach CDOS, SDOS2, BUF, and HEAP. Moreover, such
techniques do not feature an Objective Oracle; the output is a
graph of execution flows that need to be manually interpreted
to detect potential attacks. Similar conclusions apply to [14].

6.2. Coverage Comparison

Meaningfully evaluating fuzzers is notoriously difficult
and code coverage is an unsuitable metric for this, despite
being often used. This is backed up by Klees et al. [50]:
”Covering more code intuitively correlates with finding more
bugs[...]. But the correlation may be weak, so directly measur-
ing the number of bugs found is preferred.” (cf. Section 6.1.)

That said, we shall cautiously compute and compare
coverage to answer the following Research Question: What
specific insights about how tlspuffin relates to state-of-the-
art fuzzers can be gained by comparing code coverage?

6.2.1. Methodology.
Choice of fuzzers and testing engines. We evaluated

tlspuffin in terms of coverage against our selection of bit-
level fuzzers as well as the combinatorial testing suite TLS-
Anvil [54]. Using ProFuzzBench, we gathered data about
24h fuzzing campaigns against wolfSSL 5.3.0 and OpenSSL
1.1.1j, that are affected by the vulnerabilities from Table 2.

Compute comparable coverage. For the sake of
fairness, when comparing different fuzzers, we only chose the
seed test cases that can be expressed in all of the compared
fuzzers, selected comparable Harness, and ensured line and
branch counts are equivalent in all experiments. We also
selected a subset of source files to be included in the coverage
generation, excluding unit tests, fuzzers, examples and CLIs.
We compute coverage over time using the gcov tool when
executing the test cases of the corpus in the order they were
found, which allows us to control the environment and the
way the coverage is gathered, which is key to comparability
across different fuzzers.

6.2.2. Code Coverage & Feedback Analysis. We first an-
swer a question from Section 6.1.2 by studying tlspuffin cov-
erage: Why did only 5% of experiments find SIG and SDOS1?

To discover SIG and SDOS1, 3053, respectively
809, mutation tries were required on average (over 100
trials). (Note that the total number of executions in a
fuzzing campaign can easily reach 108.) Therefore, those
vulnerabilities are indeed reachable by tlspuffin.

We then found that, once a certain diversity of DY traces
is achieved in the Corpus, the current code-coverage feedback
is “exhausted” and fails to promote DY traces that explore



new PUT behaviors but only exercise code already explored
(but in different states). To establish this, we analyzed the
final corpora of the campaigns that did not discover SIG
or SDOS1. We determined the total code coverage when
executing all test cases in the corpus. We tested and observed
that applying any subset of the required mutations for finding
SIG or SDOS1 on traces from the final corpus did not
improve this final code coverage. Therefore, such mutations,
when applied one by one, will be discarded (as they are
deemed uninteresting): the feedback metric is no longer able
to measure progress. This happens when the Corpus becomes
too large. It is however possible to find the required muta-
tions before that point. Past that point, it remains possible
(although very unlikely) to apply all required mutations at
once. (Therefore, we recommend running multiple fuzzing
campaigns versus only one for a longer period.)

Two key insights can be drawn from this: Results: 1.
The code coverage is not an ideal feedback metric for DY
fuzzings and needs to be improved (left as future work,
see Section 7). 2. Code coverage is not a suitable metric
to evaluate and compare DY fuzzers since finding new
interesting DY traces will not immediately translate to
better code coverage. Another experiment supports this.
We compared the achieved coverage when executing the
trace triggering SDOS1 versus when executing the seed
corpus only. The former covers a marginal amount of new
code: no new functions were called (except error functions)
and only +120LoC were covered (+0.1% of LoC).

6.2.3. Comparing Coverage of tlspuffin vs. State-of-the-
art Techniques. We first compared coverage achieved by
tlspuffin and TLS-Anvil, the best to-date test suite for TLS.
A 24h fuzzing campaign on 32 cores with tlspuffin achieves
coverage on par or a bit less than what TLS-Anvil achieves
(-1.6% of LoC were covered for wolfSSL). We stress that
TLS-Anvil contains hundreds of handwritten tests which are
based on TLS-Attacker [70] and were designed to maximize
coverage. E.g. TLS-Anvil probes targets before testing then
tries to do a handshake with every known cipher suite. This
dramatically increases the coverage, because tested cipher
suites are initialized on the server. Yet, TLS-Anvil found
none of the 7 vulnerabilities.

We also compared the coverage of tlspuffin against
AFLnwe, AFLNet, and StateAFL. As previously mentioned,
for the sake of fair comparison, we restricted tlspuffin
with the limitations of the former fuzzers plugged into
ProFuzzBench: exclude clients from the Harness and use
a smaller Seed Corpus (of 2 traces) by removing the 9
tlspuffin seeds that were complex to produce for bit-level
fuzzers (made easier for tlspuffin thanks to our DSL). For
all fuzzers and both targets, we executed 10 trials over
24h. For wolfSSL, the mean branch coverage achieved by
tlspuffin across all trials is equal or greater than that of the
compared fuzzers, and +33% when tlspuffin uses all of its
11 seeds (see Section 4.3). For OpenSSL, tlspuffin covers
6% less code, and 16% more code with all its seeds.

Manual inspection of the diff between the covered code
shows that bit-level fuzzers and tlspuffin explore different

parts of the code. Bit-level fuzzers are good at exercising
server-side code for handling features. A concrete example
is cipher suites: since the signature and Mapper are currently
not exhaustive (but could be made so with more work),
tlspuffin only implements 3 cipher suites out of 5 for TLS 1.3
and 3 out of 37 for TLS 1.2. Bit-level fuzzers discover them
by flipping bits in the Client Hello. However, they are unable
to later use such features (e.g. a TLS 1.3 extension or a cipher
suite) in subsequent messages as it usually requires logical
message transformations. The code parts exercised this way
can be huge (with a lot of setup and preprocessing work),
even though it does not reflect a lot of different behaviors
(since the features are actually not used). As a concrete
example, consider the file wolfssl/src/keys.c which
essentially deals with cipher suites. AFLnwe covers 48.6%
of the LoC in this file against 28.7% for tlspuffin.

Showing the superiority of DY fuzzing at finding
DY attacks by comparing coverage. Result: tlspuffin ex-
plores fewer features but is better at actually using those
features in subsequent messages. We obtained empirical evi-
dence supporting this claim by comparing the code exercised
by tlspuffin when executing detected vulnerabilities versus
by long bit-level fuzzing campaigns. We focus on SDOS1
and BUF, as most other vulnerabilities exercise code that is
not well harnessed by ProFuzzBench (e.g. client-side code).
The diff coverage between tlspuffin executing those two vul-
nerabilities versus long bit-level fuzzing campaigns reveals
key insights. (i) Features like secure renegotiation, required
for SDOS1, need modifications under encryption, that were
not reached by bit-level fuzzers but explored by tlspuffin.
(ii) BUF requires to produce a Client Hello message with fields
computed by applying cryptographic primitives (decrypting
application data, hashing, signature and HKDF). The code
parsing this field is not exercised by bit-level fuzzers, which
are unable to perform such logical transformations. (Our full
coverage evaluation can be found in Section B.3.)

7. Conclusion and Future Work

In this paper, we propose the novel concept of DY
fuzzing: we design a generic DY fuzzer, implement a DY
fuzzer for TLS, and conduct a comprehensive evaluation
thereof. The tlspuffin tool is a first step in deploying this
approach but is already a full-fledged fuzzer that found
new vulnerabilities in wolfSSL. More generally, this new
approach connects fuzzing and Dolev-Yao style formal
models and offers various directions for improvements,
extensions, and applications.

Improve the DY fuzzer feedback. We established in
Section 6.2.2 that the coverage-based feedback was subject
to exhaustion and was not ideal to promote semantical
diversity (in the sense of the DY model). It is not the
fuzzing space that gets exhausted first, but the feedback
space. There is also an interesting parallel with overfitting
in machine learning. One could argue that tlspuffin currently
overfits by trying to achieve the maximum code coverage.
Similarly to dropout layers in machine learning, a dropout



in tlspuffin could randomly accept allegedly uninteresting
test cases to regularize the fuzzing corpus.

More generally, future work should focus on finding a
domain-specific feedback metric that takes advantage of our
structured approach. For instance, a coverage metric over the
DY attacker behaviors space (e.g. DY traces) could be defined
and used. Ideally, the feedback metric would combine code
coverage with DY-related information: hitting the same code
with (semantically) different adversarial behaviors should
not be considered the same. Moreover, DY models can be
reasoned about using state-of-the-art automated verifiers. DY
fuzzers could rely on such verifiers to proxy closeness to
attack traces, i.e. measure progress towards finding attacks.
Such metrics could also be beneficial to our generative mu-
tations that are currently random and blind.

Broaden the Scope. Currently, the tlspuffin Objective
Oracle captures memory-safety bugs and authentication vio-
lations. However, classical DY verification of specifications
operates on a richer class of properties. For instance, secrecy
properties are expressed by the attacker’s inability to deduce
a term corresponding to allegedly confidential data. To reason
about attacker deduction, we would need to reinterpret the
bitstrings obtained by output actions as terms (computing the
inverse of J·K when possible, see Remark 3) and then leverage
decision procedures for deduction (e.g. [1]). Realizing this
reinterpretation raises interesting research questions. Another
interesting property is functional correctness with respect
to the underlying protocol DY model. Finally, recent work
allows verifying privacy properties [24], e.g. anonymity, that
provides a challenging opportunity for extending this work.

Another direction is to augment the attacker capabili-
ties by the addition of more mutations (e.g. modifying the
channels and their configurations) and operators in Σ (e.g.
systematic dummy values for each type).

Finally, the use of differential fuzzing, i.e. executing a
test-case on multiple PUTs and labeling it as an objective
(attack candidate) if the outputs differ, could simplify our
Objective Oracle.

Apply to more targets. We also want to apply DY
fuzzing to more targets. Candidates for TLS PUT could be
Google’s BoringSSL, Microsoft’s closed-source Schannel, or
the open-source Mbed TLS. We also plan to improve sshpuf-
fin for SSH. DY fuzzers should be applied to other protocols
too: e.g. the aforementioned WPA2 protocol and closed-
sources or remote targets like those found in mobile telecom-
munication systems or industrial protocols, etc. A related
long-term future work is to partially automate the construc-
tion of the Mapper, e.g. by static analysis of crypto libraries.
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Appendix A.
List of Changes

• v1.0, January 18, 2023: initial version.
• v1.1, August 29, 2023: Main modifications:

– Explicit distinction between DY attacks triggering
protocol vulnerabilities and DY attacks triggering
memory vulnerabilities;

– Additional related work in Section 2.3;
– New evaluation of tlspuffin (Section 6) to include a

quantitative (coverage) and qualitative comparison
with AFLnwe, AFLNet, StateAFL, and TLS-Anvil.

• v1.2, December 1st, 2023: Modifications that we made
for the camera-ready version of this report, which will
appear at IEEE Security and Privacy 2024. Main modi-
fications:
– logical attacks are now called DY attacks to disam-

biguate (see Introduction);
– various clarifications and improvements.

Appendix B.
Additional Content

B.1. Related Work: Program Verification

We argue that verification methods targeting implemen-
tations of cryptographic protocols have currently two draw-
backs. The first one is scalability. Using a proof oriented
programming language such as F∗ [72] requires a dedicated
protocol implementations and significant effort. As an illus-
tration, proofs for the record layer of QUIC [35] written in
F∗ required ca. 20 person months and do not cover the much
more complex handshake protocol. For TLS 1.3 the proof
is also limited to the record layer [34] and for TLS 1.2 the
proof (using F7) does not cover the full handshake [18]. For
particular cryptographic primitives, there have been efforts to

provide end-to-end proofs of highly optimized implementa-
tion resisting side channel attacks, using the EasyCrypt proof
assistant and the Jasmin domain-specific language and com-
piler [4]. No cryptographic protocols were proven this way.

The second, related, short-coming is that none of these ap-
proaches applies to existing, deployed implementations such
as our PUTs OpenSSL, LibreSSL, and wolfSSL. While some
formally verified cryptographic libraries, such as HACL∗ [81],
written in F∗, start being deployed in production systems,
such examples are still the exception, and cover the crypto-
graphic library, not the protocol.

The DY∗ [15] verification framework scales to whole
protocols but only operates on programs written in the F∗

language, thus excluding existing code bases written in other
languages (C, Java, C++, Rust, Go, etc.) such as our PUTs.
Another recent technique combines DY model verification
and code verification using a dialect of separation logic [5]
to provide security guarantees to protocol implementations.
However, proving an existing implementation (currently in
Go or Java) requires a large amount of work; e.g. the portion
of 608 verified LoC in WireGuard require 3936 LoC for the
specifications and proof annotations.

Finally, program verification of existing code, for
instance in C, has been made possible with tools like
Frama-C [13] combined with security proofs in tools like
Easycrypt [10], and secure compilers like CompCert [52].
However, this approach does not currently scale beyond
simple cryptographic primitives, excluding cryptographic
protocol implementations.

B.2. Vulnerability descriptions

The SDOS1 vulnerability allows malicious clients to
crash OpenSSL servers during TLS 1.2 renegotiation by
omitting the signature algorithms extension but including a
signature algorithms cert extension.

SIG and SKIP are two bugs allowing client
authentication bypass in wolfSSL servers [65]. A malicious
client triggers SIG by introducing a mismatch between the
signature algorithm in the Certificate and CertificateVerify
messages, which will cause the server to accept any certificate.
For triggering SKIP, the client just skips the CertificateVerify
message and achieves the same bypass. tlspuffin is able to pro-
duce such logical message modifications and to automatically
detect an authentication bypass through its Objective Oracle.

SDOS2 allows clients or MITM to crash wolfSSL servers.
A client can resume a previous session that has been cleared
with the OpenSSL compatibility layer of wolfSSL, then the
server crashes with a segmentation fault. tlspuffin considers
traces that can create multiple sessions and resume them
at will and thus found this vulnerability.

CDOS is a bug allowing servers or MITM to crash
wolfSSL clients. An attacker triggers this bug by sending
a large NewSessionTicket message (> 256 bytes) to a client
with a non-empty session cache, who will then free a
pointer to non-allocated memory and crash.

BUF is a stack buffer overflow bug in wolfSSL servers.
Malicious clients can cause a buffer overflow by sending
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Figure 2: Branch coverage comparison between tlspuffin,
AFLnwe, AFlNet and StateAFL. For each fuzzer and target
10 trials have been executed, except for tlspuffin (all) which
serves solely for the comparison with TLS-Anvil from Part I.
The error bar depicts the area limited by the worst and best
performing trial. The opaque line shows the median of all
trials. tlspuffin (all) shows a fuzzing campaign which contains
all of the 11 seeds developed for tlspuffin (see Section 6.2.3).

specific ClientHello messages to servers: the list of cipher
suites they offer must contain duplicate ciphers (at least
13); they should pretend to resume a previous session
with the appropriate extensions; and they should omit the
supported groups extension. The trace from Example 5 can
be mutated further to produce such an attacking trace that
triggers BUF. We explain in Appendix C.3 why such a trace
triggers the bug, its root causes, and how we proceeded
to obtain such data. The triggerable stack buffer overflow
has an attacker-controlled length with a maximum of
44700 bytes. Therefore, large portions of the stack can get
overwritten, including return addresses. This vulnerability
has the (unconfirmed) potential for an exploit that triggers
misbehavior (through stack rewrites) or RCE.

HEAP is a heap buffer over-read bug on wolfSSL servers
using the WOLFSSL_CALLBACKS feature flag, which was
meant for debugging but not discouraged for production. The
bug can be triggered by sending to a server a maliciously
crafted ClientHello message with about a dozen key share
extensions.

B.3. Coverage Evaluation (continuing Section 6.2)

B.3.1. Part I: Comparing coverage of tlspuffin vs. bit-
level fuzzers. We compared the coverage of tlspuffin against
AFLnwe [3], AFLNet [63], and StateAFL [60], which are
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Figure 3: Code edge coverage of tlspuffin and discovery
times for vulnerabilities from Table 2. The crosses indicate
discovery times for the vulnerabilities. We depict with the
shade area the interval over multiple experiments. The order
of the vulnerabilities in the legend matches the order in the
graph.

all based on the bit-level AFL fuzzer [38]. All three fuzzers
send messages over TCP to the target. AFLNet and StateAFL
are stateful, which means that they send multiple flights of
messages. The output of the target is analyzed between each
flight and influences future flights. For comparability we
restricted tlspuffin to fuzz only TLS 1.2 and 1.3 servers. We
recorded TLS 1.2 and 1.3 input seeds for AFLnwe, AFLNet
and StateAFL using WireShark. Additionally we recorded a
seed with a NULL cipher suite for OpenSSL for evaluation
with StateAFL. For all fuzzers and both targets, we executed
10 trials over 24h. In total this yields 70 fuzzing campaigns
which are shown in Figure 2.

The branch coverage achieved by tlspuffin across all
trials is on par with the compared fuzzers, and greater when
tlspuffin uses all of its 11 seeds, which was to be expected.

It is noteworthy, that in our evaluation AFLnwe and
AFLNet outperformed StateAFL. This is surprising given
the fact that AFLnwe is not stateful as it sends only a single
flight of messages, whereas StateAFL is stateful. We suspect
that this is because we included a TLS 1.3 seed, which is
encrypted right after the first Client Hello.

It is unlikely that any of the AFL based fuzzers fuzz
beyond the Client Hello message. The reason for the increase
in coverage over time can be attributed to features which are
discovered by flipping bits in the Client Hello. For instance,
flipping a bit in the proposed cipher suites will increase
coverage substantially (see Section 6.2.3). Therefore, even



though coverage is increasing over time the AFL based
fuzzers likely do not explore state-space which is relevant
for DY bugs. We provide more insights in Appendix C.

B.3.2. Part II: Comparing coverage of tlspuffin vs. com-
prehensive test-suite (TLS-Anvil). We compared tlspuffin
fuzzing OpenSSL and wolfSSL on 32 cores over 24h with
TLS-Anvil. We made sure that OpenSSL and wolfSSL TLS
1.2 and 1.3 servers were tested.

TLS-Anvil, respectively tlspuffin, reached 25.8%, respec-
tively 19.9% line coverage on OpenSSL and 29.0%, respec-
tively 24.2% on wolfSSL. More detailed figures about line,
branch and function coverage are given in Table 3.

OpenSSL wolfSSL
TLS-Anvil tlspuffin TLS-Anvil tlspuffin

lp 25.8% 19.9% 29.0% 24.2%
la 28074 21664 23421 19581
bp 20.2% 16.0% 19.9% 16.9%
ba 12363 9806 9434 8025
fp 30.1% 23.9% 31.9% 27.0%
fa 2370 1885 1225 1037

TABLE 3: Code coverage TLS-Anvil vs tlspuffin. lx: lines,
bx: branches, fx: functions, p: percentage, a: absolute

tlspuffin currently uncovers less code than TLS-Anvil.
The reason for this is that TLS-Anvil contains many hand-
written tests which are based on TLS-Attacker. The years
of development which went into TLS-Anvil it is likely that
more features of TLS are covered. TLS-Anvil also probes
targets before testing then, which tries to do a handshake
with every known cipher suite. Such probing will increase
the coverage dramatically, because tested cipher suites are
initialized on the server. tlspuffin currently does not do this
so it is expected that the coverage is less than TLS-Anvil.
Nonetheless, the current coverage of tlspuffin is promising
given its just recent development.

B.4. Reliability, Feedback, and Performance Evalu-
ation

Finally, to complete the evaluation of our first tlspuffin
implementation, we answer the following Research
Questions: How reliable is our tool at finding bugs? When
our tool does not reliably find a bug, what are the reasons
for this? How efficient is tlspuffin?

To answer these questions, we conducted a quantitative
and qualitative evaluation of our benchmarks, i.e. findings
bugs from Table 2. The full methodology and results are
presented in Section C.1.

We summarize in Figure 3 the results showing the time-
to-find the different vulnerabilities.

Appendix C.
Results and Comparison

C.1. Reliability, Feedback, and Performance Evalu-
ation

Finally, to complete the evaluation of our first tlspuffin
implementation, we answer the following Research
Questions: How reliable is our tool at finding bugs? When
our tool does not reliably find a bug, what are the reasons
for this? How efficient is tlspuffin?

To answer these questions, we conducted a quantitative
and qualitative evaluation of our benchmarks, i.e. finding
bugs from Table 2.

C.1.1. Methodology. The evaluation was conducted on a
server with 500 GB of RAM and 2 AMD EPYC 7F521 pro-
cessors with 16 physical cores each (for a total of 64 logical
cores). (Note that such a large computation power and amount
of RAM are not mandatory to use tlspuffin.) The experiments
conducted in this evaluation are completely reproducible. We
created bash scripts [73], which download statically linked
binaries from our CI and execute experiments.

We used the following PUTs: wolfSSL 5.1.0, 5.3.0, 5.4.0,
and OpenSSL 1.1.1j. For each PUT and vulnerability from
Table 2 that affects it, we designed a specific experiment
to evaluate the ability of the fuzzer to find it. That is,
we applied on the PUT all the patches for all listed
vulnerabilities except the chosen one.10 We created two
groups of vulnerabilities: Group A (listed in Figure 3a) are
those found in a matter of minutes, and group B (listed
in Figure 3b) are those found in hours. We executed each
of the experiments in group A 5 times for 3h on 12 cores
each. To mitigate the high variance for group B, those
experiments were executed 90 times for 24h on 1 core each.

C.1.2. Experiment Results. In Figure 3a (Group A) and
3b (Group B), we present the code edge coverage and vul-
nerability discovery times.

Out of a total of 180 experiments in group B, we dis-
covered SIG and SDOS1 only five times each. In group A,
all bugs were always found within minutes after launching
the campaign, whereas in group B discovering the bugs took
hours. The mean time until SIG was discovered was 564min
(± 510min). For SDOS1, the mean time was 915min (±
318min). For all experiments in group A, the mean time until
the bug is discovered was 9min with a maximum standard
deviation of 5min. In the following sections, we will discuss
the reasons for this variance by first reviewing quantitative
results like discovery durations, mutation performance and
fuzzer performance, and then discussing the fuzzer feedback
on a qualitative basis by analyzing corpora.

10. For the sake of evaluation reliability, we deliberately patched other
vulnerabilities without impacting the unique vulnerability we expected to
find. The advantages of this are twofold. (i) Other known and existing bugs
do not impact the performance of the fuzzer. This is otherwise a major
factor of unpredictability and variability. (ii) Analyzing and triaging the
found bugs is simple, because there is less variety in the bugs found.
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Figure 4: Function coverage

C.1.3. Reachability from the Mutations. We evaluated that
the proposed mutations from Section 4.4 are indeed capable
of reaching the SIG and SDOS1 vulnerabilities. This does
not mean that the series of mutations needed to reach them
is likely to happen. For measuring this, we designed a test
that counts how many random mutation-tries are required in
order to reach a desired test case (e.g. one that triggers SIG
or SDOS1). In order to mutate a happy flow trace into a
trace that triggers SIG, we need at least three mutations in
a specific order: twice Replace-Match, and then Generate.
When conducting the experiment over 100 times, on average
809 mutation tries are required to reach SIG. For SDOS1,
on average 3053 mutation tries are required. From those
numbers, we can conclude that the vulnerabilities are indeed
reachable by the implemented mutations. (Note that the
total number of executions in a fuzzing campaign can easily
reach the 108 range on powerful hardware.)

We provide additional results in a dedicated section Sec-
tion C.2.

C.1.4. Execution Performance. We gathered the executions
per second for the PUTs OpenSSL 1.1.1k, LibreSSL 3.3.3,
and wolfSSL 5.4.0. For wolfSSL, we also included a sanitized
binary (ASAN) [68]. Overall, our TLS fuzzer is fast and
can reach > 770 executions per second on a single core
with LibreSSL as PUT. tlspuffin fuzzing OpenSSL is about
half as fast as with LibreSSL with > 320 executions per
second. When fuzzing wolfSSL, tlspuffin reaches a similar
performance with > 340 executions per second. With ASAN
enabled, wolfSSL performance reduces by about 50% to
> 160 executions per second, which is to be expected [68].
We observed that tlspuffin spends ca. 84% of CPU time in
the PUT, and ca. 15% while mutating traces. Therefore,
any future optimizations should be concerned with lowering
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Figure 5: Line coverage

PUT execution time or increasing the mutator’s performance.
We claimed tlspuffin allows parallel processing, and we

indeed observed that executions per second of the PUT scales
linearly with the amount of available cores. More detailed
statistics can be found in Appendix C.4.

C.1.5. Mutations Ablation Study. We conducted an ablation
study for the mutations. Namely, we re-ran all of the fuzzing
campaigns of Task A and Task B (from Section C.1.2) with
tlspuffin with one less mutation, restricted to the vulnera-
bilities SDOS1, SDOS2, BUF, and HEAP. We measured
whether tlspuffin with one mutation disabled was still able to
find the target vulnerability, and if it is the case, how much
PUT executions it needed before finding it. The results of
this experiment are summarized in Table 4.

As shown in the Table, each of the mutation, except
REMOVE-AND-LIFT, provides a measurable advantage to
tlspuffin highlighted in bold and red font: either by allowing
it to find a vulnerability not found otherwise, or to reduce the
effort to find it (by at least a significant factor). We decided
to keep REMOVE-AND-LIFT as it could still be useful if
reducing the size of a list, e.g. a list of TLS extensions, was
necessary to find a bug, even if none of the 7 we found
required this. Moreover, it can be applied a bounded number
of times only on a trace.

C.2. Mutation Benchmark

We provide additional data about the mutation evaluation
from Section C.1.3. Instead of only presenting summed
values, we go here over the mutation specific numbers for
the SIG and SDOS1 vulnerabilities.

For SIG, we found that the Replace-Match mutation
must be executed on average 336 times before the desired



all Skip Repeat Swap Generate Replace-Match Replace-Reuse Remove-and-Lift

SDOS1 2,3E+07 ✗ ✗ 2,4E+07 3,6E+06 1,6E+07 1,7E+07 2,1E+07
SDOS2 6,3E+03 8,7E+03 4,0E+06 2,7E+04 2,4E+03 1,2E+04 2,0E+03 4,4E+03

BUF 9,8E+04 6,1E+04 3,4E+04 9,1E+04 2,8E+05 1,1E+05 5,1E+04 3,5E+04
HEAP 1,3E+05 1,9E+05 4,5E+04 2,0E+05 1,1E+05 1,9E+05 3,0E+05 1,8E+04

TABLE 4: For each column, we disable the corresponding mutation and compute the number of PUT executions before
tlspuffin finds each of the vulnerability (in each row). For the first column (all), all mutations are enabled (baseline). We
compute the average for at least three trials. ✗ denotes that the vulnerability was not found. Notes that the number of
executions before finding a bug is subject to variance, but, is at least independent of the stress on the machine running the
benchmark (which is not the case of the time to find the vulnerability). Moreover, the numbers can be lower than the one in
the column ”all” due to the expected variance but also due to the fact that removing mutations might speed up the fuzzer when
the mutation is not needed for finding the vulnerability. We only tested vulnerabilities that are reliably found in that setting.

mutation is performed, i.e. when it replaces the certificate
in the Certificate message. Then the same mutation must
be executed again on average 412 times to set an invalid
signature algorithm in the CertificateVerify message. Lastly,
the Generate mutation that sets an invalid signature algorithm
must be applied on average 61 times to change the signature
in the same message.

For testing the effect of additional type-constraints, we
added types for certificates and private keys instead of using
generic byte arrays. This reduced the required tries by 195
for Replace-Match and 69 for the second mutation step. The
required mutation tries for the Generate stayed the same,
which is to be expected because it does not depend on
certificates of private keys. (Note that we did not include
those additional constraints in the main version of tlspuffin
as they slightly reduce the attacker capabilities and were not
strictly necessary.)

For SDOS1, we need at least five mutations in a specific
order: Repeat: 9, Replace-Reuse: 880, Replace-Match: 1967,
Remove-and-Lift: 24, and Replace-Reuse: 173.

C.3. Notes on Triaging BUF

As explained in Section E.3, our implementation of a
DY fuzzer offer various features that ease bugs triaging and
obtaining deep understandings of their root causes. We now
explain the methodology we followed to do so, taking as an
illustration the BUF vulnerability tlspuffin discovered (see
the full vulnerability report in [73]).

1) Confirm the bug against up-do-date PUT freshly cloned
and built using the TCP feature: We execute the on-disk
test case from the Objective Corpus against a standalone
wolfSSL TCP server which has the same version as the
PUT used during fuzzing. We observed the stack buffer
overflow using ASAN.

2) Plot the trace to understand the flow of messages that
triggers the bug. It shows the attack DY trace with all the
attacker terms in a tree structure. The one for BUF (see
[73]) indicates that two maliciously formed ClientHello
messages, which contain multiple duplicate cipher suites,
are responsible for the bug (mentioned Section 6.1.3
and detailed in Remark 4 below).

3) Dynamically analyze the bug: Using the gdb/ldb de-
bugger on the whole tlspuffin binary and executing
the attack DY trace step-by-step on the PUT, we can
pinpoint the exact conditions required to trigger the bug.
In particular for BUF, we obtained this way a full under-
standing of the attack and its root causes, as shown next.

Remark 4 (BUF root causes description). Debugging tls-
puffin and wolfSSL when executing the BUF attack DY trace
step-by-step, we observed two things:

a) When receiving a ClientHello message, the server com-
putes the resulting negotiated list of ciphers based on
the ciphers the server offers, stored locally in ssl −>suites,
and the ciphers offered by the client suitesC , stored in the
received ClientHello message. However, the negotiated
list is computed by a multi-set intersection between ssl
−>suites and suitesC instead of a set intersection. When
suitesC contains duplicates (say k duplicates) of a cipher
suite that occurs (say just once) in ssl −>suites, then the
resulting list will contain all those duplicates as well.

b) After the first full, happy-flow of the initial full
handshake, because the first maliciously crafted
ClientHello does not have a supported groups extension
but tries to resume a previous session, the server rejects
it and answers back a HelloRetryRequest. However,
before rejecting it, it still computes the resulting
negotiated list and stores it in ssl −>suites without
reverting this write when aborting and sending back
the HelloRetryRequest message.
Therefore, when the second maliciously crafted
ClientHello is received, the server will compute the
negotiated list again using the modified ssl −>suites,
which contains k duplicates, and suitesC , which also con-
tains k duplicates. which yields a list which is as long
as k2. Note that some bound checks avoid the list suitesC
and the initial list ssl −>suites to be larger than 150. Be-
cause k2 > 150 when k ≥ 13, our attack bypasses those
bound checks and triggers the stack buffer overflow.

To summarize, the bug is due to a combination of flaws:
a flaw in the negotiation computation routine, which did
not expect duplicates, and a flaw in the HelloRetryRequest
handling which does not revert side effects. The length can
be controlled by the attacker with k and can reach up to



PUT Version ASAN Executions/s per core Executions/s

OpenSSL 1.1.1k ✗ 320 4770
LibreSSL 3.3.3 ✗ 770 9920
wolfSSL 5.4.0 ✓ 340 4330
wolfSSL 5.4.0 ✗ 160 2040

TABLE 5: Performance of selected tlspuffin builds.
Executions/s per core might differ from executions/s when
multiplied by the total number of cores (12), as fuzzing
might run with slightly different speed on different cores.

44700 bytes. However, the bytes that can be written on the
stack must be valid cipher suite encoding offered by the
server, which limits the alphabet of available writable bytes.

We stress that, for this bug to be reached, multiple pre-
conditions need to be met: The TLS session must be resumed,
a HelloRetryRequest must be triggered with a malicious omis-
sion of supported groups, and two cipher suite lists with
duplicates need to be sent. Using our DSL for DY traces,
we confirmed that all of those are required, i.e. removing
any of those prevents the bug to be triggered. Such complex,
logical adversarial behaviors are reached in a matter of a
few mutations with DY fuzzers like tlspuffin.

Continuing the overall methodology:
4) Sometimes it was necessary to test-out hypotheses by

constructing minimized trace variants using our DSL.
When the variant still triggers the bug, we could go
back to (3). Sometimes, we re-ran a fuzzing campaign
with the variant as seed and let the fuzzer find variants
that trigger the bug and go back to (3). We did so for
BUF, and tlspuffin found a smaller trace, where the first
full handshake is completely skipped. Instead, tlspuffin
found that the first malformed ClientHello message can
pretend to resume a non-existent session. From this trace
written in our DSL, we could trial and error removing
parts of the trace until reaching a minimal Proof-of-
Concept (PoC). Finally, we could use the bitstring
extractions to produce a netcat command as PoC.

C.4. Detailed Performance Results and Plots

See Table 5 and enlarged version of Figure 3 in Figure 6.

C.5. Responsible Disclosure

Using tlspuffin, we discovered four new vulnerabilities.
Each of them has been responsibly disclosed to and fixed
by wolfSSL. They have also been filed as CVEs as indi-
cated in Table 2. For each of them, we offered our help,
notably proposing fixes (some of them have been tested by
tlspuffin). Over the course of about 3 months wolfSSL fixed
all vulnerabilities with a mean time of 6 days until the fix
landed on the main branch and a mean time until fixes were
released of 26 days. A detailed timeline can be found below.
Users of wolfSSL like the OpenWRT11 were informed by

11. https://openwrt.org/advisory/2022-10-04-1 (warning to reviewers: the
page content at this link acknowledges the authors)
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Figure 6: Larger version of Figure 3.

the publication of the CVE on wolfSSL release days.
08/12/2022 Contacted wolfSSL to set up a secure channel.
08/12/2022 Reported CVE-2022-38153 and CVE-2022-38152.
08/12/2022 Confirmed and fixed CVE-2022-38152.
08/16/2022 Confirmed CVE-2022-38153.
08/17/2022 Fix CVE-2022-38153.
08/30/2022 Release of a fix version 5.5.0.
09/12/2022 Reported CVE-2022-39173.
09/12/2022 Confirmed and fixed CVE-2022-39173.

https://openwrt.org/advisory/2022-10-04-1


1let rsa_certificate = term! {
2fn_certificate13(...)
3};
4

5let certificate = term! {
6fn_encrypt_handshake(
7(@certificate_rsa),
8(fn_sh_transcript(((server, 0)))),
9(fn_server_share(((server, 0)))),
10fn_seq_0,
11...
12)
13};

Figure 7: Example usage of the term DSL

09/28/2022 Release of a fix version 5.5.1.
10/09/2022 Reported CVE-2022-42905.
10/10/2022 Confirmed and fixed CVE-2022-42905.
10/28/2022 Release of a fix version 5.5.2.

Appendix D.
DY Fuzzing

D.1. DSL for DY Traces

When defining traces for the Seed Corpus, the users of
DY fuzzers are supposed to manually craft traces. The puffin
and tlspuffin tool simplify this task by providing a DSL which
allows declaring traces. In Figure 7, we provide examples
of terms which can be used to build a whole trace. The
DSL is implemented through Rust’s macro_rules! feature.
The example creates an encrypted Certificate message. It
references a sub-term in line 7, references knowledge through
a query in lines 8–9 and uses an atom in line 10. The Rust
variable certificate can be used to create a trace. We
provide complete traces in this DSL for defining the whole
Seed Corpus in [73].

D.2. Notes on Mutations

D.2.1. Mutation Constraints. Mutations can be applied
only when the following constraints are fulfilled.

Well-typed preservation. Consider Swap that
replaces an operator f by f ′. We wrote that the arity of f
and f ′ should match. In our presentation, messages are un-
typed (they are simply elements of M). But in practice, most
programming languages of the SignatureLib (or PUT) have
type constraints and the implementations of f and f ′ are
likely to be typed in a more fine-grained manner. For instance,
an argument of f could be given the PUT-specific type for
X.509 certificates. Hence, we impose that f and f ′ have the
same type in order for the mutated term to still be well-typed.
More generally, the application of mutations should preserve
that the trace is well-typed. Moreover, we skip any mutation
that implies a term computation (through J·K) to fail.

Size bounds. There is a special case in which muta-
tions can also be skipped. If the trace length or an attacker
term is becoming too big or small, then the mutation is

skipped. The reason for this is that we are not interested in
indefinitely creating larger and larger traces. There are sane
limits for trace lengths and attacker terms sizes which can
be determined by observing how big the defined seeds are.

D.2.2. Mutation Redundancy. Note that the result of the
Swap mutation between two terms whose one is a sub-term
of the other can also be achieved through a Replace-Reuse
mutation. There exist other such redundancies. Redundancies
in mutators is actually a common pattern, e.g. it also occurs
in the havoc mutator of bit-level fuzzers like AFL++ [38].

D.2.3. Mutation Failures. The application of a mutation
is a random process that can fail at two levels: (i) when
executed later using the Harness or (ii) when computing the
mutated trace. An example of failure (i) is the Replace-Match
mutation replacing f(t1, . . . , tk) with f ′(t1, . . . , tk) such that
f(t1, . . . , tk) ∈ dom(J·Kϕ) (the computation succeeds) but
f ′(t1, . . . , tk) /∈ dom(J·Kϕ) (the computation fails). Those
failures are to be expected and are dealt with by the fuzzing
loop; the mutated trace will be deemed uninteresting and
dropped. Failures (ii) can happen when the chosen mutation
cannot be applied while respecting the aforementioned mu-
tation constraints, notably typing constraints. In those cases,
the mutation is simply skipped.

Appendix E.
Implementation: The tlspuffin Fuzzer

E.1. Determinism

Deterministic behavior is very important during
automated software testing, because results should be
reproducible. This can be achieved by seeding Pseudorandom
Number Generator (PRNG) with static values. Therefore,
this PRNG should be used to generate randomness when
having to resolve random choices for the presented
mutations. This way, it is possible to replay mutations by
providing the same seed twice and write unit tests. It is
noteworthy, that each execution of a trace yields an identical
run, under the assumption that the PUT is deterministic. We
explain in Section 5, how we managed to make the PUTs
behave deterministically. Note that, even if the PUT is not
deterministic, its non-deterministic behaviors are likely to
solely concern the content of some random fields such as
random nonces or ephemeral keys, whose variations are
very unlikely going to impact how DY traces are executed,
which is at the logical level.

E.2. Implementations Challenges

Queries. We had to tackle a challenge related to the
way the attacker refers to its state ϕ. To illustrate the problem,
consider a variable x and an attacker term t = sdec(x, k)
(assuming k is mapped to a symmetric key) in a trace T =
T1.out(c, x).in(c

′, t) included in the Seed Corpus. When ex-
ecuting this trace T , x is assigned a message that can indeed



be decrypted with k. Now, after some mutations affecting T1,
the agent c might not send an encrypted message anymore
but e.g. an error message. Yet, the attacker term t remains the
same and its computation will now fail. The problem is that
the way the attacker accesses resources that were gathered
throughout execution is not robust enough through successive
mutations. We alleviate this issue with queries. When adding
some (sub-)message m to ϕ, puffin and tlspuffin also stores
from which agent c ∈ C it originates, the kind of message it is
(for TLS: ClientHello, Finished, etc.), and its internal Rust type
(accessed though compile-time reflection). A query is simply
a conjunction of conditions over metadata (c, message kind,
message type). When applied on an attacker’s state ϕ, it re-
turns the first matching message. The attacker can use queries
to access its knowledge in place of variables in attacker
terms and traces. It also eases the writing of the seed traces.

Claim Extraction. puffin and tlspuffin offer different
methods for extracting claims from PUTs. For wolfSSL, we
leverage existing potential callback facilities in the PUT
to expose the agent’s context from which the required data
can be retrieved. Another method we used for OpenSSL and
LibreSSL, is to create a minimal C interface of data the PUT
must expose for tlspuffin to be able to extract the required
data. We implemented this in a dedicated tlspuffin-claims
crate. As detailed in Section 4.2, some claims could also be
extracted without any modification or even access to the PUT.

Gathering Knowledge from Protocol Outputs.
Let us recall that when executing an action out(c, x), the
message m ∈ M from (s′c,m) = output(sc) gets added to
the attacker’s state ϕ by assigning m to the variable x (see
Section 3.2). Moreover, the message m ∈ M is a bitstring, not
a term t ∈ T . This is not a problem in theory, as the attacker
can construct adversary terms using functions to e.g. access
fields in m (see projections from Example 2). This way, he
can treat m as a term. However, this would yield quite large
attacker terms, since any reuse of a field in m would possibly
already require several operators. To mitigate this and
simplify attacker terms, we decided that puffin would partially
interpret m by extracting all sub-messages that can be
accessed in plaintext. All those sub-messages mi are assigned
variables xi, which are added to the attacker’s state ϕ and
that are thus made available to the attacker. We stress that this
does not change the executions and the attacker’s behaviors
that can be explored. For example, from a ClientHello like in
Example 2, tlspuffin automatically extract as sub-messages
the bitstring associated to the TLS version, client random,
session identifier, list of cipher suites, and list of extensions.

Transcript Extraction. When running earlier
versions of tlspuffin, we noticed that some attacker terms
could get huge for the trace to be executed gracefully
(sometimes with >10k operators per term). Our investigations
have shown that transcript hashes in TLS 1.3 dramatically
contributed to this problem. A transcript hash is a hash
value over all previously sent and received messages and
is included in all authentication messages (e.g. Finished).
Therefore, when a mutation modifies a field in an exchanged
message somewhere, other mutations should also be applied
to reflect this modification on all next transcript hashes. This

reduces the likelihood of finding mutations that also mutate
the transcript hash accordingly and dramatically increases
the size of terms in traces, since to each transcript hash
corresponds a (large) term leading to many duplicated terms.

To address those problems, we decided to give the at-
tacker the possibility to use in attacker terms a shortcut
hashTr@ c that refers to the hash transcript as c would
compute it at this time of the execution. We then let tlspuffin
replaces those with the dynamically computed transcript
hashes. This dramatically reduces duplicate transcript terms
and term sizes. This is without loss of generality since the
transcript being hashed is made of messages sent in clear-
text, so the attacker knows it already. We are using the same
implementation methods that we use for claim extraction for
transcript extraction.

E.3. Other Features

Triaging Bugs. Once objectives are found, i.e. traces
triggering security policy violations, one needs to triage
those. With puffin, it is possible to execute traces which are
stored on-disk against any PUT, using its dedicated Mapper.
For better understanding and reproducibility of the bugs, we
made tlspuffin offer an easy way to also test a trace against
arbitrary applications. Indeed, tlspuffin is capable of executing
a given trace (or even a fuzzing campaign, which will be
slower though) against arbitrary TCP clients or servers (on a
given address and port), which can serve as PoC. This is also
useful to test against closed-source binaries, or remote servers.
Finally, if the bug does not require more than 1 flight of
message, say m, then puffin and tlspuffin also offer a feature
to compute the bitstring JmK which can serve as a minimal
PoC. Those bitstrings are supposed to be sent to a TCP
client or server through standard Linux tools like netcat.

When we wanted to fully understand the bugs we found,
we followed a methodology that we illustrate on a case
study in Appendix C.3 and that takes advantage of all the
aforementioned features as well as standard debugging tools.

Regression Testing. The puffin and tlspuffin tools
can also be used for other tasks beyond fuzzing. We are
already using our tools to test for regressions in the supported
PUTs. We treat the attack traces for various vulnerabilities
as regression tests, which ensure that bugs which are already
known will never occur again.

tlspuffin as an Analysis Framework. As for TLS-
Attacker [70], tlspuffin also allows defining specific protocol
flows for TLS libraries using our handy DSL and executing
them over TCP. This way, users can test for the absence of
known vulnerabilities, extract fingerprinting information, or
send arbitrary custom TLS messages. Thus, despite not being
its main goal, tlspuffin also offers this TLS-Attacker use case.
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